1
|
Hurrell BP, Shen S, Li X, Sakano Y, Kazemi MH, Quach C, Shafiei-Jahani P, Sakano K, Ghiasi H, Akbari O. Piezo1 channels restrain ILC2s and regulate the development of airway hyperreactivity. J Exp Med 2024; 221:e20231835. [PMID: 38530239 PMCID: PMC10965393 DOI: 10.1084/jem.20231835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Mechanosensitive ion channels sense force and pressure in immune cells to drive the inflammatory response in highly mechanical organs. Here, we report that Piezo1 channels repress group 2 innate lymphoid cell (ILC2)-driven type 2 inflammation in the lungs. Piezo1 is induced on lung ILC2s upon activation, as genetic ablation of Piezo1 in ILC2s increases their function and exacerbates the development of airway hyperreactivity (AHR). Conversely, Piezo1 agonist Yoda1 reduces ILC2-driven lung inflammation. Mechanistically, Yoda1 inhibits ILC2 cytokine secretion and proliferation in a KLF2-dependent manner, as we found that Piezo1 engagement reduces ILC2 oxidative metabolism. Consequently, in vivo Yoda1 treatment reduces the development of AHR in experimental models of ILC2-driven allergic asthma. Human-circulating ILC2s express and induce Piezo1 upon activation, as Yoda1 treatment of humanized mice reduces human ILC2-driven AHR. Our studies define Piezo1 as a critical regulator of ILC2s, and we propose the potential of Piezo1 activation as a novel therapeutic approach for the treatment of ILC2-driven allergic asthma.
Collapse
Affiliation(s)
- Benjamin P. Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Shen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Homayon Ghiasi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Ophthalmology Research, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Javary J, Goupil E, Soulez M, Kanshin E, Bouchard A, Seternes OM, Thibault P, Labbé JC, Meloche S. Phosphoproteomic analysis identifies supervillin as an ERK3 substrate regulating cytokinesis and cell ploidy. J Cell Physiol 2024; 239:e30938. [PMID: 36576983 DOI: 10.1002/jcp.30938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is a poorly characterized member of the mitogen-activated protein (MAP) kinase family. Functional analysis of the ERK3 signaling pathway has been hampered by a lack of knowledge about the substrates and downstream effectors of the kinase. Here, we used large-scale quantitative phosphoproteomics and targeted gene silencing to identify direct ERK3 substrates and gain insight into its cellular functions. Detailed validation of one candidate substrate identified the gelsolin/villin family member supervillin (SVIL) as a bona fide ERK3 substrate. We show that ERK3 phosphorylates SVIL on Ser245 to regulate myosin II activation and cytokinesis completion in dividing cells. Depletion of SVIL or ERK3 leads to increased cytokinesis failure and multinucleation, a phenotype rescued by wild type SVIL but not by the non-phosphorylatable S245A mutant. Our results unveil a new function of the atypical MAP kinase ERK3 in cell division and the regulation of cell ploidy.
Collapse
Affiliation(s)
- Joaquim Javary
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Eugénie Goupil
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Mathilde Soulez
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Evgeny Kanshin
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- NYU Langone Health, New York City, New York, USA
| | - Antoine Bouchard
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Maw JJ, Coker JA, Arya T, Goins CM, Sonawane D, Han SH, Rees MG, Ronan MM, Roth JA, Wang NS, Heemers HV, Macdonald JD, Stauffer SR. Discovery and Characterization of Selective, First-in-Class Inhibitors of Citron Kinase. J Med Chem 2024; 67:2631-2666. [PMID: 38330278 DOI: 10.1021/acs.jmedchem.3c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Citron kinase (CITK) is an AGC-family serine/threonine kinase that regulates cytokinesis. Despite knockdown experiments implicating CITK as an anticancer target, no selective CITK inhibitors exist. We transformed a previously reported kinase inhibitor with weak off-target CITK activity into a first-in-class CITK chemical probe, C3TD879. C3TD879 is a Type I kinase inhibitor which potently inhibits CITK catalytic activity (biochemical IC50 = 12 nM), binds directly to full-length human CITK in cells (NanoBRET Kd < 10 nM), and demonstrates favorable DMPK properties for in vivo evaluation. We engineered exquisite selectivity for CITK (>17-fold versus 373 other human kinases), making C3TD879 the first chemical probe suitable for interrogating the complex biology of CITK. Our small-molecule CITK inhibitors could not phenocopy the effects of CITK knockdown in cell proliferation, cell cycle progression, or cytokinesis assays, providing preliminary evidence that the structural roles of CITK may be more important than its kinase activity.
Collapse
Affiliation(s)
- Joshua J Maw
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Jesse A Coker
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Tarun Arya
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Christopher M Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Dhiraj Sonawane
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Sang Hoon Han
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge Massachusetts 02142, United States
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge Massachusetts 02142, United States
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge Massachusetts 02142, United States
| | - Nancy S Wang
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Hannelore V Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Jonathan D Macdonald
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| |
Collapse
|
4
|
Sun Y, Huang Y, Hao Z, Zhang S, Tian Q. MRLC controls apoptotic cell death and functions to regulate epidermal development during planarian regeneration and homeostasis. Cell Prolif 2024; 57:e13524. [PMID: 37357415 PMCID: PMC10771114 DOI: 10.1111/cpr.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Adult stem cells (ASCs) are pluripotent cells with the capacity to self-renew and constantly replace lost cells due to physiological turnover or injury. Understanding the molecular mechanisms of the precise coordination of stem cell proliferation and proper cell fate decision is important to regeneration and organismal homeostasis. The planarian epidermis provides a highly tractable model to study ASC complex dynamic due to the distinct spatiotemporal differentiation stages during lineage development. Here, we identified the myosin regulatory light chain (MRLC) homologue in the Dugesia japonica transcriptome. We found high expression levels of MRLC in wound region during regeneration and also expressed in late epidermal progenitors as an essential regulator of the lineage from neoblasts to mature epidermal cells. We investigated the function of MRLC using in situ hybridization, real-time polymerase chain reaction and double fluorescent and uncovered the potential mechanism. Knockdown of MRLC leads to a remarkable increase in cell death, causes severe abnormalities during regeneration and homeostasis and eventually leads to animal death. The global decrease in epidermal cell in MRLC RNAi animals induces accelerated epidermal proliferation and differentiation. Additionally, we find that MRLC is co-expressed with cdc42 and acts cooperatively to control the epidermal lineage development by affecting cell death. Our results uncover an important role of MRLC, as an inhibitor of apoptosis, involves in epidermal development.
Collapse
Affiliation(s)
- Yujia Sun
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yongding Huang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Zhitai Hao
- Department of Biochemistry and Molecular PharmacologyNew York University, School of MedicineNew YorkUSA
| | - Shoutao Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
- Longhu Laboratory of Advanced ImmunologyZhengzhouHenanChina
| | - Qingnan Tian
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
5
|
Paul A, Lawlor A, Cunanan K, Gaheer PS, Kalra A, Napoleone M, Lanktree MB, Bridgewater D. The Good and the Bad of SHROOM3 in Kidney Development and Disease: A Narrative Review. Can J Kidney Health Dis 2023; 10:20543581231212038. [PMID: 38107159 PMCID: PMC10722951 DOI: 10.1177/20543581231212038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose of review Multiple large-scale genome-wide association meta-analyses studies have reliably identified an association between genetic variants within the SHROOM3 gene and chronic kidney disease. This association extends to alterations in known markers of kidney disease including baseline estimated glomerular filtration rate, urinary albumin-to-creatinine ratio, and blood urea nitrogen. Yet, an understanding of the molecular mechanisms behind the association of SHROOM3 and kidney disease remains poorly communicated. We conducted a narrative review to summarize the current state of literature regarding the genetic and molecular relationships between SHROOM3 and kidney development and disease. Sources of information PubMed, PubMed Central, SCOPUS, and Web of Science databases, as well as review of references from relevant studies and independent Google Scholar searches to fill gaps in knowledge. Methods A comprehensive narrative review was conducted to explore the molecular mechanisms underlying SHROOM3 and kidney development, function, and disease. Key findings SHROOM3 is a unique protein, as it is the only member of the SHROOM group of proteins that regulates actin dynamics through apical constriction and apicobasal cell elongation. It holds a dichotomous role in the kidney, as subtle alterations in SHROOM3 expression and function can be both pathological and protective toward kidney disease. Genome-wide association studies have identified genetic variants near the transcription start site of the SHROOM3 gene associated with chronic kidney disease. SHROOM3 also appears to protect the glomerular structure and function in conditions such as focal segmental glomerulosclerosis. However, little is known about the exact mechanisms by which this protection occurs, which is why SHROOM3 binding partners remain an opportunity for further investigation. Limitations Our search was limited to English articles. No structured assessment of study quality was performed, and selection bias of included articles may have occurred. As we discuss future directions and opportunities, this narrative review reflects the academic views of the authors.
