1
|
Zhang T, Liu L, Huang X, Gao X, Huan X, He C, Li Y. The rapid change of shear rate gradient is beneficial to platelet activation. Platelets 2024; 35:2288679. [PMID: 38099316 DOI: 10.1080/09537104.2023.2288679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Fluid shear plays a key role in hemostasis and thrombosis, and the purpose of this study was to investigate the effect of shear gradient change rate (SGCR) on platelet reactivity and von Willebrand factor (vWF) activity and its mechanism. In this study, we developed a set of microfluidic chips capable of generating different shear gradients and simulated the shear rate distribution in the flow field by COMSOL Multiphysics software. Molecular markers of platelet activation (P-selectin, activated GPIIb/IIIa, phosphatidylserine exposure, and monocyte-platelet aggregate formation) were analyzed by flow cytometry. Platelet aggregation induced by shear gradient was studied by a microfluidic experimental platform, and plasma vWF ristocetin cofactor (vWF: RCO) activity was investigated by flow cytometry. The expression of p-Akt was studied by Western blotting. The results showed that the faster the SGCR, the higher the expression of platelet p-Akt, and the stronger the platelet reactivity and vWF activity. This indicates that fluid shear stress can activate platelets and vWF in a shear gradient-dependent manner through the PI3K/AKT signal pathway, and the faster the SGCR, the more significant the activation effect.
Collapse
Affiliation(s)
- Tiancong Zhang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Huang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xuemei Gao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xuanrong Huan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Cui He
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Li
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250:108120. [PMID: 39393539 DOI: 10.1016/j.toxicon.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) with an approximate 1.8 million cases annually. The tremendous figure is concerning, and the currently available treatment for snakebite envenomation is antivenom. However, the current antivenom has limited cross-neutralisation activity due to the variations in snake venom composition across species and geographical locations. The proteomics of medically important venomous species is essential as they study the venom compositions within and among different species. The advancement of sophisticated proteomic approaches allows intensive investigation of snake venoms. Nevertheless, there is a need to consolidate the venom proteomics profiles and distribution analysis to examine their variability patterns. This review systematically analysed the proteomics and toxicity profiles of medically important venomous species from Asia across different geographical locations. An interactive dashboard - Asiatic Proteomics Interactive Datasets was curated to consolidate the distribution patterns of the venom compositions, serve as a comprehensive directory for large-scale comparative meta-analyses. The population proteomics demonstrate higher diversities in the predominant venom toxins. Besides, inter-regional differences were also observed in Bungarus sp., Naja sp., Calliophis sp., and Ophiophagus hannah venoms. The elapid venoms are predominated with three-finger toxins (3FTXs) and phospholipase A2 (PLA2). Intra-regional variation is only significantly observed in Naja naja venoms. Proteomics diversity is more prominent in viper venoms, with widespread dominance observed in snake venom metalloproteinase (SVMP) and snake venom serine protease (SVSP). Correlations exist between the proteomics profiles and the toxicity (LD50) of the medically important venomous species. Additionally, the predominant toxins, alongside their pathophysiological effects, were highlighted and discussed as well. The insights of interactive toxico-proteomics datasets provide comprehensive frameworks of venom dynamics and contribute to developing antivenoms for snakebite envenomation. This could reduce misdiagnosis of SBE and accelerate the researchers' data mining process.
Collapse
Affiliation(s)
- Sher Min Ding
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
3
|
Chang Y, Hsia CW, Chiou KR, Yen TL, Jayakumar T, Sheu JR, Huang WC. Eugenol: A Potential Modulator of Human Platelet Activation and Mouse Mesenteric Vascular Thrombosis via an Innovative cPLA2-NF-κB Signaling Axis. Biomedicines 2024; 12:1689. [PMID: 39200154 PMCID: PMC11351298 DOI: 10.3390/biomedicines12081689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Platelets, a type of anucleated cell, play a crucial role in cardiovascular diseases (CVDs). Therefore, targeting platelet activation is essential for mitigating CVDs. Endogenous agonists, such as collagen, activate platelets by initiating signal transduction through specific platelet receptors, leading to platelet aggregation. Eugenol, primarily sourced from clove oil, is known for its antibacterial, anticancer, and anti-inflammatory properties, making it a valuable medicinal agent. In our previous study, eugenol was shown to inhibit platelet aggregation induced by collagen and arachidonic acid. We concluded that eugenol exerts a potent inhibitory effect on platelet activation by targeting the PLCγ2-PKC and cPLA2-TxA2 pathways, thereby suppressing platelet aggregation. In our current study, we found that eugenol significantly inhibits NF-κB activation. This led us to investigate the relationship between the NF-κB and cPLA2 pathways to elucidate how eugenol suppresses platelet activation. METHODS In this study, we prepared platelet suspensions from the blood of healthy human donors to evaluate the inhibitory mechanisms of eugenol on platelet activation. We utilized immunoblotting and confocal microscopy to analyze these mechanisms in detail. Additionally, we assessed the anti-thrombotic effect of eugenol by observing fluorescein-induced platelet plug formation in the mesenteric microvessels of mice. RESULTS For immunoblotting and confocal microscopy studies, eugenol significantly inhibited NF-κB-mediated signaling events stimulated by collagen in human platelets. Specifically, it reduced the phosphorylation of IKK and p65 and prevented the degradation of IκBα. Additionally, CAY10502, a cPLA2 inhibitor, significantly reduced NF-κB-mediated signaling events. In contrast, BAY11-7082, an IKK inhibitor, did not affect collagen-stimulated cPLA2 phosphorylation. These findings suggest that cPLA2 acts as an upstream regulator of NF-κB activation during platelet activation. Furthermore, both BAY11-7082 and CAY10502 significantly reduced the collagen-induced rise in intracellular calcium levels. In the animal study, eugenol demonstrated potential as an anti-thrombotic agent by significantly reducing platelet plug formation in fluorescein-irradiated mouse mesenteric microvessels. CONCLUSION Our study uncovered a novel pathway in platelet activation involving the cPLA2-NF-κB axis, which plays a key role in the antiplatelet effects of eugenol. These findings suggest that eugenol could serve as a valuable and potent prophylactic or therapeutic option for arterial thrombosis.
Collapse
Affiliation(s)
- Yi Chang
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chih-Wei Hsia
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Kuan-Rau Chiou
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Taipei 106, Taiwan
| | - Thanasekaran Jayakumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry 605014, India
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
4
|
Chen Q, Zhang M, Liu Y, Liu W, Peng C, Zheng L. Sulfated Polysaccharides with Anticoagulant Potential: A Review Focusing on Structure-Activity Relationship and Action Mechanism. Chem Biodivers 2024; 21:e202400152. [PMID: 38600639 DOI: 10.1002/cbdv.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Thromboembolism is the culprit of cardiovascular diseases, leading to the highest global mortality rate. Anticoagulation emerges as the primary approach for managing thrombotic conditions. Notably, sulfated polysaccharides exhibit favorable anticoagulant efficacy with reduced side effects. This review focuses on the structure-anticoagulant activity relationship of sulfated polysaccharides and the underlying action mechanisms. It is concluded that chlorosulfonicacid-pyridine method serves as the preferred technique to synthesize sulfated polysaccharides. The anticoagulant activity of sulfated polysaccharides is linked to the substitution site of sulfate groups, degree of substitution, molecular weight, main side chain structure, and glycosidic bond conformation. Moreover, sulfated polysaccharides exert anticoagulant activity via various pathways, including the inhibition of blood coagulation factors, activation of antithrombin III and heparin cofactor II, antiplatelet aggregation, and promotion of the fibrinolytic system.
Collapse
Affiliation(s)
- Qianfeng Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315000, China
| | - Mengjiao Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Yue Liu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315000, China
| | - Wei Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
| | - Cheng Peng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
| | - Lixue Zheng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
| |
Collapse
|
5
|
Liu J, Fan Z, Ye X, Zhang Y, Liu M, Deng X. Modelling of the in-stent thrombus formation by dissipative particle dynamics. J Theor Biol 2024; 582:111758. [PMID: 38336241 DOI: 10.1016/j.jtbi.2024.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Stent implantation is a highly efficacious intervention for the treatment of coronary atherosclerosis. Nevertheless, stent thrombosis and other post-operative complications persist, and the underlying mechanism of adverse event remains elusive. METHODS In the present study, a dissipative particle dynamics model was formulated to simulate the motion, adhesion, activation, and aggregation of platelets, with the aim of elucidating the mechanisms of in-stent thrombosis. FINDINGS The findings suggest that stent thrombosis arises from a complex interplay of multiple factors, including endothelial injury resulting from stent implantation and alterations in the hemodynamic milieu. Furthermore, the results suggest a noteworthy association between in-stent thrombosis and both the length of the endothelial injured site and the degree of stent malposition. Specifically, the incidence of stent thrombosis appears to rise in tandem with the extent of the injured site, while moderate stent malposition is more likely to result in in-stent thrombosis compared to severe or minor malposition. INTERPRETATION This study offers novel research avenues for investigating the plasticity mechanism of stent thrombosis, while also facilitating the clinical prediction of stent thrombosis formation and the development of more precise treatment strategies.
Collapse
Affiliation(s)
- Jiashuai Liu
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu 213001, China
| | - Zhenmin Fan
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu 213001, China.
| | - Xia Ye
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu 213001, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| | - Mingyuan Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Center of Vascular Surgery, Beijing 100050, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
6
|
Rasizadeh R, Ebrahimi F, Zamani Kermanshahi A, Daei Sorkhabi A, Sarkesh A, Sadri Nahand J, Bannazadeh Baghi H. Viruses and thrombocytopenia. Heliyon 2024; 10:e27844. [PMID: 38524607 PMCID: PMC10957440 DOI: 10.1016/j.heliyon.2024.e27844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Thrombocytopenia, characterized by a decrease in platelet count, is a multifaceted clinical manifestation that can arise from various underlying causes. This review delves into the intriguing nexus between viruses and thrombocytopenia, shedding light on intricate pathophysiological mechanisms and highlighting the pivotal role of platelets in viral infections. The review further navigates the landscape of thrombocytopenia in relation to specific viruses, and sheds light on the diverse mechanisms through which hepatitis C virus (HCV), measles virus, parvovirus B19, and other viral agents contribute to platelet depletion. As we gain deeper insights into these interactions, we move closer to elucidating potential therapeutic avenues and preventive strategies for managing thrombocytopenia in the context of viral infections.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Fatemeh Ebrahimi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amin Daei Sorkhabi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Zhang B, Wang M, Tian H, Cai H, Wu S, Jiao S, Zhao J, Li Y, Zhou H, Guo W, Qu W. Functional hemostatic hydrogels: design based on procoagulant principles. J Mater Chem B 2024; 12:1706-1729. [PMID: 38288779 DOI: 10.1039/d3tb01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Uncontrolled hemorrhage results in various complications and is currently the leading cause of death in the general population. Traditional hemostatic methods have drawbacks that may lead to ineffective hemostasis and even the risk of secondary injury. Therefore, there is an urgent need for more effective hemostatic techniques. Polymeric hemostatic materials, particularly hydrogels, are ideal due to their biocompatibility, flexibility, absorption, and versatility. Functional hemostatic hydrogels can enhance hemostasis by creating physical circumstances conducive to hemostasis or by directly interfering with the physiological processes of hemostasis. The procoagulant principles include increasing the concentration of localized hemostatic substances or establishing a physical barrier at the physical level and intervention in blood cells or the coagulation cascade at the physiological level. Moreover, synergistic hemostasis can combine these functions. However, some hydrogels are ineffective in promoting hemostasis or have a limited application scope. These defects have impeded the advancement of hemostatic hydrogels. To provide inspiration and resources for new designs, this review provides an overview of the procoagulant principles of hemostatic hydrogels. We also discuss the challenges in developing effective hemostatic hydrogels and provide viewpoints.
