1
|
Castiglioni L, Gelosa P, Muluhie M, Mercuriali B, Rzemieniec J, Gotti M, Fiordaliso F, Busca G, Sironi L. Fenofibrate reduces cardiac remodeling by mitochondrial dynamics preservation in a renovascular model of cardiac hypertrophy. Eur J Pharmacol 2024; 978:176767. [PMID: 38909934 DOI: 10.1016/j.ejphar.2024.176767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Fenofibrate, a PPAR-α agonist clinically used to lower serum lipid levels, reduces cardiac remodeling and improves cardiac function. However, its mechanism of action is not completely elucidated. In this study we examined the effect of fenofibrate on mitochondria in a rat model of renovascular hypertension, focusing on mediators controlling mitochondrial dynamics and autophagy. Rats with two-kidney one-clip (2K1C) hypertension were treated with fenofibrate 150 mg/kg/day (2K1C-FFB) or vehicle (2K1C-VEH) for 8 weeks. Systolic blood pressure and cardiac functional were in-vivo assessed, while cardiomyocyte size and protein expression of mediators of cardiac hypertrophy and mitochondrial dynamics were ex-vivo examined by histological and Western blot analyses. Fenofibrate treatment counteracted the development of hypertension and the increase of left ventricular mass, relative wall thickness and cross-sectional area of cardiomyocytes. Furthermore, fenofibrate re-balanced the expression Mfn2, Drp1 and Parkin, regulators of fusion, fission, mitophagy respectively. Regarding autophagy, the LC3-II/LC3-I ratio was increased in 2K1C-VEH and 2K1C-FFB, whereas the autophagy was increased only in 2K1C-FFB. In cultured H9C2 cardiomyoblasts, fenofibrate reversed the Ang II-induced mRNA up-regulation of hypertrophy markers Nppa and Myh7, accumulation of reactive oxygen species and depolarization of the mitochondrial membrane exerting protection mediated by up-regulation of the Uncoupling protein 2. Our results indicate that fenofibrate acts directly on cardiomyocytes and counteracts the pressure overload-induced cardiac maladaptive remodeling. This study reveals a so far hidden mechanism involving mitochondrial dynamics in the beneficial effects of fenofibrate, support its repurposing for the treatment of cardiac hypertrophy and provide new potential targets for its pharmacological function.
Collapse
Affiliation(s)
- Laura Castiglioni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Paolo Gelosa
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Majeda Muluhie
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Joanna Rzemieniec
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marco Gotti
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Busca
- Azienda "Polo Veterinario di Lodi", University of Milan, Milan, Italy
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Wakamatsu T, Yamamoto S, Yoshida S, Narita I. Indoxyl Sulfate-Induced Macrophage Toxicity and Therapeutic Strategies in Uremic Atherosclerosis. Toxins (Basel) 2024; 16:254. [PMID: 38922148 PMCID: PMC11209365 DOI: 10.3390/toxins16060254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Cardiovascular disease (CVD) frequently occurs in patients with chronic kidney disease (CKD), particularly those undergoing dialysis. The mechanisms behind this may be related to traditional risk factors and CKD-specific factors that accelerate atherosclerosis and vascular calcification in CKD patients. The accumulation of uremic toxins is a significant factor in CKD-related systemic disorders. Basic research suggests that indoxyl sulfate (IS), a small protein-bound uremic toxin, is associated with macrophage dysfunctions, including increased oxidative stress, exacerbation of chronic inflammation, and abnormalities in lipid metabolism. Strategies to mitigate the toxicity of IS include optimizing gut microbiota, intervening against the abnormality of intracellular signal transduction, and using blood purification therapy with higher efficiency. Further research is needed to examine whether lowering protein-bound uremic toxins through intervention leads to a reduction in CVD in patients with CKD.
Collapse
Affiliation(s)
- Takuya Wakamatsu
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (T.W.); (S.Y.); (I.N.)
- Ohgo Clinic, Maebashi 371-0232, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (T.W.); (S.Y.); (I.N.)
| | - Shiori Yoshida
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (T.W.); (S.Y.); (I.N.)
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (T.W.); (S.Y.); (I.N.)
| |
Collapse
|
3
|
Lu W, Cheng S, Xu J, Xiao Z, Yu Y, Xie Q, Fang Y, Chen R, Shen B, Xie Y, Ding X. Roles of AhR/CYP1s signaling pathway mediated ROS production in uremic cardiomyopathy. Toxicol Lett 2024; 396:81-93. [PMID: 38670245 DOI: 10.1016/j.toxlet.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
PURPOSE Uremic cardiomyopathy (UCM) is the leading cause of chronic kidney disease (CKD) related mortality. Uremic toxins including indoxyl sulfate (IS) play important role during the progression of UCM. This study was to explore the underlying mechanism of IS related myocardial injury. METHODS UCM rat model was established through five-sixths nephrectomy to evaluate its effects on blood pressure, cardiac impairment, and histological changes using echocardiography and histological analysis. Additionally, IS was administered to neonatal rat cardiomyocytes (NRCMs) and the human cardiomyocyte cell line AC16. DHE staining and peroxide-sensitive dye 2',7'-dichlorofluorescein diacetate (H2DCFDA) was conducted to assess the reactive oxygen species (ROS) production. Cardiomyocyte hypertrophy was estimated using wheat germ agglutinin (WGA) staining and immunofluorescence. Aryl hydrocarbon receptor (AhR) translocation was observed by immunofluorescence. The activation of AhR was evaluated by immunoblotting of cytochrome P450 1 s (CYP1s) and quantitative real-time PCR (RT-PCR) analysis of AHRR and PTGS2. Additionally, the pro-oxidative and pro-hypertrophic effects were evaluated using the AhR inhibitor CH-223191, the CYP1s inhibitor Alizarin and the ROS scavenger N-Acetylcysteine (NAC). RESULTS UCM rat model was successfully established, and cardiac hypertrophy, accompanied by increased blood pressure, and myocardial fibrosis. Further research confirmed the activation of the AhR pathway in UCM rats including AhR translocation and downstream protein CYP1s expression, accompanied with increasing ROS production detected by DHE staining. In vitro experiment demonstrated a translocation of AhR triggered by IS, leading to significant increase of downstream gene expression. Subsequently study indicated a close relationship between the production of ROS and the activation of AhR/CYP1s, which was effectively blocked by applying AhR inhibitor, CYP1s inhibitor and siRNA against AhR. Moreover, the inhibition of AhR/CYP1s/ROS pathway collectively blocked the pro-hypertrophic effect of IS-mediated cardiomyopathy. CONCLUSION This study provides evidence that the AhR/CYP1s pathway is activated in UCM rats, and this activation is correlated with the uremic toxin IS. In vitro studies indicate that IS can stimulate the AhR translocation in cardiomyocyte, triggering to the production of intracellular ROS via CYP1s. This process leads to prolonged oxidative stress stimulation and thus contributes to the progression of uremic toxin-mediated cardiomyopathy.
Collapse
Affiliation(s)
- Wei Lu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Shi Cheng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Jiarui Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Zilong Xiao
- Division of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Yu
- Division of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiwen Xie
- Department of Nephrology, Xiamen Branch, Zhongshan hospital, Fudan University; Nephrology, China; Clinical Quality Control Center of Xiamen, No.668 Jinhu Road, Xiamen, Fujian 361006, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Ruizhen Chen
- Division of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bo Shen
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China.
| | - Yeqing Xie
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China.
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China.
| |
Collapse
|
4
|
Zhang B, Li Y, Liu N, Liu B. AP39, a novel mitochondria-targeted hydrogen sulfide donor ameliorates doxorubicin-induced cardiotoxicity by regulating the AMPK/UCP2 pathway. PLoS One 2024; 19:e0300261. [PMID: 38568919 PMCID: PMC10990198 DOI: 10.1371/journal.pone.0300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum, highly effective antitumor agent; however, its cardiotoxicity has greatly limited its use. Hydrogen sulfide (H2S) is an endogenous gaseous transmitter that exerts cardioprotective effects via the regulation of oxidative stress and apoptosis and maintenance of mitochondrial function, among other mechanisms. AP39 is a novel mitochondria-targeted H2S donor that, at appropriate concentrations, attenuates intracellular oxidative stress damage, maintains mitochondrial function, and ameliorates cardiomyocyte injury. In this study, DOX-induced cardiotoxicity models were established using H9c2 cells and Sprague-Dawley rats to evaluate the protective effect of AP39 and its mechanisms of action. Both in vivo and in vitro experiments showed that DOX induces oxidative stress injury, apoptosis, and mitochondrial damage in cardiomyocytes and decreases the expression of p-AMPK/AMPK and UCP2. All DOX-induced changes were attenuated by AP39 treatment. Furthermore, the protective effect of AP39 was significantly attenuated by the inhibition of AMPK and UCP2. The results suggest that AP39 ameliorates DOX-induced cardiotoxicity by regulating the expression of AMPK/UCP2.
Collapse
Affiliation(s)
- Bin Zhang
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Yangxue Li
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Ning Liu
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Liu
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| |
Collapse
|
5
|
Curaj A, Vanholder R, Loscalzo J, Quach K, Wu Z, Jankowski V, Jankowski J. Cardiovascular Consequences of Uremic Metabolites: an Overview of the Involved Signaling Pathways. Circ Res 2024; 134:592-613. [PMID: 38422175 DOI: 10.1161/circresaha.123.324001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Adelina Curaj
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, University Hospital, Ghent, Belgium (R.V.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Kaiseng Quach
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Zhuojun Wu
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease, RWTH Aachen University, Aachen, Germany (J.J.)
| |
Collapse
|
6
|
Usman I, Anwar A, Shukla S, Pathak P. Mechanistic Review on the Role of Gut Microbiota in the Pathology of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2024; 24:13-39. [PMID: 38879769 DOI: 10.2174/011871529x310857240607103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Cardiovascular diseases (CVDs), which stand as the primary contributors to illness and death on a global scale, include vital risk factors like hyperlipidemia, hypertension, diabetes, and smoking, to name a few. However, conventional cardiovascular risk factors offer only partial insight into the complexity of CVDs. Lately, a growing body of research has illuminated that the gut microbiome and its by-products are also of paramount importance in the initiation and progression of CVDs. The gastrointestinal tract houses trillions of microorganisms, commonly known as gut microbiota, that metabolize nutrients, yielding substances like trimethylamine-N-oxide (TMAO), bile acids (BAs), short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and so on. Strategies aimed at addressing these microbes and their correlated biological pathways have shown promise in the management and diagnosis of CVDs. This review offers a comprehensive examination of how the gut microbiota contributes to the pathogenesis of CVDs, particularly atherosclerosis, hypertension, heart failure (HF), and atrial fibrillation (AF), explores potential underlying mechanisms, and highlights emerging therapeutic prospects in this dynamic domain.