Collapse
Affiliation(s)
- Amy Paul
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Allison Lawlor
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kristina Cunanan
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Pukhraj S. Gaheer
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
| | - Aditya Kalra
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Melody Napoleone
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Matthew B. Lanktree
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Bhanja A, Seeley-Fallen MK, Lazzaro M, Upadhyaya A, Song W. N-WASP-dependent branched actin polymerization attenuates B-cell receptor signaling by increasing the molecular density of receptor clusters. eLife 2023; 12:RP87833. [PMID: 38085658 PMCID: PMC10715734 DOI: 10.7554/elife.87833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Antigen-induced B-cell receptor (BCR) signaling is critical for initiating and regulating B-cell activation. The actin cytoskeleton plays essential roles in BCR signaling. Upon encountering cell-surface antigens, actin-driven B-cell spreading amplifies signaling, while B-cell contraction following spreading leads to signal attenuation. However, the mechanism by which actin dynamics switch BCR signaling from amplification to attenuation is unknown. Here, we show that Arp2/3-mediated branched actin polymerization is required for mouse splenic B-cell contraction. Contracting B-cells generate centripetally moving actin foci from lamellipodial F-actin networks in the plasma membrane region contacting antigen-presenting surfaces. Actin polymerization driven by N-WASP, but not WASP, initiates these actin foci and facilitates non-muscle myosin II recruitment to the contact zone, creating actomyosin ring-like structures. B-cell contraction increases BCR molecular density in individual clusters, leading to decreased BCR phosphorylation. Increased BCR molecular density reduced levels of the stimulatory kinase Syk, the inhibitory phosphatase SHIP-1, and their phosphorylated forms in individual BCR clusters. These results suggest that N-WASP-activated Arp2/3, coordinating with myosin, generates centripetally moving foci and contractile actomyosin ring-like structures from lamellipodial networks, enabling contraction. B-cell contraction attenuates BCR signaling by pushing out both stimulatory kinases and inhibitory phosphatases from BCR clusters, providing novel insights into actin-facilitated signal attenuation.
Collapse
Affiliation(s)
- Anshuman Bhanja
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Margaret K Seeley-Fallen
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Michelle Lazzaro
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Arpita Upadhyaya
- Biophysics Program, University of MarylandCollege ParkUnited States
- Department of Physics, University of MarylandCollege ParkUnited States
- Institute for Physical Science and Technology, University of MarylandCollege ParkUnited States
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| |
Collapse
|
7
|
Hsu CR, Sangha G, Fan W, Zheng J, Sugioka K. Contractile ring mechanosensation and its anillin-dependent tuning during early embryogenesis. Nat Commun 2023; 14:8138. [PMID: 38065974 PMCID: PMC10709429 DOI: 10.1038/s41467-023-43996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cytokinesis plays crucial roles in morphogenesis. Previous studies have examined how tissue mechanics influences the position and closure direction of the contractile ring. However, the mechanisms by which the ring senses tissue mechanics remain largely elusive. Here, we show the mechanism of contractile ring mechanosensation and its tuning during asymmetric ring closure of Caenorhabditis elegans embryos. Integrative analysis of ring closure and cell cortex dynamics revealed that mechanical suppression of the ring-directed cortical flow is associated with asymmetric ring closure. Consistently, artificial obstruction of ring-directed cortical flow induces asymmetric ring closure in otherwise symmetrically dividing cells. Anillin is vital for mechanosensation. Our genetic analysis suggests that the positive feedback loop among ring-directed cortical flow, myosin enrichment, and ring constriction constitutes a mechanosensitive pathway driving asymmetric ring closure. These findings and developed tools should advance the 4D mechanobiology of cytokinesis in more complex tissues.
Collapse
Affiliation(s)
- Christina Rou Hsu
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Gaganpreet Sangha
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Wayne Fan
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Joey Zheng
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| |
Collapse
|
8
|
Arima T, Okita K, Yumura S. Dynamics of actomyosin filaments in the contractile ring revealed by ultrastructural analysis. Genes Cells 2023; 28:845-856. [PMID: 37844904 DOI: 10.1111/gtc.13073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Cytokinesis, the final process of cell division, involves the accumulation of actin and myosin II filaments at the cell's equator, forming a contractile ring that facilitates the division into two daughter cells. While light microscopy has provided valuable insights into the molecular mechanism of this process, it has limitations in examining individual filaments in vivo. In this study, we utilized transmission electron microscopy to observe actin and myosin II filaments in the contractile rings of dividing Dictyostelium cells. To synchronize cytokinesis, we developed a novel method that allowed us to visualize dividing cells undergoing cytokinesis with a frequency as high as 18%. This improvement enabled us to examine the lengths and alignments of individual filaments within the contractile rings. As the furrow constricted, the length of actin filaments gradually decreased. Moreover, both actin and myosin II filaments reoriented perpendicularly to the long axis during furrow constriction. Through experiments involving myosin II null cells, we discovered that myosin II plays a role in regulating both the lengths and alignments of actin filaments. Additionally, dynamin-like protein A was found to contribute to regulating the length of actin filaments, while cortexillins were involved in regulating their alignment.
Collapse
Affiliation(s)
- Takeru Arima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Keisuke Okita
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
9
|
Yamamoto T, Uehara R. Cell shape instability during cytokinesis in tetraploid HCT116 cells. Biochem Biophys Res Commun 2023; 678:39-44. [PMID: 37619310 DOI: 10.1016/j.bbrc.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Tetraploidy is a hallmark of broad cancer types, but it remains largely unknown which aspects of cellular processes are influenced by tetraploidization in human cells. Here, we found that tetraploid HCT116 cells manifested severe cell shape instability during cytokinesis, unlike their diploid counterparts. The cell shape instability accompanied the formation of protrusive deformation at the cell poles, indicating ectopic contractile activity of the cell cortex. While cytokinesis regulators such as RhoA and anillin correctly accumulated at the equatorial cortex, myosin II was over-accumulated at the cell poles, specifically in tetraploid cells. Suppression of myosin II activity by Y27632 treatment restored smooth cell shape in tetraploids during cytokinesis, indicating dysregulation of myosin II as a primary cause of the cell shape instability in the tetraploid state. Our results demonstrate a new aspect of the dynamic cellular process profoundly affected by tetraploidization in human cells, which provides a clue to molecular mechanisms of tetraploidy-driven pathogenic processes.
Collapse
Affiliation(s)
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Japan; Faculty of Advanced Life Science, Hokkaido University, Japan.
| |
Collapse
|
10
|
Bhanja A, Seeley-Fallen MK, Lazzaro M, Upadhyaya A, Song W. N-WASP-dependent branched actin polymerization attenuates B-cell receptor signaling by increasing the molecular density of receptor clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532631. [PMID: 36993351 PMCID: PMC10055065 DOI: 10.1101/2023.03.14.532631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Antigen-induced B-cell receptor (BCR) signaling is critical for initiating and regulating B-cell activation. The actin cytoskeleton plays essential roles in BCR signaling. Upon encountering cell-surface antigens, actin-driven B-cell spreading amplifies signaling, while B-cell contraction following spreading leads to signal attenuation. However, the mechanism by which actin dynamics switch BCR signaling from amplification to attenuation is unknown. Here, we show that Arp2/3-mediated branched actin polymerization is required for B-cell contraction. Contracting B-cells generate centripetally moving actin foci from lamellipodial F-actin networks in the B-cell plasma membrane region contacting antigen-presenting surfaces. Actin polymerization driven by N-WASP, but not WASP, initiates these actin foci and facilitates non-muscle myosin II recruitment to the contact zone, creating actomyosin ring-like structures. Furthermore, B-cell contraction increases BCR molecular density in individual clusters, leading to decreased BCR phosphorylation. Increased BCR molecular density reduced levels of the stimulatory kinase Syk, the inhibitory phosphatase SHIP-1, and their phosphorylated forms in individual BCR clusters. These results suggest that N-WASP-activated Arp2/3, coordinating with myosin, generates centripetally moving foci and contractile actomyosin ring-like structures from lamellipodial networks, enabling contraction. B-cell contraction attenuates BCR signaling by pushing out both stimulatory kinases and inhibitory phosphatases from BCR clusters, providing novel insights into actin-facilitated signal attenuation.
Collapse
Affiliation(s)
- Anshuman Bhanja
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Margaret K. Seeley-Fallen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Michelle Lazzaro
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Arpita Upadhyaya
- Biophysics Program, University of Maryland, College Park, MD, 20742, USA
- Department of Physics, University of Maryland, College Park, MD, 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
do Rosário CF, Zhang Y, Stadnicki J, Ross JL, Wadsworth P. Lateral and longitudinal compaction of PRC1 overlap zones drives stabilization of interzonal microtubules. Mol Biol Cell 2023; 34:ar100. [PMID: 37467037 PMCID: PMC10551706 DOI: 10.1091/mbc.e23-02-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
During anaphase, antiparallel-overlapping midzone microtubules elongate and form bundles, contributing to chromosome segregation and the location of contractile ring formation. Midzone microtubules are dynamic in early but not late anaphase; however, the kinetics and mechanisms of stabilization are incompletely understood. Using photoactivation of cells expressing PA-EGFP-α-tubulin we find that immediately after anaphase onset, a single highly dynamic population of midzone microtubules is present; as anaphase progresses, both dynamic and stable populations of midzone microtubules coexist. By mid-cytokinesis, only static, non-dynamic microtubules are detected. The velocity of microtubule sliding also decreases as anaphase progresses, becoming undetectable by late anaphase. Following depletion of PRC1, midzone microtubules remain highly dynamic in anaphase and fail to form static arrays in telophase despite furrowing. Cells depleted of Kif4a contain elongated PRC1 overlap zones and fail to form static arrays in telophase. Cells blocked in cytokinesis form short PRC1 overlap zones that do not coalesce laterally; these cells also fail to form static arrays in telophase. Together, our results demonstrate that dynamic turnover and sliding of midzone microtubules is gradually reduced during anaphase and that the final transition to a static array in telophase requires both lateral and longitudinal compaction of PRC1 containing overlap zones.