Collapse
Affiliation(s)
- Boxiang Zhang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Min Wang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, P. R. China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| |
Collapse
|
8
|
Huang WC, Shu LH, Kuo YJ, Lai KSL, Hsia CW, Yen TL, Hsia CH, Jayakumar T, Yang CH, Sheu JR. Eugenol Suppresses Platelet Activation and Mitigates Pulmonary Thromboembolism in Humans and Murine Models. Int J Mol Sci 2024; 25:2098. [PMID: 38396774 PMCID: PMC10888574 DOI: 10.3390/ijms25042098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Platelets assume a pivotal role in the pathogenesis of cardiovascular diseases (CVDs), emphasizing their significance in disease progression. Consequently, addressing CVDs necessitates a targeted approach focused on mitigating platelet activation. Eugenol, predominantly derived from clove oil, is recognized for its antibacterial, anticancer, and anti-inflammatory properties, rendering it a valuable medicinal agent. This investigation delves into the intricate mechanisms through which eugenol influences human platelets. At a low concentration of 2 μM, eugenol demonstrates inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Notably, thrombin and U46619 remain unaffected by eugenol. Its modulatory effects extend to ATP release, P-selectin expression, and intracellular calcium levels ([Ca2+]i). Eugenol significantly inhibits various signaling cascades, including phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3β, mitogen-activated protein kinases, and cytosolic phospholipase A2 (cPLA2)/thromboxane A2 (TxA2) formation induced by collagen. Eugenol selectively inhibited cPLA2/TxA2 phosphorylation induced by AA, not affecting p38 MAPK. In ADP-treated mice, eugenol reduced occluded lung vessels by platelet thrombi without extending bleeding time. In conclusion, eugenol exerts a potent inhibitory effect on platelet activation, achieved through the inhibition of the PLCγ2-PKC and cPLA2-TxA2 cascade, consequently suppressing platelet aggregation. These findings underscore the potential therapeutic applications of eugenol in CVDs.
Collapse
Affiliation(s)
- Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (Y.-J.K.)
| | - Lan-Hsin Shu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Ju Kuo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (Y.-J.K.)
| | - Kevin Shu-Leung Lai
- Division of Critical Care Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chih-Wei Hsia
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Taipei 106, Taiwan
| | - Chih-Hsuan Hsia
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan
| | - Thanasekaran Jayakumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry 605014, India;
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (Y.-J.K.)
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
9
|
Abdel-Haffiez SH, Khalil NM. Effect of platelet rich plasma injection on bone formation in the expanded mid-palatal suture in rabbits: a randomized controlled animal study. BMC Oral Health 2024; 24:167. [PMID: 38308245 PMCID: PMC10835953 DOI: 10.1186/s12903-024-03922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Mid-Palatal suture expansion needs long retention period due to delayed bone formation in the expanded suture. Platelet-rich plasma (PRP) is a concentrated source of growth factors which increase bone formation. The aim of this study was to evaluate the effect of PRP injection on bone formation in expanded mid palatal suture in rabbits. METHODS In this prospective randomized controlled animal study, Twenty male rabbits (8-weeks-old) were subjected to mid-palatal expansion for 5 days. Animals were afterwards randomly divided into control group A & study group B. PRP was prepared and injected in the mid-palatal suture in animals belonging to group B only. After 6 weeks of retention, all animals were euthanized, and premaxillae were prepared for histological, histomorphometric and immunohistochemical analysis. Student t-test and paired t-test were used to compare the means of the two groups and within the same group respectively. Significance level set at p ≤ 0.05. RESULTS Histomorphometric analysis revealed a significant increase (p < 0.001) in the mean percentage of new bone in the study group (14.4%) compared to the control (1.4%). Suture width in study group was significantly wider than the control group (278.8 ± 9μms and 120.4 ± 3.4μms, p < 0.001). There was a significant increase in vascular density in study group than control group (309 ± 65.34 and 243.86 ± 48.1, p = 0.021). Osteopontin immuno-expression revealed a significant increase in optical density in study group than control group (0.21 ± 0.02 & 0.12 ± 0.01, p < 0.001). CONCLUSIONS In rabbit model, PRP injection can accelerate new bone formation in the expanded mid-palatal suture when compared to the control. This could hopefully result in a more stable midpalatal expansion and a reduced retention period.
Collapse
|
10
|
Osmanoglu Ö, Gupta SK, Almasi A, Yagci S, Srivastava M, Araujo GHM, Nagy Z, Balkenhol J, Dandekar T. Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection. Front Immunol 2023; 14:1285345. [PMID: 38187394 PMCID: PMC10768010 DOI: 10.3389/fimmu.2023.1285345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/.
Collapse
Affiliation(s)
- Özge Osmanoglu
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Shishir K. Gupta
- Evolutionary Genomics Group, Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Anna Almasi
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Seray Yagci
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Mugdha Srivastava
- Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg, Germany
- Algorithmic Bioinformatics, Department of Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Gabriel H. M. Araujo
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Zoltan Nagy
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Johannes Balkenhol
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Chair of Molecular Microscopy, Rudolf Virchow Center for Integrative and Translation Bioimaging, University of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- European Molecular Biology Laboratory (EMBL) Heidelberg, BioComputing Unit, Heidelberg, Germany
| |
Collapse
|
11
|
Kwon HW, Shin JH, Rhee MH, Park CE, Lee DH. Anti-thrombotic effects of ginsenoside Rk3 by regulating cAMP and PI3K/MAPK pathway on human platelets. J Ginseng Res 2023; 47:706-713. [PMID: 38107398 PMCID: PMC10721468 DOI: 10.1016/j.jgr.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 12/19/2023] Open
Abstract
Background and objective The ability to inhibit aggregation has been demonstrated with synthetically derived ginsenoside compounds G-Rp (1, 3, and 4) and ginsenosides naturally found in Panax ginseng 20(S)-Rg3, Rg6, F4, and Ro. Among these compounds, Rk3 (G-Rk3) from Panax ginseng needs to be further explored in order to reveal the mechanisms of action during inhibition. Methodology Our study focused to investigate the action of G-Rk3 on agonist-stimulated human platelet aggregation, inhibition of platelet signaling molecules such as fibrinogen binding with integrin αIIbβ3 using flow cytometry, intracellular calcium mobilization, dense granule secretion, and thromboxane B2 secretion. In addition, we checked the regulation of phosphorylation on PI3K/MAPK pathway, and thrombin-induced clot retraction was also observed in platelets rich plasma. Key Results G-Rk3 significantly increased amounts of cyclic adenosine monophosphate (cAMP) and led to significant phosphorylation of cAMP-dependent kinase substrates vasodilator-stimulated phosphoprotein (VASP) and inositol 1,4,5-trisphosphate receptor (IP3R). In the presence of G-Rk3, dense tubular system Ca2+ was inhibited, and platelet activity was lowered by inactivating the integrin αIIb/β3 and reducing the binding of fibrinogen. Furthermore, the effect of G-Rk3 extended to the inhibition of MAPK and PI3K/Akt phosphorylation resulting in the reduced secretion of intracellular granules and reduced production of TXA2. Lastly, G-Rk3 inhibited platelet aggregation and thrombus formation via fibrin clot. Conclusions and implications These results suggest that when dealing with cardiovascular diseases brought upon by faulty aggregation among platelets or through the formation of a thrombus, the G-Rk3 compound can play a role as an effective prophylactic or therapeutic agent.
Collapse
Affiliation(s)
- Hyuk-Woo Kwon
- Department of Biomedical Laboratory Science, Far East University, Eumseong, Republic of Korea
| | - Jung-Hae Shin
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang-Eun Park
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan, Republic of Korea
- Molecular Diagnostics Research Institute, Namseoul University, Cheonan, Republic of Korea
| | - Dong-Ha Lee
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan, Republic of Korea
- Molecular Diagnostics Research Institute, Namseoul University, Cheonan, Republic of Korea
| |
Collapse
|
12
|
Elhence A, Shalimar. Von Willebrand Factor as a Biomarker for Liver Disease - An Update. J Clin Exp Hepatol 2023; 13:1047-1060. [PMID: 37975050 PMCID: PMC10643510 DOI: 10.1016/j.jceh.2023.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 11/19/2023] Open
Abstract
The von Willebrand factor (vWF) is best known for its role in the hemostatic pathway, aiding platelet adhesion and aggregation, as well as circulating along with coagulation factor VIII, prolonging its half-life. However, vWF is more than a hemostatic protein and is a marker of endothelial dysfunction in patients with cirrhosis. The levels of vWF increase progressively as cirrhosis progresses. Despite its qualitative defects, it can support and carry out its hemostatic role and contribute to a pro-coagulant disbalance. Moreover, it has been shown to be a good noninvasive marker for predicting clinically significant portal hypertension (CSPH). The vWF has been shown to predict decompensation and mortality among cirrhosis patients independently of the stage of liver disease and severity of portal hypertension. Increased vWF levels in the setting of endothelial injury predict bacterial translocation and systemic inflammation. The vWF-to-thrombocyte ratio (VITRO) score adds to the diagnostic ability of vWF alone in detecting CSPH non-invasively. Not only have vWF levels been shown to help predict the risk of hepatocellular carcinoma (HCC) among cirrhosis patients, but they also predict the risk of complications post-resection for HCC and response to systemic therapies. vWF-induced portal microthrombi have been purported to contribute to the pathogenesis of acute liver failure progression as well as non-cirrhotic portal hypertension. The prospect of modulation of vWF levels using drugs such as non-selective beta-blockers, statins, anticoagulants, and non-absorbable antibiotics and its use as a predictive biomarker for the response to these drugs needs to be explored.
Collapse
Affiliation(s)
- Anshuman Elhence
- Department of Gastroenterology, National Cancer Institute- All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Yu L, Yu S, He Y, Deng G, Li Q. High Autophagy Patterns in Swelling Platelets During Apheresis Platelet Storage. Indian J Hematol Blood Transfus 2023; 39:670-678. [PMID: 37790743 PMCID: PMC10542436 DOI: 10.1007/s12288-023-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
Platelets undergo remarkable morphological changes during storage. Platelets change into different sizes and densities and differ in their biochemistry and functions. However, the correlation between structural heterogeneity and platelet autophagy is largely unknown. The aim of this study was to investigate the autophagy process in vitro, such as routine storage of platelets, and explore the role of reactive oxygen species (ROS) involved in the regulation of platelet autophagy. The ROS and autophagy levels of platelet concentrates from apheresis platelets were evaluated through flow cytometry. The expression levels of autophagy-associated proteins (LC3I, LC3II, Beclin1, Parkin, and PINK1) were measured via Western blot. All biomarkers were dynamically monitored for seven days. Moreover, the morphological characteristics of platelet morphology during storage were analyzed through transmission electron microscopy (TEM). Flow cytometry showed that the levels of total cell ROS and mitochondria ROS increased in the stored platelets. Together with the increase in mitochondrial ROS, the autophagy signal LC3 in the platelets was strongly amplified. The number of swollen platelets (large platelets) considerably increased, and that of autophagy signal LC3 was remarkably higher than that of the normal platelets. Western blot revealed that the expression levels of Beclin1 and LC3 II/LC3 I ratio were enhanced, whereas those of Parkin and PINK1 almost did not change during the seven days of storage. The existence of autophagosomes or autophagolysosomes in the platelets at the middle stage of platelet storage was observed via TEM. Our data demonstrated that the subpopulation of large (swollen) platelets exhibited different autophagy patterns. Furthermore, increased platelet autophagy was associated with mitochondrial ROS. These preliminary results suggest that swelling platelets have a higher autophagy pattern than normal platelets during storage.
