1
|
Chen S, Han C, Wang X, Zhang Q, Yang X. Alantolactone improves cognitive impairment in rats with Porphyromonas gingivalis infection by inhibiting neuroinflammation, oxidative stress, and reducing Aβ levels. Brain Res 2024; 1845:149203. [PMID: 39208968 DOI: 10.1016/j.brainres.2024.149203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Neuroinflammation caused by the chronic periodontal pathogen Porphyromonas gingivalis is growing regarded as as a key factor in the pathogenesis of Alzheimer's disease (AD). Alantolactone (AL), a sesquiterpene lactone isolated from the root of Inula racemosa Hook. f, has been proven to provide various neuroprotective effects. However, whether AL can improve cognitive impairment caused by P. gingivalis infection remains unclear. In this research, a rat model of P. gingivalis infection was used to examine the neuroprotective benefits of AL. The results revealed that 6 weeks of AL treatment (50 and 100 mg/kg) shortened escape latency and increased the number of crossings over the platform location and time spent in the target quadrant of P. gingivalis-infected rats in the Morris water maze experiment. By activating the Nrf2/HO-1 pathway, AL suppressed malondialdehyde (MDA) levels and simultaneously increased the activity of total superoxide dismutase (T-SOD). Furthermore, AL lowered the presence of IL-6, IL-1β, and TNFα in the hippocampal and cortical tissues of P. gingivalis-infected rats by inhibiting astrocyte and microglial activation and NF-κB phosphorylation. AL also significantly reduced Aβ levels in the cortical and hippocampus tissues of rats infected with P. gingivalis. In conclusion, AL improved cognitive impairment in P. gingivalis-infected rats by inhibiting neuroinflammation, reducing Aβ1-42 level, and exerting antioxidative stress effects.
Collapse
Affiliation(s)
| | - Cheng Han
- Qinghai University Graduate School, Xining, China
| | - XinHao Wang
- Qinghai University Graduate School, Xining, China
| | - QingXin Zhang
- Department of Magnetic Resonance, Qinghai Provincial People's Hospital, Xining 810000, China.
| | - XiaoLi Yang
- Department of Neurology, Qinghai Provincial People's Hospital, Xining 810000, China.
| |
Collapse
|
2
|
Dongol A, Xie Y, Zheng P, Chen X, Huang XF. Olanzapine attenuates amyloid-β-induced microglia-mediated progressive neurite lesions. Int Immunopharmacol 2024; 137:112469. [PMID: 38908083 DOI: 10.1016/j.intimp.2024.112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The accumulation of amyloid-β (Aβ) in the brain is the first pathological mechanism to initiate Alzheimer's disease (AD) pathogenesis. However, the precise role of Aβ in the disease progression remains unclear. Through decades of research, prolonged inflammation has emerged as an important core pathology in AD. Previously, a study has demonstrated the neurotoxic effect of Aβ-induced neuroinflammation in neuron-glia co-culture at 72 h. Here, we hypothesise that initial stage Aβ may trigger microglial inflammation, synergistically contributing to the progression of neurite lesions relevant to AD progression. In the present study, we aimed to determine whether olanzapine, an antipsychotic drug possessing anti-inflammatory properties, can ameliorate Aβ-induced progressive neurite lesions. Our study reports that Aβ induces neurite lesions with or without inflammatory microglial cells in vitro. More intriguingly, the present study revealed that Aβ exacerbates neurite lesions in synergy with microglia. Moreover, the time course study revealed that Aβ promotes microglia-mediated neurite lesions by eliciting the secretion of pro-inflammatory cytokines. Furthermore, our study shows that olanzapine at lower doses prevents Aβ-induced microglia-mediated progressive neurite lesions. The increase in pro-inflammatory cytokines induced by Aβ is attenuated by olanzapine administration, associated with a reduction in microglial inflammation. Finally, this study reports that microglial senescence induced by Aβ was rescued by olanzapine. Thus, our study provides the first evidence that 1 µM to 5 µM of olanzapine can effectively prevent Aβ-induced microglia-mediated progressive neurite lesions by modulating microglial inflammation. These observations reinforce the potential of targeting microglial remodelling to slow disease progression in AD.
Collapse
Affiliation(s)
- Anjila Dongol
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Yuanyi Xie
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Peng Zheng
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Xi Chen
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Xu-Feng Huang
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia.
| |
Collapse
|
3
|
Bäckström T, Doverskog M, Blackburn TP, Scharschmidt BF, Felipo V. Allopregnanolone and its antagonist modulate neuroinflammation and neurological impairment. Neurosci Biobehav Rev 2024; 161:105668. [PMID: 38608826 DOI: 10.1016/j.neubiorev.2024.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Neuroinflammation accompanies several brain disorders, either as a secondary consequence or as a primary cause and may contribute importantly to disease pathogenesis. Neurosteroids which act as Positive Steroid Allosteric GABA-A receptor Modulators (Steroid-PAM) appear to modulate neuroinflammation and their levels in the brain may vary because of increased or decreased local production or import from the systemic circulation. The increased synthesis of steroid-PAMs is possibly due to increased expression of the mitochondrial cholesterol transporting protein (TSPO) in neuroinflammatory tissue, and reduced production may be due to changes in the enzymatic activity. Microglia and astrocytes play an important role in neuroinflammation, and their production of inflammatory mediators can be both activated and inhibited by steroid-PAMs and GABA. What is surprising is the finding that both allopregnanolone, a steroid-PAM, and golexanolone, a novel GABA-A receptor modulating steroid antagonist (GAMSA), can inhibit microglia and astrocyte activation and normalize their function. This review focuses on the role of steroid-PAMs in neuroinflammation and their importance in new therapeutic approaches to CNS and liver disease.
Collapse
Affiliation(s)
| | | | | | | | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
4
|
López-Ortiz S, Caruso G, Emanuele E, Menéndez H, Peñín-Grandes S, Guerrera CS, Caraci F, Nisticò R, Lucia A, Santos-Lozano A, Lista S. Digging into the intrinsic capacity concept: Can it be applied to Alzheimer's disease? Prog Neurobiol 2024; 234:102574. [PMID: 38266702 DOI: 10.1016/j.pneurobio.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Historically, aging research has largely centered on disease pathology rather than promoting healthy aging. The World Health Organization's (WHO) policy framework (2015-2030) underscores the significance of fostering the contributions of older individuals to their families, communities, and economies. The WHO has introduced the concept of intrinsic capacity (IC) as a key metric for healthy aging, encompassing five primary domains: locomotion, vitality, sensory, cognitive, and psychological. Past AD research, constrained by methodological limitations, has focused on single outcome measures, sidelining the complexity of the disease. Our current scientific milieu, however, is primed to adopt the IC concept. This is due to three critical considerations: (I) the decline in IC is linked to neurocognitive disorders, including AD, (II) cognition, a key component of IC, is deeply affected in AD, and (III) the cognitive decline associated with AD involves multiple factors and pathophysiological pathways. Our study explores the application of the IC concept to AD patients, offering a comprehensive model that could revolutionize the disease's diagnosis and prognosis. There is a dearth of information on the biological characteristics of IC, which are a result of complex interactions within biological systems. Employing a systems biology approach, integrating omics technologies, could aid in unraveling these interactions and understanding IC from a holistic viewpoint. This comprehensive analysis of IC could be leveraged in clinical settings, equipping healthcare providers to assess AD patients' health status more effectively and devise personalized therapeutic interventions in accordance with the precision medicine paradigm. We aimed to determine whether the IC concept could be extended from older individuals to patients with AD, thereby presenting a model that could significantly enhance the diagnosis and prognosis of this disease.
Collapse
Affiliation(s)
- Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | | | - Héctor Menéndez
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Saúl Peñín-Grandes
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Claudia Savia Guerrera
- Department of Educational Sciences, University of Catania, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00143 Rome, Italy
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre ('imas12'), 28041 Madrid, Spain; Faculty of Sport Sciences, European University of Madrid, 28670 Villaviciosa de Odón, Madrid, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), 28029 Madrid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain; Research Institute of the Hospital 12 de Octubre ('imas12'), 28041 Madrid, Spain
| | - Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain.
| |
Collapse
|
5
|
Wrzesień A, Andrzejewski K, Jampolska M, Kaczyńska K. Respiratory Dysfunction in Alzheimer's Disease-Consequence or Underlying Cause? Applying Animal Models to the Study of Respiratory Malfunctions. Int J Mol Sci 2024; 25:2327. [PMID: 38397004 PMCID: PMC10888758 DOI: 10.3390/ijms25042327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disease that is the most common cause of dementia among the elderly. In addition to dementia, which is the loss of cognitive function, including thinking, remembering, and reasoning, and behavioral abilities, AD patients also experience respiratory disturbances. The most common respiratory problems observed in AD patients are pneumonia, shortness of breath, respiratory muscle weakness, and obstructive sleep apnea (OSA). The latter is considered an outcome of Alzheimer's disease and is suggested to be a causative factor. While this narrative review addresses the bidirectional relationship between obstructive sleep apnea and Alzheimer's disease and reports on existing studies describing the most common respiratory disorders found in patients with Alzheimer's disease, its main purpose is to review all currently available studies using animal models of Alzheimer's disease to study respiratory impairments. These studies on animal models of AD are few in number but are crucial for establishing mechanisms, causation, implementing potential therapies for respiratory disorders, and ultimately applying these findings to clinical practice. This review summarizes what is already known in the context of research on respiratory disorders in animal models, while pointing out directions for future research.
Collapse
Affiliation(s)
| | | | | | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.W.); (K.A.); (M.J.)
| |
Collapse
|
6
|
Zou T, Zhou X, Wang Q, Zhao Y, Zhu M, Zhang L, Chen W, Abuliz P, Miao H, Kabinur K, Alimu K. Associations of serum DNA methylation levels of chemokine signaling pathway genes with mild cognitive impairment (MCI) and Alzheimer's disease (AD). PLoS One 2023; 18:e0295320. [PMID: 38039290 PMCID: PMC10691689 DOI: 10.1371/journal.pone.0295320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVE To investigate the associations of serum DNA methylation levels of chemokine signaling pathway genes with Alzheimer's disease (AD) and mild cognitive impairment (MCI) in elderly people in Xinjiang, China, and to screen out genes whose DNA methylation could distinguish AD and MCI. MATERIALS AND METHODS 37 AD, 40 MCI and 80 controls were included in the present study. DNA methylation assay was done using quantitative methylation-specific polymerase chain reaction (qMSP). Genotyping was done using Sanger sequencing. RESULTS DNA methylation levels of ADCY2, MAP2K1 and AKT1 were significantly different among AD, MCI and controls. In the comparisons of each two groups, AKT1 and MAP2K1's methylation was both significantly different between AD and MCI (p < 0.05), whereas MAP2K1's methylation was also significantly different between MCI and controls. Therefore, AKT1's methylation was considered as the candidate serum marker to distinguish AD from MCI, and its association with AD was independent of APOE ε4 allele (p < 0.05). AKT1 hypermethylation was an independent risk factor for AD and MAP2K1 hypomethylation was an independent risk factor for MCI in logistic regression analysis (p < 0.05). CONCLUSION This study found that the serum of AKT1 hypermethylation is related to AD independently of APOE ε4, which was differentially expressed in the Entorhinal Cortex of the brain and was an independent risk factor for AD. It could be used as one of the candidate serum markers to distinguish AD and MCI. Serum of MAP2K1 hypomethylation is an independent risk factor for MCI.