Collapse
Affiliation(s)
- Carline Fermino do Rosário
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| | - Ying Zhang
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
| | - Jennifer Stadnicki
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| | | | - Patricia Wadsworth
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| |
Collapse
|
12
|
Qiao J, Peng H, Dong B. Development and Application of an Optogenetic Manipulation System to Suppress Actomyosin Activity in Ciona Epidermis. Int J Mol Sci 2023; 24:ijms24065707. [PMID: 36982781 PMCID: PMC10054466 DOI: 10.3390/ijms24065707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Studying the generation of biomechanical force and how this force drives cell and tissue morphogenesis is challenging for understanding the mechanical mechanisms underlying embryogenesis. Actomyosin has been demonstrated to be the main source of intracellular force generation that drives membrane and cell contractility, thus playing a vital role in multi-organ formation in ascidian Ciona embryogenesis. However, manipulation of actomyosin at the subcellular level is impossible in Ciona because of the lack of technical tools and approaches. In this study, we designed and developed a myosin light chain phosphatase fused with a light-oxygen-voltage flavoprotein from Botrytis cinerea (MLCP-BcLOV4) as an optogenetics tool to control actomyosin contractility activity in the Ciona larva epidermis. We first validated the light-dependent membrane localization and regulatory efficiency on mechanical forces of the MLCP-BcLOV4 system as well as the optimum light intensity that activated the system in HeLa cells. Then, we applied the optimized MLCP-BcLOV4 system in Ciona larval epidermal cells to realize the regulation of membrane elongation at the subcellular level. Moreover, we successfully applied this system on the process of apical contraction during atrial siphon invagination in Ciona larvae. Our results showed that the activity of phosphorylated myosin on the apical surface of atrial siphon primordium cells was suppressed and apical contractility was disrupted, resulting in the failure of the invagination process. Thus, we established an effective technique and system that provide a powerful approach in the study of the biomechanical mechanisms driving morphogenesis in marine organisms.
Collapse
Affiliation(s)
- Jinghan Qiao
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Hongzhe Peng
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
- Laoshan Laboratory, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Correspondence: ; Tel.: +86-532-8590-6576
| |
Collapse
|
13
|
Krauss RS, Kann AP. Muscle stem cells get a new look: Dynamic cellular projections as sensors of the stem cell niche. Bioessays 2023; 45:e2200249. [PMID: 36916774 PMCID: PMC10170654 DOI: 10.1002/bies.202200249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023]
Abstract
Cellular mechanisms whereby quiescent stem cells sense tissue injury and transition to an activated state are largely unknown. Quiescent skeletal muscle stem cells (MuSCs, also called satellite cells) have elaborate, heterogeneous projections that rapidly retract in response to muscle injury. They may therefore act as direct sensors of their niche environment. Retraction is driven by a Rac-to-Rho GTPase activity switch that promotes downstream MuSC activation events. These and other observations lead to several hypotheses: (1) projections are morphologically dynamic at quiescence, providing a surveillance function for muscle damage; (2) quiescent projection dynamics are regulated by the relative balance of Rac and Rho activities promoted by niche-derived cues; (3) projections, particularly their associated filopodia, sense tissue damage via changes to the biomechanical properties of the niche and/or detection of signaling cues released by damaged myofibers; and (4) the dynamic nature of projections result in a population of MuSCs with heterogeneous functional properties. These concepts may extend to other types of quiescent stem cells, as well as prove useful in translational research settings.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
14
|
Escuin S, Rose Raza-Knight S, Savery D, Gaston-Massuet C, Galea GL, Greene NDE, Copp AJ. Dual mechanism underlying failure of neural tube closure in the Zic2 mutant mouse. Dis Model Mech 2023; 16:297163. [PMID: 36916392 PMCID: PMC10073009 DOI: 10.1242/dmm.049858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023] Open
Abstract
Understanding the molecular mechanisms that lead to birth defects is an important step towards improved primary prevention. Mouse embryos homozygous for the Kumba (Ku) mutant allele of Zic2 develop severe spina bifida with complete lack of dorsolateral hinge points (DLHPs) in the neuroepithelium. Bone morphogenetic protein (BMP) signalling is overactivated in Zic2Ku/Ku embryos, and the BMP inhibitor dorsomorphin partially rescues neural tube closure in cultured embryos. RhoA signalling is also overactivated, with accumulation of actomyosin in the Zic2Ku/Ku neuroepithelium, and the myosin inhibitor Blebbistatin partially normalises neural tube closure. However, dorsomorphin and Blebbistatin differ in their effects at tissue and cellular levels: DLHP formation is rescued by dorsomorphin but not Blebbistatin, whereas abnormal accumulation of actomyosin is rescued by Blebbistatin but not dorsomorphin. These findings suggest a dual mechanism of spina bifida origin in Zic2Ku/Ku embryos: faulty BMP-dependent formation of DLHPs and RhoA-dependent F-actin accumulation in the neuroepithelium. Hence, we identify a multi-pathway origin of spina bifida in a mammalian system that may provide a developmental basis for understanding the corresponding multifactorial human defects.
Collapse
Affiliation(s)
- Sarah Escuin
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Saba Rose Raza-Knight
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Dawn Savery
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Carles Gaston-Massuet
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
15
|
Peng S, Wu Y, Zheng Y. High glucose causes developmental abnormalities in neuroepithelial cysts with actin and HK1 distribution changes. Front Cell Dev Biol 2023; 10:1021284. [PMID: 36684439 PMCID: PMC9852901 DOI: 10.3389/fcell.2022.1021284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
It has been reported that the offspring of diabetic pregnant women have an increased risk for neural tube defects. Previous studies in animal models suggested that high glucose induces cell apoptosis and epigenetic changes in the developing neural tube. However, effects on other cellular aspects such as the cell shape changes were not fully investigated. Actin dynamics plays essential roles in cell shape change. Disruption on actin dynamics is known to cause neural tube defects. In the present study, we used a 3D neuroepithelial cyst model and a rosette model, both cultured from human embryonic stem cells, to study the cellular effects caused by high glucose. By using these models, we observed couple of new changes besides increased apoptosis. First, we observed that high glucose disturbed the distribution of pH3 positive cells in the neuroepithelial cysts. Secondly, we found that high glucose exposure caused a relatively smaller actin inner boundary enclosed area, which was unlikely due to osmolarity changes. We further investigated key glucose metabolic enzymes in our models and the results showed that the distribution of hexokinase1 (HK1) was affected by high glucose. We observed that hexokinase1 has an apical-basal polarized distribution and is highest next to actin at the boundaries. hexokinase1 was more diffused and distributed less polarized under high glucose condition. Together, our observations broadened the cellular effects that may be caused by high glucose in the developing neural tube, especially in the secondary neurulation process.
Collapse
Affiliation(s)
- Sisi Peng
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China,Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Wu
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China,Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yufang Zheng
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China,Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China,*Correspondence: Yufang Zheng,
| |
Collapse
|
16
|
Rani B, Gupta DK, Johansson S, Kamranvar SA. Contribution of integrin adhesion to cytokinetic abscission and genomic integrity. Front Cell Dev Biol 2022; 10:1048717. [PMID: 36578785 PMCID: PMC9791049 DOI: 10.3389/fcell.2022.1048717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Recent research shows that integrin-mediated adhesion contributes to the regulation of cell division at two key steps: the formation of the mitotic spindle at the mitotic entry and the final cytokinetic abscission at the mitotic exit. Failure in either of these processes will have a direct impact on the other in each round of the cell cycle and on the genomic integrity. This review aims to present how integrin signals are involved at these cell cycle stages under normal conditions and some safety mechanisms that may counteract the generation of aneuploid cells in cases of defective integrin signals.
