1
|
Peng B, Huang JJ, Li Z, Zhang LI, Tao HW. Cross-modal enhancement of defensive behavior via parabigemino-collicular projections. Curr Biol 2024; 34:3616-3631.e5. [PMID: 39019036 PMCID: PMC11373540 DOI: 10.1016/j.cub.2024.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Effective detection and avoidance from environmental threats are crucial for animals' survival. Integration of sensory cues associated with threats across different modalities can significantly enhance animals' detection and behavioral responses. However, the neural circuit-level mechanisms underlying the modulation of defensive behavior or fear response under simultaneous multimodal sensory inputs remain poorly understood. Here, we report in mice that bimodal looming stimuli combining coherent visual and auditory signals elicit more robust defensive/fear reactions than unimodal stimuli. These include intensified escape and prolonged hiding, suggesting a heightened defensive/fear state. These various responses depend on the activity of the superior colliculus (SC), while its downstream nucleus, the parabigeminal nucleus (PBG), predominantly influences the duration of hiding behavior. PBG temporally integrates visual and auditory signals and enhances the salience of threat signals by amplifying SC sensory responses through its feedback projection to the visual layer of the SC. Our results suggest an evolutionarily conserved pathway in defense circuits for multisensory integration and cross-modality enhancement.
Collapse
Affiliation(s)
- Bo Peng
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Graduate Program in Biomedical and Biological Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhong Li
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
2
|
Aralla R, Pauley C, Köppl C. The Neural Representation of Binaural Sound Localization Cues Across Different Subregions of the Chicken's Inferior Colliculus. J Comp Neurol 2024; 532:e25653. [PMID: 38962885 DOI: 10.1002/cne.25653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
The sound localization behavior of the nocturnally hunting barn owl and its underlying neural computations is a textbook example of neuroethology. Differences in sound timing and level at the two ears are integrated in a series of well-characterized steps, from brainstem to inferior colliculus (IC), resulting in a topographical neural representation of auditory space. It remains an important question of brain evolution: How is this specialized case derived from a more plesiomorphic pattern? The present study is the first to match physiology and anatomical subregions in the non-owl avian IC. Single-unit responses in the chicken IC were tested for selectivity to different frequencies and to the binaural difference cues. Their anatomical origin was reconstructed with the help of electrolytic lesions and immunohistochemical identification of different subregions of the IC, based on previous characterizations in owl and chicken. In contrast to barn owl, there was no distinct differentiation of responses in the different subregions. We found neural topographies for both binaural cues but no evidence for a coherent representation of auditory space. The results are consistent with previous work in pigeon IC and chicken higher-order midbrain and suggest a plesiomorphic condition of multisensory integration in the midbrain that is dominated by lateral panoramic vision.
Collapse
Affiliation(s)
- Roberta Aralla
- Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Claire Pauley
- Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität, Oldenburg, Germany
| |
Collapse
|
3
|
Bae AJ, Ferger R, Peña JL. Auditory Competition and Coding of Relative Stimulus Strength across Midbrain Space Maps of Barn Owls. J Neurosci 2024; 44:e2081232024. [PMID: 38664010 PMCID: PMC11112643 DOI: 10.1523/jneurosci.2081-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/06/2024] [Accepted: 04/05/2024] [Indexed: 05/24/2024] Open
Abstract
The natural environment challenges the brain to prioritize the processing of salient stimuli. The barn owl, a sound localization specialist, exhibits a circuit called the midbrain stimulus selection network, dedicated to representing locations of the most salient stimulus in circumstances of concurrent stimuli. Previous competition studies using unimodal (visual) and bimodal (visual and auditory) stimuli have shown that relative strength is encoded in spike response rates. However, open questions remain concerning auditory-auditory competition on coding. To this end, we present diverse auditory competitors (concurrent flat noise and amplitude-modulated noise) and record neural responses of awake barn owls of both sexes in subsequent midbrain space maps, the external nucleus of the inferior colliculus (ICx) and optic tectum (OT). While both ICx and OT exhibit a topographic map of auditory space, OT also integrates visual input and is part of the global-inhibitory midbrain stimulus selection network. Through comparative investigation of these regions, we show that while increasing strength of a competitor sound decreases spike response rates of spatially distant neurons in both regions, relative strength determines spike train synchrony of nearby units only in the OT. Furthermore, changes in synchrony by sound competition in the OT are correlated to gamma range oscillations of local field potentials associated with input from the midbrain stimulus selection network. The results of this investigation suggest that modulations in spiking synchrony between units by gamma oscillations are an emergent coding scheme representing relative strength of concurrent stimuli, which may have relevant implications for downstream readout.
Collapse
Affiliation(s)
- Andrea J Bae
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Roland Ferger
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - José L Peña
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
4
|
Russell LE, Fişek M, Yang Z, Tan LP, Packer AM, Dalgleish HWP, Chettih SN, Harvey CD, Häusser M. The influence of cortical activity on perception depends on behavioral state and sensory context. Nat Commun 2024; 15:2456. [PMID: 38503769 PMCID: PMC10951313 DOI: 10.1038/s41467-024-46484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
The mechanistic link between neural circuit activity and behavior remains unclear. While manipulating cortical activity can bias certain behaviors and elicit artificial percepts, some tasks can still be solved when cortex is silenced or removed. Here, mice were trained to perform a visual detection task during which we selectively targeted groups of visually responsive and co-tuned neurons in L2/3 of primary visual cortex (V1) for two-photon photostimulation. The influence of photostimulation was conditional on two key factors: the behavioral state of the animal and the contrast of the visual stimulus. The detection of low-contrast stimuli was enhanced by photostimulation, while the detection of high-contrast stimuli was suppressed, but crucially, only when mice were highly engaged in the task. When mice were less engaged, our manipulations of cortical activity had no effect on behavior. The behavioral changes were linked to specific changes in neuronal activity. The responses of non-photostimulated neurons in the local network were also conditional on two factors: their functional similarity to the photostimulated neurons and the contrast of the visual stimulus. Functionally similar neurons were increasingly suppressed by photostimulation with increasing visual stimulus contrast, correlating with the change in behavior. Our results show that the influence of cortical activity on perception is not fixed, but dynamically and contextually modulated by behavioral state, ongoing activity and the routing of information through specific circuits.
Collapse
Affiliation(s)
- Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mehmet Fişek
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Zidan Yang
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Lynn Pei Tan
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
5
|
Chandrasekaran AN, Vermani A, Gupta P, Steinmetz N, Moore T, Sridharan D. Dissociable components of attention exhibit distinct neuronal signatures in primate visual cortex. SCIENCE ADVANCES 2024; 10:eadi0645. [PMID: 38306428 PMCID: PMC10836731 DOI: 10.1126/sciadv.adi0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Attention can be deployed in multiple forms and facilitates behavior by influencing perceptual sensitivity and choice bias. Attention is also associated with a myriad of changes in sensory neural activity. Yet, the relationship between the behavioral components of attention and the accompanying changes in neural activity remains largely unresolved. We examined this relationship by quantifying sensitivity and bias in monkeys performing a task that dissociated eye movement responses from the focus of covert attention. Unexpectedly, bias, not sensitivity, increased at the focus of covert attention, whereas sensitivity increased at the location of planned eye movements. Furthermore, neuronal activity within visual area V4 varied robustly with bias, but not sensitivity, at the focus of covert attention. In contrast, correlated variability between neuronal pairs was lowest at the location of planned eye movements, and varied with sensitivity, but not bias. Thus, dissociable behavioral components of attention exhibit distinct neuronal signatures within the visual cortex.
Collapse
Affiliation(s)
| | - Ayesha Vermani
- Centre for Neuroscience, Indian Institute of Science, Bangalore, KA, India
| | - Priyanka Gupta
- Centre for Neuroscience, Indian Institute of Science, Bangalore, KA, India
| | - Nicholas Steinmetz
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, KA, India
- Computer Science and Automation, Indian Institute of Science, Bangalore, KA, India
| |
Collapse
|
6
|
Roshan JHN, Chamanabad AG, Mashhadi A, Motamedi M. Cathodal HD-tDCS and attention: A study on patients with intractable left lateral frontal lobe epilepsy. Epilepsy Res 2024; 199:107265. [PMID: 38071911 DOI: 10.1016/j.eplepsyres.2023.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE Defects in the attentional network in patients with epilepsy are influenced by factors such as the location of epileptic foci. Examining the impact of cathodal high-definition transcranial direct current stimulation (HD-tDCS) on attention components could provide insights into potential attention-related side effects of tDCS. This study aimed to investigate the effect of cathodal HD-tDCS on interictal epileptiform discharges (IEDs), auditory/visual (A/V) attention components, and reaction time (RT) in patients with intractable focal left lateral frontal lobe epilepsy (LFLE). METHODS To control for variations in individual epilepsy syndrome, 12 adult participants diagnosed with drug-resistant left LFLE with focal cortical IEDs on C3 underwent repeated measurements at pretest, posttest, and follow-up steps. 4 × 1 ring electrodes (cathode on C3 and four anodes on F3, P3, T3, and Cz) delivered 2 mA DC for 20 min per session for 10 consecutive days. The integrated visual and auditory continuous performance test (IVA+) assessed the A/V attention components and RT. One-way repeated-measure ANOVA was used. RESULTS The findings suggest a significant effect in reducing IEDs. The IVA+ results showed a significant improvement in auditory divided attention and visual selective and focused attention (p < 0.05). In the follow-up, these changes demonstrated lasting efficacy. A/V speed scales increased (p < 0.05), showing a significant decrease in reaction time. CONCLUSIONS Cathodal HD-tDCS significantly reduced IEDs and improved the components of auditory divided attention, visual focused attention, and visual selective attention, with a reduction in patient reaction time. A significant lasting, side-effect-free positive effect was observed for up to one month after the intervention.
