1
|
Morgan DC, McDougall L, Knuhtsen A, Buetow L, Steven CF, Shepperson OA, Huang DT, Hulme AN, Jamieson AG. Raman active diyne-girder conformationally constrained p53 stapled peptides bind to MDM2 for visualisation without fluorophores. RSC Chem Biol 2025:d4cb00288a. [PMID: 39830683 PMCID: PMC11741006 DOI: 10.1039/d4cb00288a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Peptide stapling is an effective strategy to stabilise α-helical peptides, enhancing their bioactive conformation and improving physiochemical properties. In this study, we apply our novel diyne-girder stapling approach to the MDM2/MDMX α-helical binding region of the p53 transactivation domain. By incorporation of an unnatural amino acid to create an optimal i, i + 7 bridge length, we developed a highly α-helical stapled peptide, 4, confirmed via circular dichroism. This diyne-girder-stapled peptide demonstrated enhanced helicity and nanomolar binding affinity for MDM2, as assessed by fluorescence polarisation. Crucially, peptide 4 exhibited strong selectivity for MDM2, with approximately 100-fold reduced affinity for MDMX. Molecular modeling and docking studies suggested that this selectivity arose from diminished hydrophobic interactions at the MDMX binding site, driven by the diyne-girder's constrained geometry. The use of the diyne-girder, a unique feature amongst stapled peptide analogues, for cellular visualisation using Raman spectroscopy in the "cell-silent" region was explored. This capability potentially offers a novel method for tracking stapled peptides in biological systems without the need for large fluorophores. Overall, peptide 4 represents a promising tool for probing MDM2 activity and a valuable addition to the arsenal of peptide-based therapeutic strategies.
Collapse
Affiliation(s)
- Danielle C Morgan
- School of Chemistry, Advanced Research Centre, University of Glasgow 11 Chapel Lane Glasgow G11 6EW UK
| | - Laura McDougall
- School of Chemistry, Advanced Research Centre, University of Glasgow 11 Chapel Lane Glasgow G11 6EW UK
| | - Astrid Knuhtsen
- School of Chemistry, Advanced Research Centre, University of Glasgow 11 Chapel Lane Glasgow G11 6EW UK
| | - Lori Buetow
- Cancer Research UK Scotland Institute, Garscube Estate Switchback Road Glasgow G61 1BD UK
| | - Craig F Steven
- EaStCHEM School of Chemistry, The University of Edinburgh West Mains Road Edinburgh EH9 3JJ UK
| | - Oscar A Shepperson
- School of Chemistry, Advanced Research Centre, University of Glasgow 11 Chapel Lane Glasgow G11 6EW UK
| | - Danny T Huang
- Cancer Research UK Scotland Institute, Garscube Estate Switchback Road Glasgow G61 1BD UK
- School of Cancer Sciences, University of Glasgow Glasgow G61 1QH UK
| | - Alison N Hulme
- EaStCHEM School of Chemistry, The University of Edinburgh West Mains Road Edinburgh EH9 3JJ UK
| | - Andrew G Jamieson
- School of Chemistry, Advanced Research Centre, University of Glasgow 11 Chapel Lane Glasgow G11 6EW UK
| |
Collapse
|
2
|
Sosnowska M, Pitula E, Janik M, Bruździak P, Śmietana M, Olszewski M, Nidzworski D, Gromadzka B. Peptide-Based Rapid and Selective Detection of Mercury in Aqueous Samples with Micro-Volume Glass Capillary Fluorometer. BIOSENSORS 2024; 14:530. [PMID: 39589989 PMCID: PMC11591704 DOI: 10.3390/bios14110530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Mercury, a toxic heavy metal produced through both natural and anthropogenic processes, is found in all of Earth's major systems. Mercury's bioaccumulation characteristics in the human body have a significant impact on the liver, kidneys, brain, and muscles. In order to detect Hg2+ ions, a highly sensitive and specific fluorescent biosensor has been developed using a novel, modified seven amino acid peptide, FY7. The tyrosine ring in the FY7 peptide sequence forms a 2:1 complex with Hg2+ ions that are present in the water-based sample. As a result, the peptide's fluorescence emission decreases with higher concentrations of Hg2+. The FY7 peptide's performance was tested in the presence of Hg2+ ions and other metal ions, revealing its sensitivity and stability despite high concentrations. Conformational changes to the FY7 structure were confirmed by FTIR studies. Simultaneously, we designed a miniaturized setup to support an in-house-developed micro-volume capillary container for volume fluorometry measurements. We compared and verified the results from the micro-volume system with those from the commercial setup. The micro-volume capillary system accommodated only 2.9 µL of sample volume, allowing for rapid, sensitive, and selective detection of toxic mercury (II) ions as low as 0.02 µM.
Collapse
Affiliation(s)
- Marta Sosnowska
- Department of Analysis and Chemical Synthesis, Institute of Biotechnology and Molecular Medicine, 80-180 Gdansk, Poland;
| | - Emil Pitula
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (E.P.); (M.J.); (M.Ś.)
| | - Monika Janik
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (E.P.); (M.J.); (M.Ś.)
| | - Piotr Bruździak
- Department of Physical Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland;
| | - Mateusz Śmietana
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (E.P.); (M.J.); (M.Ś.)
- Department of Glass, Institute of Microelectronics and Photonics, Łukasiewicz Research Network, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland;
| | - Dawid Nidzworski
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, 80-180 Gdansk, Poland;
| | - Beata Gromadzka
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, 80-180 Gdansk, Poland;
- NanoExpo®, 80-822 Gdansk, Poland
| |
Collapse
|
3
|
Vosbein P, Paredes Vergara P, Huang DT, Thomson AR. AlphaFold Ensemble Competition Screens Enable Peptide Binder Design with Single-Residue Sensitivity. ACS Chem Biol 2024; 19:2198-2205. [PMID: 39420763 PMCID: PMC11494501 DOI: 10.1021/acschembio.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
Understanding the relationship between the sequence and binding energy in peptide-protein interactions is an important challenge in chemical biology. A prominent example is ubiquitin interacting motifs (UIMs), which are short peptide sequences that recognize ubiquitin and which bind individual ubiquitin proteins with a weak affinity. Though the sequence characteristics of UIMs are well understood, the relationship between the sequence and ubiquitin binding affinity has not yet been fully characterized. Herein, we study the first UIM of Vps27 as a model system. Using an experimental alanine scan, we were able to rank the relative contribution of each hydrophobic residue of this UIM to ubiquitin binding. These results were correlated with AlphaFold displacement studies, in which AlphaFold is used to predict the stronger binder by presenting a target protein with two potential peptide ligands. We demonstrate that by generating large numbers of models and using the consensus bound-state AlphaFold competition experiments can be sensitive to single-residue variations. We furthermore show that to fully recapitulate the binding trends observed for ubiquitin, it is necessary to screen AlphaFold models that incorporate a "decoy" binding site to prevent the displaced peptide from interfering with the actual binding site. Overall, it is shown that AlphaFold can be used as a powerful tool for peptide binder design and that when large ensembles of models are used, AlphaFold predictions can be sensitive to very small energetic changes arising from single-residue alterations to a binder.
Collapse
Affiliation(s)
- Pernille Vosbein
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Paula Paredes Vergara
- Cancer
Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, U.K.
| | - Danny T. Huang
- Cancer
Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, U.K.
- School
of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, U.K.
| | | |
Collapse
|
4
|
Wallace HM, Yang H, Tan S, Pan HS, Yang R, Xu J, Jo H, Condello C, Polizzi NF, DeGrado WF. De novo design of peptides that bind specific conformers of α-synuclein. Chem Sci 2024; 15:8414-8421. [PMID: 38846390 PMCID: PMC11151861 DOI: 10.1039/d3sc06245g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/14/2024] [Indexed: 06/09/2024] Open
Abstract
Insoluble amyloids rich in cross-β fibrils are observed in a number of neurodegenerative diseases. Depending on the clinicopathology, the amyloids can adopt distinct supramolecular assemblies, termed conformational strains. However, rapid methods to study amyloids in a conformationally specific manner are lacking. We introduce a novel computational method for de novo design of peptides that tile the surface of α-synuclein fibrils in a conformationally specific manner. Our method begins by identifying surfaces that are unique to the conformational strain of interest, which becomes a "target backbone" for the design of a peptide binder. Next, we interrogate structures in the PDB with high geometric complementarity to the target. Then, we identify secondary structural motifs that interact with this target backbone in a favorable, highly occurring geometry. This method produces monomeric helical motifs with a favorable geometry for interaction with the strands of the underlying amyloid. Each motif is then symmetrically replicated to form a monolayer that tiles the amyloid surface. Finally, amino acid sequences of the peptide binders are computed to provide a sequence with high geometric and physicochemical complementarity to the target amyloid. This method was applied to a conformational strain of α-synuclein fibrils, resulting in a peptide with high specificity for the target relative to other amyloids formed by α-synuclein, tau, or Aβ40. This designed peptide also markedly slowed the formation of α-synuclein amyloids. Overall, this method offers a new tool for examining conformational strains of amyloid proteins.