Collapse
Affiliation(s)
- Bhavna Rani
- Department of Medical Biochemistry and Microbiology (IMBIM), Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Deepesh K. Gupta
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Staffan Johansson
- Department of Medical Biochemistry and Microbiology (IMBIM), Biomedical Center, Uppsala University, Uppsala, Sweden,*Correspondence: Staffan Johansson, ; Siamak A. Kamranvar,
| | - Siamak A. Kamranvar
- Department of Medical Biochemistry and Microbiology (IMBIM), Biomedical Center, Uppsala University, Uppsala, Sweden,*Correspondence: Staffan Johansson, ; Siamak A. Kamranvar,
| |
Collapse
|
17
|
Ahangar P, Strudwick XL, Cowin AJ. Wound Healing from an Actin Cytoskeletal Perspective. Cold Spring Harb Perspect Biol 2022; 14:a041235. [PMID: 35074864 PMCID: PMC9341468 DOI: 10.1101/cshperspect.a041235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound healing requires a complex cascade of highly controlled and conserved cellular and molecular processes. These involve numerous cell types and extracellular matrix molecules regulated by the actin cytoskeleton. This microscopic network of filaments is present within the cytoplasm of all cells and provides the shape and mechanical support required for cell movement and proliferation. Here, an overview of the processes of wound healing are described from the perspective of the cell in relation to the actin cytoskeleton. Key points of discussion include the role of actin, its binding proteins, signaling pathways, and events that play significant roles in the phases of wound healing. The identification of cytoskeletal targets that can be used to manipulate and improve wound healing is included as an emerging area of focus that may inform future therapeutic approaches to improve healing of complex wounds.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Allison J Cowin
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| |
Collapse
|
18
|
Seeley-Fallen MK, Lazzaro M, Liu C, Li QZ, Upadhyaya A, Song W. Non-Muscle Myosin II Is Essential for the Negative Regulation of B-Cell Receptor Signaling and B-Cell Activation. Front Immunol 2022; 13:842605. [PMID: 35493485 PMCID: PMC9047714 DOI: 10.3389/fimmu.2022.842605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Antigen (Ag)-triggered B-cell receptor (BCR) signaling initiates antibody responses. However, prolonged or uncontrolled BCR signaling is associated with the development of self-reactive B-cells and autoimmune diseases. We previously showed that actin-mediated B-cell contraction on Ag-presenting surfaces negatively regulates BCR signaling. Non-muscle myosin II (NMII), an actin motor, is involved in B-cell development and antibody responses by mediating B-cell migration, cytokinesis, and Ag extraction from Ag-presenting cells. However, whether and how NMII regulates humoral responses through BCR signaling remains elusive. Utilizing a B-cell-specific, partial NMIIA knockout (cIIAKO) mouse model and NMII inhibitors, this study examined the role of NMII in BCR signaling. Upon BCR binding to antibody-coated planar lipid bilayers (PLB), NMIIA was recruited to the B-cell contact membrane and formed a ring-like structure during B-cell contraction. NMII recruitment depended on phosphatidylinositol 5-phosphatase (SHIP1), an inhibitory signaling molecule. NMII inhibition by cIIAKO did not affect B-cell spreading on PLB but delayed B-cell contraction and altered BCR clustering. Surface BCR “cap” formation induced by soluble stimulation was enhanced in cIIAKO B-cells. Notably, NMII inhibition by cIIAKO and inhibitors up-regulated BCR signaling in response to both surface-associated and soluble stimulation, increasing phosphorylated tyrosine, CD79a, BLNK, and Erk and decreasing phosphorylated SHIP1. While cIIAKO did not affect B-cell development, the number of germinal center B-cells was significantly increased in unimmunized cIIAKO mice, compared to control mice. While cIIAKO mice mounted similar antibody responses when compared to control mice upon immunization, the percentages of high-affinity antibodies, Ag-specific germinal center B-cells and isotype switched B-cells were significantly lower in cIIAKO mice than in control mice. Furthermore, autoantibody levels were elevated in cIIAKO mice, compared to control mice. Collectively, our results reveal that NMII exerts a B-cell-intrinsic inhibition on BCR signaling by regulating B-cell membrane contraction and surface BCR clustering, which curtails the activation of non-specific and self-reactive B-cells.
Collapse
Affiliation(s)
- Margaret K. Seeley-Fallen
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Michelle Lazzaro
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Chaohong Liu
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
- *Correspondence: Wenxia Song,
| |
Collapse
|
19
|
Banerjee S, Nara R, Chakraborty S, Chowdhury D, Haldar S. Integrin Regulated Autoimmune Disorders: Understanding the Role of Mechanical Force in Autoimmunity. Front Cell Dev Biol 2022; 10:852878. [PMID: 35372360 PMCID: PMC8971850 DOI: 10.3389/fcell.2022.852878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of autoimmune disorders is multifactorial, where immune cell migration, adhesion, and lymphocyte activation play crucial roles in its progression. These immune processes are majorly regulated by adhesion molecules at cell–extracellular matrix (ECM) and cell–cell junctions. Integrin, a transmembrane focal adhesion protein, plays an indispensable role in these immune cell mechanisms. Notably, integrin is regulated by mechanical force and exhibit bidirectional force transmission from both the ECM and cytosol, regulating the immune processes. Recently, integrin mechanosensitivity has been reported in different immune cell processes; however, the underlying mechanics of these integrin-mediated mechanical processes in autoimmunity still remains elusive. In this review, we have discussed how integrin-mediated mechanotransduction could be a linchpin factor in the causation and progression of autoimmune disorders. We have provided an insight into how tissue stiffness exhibits a positive correlation with the autoimmune diseases’ prevalence. This provides a plausible connection between mechanical load and autoimmunity. Overall, gaining insight into the role of mechanical force in diverse immune cell processes and their dysregulation during autoimmune disorders will open a new horizon to understand this physiological anomaly.
Collapse
|
20
|
Nangia-Makker P, Shekhar MP, Hogan V, Balan V, Raz A. MYH9 binds to dNTPs via deoxyribose moiety and plays an important role in DNA synthesis. Oncotarget 2022; 13:534-550. [PMID: 35309869 PMCID: PMC8923078 DOI: 10.18632/oncotarget.28219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
The accepted notion of dNTP transport following cytoplasmic biosynthesis is 'facilitated diffusion'; however, whether this alone is sufficient for moving dNTPs for DNA synthesis remains an open question. The data presented here show that the MYH9 gene encoded heavy chain of non-muscle myosin IIA binds dNTPs potentially serving as a 'reservoir'. Pull-down assays showed that MYH9 present in the cytoplasmic, mitochondrial and nuclear compartments bind to DNA and this interaction is inhibited by dNTPs and 2-deoxyribose-5-phosphate (dRP) suggesting that MYH9-DNA binding is mediated via pentose sugar recognition. Direct dNTP-MYH9 binding was demonstrated by ELISA and a novel PCR-based method, which showed that all dNTPs bind to MYH9 with varying efficiencies. Cellular thermal shift assays showed that MYH9 thermal stability is enhanced by dNTPs. MYH9 siRNA transfection or treatment with myosin II selective inhibitors ML7 or blebbistatin decreased cell proliferation compared to controls. EdU labeling and cell cycle analysis by flow cytometry confirmed MYH9 siRNA and myosin II inhibitors decreased progression to S-phase with accumulation of cells in G0/G1 phase. Taken together, our data suggest a novel role for MYH9 in dNTP binding and DNA synthesis.
Collapse
Affiliation(s)
- Pratima Nangia-Makker
- Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Malathy P.V. Shekhar
- Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Victor Hogan
- Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | | | - Avraham Raz
- Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
21
|
Shi X, Yu X, Wang J, Bian S, Li Q, Fu F, Zou X, Zhang L, Bast RC, Lu Z, Guo L, Chen Y, Zhou J. SIK2 promotes ovarian cancer cell motility and metastasis by phosphorylating MYLK. Mol Oncol 2022; 16:2558-2574. [PMID: 35278271 PMCID: PMC9251837 DOI: 10.1002/1878-0261.13208] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/11/2022] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
Salt‐inducible kinase 2 (SIK2; also known as serine/threonine‐protein kinase SIK2) is overexpressed in several cancers and has been implicated in cancer progression. However, the mechanisms by which SIK2 regulates cancer cell motility, migration and metastasis in ovarian cancer have not been fully discovered. Here, we identify that SIK2 promotes ovarian cancer cell motility, migration and metastasis in vitro and in vivo. Mechanistically, SIK2 regulated cancer cell motility and migration by myosin light chain kinase, smooth muscle (MYLK)‐meditated phosphorylation of myosin light chain 2 (MYL2). SIK2 directly phosphorylated MYLK at Ser343 and activated its downstream effector MYL2, promoting ovarian cancer cell motility and metastasis. In addition, we found that adipocytes induced SIK2 phosphorylation at Ser358 and MYLK phosphorylation at Ser343, enhancing ovarian cancer cell motility. Moreover, SIK2 protein expression was positively correlated with the expression of MYLK‐pS343 in ovarian cancer cell lines and tissues. The co‐expression of SIK2 and MYLK‐pS343 was associated with reduced median overall survival in human ovarian cancer samples. Taken together, SIK2 positively regulates ovarian cancer motility, migration and metastasis, suggesting that SIK2 is a potential candidate for ovarian cancer treatment.
Collapse
Affiliation(s)
- Xiu Shi
- Department of Obstetrics and Gynecology The First Affiliated Hospital of Soochow University Suzhou People’s Republic of China
- Clinical Research Center of Obstetrics and Gynecology Jiangsu Key Laboratory of Clinical Immunology Soochow University Suzhou People’s Republic of China
- Jiangsu Institute of Clinical Immunology The First Affiliated Hospital of Soochow University Suzhou People’s Republic of China
| | - Xuejiao Yu
- Department of Imaging Department The First Affiliated Hospital of Soochow University Suzhou People’s Republic of China
| | - Juan Wang
- Department of Obstetrics and Gynecology The First Affiliated Hospital of Soochow University Suzhou People’s Republic of China
| | - Shimin Bian
- Department of Obstetrics and Gynecology The First Affiliated Hospital of Soochow University Suzhou People’s Republic of China
| | - Qiutong Li
- Department of Obstetrics and Gynecology The First Affiliated Hospital of Soochow University Suzhou People’s Republic of China
| | - Fengqing Fu
- Clinical Research Center of Obstetrics and Gynecology Jiangsu Key Laboratory of Clinical Immunology Soochow University Suzhou People’s Republic of China
- Jiangsu Institute of Clinical Immunology The First Affiliated Hospital of Soochow University Suzhou People’s Republic of China
| | - Xinwei Zou
- Department of Obstetrics and Gynecology The First Affiliated Hospital of Soochow University Suzhou People’s Republic of China
| | - Lin Zhang
- Department of Obstetrics and Gynecology The First Affiliated Hospital of Soochow University Suzhou People’s Republic of China
| | - Robert C. Bast
- Department of Imaging Department The First Affiliated Hospital of Soochow University Suzhou People’s Republic of China
| | - Zhen Lu
- Department of Imaging Department The First Affiliated Hospital of Soochow University Suzhou People’s Republic of China
| | - Lingchuan Guo
- Department of Experimental Therapeutics University of Texas M.D. Anderson Cancer Center Houston Texas USA
| | - Youguo Chen
- Department of Obstetrics and Gynecology The First Affiliated Hospital of Soochow University Suzhou People’s Republic of China
- Clinical Research Center of Obstetrics and Gynecology Jiangsu Key Laboratory of Clinical Immunology Soochow University Suzhou People’s Republic of China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology The First Affiliated Hospital of Soochow University Suzhou People’s Republic of China
- Clinical Research Center of Obstetrics and Gynecology Jiangsu Key Laboratory of Clinical Immunology Soochow University Suzhou People’s Republic of China
| |
Collapse
|
22
|
Sugioka K. Symmetry-breaking of animal cytokinesis. Semin Cell Dev Biol 2021; 127:100-109. [PMID: 34955355 DOI: 10.1016/j.semcdb.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Abstract
Cytokinesis is a mechanism that separates dividing cells via constriction of a supramolecular structure, the contractile ring. In animal cells, three modes of symmetry-breaking of cytokinesis result in unilateral cytokinesis, asymmetric cell division, and oriented cell division. Each mode of cytokinesis plays a significant role in tissue patterning and morphogenesis by the mechanisms that control the orientation and position of the contractile ring relative to the body axis. Despite its significance, the mechanisms involved in the symmetry-breaking of cytokinesis remain unclear in many cell types. Classical embryologists have identified that the geometric relationship between the mitotic spindle and cell cortex induces cytokinesis asymmetry; however, emerging evidence suggests that a concerted flow of compressional cell-cortex materials (cortical flow) is a spindle-independent driving force in spatial cytokinesis control. This review provides an overview of both classical and emerging mechanisms of cytokinesis asymmetry and their roles in animal development.