Collapse
Affiliation(s)
- Lu Yu
- The Ningbo Central Blood Station, Ningbo, China
| | - Shifang Yu
- The Department of Transfusion Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlei He
- The Ningbo Central Blood Station, Ningbo, China
| | - Gang Deng
- The Ningbo Central Blood Station, Ningbo, China
| | - Qiang Li
- The Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Yang MY, Tu YF, Feng KK, Yin MD, Fang YF, Le JQ, Luo BY, Tan XR, Shao JW. A erythrocyte-platelet hybrid membrane coated biomimetic nanosystem based on ginsenosides and PFH combined with ultrasound for targeted delivery in thrombus therapy. Colloids Surf B Biointerfaces 2023; 229:113468. [PMID: 37515961 DOI: 10.1016/j.colsurfb.2023.113468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Thrombus is one of the culprits for global health problems. However, most current antithrombotic drugs are limited by restricted targeting ability and a high risk of systemic bleeding. A hybrid cell membrane-coated biomimetic nanosystem (PM/RM@PLGA@P/R) was constructed in this paper to fulfil the targeted delivery of ginsenoside (Rg1) and perfluorohexane (PFH). Poly lactic-co-glycolic acid (PLGA) is used as carriers to coat Rg1 and PFH. Thanks to the camouflage of erythrocyte membrane (RM) and platelet membrane (PM), the nanosystem in question possesses remarkable features including immune escape and self-targeting. Therefore, a compact nano-core with PLGA@P/R was formed, with a hybrid membrane covering the surface of the core, forming a "core-shell" structure. With its "core-shell" structure, this nanoparticle fancifully combines the advantages of both PFH (the low-intensity focused ultrasound (LIFU)-responsive phase-change thrombolysis) and Rg1(the antioxidant, anti-inflammatory and anticoagulant abilities). Meanwhile, PM/RM@PLGA@P/R nanoparticles exhibits superior in-vitro performance in terms of ROS scavenging, anticoagulant activity and immune escape compared with those without cell membranes (PLGA@P/R). Furthermore, in the animal experiment in which the tail vein thrombosis model was established by injecting k-carrageenan, the combined treatment of LIFU and PM/RM@PLGA@P/R showed a satisfactory antithrombotic efficiency (88.20 %) and a relatively higher biological safety level. This strategy provides new insights into the development of more effective and safer targeted biomimetic nanomedicines for antithrombotic treatments, possessing potential application in synergistic therapy field.
Collapse
Affiliation(s)
- Ming-Yue Yang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yi-Fan Tu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ke-Ke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Meng-Die Yin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yi-Fan Fang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Qing Le
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bang-Yue Luo
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xia-Rong Tan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
15
|
Lei W, Liu Z, Su Z, Meng P, Zhou C, Chen X, Hu Z, Xiao A, Zhou M, Huang L, Zhang Y, Qin X, Wang J, Zhu F, Nie J. Hyperhomocysteinemia potentiates megakaryocyte differentiation and thrombopoiesis via GH-PI3K-Akt axis. J Hematol Oncol 2023; 16:84. [PMID: 37501059 PMCID: PMC10373258 DOI: 10.1186/s13045-023-01481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is closely associated with thrombotic diseases such as myocardial infarction and stroke. Enhanced platelet activation was observed in animals and humans with HHcy. However, the influence of HHcy on thrombopoiesis remains largely unknown. Here, we reported increased platelet count (PLT) in mice and zebrafish with HHcy. In hypertensive patients (n = 11,189), higher serum level of total Hcy was observed in participants with PLT ≥ 291 × 109/L (full adjusted β, 0.59; 95% CI 0.14, 1.04). We used single-cell RNA sequencing (scRNA-seq) to characterize the impact of Hcy on transcriptome, cellular heterogeneity, and developmental trajectories of megakaryopoiesis from human umbilical cord blood (hUCB) CD34+ cells. Together with in vitro and in vivo analysis, we demonstrated that Hcy promoted megakaryocytes (MKs) differentiation via growth hormone (GH)-PI3K-Akt axis. Moreover, the effect of Hcy on thrombopoiesis is independent of thrombopoietin (TPO) because administration of Hcy also led to a significant increase of PLT in homozygous TPO receptor (Mpl) mutant mice and zebrafish. Administration of melatonin effectively reversed Hcy-induced thrombopoiesis in mice. ScRNA-seq showed that melatonin abolished Hcy-facilitated MK differentiation and maturation, inhibited the activation of GH-PI3K-Akt signaling. Our work reveals a previously unrecognized role of HHcy in thrombopoiesis and provides new insight into the mechanisms by which HHcy confers an increased thrombotic risk.Trial Registration clinicaltrials.gov Identifier: NCT00794885.
Collapse
Affiliation(s)
- Wenjing Lei
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangshou Avenue 1838, Guangzhou, 510515, Guangdong, People's Republic of China
- Division of Nephrology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Zhuoliang Liu
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangshou Avenue 1838, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zhiyuan Su
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangshou Avenue 1838, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Panpan Meng
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Chun Zhou
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangshou Avenue 1838, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiaomei Chen
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangshou Avenue 1838, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zheng Hu
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangshou Avenue 1838, Guangzhou, 510515, Guangdong, People's Republic of China
| | - An Xiao
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangshou Avenue 1838, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Miaomiao Zhou
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangshou Avenue 1838, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xianhui Qin
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangshou Avenue 1838, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Fengxin Zhu
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangshou Avenue 1838, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangshou Avenue 1838, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Zhang X, Yu S, Li X, Wen X, Liu S, Zu R, Ren H, Li T, Yang C, Luo H. Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacol Res 2023; 191:106777. [PMID: 37080257 DOI: 10.1016/j.phrs.2023.106777] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Oxidative stress (OS) is a chemical imbalance between an oxidant and an antioxidant, causing damage to redox signaling and control or causing molecular damage. Unbalanced oxidative metabolism can produce excessive reactive oxygen species (ROS). These excess ROS can cause drastic changes in platelet metabolism and further affect platelet function. It will also lead to an increase in platelet procoagulant phenotype and cell apoptosis, which will increase the risk of thrombosis. The creation of ROS and subsequent platelet activation, adhesion, and recruitment are then further encouraged in an auto-amplifying loop by ROS produced from platelets. Meanwhile, cancer cells produce a higher concentration of ROS due to their fast metabolism and high proliferation rate. However, excessive ROS can result in damage to and modification of cellular macromolecules. The formation of cancer and its progression is strongly associated with oxidative stress and the resulting oxidative damage. In addition, platelets are an important part of the tumor microenvironment, and there is a significant cross-communication between platelets and cancer cells. Cancer cells alter the activation status of platelets, their RNA spectrum, proteome, and other properties. The "cloaking" of cancer cells by platelets providing physical protection,avoiding destruction from shear stress and the attack of immune cells, promoting tumor cell invasion.We explored the vicious circle interaction between ROS, platelets, and cancer in this review, and we believe that ROS can play a stimulative role in tumor growth and metastasis through platelets.
Collapse
Affiliation(s)
- Xingmei Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Sisi Yu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China
| | - Xiaobo Li
- Molecular Diagnostic Laboratory of Department of Microbiology and Immunology, 3201 Hospital Affiliated to Medical College of Xi'an Jiaotong University, Hanzhong 723099, China
| | - Xiaoxia Wen
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Shan Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Ruiling Zu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China
| | - Hanxiao Ren
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Chaoguo Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China.
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China.
| |
Collapse
|
17
|
Succar BB, Saldanha-Gama RFG, Valle AS, Wermelinger LS, Barja-Fidalgo C, Kurtenbach E, Zingali RB. The recombinant disintegrin, jarastatin, inhibits platelet adhesion and endothelial cell migration. Toxicon 2022; 217:87-95. [PMID: 35981667 DOI: 10.1016/j.toxicon.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Integrins are transmembrane heterodimeric glycoproteins, present in most cell types that act as mechanoreceptors, connecting extracellular matrix proteins to the cytoskeleton of the cell, mediating several physiological and pathological processes. The disintegrins are peptides capable of modulating the activity of integrins, such as αIIbβ3, responsible for the platelet aggregation and αvβ3, related to angiogenesis. The aim of this study was to produce the recombinant disintegrin jarastatin (rJast), to evaluate its secondary structure and biological activity. rJast was expressed in the yeast Komagataella phaffii (earlier Pichia pastoris) purified using molecular exclusion chromatography and the internal sequence and molecular mass were confirmed by mass spectrometry. The yield was approximately 40 mg/L of culture. rJast inhibited platelet aggregation induced by 2-4 μM ADP, 10 nM thrombin, and 1 μg/mL collagen (IC50 of 244.8 nM, 166.3 nM and 223.5 nM, respectively). It also blocked the adhesion of platelets to collagen under continuous flow in approximately 60% when used 1 μM. We also evaluated the effect of rJast on HMEC-1 cells. rJast significantly inhibited the adhesion of these cells to vitronectin, as well as cell migration (IC50 1.77 μM) without changing the viability. Conclusions: rJast was successfully expressed with activity in human platelets aggregation identical to the native molecule. Also, rJast inhibits adhesion and migration of endothelial cells. Thus, being relevant for the development of anti-thrombotic and anti-angiogenic drugs.