Collapse
Affiliation(s)
- Iqra Usman
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Aamir Anwar
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Shivang Shukla
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Priya Pathak
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| |
Collapse
|
7
|
Azizian H, Farhadi Z, Bader M, Alizadeh Ghalenoei J, Ghafari MA, Mahmoodzadeh S. GPER activation attenuates cardiac dysfunction by upregulating the SIRT1/3-AMPK-UCP2 pathway in postmenopausal diabetic rats. PLoS One 2023; 18:e0293630. [PMID: 38134189 PMCID: PMC10745199 DOI: 10.1371/journal.pone.0293630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/16/2023] [Indexed: 12/24/2023] Open
Abstract
Postmenopausal diabetic women are at higher risk to develop cardiovascular diseases (CVD) compared with nondiabetic women. Alterations in cardiac cellular metabolism caused by changes in sirtuins are one of the main causes of CVD in postmenopausal diabetic women. Several studies have demonstrated the beneficial actions of the G protein-coupled estrogen receptor (GPER) in postmenopausal diabetic CVD. However, the molecular mechanisms by which GPER has a cardioprotective effect are still not well understood. In this study, we used an ovariectomized (OVX) type-two diabetic (T2D) rat model induced by high-fat diet/streptozotocin to investigate the effect of G-1 (GPER-agonist) on sirtuins, and their downstream pathways involved in regulation of cardiac metabolism and function. Animals were divided into five groups: Sham-Control, T2D, OVX+T2D, OVX+T2D+Vehicle, and OVX+T2D+G-1. G-1 was administrated for six weeks. At the end, hemodynamic factors were measured, and protein levels of sirtuins, AMP-activated protein kinase (AMPK), and uncoupling protein 2 (UCP2) were determined by Western blot analysis. In addition, cardiac levels of oxidative stress biomarkers were measured. The findings showed that T2D led to left ventricular dysfunction and signs of oxidative stress in the myocardium, which were accompanied by decreased protein levels of Sirt1/2/3/6, p-AMPK, and UCP2 in the heart. Moreover, the induction of the menopausal state exacerbated these changes. In contrast, treatment with G-1 ameliorated the hemodynamic changes associated with ovariectomy by increasing Sirt1/3, p-AMPK, UCP2, and improving oxidative status. The results provide evidence of the cardioprotective effects of GPER operating through Sirt1/3, p-AMPK, and UCP2, thereby improving cardiac function. Our results suggest that increasing Sirt1/3 levels may offer new therapeutic approaches for postmenopausal diabetic CVD.
Collapse
Affiliation(s)
- Hossein Azizian
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Zeinab Farhadi
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
- University of Lübeck, Institute for Biology, Lübeck, Germany
| | - Jalil Alizadeh Ghalenoei
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Amin Ghafari
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Shokoufeh Mahmoodzadeh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
8
|
Belghasem M, Yin W, Lotfollahzadeh S, Yang X, Meyer RD, Napoleon MA, Sellinger IE, Vazirani A, Metrikova E, Jose A, Zhebrun A, Whelan SA, Lee N, Rahimi N, Chitalia VC. Tryptophan Metabolites Target Transmembrane and Immunoglobulin Domain-Containing 1 Signaling to Augment Renal Tubular Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1501-1516. [PMID: 37676196 PMCID: PMC10548275 DOI: 10.1016/j.ajpath.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 09/08/2023]
Abstract
Chronic kidney disease (CKD) is characterized by the accumulation of uremic toxins and renal tubular damage. Tryptophan-derived uremic toxins [indoxyl sulfate (IS) and kynurenine (Kyn)] are well-characterized tubulotoxins. Emerging evidence suggests that transmembrane and immunoglobulin domain-containing 1 (TMIGD1) protects tubular cells and promotes survival. However, the direct molecular mechanism(s) underlying how these two opposing pathways crosstalk remains unknown. We posited that IS and Kyn mediate tubular toxicity through TMIGD1 and the loss of TMIGD1 augments tubular injury. Results from the current study showed that IS and Kyn suppressed TMIGD1 transcription in tubular cells in a dose-dependent manner. The wild-type CCAAT enhancer-binding protein β (C/EBPβ) enhanced, whereas a dominant-negative C/EBPβ suppressed, TMIGD1 promoter activity. IS down-regulated C/EBPβ in primary human renal tubular cells. The adenine-induced CKD, unilateral ureteric obstruction, and deoxycorticosterone acetate salt unilateral nephrectomy models showed reduced TMIGD1 expression in the renal tubules, which correlated with C/EBPβ expression. C/EBPβ levels negatively correlated with the IS and Kyn levels. Inactivation of TMIGD1 in mice significantly lowered acetylated tubulin, decreased tubular cell proliferation, caused severe tubular damage, and worsened renal function. Thus, the current results demonstrate that TMIGD1 protects renal tubular cells from renal injury in different models of CKD and uncovers a novel mechanism of tubulotoxicity of tryptophan-based uremic toxins.
Collapse
Affiliation(s)
- Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Wenqing Yin
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Saran Lotfollahzadeh
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Xiaosheng Yang
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Rosana D Meyer
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Marc A Napoleon
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Isaac E Sellinger
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Aniket Vazirani
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts; Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Elena Metrikova
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Asha Jose
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Anna Zhebrun
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Stephen A Whelan
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts; Chemistry Instrumentation Core, School of Chemistry, Boston University, Boston, Massachusetts
| | - Norman Lee
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts; Chemistry Instrumentation Core, School of Chemistry, Boston University, Boston, Massachusetts
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts; Veterans Affairs Boston Healthcare System, Boston, Massachusetts; Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts; Center of Cross-Organ Vascular Pathology, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
9
|
Abstract
Homeostasis is a prerequisite for health. When homeostasis becomes disrupted, dysfunction occurs. This is especially the case for the gut microbiota, which under normal conditions lives in symbiosis with the host. As there are as many microbial cells in and on our body as human cells, it is unlikely they would not contribute to health or disease. The gut bacterial metabolism generates numerous beneficial metabolites but also uremic toxins and their precursors, which are transported into the circulation. Barrier function in the intestine, the heart, and the kidneys regulates metabolite transport and concentration and plays a role in inter-organ and inter-organism communication via small molecules. This communication is analyzed from the perspective of the remote sensing and signaling theory, which emphasizes the role of a large network of multispecific, oligospecific, and monospecific transporters and enzymes in regulating small-molecule homeostasis. The theory provides a systems biology framework for understanding organ cross talk and microbe-host communication involving metabolites, signaling molecules, nutrients, antioxidants, and uremic toxins. This remote small-molecule communication is critical for maintenance of homeostasis along the gut-heart-kidney axis and for responding to homeostatic perturbations. Chronic kidney disease is characterized by gut dysbiosis and accumulation of toxic metabolites. This slowly impacts the body, affecting the cardiovascular system and contributing to the progression of kidney dysfunction, which in its turn influences the gut microbiota. Preserving gut homeostasis and barrier functions or restoring gut dysbiosis and dysfunction could be a minimally invasive way to improve patient outcomes and quality of life in many diseases, including cardiovascular and kidney disease.
Collapse
Affiliation(s)
- Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Sanjay K Nigam
- Department of Pediatrics (S.K.N.), University of California San Diego, La Jolla, CA
- Division of Nephrology, Department of Medicine (S.K.N.), University of California San Diego, La Jolla, CA
| | - Raymond Vanholder
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Francis Verbeke
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| |
Collapse
|
10
|
Matsui A, Yoshifuji A, Irie J, Tajima T, Uchiyama K, Itoh T, Wakino S, Itoh H. Canagliflozin protects the cardiovascular system through effects on the gut environment in non-diabetic nephrectomized rats. Clin Exp Nephrol 2023; 27:295-308. [PMID: 36611128 DOI: 10.1007/s10157-022-02312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/30/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND The gut produces toxins that contribute to the cardiovascular complications of chronic kidney disease. Canagliflozin, a sodium glucose cotransporter (SGLT) 2 inhibitor that is used as an anti-diabetic drug, has a weak inhibitory effect against SGLT1 and may affect the gut glucose concentration and environment. METHODS Here, we determined the effect of canagliflozin on the gut microbiota and the serum gut-derived uremic toxin concentrations in 5/6th nephrectomized (Nx) rats. RESULTS Canagliflozin increased the colonic glucose concentration and restored the number of Lactobacillus bacteria, which was low in Nx rats. In addition, the expression of tight junction proteins in the ascending colon was low in Nx rats, and this was partially restored by canagliflozin. Furthermore, the serum concentrations of gut-derived uremic toxins were significantly increased by Nx and reduced by canagliflozin. Finally, the wall of the thoracic aorta was thicker and there was more cardiac interstitial fibrosis in Nx rats, and these defects were ameliorated by canagliflozin. CONCLUSIONS The increases in colonic glucose concentration, Lactobacillus numbers and tight junction protein expression, and the decreases in serum uremic toxin concentrations and cardiac interstitial fibrosis may have been caused by the inhibition of SGLT1 by canagliflozin because similar effects were not identified in tofogliflozin-treated rats.
Collapse
Affiliation(s)
- Ayumi Matsui
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Ayumi Yoshifuji
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Junichiro Irie
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Takaya Tajima
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Kiyotaka Uchiyama
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Tomoaki Itoh
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
11
|
Guan X, Sun Z. The Role of Intestinal Flora and Its Metabolites in Heart Failure. Infect Drug Resist 2023; 16:51-64. [PMID: 36636378 PMCID: PMC9830706 DOI: 10.2147/idr.s390582] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
Intestinal flora is a complex collection of microbial communities that participate in the physiological and pathological activities of the human body through various pathways. In recent years, numerous studies have reported that intestinal flora are involved in the occurrence and development of heart failure (HF) and its metabolic products could play an important role in this progression, suggesting a great value in the clinical treatment of this condition. This study reported the interaction between intestinal flora and HF, and with intestinal flora metabolites, such as short-chain fatty acids, trimethylamine N-oxide and bile acids and urotoxins, considered as the starting point, the mechanism of the roles in HF was summarized. Additionally, the current research status and the development prospects of applying flora and metabolites to the clinical therapeutic decision of HF were discussed.
Collapse
Affiliation(s)
- Xueqing Guan
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Zhijun Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China,Correspondence: Zhijun Sun, Department of Cardiology, Shengjing Hospital, No. 39 of Huaxiang Road, Tiexi District, Shenyang, 110021, People’s Republic of China, Tel +86 18940251218, Fax +86 18940251218, Email
| |
Collapse
|
12
|
Colombo G, Astori E, Landoni L, Garavaglia ML, Altomare A, Lionetti MC, Gagliano N, Giustarini D, Rossi R, Milzani A, Dalle‐Donne I. Effects of the uremic toxin indoxyl sulphate on human microvascular endothelial cells. J Appl Toxicol 2022; 42:1948-1961. [PMID: 35854198 PMCID: PMC9796800 DOI: 10.1002/jat.4366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/07/2023]
Abstract
Indoxyl sulphate (IS) is a uremic toxin accumulating in the plasma of chronic kidney disease (CKD) patients. IS accumulation induces side effects in the kidneys, bones and cardiovascular system. Most studies assessed IS effects on cell lines by testing higher concentrations than those measured in CKD patients. Differently, we exposed a human microvascular endothelial cell line (HMEC-1) to the IS concentrations measured in the plasma of healthy subjects (physiological) or CKD patients (pathological). Pathological concentrations reduced cell proliferation rate but did not increase long-term oxidative stress level. Indeed, total protein thiols decreased only after 24 h of exposure in parallel with an increased Nrf-2 protein expression. IS induced actin cytoskeleton rearrangement with formation of stress fibres. Proteomic analysis supported this hypothesis as many deregulated proteins are related to actin filaments organization or involved in the endothelial to mesenchymal transition. Interestingly, two proteins directly linked to cardiovascular diseases (CVD) in in vitro and in vivo studies underwent deregulation: COP9 signalosome complex subunit 9 and thrombomodulin. Future experiments will be needed to investigate the role of these proteins and the signalling pathways in which they are involved to clarify the possible link between CKD and CVD.