Collapse
Affiliation(s)
| | - Ali Ghanaei Chamanabad
- Faculty of Education and Psychology, Ferdowsi University of Mashhad, Mashhad, Iran; Cognitive Science Research Center, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ali Mashhadi
- Faculty of Education and Psychology, Ferdowsi University of Mashhad, Mashhad, Iran; Cognitive Science Research Center, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahmoud Motamedi
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Sina Hospital, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
7
|
Fesce R, Gatti R. What networks in the brain system sustain imagination? FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1294866. [PMID: 38020245 PMCID: PMC10648867 DOI: 10.3389/fnetp.2023.1294866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
The brain cannot stop elaborating information. While the circuitries implied in processing sensory information, and those involved in programming and producing movements, have been extensively studied and characterized, what circuits elicit and sustain the endogenous activity (which might be referred to as imaginative activity) has not been clarified to a similar extent. The two areas which have been investigated most intensely are visual and motor imagery. Visual imagery mostly involves the same areas as visual processing and has been studied by having the subject face specific visual imagery tasks that are related to the use of the visual sketchpad as a component of the working memory system. Much less is known about spontaneous, free visual imagination, what circuits drive it, how and why. Motor imagery has been studied with several approaches: the neural circuits activated in the brain during performance of a movement have been compared with those involved in visually or kinaesthetically imagining performing the same movement, or in observing another person performing it. Some networks are similarly activated in these situations, although primary motor neurons are only activated during motor execution. Imagining the execution of an action seems unable to activate circuits involved in eliciting accompanying motor adjustments (such as postural adaptations) that are unconsciously (implicitly) associated to the execution of the movement. A more faithful neuronal activation is obtained through kinaesthetic motor imagination-imagining how it feels to perform the movement. Activation of sensory-motor and mirror systems, elicited by observing another person performing a transitive action, can also recruit circuits that sustain implicit motor responses that normally accompany the overt movement. This last aspect has originated the expanding and promising field of action observation therapy (AOT). The fact that the various kinds of motor imagery differentially involve the various brain networks may offer some hints on what neural networks sustain imagery in general, another activity that has an attentive component-recalling a memory, covertly rehearsing a speech, internally replaying a behaviour-and a vague, implicit component that arises from the freely flowing surfacing of internal images, not driven by intentional, conscious control.
Collapse
Affiliation(s)
- Riccardo Fesce
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberto Gatti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
8
|
Liao MR, Dillard MH, Hour JL, Barnett LA, Whitten JS, Valles AC, Heatley JJ, Anderson BA, Yorzinski JL. Reward history modulates visual attention in an avian model. Anim Cogn 2023; 26:1685-1695. [PMID: 37477741 DOI: 10.1007/s10071-023-01811-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Attention can be biased towards previously reward-associated stimuli even when they are task-irrelevant and physically non-salient, although studies of reward-modulated attention have been largely limited to primate (including human and nonhuman) models. Birds have been shown to have the capacity to discriminate reward and spatial cues in a manner similar to primates, but whether reward history involuntarily affects their attention in the same way remains unclear. We adapted a spatial cueing paradigm with differential rewards to investigate how reward modulates the allocation of attention in peafowl (Pavo cristatus). The birds were required to locate and peck a target on a computer screen that was preceded by a high-value or low-value color cue that was uninformative with respect to the location of the upcoming target. All birds exhibited a validity effect (performance enhanced on valid compared to invalid cue), and an interaction effect between value and validity was evident at the group level, being particularly pronounced in the birds with the greatest amount of reward training. The time course of reward learning was conspicuously incremental, phenomenologically slower compared to primates. Our findings suggest a similar influence of reward history on attention across phylogeny despite a significant difference in neuroanatomy.
Collapse
Affiliation(s)
- Ming-Ray Liao
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843-4235, USA.
| | - Mason H Dillard
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, USA
| | - Jason L Hour
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, USA
| | - Lilia A Barnett
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, USA
| | - Jerry S Whitten
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, USA
| | - Amariani C Valles
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, USA
| | - J Jill Heatley
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, USA
| | - Brian A Anderson
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843-4235, USA
| | - Jessica L Yorzinski
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, USA
| |
Collapse
|
9
|
Libourel PA, Lesku JA. Sleep: Hemispheres fight for dominance. Curr Biol 2023; 33:R729-R732. [PMID: 37433277 DOI: 10.1016/j.cub.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
A new study shows that bearded dragons have a peculiar way to coordinate sleep state changes between brain hemispheres. The hemisphere that acts first imposes its activity on the other during their REM sleep-like state.
Collapse
Affiliation(s)
- Paul-Antoine Libourel
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, SLEEP Team, F-69500, Bron, France.
| | - John A Lesku
- Sleep Ecophysiology Group, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne 3086, Australia.
| |
Collapse
|
10
|
Schryver HM, Mysore SP. Distinct neural mechanisms construct classical versus extraclassical inhibitory surrounds in an inhibitory nucleus in the midbrain attention network. Nat Commun 2023; 14:3400. [PMID: 37296109 PMCID: PMC10256684 DOI: 10.1038/s41467-023-39073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Inhibitory neurons in the midbrain spatial attention network, called isthmi pars magnocellularis (Imc), control stimulus selection by the sensorimotor and attentional hub, the optic tectum (OT). Here, we investigate in the barn owl how classical as well as extraclassical (global) inhibitory surrounds of Imc receptive fields (RFs), fundamental units of Imc computational function, are constructed. We find that focal, reversible blockade of GABAergic input onto Imc neurons disconnects their extraclassical inhibitory surrounds, but leaves intact their classical inhibitory surrounds. Subsequently, with paired recordings and iontophoresis, first at spatially aligned site-pairs in Imc and OT, and then, at mutually distant site-pairs within Imc, we demonstrate that classical inhibitory surrounds of Imc RFs are inherited from OT, but their extraclassical inhibitory surrounds are constructed within Imc. These results reveal key design principles of the midbrain spatial attention circuit and highlight the critical importance of competitive interactions within Imc for its operation.
Collapse
Affiliation(s)
- Hannah M Schryver
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Currently, Allen Institute, Seattle, WA, USA
| | - Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
11
|
Zhaoping L. Peripheral and central sensation: multisensory orienting and recognition across species. Trends Cogn Sci 2023; 27:539-552. [PMID: 37095006 DOI: 10.1016/j.tics.2023.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023]
Abstract
Attentional bottlenecks force animals to deeply process only a selected fraction of sensory inputs. This motivates a unifying central-peripheral dichotomy (CPD), which separates multisensory processing into functionally defined central and peripheral senses. Peripheral senses (e.g., human audition and peripheral vision) select a fraction of the sensory inputs by orienting animals' attention; central senses (e.g., human foveal vision) allow animals to recognize the selected inputs. Originally used to understand human vision, CPD can be applied to multisensory processes across species. I first describe key characteristics of central and peripheral senses, such as the degree of top-down feedback and density of sensory receptors, and then show CPD as a framework to link ecological, behavioral, neurophysiological, and anatomical data and produce falsifiable predictions.
Collapse
Affiliation(s)
- Li Zhaoping
- University of Tübingen, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
12
|
Fenk LA, Riquelme JL, Laurent G. Interhemispheric competition during sleep. Nature 2023; 616:312-318. [PMID: 36949193 PMCID: PMC10097603 DOI: 10.1038/s41586-023-05827-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023]
Abstract
Our understanding of the functions and mechanisms of sleep remains incomplete, reflecting their increasingly evident complexity1-3. Likewise, studies of interhemispheric coordination during sleep4-6 are often hard to connect precisely to known sleep circuits and mechanisms. Here, by recording from the claustra of sleeping bearded dragons (Pogona vitticeps), we show that, although the onsets and offsets of Pogona rapid-eye-movement (REMP) and slow-wave sleep are coordinated bilaterally, these two sleep states differ markedly in their inter-claustral coordination. During slow-wave sleep, the claustra produce sharp-wave ripples independently of one another, showing no coordination. By contrast, during REMP sleep, the potentials produced by the two claustra are precisely coordinated in amplitude and time. These signals, however, are not synchronous: one side leads the other by about 20 ms, with the leading side switching typically once per REMP episode or in between successive episodes. The leading claustrum expresses the stronger activity, suggesting bilateral competition. This competition does not occur directly between the two claustra or telencephalic hemispheres. Rather, it occurs in the midbrain and depends on the integrity of a GABAergic (γ-aminobutyric-acid-producing) nucleus of the isthmic complex, which exists in all vertebrates and is known in birds to underlie bottom-up attention and gaze control. These results reveal that a winner-take-all-type competition exists between the two sides of the brain of Pogona, which originates in the midbrain and has precise consequences for claustrum activity and coordination during REMP sleep.
Collapse
Affiliation(s)
- Lorenz A Fenk
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| | - Juan Luis Riquelme
- Max Planck Institute for Brain Research, Frankfurt, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
13
|
Two sides of a bearded dragon's brain compete during sleep. Nature 2023:10.1038/d41586-023-00444-z. [PMID: 36949127 DOI: 10.1038/d41586-023-00444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
|
14
|
Fesce R. Imagination: The dawn of consciousness: Fighting some misconceptions in the discussion about consciousness. Physiol Behav 2023; 259:114035. [PMID: 36403782 DOI: 10.1016/j.physbeh.2022.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Several theories of consciousness (ToC) have been proposed, but it is hard to integrate them into a consensus theory. Each theory has its merits, in dealing with some aspects of the question, but the terminology is inconsistent, each ToC aims at answering a different question, and there is not even a reasonable agreement about what 'consciousness' is in the first place. Some common implicit assumptions, and the way some critical words - such as 'sensation', 'perception', 'neural correlate of consciousness' (NCC) - are thought to relate to consciousness, have introduced a series of misconceptions that make it difficult to pinpoint what consciousness consists in and how it arises in the brain. The purpose of this contribution is twofold: firstly, to discern the various steps that lead from the detection of a stimulus to a conscious experience, by redefining terms such as sensation and perception with an adequate operative meaning; secondly, to emphasize the inevitable contribution of emotions and the active role of imagination in this process. The diffuse view, for the layperson but among scientists as well, is that the brain produces an internal 'representation' of the external reality and of oneself. This tends to consign one to a Cartesian perspective, i.e., the idea that some entity must be there to witness and interpret such representation. This approach splits the conscious experience into brain activity, which generates a (possible) content of consciousness (still unconscious), and a vaguely defined entity or process that 'generates' consciousness and injects (or sheds the light of) consciousness onto the content of brain activity. This way, however, we learn nothing about how such consciousness would arise. We propose here that consciousness is the function that generates a subjectively relevant and emotionally coloured internal image of the experience one is living. In this process, endogenous, spontaneous activity (imaginative activity, consisting in recalling and reviving memories, prefiguring consequences, analysing conjectures) produces many vague and ambiguous hints, rich of symbolic links, which compete in giving rise to an implicit, emotionally characterized, and semantically pleiotropic, internal experience. Cognitive elaboration may extract from this a defined and univocal, complete and consistent, explicit experience, that can be verbally reported ('what it is like to...').