Collapse
Affiliation(s)
- Hailey M Wallace
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
| | - Hyunjun Yang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
- Institute for Neurodegenerative Diseases, University of California San Francisco CA 94143 USA
| | - Sophia Tan
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
| | - Henry S Pan
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
| | - Rose Yang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
| | - Junyi Xu
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
| | - Carlo Condello
- Institute for Neurodegenerative Diseases, University of California San Francisco CA 94143 USA
- Department of Neurology, University of California San Francisco CA 94143 USA
| | - Nicholas F Polizzi
- Dana Farber Cancer Institute, Harvard Medical School Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
- Institute for Neurodegenerative Diseases, University of California San Francisco CA 94143 USA
| |
Collapse
|
5
|
Daniel G, Hilan G, Ploeg L, Sabatino D. Self-assembly of amphiphilic helical-coiled peptide nanofibers and inhibition of fibril formation with curcumin. Bioorg Med Chem Lett 2024; 102:129682. [PMID: 38432287 DOI: 10.1016/j.bmcl.2024.129682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Amphiphilic peptide sequences are conducive to secondary structures that self-assemble into higher-ordered peptide nanostructures. A select set of amphiphilic polycationic peptides displayed stable helical-coiled structures that self-assembled into peptide nanofibers. The progression of peptide fibril formation revealed short protofibrils that extended into thin filaments and into an entangled network of nanofibers over an extended (5 days) incubation period. Ligand binding with 8-anilinonaphthalene-1-sulfonic acid (ANS) and Congo Red (CR) confirmed the amphiphilic helical-coiled peptide structure assembly into nanofibers, whereas curcumin treatment led to inhibition of fibril formation. Considering the vast repertoire of fibrous biomaterials and peptide or protein (mis)folding contingent on fibril formation, this work relates the molecular interplay in between sequence composition, structural folding and the ligand binding events impacting peptide self-assembly into nanofibers.
Collapse
Affiliation(s)
- Grace Daniel
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada; Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - George Hilan
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Lisa Ploeg
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sabatino
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada; Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
6
|
Grohn K, Parella K, Lumen E, Colegrove H, Bjork V, Franceski A, Wolfe A, Moody K. Comparative transport analysis of cell penetrating peptides and Lysosomal sequences for selective tropism towards RPE cells. RESEARCH SQUARE 2023:rs.3.rs-3651531. [PMID: 38234750 PMCID: PMC10793506 DOI: 10.21203/rs.3.rs-3651531/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Cell penetrating peptides are typically nonspecific, targeting multiple cell types without discrimination. However, subsets of Cell penetrating peptides (CPP) have been found, which show a 'homing' capacity or increased likelihood of internalizing into specific cell types and subcellular locations. Therapeutics intended to be delivered to tissues with a high degree of cellular diversity, such as the intraocular space, would benefit from delivery using CPP that can discriminate across multiple cell types. Lysosomal storage diseases in the retinal pigment epithelium (RPE) can impair cargo clearance, leading to RPE atrophy and blindness. Characterizing CPP for their capacity to effectively deliver cargo to the lysosomes of different cell types may expand treatment options for lysosomal storage disorders. We developed a combinatorial library of CPP and lysosomal sorting signals, applied to ARPE19 and B3 corneal lens cells, for the purpose of determining cell line specificity and internal targeting. Several candidate classes of CPP were found to have as much as 4 times the internalization efficiency in ARPE19 compared to B3. Follow-up cargo transport studies were also performed, which demonstrate effective internalization and lysosomal targeting in ARPE19 cells.
Collapse
Affiliation(s)
- Kris Grohn
- SUNY-ESF: SUNY College of Environmental Science and Forestry
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wallace HM, Yang H, Tan S, Pan HS, Yang R, Xu J, Jo H, Condello C, Polizzi NF, DeGrado WF. De novo Design of Peptides that Bind Specific Conformers of α-Synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567090. [PMID: 38014268 PMCID: PMC10680688 DOI: 10.1101/2023.11.14.567090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Insoluble amyloids rich in cross-β fibrils are observed in a number of neurodegenerative diseases. Depending on the clinicopathology, the amyloids can adopt distinct supramolecular assemblies, termed conformational strains. However, rapid methods to study amyloid in a conformationally specific manner are lacking. We introduce a novel computational method for de novo design of peptides that tile the surface of α-synuclein fibrils in a conformationally specific manner. Our method begins by identifying surfaces that are unique to the conformational strain of interest, which becomes a "target backbone" for the design of a peptide binder. Next, we interrogate structures in the PDB database with high geometric complementarity to the target. Then, we identify secondary structural motifs that interact with this target backbone in a favorable, highly occurring geometry. This method produces monomeric helical motifs with a favorable geometry for interaction with the strands of the underlying amyloid. Each motif is then symmetrically replicated to form a monolayer that tiles the amyloid surface. Finally, amino acid sequences of the peptide binders are computed to provide a sequence with high geometric and physicochemical complementarity to the target amyloid. This method was applied to a conformational strain of α-synuclein fibrils, resulting in a peptide with high specificity for the target relative to other amyloids formed by α-synuclein, tau, or Aβ40. This designed peptide also markedly slowed the formation of α-synuclein amyloids. Overall, this method offers a new tool for examining conformational strains of amyloid proteins.
Collapse
|
8
|
Franco P, Camerino I, Merlino F, D’Angelo M, Cimmino A, Carotenuto A, Colucci-D’Amato L, Stoppelli MP. αV-Integrin-Dependent Inhibition of Glioblastoma Cell Migration, Invasion and Vasculogenic Mimicry by the uPAcyclin Decapeptide. Cancers (Basel) 2023; 15:4775. [PMID: 37835469 PMCID: PMC10571957 DOI: 10.3390/cancers15194775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Among the deadliest human cancers is glioblastoma (GBM) for which new treatment approaches are urgently needed. Here, the effects of the cyclic decapeptide, uPAcyclin, are investigated using the U87-MG, U251-MG, and U138-MG human GBM and C6 rat cell models. All GBM cells express the αV-integrin subunit, the target of uPAcyclin, and bind specifically to nanomolar concentrations of the decapeptide. Although peptide exposure affects neither viability nor cell proliferation rate, nanomolar concentrations of uPAcyclin markedly inhibit the directional migration and matrix invasion of all GBM cells, in a concentration- and αV-dependent manner. Moreover, wound healing rate closure of U87-MG and C6 rat glioma cells is reduced by 50% and time-lapse videomicroscopy studies show that the formation of vascular-like structures by U87-MG in three-dimensional matrix cultures is markedly inhibited by uPAcyclin. A strong reduction in the branching point numbers of the U87-MG, C6, and U251-MG cell lines undergoing vasculogenic mimicry, in the presence of nanomolar peptide concentrations, was observed. Lysates from matrix-recovered uPAcyclin-exposed cells exhibit a reduced expression of VE-cadherin, a prominent factor in the acquisition of vascular-like structures. In conclusion, these results indicate that uPAcyclin is a promising candidate to counteract the formation of new vessels in novel targeted anti-GBM therapies.
Collapse
Affiliation(s)
- Paola Franco
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
| | - Iolanda Camerino
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples ‘Federico II’, 80131 Naples, Italy; (F.M.); (A.C.)
| | - Margherita D’Angelo
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 81100 Naples, Italy
| | - Amelia Cimmino
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples ‘Federico II’, 80131 Naples, Italy; (F.M.); (A.C.)
| | - Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- InterUniversity Center for Research in Neurosciences (CIRN), 80131 Naples, Italy
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
9
|
Investigation of the Fuzzy Complex between RSV Nucleoprotein and Phosphoprotein to Optimize an Inhibition Assay by Fluorescence Polarization. Int J Mol Sci 2022; 24:ijms24010569. [PMID: 36614009 PMCID: PMC9820559 DOI: 10.3390/ijms24010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
The interaction between Respiratory Syncytial Virus phosphoprotein P and nucleoprotein N is essential for the formation of the holo RSV polymerase that carries out replication. In vitro screening of antivirals targeting the N-P protein interaction requires a molecular interaction model, ideally consisting of a complex between N protein and a short peptide corresponding to the C-terminal tail of the P protein. However, the flexibility of C-terminal P peptides as well as their phosphorylation status play a role in binding and may bias the outcome of an inhibition assay. We therefore investigated binding affinities and dynamics of this interaction by testing two N protein constructs and P peptides of different lengths and composition, using nuclear magnetic resonance and fluorescence polarization (FP). We show that, although the last C-terminal Phe241 residue is the main determinant for anchoring P to N, only longer peptides afford sub-micromolar affinity, despite increasing mobility towards the N-terminus. We investigated competitive binding by peptides and small compounds, including molecules used as fluorescent labels in FP. Based on these results, we draw optimized parameters for a robust RSV N-P inhibition assay and validated this assay with the M76 molecule, which displays antiviral properties, for further screening of chemical libraries.
Collapse
|
10
|
Okano S, Kawaguchi Y, Kawano K, Hirose H, Imanishi M, Futaki S. Split luciferase-based estimation of cytosolic cargo concentration delivered intracellularly via attenuated cationic amphiphilic lytic peptides. Bioorg Med Chem Lett 2022; 72:128875. [DOI: 10.1016/j.bmcl.2022.128875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
|
11
|
Efficient transdermal delivery of functional protein cargoes by a hydrophobic peptide MTD 1067. Sci Rep 2022; 12:10853. [PMID: 35760980 PMCID: PMC9237094 DOI: 10.1038/s41598-022-14463-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
The skin has a protective barrier against the external environment, making the transdermal delivery of active macromolecules very difficult. Cell-penetrating peptides (CPPs) have been accepted as useful delivery tools owing to their high transduction efficiency and low cytotoxicity. In this study, we evaluated the hydrophobic peptide, macromolecule transduction domain 1067 (MTD 1067) as a CPP for the transdermal delivery of protein cargoes of various sizes, including growth hormone-releasing hexapeptide-6 (GHRP-6), a truncated form of insulin-like growth factor-I (des(1-3)IGF-I), and platelet-derived growth factor BB (PDGF-BB). The MTD 1067-conjugated GHRP-6 (MTD-GHRP-6) was chemically synthesized, whereas the MTD 1067-conjugated des(1-3)IGF-I and PDGF-BB proteins (MTD-des(1-3)IGF-I and MTD-PDGF-BB) were generated as recombinant proteins. All the MTD 1067-conjugated cargoes exhibited biological activities identical or improved when compared to those of the original cargoes. The analysis of confocal microscopy images showed that MTD-GHRP-6, MTD-des(1-3)IGF-I, and MTD-PDGF-BB were detected at 4.4-, 18.8-, and 32.9-times higher levels in the dermis, respectively, compared to the control group without MTD. Furthermore, the MTD 1067-conjugated cargoes did not show cytotoxicity. Altogether, our data demonstrate the potential of MTD 1067 conjugation in developing functional macromolecules for cosmetics and drugs with enhanced transdermal permeability.