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| | - Emanuela Astori
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| | - Lucia Landoni
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| | - Maria L. Garavaglia
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| | - Alessandra Altomare
- Department of Pharmaceutical SciencesUniversità degli Studi di MilanoMilanItaly
| | - Maria C. Lionetti
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for HealthUniversità degli Studi di MilanoMilanItaly
| | - Daniela Giustarini
- Department of Life Sciences, Laboratory of Pharmacology and ToxicologyUniversity of SienaSienaItaly
| | - Ranieri Rossi
- Department of Life Sciences, Laboratory of Pharmacology and ToxicologyUniversity of SienaSienaItaly
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| | - Isabella Dalle‐Donne
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| |
Collapse
|
13
|
Kutsche HS, Schreckenberg R, Schlüter KD. Uncoupling Proteins in Striated Muscle Tissue: Known Facts and Open Questions. Antioxid Redox Signal 2022; 37:324-335. [PMID: 35044239 DOI: 10.1089/ars.2021.0258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Uncoupling proteins (UCPs) are a family of proteins that allow proton leakage across the inner mitochondrial membrane. Although UCP1, also known as thermogenin, is well known and important for heat generation in brown adipose tissue, striated muscles express two distinct members of UCP, namely UCP2 and UCP3. Unlike UCP1, the main function of UCP2 and UCP3 does not appear to be heat production. Recent Advances: Interestingly, UCP2 is the main isoform expressed in cardiac tissues, whereas UCP3 is the dominant isoform in skeletal muscles. In the past years, researchers have started to investigate the regulation of UCP2 and UCP3 expression in striated muscles. Furthermore, concepts about the proposed functions of UCP2 and UCP3 in striated muscles are developed but are still a matter of debate. Critical Issues: Potential functions of UCP2 and UCP3 in striated muscles include a role in protection against mitochondria-dependent oxidative stress, as transporter for pyruvate, fatty acids, and protons into and out of the mitochondria, and in metabolic sensing. In this context, the different isoform expression of UCP2 and UCP3 in the skeletal and cardiac muscle may be related to different metabolic requirements of the two organs. Future Directions: The level of expression of UCP2 and UCP3 in striated muscles changes in different disease stages. This suggests that UCPs may become drug targets for therapy in the future. Antioxid. Redox Signal. 37, 324-335.
Collapse
Affiliation(s)
| | - Rolf Schreckenberg
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
14
|
Lipotoxicity in a Vicious Cycle of Pancreatic Beta Cell Exhaustion. Biomedicines 2022; 10:biomedicines10071627. [PMID: 35884932 PMCID: PMC9313354 DOI: 10.3390/biomedicines10071627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Hyperlipidemia is a common metabolic disorder in modern society and may precede hyperglycemia and diabetes by several years. Exactly how disorders of lipid and glucose metabolism are related is still a mystery in many respects. We analyze the effects of hyperlipidemia, particularly free fatty acids, on pancreatic beta cells and insulin secretion. We have developed a computational model to quantitatively estimate the effects of specific metabolic pathways on insulin secretion and to assess the effects of short- and long-term exposure of beta cells to elevated concentrations of free fatty acids. We show that the major trigger for insulin secretion is the anaplerotic pathway via the phosphoenolpyruvate cycle, which is affected by free fatty acids via uncoupling protein 2 and proton leak and is particularly destructive in long-term chronic exposure to free fatty acids, leading to increased insulin secretion at low blood glucose and inadequate insulin secretion at high blood glucose. This results in beta cells remaining highly active in the “resting” state at low glucose and being unable to respond to anaplerotic signals at high pyruvate levels, as is the case with high blood glucose. The observed fatty-acid-induced disruption of anaplerotic pathways makes sense in the context of the physiological role of insulin as one of the major anabolic hormones.
Collapse
|
15
|
Patel N, Yaqoob MM, Aksentijevic D. Cardiac metabolic remodelling in chronic kidney disease. Nat Rev Nephrol 2022; 18:524-537. [DOI: 10.1038/s41581-022-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
|
16
|
Research progress on the relationship between IS and kidney disease and its complications. Int Urol Nephrol 2022; 54:2881-2890. [PMID: 35488145 DOI: 10.1007/s11255-022-03209-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
Indoxyl sulphate (IS) a representative uraemic toxin in the blood of patients with chronic kidney disease (CKD). Its accumulation may be closely related to CKD and the increasing morbidity and mortality of the disease's related complications. Timely and effective detection of the IS level and efficient clearance of IS may effectively prevent the progression of CKD and its related complications. Therefore, this article summarizes the research progress of IS related, including IS in CKD and its associated complications including chronic kidney disease, chronic kidney disease with cardiovascular disease, renal anemia, bone mineral metabolic disease and neuropsychiatric disorders, looking for IS accurate rapid detection methods, and explore the efficient treatment to reduce blood levels of indole phenol sulphate.
Collapse
|
17
|
Adelakun SA, Ukwenya VO, Akintunde OW. Vitamin B 12 ameliorate Tramadol-induced oxidative stress, endocrine imbalance, apoptosis and NO/iNOS/NF-κB expression in Sprague Dawley rats through regulatory mechanism in the pituitary-gonadal axis. Tissue Cell 2021; 74:101697. [PMID: 34923198 DOI: 10.1016/j.tice.2021.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
This study aimed at the effect of vitamin B12 (VB12) on tramadol (TRM) induced pituitary-gonadal Axis toxicity. Thirty-two (32) adult male rats were randomized into four groups of eight (n = 8) rats each. Group A served as control was given 1 mL normal saline, group B received 50 mg /kg bwt TRM, group C received 0.5 mg/kg bwt VB12 and group D received 50 mg /kg bwt TRM and 0.5 mg/kg bwt VB12 through gastric gavage daily for 8 weeks. Parameters tested include sperm parameter, male reproductive hormone, testicular histology, glucose, lactate dehydrogenase (LDH), acid phosphate (ACP), and alkaline phosphate (ALP) activity, steroidogenic protein, cytochrome P450 A1, nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nuclear factor- kappa B (NF-κB), oxidative and antioxidant makers. Tramadol significantly decreases sperm quality, hormone, steroidogenic protein, cytochrome P450 A1, ACP, ALP, and increases glucose, LDH, oxidative stress, mtTFA, and UCP2, p53 expression, NO, iNOS, NF-κB, IL-1β, IL-6, TNF-α, and caspase-3 activity. Degenerative alterations of the testes' and pituitary architecture and perturbation of spermatogenesis were observed in TRM-treated rats. The intervention of VB12 downregulated testicular oxidative stress, inflammatory markers, glucose, lactate, LDH, p53, caspase-3, mtTFA, and UCP2. And upregulate antioxidant, sperm quality, hormone, and spermatogenic cells. Vitamin B12 exhibited mitigation against TRM-induced testicular dysfunction via its antioxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Sunday Aderemi Adelakun
- Department of Human Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria; Department of Anatomy, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Victor Okoliko Ukwenya
- Department of Human Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria
| | - Olalekan Wasiu Akintunde
- Department of Anatomy, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
18
|
Savira F, Magaye R, Scullino CV, Flynn BL, Pitson SM, Anderson D, Creek DJ, Hua Y, Xiong X, Huang L, Liew D, Reid C, Kaye D, Kompa AR, Wang BH. Sphingolipid imbalance and inflammatory effects induced by uremic toxins in heart and kidney cells are reversed by dihydroceramide desaturase 1 inhibition. Toxicol Lett 2021; 350:133-142. [PMID: 34303789 DOI: 10.1016/j.toxlet.2021.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Non-dialysable protein-bound uremic toxins (PBUTs) contribute to the development of cardiovascular disease (CVD) in chronic kidney disease (CKD) and vice versa. PBUTs have been shown to alter sphingolipid imbalance. Dihydroceramide desaturase 1 (Des1) is an important gatekeeper enzyme which controls the non-reversible conversion of sphingolipids, dihydroceramide, into ceramide. The present study assessed the effect of Des1 inhibition on PBUT-induced cardiac and renal effects in vitro, using a selective Des1 inhibitor (CIN038). Des1 inhibition attenuated hypertrophy in neonatal rat cardiac myocytes and collagen synthesis in neonatal rat cardiac fibroblasts and renal mesangial cells induced by the PBUTs, indoxyl sulfate and p-cresol sulfate. This is at least attributable to modulation of NF-κB signalling and reductions in β-MHC, Collagen I and TNF-α gene expression. Lipidomic analyses revealed Des1 inhibition restored C16-dihydroceramide levels reduced by indoxyl sulfate. In conclusion, PBUTs play a critical role in mediating sphingolipid imbalance and inflammatory responses in heart and kidney cells, and these effects were attenuated by Des1 inhibition. Therefore, sphingolipid modifying agents may have therapeutic potential for the treatment of CVD and CKD and warrant further investigation.
Collapse
Affiliation(s)
- Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Ruth Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Carmen V Scullino
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Bernard L Flynn
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Yue Hua
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Xiong
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Li Huang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Andrew R Kompa
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Bing Hui Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
19
|
Ravid JD, Kamel MH, Chitalia VC. Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease. Nat Rev Nephrol 2021; 17:402-416. [PMID: 33758363 DOI: 10.1038/s41581-021-00408-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 02/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by the retention of a myriad of solutes termed uraemic (or uremic) toxins, which inflict damage to several organs, including the cardiovascular system. Uraemic toxins can induce hallmarks of cardiovascular disease (CVD), such as atherothrombosis, heart failure, dysrhythmias, vessel calcification and dysregulated angiogenesis. CVD is an important driver of mortality in patients with CKD; however, reliance on conventional approaches to managing CVD risk is insufficient in these patients, underscoring a need to target risk factors that are specific to CKD. Mounting evidence suggests that targeting uraemic toxins and/or pathways induced by uraemic toxins, including tryptophan metabolites and trimethylamine N-oxide (TMAO), can lower the risk of CVD in patients with CKD. Although tangible therapies resulting from our growing knowledge of uraemic toxicity are yet to materialize, a number of pharmacological and non-pharmacological approaches have the potential to abrogate the effects of uraemic toxins, for example, by decreasing the production of uraemic toxins, by modifying metabolic pathways induced by uraemic toxins such as those controlled by aryl hydrocarbon receptor signalling and by augmenting the clearance of uraemic toxins.