Collapse
Affiliation(s)
- Riccardo Fesce
- Department of Biomedical Sciences - Humanitas University Medical School.
| |
Collapse
|
15
|
Reynaert B, Morales C, Mpodozis J, Letelier JC, Marín GJ. A blinking focal pattern of re-entrant activity in the avian tectum. Curr Biol 2023; 33:1-14.e4. [PMID: 36446352 DOI: 10.1016/j.cub.2022.10.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Re-entrant connections are inherent to nervous system organization; however, a comprehensive understanding of their operation is still lacking. In birds, topographically organized re-entrant signals, carried by axons from the nucleus-isthmi-parvocellularis (Ipc), are distinctly recorded as bursting discharges across the optic tectum (TeO). Here, we used up to 48 microelectrodes regularly spaced on the superficial tectal layers of anesthetized pigeons to characterize the spatial-temporal pattern of this axonal re-entrant activity in response to different visual stimulation. We found that a brief luminous spot triggered repetitive waves of bursting discharges that, appearing from initial sources, propagated horizontally to areas representing up to 28° of visual space, widely exceeding the area activated by the retinal fibers. In response to visual motion, successive burst waves started along and around the stimulated tectal path, tracking the stimulus in discontinuous steps. When two stimuli were presented, the burst-wave sources alternated between the activated tectal loci, as if only one source could be active at any given time. Because these re-entrant signals boost the retinal input to higher visual areas, their peculiar dynamics mimic a blinking "spotlight," similar to the internal searching mechanism classically used to explain spatial attention. Tectal re-entry from Ipc is thus highly structured and intrinsically discontinuous, and higher tectofugal areas, which lack retinotopic organization, will thus receive incoming visual activity in a sequential and piecemeal fashion. We anticipate that analogous re-entrant patterns, perhaps hidden in less bi-dimensionally organized topographies, may organize the flow of neural activity in other parts of the brain as well.
Collapse
Affiliation(s)
- Bryan Reynaert
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Cristian Morales
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Juan Carlos Letelier
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Gonzalo J Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile.
| |
Collapse
|
16
|
Programmable ferroelectric bionic vision hardware with selective attention for high-precision image classification. Nat Commun 2022; 13:7019. [PMID: 36384983 PMCID: PMC9669032 DOI: 10.1038/s41467-022-34565-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Selective attention is an efficient processing strategy to allocate computational resources for pivotal optical information. However, the hardware implementation of selective visual attention in conventional intelligent system is usually bulky and complex along with high computational cost. Here, programmable ferroelectric bionic vision hardware to emulate the selective attention is proposed. The tunneling effect of photogenerated carriers are controlled by dynamic variation of energy barrier, enabling the modulation of memory strength from 9.1% to 47.1% without peripheral storage unit. The molecular polarization of ferroelectric P(VDF-TrFE) layer enables a single device not only multiple nonvolatile states but also the implementation of selective attention. With these ferroelectric devices are arrayed together, UV light information can be selectively recorded and suppressed the with high current decibel level. Furthermore, the device with positive polarization exhibits high wavelength dependence in the image attention processing, and the fabricated ferroelectric sensory network exhibits high accuracy of 95.7% in the pattern classification for multi-wavelength images. This study can enrich the neuromorphic functions of bioinspired sensing devices and pave the way for profound implications of future bioinspired optoelectronics.
Collapse
|
17
|
Sawant Y, Kundu JN, Radhakrishnan VB, Sridharan D. A Midbrain Inspired Recurrent Neural Network Model for Robust Change Detection. J Neurosci 2022; 42:8262-8283. [PMID: 36123120 PMCID: PMC9653281 DOI: 10.1523/jneurosci.0164-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
We present a biologically inspired recurrent neural network (RNN) that efficiently detects changes in natural images. The model features sparse, topographic connectivity (st-RNN), closely modeled on the circuit architecture of a "midbrain attention network." We deployed the st-RNN in a challenging change blindness task, in which changes must be detected in a discontinuous sequence of images. Compared with a conventional RNN, the st-RNN learned 9x faster and achieved state-of-the-art performance with 15x fewer connections. An analysis of low-dimensional dynamics revealed putative circuit mechanisms, including a critical role for a global inhibitory (GI) motif, for successful change detection. The model reproduced key experimental phenomena, including midbrain neurons' sensitivity to dynamic stimuli, neural signatures of stimulus competition, as well as hallmark behavioral effects of midbrain microstimulation. Finally, the model accurately predicted human gaze fixations in a change blindness experiment, surpassing state-of-the-art saliency-based methods. The st-RNN provides a novel deep learning model for linking neural computations underlying change detection with psychophysical mechanisms.SIGNIFICANCE STATEMENT For adaptive survival, our brains must be able to accurately and rapidly detect changing aspects of our visual world. We present a novel deep learning model, a sparse, topographic recurrent neural network (st-RNN), that mimics the neuroanatomy of an evolutionarily conserved "midbrain attention network." The st-RNN achieved robust change detection in challenging change blindness tasks, outperforming conventional RNN architectures. The model also reproduced hallmark experimental phenomena, both neural and behavioral, reported in seminal midbrain studies. Lastly, the st-RNN outperformed state-of-the-art models at predicting human gaze fixations in a laboratory change blindness experiment. Our deep learning model may provide important clues about key mechanisms by which the brain efficiently detects changes.
Collapse
Affiliation(s)
- Yash Sawant
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Jogendra Nath Kundu
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India
| | | | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
- Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Hassett TC, Hampton RR. Control of Attention in Rhesus Monkeys Measured Using a Flanker Task. Atten Percept Psychophys 2022; 84:2155-2166. [PMID: 35174464 PMCID: PMC9885799 DOI: 10.3758/s13414-022-02452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 02/01/2023]
Abstract
At least three processes determine whether information we encounter is attended to or ignored. First, attentional capture occurs when attention is drawn automatically by "bottom up" processes, to distinctive, salient, rewarding, or unexpected stimuli when they enter our sensory field. Second, "top down" attentional control can direct cognitive processing towards goal-relevant targets. Third, selection history, operates through repeated exposure to a stimulus, particularly when associated with reward. Attentional control is measured using tasks that require subjects to selectively attend to goal-relevant stimuli in the face of distractions. In the Eriksen flanker task, human participants report which direction a centrally placed arrow is facing, while ignoring "flanking" arrows that may point in the opposite direction. Attentional control is evident to the extent that performance reflects only the direction of the central arrow. We describe four experiments in which we systematically assessed attentional control in rhesus monkeys using a flanker task. In Experiment 1, monkeys responded according to the identity of a central target, and accuracy and latency varied systematically with manipulations of flanking stimuli, validating our adaptation of the Eriksen flanker task. We then tested for converging evidence of attentional control across three experiments in which flanker performance was modulated by the distance separating targets from flankers (Experiment 2), luminance differences (Experiment 3), and differences in associative value (Experiment 4). The approach described is a new and reliable measure of attentional control in rhesus monkeys that can be applied to a wide range of situations with freely behaving animals.
Collapse
Affiliation(s)
- Thomas C Hassett
- Department of Psychology, Yerkes National Primate Research Center, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA.
| | - Robert R Hampton
- Department of Psychology, Yerkes National Primate Research Center, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| |
Collapse
|
19
|
Contemori S, Loeb GE, Corneil BD, Wallis G, Carroll TJ. Symbolic cues enhance express visuomotor responses in human arm muscles at the motor planning rather than the visuospatial processing stage. J Neurophysiol 2022; 128:494-510. [PMID: 35858112 DOI: 10.1152/jn.00136.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans can produce "express" (~100ms) arm muscle responses that are inflexibly locked in time and space to visual target presentations, consistent with subcortical visuomotor transformations via the tecto-reticulo-spinal pathway. These express visuomotor responses are sensitive to explicit cue-driven expectations, but it is unclear at what stage of sensory-to-motor transformation such modulation occurs. Here, we recorded electromyographic activity from shoulder muscles as participants reached toward one of four virtual targets whose physical location was partially predictable from a symbolic cue. In an experiment in which targets could be veridically reached, express responses were inclusive of the biomechanical requirements for reaching the cued locations and not systematically modulated by cue validity. In a second experiment, movements were restricted to the horizontal plane so that the participants could perform only rightward or leftward reaches, irrespective of target position on the vertical axis. Express muscle responses were almost identical for targets that were validly cued in the horizontal direction, regardless of cue validity in the vertical dimension. Together, these findings suggest that the cue-induced enhancements of express responses are dominated by effects at the level of motor plans and not solely via facilitation of early visuospatial target processing. Notably, direct cortico-tectal and cortico-reticular projections exist that are well-placed to modulate pre-stimulus motor preparation state in subcortical circuits. Our results could reflect a neural mechanism by which contextually relevant motor responses to compatible visual inputs are rapidly released via subcortical circuits that are sufficiently along the sensory- to-motor continuum.