Collapse
Affiliation(s)
- Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T1Z3, Canada; Department of Zoology, The University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
23
|
Transcriptome analysis provides the first insight into the molecular basis of temperature plasticity in Banggai cardinalfish, Pterapogon kauderni. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100909. [PMID: 34479169 DOI: 10.1016/j.cbd.2021.100909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 01/11/2023]
Abstract
Banggai cardinalfish, Pterapogon kauderni, is a tropical fish listed as an endangered species by IUCN. Its distribution and survival condition are extremely limited, and the changes of living environment caused by global warming may seriously threaten its geographical distribution. In order to understand the survival temperature range and the potential mechanism of temperature plasticity of P. kauderni, transcriptome analysis was performed under five temperature conditions (18 °C, 22 °C, 26 °C, 30 °C and 34 °C). A total of 432,444,497 clean reads were obtained from the mix tissues of whole head, viscera (except intestine), and muscle. All clean data were spliced into 194,832 unigenes. Compared with 26 °C, 57, 107, 187 and 174 differentially expressed genes (DEGs) were obtained at 18 °C, 22 °C, 30 °C and 34 °C, respectively. Gene Ontology (GO) analysis showed the most highly enriched in the DEGs were cellular processes, binding, metabolic processes and biological regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated circadian rhythm, protein processing in endoplasmic reticulum, influenza A and prion disease were significantly enriched. 47 genes that may be related to temperature stress were identified, such as Per1, MLP, IGFBP1, HSP70, HSP90α, HSPA4, DNAJB1, CALR. This is the first RNA-Seq study of P. kauderni. This information should be valuable for further targeted studies on temperature tolerance, thereby assisting the protection and development of P. kauderni.
Collapse
|
24
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
25
|
Li Y, Munro E. Filament-guided filament assembly provides structural memory of filament alignment during cytokinesis. Dev Cell 2021; 56:2486-2500.e6. [PMID: 34480876 DOI: 10.1016/j.devcel.2021.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 10/24/2022]
Abstract
During cytokinesis, animal cells rapidly remodel the equatorial cortex to build an aligned array of actin filaments called the contractile ring. Local reorientation of filaments by active equatorial compression is thought to underlie the emergence of filament alignment during ring assembly. Here, combining single molecule analysis and modeling in one-cell C. elegans embryos, we show that filaments turnover is far too fast for reorientation of individual filaments by equatorial compression to explain the observed alignment, even if favorably oriented filaments are selectively stabilized. By tracking single formin/CYK-1::GFP particles to monitor local filament assembly, we identify a mechanism that we call filament-guided filament assembly (FGFA), in which existing filaments serve as templates to orient the growth of new filaments. FGFA sharply increases the effective lifetime of filament orientation, providing structural memory that allows cells to build highly aligned filament arrays in response to equatorial compression, despite rapid turnover of individual filaments.
Collapse
Affiliation(s)
- Younan Li
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
26
|
Starostina I, Jang YK, Kim HS, Suh JS, Ahn SH, Choi GH, Suk M, Kim TJ. Distinct calcium regulation of TRPM7 mechanosensitive channels at plasma membrane microdomains visualized by FRET-based single cell imaging. Sci Rep 2021; 11:17893. [PMID: 34504177 PMCID: PMC8429465 DOI: 10.1038/s41598-021-97326-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022] Open
Abstract
Transient receptor potential subfamily M member 7 (TRPM7), a mechanosensitive Ca2+ channel, plays a crucial role in intracellular Ca2+ homeostasis. However, it is currently unclear how cell mechanical cues control TRPM7 activity and its associated Ca2+ influx at plasma membrane microdomains. Using two different types of Ca2+ biosensors (Lyn-D3cpv and Kras-D3cpv) based on fluorescence resonance energy transfer, we investigate how Ca2+ influx generated by the TRPM7-specific agonist naltriben is mediated at the detergent-resistant membrane (DRM) and non-DRM regions. This study reveals that TRPM7-induced Ca2+ influx mainly occurs at the DRM, and chemically induced mechanical perturbations in the cell mechanosensitive apparatus substantially reduce Ca2+ influx through TRPM7, preferably located at the DRM. Such perturbations include the disintegration of lipid rafts, microtubules, or actomyosin filaments; the alteration of actomyosin contractility; and the inhibition of focal adhesion and Src kinases. These results suggest that the mechanical membrane environment contributes to the TRPM7 function and activity. Thus, this study provides a fundamental understanding of how the mechanical aspects of the cell membrane regulate the function of mechanosensitive channels.
Collapse
Affiliation(s)
- Irina Starostina
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Yoon-Kwan Jang
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Heon-Su Kim
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Sang-Hyun Ahn
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Gyu-Ho Choi
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea.,Department of Biological Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Myungeun Suk
- Department of Mechanical Engineering, Dong-Eui University, Pusan, 47340, Republic of Korea.
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea. .,Department of Biological Sciences, Pusan National University, Pusan, 46241, Republic of Korea.
| |
Collapse
|
27
|
Qian A, Hsieh TB, Hossain MM, Lin JJC, Jin JP. A rapid degradation of calponin 2 is required for cytokinesis. Am J Physiol Cell Physiol 2021; 321:C355-C368. [PMID: 34133238 DOI: 10.1152/ajpcell.00569.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calponin 2 is an actin cytoskeleton-associated protein and plays a role in regulating cell motility-related functions such as phagocytosis, migration, and division. We previously reported that overexpression of calponin 2 inhibits the rate of cell proliferation. To investigate the underlying mechanism, our present study found that the levels of endogenous calponin 2 in NIH3T3 and HEK293 cells rapidly decreased before cell division characterized by an absence at the actin contractile ring. In cells lacking endogenous calponin 2, transfective expression of GFP-fusion calponin 2 inhibited cell proliferation similar to that of nonfusion calponin 2. Fluorescent imaging studies of mitotic cells indicated that a proper level of calponin 2 expression and effective degradation during cytokinesis are necessary for normal cell division. Computer-assisted dynamic image analysis of dividing cells revealed that overexpression of calponin 2 significantly affects motility and shape behaviors of cells only on the interval from the start of anaphase to the start of cytokinesis, i.e., the pre-cytokinesis phase, but not on the interval from the start of cytokinesis to 50% completion of cytokinesis. The pre-cytokinesis degradation of calponin 2 was attenuated by MG132 inhibition of the ubiquitin proteasome and inhibitor of protein kinase C (PKC), suggesting that PKC phosphorylation-triggered degradation of calponin 2 could determine the rate of cytokinesis. The novel role of calponin 2 in regulating the rate of cytokinesis may be targeted for therapeutic applications such as in an inhibition of malignant tumor growth.