Collapse
Affiliation(s)
- Barbara Barbosa Succar
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, And Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb) - Universidade Federal do Rio de Janeiro -UFRJ, RJ, Brazil
| | - Roberta F G Saldanha-Gama
- Laboratório de Farmacologia Celular e Molecular, IBRAG, Universidade do Estado do Rio de Janeiro - UERJ, RJ, Brazil
| | - Aline Sol Valle
- Laboratório de Biologia Molecular e Bioquímica de Proteínas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, RJ, Brazil
| | - Luciana Serrão Wermelinger
- Departamento de Análises Clínicas e Toxicológicas - Faculdade de Farmácia, Universidade Federal do Rio de Janeiro - UFRJ, RJ, Brazil
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, IBRAG, Universidade do Estado do Rio de Janeiro - UERJ, RJ, Brazil
| | - Eleonora Kurtenbach
- Laboratório de Biologia Molecular e Bioquímica de Proteínas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, RJ, Brazil
| | - Russolina Benedeta Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, And Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb) - Universidade Federal do Rio de Janeiro -UFRJ, RJ, Brazil.
| |
Collapse
|
18
|
Fernández-Rojas M, Rodríguez L, Trostchansky A, Fuentes E. Regulation of platelet function by natural bioactive compounds. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Li Y, Wang H, Xi Y, Sun A, Deng X, Chen Z, Fan Y. A New Mathematical Numerical Model to Evaluate the Risk of Thrombosis in Three Clinical Ventricular Assist Devices. Bioengineering (Basel) 2022; 9:bioengineering9060235. [PMID: 35735478 PMCID: PMC9219778 DOI: 10.3390/bioengineering9060235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Thrombosis is the main complication in patients supported with ventricular assist devices (VAD). Models that accurately predict the risk of thrombus formation in VADs are still lacking. When VADs are clinically assisted, their complex geometric configuration and high rotating speed inevitably generate complex flow fields and high shear stress. These non-physiological factors can damage blood cells and proteins, release coagulant factors and trigger thrombosis. In this study, a more accurate model for thrombus assessment was constructed by integrating parameters such as shear stress, residence time and coagulant factors, so as to accurately assess the probability of thrombosis in three clinical VADs. (2) Methods: A mathematical model was constructed to assess platelet activation and thrombosis within VADs. By solving the transport equation, the influence of various factors such as shear stress, residence time and coagulation factors on platelet activation was considered. The diffusion equation was applied to determine the role of activated platelets and substance deposition on thrombus formation. The momentum equation was introduced to describe the obstruction to blood flow when thrombus is formed, and finally a more comprehensive and accurate model for thrombus assessment in patients with VAD was obtained. Numerical simulations of three clinically VADs (CH-VAD, HVAD and HMII) were performed using this model. The simulation results were compared with experimental data on platelet activation caused by the three VADs. The simulated thrombogenic potential in different regions of MHII was compared with the frequency of thrombosis occurring in the regions in clinic. The regions of high thrombotic risk for HVAD and HMII observed in experiments were compared with the regions predicted by simulation. (3) Results: It was found that the percentage of activated platelets within the VAD obtained by solving the thrombosis model developed in this study was in high agreement with the experimental data (r² = 0.984), the likelihood of thrombosis in the regions of the simulation showed excellent correlation with the clinical statistics (r² = 0.994), and the regions of high thrombotic risk predicted by the simulation were consistent with the experimental results. Further study revealed that the three clinical VADs (CH-VAD, HVAD and HMII) were prone to thrombus formation in the inner side of the secondary flow passage, the clearance between cone and impeller, and the corner region of the inlet pipe, respectively. The risk of platelet activation and thrombus formation for the three VADs was low to high for CH-VAD, HVAD, and HM II, respectively. (4) Conclusions: In this study, a more comprehensive and accurate thrombosis model was constructed by combining parameters such as shear stress, residence time, and coagulation factors. Simulation results of thrombotic risk received with this model showed excellent correlation with experimental and clinical data. It is important for determining the degree of platelet activation in VAD and identifying regions prone to thrombus formation, as well as guiding the optimal design of VAD and clinical treatment.
Collapse
|
20
|
Smith LB, Duge E, Valenzuela-León PC, Brooks S, Martin-Martin I, Ackerman H, Calvo E. Novel salivary antihemostatic activities of long-form D7 proteins from the malaria vector Anopheles gambiae facilitate hematophagy. J Biol Chem 2022; 298:101971. [PMID: 35460690 PMCID: PMC9123270 DOI: 10.1016/j.jbc.2022.101971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/20/2022] Open
Abstract
To successfully feed on blood, hematophagous arthropods must combat the host's natural hemostatic and inflammatory responses. Salivary proteins of blood-feeding insects such as mosquitoes contain compounds that inhibit these common host defenses against blood loss, including vasoconstriction, platelet aggregation, blood clotting, pain, and itching. The D7 proteins are some of the most abundantly expressed proteins in female mosquito salivary glands and have been implicated in inhibiting host hemostatic and inflammatory responses. Anopheles gambiae, the primary vector of malaria, expresses three D7 long-form and five D7 short-form proteins. Previous studies have characterized the AngaD7 short-forms, but the D7 long-form proteins have not yet been characterized in detail. Here, we characterized the A. gambiae D7 long-forms by first determining their binding kinetics to hemostatic agonists such as leukotrienes and serotonin, which are potent activators of vasoconstriction, edema formation, and postcapillary venule leakage, followed by ex vivo functional assays. We found that AngaD7L1 binds leukotriene C4 and thromboxane A2 analog U-46619; AngaD7L2 weakly binds leukotrienes B4 and D4; and AngaD7L3 binds serotonin. Subsequent functional assays confirmed AngaD7L1 inhibits U-46619-induced platelet aggregation and vasoconstriction, and AngaD7L3 inhibits serotonin-induced platelet aggregation and vasoconstriction. It is therefore possible that AngaD7L proteins counteract host hemostasis by scavenging these mediators. Finally, we demonstrate that AngaD7L2 had a dose-dependent anticoagulant effect via the intrinsic coagulation pathway by interacting with factors XII, XIIa, and XI. The uncovering of these interactions in the present study will be essential for comprehensive understanding of the vector-host biochemical interface.
Collapse
Affiliation(s)
- Leticia Barion Smith
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emma Duge
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Paola Carolina Valenzuela-León
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Brooks
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hans Ackerman
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
21
|
Platelets, a Key Cell in Inflammation and Atherosclerosis Progression. Cells 2022; 11:cells11061014. [PMID: 35326465 PMCID: PMC8947573 DOI: 10.3390/cells11061014] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/21/2022] Open
Abstract
Platelets play important roles in thrombosis-dependent obstructive cardiovascular diseases. In addition, it has now become evident that platelets also participate in the earliest stages of atherosclerosis, including the genesis of the atherosclerotic lesion. Moreover, while the link between platelet activity and hemostasis has been well established, the role of platelets as modulators of inflammation has only recently been recognized. Thus, through their secretory activities, platelets can chemically attract a diverse repertoire of cells to inflammatory foci. Although monocytes and lymphocytes act as key cells in the progression of an inflammatory event and play a central role in plaque formation and progression, there is also evidence that platelets can traverse the endothelium, and therefore be a direct mediator in the progression of atherosclerotic plaque. This review provides an overview of platelet interactions and regulation in atherosclerosis.
Collapse
|
22
|
Yoon SS, Kwon HW, Shin JH, Rhee MH, Park CE, Lee DH. Anti-Thrombotic Effects of Artesunate through Regulation of cAMP and PI3K/MAPK Pathway on Human Platelets. Int J Mol Sci 2022; 23:1586. [PMID: 35163507 PMCID: PMC8836205 DOI: 10.3390/ijms23031586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/29/2022] Open
Abstract
Normal activation of platelets and their aggregation are crucial for proper hemostasis. It appears that excessive or abnormal aggregation of platelets may bring about cardiovascular diseases such as stroke, atherosclerosis, and thrombosis. For this reason, finding a substance that can regulate platelet aggregation or suppress aggregation will aid in the prevention and treatment of cardiovascular diseases. Artesunate is a compound extracted from the plant roots of Artemisia or Scopolia, and its effects have shown to be promising in areas of anticancer and Alzheimer's disease. However, the role and mechanisms by which artesunate affects the aggregation of platelets and the formation of a thrombus are currently not understood. This study examines the ways artesunate affects the aggregation of platelets and the formation of a thrombus on platelets induced by U46619. As a result, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) production were increased significantly by artesunate relative to the doses, as well as phosphorylated vasodilator-stimulated phosphoprotein (VASP) and inositol 1,4,5-trisphosphate receptor (IP3R), substrates to cAMP-dependent kinase and cGMP-dependent kinase, in a significant manner. The Ca2+, normally mobilized from the dense tubular system, was inhibited due to IP3R phosphorylation from artesunate, and phosphorylated VASP aided in inhibiting platelet activity via αIIb/β3 platelet membrane inactivation and inhibiting fibrinogen binding. In addition, MAPK and PI3K/Akt phosphorylation was inhibited via artesunate in a significant manner, causing the production of TXA2 and intracellular granular secretion (serotonin and ATP release) to be reduced. Therefore, we suggest that artesunate has value as a substance that inhibits platelet aggregation and thrombus formation through an antiplatelet mechanism.
Collapse
Affiliation(s)
- Shin-Sook Yoon
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan 31020, Korea; (S.-S.Y.); (C.-E.P.)
| | - Hyuk-Woo Kwon
- Department of Biomedical Laboratory Science, Far East University, Eumseong 27601, Korea;
| | - Jung-Hae Shin
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (J.-H.S.); (M.H.R.)
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (J.-H.S.); (M.H.R.)
| | - Chang-Eun Park
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan 31020, Korea; (S.-S.Y.); (C.-E.P.)
- Molecular Diagnostics Research Institute, Namseoul University, Cheonan 31020, Korea
| | - Dong-Ha Lee
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan 31020, Korea; (S.-S.Y.); (C.-E.P.)
- Molecular Diagnostics Research Institute, Namseoul University, Cheonan 31020, Korea
| |
Collapse
|
23
|
Irfan M, Kwon TH, Kwon HW, Rhee MH. Pharmacological actions of Dieckol on modulation of platelet functions and thrombus formation via integrin α IIbβ 3 and cAMP signaling. Pharmacol Res 2022; 177:106088. [PMID: 35038555 DOI: 10.1016/j.phrs.2022.106088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/29/2021] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE Dieckol is a phlorotannin that can be found in seaweeds, particularly in Eisenia bicyclis (brown algae) and is known to have anti-oxidant, anti-inflammatory, and anti-microbial properties. It also possesses anti-thrombotic and pro-fibrinolytic activities; however, the mechanistic aspects of anti-platelet and anti-thrombotic activity are yet to be explored. STUDY DESIGN and Methodology: We investigated the pharmacological effects of dieckol on the modulation of platelet functions using human, rat, and mice models. Inhibitory effects of dieckol on platelet aggregation were assessed using platelet-rich plasma and washed platelets, followed by measurement of dense granule secretions, fibrinogen binding to integrin αIIbβ3, fibronectin adhesion assay, platelet spreading on immobilized fibrinogen, and clot retraction. Cyclic nucleotide signaling events were evaluated, such as cyclic-AMP production followed by vasodilator-stimulated phosphoprotein (VASP) stimulation. The in vivo anti-thrombotic potential was evaluated in mice using an acute pulmonary thromboembolism model and tail bleeding assay. RESULTS Dieckol markedly inhibited platelet aggregation and granule secretion; furthermore, it down-regulated integrin αIIbβ3-mediated inside-out and outside-in signaling events, including platelet adhesion, spreading, and clot retraction, whereas it upregulated the cAMP-PKA-VASP pathway. Dieckol-treated mice significantly survived the thrombosis than vehicle treated mice, without affecting hemostasis. Histological examinations of lungs revealed minimum occluded vasculature in dieckol-treated mice. CONCLUSION Dieckol possesses strong anti-platelet and anti-thrombotic properties and is a potential therapeutic drug candidate to treat and prevent platelet-related cardiovascular disorders.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA
| | - Tae-Hyung Kwon
- Chuncheon Bio Industry Foundation, Chuncheon 24232, Republic of Korea
| | - Hyuk-Woo Kwon
- Department of Biomedical Laboratory Science, Far East University, Eumseong 27601, Republic of Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
24
|
Uncomplicated Plasmodium vivax malaria: mapping the proteome from circulating platelets. Clin Proteomics 2022; 19:1. [PMID: 34991449 PMCID: PMC8903537 DOI: 10.1186/s12014-021-09337-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 12/21/2021] [Indexed: 01/07/2023] Open
Abstract
Background Thrombocytopenia is frequent in Plasmodium vivax malaria but the role of platelets in pathogenesis is unknown. Our study explores the platelet (PLT) proteome from uncomplicated P. vivax patients, to fingerprint molecular pathways related to platelet function. Plasma levels of Platelet factor 4 (PF4/CXCL4) and Von Willebrand factor (VWf), as well as in vitro PLTs—P. vivax infected erythrocytes (Pv-IEs) interactions were also evaluated to explore the PLT response and effect on parasite development. Methods A cohort of 48 patients and 25 healthy controls were enrolled. PLTs were purified from 5 patients and 5 healthy controls for Liquid Chromatography–Mass spectrometry (LC–MS/MS) analysis. Plasma levels of PF4/CXCL4 and VWf were measured in all participants. Additionally, P. vivax isolates (n = 10) were co-cultured with PLTs to measure PLT activation by PF4/CXCL4 and Pv-IE schizonts formation by light microscopy. Results The proteome from uncomplicated P. vivax patients showed 26 out of 215 proteins significantly decreased. PF4/CXCL4 was significantly decreased followed by other proteins involved in platelet activation, cytoskeletal remodeling, and endothelial adhesion, including glycoprotein V that was significantly decreased in thrombocytopenic patients. In contrast, acute phase proteins, including SERPINs and Amyloid Serum A1 were increased. High levels of VWf in plasma from patients suggested endothelial activation while PF4/CXCL4 plasma levels were similar between patients and controls. Interestingly, high levels of PF4/CXCL4 were released from PLTs—Pv-IEs co-cultures while Pv-IEs schizont formation was inhibited. Conclusions The PLT proteome analyzed in this study suggests that PLTs actively respond to P. vivax infection. Altogether, our findings suggest important roles of PF4/CXCL4 during uncomplicated P. vivax infection through a possible intracellular localization. Our study shows that platelets are active responders to P. vivax infection, inhibiting intraerythrocytic parasite development. Future studies are needed to further investigate the molecular pathways of interaction between platelet proteins found in this study and host response, which could affect parasite control as well as disease progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09337-7.