Collapse
|
12
|
Li J, Zhang Y, Zhou X, Wang S, Hao R, Han J, Li M, Zhao Y, Chen C, Xu H. Enzymatically functionalized RGD-gelatin scaffolds that recruit host mesenchymal stem cells in vivo and promote bone regeneration. J Colloid Interface Sci 2022; 612:377-391. [PMID: 34998197 DOI: 10.1016/j.jcis.2021.12.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023]
Abstract
Critical-size bone defects are imposing a substantial biomedical burden. Despite being long regarded as a potential approach to mitigate this burden or an alternative to bone grafts, bone tissue engineering (BTE) has virtually not proceeded to widespread clinical practices. In the BTE field, it is highly required to find a facile method to prepare active scaffolds with tailored biological functions. Here, we immobilized cell adhesive RGD motifs onto gelatin sponge (GS) scaffolds through enzymatic linking. On the basis of the resulting RGD-functionalized GS (RGD/GS) scaffolds, we developed a new and convenient strategy for bone defect repair, in which the scaffolds were first used to recruit mesenchymal stem cells (MSCs) from skeletal muscle, immediately followed by their engraftment into bone defect. We demonstrated significantly enhanced host cells homing into RGD/GS scaffolds as a result of specific RGD-integrin interactions, and the recruited host cells showed a strong osteogenic differentiation potential. After ectopic implantation of cell-laden RGD/GS scaffolds into critical-size mouse bone defects, marked bone tissue regeneration occurred. The presented strategy not only provides an agile route for the preparation of bioactive scaffolds and the construction of osteoinductive bone-graft substitutes, but also avoids or minimizes the complicated and laborious cell isolation, in vitro expansion and cell seeding procedures used in the conventional BTE.
Collapse
Affiliation(s)
- Junling Li
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Ji'nan 250117, China
| | - Yan Zhang
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xing Zhou
- Qingdao West Coast New Area Marine Development Bureau, 59 Shuilingshan Road, Qingdao 266400, China
| | - Shili Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Ji'nan 250117, China
| | - Ruirui Hao
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Ji'nan 250117, China
| | - Mian Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Ji'nan 250117, China
| | - Yurong Zhao
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cuixia Chen
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Hai Xu
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| |
Collapse
|
13
|
Fluorescein isothiocyanate stability in different solvents. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Chauhan PS, Kumarasamy M, Carcaboso AM, Sosnik A, Danino D. Multifunctional silica-coated mixed polymeric micelles for integrin-targeted therapy of pediatric patient-derived glioblastoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112261. [PMID: 34474820 DOI: 10.1016/j.msec.2021.112261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023]
Abstract
Glioblastoma multiforme (GBM) remains a major cause of mortality because treatments are precluded by to the limited transport and penetration of chemotherapeutics across the blood-brain barrier. Pitavastatin (PTV) is a hydrophobic Food and Drug Administration (FDA)-approved anticholesterolemic agent with reported anti-GBM activity. In the present study, we encapsulate PTV in silica-coated polymeric micelles (SiO2 PMs) surface-modified with the cyclic peptide Arg-Gly-Asp-Phe-Val (cRGDfV) that actively targets the αvβ3 integrin overexpressed in the BBB endothelium and GBM. A central composite design is utilized to optimize the preparation process and improve the drug encapsulation ratio from 131 to 780 μg/mL. The silica shell provides full colloidal stability upon extreme dilution and enables a better control of the release kinetics in vitro with 28% of the cargo released after 12 h. Furthermore, SiO2 PMs show excellent compatibility and are internalized by human BBB endothelial cells, astrocytes and pericytes, as shown by confocal laser scanning fluorescence microscopy and flow cytometry. Finally, the anticancer efficacy is assessed in a pediatric patient-derived glioma cell line expressing high levels of the integrin subunits αv, β3 and β5. This PTV-loaded nanocarrier triggers apoptosis by reducing the mRNA level of anti-apoptotic genes NF-kβ, IL-6, BIRC1 and BIRC5 by 89%, 33%, 81% and 63%, respectively, and the cell viability by >60%. Overall, our results suggest the potential of these hybrid nanocarriers for the targeted therapy of GBM and other tumors overexpressing integrin receptors.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel
| | - Murali Kumarasamy
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Angel M Carcaboso
- Institut de Recerca Sant Joan de Deu, Department of Pediatric Oncology, Hospital Sant Joan de Deu, 08950 Barcelona, Spain.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Dganit Danino
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China.
| |
Collapse
|
15
|
ERK and mTORC1 Inhibitors Enhance the Anti-Cancer Capacity of the Octpep-1 Venom-Derived Peptide in Melanoma BRAF(V600E) Mutations. Toxins (Basel) 2021; 13:toxins13020146. [PMID: 33672955 PMCID: PMC7918145 DOI: 10.3390/toxins13020146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the main cause of skin cancer deaths, with special emphasis in those cases carrying BRAF mutations that trigger the mitogen-activated protein kinases (MAPK) signaling and unrestrained cell proliferation in the absence of mitogens. Current therapies targeting MAPK are hindered by drug resistance and relapse that rely on metabolic rewiring and Akt activation. To identify new drug candidates against melanoma, we investigated the molecular mechanism of action of the Octopus Kaurna-derived peptide, Octpep-1, in human BRAF(V600E) melanoma cells using proteomics and RNAseq coupled with metabolic analysis. Fluorescence microscopy verified that Octpep-1 tagged with fluorescein enters MM96L and NFF cells and distributes preferentially in the perinuclear area of MM96L cells. Proteomics and RNAseq revealed that Octpep-1 targets PI3K/AKT/mTOR signaling in MM96L cells. In addition, Octpep-1 combined with rapamycin (mTORC1 inhibitor) or LY3214996 (ERK1/2 inhibitor) augmented the cytotoxicity against BRAF(V600E) melanoma cells in comparison with the inhibitors or Octpep-1 alone. Octpep-1-treated MM96L cells displayed reduced glycolysis and mitochondrial respiration when combined with LY3214996. Altogether these data support Octpep-1 as an optimal candidate in combination therapies for melanoma BRAF(V600E) mutations.
Collapse
|
16
|
Nasufović V, Then P, Dröge F, Duong M, Kaether C, Dietzek B, Heintzmann R, Arndt HD. Silicon-rhodamine isothiocyanate for fluorescent labelling. Org Biomol Chem 2021; 19:574-578. [PMID: 33406188 DOI: 10.1039/d0ob02016h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis for silicon-rhodamines was developed, enabling the preparation and evaluation of silicon-rhodamine isothiocyanate (SITC) as a novel tool for facile fluorescent labeling. Ease of use in conjugation to amino groups, high stability and excellent photophysical properties are demonstrated. SITC-actin was found to be neutral to F-actin polymerization induction and well suited for high resolution fluorescence microscopy.
Collapse
Affiliation(s)
- Veselin Nasufović
- Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry, Humboldtstr. 10, 07743 Jena, Germany.
| | - Patrick Then
- Leibniz-Institut of Photonic Technologies (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Fabian Dröge
- Friedrich-Schiller-University, Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany
| | - Michael Duong
- Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry, Humboldtstr. 10, 07743 Jena, Germany.
| | - Christoph Kaether
- Leibniz-Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Benjamin Dietzek
- Leibniz-Institut of Photonic Technologies (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany and Friedrich-Schiller-University, Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany
| | - Rainer Heintzmann
- Leibniz-Institut of Photonic Technologies (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany and Friedrich-Schiller-University, Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry, Humboldtstr. 10, 07743 Jena, Germany.
| |
Collapse
|
17
|
Sabatino D. Medicinal Chemistry and Methodological Advances in the Development of Peptide-Based Vaccines. J Med Chem 2020; 63:14184-14196. [PMID: 32990437 DOI: 10.1021/acs.jmedchem.0c00848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evolution of rapidly proliferating infectious and tumorigenic diseases has resulted in an urgent need to develop new and improved intervention strategies. Among the many therapeutic strategies at our disposal, our immune system remains the gold-standard in disease prevention, diagnosis, and treatment. Vaccines have played an important role in eradicating or mitigating the spread of infectious diseases by bolstering our immunity. Despite their utility, the design and development of new, more effective vaccines remains a public health necessity. Peptide-based vaccines have been developed for a wide range of established and emerging infectious and tumorigenic diseases. New innovations in epitope design and selection, synthesis, and formulation as well as screening techniques against immunological targets have led to more effective peptide vaccines. Current and future work is geared toward the translation of peptide vaccines from preclinical to clinical utility.
Collapse
Affiliation(s)
- David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| |
Collapse
|
18
|
Breast Tumor Cell Invasion and Pro-Invasive Activity of Cancer-Associated Fibroblasts Co-Targeted by Novel Urokinase-Derived Decapeptides. Cancers (Basel) 2020; 12:cancers12092404. [PMID: 32847144 PMCID: PMC7564779 DOI: 10.3390/cancers12092404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 01/11/2023] Open
Abstract
Among peritumoral cells, cancer-associated fibroblasts (CAFs) are major facilitators of tumor progression. This study describes the effects of two urokinase-derived, novel decapeptides, denoted as Pep 1 and its cyclic derivative Pep 2. In a mouse model of tumor dissemination, using HT1080 fibrosarcoma cells, Pep 2 reduced the number and size of lung metastases. Specific binding of fluoresceinated Pep 2 to HT1080 and telomerase immortalised fibroblasts (TIF) cell surfaces was enhanced by αv overexpression or abolished by excess vitronectin, anti-αv antibodies or silencing of ITGAV αv gene, identifying αv-integrin as the Pep 2 molecular target. In 3D-organotypic assays, peptide-exposed TIFs and primary CAFs from breast carcinoma patients both exhibited a markedly reduced pro-invasive ability of either HT1080 fibrosarcoma or MDA-MB-231 mammary carcinoma cells, respectively. Furthermore, TIFs, either exposed to Pep 2, or silenced for αv integrin, were impaired in their ability to chemoattract cancer cells and to contract collagen matrices, exhibiting reduced α-smooth muscle actin (α-SMA) levels. Finally, peptide exposure of αv-expressing primary CAFs led to the downregulation of α-SMA protein and to a dramatic reduction of their pro-invasive capability. In conclusion, the ability of the novel decapeptides to interfere with tumor cell invasion directly and through the down-modulation of CAF phenotype suggests their use as lead compounds for co-targeting anti-cancer strategies.