Collapse
Affiliation(s)
- Samuele Contemori
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Gerald E Loeb
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Brian D Corneil
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Robarts Research Institute, London, Ontario, Canada
| | - Guy Wallis
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Timothy J Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Niu W, Shen D, Sun R, Fan Y, Yang J, Zhang B, Fang G. Possible Event-Related Potential Correlates of Voluntary Attention and Reflexive Attention in the Emei Music Frog. BIOLOGY 2022; 11:879. [PMID: 35741400 PMCID: PMC9219635 DOI: 10.3390/biology11060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
Attention, referring to selective processing of task-related information, is central to cognition. It has been proposed that voluntary attention (driven by current goals or tasks and under top-down control) and reflexive attention (driven by stimulus salience and under bottom-up control) struggle to control the focus of attention with interaction in a push-pull fashion for everyday perception in higher vertebrates. However, how auditory attention engages in auditory perception in lower vertebrates remains unclear. In this study, each component of auditory event-related potentials (ERP) related to attention was measured for the telencephalon, diencephalon and mesencephalon in the Emei music frog (Nidirana daunchina), during the broadcasting of acoustic stimuli invoking voluntary attention (using binary playback paradigm with silence replacement) and reflexive attention (using equiprobably random playback paradigm), respectively. Results showed that (1) when the sequence of acoustic stimuli could be predicted, the amplitudes of stimulus preceding negativity (SPN) evoked by silence replacement in the forebrain were significantly greater than that in the mesencephalon, suggesting voluntary attention may engage in auditory perception in this species because of the correlation between the SPN component and top-down control such as expectation and/or prediction; (2) alternately, when the sequence of acoustic stimuli could not be predicted, the N1 amplitudes evoked in the mesencephalon were significantly greater than those in other brain areas, implying that reflexive attention may be involved in auditory signal processing because the N1 components relate to selective attention; and (3) both SPN and N1 components could be evoked by the predicted stimuli, suggesting auditory perception of the music frogs might invoke the two kind of attention resources simultaneously. The present results show that human-like ERP components related to voluntary attention and reflexive attention exist in the lower vertebrates also.
Collapse
Affiliation(s)
- Wenjun Niu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (W.N.); (D.S.); (Y.F.); (J.Y.)
- School of Life Science, Anhui University, Hefei 230601, China; (R.S.); (B.Z.)
| | - Di Shen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (W.N.); (D.S.); (Y.F.); (J.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ruolei Sun
- School of Life Science, Anhui University, Hefei 230601, China; (R.S.); (B.Z.)
| | - Yanzhu Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (W.N.); (D.S.); (Y.F.); (J.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jing Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (W.N.); (D.S.); (Y.F.); (J.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Baowei Zhang
- School of Life Science, Anhui University, Hefei 230601, China; (R.S.); (B.Z.)
| | - Guangzhan Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (W.N.); (D.S.); (Y.F.); (J.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
21
|
Rial RV, Canellas F, Akaârir M, Rubiño JA, Barceló P, Martín A, Gamundí A, Nicolau MC. The Birth of the Mammalian Sleep. BIOLOGY 2022; 11:biology11050734. [PMID: 35625462 PMCID: PMC9138988 DOI: 10.3390/biology11050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Mammals evolved from reptiles as a consequence of an evolutionary bottleneck. Some diurnal reptiles extended their activity, first to twilight and then to the entire dark time. This forced the change of the visual system. Pursuing maximal sensitivity, they abandoned the filters protecting the eyes against the dangerous diurnal light, which, in turn, forced immobility in lightproof burrows during light time. This was the birth of the mammalian sleep. Then, the Cretacic-Paleogene extinction of dinosaurs leaved free the diurnal niche and allowed the expansion of a few early mammals to diurnal life and the high variability of sleep traits. On the other hand, we propose that the idling rest is a state showing homeostatic regulation. Therefore, the difference between behavioral rest and wakeful idling is rather low: both show quiescence, raised sensory thresholds, reversibility, specific sleeping-resting sites and body positions, it is a pleasing state, and both are dependent of circadian and homeostatic regulation. Indeed, the most important difference is the unconsciousness of sleep and the consciousness of wakeful idling. Thus, we propose that sleep is a mere upgrade of the wakeful rest, and both may have the same function: guaranteeing rest during a part of the daily cycle. Abstract Mammals evolved from small-sized reptiles that developed endothermic metabolism. This allowed filling the nocturnal niche. They traded-off visual acuity for sensitivity but became defenseless against the dangerous daylight. To avoid such danger, they rested with closed eyes in lightproof burrows during light-time. This was the birth of the mammalian sleep, the main finding of this report. Improved audition and olfaction counterweighed the visual impairments and facilitated the cortical development. This process is called “The Nocturnal Evolutionary Bottleneck”. Pre-mammals were nocturnal until the Cretacic-Paleogene extinction of dinosaurs. Some early mammals returned to diurnal activity, and this allowed the high variability in sleeping patterns observed today. The traits of Waking Idleness are almost identical to those of behavioral sleep, including homeostatic regulation. This is another important finding of this report. In summary, behavioral sleep seems to be an upgrade of Waking Idleness Indeed, the trait that never fails to show is quiescence. We conclude that the main function of sleep consists in guaranteeing it during a part of the daily cycle.
Collapse
Affiliation(s)
- Rubén V. Rial
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- Correspondence: ; Tel.: +34-971-173-147; Fax: +34-971-173-184
| | - Francesca Canellas
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Mourad Akaârir
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - José A. Rubiño
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Pere Barceló
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Aida Martín
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Antoni Gamundí
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - M. Cristina Nicolau
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
22
|
Lev-Ari T, Beeri H, Gutfreund Y. The Ecological View of Selective Attention. Front Integr Neurosci 2022; 16:856207. [PMID: 35391754 PMCID: PMC8979825 DOI: 10.3389/fnint.2022.856207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence is supporting the hypothesis that our selective attention is a manifestation of mechanisms that evolved early in evolution and are shared by many organisms from different taxa. This surge of new data calls for the re-examination of our notions about attention, which have been dominated mostly by human psychology. Here, we present an hypothesis that challenges, based on evolutionary grounds, a common view of attention as a means to manage limited brain resources. We begin by arguing that evolutionary considerations do not favor the basic proposition of the limited brain resources view of attention, namely, that the capacity of the sensory organs to provide information exceeds the capacity of the brain to process this information. Moreover, physiological studies in animals and humans show that mechanisms of selective attention are highly demanding of brain resources, making it paradoxical to see attention as a means to release brain resources. Next, we build on the above arguments to address the question why attention evolved in evolution. We hypothesize that, to a certain extent, limiting sensory processing is adaptive irrespective of brain capacity. We call this hypothesis the ecological view of attention (EVA) because it is centered on interactions of an animal with its environment rather than on internal brain resources. In its essence is the notion that inherently noisy and degraded sensory inputs serve the animal's adaptive, dynamic interactions with its environment. Attention primarily functions to resolve behavioral conflicts and false distractions. Hence, we evolved to focus on a particular target at the expense of others, not because of internal limitations, but to ensure that behavior is properly oriented and committed to its goals. Here, we expand on this notion and review evidence supporting it. We show how common results in human psychophysics and physiology can be reconciled with an EVA and discuss possible implications of the notion for interpreting current results and guiding future research.
Collapse
Affiliation(s)
| | | | - Yoram Gutfreund
- The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Haifa, Israel
| |
Collapse
|
23
|
Wang L, Huang L, Li M, Wang X, Wang S, Lin Y, Zhang X. An awareness-dependent mapping of saliency in the human visual system. Neuroimage 2021; 247:118864. [PMID: 34965453 DOI: 10.1016/j.neuroimage.2021.118864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 11/25/2022] Open
Abstract
The allocation of exogenously cued spatial attention is governed by a saliency map. Yet, how salience is mapped when multiple salient stimuli are present simultaneously, and how this mapping interacts with awareness remains unclear. These questions were addressed here using either visible or invisible displays presenting two foreground stimuli (whose bars were oriented differently from the bars in the otherwise uniform background): a high salience target and a distractor of varied, lesser salience. Interference, or not, by the distractor with the effective salience of the target served to index a graded or non-graded nature of salience mapping, respectively. The invisible and visible displays were empirically validated by a two-alternative forced choice test (detecting the quadrant of the target) demonstrating subjects' performance at or above chance level, respectively. By combining psychophysics, fMRI, and effective connectivity analysis, we found a graded distribution of salience with awareness, changing to a non-graded distribution without awareness. Crucially, we further revealed that the graded distribution was contingent upon feedback from the posterior intraparietal sulcus (pIPS, especially from the right pIPS), whereas the non-graded distribution was innate to V1. Together, this awareness-dependent mapping of saliency reconciles several previous, seemingly contradictory findings regarding the nature of the saliency map.
Collapse
Affiliation(s)
- Lijuan Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Ling Huang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Mengsha Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Xiaotong Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Shiyu Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yuefa Lin
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Xilin Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, Guangdong 510631, China; Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China.
| |
Collapse
|
24
|
Bina L, Romano V, Hoogland TM, Bosman LWJ, De Zeeuw CI. Purkinje cells translate subjective salience into readiness to act and choice performance. Cell Rep 2021; 37:110116. [PMID: 34910904 DOI: 10.1016/j.celrep.2021.110116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/06/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
The brain selectively allocates attention from a continuous stream of sensory input. This process is typically attributed to computations in distinct regions of the forebrain and midbrain. Here, we explore whether cerebellar Purkinje cells encode information about the selection of sensory inputs and could thereby contribute to non-motor forms of learning. We show that complex spikes of individual Purkinje cells change the sensory modality they encode to reflect changes in the perceived salience of sensory input. Comparisons with mouse models deficient in cerebellar plasticity suggest that changes in complex spike activity instruct potentiation of Purkinje cells simple spike firing, which is required for efficient learning. Our findings suggest that during learning, climbing fibers do not directly guide motor output, but rather contribute to a general readiness to act via changes in simple spike activity, thereby bridging the sequence from non-motor to motor functions.
Collapse
Affiliation(s)
- Lorenzo Bina
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands
| | - Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands
| | - Tycho M Hoogland
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands.