Collapse
Affiliation(s)
- Airong Qian
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Tzu-Bou Hsieh
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - M Moazzem Hossain
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jim J-C Lin
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
28
|
Qiao Y, Pei Y, Luo M, Rajasekaran M, Hui KM, Chen J. Cytokinesis regulators as potential diagnostic and therapeutic biomarkers for human hepatocellular carcinoma. Exp Biol Med (Maywood) 2021; 246:1343-1354. [PMID: 33899543 DOI: 10.1177/15353702211008380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis, the final step of mitosis, is critical for maintaining the ploidy level of cells. Cytokinesis is a complex, highly regulated process and its failure can lead to genetic instability and apoptosis, contributing to the development of cancer. Human hepatocellular carcinoma is often accompanied by a high frequency of aneuploidy and the DNA ploidy pattern observed in human hepatocellular carcinoma results mostly from impairments in cytokinesis. Many key regulators of cytokinesis are abnormally expressed in human hepatocellular carcinoma, and their expression levels are often correlated with patient prognosis. Moreover, preclinical studies have demonstrated that the inhibition of key cytokinesis regulators can suppress the growth of human hepatocellular carcinoma. Here, we provide an overview of the current understanding of the signaling networks regulating cytokinesis, the key cytokinesis regulators involved in the initiation and development of human hepatocellular carcinoma, and their applications as potential diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Yunxin Pei
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Miao Luo
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Muthukumar Rajasekaran
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| | - Kam M Hui
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianxiang Chen
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| |
Collapse
|
29
|
Diggins NL, Crawford LB, Hancock MH, Mitchell J, Nelson JA. Human Cytomegalovirus miR-US25-1 Targets the GTPase RhoA To Inhibit CD34 + Hematopoietic Progenitor Cell Proliferation To Maintain the Latent Viral Genome. mBio 2021; 12:e00621-21. [PMID: 33824207 PMCID: PMC8092260 DOI: 10.1128/mbio.00621-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) microRNAs play essential roles in latency and reactivation in CD34+ hematopoietic progenitor cells (HPCs) via regulation of viral and cellular gene expression. In the present study, we show that HCMV miR-US25-1 targets RhoA, a small GTPase required for CD34+ HPC self-renewal, proliferation, and hematopoiesis. Expression of miR-US25-1 impairs signaling through the nonmuscle myosin II light chain, which leads to a block in cytokinesis and an inhibition of proliferation. Moreover, infection with an HCMV mutant lacking miR-US25-1 resulted in increased proliferation of CD34+ HPCs and a decrease in the proportion of genome-containing cells at the end of latency culture. These observations provide a mechanism by which HCMV limits proliferation to maintain latent viral genomes in CD34+ HPCs.IMPORTANCE Each herpesvirus family establishes latency in a unique cell type. Since herpesvirus genomes are maintained as episomes, the virus needs to devise mechanisms to retain the latent genome during cell division. Alphaherpesviruses overcome this obstacle by infecting nondividing neurons, while gammaherpesviruses tether their genome to the host chromosome in dividing B cells. The betaherpesvirus human cytomegalovirus (HCMV) establishes latency in CD34+ hematopoietic progenitor cells (HPCs), but the mechanism used to maintain the viral genome is unknown. In this report, we demonstrate that HCMV miR-US25-1 downregulates expression of RhoA, a key cell cycle regulator, which results in inhibition of CD34+ HPC proliferation by blocking mitosis. Mutation of miR-US25-1 during viral infection results in enhanced cellular proliferation and a decreased frequency of genome-containing CD34+ HPCs. These results reveal a novel mechanism through which HCMV is able to regulate cell division to prevent viral genome loss during proliferation.
Collapse
Affiliation(s)
- Nicole L Diggins
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Lindsey B Crawford
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jennifer Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jay A Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| |
Collapse
|
30
|
Cell Cytoskeleton and Stiffness Are Mechanical Indicators of Organotropism in Breast Cancer. BIOLOGY 2021; 10:biology10040259. [PMID: 33805866 PMCID: PMC8064360 DOI: 10.3390/biology10040259] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Cancer cell dissemination exhibits organ preference or organotropism. Although the influence of intrinsic biochemical factors on organotropism has been intensely studied, little is known about the roles of mechanical properties of metastatic cancer cells. Our study suggests that there may be a correlation between cell cytoskeleton/stiffness and organotropism. We find that the cytoskeleton and stiffness of breast cancer cell subpopulations with different metastatic preference match the mechanics of the metastasized organs. The modification of cell cytoskeleton significantly influences the organotropism-related gene expression pattern and mechanoresponses on soft substrates which mimic brain tissue stiffness. These findings highlight the key role of cell cytoskeleton in specific organ metastasis, which may not only reflect but also impact the metastatic organ preference. Abstract Tumor metastasis involves the dissemination of tumor cells from the primary lesion to other organs and the subsequent formation of secondary tumors, which leads to the majority of cancer-related deaths. Clinical findings show that cancer cell dissemination is not random but exhibits organ preference or organotropism. While intrinsic biochemical factors of cancer cells have been extensively studied in organotropism, much less is known about the role of cell cytoskeleton and mechanics. Herein, we demonstrate that cell cytoskeleton and mechanics are correlated with organotropism. The result of cell stiffness measurements shows that breast cancer cells with bone tropism are much stiffer with enhanced F-actin, while tumor cells with brain tropism are softer with lower F-actin than their parental cells. The difference in cellular stiffness matches the difference in the rigidity of their metastasized organs. Further, disrupting the cytoskeleton of breast cancer cells with bone tropism not only elevates the expressions of brain metastasis-related genes but also increases cell spreading and proliferation on soft substrates mimicking the stiffness of brain tissue. Stabilizing the cytoskeleton of cancer cells with brain tropism upregulates bone metastasis-related genes while reduces the mechanoadaptation ability on soft substrates. Taken together, these findings demonstrate that cell cytoskeleton and biophysical properties of breast cancer subpopulations correlate with their metastatic preference in terms of gene expression pattern and mechanoadaptation ability, implying the potential role of cell cytoskeleton in organotropism.
Collapse
|
31
|
Applying Rho Pathway Inhibitors to Investigate Germ Plasm Localization. Methods Mol Biol 2021. [PMID: 33606225 DOI: 10.1007/978-1-0716-0970-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The correct assembly, migration, and segregation of the mRNAs of the germ plasm during the first cell divisions are intimately connected to the cytoskeleton and cytokinesis.RhoA is a key regulator of germ plasm localization during the first two cell division cycles in zebrafish embryos. Pharmacological inhibition of RhoA and his effector ROCK affected the correct assembly of microtubules in the cleavage furrow with the concomitant abnormal localization of germ plasm mRNAs. The inhibition of RhoA/ROCK pathway caused a significant decrease in the germ cell population later in development.
Collapse
|
32
|
Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13040741. [PMID: 33670106 PMCID: PMC7916823 DOI: 10.3390/cancers13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is a deadly disease that may go undiagnosed until it presents at an advanced metastatic stage for which few interventions are available. The development and metastatic spread of CRC is driven by remodeling of the actin cytoskeleton in cancer cells. Myosins represent a large family of actin motor proteins that play key roles in regulating actin cytoskeleton architecture and dynamics. Different myosins can move and cross-link actin filaments, attach them to the membrane organelles and translocate vesicles along the actin filaments. These diverse activities determine the key roles of myosins in regulating cell proliferation, differentiation and motility. Either mutations or the altered expression of different myosins have been well-documented in CRC; however, the roles of these actin motors in colon cancer development remain poorly understood. The present review aims at summarizing the evidence that implicate myosin motors in regulating CRC growth and metastasis and discusses the mechanisms underlying the oncogenic and tumor-suppressing activities of myosins. Abstract Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.
Collapse
|
33
|
Wang X, Zhang D, Zheng C, Wu S, Glotzer M, Tse YC. Cortical recruitment of centralspindlin and RhoA effectors during meiosis I of Caenorhabditis elegans primary spermatocytes. J Cell Sci 2021; 134:jcs.238543. [PMID: 33468621 DOI: 10.1242/jcs.238543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/24/2020] [Indexed: 11/20/2022] Open
Abstract
Haploid male gametes are produced through meiosis during gametogenesis. Whereas the cell biology of mitosis and meiosis is well studied in the nematode Caenorhabditis elegans, comparatively little is known regarding the physical division of primary spermatocytes during meiosis I. Here, we investigated this process using high-resolution time-lapse confocal microscopy and examined the spatiotemporal regulation of contractile ring assembly in C. elegans primary spermatocytes. We found that centralspindlin and RhoA effectors were recruited to the equatorial cortex of dividing primary spermatocytes for contractile ring assembly before segregation of homologous chromosomes. We also observed that perturbations shown to promote centralspindlin oligomerization regulated the cortical recruitment of NMY-2 and impacted the order in which primary spermatocytes along the proximal-distal axis of the gonad enter meiosis I. These results expand our understanding of the cellular division of primary spermatocytes into secondary spermatocytes during meiosis I.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiangchuan Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dandan Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cunni Zheng
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yu Chung Tse
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.,Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
34
|
Wang F, Zhao Q, Liu W, Kong D. CENPE, PRC1, TTK, and PLK4 May Play Crucial Roles in the Osteosarcoma Progression. Technol Cancer Res Treat 2020; 19:1533033820973278. [PMID: 33176597 PMCID: PMC7675850 DOI: 10.1177/1533033820973278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Osteosarcoma (OS) is a cancerous tumor in a bone. We aimed to identify the
critical genes involved in OS progression, and then try to elucidate the
molecular mechanisms of this disease. The microarray data of GSE32395 was used
for the present study. We analyzed differentially expressed genes (DEGs) in OS
cells compared with control group by Student’s t-test. The significant enriched
gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathways
were analyzed for upregulated genes and downregulated genes, respectively. In
addition, a protein-protein interaction (PPI) network was constructed. GO and
KEGG enrichment analyses were conducted for genes in the PPI network. In total,
183 DEGs, including 100 upregulated DEGs and 83 downregulated DEGs were
screened. The upregulated DEGs were significantly enriched in 2 KEGG pathways,
such as “Glycosaminoglycan biosynthesis-chondroitin sulfate” and the
downregulated DEGs were significantly enriched in 12 pathways, including “cell
adhesion molecules,” “pentose phosphate pathway” and “allograft rejection.” GO
enrichment analysis indicated that the upregulated DEGs were significantly
involved in biological process, such as “multicellular organismal metabolic
process” and “limb morphogenesis,” while the downregulated DEGs were
significantly enriched in biological process, such as “Positive regulation of
pathway-restricted SMAD protein phosphorylation.” The PPI network included 84
interactions and 51 nodes. The “glycosaminoglycan biosynthesis-chondroitin
sulfate pathway,” “microtubule motor activityfunction,” and “regulation of
mitosis process” were significantly enriched by genes in PPI network. In
particular, CENPE, PRC1, TTK, and PLK4 had higher degrees in the PPI network.