Collapse
|
19
|
Hasegawa K, Maedomari R, Sato Y, Gotoh K, Kudoh S, Kojima A, Okada S, Ito T. Kiss1R Identification and Biodistribution Analysis Employing a Western Ligand Blot and Ligand-Derivative Stain with a FITC-Kisspeptin Derivative. ChemMedChem 2020; 15:1699-1705. [PMID: 32706162 DOI: 10.1002/cmdc.202000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Indexed: 11/09/2022]
Abstract
It is not always easy to establish specific antibodies against receptors. Most receptors are hydrophobic and have complicated three-dimensional structures, making them difficult to use as immunogens. Thus, we developed receptor detection methods with a fluorescein-labeled ligand as an antibody alternative, which we referred to as a western ligand blot (WLB) and ligand derivative stain (LDS). Kisspeptin receptor (Kiss1R) was detected by its ligand. Kiss1R expression was confirmed in eight human cell lines by the WLB and in four pathological tissues by the LDS. Next, Kiss1R was stained by LDS in organs, revealing Kiss1R expression by [67 Ga]Ga-DOTA-kisspeptin 10 accumulation. As a result, Kiss1R-expressing cells in each organ could be stained with fluorescein-labeled kisspeptin 14 instead of an antibody and observed by light microscopy. The combination of the WLB and LDS allows identification of receptors in tissues, which can be readily applied to target receptor detection by a synthetic ligand derivative.
Collapse
Affiliation(s)
- Koki Hasegawa
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Misasagishichyonochyo 1 Yamashina-ku, Kyoto, 607-8412, Japan
| | - Rika Maedomari
- Department of Pathology and Experimental Medicine Graduate School of Medical Sciences, Kumamoto University, Honjyo 1-1-1, Chyuo-ku, Kumamoto, 860-855, Japan
| | - Younosuke Sato
- Department of Pathology and Experimental Medicine Graduate School of Medical Sciences, Kumamoto University, Honjyo 1-1-1, Chyuo-ku, Kumamoto, 860-855, Japan
| | - Kumiko Gotoh
- Department of Radioisotope Science Institute of Resource Development and Analysis, Kumamoto University, Honjyo 1-1-1, Chyuo-ku, Kumamoto, 860-8556, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine Graduate School of Medical Sciences, Kumamoto University, Honjyo 1-1-1, Chyuo-ku, Kumamoto, 860-855, Japan
| | - Akihiro Kojima
- Department of Radioisotope Science Institute of Resource Development and Analysis, Kumamoto University, Honjyo 1-1-1, Chyuo-ku, Kumamoto, 860-8556, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjyo 1-1-1, Chyuo-ku, Kumamoto, 860-8556, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine Graduate School of Medical Sciences, Kumamoto University, Honjyo 1-1-1, Chyuo-ku, Kumamoto, 860-855, Japan
| |
Collapse
|
20
|
Zhang J, Chen C, Chen J, Zhou S, Zhao Y, Xu M, Xu H. Dual Mode of Anti-Biofilm Action of G3 against Streptococcus mutans. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27866-27875. [PMID: 32484655 DOI: 10.1021/acsami.0c00771] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oral biofilms, formed by multiple microorganisms and their extracellular polymeric substances, seriously affect people's life. The emergence of the resistance of biofilms to conventional antibiotics and their side effects on the oral cavity have posed a great challenge in the treatment of dental diseases. Recently, antimicrobial peptides have been recognized as promising alternatives to conventional antibiotics due to their broad antibacterial spectrum, high antibacterial activity, and specific mechanism. However, the research of their anti-biofilm behaviors is still in its infancy, and the underlying mechanism remains unclear. In this study, we investigated the anti-biofilm activities of a designed helical peptide (G3) against Streptococcus mutans (S. mutans), one of the primary causative pathogens of caries. The results indicated that G3 inhibited S. mutans biofilm formation by interfering with different stages of biofilm development. At the initial stage, G3 inhibited the bacterial adhesion by decreasing the bacterial surface charges, hydrophobicity, membrane integrity, and adhesion-related gene transcription. At the later stage, G3 interacted with extracellular DNA to destabilize the 3D architecture of mature biofilms and thus dispersed them. The high activity of G3 against S. mutans biofilms, along with its specific modes of action, endows it great application potential in preventing and treating dental plaque diseases.
Collapse
Affiliation(s)
- Jiangyu Zhang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cuixia Chen
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jiaxi Chen
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Shasha Zhou
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yurong Zhao
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Minglu Xu
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
21
|
Fluorescent Analogues of Human α-Calcitonin Gene-Related Peptide with Potent Vasodilator Activity. Int J Mol Sci 2020; 21:ijms21041343. [PMID: 32079247 PMCID: PMC7072916 DOI: 10.3390/ijms21041343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/31/2023] Open
Abstract
Human α-calcitonin gene-related peptide (h-α-CGRP) is a highly potent vasodilator peptide that belongs to the family of calcitonin peptides. There are two forms of CGRP receptors in humans and rodents: α-CGRP receptor predominately found in the cardiovascular system and β-CGRP receptor predominating in the gastrointestinal tract. The CGRP receptors are primarily localized to C and Aδ sensory fibers, where they are involved in nociceptive transmission and migraine pathophysiology. These fibers are found both peripherally and centrally, with extensive perivascular location. The CGRP receptors belong to the class B G-protein-coupled receptors, and they are primarily associated to signaling via Gα proteins. The objectives of the present work were: (i) synthesis of three single-labelled fluorescent analogues of h-α-CGRP by 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis, and (ii) testing of their biological activity in isolated human, mouse, and rat arteries by using a small-vessel myograph setup. The three analogues were labelled with 5(6)-carboxyfluorescein via the spacer 6-aminohexanoic acid at the chain of Lys24 or Lys35. Circular dichroism (CD) experiments were performed to obtain information on the secondary structure of these fluorescently labelled peptides. The CD spectra indicated that the folding of all three analogues was similar to that of native α-CGRP. The three fluorescent analogues of α-CGRP were successfully prepared with a purity of >95%. In comparison to α-CGRP, the three analogues exhibited similar efficacy, but different potency in producing a vasodilator effect. The analogue labelled at the N-terminus proved to be the most readily synthesized, but it was found to possess the lowest vasodilator potency. The analogues labelled at Lys35 or Lys24 exhibited an acceptable reduction in potency (i.e., 3–5 times and 5–10 times less potent, respectively), and thus they have potential for use in further investigations of receptor internalization and neuronal reuptake.
Collapse
|
22
|
Rajavenkatesh K, Santoshkumar S, Purnasai K, Thennarasu S. A facile method for monitoring solid-phase peptide synthesis and for N-terminal modification of peptides: synthesis of short peptides for imaging specific cells. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Synthetic hydrophobic peptides derived from MgtR weaken Salmonella pathogenicity and work with a different mode of action than endogenously produced peptides. Sci Rep 2019; 9:15253. [PMID: 31649255 PMCID: PMC6813294 DOI: 10.1038/s41598-019-51760-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/24/2019] [Indexed: 12/03/2022] Open
Abstract
Due to the antibiotic resistance crisis, novel therapeutic strategies need to be developed against bacterial pathogens. Hydrophobic bacterial peptides (small proteins under 50 amino acids) have emerged as regulatory molecules that can interact with bacterial membrane proteins to modulate their activity and/or stability. Among them, the Salmonella MgtR peptide promotes the degradation of MgtC, a virulence factor involved in Salmonella intramacrophage replication, thus providing the basis for an antivirulence strategy. We demonstrate here that endogenous overproduction of MgtR reduced Salmonella replication inside macrophages and lowered MgtC protein level, whereas a peptide variant of MgtR (MgtR-S17I), which does not interact with MgtC, had no effect. We then used synthetic peptides to evaluate their action upon exogenous addition. Unexpectedly, upon addition of synthetic peptides, both MgtR and its variant MgtR-S17I reduced Salmonella intramacrophage replication and lowered MgtC and MgtB protein levels, suggesting a different mechanism of action of exogenously added peptides versus endogenously produced peptides. The synthetic peptides did not act by reducing bacterial viability. We next tested their effect on various recombinant proteins produced in Escherichia coli and showed that the level of several inner membrane proteins was strongly reduced upon addition of both peptides, whereas cytoplasmic or outer membrane proteins remained unaffected. Moreover, the α-helical structure of synthetic MgtR is important for its biological activity, whereas helix-helix interacting motif is dispensable. Cumulatively, these results provide perspectives for new antivirulence strategies with the use of peptides that act by reducing the level of inner membrane proteins, including virulence factors.