Collapse
Affiliation(s)
- Ting Zou
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Xiaohui Zhou
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Qinwen Wang
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, China
| | - Yongjie Zhao
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Meisheng Zhu
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Lei Zhang
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Wei Chen
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Pari Abuliz
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Haijun Miao
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Keyimu Kabinur
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Kader Alimu
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| |
Collapse
|
7
|
Saleem A, Shah SIA, Mangar SA, Coello C, Wall MB, Rizzo G, Jones T, Price PM. Cognitive Dysfunction in Patients Treated with Androgen Deprivation Therapy: A Multimodality Functional Imaging Study to Evaluate Neuroinflammation. Prostate Cancer 2023; 2023:6641707. [PMID: 37885823 PMCID: PMC10599921 DOI: 10.1155/2023/6641707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Background Androgen deprivation therapy (ADT) for prostate cancer is implicated as a possible cause of cognitive impairment (CI). CI in dementia and Alzheimer's disease is associated with neuroinflammation. In this study, we investigated a potential role of neuroinflammation in ADT-related CI. Methods Patients with prostate cancer on ADT for ≥3 months were categorized as having ADT-emergent CI or normal cognition (NC) based on self-report at interview. Neuroinflammation was evaluated using positron emission tomography (PET) with the translocator protein (TSPO) radioligand [11C]-PBR28. [11C]-PBR28 uptake in various brain regions was quantified as standardized uptake value (SUVR, normalized to cerebellum) and related to blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) choice-reaction time task (CRT) activation maps. Results Eleven patients underwent PET: four with reported CI (rCI), six with reported NC (rNC), and one status unrecorded. PET did not reveal any between-group differences in SUVR regionally or globally. There was no difference between groups on brain activation to the CRT. Regardless of the reported cognitive status, there was strong correlation between PET-TSPO signal and CRT activation in the hippocampus, amygdala, and medial cortex. Conclusions We found no difference in neuroinflammation measured by PET-TSPO between patients with rCI and rNC. However, we speculate that the strong correlation between TSPO uptake and BOLD-fMRI activation in brain regions involved in memory and known to have high androgen-receptor expression mediating plasticity (hippocampus and amygdala) might reflect inflammatory effects of ADT with compensatory upregulated/increased synaptic functions. Further studies of this imaging readout are warranted to investigate ADT-related CI.
Collapse
Affiliation(s)
- Azeem Saleem
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
- Hull York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Syed Imran Ali Shah
- Department of Surgery and Cancer, Imperial College, London, UK
- Department of Biochemistry, CMH Lahore Medical College & Institute of Dentistry, Lahore, Pakistan
| | | | - Christopher Coello
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Matthew B. Wall
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Gaia Rizzo
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
- Division of Brain Sciences, Imperial College London, London, UK
| | - Terry Jones
- Department of Radiology, University of California Davis Medical Center, Davis, California, USA
| | | |
Collapse
|
8
|
Sunna S, Bowen CA, Ramelow CC, Santiago JV, Kumar P, Rangaraju S. Advances in proteomic phenotyping of microglia in neurodegeneration. Proteomics 2023; 23:e2200183. [PMID: 37060300 PMCID: PMC10528430 DOI: 10.1002/pmic.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Microglia are dynamic resident immune cells of the central nervous system (CNS) that sense, survey, and respond to changes in their environment. In disease states, microglia transform from homeostatic to diverse molecular phenotypic states that play complex and causal roles in neurologic disease pathogenesis, as evidenced by the identification of microglial genes as genetic risk factors for neurodegenerative disease. While advances in transcriptomic profiling of microglia from the CNS of humans and animal models have provided transformative insights, the transcriptome is only modestly reflective of the proteome. Proteomic profiling of microglia is therefore more likely to provide functionally and therapeutically relevant targets. In this review, we discuss molecular insights gained from transcriptomic studies of microglia in the context of Alzheimer's disease as a prototypic neurodegenerative disease, and highlight existing and emerging approaches for proteomic profiling of microglia derived from in vivo model systems and human brain.
Collapse
Affiliation(s)
- Sydney Sunna
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Christine A. Bowen
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Christina C. Ramelow
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Juliet V. Santiago
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Prateek Kumar
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Xiong J, Zhang Z, Ye K. C/EBPβ/AEP Signaling Drives Alzheimer's Disease Pathogenesis. Neurosci Bull 2023; 39:1173-1185. [PMID: 36735152 PMCID: PMC10313643 DOI: 10.1007/s12264-023-01025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Almost two-thirds of patients with AD are female. The reason for the higher susceptibility to AD onset in women is unclear. However, hormone changes during the menopausal transition are known to be associated with AD. Most recently, we reported that follicle-stimulating hormone (FSH) promotes AD pathology and enhances cognitive dysfunctions via activating the CCAAT-enhancer-binding protein (C/EBPβ)/asparagine endopeptidase (AEP) pathway. This review summarizes our current understanding of the crucial role of the C/EBPβ/AEP pathway in driving AD pathogenesis by cleaving multiple critical AD players, including APP and Tau, explaining the roles and the mechanisms of FSH in increasing the susceptibility to AD in postmenopausal females. The FSH-C/EBPβ/AEP pathway may serve as a novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, 518034, China.
| |
Collapse
|
10
|
Melchiorri D, Merlo S, Micallef B, Borg JJ, Dráfi F. Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol 2023; 14:1196413. [PMID: 37332353 PMCID: PMC10272781 DOI: 10.3389/fphar.2023.1196413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Despite extensive research, no disease-modifying therapeutic option, able to prevent, cure or halt the progression of Alzheimer's disease [AD], is currently available. AD, a devastating neurodegenerative pathology leading to dementia and death, is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of neurofibrillary tangles (NFTs) consisting of altered hyperphosphorylated tau protein. Both have been widely studied and pharmacologically targeted for many years, without significant therapeutic results. In 2022, positive data on two monoclonal antibodies targeting Aβ, donanemab and lecanemab, followed by the 2023 FDA accelerated approval of lecanemab and the publication of the final results of the phase III Clarity AD study, have strengthened the hypothesis of a causal role of Aβ in the pathogenesis of AD. However, the magnitude of the clinical effect elicited by the two drugs is limited, suggesting that additional pathological mechanisms may contribute to the disease. Cumulative studies have shown inflammation as one of the main contributors to the pathogenesis of AD, leading to the recognition of a specific role of neuroinflammation synergic with the Aβ and NFTs cascades. The present review provides an overview of the investigational drugs targeting neuroinflammation that are currently in clinical trials. Moreover, their mechanisms of action, their positioning in the pathological cascade of events that occur in the brain throughout AD disease and their potential benefit/limitation in the therapeutic strategy in AD are discussed and highlighted as well. In addition, the latest patent requests for inflammation-targeting therapeutics to be developed in AD will also be discussed.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - John-Joseph Borg
- Malta Medicines Authority, San Ġwann, Malta
- School of Pharmacy, Department of Biology, University of Tor Vergata, Rome, Italy
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS Bratislava, Bratislava, Slovakia
- State Institute for Drug Control, Bratislava, Slovakia
| |
Collapse
|
11
|
Cogswell PM, Fan AP. Multimodal comparisons of QSM and PET in neurodegeneration and aging. Neuroimage 2023; 273:120068. [PMID: 37003447 PMCID: PMC10947478 DOI: 10.1016/j.neuroimage.2023.120068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) has been used to study susceptibility changes that may occur based on tissue composition and mineral deposition. Iron is a primary contributor to changes in magnetic susceptibility and of particular interest in applications of QSM to neurodegeneration and aging. Iron can contribute to neurodegeneration through inflammatory processes and via interaction with aggregation of disease-related proteins. To better understand the local susceptibility changes observed on QSM, its signal has been studied in association with other imaging metrics such as positron emission tomography (PET). The associations of QSM and PET may provide insight into the pathophysiology of disease processes, such as the role of iron in aging and neurodegeneration, and help to determine the diagnostic utility of QSM as an indirect indicator of disease processes typically evaluated with PET. In this review we discuss the proposed mechanisms and summarize prior studies of the associations of QSM and amyloid PET, tau PET, TSPO PET, FDG-PET, 15O-PET, and F-DOPA PET in evaluation of neurologic diseases with a focus on aging and neurodegeneration.
Collapse
Affiliation(s)
- Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Audrey P Fan
- Department of Biomedical Engineering and Department of Neurology, University of California, Davis, 1590 Drew Avenue, Davis, CA 95618, USA
| |
Collapse
|
12
|
Shi A, Long Y, Ma Y, Yu S, Li D, Deng J, Wen J, Li X, Wu Y, He X, Hu Y, Li N, Hu Y. Natural essential oils derived from herbal medicines: A promising therapy strategy for treating cognitive impairment. Front Aging Neurosci 2023; 15:1104269. [PMID: 37009463 PMCID: PMC10060871 DOI: 10.3389/fnagi.2023.1104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Cognitive impairment (CI), mainly Alzheimer’s disease (AD), continues to increase in prevalence and is emerging as one of the major health problems in society. However, until now, there are no first-line therapeutic agents for the allopathic treatment or reversal of the disease course. Therefore, the development of therapeutic modalities or drugs that are effective, easy to use, and suitable for long-term administration is important for the treatment of CI such as AD. Essential oils (EOs) extracted from natural herbs have a wide range of pharmacological components, low toxicity, and wide sources, In this review, we list the history of using volatile oils against cognitive disorders in several countries, summarize EOs and monomeric components with cognitive improvement effects, and find that they mainly act by attenuating the neurotoxicity of amyloid beta, anti-oxidative stress, modulating the central cholinergic system, and improving microglia-mediated neuroinflammation. And combined with aromatherapy, the unique advantages and potential of natural EOs in the treatment of AD and other disorders were discussed. This review hopes to provide scientific basis and new ideas for the development and application of natural medicine EOs in the treatment of CI.
Collapse
Affiliation(s)
- Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Nan Li,
| | - Yuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yuan Hu,
| |
Collapse
|
13
|
Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25–35 model of Alzheimer's disease: Potential for screening of new therapeutic agents. Pharmacol Ther 2023; 245:108398. [PMID: 37001735 DOI: 10.1016/j.pharmthera.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, currently affecting more than 40 million people worldwide. The two main histopathological hallmarks of AD were identified in the 1980s: senile plaques (composed of aggregated amyloid-β (Aβ) peptides) and neurofibrillary tangles (composed of hyperphosphorylated tau protein). In the human brain, both Aβ and tau show aggregation into soluble and insoluble oligomers. Soluble oligomers of Aβ include their most predominant forms - Aβ1-40 and Aβ1-42 - as well as shorter peptides such as Aβ25-35 or Aβ25-35/40. Most animal models of AD have been developed using transgenesis, based on identified human mutations. However, these familial forms of AD represent less than 1% of AD cases. In this context, the idea emerged in the 1990s to directly inject the Aβ25-35 fragment into the rodent brain to develop an acute model of AD that could mimic the disease's sporadic forms (99% of all cases). This review aims to: (1) summarize the biological activity of Aβ25-35, focusing on its impact on the main structural and functional alterations observed in AD (cognitive deficits, APP misprocessing, tau system dysfunction, neuroinflammation, oxidative stress, cholinergic and glutamatergic alterations, HPA axis dysregulation, synaptic deficits and cell death); and (2) confirm the interest of this pathomimetic model in AD research, as it has helped identify and characterize many molecules (marketed, in clinical development, and in preclinical testing), and to the development of alternative approaches for AD prevention and therapy. Today, the Aβ25-35 model appears as a first-intent choice model to rapidly screen the symptomatic or neuroprotective potencies of new compounds, chemical series, or innovative therapeutic strategies.