The interactions between TTK and PLK4 as well as CENPE and PRC1 may involve in
the OS development. These 4 genes might be possible biomarkers for the treatment
and diagnosis of OS.
Collapse
Affiliation(s)
- Fei Wang
- Department of Orthopedic, 74569China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Qiheng Zhao
- Department of Orthopedic, 74569China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wenping Liu
- Department of Internal Neurology, 154454The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Daliang Kong
- Department of Orthopedic, 74569China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
35
|
van Loon AP, Erofeev IS, Maryshev IV, Goryachev AB, Sagasti A. Cortical contraction drives the 3D patterning of epithelial cell surfaces. J Cell Biol 2020; 219:133677. [PMID: 32003768 PMCID: PMC7054995 DOI: 10.1083/jcb.201904144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Cellular protrusions create complex cell surface topographies, but biomechanical mechanisms regulating their formation and arrangement are largely unknown. To study how protrusions form, we focused on the morphogenesis of microridges, elongated actin-based structures that are arranged in maze-like patterns on the apical surfaces of zebrafish skin cells. Microridges form by accreting simple finger-like precursors. Live imaging demonstrated that microridge morphogenesis is linked to apical constriction. A nonmuscle myosin II (NMII) reporter revealed pulsatile contractions of the actomyosin cortex, and inhibiting NMII blocked apical constriction and microridge formation. A biomechanical model suggested that contraction reduces surface tension to permit the fusion of precursors into microridges. Indeed, reducing surface tension with hyperosmolar media promoted microridge formation. In anisotropically stretched cells, microridges formed by precursor fusion along the stretch axis, which computational modeling explained as a consequence of stretch-induced cortical flow. Collectively, our results demonstrate how contraction within the 2D plane of the cortex can pattern 3D cell surfaces.
Collapse
Affiliation(s)
- Aaron P van Loon
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Ivan S Erofeev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Ivan V Maryshev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alvaro Sagasti
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
36
|
Carim SC, Kechad A, Hickson GRX. Animal Cell Cytokinesis: The Rho-Dependent Actomyosin-Anilloseptin Contractile Ring as a Membrane Microdomain Gathering, Compressing, and Sorting Machine. Front Cell Dev Biol 2020; 8:575226. [PMID: 33117802 PMCID: PMC7575755 DOI: 10.3389/fcell.2020.575226] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cytokinesis is the last step of cell division that partitions the cellular organelles and cytoplasm of one cell into two. In animal cells, cytokinesis requires Rho-GTPase-dependent assembly of F-actin and myosin II (actomyosin) to form an equatorial contractile ring (CR) that bisects the cell. Despite 50 years of research, the precise mechanisms of CR assembly, tension generation and closure remain elusive. This hypothesis article considers a holistic view of the CR that, in addition to actomyosin, includes another Rho-dependent cytoskeletal sub-network containing the scaffold protein, Anillin, and septin filaments (collectively termed anillo-septin). We synthesize evidence from our prior work in Drosophila S2 cells that actomyosin and anillo-septin form separable networks that are independently anchored to the plasma membrane. This latter realization leads to a simple conceptual model in which CR assembly and closure depend upon the micro-management of the membrane microdomains to which actomyosin and anillo-septin sub-networks are attached. During CR assembly, actomyosin contractility gathers and compresses its underlying membrane microdomain attachment sites. These microdomains resist this compression, which builds tension. During CR closure, membrane microdomains are transferred from the actomyosin sub-network to the anillo-septin sub-network, with which they flow out of the CR as it advances. This relative outflow of membrane microdomains regulates tension, reduces the circumference of the CR and promotes actomyosin disassembly all at the same time. According to this hypothesis, the metazoan CR can be viewed as a membrane microdomain gathering, compressing and sorting machine that intrinsically buffers its own tension through coordination of actomyosin contractility and anillo-septin-membrane relative outflow, all controlled by Rho. Central to this model is the abandonment of the dogmatic view that the plasma membrane is always readily deformable by the underlying cytoskeleton. Rather, the membrane resists compression to build tension. The notion that the CR might generate tension through resistance to compression of its own membrane microdomain attachment sites, can account for numerous otherwise puzzling observations and warrants further investigation using multiple systems and methods.
Collapse
Affiliation(s)
- Sabrya C. Carim
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Amel Kechad
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Gilles R. X. Hickson
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
37
|
Leite J, Chan FY, Osório DS, Saramago J, Sobral AF, Silva AM, Gassmann R, Carvalho AX. Equatorial Non-muscle Myosin II and Plastin Cooperate to Align and Compact F-actin Bundles in the Cytokinetic Ring. Front Cell Dev Biol 2020; 8:573393. [PMID: 33102479 PMCID: PMC7546906 DOI: 10.3389/fcell.2020.573393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Cytokinesis is the last step of cell division that physically partitions the mother cell into two daughter cells. Cytokinesis requires the assembly and constriction of a contractile ring, a circumferential array of filamentous actin (F-actin), non-muscle myosin II motors (myosin), and actin-binding proteins that forms at the cell equator. Cytokinesis is accompanied by long-range cortical flows from regions of relaxation toward regions of compression. In the C. elegans one-cell embryo, it has been suggested that anterior-directed cortical flows are the main driver of contractile ring assembly. Here, we use embryos co-expressing motor-dead and wild-type myosin to show that cortical flows can be severely reduced without major effects on contractile ring assembly and timely completion of cytokinesis. Fluorescence recovery after photobleaching in the ingressing furrow reveals that myosin recruitment kinetics are also unaffected by the absence of cortical flows. We find that myosin cooperates with the F-actin crosslinker plastin to align and compact F-actin bundles at the cell equator, and that this cross-talk is essential for cytokinesis. Our results thus argue against the idea that cortical flows are a major determinant of contractile ring assembly. Instead, we propose that contractile ring assembly requires localized concerted action of motor-competent myosin and plastin at the cell equator.
Collapse
Affiliation(s)
- Joana Leite
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Fung-Yi Chan
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Daniel S Osório
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Joana Saramago
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana F Sobral
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana M Silva
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana X Carvalho
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
38
|
de Sousa GR, Vieira GM, das Chagas PF, Pezuk JA, Brassesco MS. Should we keep rocking? Portraits from targeting Rho kinases in cancer. Pharmacol Res 2020; 160:105093. [PMID: 32726671 DOI: 10.1016/j.phrs.2020.105093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Cancer targeted therapy, either alone or in combination with conventional chemotherapy, could allow the survival of patients with neoplasms currently considered incurable. In recent years, the dysregulation of the Rho-associated coiled-coil kinases (ROCK1 and ROCK2) has been associated with increased metastasis and poorer patient survival in several tumor types, and due to their essential roles in regulating the cytoskeleton, have gained popularity and progressively been researched as targets for the development of novel anti-cancer drugs. Nevertheless, in a pediatric scenario, the influence of both isoforms on prognosis remains a controversial issue. In this review, we summarize the functions of ROCKs, compile their roles in human cancer and their value as prognostic factors in both, adult and pediatric cancer. Moreover, we provide the up-to-date advances on their pharmacological inhibition in pre-clinical models and clinical trials. Alternatively, we highlight and discuss detrimental effects of ROCK inhibition provoked not only by the action on off-targets, but most importantly, by pro-survival effects on cancer stem cells, dormant cells, and circulating tumor cells, along with cell-context or microenvironment-dependent contradictory responses. Together these drawbacks represent a risk for cancer cell dissemination and metastasis after anti-ROCK intervention, a caveat that should concern scientists and clinicians.
Collapse
Affiliation(s)
| | | | | | | | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
39
|
Mechanisms of thrombin-Induced myometrial contractions: Potential targets of progesterone. PLoS One 2020; 15:e0231944. [PMID: 32365105 PMCID: PMC7197857 DOI: 10.1371/journal.pone.0231944] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
Intrauterine bleeding during pregnancy is a major risk factor for preterm birth. Thrombin, the most abundant coagulation factor in blood, is associated with uterine myometrial contraction. Here, we investigated the molecular mechanism and signaling of thrombin-induced myometrial contraction. First, histologic studies of placental abruption, as a representative intrauterine bleeding, revealed that thrombin was expressed within the infiltrating hemorrhage and that thrombin receptor (protease-activated receptor 1, PAR1) was highly expressed in myometrial cells surrounding the hemorrhage. Treatment of human myometrial cells with thrombin resulted in augmented contraction via PAR1. Thrombin-induced signaling to myosin was then mediated by activation of myosin light chain kinase- and Rho-induced phosphorylation of myosin light chain-2. In addition, thrombin increased prostaglandin-endoperoxidase synthase-2 (PTGS2 or COX2) mRNA and prostaglandin E2 and F2α synthesis in human myometrial cells. Thrombin significantly increased the mRNA level of interleukine-1β, whereas it decreased the expressions of prostaglandin EP3 and F2α receptors. Progesterone partially blocked thrombin-induced myometrial contractions, which was accompanied by suppression of the thrombin-induced increase of PTGS2 and IL1B mRNA expressions as well as suppression of PAR1 expression. Collectively, thrombin induces myometrial contractions by two mechanisms, including direct activation of myosin and indirect increases in prostaglandin synthesis. The results suggest a therapeutic potential of progesterone for preterm labor complicated by intrauterine bleeding.