Collapse
Affiliation(s)
- Jonathan D Ravid
- School of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Mohamed Hassan Kamel
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA. .,Boston Veterans Affairs Healthcare System, Boston, MA, USA. .,Global Co-creation Lab, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Bao J, Lu Y, She Q, Dou W, Tang R, Xu X, Zhang M, Zhu L, Zhou Q, Li H, Zhou G, Yang Z, Shi S, Liu Z, Zheng C. MicroRNA-30 regulates left ventricular hypertrophy in chronic kidney disease. JCI Insight 2021; 6:138027. [PMID: 33848263 PMCID: PMC8262338 DOI: 10.1172/jci.insight.138027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
Left ventricular hypertrophy (LVH) is a primary feature of cardiovascular complications in patients with chronic kidney disease (CKD). miRNA-30 is an important posttranscriptional regulator of LVH, but it is unknown whether miRNA-30 participates in the process of CKD-induced LVH. In the present study, we found that CKD not only resulted in LVH but also suppressed miRNA-30 expression in the myocardium. Rescue of cardiomyocyte-specific miRNA-30 attenuated LVH in CKD rats without altering CKD progression. Importantly, in vivo and in vitro knockdown of miRNA-30 in cardiomyocytes led to cardiomyocyte hypertrophy by upregulating the calcineurin signaling directly. Furthermore, CKD-related detrimental factors, such as fibroblast growth factor-23, uremic toxin, angiotensin II, and transforming growth factor–β, suppressed cardiac miRNA-30 expression, while miRNA-30 supplementation blunted cardiomyocyte hypertrophy induced by such factors. These results uncover a potentially novel mechanism of CKD-induced LVH and provide a potential therapeutic target for CKD patients with LVH. Downregulation of myocardial miRNA-30 is involved in chronic kidney disease–induced left ventricular hypertrophy, whereas exogenous miRNA-30 rescue inhibits this process.
Collapse
Affiliation(s)
- Jingfu Bao
- National Clinical Research Center of Kidney Diseases, and
| | - Yinghui Lu
- National Clinical Research Center of Kidney Diseases, and
| | - Qinying She
- National Clinical Research Center of Kidney Diseases, and
| | - Weijuan Dou
- National Clinical Research Center of Kidney Diseases, and
| | - Rong Tang
- National Clinical Research Center of Kidney Diseases, and
| | - Xiaodong Xu
- National Clinical Research Center of Kidney Diseases, and
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, and
| | - Ling Zhu
- National Clinical Research Center of Kidney Diseases, and
| | - Qing Zhou
- Department of Pharmacology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hui Li
- Department of Pharmacology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Shaolin Shi
- National Clinical Research Center of Kidney Diseases, and
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, and
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, and
| |
Collapse
|
21
|
Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins (Basel) 2021; 13:toxins13020142. [PMID: 33668632 PMCID: PMC7917723 DOI: 10.3390/toxins13020142] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) is a progressive loss of renal function. The gradual decline in kidney function leads to an accumulation of toxins normally cleared by the kidneys, resulting in uremia. Uremic toxins are classified into three categories: free water-soluble low-molecular-weight solutes, protein-bound solutes, and middle molecules. CKD patients have increased risk of developing cardiovascular disease (CVD), due to an assortment of CKD-specific risk factors. The accumulation of uremic toxins in the circulation and in tissues is associated with the progression of CKD and its co-morbidities, including CVD. Although numerous uremic toxins have been identified to date and many of them are believed to play a role in the progression of CKD and CVD, very few toxins have been extensively studied. The pathophysiological mechanisms of uremic toxins must be investigated further for a better understanding of their roles in disease progression and to develop therapeutic interventions against uremic toxicity. This review discusses the renal and cardiovascular toxicity of uremic toxins indoxyl sulfate, p-cresyl sulfate, hippuric acid, TMAO, ADMA, TNF-α, and IL-6. A focus is also placed on potential therapeutic targets against uremic toxicity.
Collapse
|
22
|
Miranda-Silva D, Lima T, Rodrigues P, Leite-Moreira A, Falcão-Pires I. Mechanisms underlying the pathophysiology of heart failure with preserved ejection fraction: the tip of the iceberg. Heart Fail Rev 2021; 26:453-478. [PMID: 33411091 DOI: 10.1007/s10741-020-10042-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifaceted syndrome with a complex aetiology often associated with several comorbidities, such as left ventricle pressure overload, diabetes mellitus, obesity, and kidney disease. Its pathophysiology remains obscure mainly due to the complex phenotype induced by all these associated comorbidities and to the scarcity of animal models that adequately mimic HFpEF. Increased oxidative stress, inflammation, and endothelial dysfunction are currently accepted as key players in HFpEF pathophysiology. However, we have just started to unveil HFpEF complexity and the role of calcium handling, energetic metabolism, and mitochondrial function remain to clarify. Indeed, the enlightenment of such cellular and molecular mechanisms represents an opportunity to develop novel therapeutic approaches and thus to improve HFpEF treatment options. In the last decades, the number of research groups dedicated to studying HFpEF has increased, denoting the importance and the magnitude achieved by this syndrome. In the current technological and web world, the amount of information is overwhelming, driving us not only to compile the most relevant information about the theme but also to explore beyond the tip of the iceberg. Thus, this review aims to encompass the most recent knowledge related to HFpEF or HFpEF-associated comorbidities, focusing mainly on myocardial metabolism, oxidative stress, and energetic pathways.
Collapse
Affiliation(s)
- Daniela Miranda-Silva
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Tânia Lima
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Targher G, Corey KE, Byrne CD. NAFLD, and cardiovascular and cardiac diseases: Factors influencing risk, prediction and treatment. DIABETES & METABOLISM 2020; 47:101215. [PMID: 33296704 DOI: 10.1016/j.diabet.2020.101215] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD), affecting up to around 30% of the world's adult population, causes considerable liver-related and extrahepatic morbidity and mortality. Strong evidence indicates that NAFLD (especially its more severe forms) is associated with a greater risk of all-cause mortality, and the predominant cause of mortality in this patient population is cardiovascular disease (CVD). This narrative review aims to discuss the strong association between NAFLD and increased risk of cardiovascular, cardiac and arrhythmic complications. Also discussed are the putative mechanisms linking NAFLD to CVD and other cardiac/arrhythmic complications, with a brief summary of CVD risk prediction/stratification and management of the increased CVD risk observed in patients with NAFLD. RESULTS NAFLD is associated with an increased risk of CVD events and other cardiac complications (left ventricular hypertrophy, valvular calcification, certain arrhythmias) independently of traditional CVD risk factors. The magnitude of risk of CVD and other cardiac/arrhythmic complications parallels the severity of NAFLD (especially liver fibrosis severity). There are most likely multiple underlying mechanisms through which NAFLD may increase risk of CVD and cardiac/arrhythmic complications. Indeed, NAFLD exacerbates hepatic and systemic insulin resistance, promotes atherogenic dyslipidaemia, induces hypertension, and triggers synthesis of proatherogenic, procoagulant and proinflammatory mediators that may contribute to the development of CVD and other cardiac/arrhythmic complications. CONCLUSION Careful assessment of CVD risk is mandatory in patients with NAFLD for primary prevention of CVD, together with pharmacological treatment for coexisting CVD risk factors.
Collapse
Affiliation(s)
- Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy.
| | - Kathleen E Corey
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Tremona Road, Southampton, UK
| |
Collapse
|
24
|
Haye A, Ansari MA, Rahman SO, Shamsi Y, Ahmed D, Sharma M. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape. Eur J Pharmacol 2020; 888:173376. [PMID: 32810493 DOI: 10.1016/j.ejphar.2020.173376] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular complications associated with diabetes mellitus remains a leading cause of morbidity and mortality across the world. Diabetic cardiomyopathy is a descriptive pathology that in absence of co-morbidities such as hypertension, dyslipidemia initially characterized by cardiac stiffness, myocardial fibrosis, ventricular hypertrophy, and remodeling. These abnormalities further contribute to diastolic dysfunctions followed by systolic dysfunctions and eventually results in clinical heart failure (HF). The clinical outcomes associated with HF are considerably worse in patients with diabetes. The complexity of the pathogenesis and clinical features of diabetic cardiomyopathy raises serious questions in developing a therapeutic strategy to manage cardio-metabolic abnormalities. Despite extensive research in the past decade the compelling approaches to manage and treat diabetic cardiomyopathy are limited. AMP-Activated Protein Kinase (AMPK), a serine-threonine kinase, often referred to as cellular "metabolic master switch". During the development and progression of diabetic cardiomyopathy, a plethora of evidence demonstrate the beneficial role of AMPK on cardio-metabolic abnormalities including altered substrate utilization, impaired cardiac insulin metabolic signaling, mitochondrial dysfunction and oxidative stress, myocardial inflammation, increased accumulation of advanced glycation end-products, impaired cardiac calcium handling, maladaptive activation of the renin-angiotensin-aldosterone system, endoplasmic reticulum stress, myocardial fibrosis, ventricular hypertrophy, cardiac apoptosis, and impaired autophagy. Therefore, in this review, we have summarized the findings from pre-clinical and clinical studies and provided a collective overview of the pathophysiological mechanism and the regulatory role of AMPK on cardio-metabolic abnormalities during the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abdul Haye
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yasmeen Shamsi
- Department of Moalejat, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Danish Ahmed
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
25
|
Dose-dependent reproductive toxicity of sodium benzoate in male rats: Inflammation, oxidative stress and apoptosis. Reprod Toxicol 2020; 98:92-98. [DOI: 10.1016/j.reprotox.2020.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 08/02/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023]
|
26
|
Two Toxic Lipid Aldehydes, 4-hydroxy-2-hexenal (4-HHE) and 4-hydroxy-2-nonenal (4-HNE), Accumulate in Patients with Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12090567. [PMID: 32899405 PMCID: PMC7551374 DOI: 10.3390/toxins12090567] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/26/2023] Open
Abstract
Lipid aldehydes originating from the peroxidation of n-3 and n-6 polyunsaturated fatty acids are increased in hemodialysis (HD) patients, a process already known to promote oxidative stress. However, data are lacking for patients with chronic kidney disease (CKD) before the initiation of HD. We prospectively evaluated the changes of plasma concentrations of two major lipid aldehydes, 4-HHE and 4-HNE, according to the decrease of glomerular filtration rate (GFR) in 40 CKD and 13 non-CKD participants. GFR was measured by inulin or iohexol clearance. Thus, 4-hydroxy-2-nonenal (4-HNE) and 4-hydroxy-2-hexenal (4-HHE) were quantitated in plasma by gas chromatography coupled with mass spectrometry and their covalent adducts on proteins were quantified by immunoblotting. On the one hand, 4-HHE plasma concentration increased from CKD stage I–II to CKD stage IV–V compared to non-CKD patients (4.5-fold higher in CKD IV–V, p < 0.005). On the other hand, 4-HNE concentration only increased in CKD stage IV–V patients (6.2-fold, p < 0.005). The amount of covalent adducts of 4-HHE on plasma protein was 9.5-fold higher in CKD patients than in controls (p < 0.005), while no difference was observed for 4-HNE protein adducts. Plasma concentrations of 4-HNE and 4-HHE are increased in CKD IV–V patients before the initiation of hemodialysis.
Collapse
|
27
|
Molecular Mechanisms Underlying the Cardiovascular Toxicity of Specific Uremic Solutes. Cells 2020; 9:cells9092024. [PMID: 32887404 PMCID: PMC7565564 DOI: 10.3390/cells9092024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence strongly suggests a causal link between chronic kidney disease (CKD) and cardiovascular disease (CVD). Compared with non-CKD patients, patients with CKD suffer disproportionately from CVD and derive suboptimal benefits from interventions targeting conventional CVD risk factors. Uremic toxins (UTs), whose plasma levels rapidly rise as CKD progresses, represent a unique risk factor in CKD, which has protean manifestations on CVD. Among the known UTs, tryptophan metabolites and trimethylamine N-oxide are well-established cardiovascular toxins. Their molecular mechanisms of effect warrant special consideration to draw translational value. This review surveys current knowledge on the effects of specific UTs on different pathways and cell functions that influence the integrity of cardiovascular health, with implication for CVD progression. The effect of UTs on cardiovascular health is an example of a paradigm in which a cascade of molecular and metabolic events induced by pathology in one organ in turn induces dysfunction in another organ. Deciphering the molecular mechanisms underlying such cross-organ pathologies will help uncover therapeutic targets to improve the management of CVD in patients with CKD.