Collapse
|
14
|
Anti-Neuroinflammatory Potential of Natural Products in the Treatment of Alzheimer's Disease. Molecules 2023; 28:molecules28031486. [PMID: 36771152 PMCID: PMC9920976 DOI: 10.3390/molecules28031486] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related chronic progressive neurodegenerative disease, which is the main cause of dementia in the elderly. Much evidence shows that the onset and late symptoms of AD are caused by multiple factors. Among them, aging is the main factor in the pathogenesis of AD, and the most important risk factor for AD is neuroinflammation. So far, there is no cure for AD, but the relationship between neuroinflammation and AD may provide a new strategy for the treatment of AD. We herein discussed the main etiology hypothesis of AD and the role of neuroinflammation in AD, as well as anti-inflammatory natural products with the potential to prevent and alleviate AD symptoms, including alkaloids, steroids, terpenoids, flavonoids and polyphenols, which are available with great potential for the development of anti-AD drugs.
Collapse
|
15
|
Rajah Kumaran K, Yunusa S, Perimal E, Wahab H, Müller CP, Hassan Z. Insights into the Pathophysiology of Alzheimer's Disease and Potential Therapeutic Targets: A Current Perspective. J Alzheimers Dis 2023; 91:507-530. [PMID: 36502321 DOI: 10.3233/jad-220666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aging population increases steadily because of a healthy lifestyle and medical advancements in healthcare. However, Alzheimer's disease (AD) is becoming more common and problematic among older adults. AD-related cases show an increasing trend annually, and the younger age population may also be at risk of developing this disorder. AD constitutes a primary form of dementia, an irreversible and progressive brain disorder that steadily damages cognitive functions and the ability to perform daily tasks. Later in life, AD leads to death as a result of the degeneration of specific brain areas. Currently, the cause of AD is poorly understood, and there is no safe and effective therapeutic agent to cure or slow down its progression. The condition is entirely preventable, and no study has yet demonstrated encouraging findings in terms of treatment. Identifying this disease's pathophysiology can help researchers develop safe and efficient therapeutic strategies to treat this ailment. This review outlines and discusses the pathophysiology that resulted in the development of AD including amyloid-β plaques, tau neurofibrillary tangles, neuroinflammation, oxidative stress, cholinergic dysfunction, glutamate excitotoxicity, and changes in neurotrophins level may sound better based on the literature search from Scopus, PubMed, ScienceDirect, and Google Scholar. Potential therapeutic strategies are discussed to provide more insights into AD mechanisms by developing some possible pharmacological agents for its treatment.
Collapse
Affiliation(s)
- Kesevan Rajah Kumaran
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Pulau Pinang, Malaysia
| | - Suleiman Yunusa
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Department of Pharmacology, Bauchi State University Gadau, Bauchi State, Nigeria
| | - Enoch Perimal
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia.,Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Habibah Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
16
|
Kim J, Kim YK. Molecular Imaging of Neuroinflammation in Alzheimer's Disease and Mild Cognitive Impairment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:301-326. [PMID: 36949316 DOI: 10.1007/978-981-19-7376-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurocognitive disorder. Due to the ineffectiveness of treatments targeting the amyloid cascade, molecular biomarkers for neuroinflammation are attracting attention with increasing knowledge about the role of neuroinflammation in the pathogenesis of AD. This chapter will explore the results of studies using molecular imaging for diagnosing AD and mild cognitive impairment (MCI). Because it is critical to interpreting the data to understand which substances are targeted in molecular imaging, this chapter will discuss the two most significant targets, microglia and astrocytes, as well as the best-known radioligands for each. Then, neuroimaging results with PET neuroinflammation imaging will be reviewed for AD and MCI. Although a growing body of evidence has suggested that these molecular imaging biomarkers for neuroinflammation may have a role in the diagnosis of AD and MCI, the findings are inconsistent or cross-sectional, which indicates that it is difficult to apply the contents in practice due to the need for additional study. In particular, because the results of multiple interventions targeting neuroinflammation were inconclusive, molecular imaging markers for neuroinflammation can be used in combination with conventional markers to select appropriate patients for early intervention for neuroinflammation rather than as a single marker.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Psychiatry, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
17
|
Li F, Eteleeb AM, Buchser W, Sohn C, Wang G, Xiong C, Payne PR, McDade E, Karch CM, Harari O, Cruchaga C. Weakly activated core neuroinflammation pathways were identified as a central signaling mechanism contributing to the chronic neurodegeneration in Alzheimer's disease. Front Aging Neurosci 2022; 14:935279. [PMID: 36238934 PMCID: PMC9551568 DOI: 10.3389/fnagi.2022.935279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Neuroinflammation signaling has been identified as an important hallmark of Alzheimer's disease (AD) in addition to amyloid β plaques (Aβ) and neurofibrillary tangles (NFTs). However, the molecular mechanisms and biological processes of neuroinflammation remain unclear and have not well delineated using transcriptomics data available. Our objectives are to uncover the core neuroinflammation signaling pathways in AD using integrative network analysis on the transcriptomics data. Materials and methods From a novel perspective, i.e., investigating weakly activated molecular signals (rather than the strongly activated molecular signals), we developed integrative and systems biology network analysis to uncover potential core neuroinflammation signaling targets and pathways in AD using the two large-scale transcriptomics datasets, i.e., Mayo Clinic (77 controls and 81 AD samples) and ROSMAP (97 controls and 260 AD samples). Results Our analysis identified interesting core neuroinflammation signaling pathways, which are not systematically reported in the previous studies of AD. Specifically, we identified 7 categories of signaling pathways implicated on AD and related to virus infection: immune response, x-core signaling, apoptosis, lipid dysfunctional, biosynthesis and metabolism, and mineral absorption signaling pathways. More interestingly, most of the genes in the virus infection, immune response, and x-core signaling pathways are associated with inflammation molecular functions. The x-core signaling pathways were defined as a group of 9 signaling proteins: MAPK, Rap1, NF-kappa B, HIF-1, PI3K-Akt, Wnt, TGF-beta, Hippo, and TNF, which indicated the core neuroinflammation signaling pathways responding to the low-level and weakly activated inflammation and hypoxia and leading to the chronic neurodegeneration. It is interesting to investigate the detailed signaling cascades of these weakly activated neuroinflammation signaling pathways causing neurodegeneration in a chronic process, and consequently uncover novel therapeutic targets for effective AD treatment and prevention. Conclusions The potential core neuroinflammation and associated signaling targets and pathways were identified using integrative network analysis on two large-scale transcriptomics datasets of AD.
Collapse
Affiliation(s)
- Fuhai Li
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- NeuroGenomics and Informatics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Abdallah M. Eteleeb
- NeuroGenomics and Informatics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - William Buchser
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Christopher Sohn
- NeuroGenomics and Informatics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Guoqiao Wang
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Philip R. Payne
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Celeste M. Karch
- NeuroGenomics and Informatics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Oscar Harari
- NeuroGenomics and Informatics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Carlos Cruchaga
- NeuroGenomics and Informatics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2022; 23:10572. [PMID: 36142483 PMCID: PMC9502483 DOI: 10.3390/ijms231810572] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells' microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.
Collapse
Affiliation(s)
- Nour F. Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amer E. Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Andrew B. Roberts
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
19
|
Mumtaz I, Ayaz MO, Khan MS, Manzoor U, Ganayee MA, Bhat AQ, Dar GH, Alghamdi BS, Hashem AM, Dar MJ, Ashraf GM, Maqbool T. Clinical relevance of biomarkers, new therapeutic approaches, and role of post-translational modifications in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2022; 14:977411. [PMID: 36158539 PMCID: PMC9490081 DOI: 10.3389/fnagi.2022.977411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive loss of cognitive functions like thinking, memory, reasoning, behavioral abilities, and social skills thus affecting the ability of a person to perform normal daily functions independently. There is no definitive cure for this disease, and treatment options available for the management of the disease are not very effective as well. Based on histopathology, AD is characterized by the accumulation of insoluble deposits of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although several molecular events contribute to the formation of these insoluble deposits, the aberrant post-translational modifications (PTMs) of AD-related proteins (like APP, Aβ, tau, and BACE1) are also known to be involved in the onset and progression of this disease. However, early diagnosis of the disease as well as the development of effective therapeutic approaches is impeded by lack of proper clinical biomarkers. In this review, we summarized the current status and clinical relevance of biomarkers from cerebrospinal fluid (CSF), blood and extracellular vesicles involved in onset and progression of AD. Moreover, we highlight the effects of several PTMs on the AD-related proteins, and provide an insight how these modifications impact the structure and function of proteins leading to AD pathology. Finally, for disease-modifying therapeutics, novel approaches, and targets are discussed for the successful treatment and management of AD.