Collapse
|
40
|
Tissue-Scale Mechanical Coupling Reduces Morphogenetic Noise to Ensure Precision during Epithelial Folding. Dev Cell 2020; 53:212-228.e12. [PMID: 32169160 DOI: 10.1016/j.devcel.2020.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/13/2019] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Morphological constancy is universal in developing systems. It is unclear whether precise morphogenesis stems from faithful mechanical interpretation of gene expression patterns. We investigate the formation of the cephalic furrow, an epithelial fold that is precisely positioned with a linear morphology. Fold initiation is specified by a precise genetic code with single-cell row resolution. This positional code activates and spatially confines lateral myosin contractility to induce folding. However, 20% of initiating cells are mis-specified because of fluctuating myosin intensities at the cellular level. Nevertheless, the furrow remains linearly aligned. We find that lateral myosin is planar polarized, integrating contractile membrane interfaces into supracellular "ribbons." Local reduction of mechanical coupling at the "ribbons" using optogenetics decreases furrow linearity. Furthermore, 3D vertex modeling indicates that polarized, interconnected contractility confers morphological robustness against noise. Thus, tissue-scale mechanical coupling functions as a denoising mechanism to ensure morphogenetic precision despite noisy decoding of positional information.
Collapse
|
41
|
Kłopocka W, Korczyński J, Pomorski P. Cytoskeleton and Nucleotide Signaling in Glioma C6 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:109-128. [PMID: 32034711 DOI: 10.1007/978-3-030-30651-9_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter describes signaling pathways, stimulated by the P2Y2 nucleotide receptor (P2Y2R), that regulate cellular processes dependent on actin cytoskeleton dynamics in glioma C6 cells. P2Y2R coupled with G-proteins, in response to ATP or UTP, regulates the level of iphosphatidylinositol-4,5-bisphosphate (PIP2) which modulates a variety of actin binding proteins and is involved in calcium response and activates Rac1 and RhoA proteins. The RhoA/ROCK signaling pathway plays an important role in contractile force generation needed for the assembly of stress fibers, focal adhesions and for tail retraction during cell migration. Blocking of this pathway by a specific Rho-kinase inhibitor induces changes in F-actin organization and cell shape and decreases the level of phosphorylated myosin II and cofilin. In glioma C6 cells these changes are reversed after UTP stimulation of P2Y2R. Signaling pathways responsible for this compensation are calcium signaling which regulates MLC kinase activation via calmodulin, and the Rac1/PAK/LIMK cascade. Stimulation of the Rac1 mediated pathway via Go proteins needs additional interaction between αvβ5 integrins and P2Y2Rs. Calcium free medium, or growing of the cells in suspension, prevents Gαo activation by P2Y2 receptors. Rac1 activation is necessary for cofilin phosphorylation as well as integrin activation needed for focal complexes formation and stabilization of lamellipodium. Inhibition of positive Rac1 regulation prevents glioma C6 cells from recovery of control cell like morphology.
Collapse
Affiliation(s)
- Wanda Kłopocka
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University, Warsaw, Poland.
| | - Jarosław Korczyński
- M. Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Pomorski
- M. Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
42
|
The cellular and molecular mechanisms that establish the mechanics of Drosophila gastrulation. Curr Top Dev Biol 2020; 136:141-165. [DOI: 10.1016/bs.ctdb.2019.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
43
|
Papini D, Fant X, Ogawa H, Desban N, Samejima K, Feizbakhsh O, Askin B, Ly T, Earnshaw WC, Ruchaud S. Cell cycle-independent furrowing triggered by phosphomimetic mutations of the INCENP STD motif requires Plk1. J Cell Sci 2019; 132:jcs234401. [PMID: 31601613 PMCID: PMC7115952 DOI: 10.1242/jcs.234401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 11/20/2022] Open
Abstract
Timely and precise control of Aurora B kinase, the chromosomal passenger complex (CPC) catalytic subunit, is essential for accurate chromosome segregation and cytokinesis. Post-translational modifications of CPC subunits are directly involved in controlling Aurora B activity. Here, we identified a highly conserved acidic STD-rich motif of INCENP that is phosphorylated during mitosis in vivo and by Plk1 in vitro and is involved in controlling Aurora B activity. By using an INCENP conditional-knockout cell line, we show that impairing the phosphorylation status of this region disrupts chromosome congression and induces cytokinesis failure. In contrast, mimicking constitutive phosphorylation not only rescues cytokinesis but also induces ectopic furrows and contractile ring formation in a Plk1- and ROCK1-dependent manner independent of cell cycle and microtubule status. Our experiments identify the phospho-regulation of the INCENP STD motif as a novel mechanism that is key for chromosome alignment and cytokinesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Diana Papini
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Xavier Fant
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Hiromi Ogawa
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Nathalie Desban
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Omid Feizbakhsh
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Bilge Askin
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Tony Ly
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Sandrine Ruchaud
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| |
Collapse
|
44
|
Abstract
The active form of the small GTPase RhoA is necessary and sufficient for formation of a cytokinetic furrow in animal cells. Despite the conceptual simplicity of the process, the molecular mechanisms that control it are intricate and involve redundancy at multiple levels. Here, we discuss our current knowledge of the mechanisms underlying spatiotemporal regulation of RhoA during cytokinesis by upstream activators. The direct upstream activator, the RhoGEF Ect2, requires activation due to autoinhibition. Ect2 is primarily activated by the centralspindlin complex, which contains numerous domains that regulate its subcellular localization, oligomeric state, and Ect2 activation. We review the functions of these domains and how centralspindlin is regulated to ensure correctly timed, equatorial RhoA activation. Highlighting recent evidence, we propose that although centralspindlin does not always prominently accumulate on the plasma membrane, it is the site where it promotes RhoA activation during cytokinesis.
Collapse
|
45
|
Komatsu S, Wang L, Seow CY, Ikebe M. p116 Rip promotes myosin phosphatase activity in airway smooth muscle cells. J Cell Physiol 2019; 235:114-127. [PMID: 31347175 DOI: 10.1002/jcp.28949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022]
Abstract
Myosin phosphatase-Rho interacting protein (p116Rip ) was originally found as a RhoA-binding protein. Subsequent studies by us and others revealed that p116Rip facilitates myosin light chain phosphatase (MLCP) activity through direct and indirect manners. However, it is unclear how p116Rip regulates myosin phosphatase activity in cells. To elucidate the role of p116Rip in cellular contractile processes, we suppressed the expression of p116Rip by RNA interference in human airway smooth muscle cells (HASMCs). We found that knockdown of p116Rip in HASMCs led to increased di-phosphorylated MLC (pMLC), that is phosphorylation at both Ser19 and Thr18. This was because of a change in the interaction between MLCP and myosin, but not an alteration of RhoA/ROCK signaling. Attenuation of Zipper-interacting protein kinase (ZIPK) abolished the increase in di-pMLC, suggesting that ZIPK is involved in this process. Moreover, suppression of p116Rip expression in HASMCs substantially increased the histamine-induced collagen gel contraction. We also found that expression of the p116Rip was decreased in the airway smooth muscle tissue from asthmatic patients compared with that from non-asthmatic patients, suggesting a potential role of p116Rip expression in asthma pathogenesis.
Collapse
Affiliation(s)
- Satoshi Komatsu
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Lu Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
46
|
The Cytoskeleton of the Retinal Pigment Epithelium: from Normal Aging to Age-Related Macular Degeneration. Int J Mol Sci 2019; 20:ijms20143578. [PMID: 31336621 PMCID: PMC6678077 DOI: 10.3390/ijms20143578] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a unique epithelium, with major roles which are essential in the visual cycle and homeostasis of the outer retina. The RPE is a monolayer of polygonal and pigmented cells strategically placed between the neuroretina and Bruch membrane, adjacent to the fenestrated capillaries of the choriocapillaris. It shows strong apical (towards photoreceptors) to basal/basolateral (towards Bruch membrane) polarization. Multiple functions are bound to a complex structure of highly organized and polarized intracellular components: the cytoskeleton. A strong connection between the intracellular cytoskeleton and extracellular matrix is indispensable to maintaining the function of the RPE and thus, the photoreceptors. Impairments of these intracellular structures and the regular architecture they maintain often result in a disrupted cytoskeleton, which can be found in many retinal diseases, including age-related macular degeneration (AMD). This review article will give an overview of current knowledge on the molecules and proteins involved in cytoskeleton formation in cells, including RPE and how the cytoskeleton is affected under stress conditions—especially in AMD.
Collapse
|
47
|
Abstract
Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
48
|
Abstract
Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
49
|
Network Contractility During Cytokinesis-from Molecular to Global Views. Biomolecules 2019; 9:biom9050194. [PMID: 31109067 PMCID: PMC6572417 DOI: 10.3390/biom9050194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis is the last stage of cell division, which partitions the mother cell into two daughter cells. It requires the assembly and constriction of a contractile ring that consists of a filamentous contractile network of actin and myosin. Network contractility depends on network architecture, level of connectivity and myosin motor activity, but how exactly is the contractile ring network organized or interconnected and how much it depends on motor activity remains unclear. Moreover, the contractile ring is not an isolated entity; rather, it is integrated into the surrounding cortex. Therefore, the mechanical properties of the cell cortex and cortical behaviors are expected to impact contractile ring functioning. Due to the complexity of the process, experimental approaches have been coupled to theoretical modeling in order to advance its global understanding. While earlier coarse-grained descriptions attempted to provide an integrated view of the process, recent models have mostly focused on understanding the behavior of an isolated contractile ring. Here we provide an overview of the organization and dynamics of the actomyosin network during cytokinesis and discuss existing theoretical models in light of cortical behaviors and experimental evidence from several systems. Our view on what is missing in current models and should be tested in the future is provided.
Collapse
|
50
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|