Collapse
|
24
|
Soudah T, Khawaled S, Aqeilan RI, Yavin E. AntimiR-155 Cyclic Peptide-PNA Conjugate: Synthesis, Cellular Uptake, and Biological Activity. ACS OMEGA 2019; 4:13954-13961. [PMID: 31497713 PMCID: PMC6714607 DOI: 10.1021/acsomega.9b01697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Efficient delivery of nucleic acids into cells still remains a great challenge. Peptide nucleic acids (PNAs) are DNA analogues with a neutral backbone and are synthesized by solid phase peptide chemistry. This allows a straightforward synthetic route to introduce a linear short peptide (a.k.a. cell-penetrating peptide) to the PNA molecule as a means of facilitating cellular uptake of PNAs. Herein, we have devised a synthetic route in which a cyclic peptide is prepared on a solid support and is extended with the PNA molecule, where all syntheses are accomplished on the solid phase. This allows the conjugation of the cyclic peptide to the PNA molecule with the need of only one purification step after the cyclic peptide-PNA conjugate (C9-PNA) is cleaved from the solid support. The PNA sequence chosen is an antimiR-155 molecule that is complementary to mature miR-155, a well-established oncogenic miRNA. By labeling C9-PNA with fluorescein isothiocyanate, we observe efficient cellular uptake into glioblastoma cells (U87MG) at a low concentration (0.5 μM), as corroborated by fluorescence-activated cell sorting (FACS) analysis and confocal microscopy. FACS analysis also suggests an uptake mechanism that is energy-dependent. Finally, the antimiR activity of C9-PNA was shown by analyzing miR155 levels by quantitative reverse transcription polymerase chain reaction and by observing a reduction in cell viability and proliferation in U87MG cells, as corroborated by XTT and colony formation assays. Given the added biological stability of cyclic versus linear peptides, this synthetic approach may be a useful and straightforward approach to synthesize cyclic peptide-PNA conjugates.
Collapse
Affiliation(s)
- Terese Soudah
- The
Institute for Drug Research, The School of Pharmacy,
and Lautenberg Center
for Immunology and Cancer Research, Institute for Medical Research
Israel-Canada, The Hebrew University of
Jerusalem, Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| | - Saleh Khawaled
- The
Institute for Drug Research, The School of Pharmacy,
and Lautenberg Center
for Immunology and Cancer Research, Institute for Medical Research
Israel-Canada, The Hebrew University of
Jerusalem, Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| | - Rami I. Aqeilan
- The
Institute for Drug Research, The School of Pharmacy,
and Lautenberg Center
for Immunology and Cancer Research, Institute for Medical Research
Israel-Canada, The Hebrew University of
Jerusalem, Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| | - Eylon Yavin
- The
Institute for Drug Research, The School of Pharmacy,
and Lautenberg Center
for Immunology and Cancer Research, Institute for Medical Research
Israel-Canada, The Hebrew University of
Jerusalem, Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| |
Collapse
|
25
|
Bräuer M, Zich MT, Önder K, Müller N. The influence of commonly used tags on structural propensities and internal dynamics of peptides. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02401-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Löser R, Bader M, Kuchar M, Wodtke R, Lenk J, Wodtke J, Kuhne K, Bergmann R, Haase-Kohn C, Urbanová M, Steinbach J, Pietzsch J. Synthesis, 18F-labelling and radiopharmacological characterisation of the C-terminal 30mer of Clostridium perfringens enterotoxin as a potential claudin-targeting peptide. Amino Acids 2018; 51:219-244. [PMID: 30264172 DOI: 10.1007/s00726-018-2657-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Abstract
The cell surface receptor claudin-4 (Cld-4) is upregulated in various tumours and represents an important emerging target for both diagnosis and treatment of solid tumours of epithelial origin. The C-terminal fragment of the Clostridium perfringens enterotoxin cCPE290-319 appears as a suitable ligand for targeting Cld-4. The synthesis of this 30mer peptide was attempted via several approaches, which has revealed sequential SPPS using three pseudoproline dipeptide building blocks to be the most efficient one. Labelling with fluorine-18 was achieved on solid phase using N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) and 4-[18F]fluorobenzoyl chloride as 18F-acylating agents, which was the most advantageous when [18F]SFB was reacted with the resin-bound 30mer containing an N-terminal 6-aminohexanoic spacer. Binding to Cld-4 was demonstrated via surface plasmon resonance using a protein construct containing both extracellular loops of Cld-4. In addition, cell binding experiments were performed for 18F-labelled cCPE290-319 with the Cld-4 expressing tumour cell lines HT-29 and A431 that were complemented by fluorescence microscopy studies using the corresponding fluorescein isothiocyanate-conjugated peptide. The 30mer peptide proved to be sufficiently stable in blood plasma. Studying the in vivo behaviour of 18F-labelled cCPE290-319 in healthy mice and rats by dynamic PET imaging and radiometabolite analyses has revealed that the peptide is subject to substantial liver uptake and rapid metabolic degradation in vivo, which limits its suitability as imaging probe for tumour-associated Cld-4.
Collapse
Affiliation(s)
- Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany.
| | - Miriam Bader
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Manuela Kuchar
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Jens Lenk
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Johanna Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Konstantin Kuhne
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Cathleen Haase-Kohn
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Marie Urbanová
- Department of Physics and Measurements, University of Chemistry and Technology, 166 28, Prague, Czech Republic
| | - Jörg Steinbach
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| |
Collapse
|
27
|
Chen Q, Dai W, Sun Y, Zhao F, Liu J, Liu H. Methionine Partially Replaced by Methionyl-Methionine Dipeptide Improves Reproductive Performance over Methionine Alone in Methionine-Deficient Mice. Nutrients 2018; 10:nu10091190. [PMID: 30200399 PMCID: PMC6165284 DOI: 10.3390/nu10091190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 11/23/2022] Open
Abstract
Decreased protein breakdown in pregnant women results in lower concentration of methionine (Met) in plasma, causing pregnancy-related metabolic disturbance. Its dipeptide methionyl-methionine (Met-Met) may exert positive influence in fetal development. This study mainly investigated whether Met-Met can be used as part of free Met to promote reproductive outcomes in mice and the underlying mechanisms. Met-deficient pregnant mice were treated with Met alone or with Met-Met during pregnancy. Daily intraperitoneal injection of 35% dietary Met in pregnant mice was the best dose among the 15–45% doses. Embryo development and newborn birth weight were enhanced when 25% of the Met in the 35% Met group was replaced with Met-Met. Met-Met replacement had higher plasma insulin, glucose, and free amino acids (AA) concentrations. Besides, in the placenta, the AA transporter mRNA abundances and peptide transporters (PhT1 and PepT1) protein levels were higher in Met-Met treatment group. Moreover, Met-Met increased 4E-BP1, S6K1 and AKT/mTOR phosphorylation. These results suggest that Met-Met could be used as a partial source of Met to promote reproductive outcomes in Met-restricted pregnant mice, which might be mediated by promoting nutrient availability and activating AKT/mTOR-mediated signaling pathway.
Collapse
Affiliation(s)
- Qiong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yalu Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Fengqi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405, USA.
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Králová P, Maloň M, Koshino H, Soural M. Convenient Synthesis of Thiohydantoins, Imidazole-2-thiones and Imidazo[2,1- b]thiazol-4-iums from Polymer-Supported α-Acylamino Ketones. Molecules 2018; 23:molecules23040976. [PMID: 29690582 PMCID: PMC6017016 DOI: 10.3390/molecules23040976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/16/2022] Open
Abstract
The preparation of 5-methylene-thiohydantoins using solid-phase synthesis is reported in this paper. After sulfonylation of immobilized Ser (t-Bu)-OH with 4-nitrobenzenesulfonyl chloride followed by alkylation with various bromoketones, the 4-Nos group was removed and the resulting polymer-supported α-acylamino ketones reacted with Fmoc-isothiocyanate. Cleavage of the Fmoc protecting group was followed by the spontaneous cyclative cleavage releasing the 5-methylene-thiohydantoin derivatives from the polymer support. Reduction with triethylsilane (TES) yielded the corresponding 5-methyl-thiohydantoins. When Fmoc-isothiocyanate was replaced with alkyl isothiocyanates, the trifluoroacetic acid (TFA) mediated cleavage from the polymer support, which was followed by the cyclization reaction and the imidazo[2,1-b]thiazol-4-iums were obtained. Their conversion in deuterated dimethylsulfoxide led to imidazole-2-thiones.
Collapse
Affiliation(s)
- Petra Králová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Michal Maloň
- JEOL Ltd., Musashino 3-1-2, Akishima, Tokyo 196-8558, Japan.
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, Hirosawa 2-1, Wako, Saitama 351-0198, Japan.
| | - Miroslav Soural
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 5, 779 00 Olomouc, Czech Republic.
| |
Collapse
|
29
|
Van der Poorten O, Legrand B, Vezenkov LL, García-Pindado J, Bettache N, Knuhtsen A, Pedersen DS, Sánchez-Navarro M, Martinez J, Teixidó M, Garcia M, Tourwé D, Amblard M, Ballet S. Indoloazepinone-Constrained Oligomers as Cell-Penetrating and Blood-Brain-Barrier-Permeating Compounds. Chembiochem 2018; 19:696-705. [PMID: 29377388 DOI: 10.1002/cbic.201700678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 12/29/2022]
Abstract
Non-cationic and amphipathic indoloazepinone-constrained (Aia) oligomers have been synthesized as new vectors for intracellular delivery. The conformational preferences of the [l-Aia-Xxx]n oligomers were investigated by circular dichroism (CD) and NMR spectroscopy. Whereas Boc-[l-Aia-Gly]2,4 -OBn oligomers 12 and 13 and Boc-[l-Aia-β3 -h-l-Ala]2,4 -OBn oligomers 16 and 17 were totally or partially disordered, Boc-[l-Aia-l-Ala]2 -OBn (14) induced a typical turn stabilized by C5 - and C7 -membered H-bond pseudo-cycles and aromatic interactions. Boc-[l-Aia-l-Ala]4 -OBn (15) exhibited a unique structure with remarkable T-shaped π-stacking interactions involving the indole rings of the four l-Aia residues forming a dense hydrophobic cluster. All of the proposed FITC-6-Ahx-[l-Aia-Xxx]4 -NH2 oligomers 19-23, with the exception of FITC-6-Ahx-[l-Aia-Gly]4 -NH2 (18), were internalized by MDA-MB-231 cells with higher efficiency than the positive references penetratin and Arg8 . In parallel, the compounds of this series were successfully explored in an in vitro blood-brain barrier (BBB) permeation assay. Although no passive diffusion permeability was observed for any of the tested Ac-[l-Aia-Xxx]4 -NH2 oligomers in the PAMPA model, Ac-[l-Aia-l-Arg]4 -NH2 (26) showed significant permeation in the in vitro cell-based human model of the BBB, suggesting an active mechanism of cell penetration.