Collapse
|
25
|
Elevated platelet-leukocyte complexes are associated with, but dispensable for myocardial ischemia-reperfusion injury. Basic Res Cardiol 2022; 117:61. [PMID: 36383299 PMCID: PMC9668925 DOI: 10.1007/s00395-022-00970-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
AIMS P-selectin is an activatable adhesion molecule on platelets promoting platelet aggregation, and platelet-leukocyte complex (PLC) formation. Increased numbers of PLC are circulating in the blood of patients shortly after acute myocardial infarction and predict adverse outcomes. These correlations led to speculations about whether PLC may represent novel therapeutic targets. We therefore set out to elucidate the pathomechanistic relevance of PLC in myocardial ischemia and reperfusion injury. METHODS AND RESULTS By generating P-selectin deficient bone marrow chimeric mice, the post-myocardial infarction surge in PLC numbers in blood was prevented. Yet, intravital microscopy, flow cytometry and immunohistochemical staining, echocardiography, and gene expression profiling showed unequivocally that leukocyte adhesion to the vessel wall, leukocyte infiltration, and myocardial damage post-infarction were not altered in response to the lack in PLC. CONCLUSION We conclude that myocardial infarction associated sterile inflammation triggers PLC formation, reminiscent of conserved immunothrombotic responses, but without PLC influencing myocardial ischemia and reperfusion injury in return. Our experimental data do not support a therapeutic concept of selectively targeting PLC formation in myocardial infarction.
Collapse
|
26
|
Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects. Biomaterials 2021; 280:121301. [PMID: 34922270 DOI: 10.1016/j.biomaterials.2021.121301] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
Abstract
The need for the development of load-bearing, absorbable wound closure devices is driving the research for novel materials that possess both good biodegradability and superior mechanical characteristics. Biodegradable metals (BMs), namely: magnesium (Mg), zinc (Zn) and iron (Fe), which are currently being investigated for absorbable vascular stent and orthopaedic implant applications, are slowly gaining research interest for the fabrication of wound closure devices. The current review presents an overview of the traditional and novel BM-based intracutaneous and transcutaneous wound closure devices, and identifies Zn as a promising substitute for the traditional materials used in the fabrication of absorbable load-bearing sutures, internal staples, and subcuticular staples. In order to further strengthen Zn to be used in highly stressed situations, nutrient elements (NEs), including calcium (Ca), Mg, Fe, and copper (Cu), are identified as promising alloying elements for the strengthening of Zn-based wound closure device material that simultaneously provide potential therapeutic benefit to the wound healing process during implant biodegradation process. The influence of NEs on the fundamental characteristics of biodegradable Zn are reviewed and critically assessed with regard to the mechanical properties and biodegradability requirements of different wound closure devices. The opportunities and challenges in the development of Zn-based wound closure device materials are presented to inspire future research on this rapidly growing field.
Collapse
|
27
|
Zhang W, Li J, Liang J, Qi X, Tian J, Liu J. Coagulation in Lymphatic System. Front Cardiovasc Med 2021; 8:762648. [PMID: 34901222 PMCID: PMC8652051 DOI: 10.3389/fcvm.2021.762648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
The lymphatic system maintains homeostasis of the internal environment between the cells in tissues and the blood circulation. The coagulation state of lymph is determined by conditions of coagulation factors and lymphatic vessels. Internal obliteration, external compression or abnormally increased lymphatic pressure may predispose to localized lymphatic coagulation. In physiological conditions, an imbalance of antithrombin and thrombokinase reduces lymphatic thrombosis. However, the release of factor X by lymphatic endothelium injury may trigger coagulation casacade, causing blockage of lymphatic vessels and lymphedema. Heterogeneity of lymphatic vessels in various tissues may lead to distinct levels and patterns of coagulation in specific lymphatic vessels. The quantitative and qualitative measurement of clotting characteristic reveals longer time for clotting to occur in the lymph than in the blood. Cancer, infections, amyloidosis and lymph node dissection may trigger thrombosis in the lymphatic vessels. In contrast to venous or arterial thrombosis, lymphatic thrombosis has rarely been reported, and its actual prevalence is likely underestimated. In this review, we summarize the mechanisms of coagulation in lymphatic system, and discuss the lymphatic thrombosis-related diseases.
Collapse
Affiliation(s)
- Wendi Zhang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,Medical Research Center, Shandong Medicine and Health Key Laboratory of Microvascular Medicine, Institute of Microvascular Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiang Li
- Qeeloo Medical College, Shandong University, Jinan, China
| | - Jiangjiu Liang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiumei Qi
- Department of Education, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China
| | - Jinghui Tian
- School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Ju Liu
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,Medical Research Center, Shandong Medicine and Health Key Laboratory of Microvascular Medicine, Institute of Microvascular Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
28
|
Gong W, Sun M, Guo X, Liu Y, Li H, Xie L, Li X. Nanowired dual-electrodes surface to monitor cerebral ischemia by current-volt measurements. 3 Biotech 2021; 11:502. [PMID: 34881165 PMCID: PMC8599545 DOI: 10.1007/s13205-021-03048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/31/2021] [Indexed: 11/27/2022] Open
Abstract
The level of clotting protein 'factor IX' (FIX) is highly associated with cerebral ischemia, and this research work has developed a sensitive detection of FIX on dielectrode sensor by current-volt measurement. Sensing area was grown with zinc oxide nanowire to attach more probe for FIX interaction. Aptamer was utilized as the detection probe and attached on the sensing electrode surface through amine-aldehyde chemical linkage. In addition, biotin-streptavidin interaction was utilized to attach the higher number aptamers on the electrode surface connected with dual-probe station. FIX detection limit was found as 10 fM in the phosphate buffer saline spiked samples and 1:320 dilution of human serum. The linear ranges were as 10 fM to 100 pM and 1:320 to 1:80, respectively. With a good determination co-efficient [y = 2.6813x - 3.8467; R 2 = 0.9479] this biosensing strategy helps to quantify FIX and monitor the condition of cerebral ischemia.
Collapse
Affiliation(s)
- Wei Gong
- Department of Neurology 2, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| | - Meilin Sun
- Department of Neurology 4, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| | - Xiaoling Guo
- Department of Neurology, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| | - Yalin Liu
- Department of Neurology 2, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| | - Hongsheng Li
- Department of Neurology 2, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| | - Lanlan Xie
- Department of Neurology 2, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| | - Xipeng Li
- Department of Neurology 2, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| |
Collapse
|
29
|
Platelet Function, Role in Thrombosis, Inflammation, and Consequences in Chronic Myeloproliferative Disorders. Cells 2021; 10:cells10113034. [PMID: 34831257 PMCID: PMC8616365 DOI: 10.3390/cells10113034] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Platelets are conventionally defined as playing a vital role in homeostasis and thrombosis. This role has over the years transformed as knowledge regarding platelets has expanded to include inflammation, cancer progression, and metastasis. Upon platelet activation and subsequent aggregation, platelets release a host of various factors, including numerous pro-inflammatory factors. These pro-inflammatory factors are recruiters and activators of leukocytes, aiding in platelets’ immune regulating function and inflammatory function. These various platelet functions are interrelated; activation of the inflammatory function results in thrombosis and, moreover, in various disease conditions, can result in worsened or chronic pathogenesis, including cancer. The role and contribution of platelets in a multitude of pathophysiological events during hemostasis, thrombosis, inflammation, cancer progression, and metastasis is an important focus for ongoing research. Platelet activation as discussed here is present in all platelet functionalities and can result in a multitude of factors and signaling pathways being activated. The cross-talk between inflammation, cancer, and platelets is therefore an ideal target for research and treatment strategies through antiplatelet therapy. Despite the knowledge implicating platelets in these mentioned processes, there is, nevertheless, limited literature available on the involvement and impact of platelets in many diseases, including myeloproliferative neoplasms. The extensive role platelets play in the processes discussed here is irrefutable, yet we do not fully understand the complete interrelation and extent of these processes.
Collapse
|
30
|
García-Villaseñor E, Bojalil-Álvarez L, Murrieta-Álvarez I, Cantero-Fortiz Y, Ruiz-Delgado GJ, Ruiz-Argüelles GJ. Primary Thrombophilia XVI: A Look at the Genotype of the Sticky Platelet Syndrome Phenotype. Clin Appl Thromb Hemost 2021; 27:10760296211044212. [PMID: 34617458 PMCID: PMC8674482 DOI: 10.1177/10760296211044212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The sticky platelet syndrome (SPS) was described by Mammen in 1983. Since then,
scientists in several countries have identified the condition and published
cases or series of patients, thus enabling the description of the prevalence of
the inherited condition, its salient clinical features, and the treatment of the
disease. The diagnosis of the SPS phenotype requires fresh blood samples and
special equipment which is not available in all coagulation laboratories. In the
era of molecular biology, up to now it has not been possible to define a clear
association of the SPS phenotype with a specific molecular marker. Some
molecular changes which have been described in platelet proteins in some persons
with the phenotype of the SPS are here discussed. Nowadays, the SPS phenotype
may be considered as a risk factor for thrombosis and most cases of the SPS
developing vaso-occlussive episodes are the result of its coexistence with other
thrombosis-prone conditions, some of the inherited and some of them acquired,
thus leading to the concept of multifactorial thrombophilia. Ignoring all these
evidence-based concepts is inappropriate, same as stating that the SPS is a
nonentity simply because not all laboratories are endowed with adequate
equipment to support the diagnosis.