Collapse
Affiliation(s)
- Ibtisam Mumtaz
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Mohamad Sultan Khan
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umar Manzoor
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
| | - Mohd Azhardin Ganayee
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Ghulam Hassan Dar
- Sri Pratap College, Cluster University Srinagar, Jammu and Kashmir, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Gulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
20
|
López-Ornelas A, Jiménez A, Pérez-Sánchez G, Rodríguez-Pérez CE, Corzo-Cruz A, Velasco I, Estudillo E. The Impairment of Blood-Brain Barrier in Alzheimer's Disease: Challenges and Opportunities with Stem Cells. Int J Mol Sci 2022; 23:ijms231710136. [PMID: 36077533 PMCID: PMC9456198 DOI: 10.3390/ijms231710136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and its prevalence is increasing. Nowadays, very few drugs effectively reduce AD symptoms and thus, a better understanding of its pathophysiology is vital to design new effective schemes. Presymptomatic neuronal damage caused by the accumulation of Amyloid β peptide and Tau protein abnormalities remains a challenge, despite recent efforts in drug development. Importantly, therapeutic targets, biomarkers, and diagnostic techniques have emerged to detect and treat AD. Of note, the compromised blood-brain barrier (BBB) and peripheral inflammation in AD are becoming more evident, being harmful factors that contribute to the development of the disease. Perspectives from different pre-clinical and clinical studies link peripheral inflammation with the onset and progression of AD. This review aims to analyze the main factors and the contribution of impaired BBB in AD development. Additionally, we describe the potential therapeutic strategies using stem cells for AD treatment.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City 06800, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Alejandro Corzo-Cruz
- Laboratorio Traslacional, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Correspondence:
| |
Collapse
|
21
|
Chen X, He JL, Liu XT, Zhao N, Geng F, Zhu MM, Liu GP, Ren QG. DI-3-n-butylphthalide mitigates stress-induced cognitive deficits in mice through inhibition of NLRP3-Mediated neuroinflammation. Neurobiol Stress 2022; 20:100486. [PMID: 36160816 PMCID: PMC9489537 DOI: 10.1016/j.ynstr.2022.100486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
Our previous study has demonstrated that chronic stress could cause cognitive deficits and tau pathology. However, the underlying mechanism and whether/how DI-3-n-Butylphthalide (NBP) ameliorates these effects are still unclear. Here, Wild-type mice were subjected to chronic unpredictable and mild stress (CUMS) for 8 weeks. Following the initial 4 weeks, the stressed animals were separated into susceptible (depressive) and unsusceptible (resilient) groups based on behavioral tests. Then, NBP (30 mg/kg i.g) was administered for 4 weeks. Morris water maze (MWM), Western-blot, Golgi staining, immunofluorescence staining and ELISA were used to examine behavioral, biochemical, and pathological changes. The results showed that both depressive and resilient mice displayed spatial memory deficits and an accumulation of tau in the hippocampus. Activated microglia and NLRP3 inflammasome were found after 8-week chronic stress. We also found a decreased level of postsynaptic density (PSD) related proteins (PSD93 and PSD95) and decreased the number of dendritic spines in the hippocampus. Interestingly, almost all the pathological changes in depressive and resilient mice previously mentioned could be reversed by NBP treatment. To further investigate the role of NLRP3 inflammasome in chronic stress-induced cognitive deficits, NLRP3 KO mice were also exposed to chronic stress. And these changes induced by chronic stress could not be found in NLRP3 KO mice. These results show an important role for the NLRP3/caspase-1/IL-1β axis in chronic stress-induced cognitive deficits and NBP meliorates cognitive impairments and selectively attenuates phosphorylated tau accumulation in stressed mice through regulation of NLRP3 inflammatory signaling pathway.
Collapse
Affiliation(s)
- Xiu Chen
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Juan-Ling He
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xue-Ting Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Na Zhao
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fan Geng
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Meng-Meng Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Gong-Ping Liu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Co-innovation Center of Neurodegeneration, Nantong University, Nantong, 226019, China
| | - Qing-Guo Ren
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, China
| |
Collapse
|
22
|
Rauchmann B, Brendel M, Franzmeier N, Trappmann L, Zaganjori M, Ersoezlue E, Morenas‐Rodriguez E, Guersel S, Burow L, Kurz C, Haeckert J, Tatò M, Utecht J, Papazov B, Pogarell O, Janowitz D, Buerger K, Ewers M, Palleis C, Weidinger E, Biechele G, Schuster S, Finze A, Eckenweber F, Rupprecht R, Rominger A, Goldhardt O, Grimmer T, Keeser D, Stoecklein S, Dietrich O, Bartenstein P, Levin J, Höglinger G, Perneczky R. Microglial activation and connectivity in Alzheimer's disease and aging. Ann Neurol 2022; 92:768-781. [DOI: 10.1002/ana.26465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Boris‐Stephan Rauchmann
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich Munich Germany
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
- Department of Neuroradiology University Hospital LMU Munich Germany
| | - Matthias Brendel
- Department of Nuclear Medicine University Hospital, LMU Munich Munich Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich Munich Germany
| | - Lena Trappmann
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
| | - Mirlind Zaganjori
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
| | - Ersin Ersoezlue
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
| | - Estrella Morenas‐Rodriguez
- German Center for Neurodegenerative Diseases (DZNE) Munich Munich Germany
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich Munich Germany
| | - Selim Guersel
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich Munich Germany
| | - Lena Burow
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
| | - Jan Haeckert
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics University of Augsburg, Bezirkskrankenhaus Augsburg Augsburg Germany
| | - Maia Tatò
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
| | - Julia Utecht
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
| | - Boris Papazov
- Department of Radiology University Hospital, LMU Munich Munich Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich Munich Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich Munich Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich Munich Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich Munich Germany
| | - Carla Palleis
- German Center for Neurodegenerative Diseases (DZNE) Munich Munich Germany
- Department of Neurology University Hospital, LMU Munich Munich Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich Germany
| | - Endy Weidinger
- Department of Neurology University Hospital, LMU Munich Munich Germany
| | - Gloria Biechele
- Department of Nuclear Medicine University Hospital, LMU Munich Munich Germany
| | - Sebastian Schuster
- Department of Nuclear Medicine University Hospital, LMU Munich Munich Germany
| | - Anika Finze
- Department of Nuclear Medicine University Hospital, LMU Munich Munich Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine University Hospital, LMU Munich Munich Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy University of Regensburg Regensburg Germany
| | - Axel Rominger
- Department of Nuclear Medicine University Hospital, LMU Munich Munich Germany
- Department of Nuclear Medicine University of Bern, Inselspital Bern Switzerland
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar Technical University Munich Munich Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar Technical University Munich Munich Germany
| | - Daniel Keeser
- Department of Radiology University Hospital, LMU Munich Munich Germany
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
- Department of Neuroradiology University Hospital LMU Munich Germany
| | - Sophia Stoecklein
- Department of Radiology University Hospital, LMU Munich Munich Germany
| | - Olaf Dietrich
- Department of Radiology University Hospital, LMU Munich Munich Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine University Hospital, LMU Munich Munich Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich Munich Germany
- Department of Neurology University Hospital, LMU Munich Munich Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE) Munich Munich Germany
- Department of Neurology Hannover Medical School Hannover Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich Munich Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health Imperial College London London UK
- Munich Cluster for Systems Neurology (SyNergy), Munich Germany
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| |
Collapse
|
23
|
Zhao F, Li B, Yang W, Ge T, Cui R. Brain-immune interaction mechanisms: Implications for cognitive dysfunction in psychiatric disorders. Cell Prolif 2022; 55:e13295. [PMID: 35860850 PMCID: PMC9528770 DOI: 10.1111/cpr.13295] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives Cognitive dysfunction has been identified as a major symptom of a series of psychiatric disorders. Multidisciplinary studies have shown that cognitive dysfunction is monitored by a two‐way interaction between the neural and immune systems. However, the specific mechanisms of cognitive dysfunction in immune response and brain immune remain unclear. Materials and methods In this review, we summarized the relevant research to uncover our comprehension of the brain–immune interaction mechanisms underlying cognitive decline. Results The pathophysiological mechanisms of brain‐immune interactions in psychiatric‐based cognitive dysfunction involve several specific immune molecules and their associated signaling pathways, impairments in neural and synaptic plasticity, and the potential neuro‐immunological mechanism of stress. Conclusions Therefore, this review may provide a better theoretical basis for integrative therapeutic considerations for psychiatric disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Hu Y, Fang X, Wang J, Ren TT, Zhao YY, Dai JF, Qin XY, Lan R. Astragalin attenuates AlCl3/D-galactose-induced aging-like disorders by inhibiting oxidative stress and neuroinflammation. Neurotoxicology 2022; 91:60-68. [DOI: 10.1016/j.neuro.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/17/2022] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
|
25
|
Wang J, Jin L, Zhang X, Yu H, Ge J, Deng B, Li M, Zuo C, Chen X. Activated microglia by 18F-DPA714 PET in a case of anti-LGI1 autoimmune encephalitis. J Neuroimmunol 2022; 368:577879. [DOI: 10.1016/j.jneuroim.2022.577879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
|
26
|
Jiao YN, Zhang JS, Qiao WJ, Tian SY, Wang YB, Wang CY, Zhang YH, Zhang Q, Li W, Min DY, Wang ZY. Kai-Xin-San Inhibits Tau Pathology and Neuronal Apoptosis in Aged SAMP8 Mice. Mol Neurobiol 2022; 59:3294-3309. [PMID: 35303280 PMCID: PMC9016055 DOI: 10.1007/s12035-021-02626-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurological disorder. Currently, there is no effective cure for AD due to its complexity in pathogenesis. In light of the complex pathogenesis of AD, the traditional Chinese medicine (TCM) formula Kai-Xin-San (KXS), which was used for amnesia treatment, has been proved to improve cognitive function in AD animal models. However, the active ingredients and the mechanism of KXS have not yet been clearly elucidated. In this study, network pharmacology analysis predicts that KXS yields 168 candidate compounds acting on 863 potential targets, 30 of which are associated with AD. Enrichment analysis revealed that the therapeutic mechanisms of KXS for AD are associated with the inhibition of Tau protein hyperphosphorylation, inflammation, and apoptosis. Therefore, we chose 7-month-old senescence-accelerated mouse prone 8 (SAMP8) mice as AD mouse model, which harbors the behavioral and pathological hallmarks of AD. Subsequently, the potential underlying action mechanisms of KXS on AD predicted by the network pharmacology analyses were experimentally validated in SAMP8 mice after intragastric administration of KXS for 3 months. We observed that KXS upregulated AKT phosphorylation, suppressed GSK3β and CDK5 activation, and inhibited the TLR4/MyD88/NF-κB signaling pathway to attenuate Tau hyperphosphorylation and neuroinflammation, thus suppressing neuronal apoptosis and improving the cognitive impairment of aged SAMP8 mice. Taken together, our findings reveal a multi-component and multi-target therapeutic mechanism of KXS for attenuating the progression of AD, contributing to the future development of TCM modernization, including KXS, and broader clinical application.