Collapse
|
28
|
Irisin Pretreatment Protects Kidneys against Acute Kidney Injury Induced by Ischemia/Reperfusion via Upregulating the Expression of Uncoupling Protein 2. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6537371. [PMID: 32934963 PMCID: PMC7479469 DOI: 10.1155/2020/6537371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
As a common disorder, acute kidney injury (AKI) is characterized by high mortality and morbidity, and current therapeutic options for AKI remain limited. Irisin, a muscle factor, plays an important role in metabolic disorders. However, the role of irisin in AKI is still unclear. To assess the effect of irisin on the course of AKI, we used an ischemia/reperfusion (I/R) C57BL/6 mouse model. Supplementation with irisin attenuated kidney injury induced by I/R, as shown by decreases in the levels of serum creatinine and blood urea nitrogen. Animal model studies also showed that irisin pretreatment upregulates the expression of uncoupling protein 2 (UCP2) and protects against the renal cell apoptosis and oxidative stress caused by I/R. In vitro, hypoxia/recovery (H/R) treatment was applied to induce tubular cell apoptosis. Irisin pretreatment ameliorated the cell apoptosis induced by H/R, while transfection of UCP2 siRNA significantly reduced the protective effect of irisin in cells after H/R. In addition, AMPK signaling may be involved in irisin-mediated upregulation of UCP2 in a renal proximal tubular epithelial cell (PTEC) model. Thus, the renoprotective effect of irisin on AKI may be mediated through increasing the expression of UCP2 in kidneys after I/R.
Collapse
|
29
|
Brain Overexpression of Uncoupling Protein-2 (UCP2) Delays Renal Damage and Stroke Occurrence in Stroke-Prone Spontaneously Hypertensive Rats. Int J Mol Sci 2020; 21:ijms21124289. [PMID: 32560241 PMCID: PMC7352594 DOI: 10.3390/ijms21124289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022] Open
Abstract
The downregulation of uncoupling protein-2 (UCP2) is associated with increased brain and kidney injury in stroke-prone spontaneously hypertensive rats (SHRSP) fed with a Japanese style hypersodic diet (JD). Systemic overexpression of UCP2 reduces organ damage in JD-fed SHRSP. We examined the effect of brain-specific UCP2 overexpression on blood pressure (BP), stroke occurrence and kidney damage in JD-fed SHRSP. Rats received a single i.c.v. injection of a lentiviral vector encoding UCP2 (LV-UCP2), or an empty vector. The brain delivery of LV-UCP2 significantly delayed the occurrence of stroke and kidney damage. The large reduction of proteinuria observed after LV-UCP2 injection was unexpected, because BP levels were unchanged. At the time of stroke, rats treated with LV-UCP2 still showed a large UCP2 upregulation in the striatum, associated with increases in OPA1 and FIS1 protein levels, and reductions in PGC1-α, SOD2, TNFα mRNA levels and NRF2 protein levels. This suggested UCP2 overexpression enhanced mitochondrial fusion and fission and reduced oxidative damage and inflammation in the striatum of JD-fed SHRSP rats. Our data suggest the existence of central mechanisms that may protect against hypertension-induced organ damage independently of BP, and strengthen the suitability of strategies aimed at enhancing UCP2 expression for the treatment of hypertensive damage.
Collapse
|
30
|
Lv J, Chen J, Wang M, Yan F. Klotho alleviates indoxyl sulfate-induced heart failure and kidney damage by promoting M2 macrophage polarization. Aging (Albany NY) 2020; 12:9139-9150. [PMID: 32464602 PMCID: PMC7288965 DOI: 10.18632/aging.103183] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Indoxyl sulfate (IS) is a protein-bound uremic toxin that can accumulate in patients with chronic kidney disease (CKD) or acute kidney injury (AKI) and cause kidney and cardiac dysfunction. Klotho is an anti-aging protein that has reno- and cardio-protective effects. We investigated whether Klotho could alleviate IS-induced heart failure and kidney damage by regulating macrophages, which play a key role in the inflammatory response in CKD and AKI. Treatment of THP-1-derived macrophages with IS induced the production of the pro-inflammatory cytokines TNFα, IL-6, and IL-1β, and stimulated M1 polarization. Additionally, IS induced downregulation of Klotho expression in macrophages. Overexpression of Klotho suppressed the IS-induced inflammatory response in macrophages by stimulating M2 polarization. It also alleviated IS-induced cardiac hypertrophy and renal fibrosis in mice. A reduction in IS-induced phosphorylation of NF-kB p65 was observed in response to Klotho overexpression, suggesting that Klotho alleviates kidney and cardiac injury by inactivating NF-kB signaling and promoting macrophage M2 polarization.
Collapse
Affiliation(s)
- Jing Lv
- Department of General Practice, Zhejiang Hospital, Hangzhou 310013, Zhejiang, P.R. China
| | - Jin Chen
- Department of General Practice, Zhejiang Hospital, Hangzhou 310013, Zhejiang, P.R. China
| | - Minjia Wang
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou 310013, Zhejiang, P.R. China
| | - Fei Yan
- Department of General Practice, Zhejiang Hospital, Hangzhou 310013, Zhejiang, P.R. China
| |
Collapse
|
31
|
Zhao Y, Wang Z. Impact of trimethylamine N-oxide (TMAO) metaorganismal pathway on cardiovascular disease. ACTA ACUST UNITED AC 2020; 5. [PMID: 32587943 DOI: 10.21037/jlpm.2020.01.01] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Host-microbes interaction plays a crucial role in cardiovascular disease (CVD) pathogenesis, mechanistically via metaorganismal pathways. The trimethylamine N-oxide (TMAO) metaorganismal pathway is the most deeply investigated one, which comprises trimethylamine precursors, such as choline, trimethylamine lyase, trimethylamine, host liver FMO3, TMAO, and downstream effectors involving unfolded protein response (UPR), NF-κB and NLRP3 inflammasome. Accumulating data from clinical investigations of CVD patient cohorts and rodent models have supported the critical role of this metaorganismal pathway in the pathogenesis of CVD. We summarize an array of significant animal studies especially for arthrosclerosis with an emphasis on downstream molecular effectors of this metaorganismal pathway. We highlight clinical investigations of the prognostic value of plasma TMAO levels in predicting prospective risk for future major adverse cardiac events (MACE) indicated by composite end points of myocardial infarction (MI), stroke, heart failure (HF), other ischemic cardiovascular events, or death. Further, we discuss the latest advances of preclinical models targeting the gut microbiota trimethylamine lyase of the TMAO metaorganismal pathway for CVD intervention, as well as the catalog of gut microbiota TMA lyase genes and microbes in the human gut as the prerequisite for potential clinical intervention. In-depth characterization of TMAO metaorganismal pathway holds great promise for CVD clinical metagenomics, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yongzhong Zhao
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
32
|
Increasing the Magnesium Concentration in Various Dialysate Solutions Differentially Modulates Oxidative Stress in a Human Monocyte Cell Line. Antioxidants (Basel) 2020; 9:antiox9040319. [PMID: 32326605 PMCID: PMC7222382 DOI: 10.3390/antiox9040319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is exacerbated in hemodialysis patients by several factors, including the uremic environment and the use of dialysis fluids (DFs). Since magnesium (Mg) plays a key role in modulating immune function and in reducing oxidative stress, we aimed to evaluate whether increasing the Mg concentration in different DFs could protect against oxidative stress in immunocompetent cells in vitro. Effect of ADF (acetate 3 mM), CDF (citrate 1 mM), and ACDF (citrate 0.8 mM + acetate 0.3 mM) dialysates with Mg at standard (0.5 mM) or higher (1, 1.25, and 2 mM) concentrations were assessed in THP-1 monocyte cultures. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels were quantified under basal and uremic conditions (indoxyl sulfate (IS) treatment). Under uremic conditions, the three DFs with 0.5 mM Mg promoted higher ROS production and lipid damage than the control solution. However, CDF and ACDF induced lower levels of ROS and MDA, compared to that induced by ADF. High Mg concentration (1.25 and/or 2 mM) in CDF and ACDF protected against oxidative stress, indicated by reduced ROS and MDA levels compared to respective DFs with standard concentration of Mg. Increasing Mg concentrations in ADF promoted high ROS production and MDA content. Thus, an increase in Mg content in DFs has differential effects on the oxidative stress in IS-treated THP-1 cells depending on the dialysate used.
Collapse
|
33
|
Kutsche HS, Schreckenberg R, Weber M, Hirschhäuser C, Rohrbach S, Li L, Niemann B, Schulz R, Schlüter KD. Alterations in Glucose Metabolism During the Transition to Heart Failure: The Contribution of UCP-2. Cells 2020; 9:cells9030552. [PMID: 32120777 PMCID: PMC7140436 DOI: 10.3390/cells9030552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The cardiac expression of the mitochondrial uncoupling protein (UCP)-2 is increased in patients with heart failure. However, the underlying causes as well as the possible consequences of these alterations during the transition from hypertrophy to heart failure are still unclear. To investigate the role of UCP-2 mechanistically, expression of UCP-2 was silenced by small interfering RNA in adult rat ventricular cardiomyocytes. We demonstrate that a downregulation of UCP-2 by siRNA in cardiomyocytes preserves contractile function in the presence of angiotensin II. Furthermore, silencing of UCP-2 was associated with an upregulation of glucose transporter type (Glut)-4, increased glucose uptake, and reduced intracellular lactate levels, indicating improvement of the oxidative glucose metabolism. To study this adaptation in vivo, spontaneously hypertensive rats served as a model for cardiac hypertrophy due to pressure overload. During compensatory hypertrophy, we found low UCP-2 levels with an upregulation of Glut-4, while the decompensatory state with impaired function was associated with an increase of UCP-2 and reduced Glut-4 expression. By blocking the aldosterone receptor with spironolactone, both cardiac function as well as UCP-2 and Glut-4 expression levels of the compensated phase could be preserved. Furthermore, we were able to confirm this by left ventricular (LV) biopsies of patients with end-stage heart failure. The results of this study show that UCP-2 seems to impact the cardiac glucose metabolism during the transition from hypertrophy to failure by affecting glucose uptake through Glut-4. We suggest that the failing heart could benefit from low UCP-2 levels by improving the efficiency of glucose oxidation. For this reason, UCP-2 inhibition might be a promising therapeutic strategy to prevent the development of heart failure.