Collapse
Affiliation(s)
- Elizabeth García-Villaseñor
- Centro de Hematología y Medicina Interna de Puebla, Puebla, México.,3972Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Lorena Bojalil-Álvarez
- Centro de Hematología y Medicina Interna de Puebla, Puebla, México.,27861Universidad Popular Autónoma del Estado de Puebla, Puebla, México
| | - Iván Murrieta-Álvarez
- Centro de Hematología y Medicina Interna de Puebla, Puebla, México.,27861Universidad Popular Autónoma del Estado de Puebla, Puebla, México
| | - Yahveth Cantero-Fortiz
- Centro de Hematología y Medicina Interna de Puebla, Puebla, México.,27806Universidad de las Américas Puebla, Puebla, México
| | - Guillermo J Ruiz-Delgado
- Centro de Hematología y Medicina Interna de Puebla, Puebla, México.,27861Universidad Popular Autónoma del Estado de Puebla, Puebla, México.,56079Laboratorios Clínicos de Puebla, Puebla, México
| | - Guillermo J Ruiz-Argüelles
- Centro de Hematología y Medicina Interna de Puebla, Puebla, México.,27861Universidad Popular Autónoma del Estado de Puebla, Puebla, México.,56079Laboratorios Clínicos de Puebla, Puebla, México
| |
Collapse
|
31
|
Al Subayyil A, Basmaeil YS, Alenzi R, Khatlani T. Human Placental Mesenchymal Stem/Stromal cells (pMSCs) inhibit agonist-induced platelet functions reducing atherosclerosis and thrombosis phenotypes. J Cell Mol Med 2021; 25:9268-9280. [PMID: 34535958 PMCID: PMC8500971 DOI: 10.1111/jcmm.16848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem/stromal cells isolated from human term placenta (pMSCs) have potential to treat clinically manifested inflammatory diseases. Atherosclerosis is a chronic inflammatory disease, and platelets play a contributory role towards its pathogenesis. During transplantation, MSCs interact with platelets and exert influence on their functional outcome. In this study, we investigated the consequences of interaction between pMSCs and platelets, and its impact on platelet-mediated atherosclerosis in vitro. Human platelets were treated with various types of pMSCs either directly or with their secretome, and their effect on agonist-mediated platelet activation and functional characteristics were evaluated. Human umbilical vein endothelial cells (HUVECs) were used as control. The impact of pMSCs treatment on platelets was evaluated by the expression of activation markers and by platelet functional analysis. A subset of pMSCs reduced agonist-induced activation of platelets, both via direct contact and with secretome treatments. Decrease in platelet activation translated into diminished spreading, limited adhesion and minimized aggregation. In addition, pMSCs decreased oxidized LDL (ox-LDL)-inducedCD36-mediated platelet activation, establishing their protective role in atherosclerosis. Gene expression and protein analysis show that pMSCs express pro- and anti-thrombotic proteins, which might be responsible for the modulation of agonist-induced platelet functions. These data suggest the therapeutic benefits of pMSCs in atherosclerosis.
Collapse
Affiliation(s)
- Abdullah Al Subayyil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Yasser S Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Reem Alenzi
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Jansen EE, Braun A, Jansen P, Hartmann M. Platelet-Therapeutics to Improve Tissue Regeneration and Wound Healing-Physiological Background and Methods of Preparation. Biomedicines 2021; 9:biomedicines9080869. [PMID: 34440073 PMCID: PMC8389548 DOI: 10.3390/biomedicines9080869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022] Open
Abstract
Besides their function in primary hemostasis, platelets are critically involved in the physiological steps leading to wound healing and tissue repair. For this purpose, platelets have a complex set of receptors allowing the recognition, binding, and manipulation of extracellular structures and the detection of pathogens and tissue damage. Intracellular vesicles contain a huge set of mediators that can be released to the extracellular space to coordinate the action of platelets as other cell types for tissue repair. Therapeutically, the most frequent use of platelets is the intravenous application of platelet concentrates in case of thrombocytopenia or thrombocytopathy. However, there is increasing evidence that the local application of platelet-rich concentrates and platelet-rich fibrin can improve wound healing and tissue repair in various settings in medicine and dentistry. For the therapeutic use of platelets in wound healing, several preparations are available in clinical practice. In the present study we discuss the physiology and the cellular mechanisms of platelets in hemostasis and wound repair, the methods used for the preparation of platelet-rich concentrates and platelet-rich fibrin, and highlight some examples of the therapeutic use in medicine and dentistry.
Collapse
Affiliation(s)
- Ellen E. Jansen
- Clinic for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, 52074 Aachen, Germany; (E.E.J.); (A.B.); (P.J.)
| | - Andreas Braun
- Clinic for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, 52074 Aachen, Germany; (E.E.J.); (A.B.); (P.J.)
| | - Patrick Jansen
- Clinic for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, 52074 Aachen, Germany; (E.E.J.); (A.B.); (P.J.)
| | - Matthias Hartmann
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, 45122 Essen, Germany
- Correspondence:
| |
Collapse
|
33
|
Irfan M, Lee YY, Lee KJ, Kim SD, Rhee MH. Comparative antiplatelet and antithrombotic effects of red ginseng and fermented red ginseng extracts. J Ginseng Res 2021; 46:387-395. [PMID: 35600768 PMCID: PMC9120646 DOI: 10.1016/j.jgr.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/10/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Muhammad Irfan
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuan Yee Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ki-Ja Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Dae Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Corresponding author. Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
34
|
Zhou K, Xia Y, Yang M, Xiao W, Zhao L, Hu R, Shoaib KM, Yan R, Dai K. Actin polymerization regulates glycoprotein Ibα shedding. Platelets 2021; 33:381-389. [PMID: 33979555 DOI: 10.1080/09537104.2021.1922882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Glycoprotein (GP) Ibα shedding mediated by ADAM17 (a disintegrin and metalloproteinase 17) plays an important role in negatively regulating platelet function and thrombus formation. However, the mechanism of GPIbα shedding remains elusive. Here, we show that jasplakinolide (an actin-polymerizing peptide)-induced actin polymerization results in GPIbα shedding and impairs platelet function. Thrombin and A23187-induced GPIbα shedding is increased by jasplakinolide; in contrast, GPIbα shedding is reduced by a depolymerization regent (cytochalasin B). We find that actin polymerization activates calpain leading to filamin A hydrolyzation. We further demonstrate that the interaction of filamin A with the cytoplasmic domain of GPIbα plays a critical role in regulating actin polymerization-induced GPIbα shedding. Taken together, these data demonstrate that actin polymerization regulates ADAM17-mediated GPIbα shedding, suggesting a novel strategy to negatively regulate platelet function.
Collapse
Affiliation(s)
- Kangxi Zhou
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Yue Xia
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Mengnan Yang
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Weiling Xiao
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Lili Zhao
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Renping Hu
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Khan Muhammad Shoaib
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Rong Yan
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Kesheng Dai
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| |
Collapse
|
35
|
Zhu GX, Zuo JL, Xu L, Li SQ. Ginsenosides in vascular remodeling: Cellular and molecular mechanisms of their therapeutic action. Pharmacol Res 2021; 169:105647. [PMID: 33964471 DOI: 10.1016/j.phrs.2021.105647] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
Evidence is mounting that abnormal vascular remodeling (VR) is a vital pathological event that precedes many cardiovascular diseases (CVD). This provides us with a new research perspective that VR can be a pivotal target for CVD treatment and prevention. However, the current drugs for treating CVD do not fundamentally reverse VR and repair vascular function. The reason may be that a complicated regulatory network is formed between the various signaling pathways involved in VR. Recently, ginsenoside, the main active substance of ginseng, has become increasingly the focus of many researchers for its multiple targets, multiple pathways, and few side effects. Several data have revealed that ginsenosides can improve VR caused by vasodilation dysfunction, abnormal vascular structure and blood pressure. This review is intended to discuss the therapeutic effects and mechanisms of ginsenosides in some diseases involved in VR. Besides, we herein also give a new and contradictory insight into intracellular and molecular signaling of ginsenosides in all kinds of vascular cells. Most importantly, we also discuss the feasibility of ginsenosides Rb1/Rg1/Rg3 in drug development by combining the pharmacodynamics and pharmacokinetics of ginsenosides, and provide a pharmacological basis for the development of ginsenosides in clinical applications.
Collapse
Affiliation(s)
- Guang-Xuan Zhu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China.
| | - Jian-Li Zuo
- College of Pharmacy, Chongqing Medical University, Chongqing 410016, China
| | - Lin Xu
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Shu-Qing Li
- The Second Xiangya Hospital of Central South University Shenzhen Hospital, Shenzhen, Guangdong 518067, China
| |
Collapse
|
36
|
Antiplatelet and Antithrombotic Effects of Epimedium koreanum Nakai. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7071987. [PMID: 33953788 PMCID: PMC8068545 DOI: 10.1155/2021/7071987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/26/2021] [Accepted: 04/03/2021] [Indexed: 12/02/2022]
Abstract
Background and Objective. Epimedium koreanum Nakai is a medicinal plant known for its health beneficial effects on impotence, arrhythmia, oxidation, aging, osteoporosis, and cardiovascular diseases. However, there is no report available that shows its effects on platelet functions. Here, we elucidated antiplatelet and antithrombotic effects of ethyl acetate fraction of E. koreanum. Methodology. We analyzed the antiplatelet properties using standard in vitro and in vivo techniques, such as light transmission aggregometry, scanning electron microscopy, intracellular calcium mobilization measurement, dense granule secretion, and flow cytometry to assess integrin αIIbβ3 activation, clot retraction, and Western blot, on washed platelets. The antithrombotic effects of E. koreanum were assessed by arteriovenous- (AV-) shunt model in rats, and its effects on hemostasis were analyzed by tail bleeding assay in mice. Key Results. E. koreanum inhibited platelet aggregation in agonist-stimulated human and rat washed platelets, and it also reduced calcium mobilization, ATP secretion, and TXB2 formation. Fibrinogen binding, fibronectin adhesion, and clot retraction by attenuated integrin αIIbβ3-mediated inside-out and outside-in signaling were also decreased. Reduced phosphorylation of extracellular signal-regulated kinases (ERK), Akt, PLCγ2, and Src was observed. Moreover, the fraction inhibited thrombosis. HPLC results revealed that the fraction predominantly contained icariin. Conclusion and Implications. E. koreanum inhibited platelet aggregation and thrombus formation by attenuating calcium mobilization, ATP secretion, TXB2 formation, and integrin αIIbβ3 activation. Therefore, it may be considered as a potential candidate to treat and prevent platelet-related cardiovascular disorders.
Collapse
|
37
|
Obermann WMJ, Brockhaus K, Eble JA. Platelets, Constant and Cooperative Companions of Sessile and Disseminating Tumor Cells, Crucially Contribute to the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:674553. [PMID: 33937274 PMCID: PMC8085416 DOI: 10.3389/fcell.2021.674553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Although platelets and the coagulation factors are components of the blood system, they become part of and contribute to the tumor microenvironment (TME) not only within a solid tumor mass, but also within a hematogenous micrometastasis on its way through the blood stream to the metastatic niche. The latter basically consists of blood-borne cancer cells which are in close association with platelets. At the site of the primary tumor, the blood components reach the TME via leaky blood vessels, whose permeability is increased by tumor-secreted growth factors, by incomplete angiogenic sprouts or by vasculogenic mimicry (VM) vessels. As a consequence, platelets reach the primary tumor via several cell adhesion molecules (CAMs). Moreover, clotting factor VII from the blood associates with tissue factor (TF) that is abundantly expressed on cancer cells. This extrinsic tenase complex turns on the coagulation cascade, which encompasses the activation of thrombin and conversion of soluble fibrinogen into insoluble fibrin. The presence of platelets and their release of growth factors, as well as fibrin deposition changes the TME of a solid tumor mass substantially, thereby promoting tumor progression. Disseminating cancer cells that circulate in the blood stream also recruit platelets, primarily by direct cell-cell interactions via different receptor-counterreceptor pairs and indirectly by fibrin, which bridges the two cell types via different integrin receptors. These tumor cell-platelet aggregates are hematogenous micrometastases, in which platelets and fibrin constitute a particular TME in favor of the cancer cells. Even at the distant site of settlement, the accompanying platelets help the tumor cell to attach and to grow into metastases. Understanding the close liaison of cancer cells with platelets and coagulation factors that change the TME during tumor progression and spreading will help to curb different steps of the metastatic cascade and may help to reduce tumor-induced thrombosis.