Collapse
Affiliation(s)
- Olivier Van der Poorten
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Baptiste Legrand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Lubomir L Vezenkov
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Júlia García-Pindado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Astrid Knuhtsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Macarena Sánchez-Navarro
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
30
|
Artigas G, Monteiro JT, Hinou H, Nishimura SI, Lepenies B, Garcia-Martin F. Glycopeptides as Targets for Dendritic Cells: Exploring MUC1 Glycopeptides Binding Profile toward Macrophage Galactose-Type Lectin (MGL) Orthologs. J Med Chem 2017; 60:9012-9021. [PMID: 29045792 DOI: 10.1021/acs.jmedchem.7b01242] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The macrophage galactose-type lectin (MGL) recognizes glycan moieties exposed by pathogens and malignant cells. Particularly, mucin-1 (MUC1) glycoprotein presents an altered glycosylation in several cancers. To estimate the ability of distinct MGL orthologs to recognize aberrant glycan cores in mucins, we applied evanescent-field detection to a versatile MUC1-like glycopeptide microarray platform. Here, as binding was sequence-dependent, we demonstrated that not only sugars but also peptide region impact the recognition of murine MGL1 (mMGL1). In addition, we observed for all three MGL orthologs that divalent glycan presentation increased the binding. To assess the utility of the glycopeptide binders of the MGL orthologs for MGL targeting, we performed uptake assays with fluorescein-MUC1 using murine dendritic cells. A diglycosylated MUC1 peptide was preferentially internalized in an MGL-dependent fashion, thus showing the utility for divalent MGL targeting. These findings may be relevant to a rational design of antitumor vaccines targeting dendritic cells via MGL.
Collapse
Affiliation(s)
- Gerard Artigas
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, 001-0021 Sapporo, Japan
| | - João T Monteiro
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover , Bünteweg 17, 30559 Hannover, Germany
| | - Hiroshi Hinou
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, 001-0021 Sapporo, Japan.,Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku, 060-0009 Sapporo, Japan
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, 001-0021 Sapporo, Japan.,Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku, 060-0009 Sapporo, Japan
| | - Bernd Lepenies
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover , Bünteweg 17, 30559 Hannover, Germany
| | - Fayna Garcia-Martin
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, 001-0021 Sapporo, Japan
| |
Collapse
|
31
|
Li Y, Han Z, Roelle S, DeSanto A, Sabatelle R, Schur R, Lu ZR. Synthesis and Assessment of Peptide Gd-DOTA Conjugates Targeting Extradomain B Fibronectin for Magnetic Resonance Molecular Imaging of Prostate Cancer. Mol Pharm 2017; 14:3906-3915. [PMID: 28976766 DOI: 10.1021/acs.molpharmaceut.7b00619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Contrast enhanced MRI is commonly used in imaging and treatment planning of prostate cancer. However, no tumor targeting contrast agent is commercially available for accurate detection and characterization of prostate cancer with MRI. Extradomain B fibronectin (EDB-FN), an oncoprotein present in aggressive tumors, is a promising molecular target for detection and stratification of high-risk prostate cancer. In this work, we have identified four small peptides (GVK, IGK, SGV, and ZD2) specific to EDB-FN for tumor targeting. In silico simulations of the binding patterns and affinities of peptides to the EDB protein fragment revealed different binding site to different peptide in the ligand-receptor interactions. Tumor specificity and organ distribution of the peptides were assessed using fluorescence imaging in male mice bearing PC-3 human prostate cancer xenografts. Targeted contrast agents were synthesized by conjugating tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) to the peptides in the solid phase, followed by complexation with GdCl3. The contrast agents were characterized by MALDI-TOF mass spectrometry and relaxivity measurements. All four peptide Gd-DOTA conjugates resulted in robust tumor contrast enhancement in MR imaging of the PC3 mouse prostate cancer model. The peptide Gd-DOTA conjugates specific to EDB-FN are promising targeted small molecular macrocyclic contrast agents for MR molecular imaging of prostate cancer.
Collapse
Affiliation(s)
- Yajuan Li
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.,Molecular Theranostics, LLC , Beachwood, Ohio 44122, United States
| | - Zheng Han
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Sarah Roelle
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Aidan DeSanto
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Rob Sabatelle
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Rebecca Schur
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Zheng-Rong Lu
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
32
|
Stutz K, Müller AT, Hiss JA, Schneider P, Blatter M, Pfeiffer B, Posselt G, Kanfer G, Kornmann B, Wrede P, Altmann KH, Wessler S, Schneider G. Peptide-Membrane Interaction between Targeting and Lysis. ACS Chem Biol 2017; 12:2254-2259. [PMID: 28763193 DOI: 10.1021/acschembio.7b00504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Certain cationic peptides interact with biological membranes. These often-complex interactions can result in peptide targeting to the membrane, or in membrane permeation, rupture, and cell lysis. We investigated the relationship between the structural features of membrane-active peptides and these effects, to better understand these processes. To this end, we employed a computational method for morphing a membranolytic antimicrobial peptide into a nonmembranolytic mitochondrial targeting peptide by "directed simulated evolution." The results obtained demonstrate that superficially subtle sequence modifications can strongly affect the peptides' membranolytic and membrane-targeting abilities. Spectroscopic and computational analyses suggest that N- and C-terminal structural flexibility plays a crucial role in determining the mode of peptide-membrane interaction.
Collapse
Affiliation(s)
- Katharina Stutz
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Alex T Müller
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Jan A Hiss
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Petra Schneider
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Markus Blatter
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Bernhard Pfeiffer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Gernot Posselt
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg , 5020 Salzburg, Austria
| | - Gil Kanfer
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH) , Otto-Stern-Weg-3, 8093 Zurich, Switzerland
| | - Benoît Kornmann
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH) , Otto-Stern-Weg-3, 8093 Zurich, Switzerland
| | - Paul Wrede
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Silja Wessler
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg , 5020 Salzburg, Austria
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
33
|
Rana N, Cultrara C, Phillips M, Sabatino D. Functionalization of peptide nucleolipid bioconjugates and their structure anti-cancer activity relationship studies. Bioorg Med Chem Lett 2017; 27:4019-4023. [PMID: 28789897 DOI: 10.1016/j.bmcl.2017.07.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 11/15/2022]
Abstract
In the search for more potent peptide-based anti-cancer conjugates the generation of new, functionally diverse nucleolipid derived D-(KLAKLAK)2-AK sequences has enabled a structure and anti-cancer activity relationship study. A reductive amination approach was key for the synthesis of alkylamine, diamine and polyamine derived nucleolipids as well as those incorporating heterocyclic functionality. The carboxy-derived nucleolipids were then coupled to the C-terminus of the D-(KLAKLAK)2-AK killer peptide sequence and produced with and without the FITC fluorophore for investigating biological activity in cancer cells. The amphiphilic, α-helical peptide-nucleolipid bioconjugates were found to exhibit variable effects on the viability of MM.1S cells, with the histamine derived nucleolipid peptide bioconjugate displaying the most significant anti-cancer effects. Thus, functionally diverse nucleolipids have been developed to fine-tune the structure and anti-cancer properties of killer peptide sequences, such as D-(KLAKLAK)2-AK.
Collapse
Affiliation(s)
- Niki Rana
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, United States
| | - Christopher Cultrara
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, United States
| | - Mariana Phillips
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, United States
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, United States.
| |
Collapse
|
34
|
Vorozhtsov NI, Sviridova LA, Grigorkevich OS, Korablina DD, Beloglazkina EK, Majouga AG, Zyk NV. Synthesis 5-(pyrazolin-3-ylmethylidene)-2-thiohydantoins and 2-alkylsulfanyl-5-(pyrazolin-3-ylmethylidene)-3,5-dihydro-4H-imidazol-4-ones. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1764-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Marouseau E, Neckebroeck A, Larkin H, Le Roux A, Volkov L, Lavoie CL, Marsault É. Modular sub-monomeric cell-penetrating guanidine-rich peptoids – synthesis, assembly and biological evaluation. RSC Adv 2017. [DOI: 10.1039/c6ra27898a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of a guanidinium-rich transporters toolset to study GAG-mediated cell permeation.
Collapse
Affiliation(s)
- Etienne Marouseau
- Institut de Pharmacologie de Sherbrooke
- Department of Pharmacology and Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Albane Neckebroeck
- Institut de Pharmacologie de Sherbrooke
- Department of Pharmacology and Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Heidi Larkin
- Institut de Pharmacologie de Sherbrooke
- Department of Pharmacology and Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Antoine Le Roux
- Institut de Pharmacologie de Sherbrooke
- Department of Pharmacology and Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Leonid Volkov
- Biophotonics Core Facility
- Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke
- Sherbrooke
- Canada
| | - Christine L. Lavoie
- Institut de Pharmacologie de Sherbrooke
- Department of Pharmacology and Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke
- Department of Pharmacology and Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
| |
Collapse
|
36
|
Gräb O, Abacilar M, Daus F, Geyer A, Steinem C. 3D-Membrane Stacks on Supported Membranes Composed of Diatom Lipids Induced by Long-Chain Polyamines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10144-10152. [PMID: 27603681 DOI: 10.1021/acs.langmuir.6b02575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Long-chain polyamines (LCPAs) are intimately involved in the biomineralization process of diatoms taking place in silica deposition vesicles being acidic compartments surrounded by a lipid bilayer. Here, we addressed the question whether and how LCPAs interact with lipid membranes composed of glycerophospholipids and glyceroglycolipids mimicking the membranes of diatoms and higher plants. Solid supported lipid bilayers and monolayers containing the three major components that are unique in diatoms and higher plants, i.e., monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG), were prepared by spreading small unilamellar vesicles. The integrity of the membranes was investigated by fluorescence microscopy and atomic force microscopy showing continuous flat bilayers and monolayers with small protrusions on top of the membrane. The addition of a synthetic polyamine composed of 13 amine groups separated by a propyl spacer (C3N13) results in flat but three-dimensional membrane stacks within minutes. The membrane stacks are connected with the underlying membrane as verified by fluorescence recovery after photobleaching experiments. Membrane stack formation was found to be independent of the lipid composition; i.e., neither glyceroglycolipids nor negatively charged lipids were required. However, the formation process was strongly dependent on the chain length of the polyamine. Whereas short polyamines such as the naturally occurring spermidine, spermine, and the synthetic polyamines C3N4 and C3N5 do not induce stack formation, those containing seven and more amine groups (C3N7, C3N13, and C3N18) do form membrane stacks. The observed stack formation might have implications for the stability and expansion of the silica deposition vesicle during valve and girdle band formation in diatoms.