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands.
| |
Collapse
|
25
|
Contemori S, Loeb GE, Corneil BD, Wallis G, Carroll TJ. Trial-by-trial modulation of express visuomotor responses induced by symbolic or barely detectable cues. J Neurophysiol 2021; 126:1507-1523. [PMID: 34550012 DOI: 10.1152/jn.00053.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human cerebral cortex can produce visuomotor responses that are modulated by contextual and task-specific constraints. However, the distributed cortical network for visuomotor transformations limits the minimal response time of that pathway. Notably, humans can generate express visuomotor responses in arm muscles that are inflexibly tuned to the target location and occur 80-120 ms from stimulus presentation [stimulus-locked responses (SLRs)]. This suggests a subcortical pathway for visuomotor transformations that might involve the superior colliculus and its downstream reticulo-spinal projections. Here we investigated whether cognitive expectations can modulate the SLR. In one experiment, we recorded surface electromyogram (EMG) from shoulder muscles as participants reached toward a visual target whose location was unpredictable in control conditions and partially predictable in cue conditions by interpreting a symbolic cue (75% validity). Valid symbolic cues led to earlier and larger SLRs than control conditions; invalid symbolic cues produced later and smaller SLRs than control conditions. This is consistent with a cortical top-down modulation of the putative subcortical SLR network. In a second experiment, we presented high-contrast targets in isolation (control) or ∼24 ms after low-contrast stimuli, which could appear at the same (valid cue) or opposite (invalid cue) location as the target and with equal probability (50% cue validity). We observed earlier SLRs than control with the valid low-contrast cues, whereas the invalid cues led to the opposite results. These findings may reflect bottom-up attentional mechanisms, potentially evolving subcortically via the superior colliculus. Overall, our results support both top-down and bottom-up modulations of the putative subcortical SLR network in humans.NEW & NOTEWORTHY Express visuomotor responses in humans appear to reflect subcortical sensorimotor transformation of visual inputs, potentially conveyed via the tecto-reticulo-spinal pathway. Here we show that the express responses are influenced by both symbolic and barely detectable spatial cues about stimulus location. The symbolic cue-induced effects suggest cortical top-down modulation of the putative subcortical visuomotor network. The effects of barely detectable cues may reflect exogenous facilitation mechanisms of the tecto-reticulo-spinal pathway.
Collapse
Affiliation(s)
- Samuele Contemori
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gerald E Loeb
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Brian D Corneil
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Robarts Research Institute, London, Ontario, Canada
| | - Guy Wallis
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Timothy J Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
An inferior-superior colliculus circuit controls auditory cue-directed visual spatial attention. Neuron 2021; 110:109-119.e3. [PMID: 34699777 DOI: 10.1016/j.neuron.2021.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/30/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
Selective attention modulates neuronal activity in multiple brain regions, but the origins of attention signals remain unclear. We show that, during a visual task requiring spatial attention directed by an auditory cue, an inferior-superior colliculus circuit provides the key attention signal. In mice performing a task based on a visual stimulus in the cued hemifield while ignoring a conflicting stimulus on the uncued side, the visual cortex (V1) and superior colliculus (SC) showed strong attentional modulation, with a shorter latency in the SC. The nucleus of the brachium of the inferior colliculus (nBIC), which provides auditory inputs to the SC, was activated not only at auditory cue onset but also during the delay period before the visual stimulus. The delay activity, but not cue onset activity, was crucial for task performance and attentional modulation in the SC and V1. These results establish a new behavioral paradigm for studying visual attention in mice and identify a midbrain signal controlling auditory cue-directed spatial attention.
Collapse
|
27
|
Speed A, Haider B. Probing mechanisms of visual spatial attention in mice. Trends Neurosci 2021; 44:822-836. [PMID: 34446296 PMCID: PMC8484049 DOI: 10.1016/j.tins.2021.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
The role of spatial attention for visual perception has been thoroughly studied in primates, but less so in mice. Several behavioral tasks in mice reveal spatial attentional effects, with similarities to observations in primates. Pairing these tasks with large-scale, cell-type-specific techniques could enable deeper access to underlying mechanisms, and help define the utility and limitations of resolving attentional effects on visual perception and neural activity in mice. In this Review, we evaluate behavioral and neural evidence for visual spatial attention in mice; assess how specializations of the mouse visual system and behavioral repertoire impact interpretation of spatial attentional effects; and outline how several measurement and manipulation techniques in mice could precisely test and refine models of attentional modulation across scales.
Collapse
Affiliation(s)
- Anderson Speed
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Bilal Haider
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| |
Collapse
|
28
|
Khramova MV, Kuc AK, Maksimenko VA, Frolov NS, Grubov VV, Kurkin SA, Pisarchik AN, Shusharina NN, Fedorov AA, Hramov AE. Monitoring the Cortical Activity of Children and Adults during Cognitive Task Completion. SENSORS 2021; 21:s21186021. [PMID: 34577225 PMCID: PMC8472204 DOI: 10.3390/s21186021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
In this paper, we used an EEG system to monitor and analyze the cortical activity of children and adults at a sensor level during cognitive tasks in the form of a Schulte table. This complex cognitive task simultaneously involves several cognitive processes and systems: visual search, working memory, and mental arithmetic. We revealed that adults found numbers on average two times faster than children in the beginning. However, this difference diminished at the end of table completion to 1.8 times. In children, the EEG analysis revealed high parietal alpha-band power at the end of the task. This indicates the shift from procedural strategy to less demanding fact-retrieval. In adults, the frontal beta-band power increased at the end of the task. It reflects enhanced reliance on the top-down mechanisms, cognitive control, or attentional modulation rather than a change in arithmetic strategy. Finally, the alpha-band power of adults exceeded one of the children in the left hemisphere, providing potential evidence for the fact-retrieval strategy. Since the completion of the Schulte table involves a whole set of elementary cognitive functions, the obtained results were essential for developing passive brain-computer interfaces for monitoring and adjusting a human state in the process of learning and solving cognitive tasks of various types.
Collapse
Affiliation(s)
- Marina V. Khramova
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.V.K.); (A.K.K.); (V.A.M.); (N.S.F.); (V.V.G.); (S.A.K.); (A.N.P.); (N.N.S.)
- Faculty of Computer Science and Information Technology, Saratov State University, 410012 Saratov, Russia
| | - Alexander K. Kuc
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.V.K.); (A.K.K.); (V.A.M.); (N.S.F.); (V.V.G.); (S.A.K.); (A.N.P.); (N.N.S.)
| | - Vladimir A. Maksimenko
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.V.K.); (A.K.K.); (V.A.M.); (N.S.F.); (V.V.G.); (S.A.K.); (A.N.P.); (N.N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, 420500 Kazan, Russia
| | - Nikita S. Frolov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.V.K.); (A.K.K.); (V.A.M.); (N.S.F.); (V.V.G.); (S.A.K.); (A.N.P.); (N.N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, 420500 Kazan, Russia
| | - Vadim V. Grubov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.V.K.); (A.K.K.); (V.A.M.); (N.S.F.); (V.V.G.); (S.A.K.); (A.N.P.); (N.N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, 420500 Kazan, Russia
| | - Semen A. Kurkin
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.V.K.); (A.K.K.); (V.A.M.); (N.S.F.); (V.V.G.); (S.A.K.); (A.N.P.); (N.N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, 420500 Kazan, Russia
| | - Alexander N. Pisarchik
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.V.K.); (A.K.K.); (V.A.M.); (N.S.F.); (V.V.G.); (S.A.K.); (A.N.P.); (N.N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, 420500 Kazan, Russia
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Natalia N. Shusharina
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.V.K.); (A.K.K.); (V.A.M.); (N.S.F.); (V.V.G.); (S.A.K.); (A.N.P.); (N.N.S.)
| | | | - Alexander E. Hramov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.V.K.); (A.K.K.); (V.A.M.); (N.S.F.); (V.V.G.); (S.A.K.); (A.N.P.); (N.N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, 420500 Kazan, Russia
- Department of Theoretical Cybernetics, Saint Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
29
|
Jagatap A, Purokayastha S, Jain H, Sridharan D. Neurally-constrained modeling of human gaze strategies in a change blindness task. PLoS Comput Biol 2021; 17:e1009322. [PMID: 34428201 PMCID: PMC8478260 DOI: 10.1371/journal.pcbi.1009322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/28/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Despite possessing the capacity for selective attention, we often fail to notice the obvious. We investigated participants’ (n = 39) failures to detect salient changes in a change blindness experiment. Surprisingly, change detection success varied by over two-fold across participants. These variations could not be readily explained by differences in scan paths or fixated visual features. Yet, two simple gaze metrics–mean duration of fixations and the variance of saccade amplitudes–systematically predicted change detection success. We explored the mechanistic underpinnings of these results with a neurally-constrained model based on the Bayesian framework of sequential probability ratio testing, with a posterior odds-ratio rule for shifting gaze. The model’s gaze strategies and success rates closely mimicked human data. Moreover, the model outperformed a state-of-the-art deep neural network (DeepGaze II) with predicting human gaze patterns in this change blindness task. Our mechanistic model reveals putative rational observer search strategies for change detection during change blindness, with critical real-world implications. Our brain has the remarkable capacity to pay attention, selectively, to important objects in the world around us. Yet, sometimes, we fail spectacularly to notice even the most salient events. We tested this phenomenon in the laboratory with a change-blindness experiment, by having participants freely scan and detect changes across discontinuous image pairs. Participants varied widely in their ability to detect these changes. Surprisingly, two low-level gaze metrics—fixation durations and saccade amplitudes—strongly predicted success in this task. We present a novel, computational model of eye movements, incorporating neural constraints on stimulus encoding, that links these gaze metrics with change detection success. Our model is relevant for a mechanistic understanding of human gaze strategies in dynamic visual environments.