Collapse
Affiliation(s)
- Ya-Nan Jiao
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jing-Sheng Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wen-Jun Qiao
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shu-Yu Tian
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yi-Bin Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Chun-Yan Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yan-Hui Zhang
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Qi Zhang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Dong-Yu Min
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Zhan-You Wang
- Health Sciences Institute, China Medical University, Shenyang, China.
| |
Collapse
|
27
|
Zhou X, Venigalla M, Raju R, Münch G. Pharmacological considerations for treating neuroinflammation with curcumin in Alzheimer's disease. J Neural Transm (Vienna) 2022; 129:755-771. [PMID: 35294663 DOI: 10.1007/s00702-022-02480-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022]
Abstract
Prof. Dr. Peter Riederer, the former Head of the Neurochemistry Department of the Psychiatry and Psychotherapy Clinic at the University of Würzburg (Germany), has been one of the pioneers of research into oxidative stress in Parkinson's and Alzheimer's disease (AD). This review will outline how his scientific contribution to the field has opened a new direction for AD treatment beyond "plaques and tangles". In the 1990s, Prof. Riederer was one of the first scientists who proposed oxidative stress and neuroinflammation as one of the major contributors to Alzheimer's disease, despite the overwhelming support for the "amyloid-only" hypothesis at the time, which postulated that the sole and only cause of AD is β-amyloid. His group also highlighted the role of advanced glycation end products, sugar and dicarbonyl-derived protein modifications, which crosslink proteins into insoluble aggregates and potent pro-inflammatory activators of microglia. For the treatment of chronic neuroinflammation, he and his group suggested that the most appropriate drug class would be cytokine-suppressive anti-inflammatory drugs (CSAIDs) which have a broader anti-inflammatory action range than conventional non-steroidal anti-inflammatory drugs. One of the most potent CSAIDs is curcumin, but it suffers from a variety of pharmacokinetic disadvantages including low bioavailability, which might have tainted many human clinical trials. Although a variety of oral formulations with increased bioavailability have been developed, curcumin's absorption after oral delivery is too low to reach therapeutic concentrations in the micromolar range in the systemic circulation and the brain. This review will conclude with evidence that rectally applied suppositories might be the best alternatives to oral medications, as this route will be able to evade first-pass metabolism in the liver and achieve high concentrations of curcumin in plasma and tissues, including the brain.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, 158-160 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - Madhuri Venigalla
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.
| |
Collapse
|
28
|
Yang J, Sui H, Jiao R, Zhang M, Zhao X, Wang L, Deng W, Liu X. Random-Forest-Algorithm-Based Applications of the Basic Characteristics and Serum and Imaging Biomarkers to Diagnose Mild Cognitive Impairment. Curr Alzheimer Res 2022; 19:76-83. [PMID: 35088670 PMCID: PMC9189735 DOI: 10.2174/1567205019666220128120927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 11/24/2022]
Abstract
Background
Mild cognitive impairment (MCI) is considered the early stage of Alzheimer's Disease (AD). The purpose of our study was to analyze the basic characteristics and serum and imaging biomarkers for the diagnosis of MCI patients as a more objective and accurate approach. Methods
The Montreal Cognitive Test was used to test 119 patients aged ≥65. Such serum biomarkers were detected as preprandial blood glucose, triglyceride, total cholesterol, Aβ1-40, Aβ1-42, and P-tau. All the subjects were scanned with 1.5T MRI (GE Healthcare, WI, USA) to obtain DWI, DTI, and ASL images. DTI was used to calculate the anisotropy fraction (FA), DWI was used to calculate the apparent diffusion coefficient (ADC), and ASL was used to calculate the cerebral blood flow (CBF). All the images were then registered to the SPACE of the Montreal Neurological Institute (MNI). In 116 brain regions, the medians of FA, ADC, and CBF were extracted by automatic anatomical labeling. The basic characteristics included gender, education level, and previous disease history of hypertension, diabetes, and coronary heart disease. The data were randomly divided into training sets and test ones. The recursive random forest algorithm was applied to the diagnosis of MCI patients, and the recursive feature elimination (RFE) method was used to screen the significant basic features and serum and imaging biomarkers. The overall accuracy, sensitivity, and specificity were calculated, respectively, and so were the ROC curve and the area under the curve (AUC) of the test set. Results
When the variable of the MCI diagnostic model was an imaging biomarker, the training accuracy of the random forest was 100%, the correct rate of the test was 86.23%, the sensitivity was 78.26%, and the specificity was 100%. When combining the basic characteristics, the serum and imaging biomarkers as variables of the MCI diagnostic model, the training accuracy of the random forest was found to be 100%; the test accuracy was 97.23%, the sensitivity was 94.44%, and the specificity was 100%. RFE analysis showed that age, Aβ1-40, and cerebellum_4_6 were the most important basic feature, serum biomarker, imaging biomarker, respectively. Conclusion
Imaging biomarkers can effectively diagnose MCI. The diagnostic capacity of the basic trait biomarkers or serum biomarkers for MCI is limited, but their combination with imaging biomarkers can improve the diagnostic capacity, as indicated by the sensitivity of 94.44% and the specificity of 100% in our model. As a machine learning method, a random forest can help diagnose MCI effectively while screening important influencing factors.
Collapse
Affiliation(s)
- Juan Yang
- Department of Neurology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Neurology, Shanghai Pudong New Area People's Hospital,Shanghai, 201299, China
| | - Haijing Sui
- Department of Radiology, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Ronghong Jiao
- Department of Clinical Laboratory, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Min Zhang
- hcit.ai Co., Shanghai, People's Republic of China
| | - Xiaohui Zhao
- Department of Neurology, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Lingling Wang
- Department of Neurology, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Wenping Deng
- Huawei Technology Co., Ltd Co, Shanghai, People's Republic of China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Neurology, Shanghai Pudong New Area People's Hospital,Shanghai, 201299, China
| |
Collapse
|
29
|
Gouilly D, Saint-Aubert L, Ribeiro MJ, Salabert AS, Tauber C, Péran P, Arlicot N, Pariente J, Payoux P. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer's disease: an update. Eur J Neurosci 2022; 55:1322-1343. [PMID: 35083791 DOI: 10.1111/ejn.15613] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is a significant contributor to Alzheimer's disease (AD). Until now, PET imaging of the translocator protein (TSPO) has been widely used to depict the neuroimmune endophenotype of AD. The aim of this review was to provide an update to the results from 2018 and to advance the characterization of the biological basis of TSPO imaging in AD by re-examining TSPO function and expression and the methodological aspects of interest. Although the biological basis of the TSPO PET signal is obviously related to microglia and astrocytes in AD, the observed process remains uncertain and might not be directly related to neuroinflammation. Further studies are required to re-examine the cellular significance underlying a variation in the PET signal in AD and how it can be impacted by a disease-modifying treatment.
Collapse
Affiliation(s)
- Dominique Gouilly
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Laure Saint-Aubert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Maria-Joao Ribeiro
- Department of Nuclear Medicine, CHU, Tours, France.,UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| | | | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Jérémie Pariente
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU, Toulouse, France.,Center of Clinical Investigations (CIC1436), CHU, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| |
Collapse
|
30
|
Ma C, Lin M, Gao J, Xu S, Huang L, Zhu J, Huang J, Tao J, Chen L. The impact of physical activity on blood inflammatory cytokines and neuroprotective factors in individuals with mild cognitive impairment: a systematic review and meta-analysis of randomized-controlled trials. Aging Clin Exp Res 2022; 34:1471-1484. [PMID: 35025094 DOI: 10.1007/s40520-021-02069-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Accumulated evidence has proved that both neuroinflammation and neuroprotection existing at the stage of mild cognitive impairment (MCI) may mediate its progression, which can conversely be modulated by physical activity (PA). However, further research is needed to clarify which factors are involved in that process. OBJECTIVES To identify the impact of PA on inflammatory cytokines and neuroprotective factors in individuals with MCI. METHODS Four databases [PubMed, Cochrane Library, Cochrane Library (Trials), Embase and Web of Science Core Collection] were searched from their inception to October 2021 for randomized-controlled trials (RCTs) assessing the biochemical effect of PA on biomarkers in participants with MCI. Pooled effect size was calculated by the standardized mean difference (SMD). RESULTS A total of 13 RCTs involving 514 participants by reporting 8 inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, -6, -8, -10, -15, C-reactive protein (CRP) and interferon-γ (IFN-γ) and 5 neuroprotective factors (brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF-1), vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), irisin] were included. The meta-analysis showed that PA had positive effects on decreasing TNF-α (SMD = - 0.32, 95% CI - 0.58 to 0.07, p = 0.01; I2 = 32%) and CRP (SMD = - 0.68, 95% CI - 1.05 to 0.32, p = 0.0002; I2 = 18%), while significantly improving BDNF (SMD = 0.32, 95% CI 0.09-0.56, p = 0.007; I2 = 42%) and IGF-1 (SMD = 0.42, 95% CI 0.03-0.81, p = 0.03; I2 = 0%). CONCLUSION PA had a certain effect on inhibiting inflammatory cytokines but promoting neuroprotective factors in individuals with MCI which may provide a possible explanation for the potential molecular mechanism of PA on cognitive improvement.
Collapse
Affiliation(s)
- Chuyi Ma
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Miaoran Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jiahui Gao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Shurui Xu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Li Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jingfang Zhu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Lidian Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology & Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
31
|
Caruso G, Grasso M, Fidilio A, Torrisi SA, Musso N, Geraci F, Tropea MR, Privitera A, Tascedda F, Puzzo D, Salomone S, Drago F, Leggio GM, Caraci F. Antioxidant Activity of Fluoxetine and Vortioxetine in a Non-Transgenic Animal Model of Alzheimer's Disease. Front Pharmacol 2022; 12:809541. [PMID: 35002742 PMCID: PMC8740153 DOI: 10.3389/fphar.2021.809541] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
Depression is a risk factor for the development of Alzheimer’s disease (AD). A neurobiological and clinical continuum exists between AD and depression, with neuroinflammation and oxidative stress being involved in both diseases. Second-generation antidepressants, in particular selective serotonin reuptake inhibitors (SSRIs), are currently investigated as neuroprotective drugs in AD. By employing a non-transgenic AD model, obtained by intracerebroventricular (i.c.v.) injection of amyloid-β (Aβ) oligomers in 2-month-old C57BL/6 mice, we recently demonstrated that the SSRI fluoxetine (FLX) and the multimodal antidepressant vortioxetine (VTX) reversed the depressive-like phenotype and memory deficits induced by Aβ oligomers rescuing the levels of transforming growth factor-β1 (TGF-β1). Aim of our study was to test FLX and VTX for their ability to prevent oxidative stress in the hippocampus of Aβ-injected mice, a brain area strongly affected in both depression and AD. The long-term intraperitoneal (i.p.) administration of FLX (10 mg/kg) or VTX (5 and 10 mg/kg) for 24 days, starting 7 days before Aβ injection, was able to prevent the over-expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase 2 (Nox2) induced by Aβ oligomers. Antidepressant pre-treatment was also able to rescue the mRNA expression of glutathione peroxidase 1 (Gpx1) antioxidant enzyme. FLX and VTX also prevented Aβ-induced neurodegeneration in mixed neuronal cultures treated with Aβ oligomers. Our data represent the first evidence that the long-term treatment with the antidepressants FLX or VTX can prevent the oxidative stress phenomena related to the cognitive deficits and depressive-like phenotype observed in a non-transgenic animal model of AD.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Margherita Grasso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Annamaria Fidilio
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Fabio Tascedda
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Puzzo
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
32
|
Saleh M, Markovic M, Olson KE, Gendelman HE, Mosley RL. Therapeutic Strategies for Immune Transformation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S201-S222. [PMID: 35871362 PMCID: PMC9535567 DOI: 10.3233/jpd-223278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/16/2022]
Abstract
Dysregulation of innate and adaptive immunity can lead to alpha-synuclein (α-syn) misfolding, aggregation, and post-translational modifications in Parkinson's disease (PD). This process is driven by neuroinflammation and oxidative stress, which can contribute to the release of neurotoxic oligomers that facilitate dopaminergic neurodegeneration. Strategies that promote vaccines and antibodies target the clearance of misfolded, modified α-syn, while gene therapy approaches propose to deliver intracellular single chain nanobodies to mitigate α-syn misfolding, or to deliver neurotrophic factors that support neuronal viability in an otherwise neurotoxic environment. Additionally, transformative immune responses provide potential targets for PD therapeutics. Anti-inflammatory drugs represent one strategy that principally affects innate immunity. Considerable research efforts have focused on transforming the balance of pro-inflammatory effector T cells (Teffs) to favor regulatory T cell (Treg) activity, which aims to attenuate neuroinflammation and support reparative and neurotrophic homeostasis. This approach serves to control innate microglial neurotoxic activities and may facilitate clearance of α-syn aggregates accordingly. More recently, changes in the intestinal microbiome have been shown to alter the gut-immune-brain axis leading to suppressed leakage of bacterial products that can promote peripheral inflammation and α-syn misfolding. Together, each of the approaches serves to interdict chronic inflammation associated with disordered immunity and neurodegeneration. Herein, we examine research strategies aimed at improving clinical outcomes in PD.