Collapse
Affiliation(s)
- Hanna Sarah Kutsche
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
- Correspondence: ; Tel.: +49-641-99-47145
| | - Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Martin Weber
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Christine Hirschhäuser
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Susanne Rohrbach
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Ling Li
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Bernd Niemann
- Universitätsklinikum Gießen, Klinik für Herz-, Kinderherz- und Gefäßchirurgie, 35392 Gießen, Germany;
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Klaus-Dieter Schlüter
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| |
Collapse
|
34
|
Changchien CY, Sung MH, Chang HH, Tsai WC, Peng YS, Chen Y. Uremic toxin indoxyl sulfate suppresses myocardial Cx43 assembly and expression via JNK activation. Chem Biol Interact 2020; 319:108979. [PMID: 32045570 DOI: 10.1016/j.cbi.2020.108979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
Abstract
Heart rhythm disturbances have been widely recognized as major triggers of cardiovascular (CV) mortality in chronic kidney disease (CKD) patients. Connexin 43 (Cx43)-composed gap junctions are essential in cardiomyocyte synchronization and may be involved in the pathological response to uremic toxins. Indoxyl sulfate (IS) is one of the most dominant uremic toxins that contribute to CKD-related cardiovascular diseases. In primary cultures of rat neonatal cardiomyocytes, we demonstrated that IS treatment decreased spontaneous contraction without impairing viability. In addition, there was disruption of gap junction intercellular communication (GJIC) between cardiomyocytes after 30 min of IS stimulation. IS caused time- and dose-dependent Cx43 redistribution, and the patterns of Cx43 immunostaining returned to baseline while IS stimulation was removed. Furthermore, IS exposure downregulated Cx43 protein and mRNA levels. Elevated JNK1 and JNK2 phosphorylation was further identified after IS exposure in both rat cardiomyocytes and H9c2 cells. The above changes as well as GJIC and Cx43 suppression were reversed by pretreatment with a JNK inhibitor (SP600125). Inhibition of p-JNK attenuated IS-mediated downward trends in Cx43 transcription and translation. In cardiac muscle from nephrectomy-induced CKD mice, an alteration in Cx43 level was identified at intercalated discs. Our findings disclosed that JNK activation might participate in the remodeling of gap junction and Cx43 expression by uremic toxin-IS both in vitro and in vivo.
Collapse
Affiliation(s)
- Chih-Ying Changchien
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan; Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Meng-Ho Sung
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Sen Peng
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; College of Electrical and Communication Engineering, Yuan Ze University, Taoyuan City, Taiwan.
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
35
|
He M, Zhang T, Fan Y, Ma Y, Zhang J, Jing L, Li PA. Deletion of mitochondrial uncoupling protein 2 exacerbates mitophagy and cell apoptosis after cerebral ischemia and reperfusion injury in mice. Int J Med Sci 2020; 17:2869-2878. [PMID: 33162815 PMCID: PMC7645345 DOI: 10.7150/ijms.49849] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/27/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: Uncoupling protein 2 (UCP2) is a member of inner mitochondrial membrane proteins and deletion of UCP2 exacerbates brain damage after cerebral ischemia/reperfusion (I/R). Nevertheless, its functional role during cerebral I/R is not entirely understood. The objective of present study was to explore the influence of UCP2 deletion on mitochondrial autophagy (mitophagy) and mitochondria-mediated cell death pathway after cerebral I/R. Methods: UCP2-/- and wildtype (WT) mice were subjected to 60 min middle cerebral artery occlusion (MCAO) and allowed reperfusion for 24 hours. Infarct volume and histological outcomes were assessed, reactive oxygen species (ROS) and autophagy markers were measured, and mitochondrial ultrastructure was examined. Results: Deletion of UCP2 enlarged infarct volume, increased numbers of necrotic and TUNEL positive cells, and significantly increased pro-apoptotic protein levels in UCP2-/- mice compared with WT mice subjected to the same duration of I/R. Further, deletion of UCP2 increased ROS production, elevated LC3, Beclin1 and PINK1, while it suppressed p62 compared with respective WT ischemic controls. Electron microscopic study demonstrated the number of autophagosomes was higher in the UCP2-/- group, compared with the WT group. Conclusions: It is concluded that deletion of UCP2 exacerbates cerebral I/R injury via reinforcing mitophagy and cellular apoptosis in mice.
Collapse
Affiliation(s)
- Maotao He
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.,School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Vascular Injury and Repair, Yinchuan, Ningxia 750004, China.,Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Ting Zhang
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Vascular Injury and Repair, Yinchuan, Ningxia 750004, China
| | - Yucheng Fan
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Vascular Injury and Repair, Yinchuan, Ningxia 750004, China
| | - Yanmei Ma
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Vascular Injury and Repair, Yinchuan, Ningxia 750004, China
| | - Jianzhong Zhang
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Vascular Injury and Repair, Yinchuan, Ningxia 750004, China
| | - Li Jing
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Vascular Injury and Repair, Yinchuan, Ningxia 750004, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
36
|
Abstract
The term uraemic cardiomyopathy refers to the cardiac abnormalities that are seen in patients with chronic kidney disease (CKD). Historically, this term was used to describe a severe cardiomyopathy that was associated with end-stage renal disease and characterized by severe functional abnormalities that could be reversed following renal transplantation. In a modern context, uraemic cardiomyopathy describes the clinical phenotype of cardiac disease that accompanies CKD and is perhaps best characterized as diastolic dysfunction seen in conjunction with left ventricular hypertrophy and fibrosis. A multitude of factors may contribute to the pathogenesis of uraemic cardiomyopathy, and current treatments only modestly improve outcomes. In this Review, we focus on evolving concepts regarding the roles of fibroblast growth factor 23 (FGF23), inflammation and systemic oxidant stress and their interactions with more established mechanisms such as pressure and volume overload resulting from hypertension and anaemia, respectively, activation of the renin-angiotensin and sympathetic nervous systems, activation of the transforming growth factor-β (TGFβ) pathway, abnormal mineral metabolism and increased levels of endogenous cardiotonic steroids.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA.
| |
Collapse
|
37
|
Zhang Y, Wang S, Huang Y, Yang K, Liu Y, Bi X, Liu C, Xiong J, Zhang B, Zhao J, Nie L. Inhibition of CYP1B1 ameliorates cardiac hypertrophy induced by uremic toxin. Mol Med Rep 2019; 21:393-404. [PMID: 31746392 DOI: 10.3892/mmr.2019.10810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/07/2019] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular disease is the predominant complication and leading cause of mortality in patients with chronic kidney disease (CKD). Previous studies have revealed that uremic toxins, including indoxyl sulfate (IS), participate in cardiac hypertrophy. As a heme‑thiolate monooxygenase, cytochrome P450 family 1 subfamily B member 1 (CYP1B1) is able to metabolize arachidonic acid into hydroxyeicosatetraenoic acids, which are thought to serve a central function in the pathophysiology of the cardiovascular system. However, whether CYP1B1 is involved in cardiac hypertrophy induced by uremic toxins remains unknown. The present study revealed that the expression of the CYP1B1 gene was significantly (P<0.05, CKD or IS vs. control) upregulated by CKD serum or IS at the transcriptional and translational level. Furthermore, IS treatment resulted in the nuclear translocation of aryl hydrocarbon receptor (AhR), an endogenous ligand of IS. Binding of AhR in the promoter region of CYP1B1 was confirmed using a chromatin immunoprecipitation assay in the cardiomyoblast H9c2 cell line. In addition, knockdown of AhR or CYP1B1 reversed the production of cardiac hypertrophy markers. The in vivo injection of a CYP1B1 inhibitor significantly (P<0.05, Inhibitor vs. control) attenuated cardiac hypertrophy in mice. The data from the present study clearly demonstrated that CYP1B1 was involved in cardiac hypertrophy induced by uremic toxins.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Shaobo Wang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Yong Liu
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Xianjin Bi
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Chi Liu
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Bo Zhang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Ling Nie
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| |
Collapse
|
38
|
Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome-derived organic anion secretion. Proc Natl Acad Sci U S A 2019; 116:16105-16110. [PMID: 31341083 PMCID: PMC6689987 DOI: 10.1073/pnas.1821809116] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Membrane transporters and receptors are responsible for balancing nutrient and metabolite levels to aid body homeostasis. Here, we report that proximal tubule cells in kidneys sense elevated endogenous, gut microbiome-derived, metabolite levels through EGF receptors and downstream signaling to induce their secretion by up-regulating the organic anion transporter-1 (OAT1). Remote metabolite sensing and signaling was observed in kidneys from healthy volunteers and rats in vivo, leading to induced OAT1 expression and increased removal of indoxyl sulfate, a prototypical microbiome-derived metabolite and uremic toxin. Using 2D and 3D human proximal tubule cell models, we show that indoxyl sulfate induces OAT1 via AhR and EGFR signaling, controlled by miR-223. Concomitantly produced reactive oxygen species (ROS) control OAT1 activity and are balanced by the glutathione pathway, as confirmed by cellular metabolomic profiling. Collectively, we demonstrate remote metabolite sensing and signaling as an effective OAT1 regulation mechanism to maintain plasma metabolite levels by controlling their secretion.
Collapse
|
39
|
Li Y, Su X, Zhang L, Liu Y, Shi M, Lv C, Gao Y, Xu D, Wang Z. Dysbiosis of the gut microbiome is associated with CKD5 and correlated with clinical indices of the disease: a case-controlled study. J Transl Med 2019; 17:228. [PMID: 31315634 PMCID: PMC6637476 DOI: 10.1186/s12967-019-1969-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/05/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a universal chronic disease in China. The balance of the gut microbiome is highly crucial for a healthy human body, especially for the immune system. However, the relationship between the gut microbiome and CKD has not yet been clarified. METHODS A total of 122 patients were recruited for this study. Among them, 24 patients were diagnosed with CKD5 but did not receive hemodialysis therapy, 29 patients were diagnosed with CKD5 and received hemodialysis therapy and 69 were matched healthy controls. The gut microbiome composition was analyzed by a 16S rRNA (16S ribosomal RNA) gene-based sequencing protocol. High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC/ESI-MS/MS) technology was used to evaluate the levels of microbiome-related protein-binding uremic toxins level, indoxyl sulfate (IS) and p-cresyl sulfate (PCS), in the patients. RESULTS We compared the gut microbiome results of 122 subjects and established a correlation between the gut microbiome and IS and PCS levels. The results indicated that alpha and beta diversity were different in patients with CKD5 than in the healthy controls (p < 0.01). In comparison to healthy controls, CKD5 patients exhibited a significantly higher relative abundance of Neisseria (p < 0.001), Lachnoclostridium (p < 0.001) and Bifidobacterium (p < 0.001). Faecalibacterium (p < 0.001) displayed a notably lower relative abundance for CKD5 patients both with and without hemodialysis than for controls. It was also found that the concentrations of IS and PCS were correlated with the gut microbiome. CONCLUSIONS Our results indicate that CKD5 patients both with and without hemodialysis had dysbiosis of the gut microbiome and that this dysbiosis was associated with an accumulation of IS and PCS. These results may support further clinical diagnosis to a great extent and help in developing potential probiotics to facilitate the treatment of CKD5.