Collapse
Affiliation(s)
- Akshay Jagatap
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | | | - Hritik Jain
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
- Computer Science and Automation, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
30
|
Reyes-Pinto R, Ferrán JL, Vega-Zuniga T, González-Cabrera C, Luksch H, Mpodozis J, Puelles L, Marín GJ. Change in the neurochemical signature and morphological development of the parvocellular isthmic projection to the avian tectum. J Comp Neurol 2021; 530:553-573. [PMID: 34363623 DOI: 10.1002/cne.25229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/05/2022]
Abstract
Neurons can change their classical neurotransmitters during ontogeny, sometimes going through stages of dual release. Here, we explored the development of the neurotransmitter identity of neurons of the avian nucleus isthmi parvocellularis (Ipc), whose axon terminals are retinotopically arranged in the optic tectum (TeO) and exert a focal gating effect upon the ascending transmission of retinal inputs. Although cholinergic and glutamatergic markers are both found in Ipc neurons and terminals of adult pigeons and chicks, the mRNA expression of the vesicular acetylcholine transporter, VAChT, is weak or absent. To explore how the Ipc neurotransmitter identity is established during ontogeny, we analyzed the expression of mRNAs coding for cholinergic (ChAT, VAChT, and CHT) and glutamatergic (VGluT2 and VGluT3) markers in chick embryos at different developmental stages. We found that between E12 and E18, Ipc neurons expressed all cholinergic mRNAs and also VGluT2 mRNA; however, from E16 through posthatch stages, VAChT mRNA expression was specifically diminished. Our ex vivo deposits of tracer crystals and intracellular filling experiments revealed that Ipc axons exhibit a mature paintbrush morphology late in development, experiencing marked morphological transformations during the period of presumptive dual vesicular transmitter release. Additionally, although ChAT protein immunoassays increasingly label the growing Ipc axon, this labeling was consistently restricted to sparse portions of the terminal branches. Combined, these results suggest that the synthesis of glutamate and acetylcholine, and their vesicular release, is complexly linked to the developmental processes of branching, growing and remodeling of these unique axons.
Collapse
Affiliation(s)
- Rosana Reyes-Pinto
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - José L Ferrán
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, Murcia, Spain
| | - Tomas Vega-Zuniga
- Lehrstuhl für Zoologie, Technical University of Munich, Freising, Germany.,Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | | - Harald Luksch
- Lehrstuhl für Zoologie, Technical University of Munich, Freising, Germany
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, Murcia, Spain
| | - Gonzalo J Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
31
|
Isa T, Marquez-Legorreta E, Grillner S, Scott EK. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr Biol 2021; 31:R741-R762. [PMID: 34102128 DOI: 10.1016/j.cub.2021.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The superior colliculus, or tectum in the case of non-mammalian vertebrates, is a part of the brain that registers events in the surrounding space, often through vision and hearing, but also through electrosensation, infrared detection, and other sensory modalities in diverse vertebrate lineages. This information is used to form maps of the surrounding space and the positions of different salient stimuli in relation to the individual. The sensory maps are arranged in layers with visual input in the uppermost layer, other senses in deeper positions, and a spatially aligned motor map in the deepest layer. Here, we will review the organization and intrinsic function of the tectum/superior colliculus and the information that is processed within tectal circuits. We will also discuss tectal/superior colliculus outputs that are conveyed directly to downstream motor circuits or via the thalamus to cortical areas to control various aspects of behavior. The tectum/superior colliculus is evolutionarily conserved among all vertebrates, but tailored to the sensory specialties of each lineage, and its roles have shifted with the emergence of the cerebral cortex in mammals. We will illustrate both the conserved and divergent properties of the tectum/superior colliculus through vertebrate evolution by comparing tectal processing in lampreys belonging to the oldest group of extant vertebrates, larval zebrafish, rodents, and other vertebrates including primates.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
32
|
A Thalamic Reticular Circuit for Head Direction Cell Tuning and Spatial Navigation. Cell Rep 2021; 31:107747. [PMID: 32521272 DOI: 10.1016/j.celrep.2020.107747] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/13/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023] Open
Abstract
As we navigate in space, external landmarks and internal information guide our movement. Circuit and synaptic mechanisms that integrate these cues with head-direction (HD) signals remain, however, unclear. We identify an excitatory synaptic projection from the presubiculum (PreS) and the multisensory-associative retrosplenial cortex (RSC) to the anterodorsal thalamic reticular nucleus (TRN), so far classically implied in gating sensory information flow. In vitro, projections to TRN involve AMPA/NMDA-type glutamate receptors that initiate TRN cell burst discharge and feedforward inhibition of anterior thalamic nuclei. In vivo, chemogenetic anterodorsal TRN inhibition modulates PreS/RSC-induced anterior thalamic firing dynamics, broadens the tuning of thalamic HD cells, and leads to preferential use of allo- over egocentric search strategies in the Morris water maze. TRN-dependent thalamic inhibition is thus an integral part of limbic navigational circuits wherein it coordinates external sensory and internal HD signals to regulate the choice of search strategies during spatial navigation.
Collapse
|
33
|
Souto D, Kerzel D. Visual selective attention and the control of tracking eye movements: a critical review. J Neurophysiol 2021; 125:1552-1576. [DOI: 10.1152/jn.00145.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
People’s eyes are directed at objects of interest with the aim of acquiring visual information. However, processing this information is constrained in capacity, requiring task-driven and salience-driven attentional mechanisms to select few among the many available objects. A wealth of behavioral and neurophysiological evidence has demonstrated that visual selection and the motor selection of saccade targets rely on shared mechanisms. This coupling supports the premotor theory of visual attention put forth more than 30 years ago, postulating visual selection as a necessary stage in motor selection. In this review, we examine to which extent the coupling of visual and motor selection observed with saccades is replicated during ocular tracking. Ocular tracking combines catch-up saccades and smooth pursuit to foveate a moving object. We find evidence that ocular tracking requires visual selection of the speed and direction of the moving target, but the position of the motion signal may not coincide with the position of the pursuit target. Further, visual and motor selection can be spatially decoupled when pursuit is initiated (open-loop pursuit). We propose that a main function of coupled visual and motor selection is to serve the coordination of catch-up saccades and pursuit eye movements. A simple race-to-threshold model is proposed to explain the variable coupling of visual selection during pursuit, catch-up and regular saccades, while generating testable predictions. We discuss pending issues, such as disentangling visual selection from preattentive visual processing and response selection, and the pinpointing of visual selection mechanisms, which have begun to be addressed in the neurophysiological literature.
Collapse
Affiliation(s)
- David Souto
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Dirk Kerzel
- Faculté de Psychologie et des Sciences de l’Education, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Fjaeldstad AW, Stiller-Stut F, Gleesborg C, Kringelbach ML, Hummel T, Fernandes HM. Validation of Olfactory Network Based on Brain Structural Connectivity and Its Association With Olfactory Test Scores. Front Syst Neurosci 2021; 15:638053. [PMID: 33927597 PMCID: PMC8078209 DOI: 10.3389/fnsys.2021.638053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/08/2021] [Indexed: 01/26/2023] Open
Abstract
Olfactory perception is a complicated process involving multiple cortical and subcortical regions, of which the underlying brain dynamics are still not adequately mapped. Even in the definition of the olfactory primary cortex, there is a large degree of variation in parcellation templates used for investigating olfaction in neuroimaging studies. This complicates comparison between human olfactory neuroimaging studies. The present study aims to validate an olfactory parcellation template derived from both functional and anatomical data that applies structural connectivity (SC) to ensure robust connectivity to key secondary olfactory regions. Furthermore, exploratory analyses investigate if different olfactory parameters are associated with differences in the strength of connectivity of this structural olfactory fingerprint. By combining diffusion data with an anatomical atlas and advanced probabilistic tractography, we found that the olfactory parcellation had a robust SC network to key secondary olfactory regions. Furthermore, the study indicates that higher ratings of olfactory significance were associated with increased intra- and inter-hemispheric SC of the primary olfactory cortex. Taken together, these results suggest that the patterns of SC between the primary olfactory cortex and key secondary olfactory regions has potential to be used for investigating the nature of olfactory significance, hence strengthening the theory that individual differences in olfactory behaviour are encoded in the structural network fingerprint of the olfactory cortex.
Collapse
Affiliation(s)
- Alexander Wieck Fjaeldstad
- Flavour Institute, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Flavour Clinic, Department of Otorhinolaryngology, Holstebro Regional Hospital, Holstebro, Denmark.,Center for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
| | - Franz Stiller-Stut
- Interdisciplinary Center for Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Carsten Gleesborg
- Flavour Institute, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Morten L Kringelbach
- Flavour Institute, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Center for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom.,Center of Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Thomas Hummel
- Interdisciplinary Center for Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Henrique M Fernandes
- Flavour Institute, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Center for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom.,Center of Music in the Brain, Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Riley GA, Pearce A. Wakeful rest during storage and consolidation enhances priming effects for those with acquired memory impairment. Memory 2021; 29:547-558. [PMID: 33819130 DOI: 10.1080/09658211.2021.1907414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A period of rest after learning results in better explicit memory for the material than a period of unrelated mental activity. This study investigated whether the same applies to priming. Thirty-four people with memory impairments due to acquired brain injury took part. In a repeated measures design, participants studied word lists; then either engaged in a relaxation technique (wakeful rest condition) or completed visuo-spatial tasks (control condition); and finally completed two priming tasks. Priming effects were significantly larger in the wakeful rest condition. This result is difficult to explain in terms of some of the explanations used to account for the benefits of wakeful rest on explicit memory, and alternative explanations are considered. One possibility is that the attentional demands of the control task resulted in inhibition of activity in neocortical areas associated with perception that contributed to the priming effect. The findings have implications for memory rehabilitation. Acquired memory impairments typically impact on explicit memory, and implicit memory is often relatively intact. It is important to find ways of enabling those with more severe explicit impairments to make best use of their implicit memory as a way of compensating for the deficits in their explicit memory.