Collapse
Affiliation(s)
- Oliver Gräb
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstr. 2, 37077 Göttingen, Germany
| | - Maryna Abacilar
- Faculty of Chemistry, Philipps-University Marburg , Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Fabian Daus
- Faculty of Chemistry, Philipps-University Marburg , Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Armin Geyer
- Faculty of Chemistry, Philipps-University Marburg , Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstr. 2, 37077 Göttingen, Germany
| |
Collapse
|
37
|
Rana N, Huang S, Patel P, Samuni U, Sabatino D. Synthesis, characterization and anti-cancer activity of a peptide nucleolipid bioconjugate. Bioorg Med Chem Lett 2016; 26:3567-71. [DOI: 10.1016/j.bmcl.2016.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/31/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
|
38
|
Wuest M, Kuchar M, Sharma SK, Richter S, Hamann I, Wang M, Vos L, Mackey JR, Wuest F, Löser R. Targeting lysyl oxidase for molecular imaging in breast cancer. Breast Cancer Res 2015; 17:107. [PMID: 26265048 PMCID: PMC4533939 DOI: 10.1186/s13058-015-0609-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Lysyl oxidase (LOX; ExPASy ENZYME entry: EC 1.4.3.13) and members of the LOX-like family, LOXL1-LOXL4, are copper-dependent enzymes that can modify proteins of the extracellular matrix. Expression of LOX is elevated in many human cancers, including breast cancer. LOX expression correlates with the level of tissue hypoxia, and it is known to play a critical role in breast cancer metastasis. The goal of the present study was to target LOX with (1) molecular probe fluorescent labeling to visualize LOX in vitro and (2) a radiolabeled peptide to target LOX in vivo in three different preclinical models of breast cancer. METHODS Gene expression of all five members of the LOX family was analyzed at the transcript level via microarray analysis using tissue biopsy samples from 176 patients with breast cancer. An oligopeptide sequence (GGGDPKGGGGG) was selected as a substrate-based, LOX-targeting structure. The peptide was labeled with fluorescein isothiocyanate (FITC) for confocal microscopy experiments with the murine breast cancer cell line EMT-6. In vivo molecular imaging experiments were performed using a C-terminal amidated peptide, GGGDPKGGGGG, labeled with a short-lived positron emitter, fluorine-18 ((18)F), for positron emission tomography (PET) in three different breast cancer models: EMT6, MCF-7 and MDA-MB-231. The PET experiments were carried out in the presence or absence of β-aminopropionitrile (BAPN), an irreversible inhibitor of LOX. RESULTS Immunostaining experiments using a LOX-specific antibody on EMT-6 cells cultured under hypoxic conditions confirmed the elevation of LOX expression in these cells. An FITC-labeled oligopeptide, FITC-Ava-GGGDPKGGGGG-NH2, was found to be localized in different cellular compartments under these conditions. After injection of [(18)F]fluorobenzoate-GGGDPKGGGGG-NH2, radioactivity uptake was visible in all three breast cancer models in vivo. Tumor uptake was reduced by predosing the animals with 2 mg of BAPN 4 h or 24 h before injection of the radiotracer. CONCLUSIONS The present data support further investigation into the development of LOX-binding radiolabeled peptides as molecular probes for molecular imaging of LOX expression in cancer.
Collapse
Affiliation(s)
- Melinda Wuest
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada.
| | - Manuela Kuchar
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.
| | - Sai Kiran Sharma
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada. .,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11361 87 Avenue, Edmonton, AB, T6G 2E1, Canada.
| | - Susan Richter
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada.
| | - Ingrit Hamann
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada.
| | - Monica Wang
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada.
| | - Larissa Vos
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada.
| | - John R Mackey
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada.
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada. .,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11361 87 Avenue, Edmonton, AB, T6G 2E1, Canada.
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.
| |
Collapse
|
39
|
Wang Z, Wang W, Bu X, Wei Z, Geng L, Wu Y, Dong C, Li L, Zhang D, Yang S, Wang F, Lausted C, Hood L, Hu Z. Microarray based screening of peptide nano probes for HER2 positive tumor. Anal Chem 2015. [PMID: 26218790 DOI: 10.1021/acs.analchem.5b01588] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peptides are excellent biointerface molecules and diagnostic probes with many advantages such as good penetration, short turnover time, and low cost. We report here an efficient peptide screening strategy based on in situ single bead sequencing on a microarray. Two novel peptides YLFFVFER (H6) and KLRLEWNR (H10) specifically binding to the tumor biomarker human epidermal growth factor receptor 2 (HER2) with aKD of 10(-8) M were obtained from a 10(5) library. Conjugated to nanoparticles, both the H6 and H10 probes showed specific accumulation in HER2-positive tumor tissues in xenografted mice by in vivo imaging.
Collapse
Affiliation(s)
| | | | | | | | | | - Yue Wu
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | - Chengyan Dong
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | - Liqiang Li
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | | | | | - Fan Wang
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | - Christopher Lausted
- §Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Leroy Hood
- §Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Zhiyuan Hu
- §Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States.,∥Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing China, 102206
| |
Collapse
|
40
|
Wang G, Wu W, Zhu Q, Fu S, Wang X, Hong S, Guo R, Bao B. Identification and Fibrinolytic Evaluation of an Isoindolone Derivative Isolated from a Rare Marine FungusStachybotrys longisporaFG216. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201500176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Wynn JE, Santos WL. HIV-1 drug discovery: targeting folded RNA structures with branched peptides. Org Biomol Chem 2015; 13:5848-58. [PMID: 25958855 PMCID: PMC4511164 DOI: 10.1039/c5ob00589b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is an RNA virus that is prone to high rates of mutation. While the disease is managed with current antiretroviral therapies, drugs with a new mode of action are needed. A strategy towards this goal is aimed at targeting the native three-dimensional fold of conserved RNA structures. This perspective highlights medium-sized peptides and peptidomimetics used to target two conserved RNA structures of HIV-1. In particular, branched peptides have the capacity to bind in a multivalent fashion, utilizing a large surface area to achieve the necessary affinity and selectivity toward the target RNA.
Collapse
Affiliation(s)
- Jessica E Wynn
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
42
|
Shishova KV, Khodarovich YM, Lavrentyeva EA, Zatsepina OV. Analysis of the localization of fibrillarin and sites of pre-rRNA synthesis in the nucleolus-like bodies of mouse GV oocytes after mild treatment with proteinase K. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415030066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Ringhieri P, Diaferia C, Galdiero S, Palumbo R, Morelli G, Accardo A. Liposomal doxorubicin doubly functionalized with CCK8 and R8 peptide sequences for selective intracellular drug delivery. J Pept Sci 2015; 21:415-25. [PMID: 25754969 DOI: 10.1002/psc.2759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/25/2014] [Accepted: 01/09/2015] [Indexed: 01/09/2023]
Abstract
A new dual-ligand liposomal doxorubicin delivery system, which couples targeting to enhanced cellular uptake and may lead to a more efficient drug delivery system, is here designed and synthetized. Liposomes based on the composition 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-Peg2000-R8/(C18)2-L5-SS-CCK8 (87/8/5 mol/mol/mol) were prepared and loaded with doxorubicin. Presence of the two peptides on the external surface is demonstrated by fluorescence resonance energy transfer assay. The combination of the R8 cell-penetrating peptide and of the CCK8 targeting peptide (homing peptide) on the liposome surface is obtained by combining pre-modification and post-modification methods. In the dual-ligand system, the CCK8 peptide is anchored to the liposome surface by using a disulfide bond. This chemical function is inserted in order to promote the selective cleavage of the homing peptide under the reductive conditions expected in proximity of the tumor site, thus allowing targeting and internalization of the liposomal drug.