Collapse
Affiliation(s)
- Maamoon Saleh
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
33
|
Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer's disease. Inflammopharmacology 2021; 29:1669-1681. [PMID: 34813026 PMCID: PMC8608577 DOI: 10.1007/s10787-021-00889-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/31/2021] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a major contributor of dementia leading to the degeneration of neurons in the brain with major symptoms like loss of memory and learning. Many evidences suggest the involvement of neuroinflammation in the pathology of AD. Cytokines including TNF-α and IL-6 are also found increasing the BACE1 activity and expression of NFκB resulting in generation of Aβ in AD brain. Following the interaction of Aβ with microglia and astrocytes, other inflammatory molecules also get translocated to the site of inflammation by chemotaxis and exaggerate neuroinflammation. Various pathways like NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide and COX trigger microglia to release inflammatory cytokines. PPARγ agonists like pioglitazone increases the phagocytosis of Aβ and reduces inflammatory cytokine IL-1β. Celecoxib and roficoxib like selective COX-2 inhibitors also ameliorate neuroinflammation. Non-selective COX inhibitor indomethacin is also potent inhibitor of inflammatory mediators released from microglia. Mitophagy process is considered quite helpful in reducing inflammation due to microglia as it promotes the phagocytosis of over activated microglial cells and other inflammatory cells. Mitophagy induction is also beneficial in the removal of damaged mitochondria and reduction of infiltration of inflammatory molecules at the site of accumulation of the damaged mitochondria. Targeting these pathways and eventually ameliorating the activation of microglia can mitigate neuroinflammation and come out as a better therapeutic option for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Rishika Dhapola
- Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | | | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College & Hospital, Chandigarh, 160 032, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | | |
Collapse
|
34
|
Alagaratnam J, Winston A. Molecular neuroimaging of inflammation in HIV. Clin Exp Immunol 2021; 210:14-23. [PMID: 35020855 PMCID: PMC9585552 DOI: 10.1093/cei/uxab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/13/2021] [Accepted: 11/03/2021] [Indexed: 01/12/2023] Open
Abstract
People with HIV now have near-normal life expectancies due to the success of effective combination antiretroviral therapy (cART). Following cART initiation, immune recovery occurs, and opportunistic diseases become rare. Despite this, high rates of non-infectious comorbidities persist in treated people with HIV, hypothesized to be related to persistent immuno-activation. One such comorbidity is cognitive impairment, which may partly be driven by ongoing neuro-inflammation in otherwise effectively treated people with HIV. In order to develop therapeutic interventions to address neuro-inflammation in effectively treated people with HIV, a deeper understanding of the pathogenic mechanisms driving persistent neuro-inflammatory responses and the ability to better characterize and measure neuro-inflammation in the central nervous system is required. This review highlights recent advances in molecular neuroimaging techniques which have the potential to assess neuro-inflammatory responses within the central nervous system in HIV disease. Proton magnetic resonance spectroscopy (1H-MRS) has been utilized to assess neuro-inflammatory responses since early in the HIV pandemic and shows promise in recent studies assessing different antiretroviral regimens. 1H-MRS is widely available in both resource-rich and some resource-constrained settings and is relatively inexpensive. Brain positron emission tomography (PET) imaging using Translocator Protein (TSPO) radioligands is a rapidly evolving field; newer TSPO-radioligands have lower signal-to-noise ratio and have the potential to localize neuro-inflammation within the brain in people with HIV. As HIV therapeutics evolve, people with HIV continue to age and develop age-related comorbidities including cognitive disorders. The use of novel neuroimaging modalities in the field is likely to advance in order to rapidly assess novel therapeutic interventions and may play a role in future clinical assessments.
Collapse
Affiliation(s)
- Jasmini Alagaratnam
- Correspondence: Jasmini Alagaratnam, Clinical Trials Centre, Winston Churchill Wing, St. Mary’s Hospital, Praed Street, London W2 1NY, UK.
| | - Alan Winston
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK,Department of Genitourinary Medicine & HIV, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
35
|
Yang J, Zhao X, Sui H, Liu X. High Prevalence and Low Awareness of Mild Cognitive Impairment in a Suburban Community in Shanghai. Neurol India 2021; 69:1693-1700. [PMID: 34979671 DOI: 10.4103/0028-3886.333524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The prevalence of mild cognitive impairment (MCI), herein China, was without involving the suburban communities, where the awareness of MCI still remains extremely weak. OBJECTIVE The objective of this study is to investigate the prevalence of MCI in the Chinese residents aged ≥65 in the suburban communities of Shanghai, China, and study the awareness of MCI in terms of its symptom, prevention, and intervention. METHODS A total of 925 suburban community residents aged ≥65 were evaluated with a series of clinical examinations and scale questionnaire, and 600 participated in a five-dimension questionnaire survey pertaining to the awareness of MCI. RESULTS The prevalence of MCI was up to 29.8% and of dementia was 11.1%, respectively. A difference was observed among the three groups of dementia, MCI, and normal in each dimension of age, gender, education, being widowed, and living with the next generation (P < 0.05). The degree of cognitive impairment was linearly correlated with age (P < 0.001). The prevalence of MCI was higher in the females (P < 0.001), in the group of low educational level (P < 0.001), in the widowed residents (P < 0.01), and in those who did not live with their next generations (P < 0.01). The family's concern for MCI symptoms in the elderly accounted for 60%; the awareness rate of MCI symptoms, 25.5%; the awareness rate of MCI prevention, 15.5%; and the rate of taking MCI seniors to the doctor, 32%. CONCLUSIONS The prevalence of MCI in the suburban communities of Shanghai was high but the awareness of MCI was low.
Collapse
Affiliation(s)
- Juan Yang
- Department of Neurology,Shanghai Tenth People's Hospital, School of Medicine, Tongji University; Department of Neurology, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Xiaohui Zhao
- Department of Neurology, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Haijing Sui
- Department of Image, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
36
|
Deri Y, Clouston SAP, DeLorenzo C, Gardus JD, Bartlett EA, Santiago-Michels S, Bangiyev L, Kreisl WC, Kotov R, Huang C, Slifstein M, Parsey RV, Luft BJ. Neuroinflammation in World Trade Center responders at midlife: A pilot study using [ 18F]-FEPPA PET imaging. Brain Behav Immun Health 2021; 16:100287. [PMID: 34589784 PMCID: PMC8474562 DOI: 10.1016/j.bbih.2021.100287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 02/08/2023] Open
Abstract
Background Neuroinflammation has long been theorized to arise from exposures to fine particulate matter and to be modulated when individuals experience chronic stress, both of which are also though to cause cognitive decline in part as a result of neuroinflammation. Objectives Hypothesizing that neuroinflammation might be linked to experiences at the World Trade Center (WTC) events, this study explored associations between glial activation and neuropsychological measures including post-traumatic stress disorder (PTSD) symptom severity and WTC exposure duration. Methods Translocator protein 18-kDa (TSPO) is overexpressed by activated glial cells, predominantly microglia and astrocytes, making TSPO distribution a putative biomarker for neuroinflammation. Twenty WTC responders completed neuropsychological assessments and in vivo PET brain scan with [18F]-FEPPA. Generalized linear modeling was used to test associations between PTSD, and WTC exposure duratiioni as the predictor and both global and regional [18F]-FEPPA total distribution volumes as the outcomes. Result Responders were 56.0 ± 4.7 years-old, and 75% were police officers on 9/11/2001, and all had at least a high school education. Higher PTSD symptom severity was associated with global and regional elevations in [18F]-FEPPA binding predominantly in the hippocampus (d = 0.72, P = 0.001) and frontal cortex (d = 0.64, P = 0.004). Longer exposure duration to WTC sites was associated with higher [18F]-FEPPA binding in the parietal cortex. Conclusion Findings from this study of WTC responders at midlife suggest that glial activation is associated with PTSD symptoms, and WTC exposure duration. Future investigation is needed to understand the important role of neuroinflammation in highly exposed WTC responders. We examined the theory that glial activation is associated with 9/11 exposures. TSPO-Vt was examined using PET in 20 responders adjusting for TSPO genotype. Responders with PTSD had increased TSPO distribution volume in the hippocampus. Heavily exposed responders had increased TSPO distribution in the parietal cortex.
Collapse
Affiliation(s)
- Yael Deri
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Sean A P Clouston
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - John D Gardus
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Elizabeth A Bartlett
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA.,Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Stephanie Santiago-Michels
- Stony Brook World Trade Center Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Lev Bangiyev
- Department of Radiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - William C Kreisl
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Roman Kotov
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Chuan Huang
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Department of Radiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Mark Slifstein
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Ramin V Parsey
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Benjamin J Luft
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.,Stony Brook World Trade Center Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
37
|
Tournier BB, Tsartsalis S, Ceyzériat K, Fraser BH, Grégoire MC, Kövari E, Millet P. Astrocytic TSPO Upregulation Appears Before Microglial TSPO in Alzheimer's Disease. J Alzheimers Dis 2021; 77:1043-1056. [PMID: 32804124 PMCID: PMC7683091 DOI: 10.3233/jad-200136] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: In vivo PET/SPECT imaging of neuroinflammation is primarily based on the estimation of the 18 kDa-translocator-protein (TSPO). However, TSPO is expressed by different cell types which complicates the interpretation. Objective: The present study evaluates the cellular origin of TSPO alterations in Alzheimer’s disease (AD). Methods: The TSPO cell origin was evaluated by combining radioactive imaging approaches using the TSPO radiotracer [125I]CLINDE and fluorescence-activated cell sorting, in a rat model of AD (TgF344-AD) and in AD subjects. Results: In the hippocampus of TgF344-AD rats, TSPO overexpression not only concerns glial cells but the increase is visible at 12 and 24 months in astrocytes and only at 24 months in microglia. In the temporal cortex of AD subjects, TSPO upregulation involved only glial cells. However, the mechanism of this upregulation appears different with an increase in the number of TSPO binding sites per cell without cell proliferation in the rat, and a microglial cell population expansion with a constant number of binding sites per cell in human AD. Conclusion: These data indicate an earlier astrocyte intervention than microglia and that TSPO in AD probably is an exclusive marker of glial activity without interference from other TSPO-expressing cells. This observation indicates that the interpretation of TSPO imaging depends on the stage of the pathology, and highlights the particular role of astrocytes.