Collapse
Affiliation(s)
- Gerard A Riley
- Centre for Applied Psychology, University of Birmingham, Birmingham, UK
| | - Arthur Pearce
- Centre for Applied Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
36
|
Basso MA, Bickford ME, Cang J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron 2021; 109:918-937. [PMID: 33548173 PMCID: PMC7979487 DOI: 10.1016/j.neuron.2021.01.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
The superior colliculus is a conserved sensorimotor structure that integrates visual and other sensory information to drive reflexive behaviors. Although the evidence for this is strong and compelling, a number of experiments reveal a role for the superior colliculus in behaviors usually associated with the cerebral cortex, such as attention and decision-making. Indeed, in addition to collicular outputs targeting brainstem regions controlling movements, the superior colliculus also has ascending projections linking it to forebrain structures including the basal ganglia and amygdala, highlighting the fact that the superior colliculus, with its vast inputs and outputs, can influence processing throughout the neuraxis. Today, modern molecular and genetic methods combined with sophisticated behavioral assessments have the potential to make significant breakthroughs in our understanding of the evolution and conservation of neuronal cell types and circuits in the superior colliculus that give rise to simple and complex behaviors.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | - Jianhua Cang
- University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
37
|
Fernandes AM, Mearns DS, Donovan JC, Larsch J, Helmbrecht TO, Kölsch Y, Laurell E, Kawakami K, Dal Maschio M, Baier H. Neural circuitry for stimulus selection in the zebrafish visual system. Neuron 2020; 109:805-822.e6. [PMID: 33357384 DOI: 10.1016/j.neuron.2020.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 11/15/2022]
Abstract
When navigating the environment, animals need to prioritize responses to the most relevant stimuli. Although a theoretical framework for selective visual attention exists, its circuit implementation has remained obscure. Here we investigated how larval zebrafish select between simultaneously presented visual stimuli. We found that a mix of winner-take-all (WTA) and averaging strategies best simulates behavioral responses. We identified two circuits whose activity patterns predict the relative saliencies of competing visual objects. Stimuli presented to only one eye are selected by WTA computation in the inner retina. Binocularly presented stimuli, on the other hand, are processed by reciprocal, bilateral connections between the nucleus isthmi (NI) and the tectum. This interhemispheric computation leads to WTA or averaging responses. Optogenetic stimulation and laser ablation of NI neurons disrupt stimulus selection and behavioral action selection. Thus, depending on the relative locations of competing stimuli, a combination of retinotectal and isthmotectal circuits enables selective visual attention.
Collapse
Affiliation(s)
- António M Fernandes
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Duncan S Mearns
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Joseph C Donovan
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Johannes Larsch
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Thomas O Helmbrecht
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Yvonne Kölsch
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Eva Laurell
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Marco Dal Maschio
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Herwig Baier
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| |
Collapse
|
38
|
Huda R, Sipe GO, Breton-Provencher V, Cruz KG, Pho GN, Adam E, Gunter LM, Sullins A, Wickersham IR, Sur M. Distinct prefrontal top-down circuits differentially modulate sensorimotor behavior. Nat Commun 2020; 11:6007. [PMID: 33243980 PMCID: PMC7691329 DOI: 10.1038/s41467-020-19772-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023] Open
Abstract
Sensorimotor behaviors require processing of behaviorally relevant sensory cues and the ability to select appropriate responses from a vast behavioral repertoire. Modulation by the prefrontal cortex (PFC) is thought to be key for both processes, but the precise role of specific circuits remains unclear. We examined the sensorimotor function of anatomically distinct outputs from a subdivision of the mouse PFC, the anterior cingulate cortex (ACC). Using a visually guided two-choice behavioral paradigm with multiple cue-response mappings, we dissociated the sensory and motor response components of sensorimotor control. Projection-specific two-photon calcium imaging and optogenetic manipulations show that ACC outputs to the superior colliculus, a key midbrain structure for response selection, principally coordinate specific motor responses. Importantly, ACC outputs exert control by reducing the innate response bias of the superior colliculus. In contrast, ACC outputs to the visual cortex facilitate sensory processing of visual cues. Our results ascribe motor and sensory roles to ACC projections to the superior colliculus and the visual cortex and demonstrate for the first time a circuit motif for PFC function wherein anatomically non-overlapping output pathways coordinate complementary but distinct aspects of visual sensorimotor behavior. The neural circuit mechanisms for sensorimotor control by the prefrontal cortex (PFC) are unclear. Here, the authors show that PFC outputs to the visual cortex and superior colliculus respectively facilitate sensory processing and action selection, allowing the PFC to independently control complementary but distinct behavioral functions.
Collapse
Affiliation(s)
- Rafiq Huda
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Grayson O Sipe
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vincent Breton-Provencher
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - K Guadalupe Cruz
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gerald N Pho
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elie Adam
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Liadan M Gunter
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Austin Sullins
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
39
|
Kryklywy JH, Ehlers MR, Anderson AK, Todd RM. From Architecture to Evolution: Multisensory Evidence of Decentralized Emotion. Trends Cogn Sci 2020; 24:916-929. [DOI: 10.1016/j.tics.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
|
40
|
Tokuoka K, Kasai M, Kobayashi K, Isa T. Anatomical and electrophysiological analysis of cholinergic inputs from the parabigeminal nucleus to the superficial superior colliculus. J Neurophysiol 2020; 124:1968-1985. [PMID: 33085555 DOI: 10.1152/jn.00148.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Superior colliculus (SC) is a midbrain structure that integrates sensory inputs and generates motor commands to initiate innate motor behaviors. Its retinorecipient superficial layers (sSC) receive dense cholinergic projections from the parabigeminal nucleus (PBN). Our previous in vitro study revealed that acetylcholine induces fast inward current followed by prominent GABAergic inhibition within the sSC circuits (Endo T, Yanagawa Y, Obata K, Isa T. J Neurophysiol 94: 3893-3902, 2005). Acetylcholine-mediated facilitation of GABAergic inhibition may play an important role in visual signal processing in the sSC; however, both the anatomical and physiological properties of cholinergic inputs from PBN have not been studied in detail in vivo. In this study, we specifically visualized and optogenetically manipulated the cholinergic neurons in the PBN after focal injections of Cre-dependent viral vectors in mice that express Cre in cholinergic neurons. We revealed that the cholinergic projections terminated densely in the medial part of the mouse sSC. This suggests that the cholinergic inputs mediate visual processing in the upper visual field, which would be critical for predator detection. We further analyzed the physiological roles of the cholinergic inputs by recording looming-evoked visual responses from sSC neurons during optogenetic activation or inactivation of PBN cholinergic neurons in anesthetized mice. We found that optogenetic manipulations in either direction induced response suppression in most neurons, whereas response facilitation was observed in a few neurons after the optogenetic activation. These results support a circuit model that suggests that the PBN cholinergic inputs enhance functions of the sSC in detecting visual targets by facilitating the center excitation-surround inhibition.NEW & NOTEWORTHY The modulatory role of the cholinergic inputs from the parabigeminal nucleus in the visual responses in the superficial superior colliculus (sSC) remains unknown. Here we report that the cholinergic projections terminate densely in the medial sSC and optogenetic manipulations of the cholinergic inputs affect the looming-evoked response and enhance surround inhibition in the sSC. Our data suggest that cholinergic inputs to the sSC contribute to the visual detection of predators.
Collapse
Affiliation(s)
- Kota Tokuoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.,School of Life Sciences, Graduate University of Advanced Studies (SOKENDAI), Hayama, Japan.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Kasai
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenta Kobayashi
- School of Life Sciences, Graduate University of Advanced Studies (SOKENDAI), Hayama, Japan.,Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.,School of Life Sciences, Graduate University of Advanced Studies (SOKENDAI), Hayama, Japan.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan.,Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Sar-El R, Sharon H, Lubianiker N, Hendler T, Raz G. Inducing a Functional-Pharmacological Coupling in the Human Brain to Achieve Improved Drug Effect. Front Neurosci 2020; 14:557874. [PMID: 33154714 PMCID: PMC7586318 DOI: 10.3389/fnins.2020.557874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roy Sar-El
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Roy Sar-El,
| | - Haggai Sharon
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nitzan Lubianiker
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Talma Hendler
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gal Raz
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Steve Tisch School of Film and Television, Tel Aviv University, Tel Aviv, Israel
- Gal Raz,
| |
Collapse
|
42
|
Fujita H, Kodama T, du Lac S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife 2020; 9:e58613. [PMID: 32639229 PMCID: PMC7438114 DOI: 10.7554/elife.58613] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The cerebellar vermis, long associated with axial motor control, has been implicated in a surprising range of neuropsychiatric disorders and cognitive and affective functions. Remarkably little is known, however, about the specific cell types and neural circuits responsible for these diverse functions. Here, using single-cell gene expression profiling and anatomical circuit analyses of vermis output neurons in the mouse fastigial (medial cerebellar) nucleus, we identify five major classes of glutamatergic projection neurons distinguished by gene expression, morphology, distribution, and input-output connectivity. Each fastigial cell type is connected with a specific set of Purkinje cells and inferior olive neurons and in turn innervates a distinct collection of downstream targets. Transsynaptic tracing indicates extensive disynaptic links with cognitive, affective, and motor forebrain circuits. These results indicate that diverse cerebellar vermis functions could be mediated by modular synaptic connections of distinct fastigial cell types with posturomotor, oromotor, positional-autonomic, orienting, and vigilance circuits.
Collapse
Affiliation(s)
- Hirofumi Fujita
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | - Takashi Kodama
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | - Sascha du Lac
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neurology, Johns Hopkins Medical InstituteBaltimoreUnited States
| |
Collapse
|
43
|
Ketter-Katz H, Lev-Ari T, Katzir G. Vision in chameleons-A model for non-mammalian vertebrates. Semin Cell Dev Biol 2020; 106:94-105. [PMID: 32576499 DOI: 10.1016/j.semcdb.2020.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 11/29/2022]
Abstract
Chameleons (Chamaeleonidae, Reptilia) are known for their extreme sensory and motor adaptations to arboreal life and insectivoury. They show most distinct sequences of visuo-motor patterns in threat avoidance and in predation with prey capture being performed by tongue strikes that are unparalleled in vertebrates. Optical adaptations result in retinal image enlargement and the unique capacity to determine target distance by accommodation cues. Ocular adaptations result in complex eye movements that are context dependent, not independent, as observed in threat avoidance and predation. In predation, evidence from the chameleons' capacity to track multiple targets support the view that their eyes are under individual controls. Eye movements and body movements are lateralised, with lateralisation being a function of many factors at the population, individual, and specific-situation levels. Chameleons are considered a potentially important model for vision in non-mammalian vertebrates. They provide exceptional behavioural tools for studying eye movements as well as information gathering and analysis. They open the field of lateralisation, decision making, and context dependence. Finally, chameleons allow a deeper examination of the relationships between their unique visuo-motor capacities and the central nervous system of reptiles and ectotherms, in general, as compared with mammals.