Collapse
Affiliation(s)
- Yang Li
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Xinhuan Su
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Chemistry and Environment, Beihang University, Beijing, 100191, China
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, 250022, China
| | - Yanwei Liu
- Department of Nephrology, Feicheng Mining Center Hospital, Feicheng High-Tech Development Zone, Taian, 271600, Shandong, China
| | - Min Shi
- Jinan Center for Food and Drug Control, Jinan, 250102, China
| | - Chenxiao Lv
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
- Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
- Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.
| | - Zunsong Wang
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
40
|
Nigam SK, Bush KT. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat Rev Nephrol 2019; 15:301-316. [PMID: 30728454 PMCID: PMC6619437 DOI: 10.1038/s41581-019-0111-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Uraemic syndrome (also known as uremic syndrome) in patients with advanced chronic kidney disease involves the accumulation in plasma of small-molecule uraemic solutes and uraemic toxins (also known as uremic toxins), dysfunction of multiple organs and dysbiosis of the gut microbiota. As such, uraemic syndrome can be viewed as a disease of perturbed inter-organ and inter-organism (host-microbiota) communication. Multiple biological pathways are affected, including those controlled by solute carrier (SLC) and ATP-binding cassette (ABC) transporters and drug-metabolizing enzymes, many of which are also involved in drug absorption, distribution, metabolism and elimination (ADME). The remote sensing and signalling hypothesis identifies SLC and ABC transporter-mediated communication between organs and/or between the host and gut microbiota as key to the homeostasis of metabolites, antioxidants, signalling molecules, microbiota-derived products and dietary components in body tissues and fluid compartments. Thus, this hypothesis provides a useful perspective on the pathobiology of uraemic syndrome. Pathways considered central to drug ADME might be particularly important for the body's attempts to restore homeostasis, including the correction of disturbances due to kidney injury and the accumulation of uraemic solutes and toxins. This Review discusses how the remote sensing and signalling hypothesis helps to provide a systems-level understanding of aspects of uraemia that could lead to novel approaches to its treatment.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Kevin T Bush
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
41
|
AST-120, an Adsorbent of Uremic Toxins, Improves the Pathophysiology of Heart Failure in Conscious Dogs. Cardiovasc Drugs Ther 2019; 33:277-286. [PMID: 30903544 DOI: 10.1007/s10557-019-06875-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Several lines of evidence suggest that renal dysfunction is associated with cardiovascular toxicity through the action of uremic toxins. The levels of those uremic toxins can be reportedly reduced by the spherical carbon adsorbent AST-120. Because heart failure (HF) causes renal dysfunction by low cardiac output and renal edema, the removal of uremic toxins could be cardioprotective. METHOD To determine whether blood levels of the uremic toxin indoxyl sulfate (IS) increase in HF and whether AST-120 can reduce those levels and improve HF. We induced HF in 12 beagle dogs by 6 weeks of rapid right ventricular pacing at 230 beats per min. We treated six dogs with a 1-g/kg/day oral dosage of AST-120 for 14 days from week 4 after the start of rapid ventricular pacing. The other six dogs did not receive any treatment (control group). RESULTS In the untreated dogs, IS levels increased as cardiac function deteriorated. In contrast, plasma IS levels in the treated dogs decreased to baseline levels, with both left ventricular fractional shortening and pulmonary capillary wedge pressure also improving when compared with untreated dogs. Finally, AST-120 treatment was shown to reduce both myocardial apoptosis and fibrosis along with decreases in extracellular signal-regulated kinase phosphorylation, the Bax/Bcl-2 ratio, and TGF-β1 expression and increases in AKT phosphorylation. CONCLUSIONS IS levels are increased in HF. AST-120 treatment reduces the levels of IS and improves the pathophysiology of HF in a canine model. AST-120 could be a novel candidate for the treatment of HF.
Collapse
|
42
|
Savira F, Magaye R, Hua Y, Liew D, Kaye D, Marwick T, Wang BH. Molecular mechanisms of protein-bound uremic toxin-mediated cardiac, renal and vascular effects: underpinning intracellular targets for cardiorenal syndrome therapy. Toxicol Lett 2019; 308:34-49. [PMID: 30872129 DOI: 10.1016/j.toxlet.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
Cardiorenal syndrome (CRS) remains a global health burden with a lack of definitive and effective treatment. Protein-bound uremic toxin (PBUT) overload has been identified as a non-traditional risk factor for cardiac, renal and vascular dysfunction due to significant albumin-binding properties, rendering these solutes non-dialyzable upon the state of irreversible kidney dysfunction. Although limited, experimental studies have investigated possible mechanisms in PBUT-mediated cardiac, renal and vascular effects. The ultimate aim is to identify relevant and efficacious targets that may translate beneficial outcomes in disease models and eventually in the clinic. This review will expand on detailed knowledge on mechanisms involved in detrimental effects of PBUT, specifically affecting the heart, kidney and vasculature, and explore potential effective intracellular targets to abolish their effects in CRS initiation and/or progression.
Collapse
Affiliation(s)
- Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ruth Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - David Kaye
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Tom Marwick
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Bing Hui Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
43
|
Sárközy M, Gáspár R, Zvara Á, Siska A, Kővári B, Szűcs G, Márványkövi F, Kovács MG, Diószegi P, Bodai L, Zsindely N, Pipicz M, Gömöri K, Kiss K, Bencsik P, Cserni G, Puskás LG, Földesi I, Thum T, Bátkai S, Csont T. Chronic kidney disease induces left ventricular overexpression of the pro-hypertrophic microRNA-212. Sci Rep 2019; 9:1302. [PMID: 30718600 PMCID: PMC6362219 DOI: 10.1038/s41598-018-37690-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) is a public health problem that increases the risk of cardiovascular morbidity and mortality. Heart failure with preserved ejection fraction (HFpEF) characterized by left ventricular hypertrophy (LVH) and diastolic dysfunction is a common cardiovascular complication of CKD. MicroRNA-212 (miR-212) has been demonstrated previously to be a crucial regulator of pathologic LVH in pressure-overload-induced heart failure via regulating the forkhead box O3 (FOXO3)/calcineurin/nuclear factor of activated T-cells (NFAT) pathway. Here we aimed to investigate whether miR-212 and its hypertrophy-associated targets including FOXO3, extracellular signal-regulated kinase 2 (ERK2), and AMP-activated protein kinase (AMPK) play a role in the development of HFpEF in CKD. CKD was induced by 5/6 nephrectomy in male Wistar rats. Echocardiography and histology revealed LVH, fibrosis, preserved systolic function, and diastolic dysfunction in the CKD group as compared to sham-operated animals eight and/or nine weeks later. Left ventricular miR-212 was significantly overexpressed in CKD. However, expressions of FOXO3, AMPK, and ERK2 failed to change significantly at the mRNA or protein level. The protein kinase B (AKT)/FOXO3 and AKT/mammalian target of rapamycin (mTOR) pathways are also proposed regulators of LVH induced by pressure-overload. Interestingly, phospho-AKT/total-AKT ratio was increased in CKD without significantly affecting phosphorylation of FOXO3 or mTOR. In summary, cardiac overexpression of miR-212 in CKD failed to affect its previously implicated hypertrophy-associated downstream targets. Thus, the molecular mechanism of the development of LVH in CKD seems to be independent of the FOXO3, ERK1/2, AMPK, and AKT/mTOR-mediated pathways indicating unique features in this form of LVH.
Collapse
Affiliation(s)
- Márta Sárközy
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary.
| | - Renáta Gáspár
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Ágnes Zvara
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6701, Szeged, Hungary
| | - Andrea Siska
- Department of Laboratory Medicine, Faculty of Medicine, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Bence Kővári
- Department of Pathology, University of Szeged, Állomás utca 1, Szeged, H-6725, Hungary
| | - Gergő Szűcs
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Fanni Márványkövi
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Mónika G Kovács
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Petra Diószegi
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Krisztina Kiss
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Péter Bencsik
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Gábor Cserni
- Department of Pathology, University of Szeged, Állomás utca 1, Szeged, H-6725, Hungary
| | - László G Puskás
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6701, Szeged, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, Faculty of Medicine, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Thomas Thum
- IMTTS, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, 30625, Germany
| | - Sándor Bátkai
- IMTTS, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, 30625, Germany
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| |
Collapse
|
44
|
Chinnappa S, Tu YK, Yeh YC, Glorieux G, Vanholder R, Mooney A. Association between Protein-Bound Uremic Toxins and Asymptomatic Cardiac Dysfunction in Patients with Chronic Kidney Disease. Toxins (Basel) 2018; 10:toxins10120520. [PMID: 30563136 PMCID: PMC6316640 DOI: 10.3390/toxins10120520] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 01/15/2023] Open
Abstract
Although the relationship between protein-bound uremic toxins (PBUTs) and cardiac structure and cardiac mortality in chronic kidney disease (CKD) has been studied in the past, the association between cardiac dysfunction and PBUTs has not yet been studied. We therefore evaluated the association between impaired peak cardiac performance and the serum free and total concentrations of potentially cardiotoxic PBUTs. In a cross-sectional study of 56 male CKD patients (stages 2–5 (pre-dialysis)) who were asymptomatic with no known cardiac diseases or diabetes we measured peak cardiac power (CPOmax), aerobic exercise capacity (VO2max), and echocardiographic parameters of cardiac morphology and evaluated their association with PBUTs. The serum total and free concentrations of indoxyl sulfate (IXS), p-cresyl sulfate (PCS), p-cresyl glucuronide, indole acetic acid, and hippuric acid showed significant negative correlation with CPOmax and VO2max. IXS and PCS were independently associated with CPOmax and VO2max even after controlling for eGFR. No correlation between left ventricular mass index (LVMI) and PBUTs was seen. The present study for the first time has demonstrated the association between subclinical cardiac dysfunction in CKD and serum levels of a panel of PBUTs. Further studies are required to evaluate the mechanism of cardiotoxicity of the individual uremic toxins.
Collapse
Affiliation(s)
- Shanmugakumar Chinnappa
- Department of Nephrology, Doncaster and Bassetlaw Teaching Hospitals, Doncaster DN2 5LT, UK.
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9DA, UK.
| | - Yu-Kang Tu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National University of Taiwan, Taipei 100, Taiwan.
| | - Yi Chun Yeh
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National University of Taiwan, Taipei 100, Taiwan.
| | - Griet Glorieux
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Raymond Vanholder
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Andrew Mooney
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9DA, UK.
- Department of Nephrology, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK.
| |
Collapse
|
45
|
Tan X, Cao XS, Zhang P, Xiang FF, Teng J, Zou JZ, Ding XQ. Endoplasmic reticulum stress associated apoptosis as a novel mechanism in indoxyl sulfate‑induced cardiomyocyte toxicity. Mol Med Rep 2018; 18:5117-5122. [PMID: 30272270 DOI: 10.3892/mmr.2018.9496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/05/2018] [Indexed: 11/05/2022] Open
Abstract
Indoxyl sulfate (IS), a typical uremic toxin, is of great importance in the development of chronic kidney disease. In addition to its nephrotoxicity, previous studies have provided increasing evidence for its cardiovascular toxicity. The mechanism underlying IS‑induced cardiovascular toxicity has been elusive to date. The present study aimed to evaluate whether IS treatment could induce apoptosis of H9C2 cells, and used the endoplasmic reticulum (ER) stress‑modulator 4‑phenylbutyric acid (4‑PBA) to evaluate whether IS‑induced apoptosis is indeed associated with ERS. To evaluate whether IS induces apoptosis in H9C2 cardiomyocytes, cells were exposed to increasing concentrations of IS (500, 1,000, and 2,000 µM) for 24 h, and apoptosis was detected by flow cytometry. To determine whether IS‑induced apoptosis is associated with ERS, cells were divided into 4 groups: control group, PBA group, IS group and PBA+IS group. IS dose‑dependently induced apoptosis, and increased the expression of ER chaperones in H9C2 cells. Additionally, 4‑PBA treatment decreased IS‑induced apoptosis, and reduced ERS‑associated protein expression induced by IS. Therefore, the mechanism may be associated with the CCAAT‑enhancer‑binding protein homologous protein and c‑Jun N‑terminal kinase signaling pathways.