Collapse
Affiliation(s)
| | | | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
38
|
Derrone Inhibits Platelet Aggregation, Granule Secretion, Thromboxane A 2 Generation, and Clot Retraction: An In Vitro Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8855980. [PMID: 33777164 PMCID: PMC7972850 DOI: 10.1155/2021/8855980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
Cudrania tricuspidata (C. tricuspidata) is widespread throughout East Asia and in China and Korea, and it is widely used as a traditional remedy against eczema, mumps, and tuberculosis. With regard to the aforementioned medical efficacy, various studies are continuously being conducted, and it has been reported that C. tricuspidata extract has various actions against inflammation, diabetes, obesity, and tumors. Therefore, we evaluated antiplatelet effects using derrone in C. tricuspidata. We examined the effect of derrone on the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and inositol 1, 4, 5-triphosphate receptor I (IP3RI), and on the dephosphorylation of cytosolic phospholipase A2 (cPLA2), mitogen-activated protein kinases p38 (p38MAPK), and Akt, which affects platelet function and thrombus formation. Various agonists-induced human platelets were inhibited by derrone without cytotoxicity, and it also decreased the intracellular calcium level through the signaling molecule phosphorylations. In addition, derrone inhibited glycoprotein IIb/IIIa (αIIb/β3) affinity. Thus, in the present study, derrone suppressed human platelet aggregation and thrombin-induced clot formation.
Collapse
|
39
|
Wang S, Griffith BP, Wu ZJ. Device-Induced Hemostatic Disorders in Mechanically Assisted Circulation. Clin Appl Thromb Hemost 2021; 27:1076029620982374. [PMID: 33571008 PMCID: PMC7883139 DOI: 10.1177/1076029620982374] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanically assisted circulation (MAC) sustains the blood circulation in the body of a patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) or on ventricular assistance with a ventricular assist device (VAD) or on extracorporeal membrane oxygenation (ECMO) with a pump-oxygenator system. While MAC provides short-term (days to weeks) support and long-term (months to years) for the heart and/or lungs, the blood is inevitably exposed to non-physiological shear stress (NPSS) due to mechanical pumping action and in contact with artificial surfaces. NPSS is well known to cause blood damage and functional alterations of blood cells. In this review, we discussed shear-induced platelet adhesion, platelet aggregation, platelet receptor shedding, and platelet apoptosis, shear-induced acquired von Willebrand syndrome (AVWS), shear-induced hemolysis and microparticle formation during MAC. These alterations are associated with perioperative bleeding and thrombotic events, morbidity and mortality, and quality of life in MCS patients. Understanding the mechanism of shear-induce hemostatic disorders will help us develop low-shear-stress devices and select more effective treatments for better clinical outcomes.
Collapse
Affiliation(s)
- Shigang Wang
- Department of Surgery, 12264University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bartley P Griffith
- Department of Surgery, 12264University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhongjun J Wu
- Department of Surgery, 12264University of Maryland School of Medicine, Baltimore, MD, USA.,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
40
|
Comparison of laboratory parameters between children with and without febrile convulsion. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.740090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Badria AF, Koutsoukos PG, Mavrilas D. Decellularized tissue-engineered heart valves calcification: what do animal and clinical studies tell us? JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:132. [PMID: 33278023 PMCID: PMC7719105 DOI: 10.1007/s10856-020-06462-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases are the first cause of death worldwide. Among different heart malfunctions, heart valve failure due to calcification is still a challenging problem. While drug-dependent treatment for the early stage calcification could slow down its progression, heart valve replacement is inevitable in the late stages. Currently, heart valve replacements involve mainly two types of substitutes: mechanical and biological heart valves. Despite their significant advantages in restoring the cardiac function, both types of valves suffered from serious drawbacks in the long term. On the one hand, the mechanical one showed non-physiological hemodynamics and the need for the chronic anticoagulation therapy. On the other hand, the biological one showed stenosis and/or regurgitation due to calcification. Nowadays, new promising heart valve substitutes have emerged, known as decellularized tissue-engineered heart valves (dTEHV). Decellularized tissues of different types have been widely tested in bioprosthetic and tissue-engineered valves because of their superior biomechanics, biocompatibility, and biomimetic material composition. Such advantages allow successful cell attachment, growth and function leading finally to a living regenerative valvular tissue in vivo. Yet, there are no comprehensive studies that are covering the performance of dTEHV scaffolds in terms of their efficiency for the calcification problem. In this review article, we sought to answer the question of whether decellularized heart valves calcify or not. Also, which factors make them calcify and which ones lower and/or prevent their calcification. In addition, the review discussed the possible mechanisms for dTEHV calcification in comparison to the calcification in the native and bioprosthetic heart valves. For this purpose, we did a retrospective study for all the published work of decellularized heart valves. Only animal and clinical studies were included in this review. Those animal and clinical studies were further subcategorized into 4 categories for each depending on the effect of decellularization on calcification. Due to the complex nature of calcification in heart valves, other in vitro and in silico studies were not included. Finally, we compared the different results and summed up all the solid findings of whether decellularized heart valves calcify or not. Based on our review, the selection of the proper heart valve tissue sources (no immunological provoking residues), decellularization technique (no damaged exposed residues of the decellularized tissues, no remnants of dead cells, no remnants of decellularizing agents) and implantation techniques (avoiding suturing during the surgical implantation) could provide a perfect anticalcification potential even without in vitro cell seeding or additional scaffold treatment.
Collapse
Affiliation(s)
- Adel F Badria
- Department of Fiber and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
- Department of Mechanical Engineering and Aeronautics, Division of Applied Mechanics, Technology of Materials and Biomechanics, University of Patras, Patras, Greece.
| | - Petros G Koutsoukos
- Department of Chemical Engineering, University of Patras, Patras University Campus, 26504, Patras, Greece
| | - Dimosthenis Mavrilas
- Department of Mechanical Engineering and Aeronautics, Division of Applied Mechanics, Technology of Materials and Biomechanics, University of Patras, Patras, Greece
| |
Collapse
|
42
|
Han X, Li H, Zhou D, Chen Z, Gu Z. Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics. Acc Chem Res 2020; 53:2521-2533. [PMID: 33073988 DOI: 10.1021/acs.accounts.0c00339] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immune checkpoint blockade (ICB) therapy elicits antitumor response by inhibiting immune suppressor components, including programmed cell death protein 1 and its ligand (PD-1/PD-L1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4). Despite improved therapeutic efficacy, the clinical response rate is still unsatisfactory as revealed by the fact that only a minority of patients experience durable benefits. Additionally, "off-target" effects after systemic administration remain challenging for ICB treatment. To this end, the local and targeted delivery of ICB agents instead could be a potential solution to maximize the therapeutic outcomes while minimizing the side effects.In this Account, our recent studies directed at the development of different strategies for the local and targeted delivery of ICB agents are discussed. For example, transdermal microneedle patches loaded with anti-programmed death-1 antibody (aPD1) and anti-CTLA4 were developed to facilitate sustained release of ICB agents at the diseased sites. Triggered release could also be achieved by various stimuli within the tumor microenvironment, including low pH and abnormally expressed enzymes. Recently, the combination of an anti-programmed death-ligand 1 antibody (aPD-L1) loaded hollow-structured microneedle patch with cold atmospheric plasma (CAP) therapy was also reported. Microneedles provided microchannels to facilitate the transdermal transport of CAP and further induce immunogenic tumor cell death, which could be synergized by the local release of aPD-L1. In addition, in situ formed injectable or sprayable hydrogels were tailored to deliver immunomodulatory antibodies to the surgical bed to inhibit tumor recurrence after primary tumor resection. In paralell, inspired by the unique targeting ability of platelets toward the inflammatory sites, we engineered natural platelets decorated with aPD-L1 for targeted delivery after tumor resection to inhibit tumor recurrence. We further constructed a cell-cell combination delivery platform based on conjugates of platelets and hematopoietic stem cells (HSCs) for leukemia treatment. With the homing ability of HSCs to the bone marrow, the HSC-platelet-aPD1 assembly could effectively deliver aPD1 in an acute myeloid leukemia mouse model. Besides living cells, we also leveraged HEK293T-derived vesicles with PD1 receptors on their surfaces to disrupt the PD-1/PD-L1 immune inhibitory pathway. Moreover, the inner space of the vesicles allowed the packaging of an indoleamine 2,3-dioxygenase inhibitor, further reinforcing the therapeutic efficacy. A similar approach has also been demonstrated by genetically engineering platelets overexpressing PD1 receptor for postsurgical treatment. We hope the local and targeted ICB agent delivery methods introduced in this collection would further inspire the development of advanced drug delivery strategies to improve the efficiency of cancer treatment while alleviating side effects.
Collapse
Affiliation(s)
- Xiao Han
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Hongjun Li
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Daojia Zhou
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Zhaowei Chen
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, California 90095, United States
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
43
|
Ginsenoside Rk1 suppresses platelet mediated thrombus formation by downregulation of granule release and α IIbβ 3 activation. J Ginseng Res 2020; 45:490-497. [PMID: 34295209 PMCID: PMC8282495 DOI: 10.1016/j.jgr.2020.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022] Open
Abstract
Background and objective Synthetic ginsenoside compounds G-Rp (1,3, and 4) and natural ginsenosides in Panax ginseng 20(S)-Rg3, Rg6, F4 and Ro have inhibitory actions on human platelets. However, the inhibitory mechanism of ginsenoside Rk1 (G-Rk1) is still unclear thus, we initiated investigation of the anti-platelet mechanism by G-Rk1 from Panax ginseng. Methodology Our study focused to investigate the action of G-Rk1 on agonist-stimulated human platelet aggregation, inhibition of platelet signaling molecules such as fibrinogen binding with integrin αIIbβ3 using flow cytometry, intracellular calcium mobilization, fibronectin adhesion, dense granule secretion, and thromboxane B2 secretion. Thrombin-induced clot retraction was also observed in human platelets. Key Results Collagen, thrombin, and U46619-stimulated human platelet aggregation were dose-dependently inhibited by G-Rk1, while it demonstrated a more effective suppression on collagen-stimulated platelet aggregation using human platelets. Moreover, G-Rk1 suppressed collagen-induced elevation of Ca2+ release from endoplasmic reticulum, granule release, and αIIbβ3 activity without any cytotoxicity. Conclusions and implications These results indicate that G-Rk1 possess strong anti-platelet effect, proposing a new drug candidate for treatment and prevention of platelet-mediated thrombosis in cardiovascular disease.