Collapse
Affiliation(s)
- Hadas Ketter-Katz
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Tidhar Lev-Ari
- Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Gadi Katzir
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 3498838, Israel.
| |
Collapse
|
44
|
Arabkheradmand G, Zhou G, Noto T, Yang Q, Schuele SU, Parvizi J, Gottfried JA, Wu S, Rosenow JM, Koubeissi MZ, Lane G, Zelano C. Anticipation-induced delta phase reset improves human olfactory perception. PLoS Biol 2020; 18:e3000724. [PMID: 32453719 PMCID: PMC7250403 DOI: 10.1371/journal.pbio.3000724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Anticipating an odor improves detection and perception, yet the underlying neural mechanisms of olfactory anticipation are not well understood. In this study, we used human intracranial electroencephalography (iEEG) to show that anticipation resets the phase of delta oscillations in piriform cortex prior to odor arrival. Anticipatory phase reset correlates with ensuing odor-evoked theta power and improvements in perceptual accuracy. These effects were consistently present in each individual subject and were not driven by potential confounds of pre-inhale motor preparation or power changes. Together, these findings suggest that states of anticipation enhance olfactory perception through phase resetting of delta oscillations in piriform cortex. Use of human intracranial electroencephalography methods, including rare direct recordings from human olfactory cortex, shows that anticipation of odor resets the phase of delta oscillations prior to the arrival of an odor.
Collapse
Affiliation(s)
- Ghazaleh Arabkheradmand
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Guangyu Zhou
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
- * E-mail:
| | - Torben Noto
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Qiaohan Yang
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Stephan U. Schuele
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Department of Neurology and Neurological Sciences, Stanford University Palo Alto, Stanford, California, United States of America
| | - Jay A. Gottfried
- University of Pennsylvania, Perelman School of Medicine, Department of Neurology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania, School of Arts and Sciences, Department of Psychology, Philadelphia, Pennsylvania, United States of America
| | - Shasha Wu
- University of Chicago, Department of Neurology, Chicago, Illinois, United States of America
| | - Joshua M. Rosenow
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Illinois, United States of America
| | - Mohamad Z. Koubeissi
- George Washington University, Department of Neurology, Washington DC, United States of America
| | - Gregory Lane
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Christina Zelano
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| |
Collapse
|
45
|
Mysore SP, Kothari NB. Mechanisms of competitive selection: A canonical neural circuit framework. eLife 2020; 9:e51473. [PMID: 32431293 PMCID: PMC7239658 DOI: 10.7554/elife.51473] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/02/2020] [Indexed: 01/25/2023] Open
Abstract
Competitive selection, the transformation of multiple competing sensory inputs and internal states into a unitary choice, is a fundamental component of animal behavior. Selection behaviors have been studied under several intersecting umbrellas including decision-making, action selection, perceptual categorization, and attentional selection. Neural correlates of these behaviors and computational models have been investigated extensively. However, specific, identifiable neural circuit mechanisms underlying the implementation of selection remain elusive. Here, we employ a first principles approach to map competitive selection explicitly onto neural circuit elements. We decompose selection into six computational primitives, identify demands that their execution places on neural circuit design, and propose a canonical neural circuit framework. The resulting framework has several links to neural literature, indicating its biological feasibility, and has several common elements with prominent computational models, suggesting its generality. We propose that this framework can help catalyze experimental discovery of the neural circuit underpinnings of competitive selection.
Collapse
Affiliation(s)
- Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins UniversityBaltimoreUnited States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Ninad B Kothari
- Department of Psychological and Brain Sciences, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
46
|
Abstract
This article describes some aspects of the underlying logic of the attention schema theory (AST) of subjective consciousness. It is a theory that distinguishes between what the brain actually, physically has, what is represented by information models constructed in the brain, what higher cognition thinks based on access to those models and what speech machinery claims based on the information within higher cognition. It is a theory of how we claim to have an essentially magical, subjective mind, based on the impoverishment and reduction of information along that pathway. While the article can stand on its own as a brief account of some critical aspects of AST, it specifically addresses questions and concerns raised by a set of commentaries on a target article.
Collapse
|
47
|
Categorical Signaling of the Strongest Stimulus by an Inhibitory Midbrain Nucleus. J Neurosci 2020; 40:4172-4184. [PMID: 32300047 DOI: 10.1523/jneurosci.0042-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/04/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
The nucleus isthmi pars magnocellularis (Imc), a group of inhibitory neurons in the midbrain tegmentum, is a critical component of the spatial selection network in the vertebrate midbrain. It delivers long-range inhibition among different portions of the space map in the optic tectum (OT), thereby mediating stimulus competition in the OT. Here, we investigate the properties of relative strength-dependent competitive interactions within the Imc, in barn owls of both sexes. We find that when Imc neurons are presented simultaneously with one stimulus inside the receptive field and a second, competing stimulus outside, they exhibit gradual or switch-like response profiles as a function of relative stimulus strength. They do so both when the two stimuli are of the same sensory modality (both visual) or of different sensory modalities (visual and auditory). Moreover, Imc neurons signal the strongest stimulus in a dynamically flexible manner, indicating that Imc responses reflect an online comparison between the strengths of the competing stimuli. Notably, Imc neurons signal the strongest stimulus more categorically, and earlier than the OT. Paired recordings at spatially aligned sites in the Imc and OT reveal that although some properties of stimulus competition, such as the bias of competitive response profiles, are correlated, others such as the steepness of response profiles, are set independently. Our results demonstrate that the Imc is itself an active site of competition, and may be the first site in the midbrain selection network at which stimulus competition is resolved.SIGNIFICANCE STATEMENT This work sheds light on the functional properties of a small group of inhibitory neurons in the vertebrate midbrain that play a key part in how the brain selects a target among competitors. A better understanding of the functioning of these neurons is an important building block for the broader understanding of how distracters are suppressed, and of spatial attention and its dysfunction.
Collapse
|
48
|
Lei L, Escobedo R, Sire C, Theraulaz G. Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish. PLoS Comput Biol 2020; 16:e1007194. [PMID: 32176680 PMCID: PMC7098660 DOI: 10.1371/journal.pcbi.1007194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 03/26/2020] [Accepted: 02/03/2020] [Indexed: 11/27/2022] Open
Abstract
Coordinated motion and collective decision-making in fish schools result from complex interactions by which individuals integrate information about the behavior of their neighbors. However, little is known about how individuals integrate this information to take decisions and control their motion. Here, we combine experiments with computational and robotic approaches to investigate the impact of different strategies for a fish to interact with its neighbors on collective swimming in groups of rummy-nose tetra (Hemigrammus rhodostomus). By means of a data-based agent model describing the interactions between pairs of H. rhodostomus (Calovi et al., 2018), we show that the simple addition of the pairwise interactions with two neighbors quantitatively reproduces the collective behavior observed in groups of five fish. Increasing the number of interacting neighbors does not significantly improve the simulation results. Remarkably, and even without confinement, we find that groups remain cohesive and polarized when each agent interacts with only one of its neighbors: the one that has the strongest contribution to the heading variation of the focal agent, dubbed as the "most influential neighbor". However, group cohesion is lost when each agent only interacts with its nearest neighbor. We then investigate by means of a robotic platform the collective motion in groups of five robots. Our platform combines the implementation of the fish behavioral model and a control system to deal with real-world physical constraints. A better agreement with experimental results for fish is obtained for groups of robots only interacting with their most influential neighbor, than for robots interacting with one or even two nearest neighbors. Finally, we discuss the biological and cognitive relevance of the notion of "most influential neighbors". Overall, our results suggest that fish have to acquire only a minimal amount of information about their environment to coordinate their movements when swimming in groups.
Collapse
Affiliation(s)
- Liu Lei
- University of Shanghai for Science and Technology, Shanghai, China
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse—Paul Sabatier (UPS), Toulouse, France
| | - Ramón Escobedo
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse—Paul Sabatier (UPS), Toulouse, France
| | - Clément Sire
- Laboratoire de Physique Théorique, CNRS and Université de Toulouse – Paul Sabatier, Toulouse, France
| | - Guy Theraulaz
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse—Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
49
|
Knudsen EI. Evolution of neural processing for visual perception in vertebrates. J Comp Neurol 2020; 528:2888-2901. [PMID: 32003466 PMCID: PMC7586818 DOI: 10.1002/cne.24871] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 01/22/2023]
Abstract
Visual perception requires both visual information and attention. This review compares, across classes of vertebrates, the functional and anatomical characteristics of (a) the neural pathways that process visual information about objects, and (b) stimulus selection pathways that determine the objects to which an animal attends. Early in the evolution of vertebrate species, visual perception was dominated by information transmitted via the midbrain (retinotectal) visual pathway, and attention was probably controlled primarily by a selection network in the midbrain. In contrast, in primates, visual perception is dominated by information transmitted via the forebrain (retinogeniculate) visual pathway, and attention is mediated largely by networks in the forebrain. In birds and nonprimate mammals, both the retinotectal and retinogeniculate pathways contribute critically to visual information processing, and both midbrain and forebrain networks play important roles in controlling attention. The computations and processing strategies in birds and mammals share some strikingly similar characteristics despite over 300 million years of independent evolution and being implemented by distinct brain architectures. The similarity of these functional characteristics suggests that they provide valuable advantages to visual perception in advanced visual systems. A schema is proposed that describes the evolution of the pathways and computations that enable visual perception in vertebrate species.
Collapse
Affiliation(s)
- Eric I Knudsen
- Department of Neurobiology, Stanford University, Stanford, California
| |
Collapse
|
50
|
Schneeberger K, Taborsky M. The role of sensory ecology and cognition in social decisions: Costs of acquiring information matter. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karin Schneeberger
- Behavioural Ecology Division Institute for Ecology and Evolution University of Bern Hinterkappelen/Bern Switzerland
| | - Michael Taborsky
- Behavioural Ecology Division Institute for Ecology and Evolution University of Bern Hinterkappelen/Bern Switzerland
| |
Collapse
|