Collapse
Affiliation(s)
- Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Stergios Tsartsalis
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland.,Division of Nuclear medicine, University Hospitals of Geneva, Switzerland
| | - Ben H Fraser
- ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Sydney, NSW, Australia
| | - Marie-Claude Grégoire
- ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Sydney, NSW, Australia
| | - Enikö Kövari
- Division of Geriatric Psychiatry, Department of Mental Health and Psychiatry, University Hospitals of Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Switzerland
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Switzerland
| |
Collapse
|
38
|
Li F, Eteleeb A, Buchser W, Wang G, Xiong C, Payne PR, McDade E, Karch CM, Harari O, Cruchaga C. Weakly activated core inflammation pathways were identified as a central signaling mechanism contributing to the chronic neurodegeneration in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.30.458295. [PMID: 34494019 PMCID: PMC8423192 DOI: 10.1101/2021.08.30.458295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neuro-inflammation signaling has been identified as an important hallmark of Alzheimer's disease (AD) in addition to amyloid β plaques (Aβ) and neurofibrillary tangles (NFTs). However, our knowledge of neuro-inflammation is very limited; and the core signaling pathways associated with neuro-inflammation are missing. From a novel perspective, i.e., investigating weakly activated molecular signals (rather than the strongly activated molecular signals), in this study, we uncovered the core neuro-inflammation signaling pathways in AD. Our novel hypothesis is that weakly activated neuro-inflammation signaling pathways can cause neuro-degeneration in a chronic process; whereas, strongly activated neuro-inflammation often cause acute disease progression like in COVID-19. Using the two large-scale genomics datasets, i.e., Mayo Clinic (77 control and 81 AD samples) and RosMap (97 control and 260 AD samples), our analysis identified 7 categories of signaling pathways implicated on AD and related to virus infection: immune response, x-core signaling, apoptosis, lipid dysfunctional, biosynthesis and metabolism, and mineral absorption signaling pathways. More interestingly, most of genes in the virus infection, immune response and x-core signaling pathways, are associated with inflammation molecular functions. Specifically, the x-core signaling pathways were defined as a group of 9 signaling proteins: MAPK, Rap1, NF-kappa B, HIF-1, PI3K-Akt, Wnt, TGF-beta, Hippo and TNF, which indicated the core neuro-inflammation signaling pathways responding to the low-level and weakly activated inflammation and hypoxia, and leading to the chronic neuro-degeneration. The core neuro-inflammation signaling pathways can be used as novel therapeutic targets for effective AD treatment and prevention.
Collapse
Affiliation(s)
- Fuhai Li
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Abdallah Eteleeb
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - William Buchser
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Guoqiao Wang
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Philip R. Payne
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
39
|
Abstract
The use of PET imaging agents in oncology, cardiovascular disease, and neurodegenerative disease shows the power of this technique in evaluating the molecular and biological characteristics of numerous diseases. These agents provide crucial information for designing therapeutic strategies for individual patients. Novel PET tracers are in continual development and many have potential use in clinical and research settings. This article discusses the potential applications of tracers in diagnostics, the biological characteristics of diseases, the ability to provide prognostic indicators, and using this information to guide treatment strategies including monitoring treatment efficacy in real time to improve outcomes and survival.
Collapse
|
40
|
Rather MA, Khan A, Alshahrani S, Rashid H, Qadri M, Rashid S, Alsaffar RM, Kamal MA, Rehman MU. Inflammation and Alzheimer's Disease: Mechanisms and Therapeutic Implications by Natural Products. Mediators Inflamm 2021; 2021:9982954. [PMID: 34381308 PMCID: PMC8352708 DOI: 10.1155/2021/9982954] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/24/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with no clear causative event making the disease difficult to diagnose and treat. The pathological hallmarks of AD include amyloid plaques, neurofibrillary tangles, and widespread neuronal loss. Amyloid-beta has been extensively studied and targeted to develop an effective disease-modifying therapy, but the success rate in clinical practice is minimal. Recently, neuroinflammation has been focused on as the event in AD progression to be targeted for therapies. Various mechanistic pathways including cytokines and chemokines, complement system, oxidative stress, and cyclooxygenase pathways are linked to neuroinflammation in the AD brain. Many cells including microglia, astrocytes, and oligodendrocytes work together to protect the brain from injury. This review is focused to better understand the AD inflammatory and immunoregulatory processes to develop novel anti-inflammatory drugs to slow down the progression of AD.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rana M. Alsaffar
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
41
|
B Cells in Neuroinflammation: New Perspectives and Mechanistic Insights. Cells 2021; 10:cells10071605. [PMID: 34206848 PMCID: PMC8305155 DOI: 10.3390/cells10071605] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, the role of B cells in neurological disorders has substantially expanded our perspectives on mechanisms of neuroinflammation. The success of B cell-depleting therapies in patients with CNS diseases such as neuromyelitis optica and multiple sclerosis has highlighted the importance of neuroimmune crosstalk in inflammatory processes. While B cells are essential for the adaptive immune system and antibody production, they are also major contributors of pro- and anti-inflammatory cytokine responses in a number of inflammatory diseases. B cells can contribute to neurological diseases through peripheral immune mechanisms, including production of cytokines and antibodies, or through CNS mechanisms following compartmentalization. Emerging evidence suggests that aberrant pro- or anti-inflammatory B cell populations contribute to neurological processes, including glial activation, which has been implicated in the pathogenesis of several neurodegenerative diseases. In this review, we summarize recent findings on B cell involvement in neuroinflammatory diseases and discuss evidence to support pathogenic immunomodulatory functions of B cells in neurological disorders, highlighting the importance of B cell-directed therapies.
Collapse
|
42
|
Duggan MR, Parikh V. Microglia and modifiable life factors: Potential contributions to cognitive resilience in aging. Behav Brain Res 2021; 405:113207. [PMID: 33640394 PMCID: PMC8005490 DOI: 10.1016/j.bbr.2021.113207] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Given the increasing prevalence of age-related cognitive decline, it is relevant to consider the factors and mechanisms that might facilitate an individual's resiliency to such deficits. Growing evidence suggests a preeminent role of microglia, the prime mediator of innate immunity within the central nervous system. Human and animal investigations suggest aberrant microglial functioning and neuroinflammation are not only characteristic of the aged brain, but also might contribute to age-related dementia and Alzheimer's Disease. Conversely, accumulating data suggest that modifiable lifestyle factors (MLFs), such as healthy diet, exercise and cognitive engagement, can reliably afford cognitive benefits by potentially suppressing inflammation in the aging brain. The present review highlights recent advances in our understanding of the role for microglia in maintaining brain homeostasis and cognitive functioning in aging. Moreover, we propose an integrated, mechanistic model that postulates an individual's resiliency to cognitive decline afforded by MLFs might be mediated by the mitigation of aberrant microglia activation in aging, and subsequent suppression of neuroinflammation.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States.
| |
Collapse
|
43
|
Zhang L, Hu K, Shao T, Hou L, Zhang S, Ye W, Josephson L, Meyer JH, Zhang MR, Vasdev N, Wang J, Xu H, Wang L, Liang SH. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B 2021; 11:373-393. [PMID: 33643818 PMCID: PMC7893127 DOI: 10.1016/j.apsb.2020.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
- ANT, adenine nucleotide transporter
- Am, molar activities
- BBB, blood‒brain barrier
- BMSC, bone marrow stromal cells
- BP, binding potential
- BPND, non-displaceable binding potential
- BcTSPO, Bacillus cereus TSPO
- CBD, corticobasal degeneration
- CNS disorders
- CNS, central nervous system
- CRAC, cholesterol recognition amino acid consensus sequence
- DLB, Lewy body dementias
- EP, epilepsy
- FTD, frontotemporal dementia
- HAB, high-affinity binding
- HD, Huntington's disease
- HSE, herpes simplex encephalitis
- IMM, inner mitochondrial membrane
- KA, kainic acid
- LAB, low-affinity binding
- LPS, lipopolysaccharide
- MAB, mixed-affinity binding
- MAO-B, monoamine oxidase B
- MCI, mild cognitive impairment
- MDD, major depressive disorder
- MMSE, mini-mental state examination
- MRI, magnetic resonance imaging
- MS, multiple sclerosis
- MSA, multiple system atrophy
- Microglial activation
- NAA/Cr, N-acetylaspartate/creatine
- Neuroinflammation
- OCD, obsessive compulsive disorder
- OMM, outer mitochondrial membrane
- P2X7R, purinergic receptor P2X7
- PAP7, RIa-associated protein
- PBR, peripheral benzodiazepine receptor
- PCA, posterior cortical atrophy
- PD, Parkinson's disease
- PDD, PD dementia
- PET, positron emission tomography
- PKA, protein kinase A
- PRAX-1, PBR-associated protein 1
- PSP, progressive supranuclear palsy
- Positron emission tomography (PET)
- PpIX, protoporphyrin IX
- QA, quinolinic acid
- RCYs, radiochemical yields
- ROS, reactive oxygen species
- RRMS, relapsing remitting multiple sclerosis
- SA, specific activity
- SAH, subarachnoid hemorrhage
- SAR, structure–activity relationship
- SCIDY, spirocyclic iodonium ylide
- SNL, selective neuronal loss
- SNR, signal to noise ratio
- SUV, standard uptake volume
- SUVR, standard uptake volume ratio
- TBAH, tetrabutyl ammonium hydroxide
- TBI, traumatic brain injury
- TLE, temporal lobe epilepsy
- TSPO
- TSPO, translocator protein
- VDAC, voltage-dependent anion channel
- VT, distribution volume
- d.c. RCYs, decay-corrected radiochemical yields
- dMCAO, distal middle cerebral artery occlusion
- fP, plasma free fraction
- n.d.c. RCYs, non-decay-corrected radiochemical yields
- p.i., post-injection
Collapse
|
44
|
Cisbani G, Bazinet RP. The role of peripheral fatty acids as biomarkers for Alzheimer's disease and brain inflammation. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102205. [PMID: 33271431 DOI: 10.1016/j.plefa.2020.102205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a complex and heterogeneous neurodegenerative disease. A wide range of techniques have been proposed to facilitate early diagnosis of AD, including biomarkers from the cerebrospinal fluid and blood. Although phosphorylated tau and amyloid beta are amongst the most promising biomarkers of AD, other peripheral biomarkers have been identified and in this review we synthesize the current knowledge on circulating fatty acids. Fatty acids are involved in different biological process including neurotransmission and inflammation. Interestingly, some fatty acids appear to be modulated during disease progression, including long chain saturated fatty acids, and polyunsaturated fatty acids, such as docosahexaenoic acid . However, discrepant results have been reported in the literature and there is the need for further validation and method standardization. Nonetheless, our literature review suggests that fatty acid analyses could potentially provide a valuable source of data to further inform the pathology and progression of AD.
Collapse
Affiliation(s)
- Giulia Cisbani
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Canada.