Collapse
|
44
|
Khang MK, Kuriakose AE, Nguyen T, Co CMD, Zhou J, Truong TTD, Nguyen KT, Tang L. Enhanced Endothelial Cell Delivery for Repairing Injured Endothelium via Pretargeting Approach and Bioorthogonal Chemistry. ACS Biomater Sci Eng 2020; 6:6831-6841. [PMID: 33320611 DOI: 10.1021/acsbiomaterials.0c00957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arterial wall injury often leads to endothelium cell activation, endothelial detachment, and atherosclerosis plaque formation. While abundant research efforts have been placed on treating the end stages of the disease, no cure has been developed to repair injured and denude endothelium often occurred at an early stage of atherosclerosis. Here, a pretargeting cell delivery strategy using combined injured endothelial targeting nanoparticles and bioorthogonal click chemistry approach was developed to deliver endothelial cells to replenish the injured endothelium via a two-step process. First, nanoparticles bearing glycoprotein 1b α (Gp1bα) proteins and tetrazine (Tz) were fabricated to provide a homogeneous nanoparticle coating on an injured arterial wall via the interactions between Gp1bα and von Willebrand factor (vWF), a ligand that is present on denuded endothelium. Second, transplanted endothelium cells bearing transcyclooctene (TCO) would be quickly immobilized on the surfaces of nanoparticles via TCO:Tz reactions. In vitro binding studies under both static and flow conditions confirmed that our novel Tz-labeled Gp1bα-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles can successfully pretargeted toward the injured site and support rapid adhesion of endothelial cells from the circulation. Ex vivo results also confirm that such an approach is highly efficient in mediating the local delivery of endothelial cells at the sites of arterial injury. The results support that this pretargeting cell delivery approach may be used for repairing injured endothelium in situ at its early stage.
Collapse
Affiliation(s)
- Min Kyung Khang
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States.,Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Aneetta Elizabeth Kuriakose
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Tam Nguyen
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Cynthia My-Dung Co
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Jun Zhou
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Thuy Thi Dang Truong
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Kytai Truong Nguyen
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| |
Collapse
|
45
|
Xiang Z, Chen R, Ma Z, Shi Q, Ataullakhanov FI, Panteleev M, Yin J. A dynamic remodeling bio-mimic extracellular matrix to reduce thrombotic and inflammatory complications of vascular implants. Biomater Sci 2020; 8:6025-6036. [PMID: 32996988 DOI: 10.1039/d0bm01316a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thrombotic and inflammatory complications induced by vascular implants remain a challenge to treat cardiovascular disease due to the lack of self-adaption and functional integrity of implants. Inspired by the dynamic remodeling of the extracellular matrix (ECM), we constructed a bio-mimic ECM with a dual-layer nano-architecture on the implant surface to render the surface adaptive to inflammatory stimuli and remodelable possessing long-term anti-inflammatory and anti-thrombotic capability. The inner layer consists of PCL-PEG-PCL [triblock copolymer of polyethylene glycol and poly(ε-caprolactone)]/Au-heparin electrospun fibers encapsulated with indomethacin while the outer layer is composed of polyvinyl alcohol (PVA) and ROS-responsive poly(2-(4-((2,6-dimethoxy-4-methylphenoxy)methyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (PBA) fibers. In response to acute inflammation after vascular injury, the outer layer reduces ROS rapidly by PBA degradation for inflammation suppression. The degraded outer layer facilitates inner layer reconstruction with enhanced hemocompatibility through the H-bond between PVA and PCL-PEG-PCL. Furthermore, chronic inflammation is effectively depressed with the sustained release of indomethacin from the inner layer. The substantial enhancement of the functional integrity of implants and reduction of thrombotic and inflammatory complications with the self-adaptive ECM are demonstrated both in vitro and in vivo. Our work paves a new way to develop long-term anti-thrombotic and anti-inflammatory implants with self-adaption and self-regulation properties.
Collapse
Affiliation(s)
- Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang H, Bai Z, Zhu L, Liang Y, Fan X, Li J, Wen H, Shi T, Zhao Q, Wang Z. Hydrogen sulfide donors: Therapeutic potential in anti-atherosclerosis. Eur J Med Chem 2020; 205:112665. [DOI: 10.1016/j.ejmech.2020.112665] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022]
|
47
|
Targeted identification of C-type lectins in snake venom by 2DE and Western blot. Toxicon 2020; 185:57-63. [PMID: 32598989 DOI: 10.1016/j.toxicon.2020.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022]
Abstract
C-type lectins (CTL) and CTL-like proteins (snaclecs) are important toxins found in snake venom which can disrupt hemostasis by binding platelet membrane glycoproteins. Traditional identification of these toxins usually relies on an "activity-directed fractionation" approach which is very arduous. Here, we report a new method for rapid screening of these proteins in snake venom. METHODS A conserved and immunogenic peptide found in svCTLs (CTL and snaclecs) was identified by sequence alignment using DNAStar software. The peptide was de novo synthesized and conjugated to keyhole limpet hemocyanin (KLH). Rabbit antibodies were generated against the peptide by classical immunization. Deinagkistrodon acutus venom was separated by two-dimensional electrophoresis (2DE) followed by Western blot and CTLs immunodetected using the isolated polyclonal antibody. The same svCTL spots on a parallel 2DE gel were isolated and analyzed by MALDI-TOF-MS. RESULTS A highly conserved peptide with the sequence "KTWDDAEKFCTEQ" was identified as a common epitope in svCTLs. The polyclonal antibody against the 13aa-peptide was successfully prepared and purified. Its usefulness to detect svCTLs in D. acutus venom was tested by 2DE-WB and we determined that it positively identified all known D. acutus venom CTLs. CONCLUSIONS Immunodetection with antibodies against KTWDDAEKFCTEQ is an efficient strategy to identify novel svCTLs in the context of a complex proteome.
Collapse
|
48
|
Du J, Kim D, Alhawael G, Ku DN, Fogelson AL. Clot Permeability, Agonist Transport, and Platelet Binding Kinetics in Arterial Thrombosis. Biophys J 2020; 119:2102-2115. [PMID: 33147477 DOI: 10.1016/j.bpj.2020.08.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
The formation of wall-adherent platelet aggregates is a critical process in arterial thrombosis. A growing aggregate experiences frictional drag forces exerted on it by fluid moving over or through the aggregate. The magnitude of these forces is strongly influenced by the permeability of the developing aggregate; the permeability depends on the aggregate's porosity. Aggregation is mediated by formation of ensembles of molecular bonds; each bond involves a plasma protein bridging the gap between specific receptors on the surfaces of two different platelets. The ability of the bonds existing at any time to sustain the drag forces on the aggregate determines whether it remains intact or sheds individual platelets or larger fragments (emboli). We investigate platelet aggregation in coronary-sized arteries using both computational simulations and in vitro experiments. The computational model tracks the formation and breaking of bonds between platelets and treats the thrombus as an evolving porous, viscoelastic material, which moves differently from the background fluid. This relative motion generates drag forces which the fluid and thrombus exert on one another. These forces are computed from a permeability-porosity relation parameterized from experimental measurements. Basing this relation on measurements from occlusive thrombi formed in our flow chamber experiments, along with other physiological parameter values, the model produced stable dense thrombi on a similar timescale to the experiments. When we parameterized the permeability-porosity relation using lower permeabilities reported by others, bond formation was insufficient to balance drag forces on an early thrombus and keep it intact. Under high shear flow, soluble agonist released by platelets was limited to the thrombus and a boundary layer downstream, thus restricting thrombus growth into the vessel lumen. Adding to the model binding and activation of unactivated platelets through von Willebrand-factor-mediated processes allowed greater growth and made agonist-induced activation more effective.
Collapse
Affiliation(s)
- Jian Du
- Department of Mathematics, Florida Institute of Technology, Melbourne, Florida
| | - Dongjune Kim
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Ghadah Alhawael
- Department of Mathematics, Florida Institute of Technology, Melbourne, Florida
| | - David N Ku
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Aaron L Fogelson
- Departments of Mathematics and Biomedical Engineering, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
49
|
Aedes albopictus D7 Salivary Protein Prevents Host Hemostasis and Inflammation. Biomolecules 2020; 10:biom10101372. [PMID: 32992542 PMCID: PMC7601585 DOI: 10.3390/biom10101372] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022] Open
Abstract
Mosquitoes inject saliva into the host skin to facilitate blood meal acquisition through active compounds that prevent hemostasis. D7 proteins are among the most abundant components of the mosquito saliva and act as scavengers of biogenic amines and eicosanoids. Several members of the D7 family have been characterized at the biochemical level; however, none have been studied thus far in Aedes albopictus, a permissive vector for several arboviruses that causes extensive human morbidity and mortality. Here, we report the binding capabilities of a D7 long form protein from Ae. albopictus (AlboD7L1) by isothermal titration calorimetry and compared its model structure with previously solved D7 structures. The physiological function of AlboD7L1 was demonstrated by ex vivo platelet aggregation and in vivo leukocyte recruitment experiments. AlboD7L1 binds host hemostasis agonists, including biogenic amines, leukotrienes, and the thromboxane A2 analog U-46619. AlboD7L1 protein model predicts binding of biolipids through its N-terminal domain, while the C-terminal domain binds biogenic amines. We demonstrated the biological function of AlboD7L1 as an inhibitor of both platelet aggregation and cell recruitment of neutrophils and eosinophils. Altogether, this study reinforces the physiological relevance of the D7 salivary proteins as anti-hemostatic and anti-inflammatory molecules that help blood feeding in mosquitoes.
Collapse
|
50
|
Martin-Martin I, Kern O, Brooks S, Smith LB, Valenzuela-Leon PC, Bonilla B, Ackerman H, Calvo E. Biochemical characterization of AeD7L2 and its physiological relevance in blood feeding in the dengue mosquito vector, Aedes aegypti. FEBS J 2020; 288:2014-2029. [PMID: 32799410 DOI: 10.1111/febs.15524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/23/2020] [Accepted: 08/12/2020] [Indexed: 01/02/2023]
Abstract
Aedes aegypti saliva facilitates blood meal acquisition through pharmacologically active compounds that prevent host hemostasis. Among these salivary proteins are the D7s, which are highly abundant and have been shown to act as scavengers of biogenic amines and eicosanoids. In this work, we performed comparative structural modeling, characterized the binding capabilities, and assessed the physiological functions of the Ae. aegypti salivary protein AeD7L2 compared to the well-characterized AeD7L1. AeD7L1 and AeD7L2 show different binding affinities to several biogenic amines and biolipids involved in host hemostasis. Interestingly, AeD7L2 tightly binds U-46619, the stable analog of thromboxane A2 (KD = 69.4 nm), which is an important platelet aggregation mediator, while AeD7L1 shows no binding. We tested the ability of these proteins to interfere with the three branches of hemostasis: vasoconstriction, platelet aggregation, and blood coagulation. Pressure myography experiments showed these two proteins reversed isolated resistance artery vasoconstriction induced by either norepinephrine or U-46619. These proteins also inhibited platelet aggregation induced by low doses of collagen or U-46619. However, D7 long proteins did not affect blood coagulation. The different ligand specificity and affinities of AeD7L1 and AeD7L2 matched our experimental observations from studying their effects on vasoconstriction and platelet aggregation, which confirm their role in preventing host hemostasis. This work highlights the complex yet highly specific biological activities of mosquito salivary proteins and serves as another example of the sophisticated biology underlying arthropod blood feeding.
Collapse
Affiliation(s)
- Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Olivia Kern
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Steven Brooks
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Leticia Barion Smith
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Brian Bonilla
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Hans Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|