Collapse
Affiliation(s)
- Paola Ringhieri
- Department of Pharmacy and CIRPeB, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi - University of Naples 'Federico II', Via Mezzocannone 16, 80134, Naples, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Traboulsi H, Larkin H, Bonin MA, Volkov L, Lavoie CL, Marsault É. Macrocyclic Cell Penetrating Peptides: A Study of Structure-Penetration Properties. Bioconjug Chem 2015; 26:405-11. [DOI: 10.1021/acs.bioconjchem.5b00023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hassan Traboulsi
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology
and Physiology, Faculty of Medicine and Health Sciences and ‡Biophotonics Core
Facility, Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec J1H
5N4, Canada
| | - Heidi Larkin
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology
and Physiology, Faculty of Medicine and Health Sciences and ‡Biophotonics Core
Facility, Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec J1H
5N4, Canada
| | - Marc-André Bonin
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology
and Physiology, Faculty of Medicine and Health Sciences and ‡Biophotonics Core
Facility, Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec J1H
5N4, Canada
| | - Leonid Volkov
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology
and Physiology, Faculty of Medicine and Health Sciences and ‡Biophotonics Core
Facility, Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec J1H
5N4, Canada
| | - Christine L. Lavoie
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology
and Physiology, Faculty of Medicine and Health Sciences and ‡Biophotonics Core
Facility, Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec J1H
5N4, Canada
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology
and Physiology, Faculty of Medicine and Health Sciences and ‡Biophotonics Core
Facility, Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec J1H
5N4, Canada
| |
Collapse
|
45
|
New labeled derivatives of the neuroprotective peptide colivelin: Synthesis, characterization, and first in vitro and in vivo applications. Arch Biochem Biophys 2015; 567:83-93. [DOI: 10.1016/j.abb.2014.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/15/2014] [Accepted: 12/29/2014] [Indexed: 12/25/2022]
|
46
|
Tadevosyan A, Létourneau M, Folch B, Doucet N, Villeneuve LR, Mamarbachi AM, Pétrin D, Hébert TE, Fournier A, Chatenet D, Allen BG, Nattel S. Photoreleasable ligands to study intracrine angiotensin II signalling. J Physiol 2015; 593:521-39. [PMID: 25433071 DOI: 10.1113/jphysiol.2014.279109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS The renin-angiotensin system plays a key role in cardiovascular physiology and its overactivation has been implicated in the pathogenesis of several major cardiovascular diseases. There is growing evidence that angiotensin II (Ang-II) may function as an intracellular peptide to activate intracellular/nuclear receptors and their downstream signalling effectors independently of cell surface receptors. Current methods used to study intracrine Ang-II signalling are limited to indirect approaches because of a lack of selective intracellularly-acting probes. Here, we present novel photoreleasable Ang-II analogues used to probe intracellular actions with spatial and temporal precision. The photorelease of intracellular Ang-II causes nuclear and cytosolic calcium mobilization and initiates the de novo synthesis of RNA in cardiac cells, demonstrating the application of the method. ABSTRACT Several lines of evidence suggest that intracellular angiotensin II (Ang-II) contributes to the regulation of cardiac contractility, renal salt reabsorption, vascular tone and metabolism; however, work on intracrine Ang-II signalling has been limited to indirect approaches because of a lack of selective intracellularly-acting probes. Here, we aimed to synthesize and characterize cell-permeant Ang-II analogues that are inactive without uncaging, but release active Ang-II upon exposure to a flash of UV-light, and act as novel tools for use in the study of intracrine Ang-II physiology. We prepared three novel caged Ang-II analogues, [Tyr(DMNB)(4)]Ang-II, Ang-II-ODMNB and [Tyr(DMNB)(4)]Ang-II-ODMNB, based upon the incorporation of the photolabile moiety 4,5-dimethoxy-2-nitrobenzyl (DMNB). Compared to Ang-II, the caged Ang-II analogues showed 2-3 orders of magnitude reduced affinity toward both angiotensin type-1 (AT1R) and type-2 (AT2R) receptors in competition binding assays, and greatly-reduced potency in contraction assays of rat thoracic aorta. After receiving UV-irradiation, all three caged Ang-II analogues released Ang-II and potently induced the contraction of rat thoracic aorta. [Tyr(DMNB)(4)]Ang-II showed the most rapid photolysis upon UV-irradiation and was the focus of subsequent characterization. Whereas Ang-II and photolysed [Tyr(DMNB)(4)]Ang-II increased ERK1/2 phosphorylation (via AT1R) and cGMP production (AT2R), caged [Tyr(DMNB)(4)]Ang-II did not. Cellular uptake of [Tyr(DMNB)(4)]Ang-II was 4-fold greater than that of Ang-II and significantly greater than uptake driven by the positive-control HIV TAT(48-60) peptide. Intracellular photolysis of [Tyr(DMNB)(4)]Ang-II induced an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n), and initiated 18S rRNA and nuclear factor kappa B mRNA synthesis in adult cardiac cells. We conclude that caged Ang-II analogues represent powerful new tools for use in the selective study of intracrine signalling via Ang-II.
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada; Montreal Heart Institute, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ludeman JP, Nazari-Robati M, Wilkinson BL, Huang C, Payne RJ, Stone MJ. Phosphate modulates receptor sulfotyrosine recognition by the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Org Biomol Chem 2015; 13:2162-9. [DOI: 10.1039/c4ob02262a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fluorescence anisotropy shows that the physiological buffer phosphate competes with a chemokine receptor sulfopeptide for binding to a cognate chemokine.
Collapse
Affiliation(s)
- Justin P. Ludeman
- Department of Biochemistry and Molecular Biology
- Monash University
- Clayton
- Australia
| | - Mahdieh Nazari-Robati
- Department of Biochemistry and Molecular Biology
- Monash University
- Clayton
- Australia
- Department of Biochemistry
| | | | - Cheng Huang
- Department of Biochemistry and Molecular Biology
- Monash University
- Clayton
- Australia
| | - Richard J. Payne
- School of Chemistry
- Building F11
- The University of Sydney
- NSW 2006
- Australia
| | - Martin J. Stone
- Department of Biochemistry and Molecular Biology
- Monash University
- Clayton
- Australia
| |
Collapse
|
48
|
Jiang L, Schadock-Hewitt AJ, Zhang LX, Marcus RK. Evaluation of synthesized lipid tethered ligands for surface functionalization of polypropylene capillary-channeled polymer fiber stationary phases. Analyst 2015; 140:1523-34. [DOI: 10.1039/c4an02091j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straight forward approach to the synthesis of ligand tethered ligands (LTLs) circumvents the purchase of less-robust, PEG-phospholipids.
Collapse
Affiliation(s)
- Liuwei Jiang
- Clemson University
- Department of Chemistry
- Biosystems Research Complex
- Clemson
- USA
| | | | - Lynn X. Zhang
- Clemson University
- Department of Chemistry
- Biosystems Research Complex
- Clemson
- USA
| | - R. Kenneth Marcus
- Clemson University
- Department of Chemistry
- Biosystems Research Complex
- Clemson
- USA
| |
Collapse
|
49
|
Shishova KV, Lavrentyeva EA, Dobrucki JW, Zatsepina OV. Nucleolus-like bodies of fully-grown mouse oocytes contain key nucleolar proteins but are impoverished for rRNA. Dev Biol 2014; 397:267-81. [PMID: 25481757 DOI: 10.1016/j.ydbio.2014.11.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/20/2014] [Accepted: 11/22/2014] [Indexed: 11/26/2022]
Abstract
It is well known that fully-grown mammalian oocytes, rather than typical nucleoli, contain prominent but structurally homogenous bodies called "nucleolus-like bodies" (NLBs). NLBs accumulate a vast amount of material, but their biochemical composition and functions remain uncertain. To clarify the composition of the NLB material in mouse GV oocytes, we devised an assay to detect internal oocyte proteins with fluorescein-5-isothiocyanate (FITC) and applied the fluorescent RNA-binding dye acridine orange to examine whether NLBs contain RNA. Our results unequivocally show that, similarly to typical nucleoli, proteins and RNA are major constituents of transcriptionally active (or non-surrounded) NLBs as well as of transcriptionally silent (or surrounded) NLBs. We also show, by exposing fixed oocytes to a mild proteinase K treatment, that the NLB mass in oocytes of both types contains nucleolar proteins that are involved in all major steps of ribosome biogenesis, including rDNA transcription (UBF), early rRNA processing (fibrillarin), and late rRNA processing (NPM1/nucleophosmin/B23, nucleolin/C23), but none of the nuclear proteins tested, including SC35, NOBOX, topoisomerase II beta, HP1α, and H3. The ribosomal RPL26 protein was detected within the NLBs of NSN-type oocytes but is virtually absent from NLBs of SN-type oocytes. Taking into account that the major class of nucleolar RNA is ribosomal RNA (rRNA), we applied fluorescence in situ hybridization with oligonucleotide probes targeting 18S and 28S rRNAs. The results show that, in contrast to active nucleoli, NLBs of fully-grown oocytes are impoverished for the rRNAs, which is consistent with the absence of transcribed ribosomal genes in the NLB mass. Overall, the results of this study suggest that NLBs of fully-grown mammalian oocytes serve for storing major nucleolar proteins but not rRNA.
Collapse
Affiliation(s)
- Kseniya V Shishova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russian Federation.
| | - Elena A Lavrentyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russian Federation; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, Office, Moscow 119991, Russian Federation.
| | - Jurek W Dobrucki
- Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa Street, 30-387 Krakow, Poland.
| | - Olga V Zatsepina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russian Federation.
| |
Collapse
|
50
|
Jiang L, Marcus RK. Biotin-functionalized poly(ethylene terephthalate) capillary-channeled polymer fibers as HPLC stationary phase for affinity chromatography. Anal Bioanal Chem 2014; 407:939-51. [PMID: 25410640 DOI: 10.1007/s00216-014-8235-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/08/2014] [Accepted: 10/02/2014] [Indexed: 11/25/2022]
Abstract
Native poly(ethylene terephthalate) (PET) capillary-channeled polymer (C-CP) fibers have been used as the stationary phase for high-performance liquid chromatography (HPLC) of proteins via reversed-phase and ion-exchange processes. Functionalization can be used to bring about greater selectivity through surface modification. PET fibers were treated with ethylenediamine to generate primary amine groups on the fiber surface, enabling subsequent covalent attachment of ligands. The ninhydrin test for primary amines revealed surface densities of 13.9-60.0 μmol m(-2) for PET fibers exposed for periods of 3-12 min. Here, 8-amino-3,6-dioxaoctanoic acid was linked to the EDA-treated PET fiber surface as a hydrophilic spacer, and then D-biotin was attached on the end of the spacer as an affinity ligand. The streptavidin binding capacity and binding homogeneity were studied on the biotin-functionalized PET C-CP fiber microbore column. The selectivity of the biotin surface functionalization was assessed by spiking lysate with Texas Red-labeled streptavidin and enhanced green fluorescent protein. Greater than 99% selectivity was realized. This ligand-coupling strategy from standard solid-phase peptide synthesis used in stationary phase functionalization creates great potential for PET C-CP fiber-packed HPLC columns to perform a variety of chromatographic separations.
Collapse
Affiliation(s)
- Liuwei Jiang
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA
| | | |
Collapse
|