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|
45
|
Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer's disease-like pathology? Clin Sci (Lond) 2020; 134:547-570. [PMID: 32167154 DOI: 10.1042/cs20191313] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023]
Abstract
Adipose tissue is an active metabolic organ that contributes to processes such as energy storage and utilization and to the production of a number of metabolic agents, such as adipokines, which play a role in inflammation. In this review, we try to elucidate the connections between peripheral inflammation at obesity and Type 2 diabetes and the central inflammatory process. Multiple lines of evidence highlight the importance of peripheral inflammation and its link to neuroinflammation, which can lead to neurodegenerative diseases such as dementia, Alzheimer's disease (AD) and Parkinson's disease. In addition to the accumulation of misfolded amyloid beta (Aβ) peptide and the formation of the neurofibrillary tangles of hyperphosphorylated tau protein in the brain, activated microglia and reactive astrocytes are the main indicators of AD progression. They were found close to Aβ plaques in the brains of both AD patients and rodent models of Alzheimer's disease-like pathology. Cytokines are key players in pro- and anti-inflammatory processes and are also produced by microglia and astrocytes. The interplay of seemingly unrelated pathways between the periphery and the brain could, in fact, have a common denominator, with inflammation in general being a key factor affecting neuronal processes in the brain. An increased amount of white adipose tissue throughout the body seems to be an important player in pro-inflammatory processes. Nevertheless, other important factors should be studied to elucidate the pathological processes of and the relationship among obesity, Type 2 diabetes and neurodegenerative diseases.
Collapse
|
46
|
Berdyyeva T, Xia C, Taylor N, He Y, Chen G, Huang C, Zhang W, Kolb H, Letavic M, Bhattacharya A, Szardenings AK. PET Imaging of the P2X7 Ion Channel with a Novel Tracer [ 18F]JNJ-64413739 in a Rat Model of Neuroinflammation. Mol Imaging Biol 2020; 21:871-878. [PMID: 30632003 DOI: 10.1007/s11307-018-01313-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The P2X7 receptor, an adenosine triphosphate (ATP)-gated purinoreceptor, has emerged as one of the key players in neuroinflammatory processes. Therefore, developing a positron emission tomography (PET) tracer for imaging of P2X7 receptors in vivo presents a promising approach to diagnose, monitor, and study neuroinflammation in a variety of brain disorders. To fulfill the goal of developing a P2X7 PET ligand as a biomarker of neuroinflammation, [18F]JNJ-64413739 has been recently disclosed. PROCEDURES We evaluated [18F]JNJ-64413739 in a rat model of neuroinflammation induced by an intracerebral injection of lipopolysaccharide (LPS). In vivo brain uptake was determined by PET imaging. Upregulation of neuroinflammatory biomarkers was determined by quantitative polymerase chain reaction (qPCR). Distribution of the tracer in the brain was determined by ex vivo autoradiography (ARG). The specificity of [18F]JNJ-64413739 was confirmed by performing blocking experiments with the P2X7 antagonist JNJ-54175446. RESULTS Brain regions of rats injected with LPS had a significantly increased uptake (34 % ± 3 % s.e.m., p = 0.036, t test, standardized uptake value measured over the entire scanning period) of [18F]JNJ-64413739 relative to the corresponding brain regions of control animals injected with phosphate-buffered saline (PBS). The uptake in the contralateral regions and cerebellum was not significantly different between the groups of animals. The increase in uptake of [18F]JNJ-64413739 at the LPS-injected site observed by PET imaging was concordant with ex vivo ARG, upregulation of neuroinflammatory biomarkers, and elevated P2X7 expression levels. CONCLUSIONS While further work is needed to study [18F]JNJ-64413739 in other types of neuroinflammation, the current results favorably characterize [18F]JNJ-64413739 as a potential PET tracer of central neuroinflammation.
Collapse
Affiliation(s)
- Tamara Berdyyeva
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | - Chunfang Xia
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Natalie Taylor
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Yingbo He
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Gang Chen
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Chaofeng Huang
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Wei Zhang
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Hartmuth Kolb
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Michael Letavic
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Anindya Bhattacharya
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | | |
Collapse
|
47
|
Looking for a Treatment for the Early Stage of Alzheimer's Disease: Preclinical Evidence with Co-Ultramicronized Palmitoylethanolamide and Luteolin. Int J Mol Sci 2020; 21:ijms21113802. [PMID: 32471239 PMCID: PMC7312730 DOI: 10.3390/ijms21113802] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND At the earliest stage of Alzheimer's disease (AD), although patients are still asymptomatic, cerebral alterations have already been triggered. In addition to beta amyloid (Aβ) accumulation, both glial alterations and neuroinflammation have been documented at this stage. Starting treatment at this prodromal AD stage could be a valuable therapeutic strategy. AD requires long-term care; therefore, only compounds with a high safety profile can be used, such as the new formulation containing palmitoylethanolamide and luteolin (co-ultra PEALut) already approved for human use. Therefore, we investigated it in an in vivo pharmacological study that focused on the prodromal stage of AD. METHODS We tested the anti-inflammatory and neuroprotective effects of co-ultra PEALut (5 mg/Kg) administered for 14 days in rats that received once, 5 µg Aβ(1-42) into the hippocampus. RESULTS Glial activation and elevated levels of proinflammatory mediators were observed in Aβ-infused rats. Early administration of co-ultra PEALut prevented the Aβ-induced astrogliosis and microgliosis, the upregulation in gene expression of pro-inflammatory cytokines and enzymes, as well as the reduction of mRNA levels BDNF and GDNF. Our findings also highlight an important neuroprotective effect of co-ultra PEALut treatment, which promoted neuronal survival. CONCLUSIONS Our results reveal the presence of cellular and molecular modifications in the prodromal stage of AD. Moreover, the data presented here demonstrate the ability of co-ultra PEALut to normalize such Aβ-induced alterations, suggesting it as a valuable therapeutic strategy.
Collapse
|
48
|
Linnemann C, Lang UE. Pathways Connecting Late-Life Depression and Dementia. Front Pharmacol 2020; 11:279. [PMID: 32231570 PMCID: PMC7083108 DOI: 10.3389/fphar.2020.00279] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Late-life depression is associated with significant cognitive impairment. Meta-analyses showed that depression is associated with an increased risk for Alzheimer’s disease (AD) and it might be an etiological factor for AD. Since late-life depression is often connected with cognitive impairment and dementia is usually associated with depressive symptoms, a simple diagnostic approach to distinguish between the disorders is challenging. Several overlapping pathophysiological substrates might explain the comorbidity of both syndromes. Firstly, a stress syndrome, i.e., elevated cortisol levels, has been observed in up to 70% of depressed patients and also in AD pathology. Stress conditions can cause hippocampal neuronal damage as well as cognitive impairment. Secondly, the development of a depression and dementia after the onset of vascular diseases, the profile of cerebrovascular risk factors in both disorders and the impairments depending on the location of cerebrovascular lesions, speak in favor of a vascular hypothesis as a common factor for both disorders. Thirdly, neuroinflammatory processes play a key role in the etiology of depression as well as in dementia. Increased activation of microglia, changes in Transforming-Growth-Factor beta1 (TGF-beta1) signaling, production of pro-inflammatory cytokines as well as reduction of anti-inflammatory molecules are examples of common pathways impaired in dementia and depression. Fourthly, the neurotrophin BDNF is highly expressed in the central nervous system, especially in the hippocampus, where it plays a key role in the proliferation, differentiation and the maintenance of neuronal integrity throughout lifespan. It has been associated not only with antidepressant properties but also a reduction of cognitive impairment and therefore could be involved also in AD. Another etiologic factor is amyloid accumulation, as plasma amyloid beta-42 independently predicts both late-onset depression and AD. Higher plasma amyloid beta-42 predicts the development of late onset depression and conversion to possible AD. However, clinical trials with antibodies against beta amyloid recently failed, i.e., Solanezumab, Aducanumab, and Crenezumab. An overproduction of amyloid-beta might simply reflect a form of synaptic plasticity to compensate for neuronal dysfunction in different kind of neurological and psychiatric diseases of multiple etiologies. The tau hypothesis, sex/gender specific differences, epigenetics and the gut microbiota-brain axis imply other potential common pathways connecting late-life depression and dementia. In conclusion, different potential pathophysiological links between dementia and depression highlight several specific synergistic and multifaceted treatment possibilities, depending on the individual risk profile of the patient.
Collapse
Affiliation(s)
- Christoph Linnemann
- University of Basel, Universitäre Psychiatrische Kliniken (UPK), Basel, Switzerland
| | - Undine E Lang
- University of Basel, Universitäre Psychiatrische Kliniken (UPK), Basel, Switzerland
| |
Collapse
|
49
|
De Picker L, Morrens M. Perspective: Solving the Heterogeneity Conundrum of TSPO PET Imaging in Psychosis. Front Psychiatry 2020; 11:362. [PMID: 32425835 PMCID: PMC7206714 DOI: 10.3389/fpsyt.2020.00362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Positron emission tomography using ligands targeting translocator protein 18 kDa (TSPO PET) is an innovative method to visualize and quantify glial inflammatory responses in the central nervous system in vivo. Compared to some other neuropsychiatric disorders, findings of TSPO PET in schizophrenia and related psychotic disorders have been considerably more heterogeneous. Two conflicting meta-analyses have been published on the topic within the last year: one asserting evidence for decreased TSPO uptake, while the other observed increased TSPO uptake in a selection of studies. In this paper, we review and discuss five hypotheses which may explain the observed variability of TSPO PET findings in psychotic illness, namely that (1) an inflammatory phenotype is only present in a subgroup of psychosis patients; (2) heterogeneity is caused by interference of antipsychotic medication; (3) interference of other clinical confounders in the study populations (such as age, sex, BMI, smoking, and substance use); or (4) methodological variability between studies (such as choice of tracer and kinetic model, genotyping, study power, and diurnal effects); and (5) the glial responses underlying changes in TSPO expression are themselves heterogeneous and dynamic. Finally, we propose four key recommendations for future research proposals to mitigate these different causes of heterogeneity.
Collapse
Affiliation(s)
- Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,SINAPS, University Psychiatric Hospital Campus Duffel, Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,SINAPS, University Psychiatric Hospital Campus Duffel, Duffel, Belgium
| |
Collapse
|
50
|
Ferguson SA, Varma V, Sloper D, Panos JJ, Sarkar S. Increased inflammation in BA21 brain tissue from African Americans with Alzheimer's disease. Metab Brain Dis 2020; 35:121-133. [PMID: 31823110 DOI: 10.1007/s11011-019-00512-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Chronic neuroinflammation is strongly associated with AD and altered peripheral and central levels of chemokines and cytokines have been frequently described in those with AD. Given the increasing evidence of ethnicity-related differences in AD, it was of interest to determine if those altered chemokine and cytokine levels are ethnicity-related. Because African Americans exhibit a higher incidence of AD and increased symptom severity, we explored chemokine and cytokine concentrations in post-mortem brain tissue from the BA21 region of African Americans and Caucasians with AD using multiplex assays. IL-1β, MIG, TRAIL, and FADD levels were significantly increased in African Americans while levels of IL-3 and IL-8 were significantly decreased. Those effects did not interact with gender; however, overall levels of CCL25, CCL26 and CX3CL1 were significantly decreased in women. The NLRP3 inflammasome is thought to be critically involved in AD. Increased activation of this inflammasome in African Americans is consistent with the current results.
Collapse
Affiliation(s)
- Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| | - Vijayalakshmi Varma
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Daniel Sloper
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - John J Panos
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| |
Collapse
|