Collapse
Affiliation(s)
- Xiao Tan
- Shanghai Key Laboratory of Kidney and Blood Purification, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xue-Sen Cao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Pan Zhang
- Shanghai Key Laboratory of Kidney and Blood Purification, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Fang-Fang Xiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian-Zhou Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiao-Qiang Ding
- Shanghai Key Laboratory of Kidney and Blood Purification, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
46
|
Lekawanvijit S. Cardiotoxicity of Uremic Toxins: A Driver of Cardiorenal Syndrome. Toxins (Basel) 2018; 10:toxins10090352. [PMID: 30200452 PMCID: PMC6162485 DOI: 10.3390/toxins10090352] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/19/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is highly prevalent in the setting of chronic kidney disease (CKD). Such coexistence of CVD and CKD—the so-called “cardiorenal or renocardiac syndrome”—contributes to exponentially increased risk of cardiovascular (CV) mortality. Uremic cardiomyopathy is a characteristic cardiac pathology commonly found in CKD. CKD patients are also predisposed to heart rhythm disorders especially atrial fibrillation. Traditional CV risk factors as well as known CKD-associated CV risk factors such as anemia are insufficient to explain CV complications in the CKD population. Accumulation of uremic retention solutes is a hallmark of impaired renal excretory function. Many of them have been considered inert solutes until their biological toxicity is unraveled and they become accepted as “uremic toxins”. Direct cardiotoxicity of uremic toxins has been increasingly demonstrated in recent years. This review offers a mechanistic insight into the pathological cardiac remodeling and dysfunction contributed by uremic toxins with a main focus on fibroblastic growth factor-23, an emerging toxin playing a central role in the chronic kidney disease–mineral bone disorder, and the two most investigated non-dialyzable protein-bound uremic toxins, indoxyl sulfate and p-cresyl sulfate. Potential therapeutic strategies that could address these toxins and their relevant mediated pathways since pre-dialysis stages are also discussed.
Collapse
Affiliation(s)
- Suree Lekawanvijit
- Department of Pathology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Rd, Sribhoom, Chiang Mai 50200, Thailand.
| |
Collapse
|
47
|
Hydroxysafflor yellow A protects against angiotensin II‑induced hypertrophy. Mol Med Rep 2018; 18:3649-3656. [PMID: 30132539 PMCID: PMC6131570 DOI: 10.3892/mmr.2018.9399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) is life-threatening and is generally accompanied by myocardial hypertrophy. Notably, Hydroxysafflor yellow A (HSYA) can prevent tissue injuries. The objective of this study was to investigate the effect of HSYA on hypertrophy after MI. Hematoxylin and eosin (H&E) staining assays were performed to measure cell area. The protein synthesis rate was assessed using the 3H Leucine incorporation assay. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and the immunohistochemical assay were used to detect the expression of target genes. The activity of superoxide dismutase (SOD), malondialdehyde (MDA) and the reactive oxygen species (ROS) generation were examined using commercial kits. Decreased myocardial hypertrophy was observed in animals treated with HSYA. Furthermore, the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) was higher in HSYA administration groups compared with that in the MI model group. In H9c2 cardiomyocytes, the pretreatment with HSYA increased the cell viability, however, it reduced protein synthesis rate, mitigated cell surface area and decreased the expression of Brain natriuretic factor (BNP) and β-myosin heavy chain (β-MHC). By contrast, the downregulation of Nrf2 deteriorated and reversed the effect of Ang II and HSYA. Furthermore, oxidative stress was alleviated by HSYA via inhibiting ROS generation, modulating the activities of SOD and MDA. In addition, the expression of NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) were recovered by the pretreatment of HSYA that was combated by siNrf2. In conclusion, HSYA exerted anti-hypertrophic effects, which was pertinent with the activation of Nrf2/NQO-1/HO-1 signaling pathway. The findings of this study may inspire a novel strategy to combat MI.
Collapse
|
48
|
Velasquez MT, Centron P, Barrows I, Dwivedi R, Raj DS. Gut Microbiota and Cardiovascular Uremic Toxicities. Toxins (Basel) 2018; 10:E287. [PMID: 29997362 PMCID: PMC6071268 DOI: 10.3390/toxins10070287] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) remains a major cause of high morbidity and mortality in patients with chronic kidney disease (CKD). Numerous CVD risk factors in CKD patients have been described, but these do not fully explain the high pervasiveness of CVD or increased mortality rates in CKD patients. In CKD the loss of urinary excretory function results in the retention of various substances referred to as "uremic retention solutes". Many of these molecules have been found to exert toxicity on virtually all organ systems of the human body, leading to the clinical syndrome of uremia. In recent years, an increasing body of evidence has been accumulated that suggests that uremic toxins may contribute to an increased cardiovascular disease (CVD) burden associated with CKD. This review examined the evidence from several clinical and experimental studies showing an association between uremic toxins and CVD. Special emphasis is addressed on emerging data linking gut microbiota with the production of uremic toxins and the development of CKD and CVD. The biological toxicity of some uremic toxins on the myocardium and the vasculature and their possible contribution to cardiovascular injury in uremia are also discussed. Finally, various therapeutic interventions that have been applied to effectively reduce uremic toxins in patients with CKD, including dietary modifications, use of prebiotics and/or probiotics, an oral intestinal sorbent that adsorbs uremic toxins and precursors, and innovative dialysis therapies targeting the protein-bound uremic toxins are also highlighted. Future studies are needed to determine whether these novel therapies to reduce or remove uremic toxins will reduce CVD and related cardiovascular events in the long-term in patients with chronic renal failure.
Collapse
Affiliation(s)
- Manuel T Velasquez
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC 20037, USA.
| | - Patricia Centron
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC 20037, USA.
| | - Ian Barrows
- Department of Medicine, Georgetown University, Washington, DC 20007, USA.
| | - Rama Dwivedi
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC 20037, USA.
- United States Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Dominic S Raj
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
49
|
Jheng JR, Chen YS, Ao UI, Chan DC, Huang JW, Hung KY, Tarng DC, Chiang CK. The double-edged sword of endoplasmic reticulum stress in uremic sarcopenia through myogenesis perturbation. J Cachexia Sarcopenia Muscle 2018; 9:570-584. [PMID: 29380555 PMCID: PMC5989876 DOI: 10.1002/jcsm.12288] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/11/2017] [Accepted: 12/30/2017] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Sarcopenia is the age-related degeneration characterized with the decline of skeletal muscle mass, strength, and function. The imbalance of protein synthesis and degradation which jeopardizes immune, hormone regulation, and muscle-motor neuron connection is the main cause of sarcopenia. There is limited knowledge regarding molecular mechanism of sarcopenia. As the endoplasmic reticulum is the control centre of the protein syntheses and degradation, we hypothesized that endoplasmic reticulum stress and unfolded protein response (UPR) play an important in the development of sarcopenia. Understanding the sarcopenia molecular mechanisms may benefit the therapeutic diagnosis and treatment in the future. METHODS Mouse myoblast C2C12 cells are exposed to designated time and concentration of indoxyl sulfate (IS), a uremic toxin of chronic kidney disease. The proliferation, differentiation, and the expression of atrogin 1 are examined. The protein and mRNA expression of IS treated-C2C12 cells are inspected to distinguish the role of ER stress and oxidative stress underlying the sarcopenia. RESULTS Indoxyl sulfate inhibits myoblast differentiation. We demonstrate that as the number of multi-nuclei myotube decreased, the differentiation markers including myoD, myoG, and myosin heavy chain are also suppressed. Indoxyl sulfate inhibits myoblast proliferation and induces the myotubular atrophy marker atrogin-1 protein expression. Indoxyl sulfate stimulates eIF2α phosphorylation and XBP1 mRNA splicing in UPR. Interestingly, the oxidative stress is related to eIF2α phosphorylation but not XBP1 mRNA splicing. The eIF2α phosphorylation triggered by IS reduces myoD, myoG, and myosin heavy chain protein expression, which represents the anti-myogenic modulation on the early differentiation event. The XBP1 mRNA splicing induced by IS, however, is considered the adaptive response to restore the myogenic differentiation. CONCLUSIONS Our studies indicated that the ER stress and UPR modulation are critical in the chronic kidney disease uremic toxin-accumulated sarcopenia model. We believe that UPR-related signals showed great potential in clinical application.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuan-Siao Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Un Iong Ao
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ding-Cheng Chan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan.,Superintendent's Office, National Taiwan University Hospital, Chu-Tung Branch, Taipei, Taiwan
| | - Jenq-Wen Huang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuang-Yu Hung
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Der-Cheng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
50
|
Jing L, Yang M, Li Y, Yu Y, Liang B, Cao L, Zhou X, Peng S, Sun Z. Metallothionein prevents doxorubicin cardiac toxicity by indirectly regulating the uncoupling proteins 2. Food Chem Toxicol 2017; 110:204-213. [PMID: 29061315 DOI: 10.1016/j.fct.2017.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/26/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022]
Abstract
Doxorubicin (Dox) is a broad-spectrum anticancer agent, but its clinical use is restricted due to irreversible cardiac toxicity. Metallothionein (MT) can inhibit Dox-induced cardiac toxicity. Applying a proteomics approach we determined that uncoupling proteins (UCPs) may be implicated in this process. This study was designed to examine the mechanisms of MT against Dox cardiac toxicity and the link between MT and UCP2. In vivo, wild-type (MT+/+) and MT-I/II null (MT-/-) mice were given a single dose of Dox (15 mg/kg, i.p.) and sacrificed at 4 days after Dox injection. In vitro, cardiomyocytes were prepared from MT-/- and MT+/+ neonatal mice and cardiomyocytes were pretreated with typical antioxidant NAC or the UCP2 inhibitor genipin followed by exposure to Dox. Based on the results, genipin enhanced Dox-induced oxidative injury, particularly in MT-/- cardiomyocyte. UCP2 levels in MT-/- mice were significantly lower compared to MT+/+ mice treated with Dox. Co-immunoprecipitation demonstrated that MT did not directly bind to UCP2. The NAC and Nrf2 activator oltipraz inhibit the decrease of UCP2 expression induced by Dox. Therefore, attenuating free radical damage with UCP2 help MT antagonize the Dox-induced cardiac toxicity, but does not directly bind MT. MT may regulate UCP2 expression by up-regulating Nrf2.
Collapse
Affiliation(s)
- Li Jing
- School of Public Health, Capital Medical University, 10 Xitoutiao, Fengtai District, Beijing 100069, PR China
| | - Man Yang
- School of Public Health, Capital Medical University, 10 Xitoutiao, Fengtai District, Beijing 100069, PR China
| | - Yang Li
- School of Public Health, Capital Medical University, 10 Xitoutiao, Fengtai District, Beijing 100069, PR China
| | - Yang Yu
- School of Public Health, Capital Medical University, 10 Xitoutiao, Fengtai District, Beijing 100069, PR China
| | - Baolu Liang
- School of Public Health, Capital Medical University, 10 Xitoutiao, Fengtai District, Beijing 100069, PR China
| | - Lige Cao
- School of Public Health, Capital Medical University, 10 Xitoutiao, Fengtai District, Beijing 100069, PR China
| | - Xianqing Zhou
- School of Public Health, Capital Medical University, 10 Xitoutiao, Fengtai District, Beijing 100069, PR China
| | - Shuangqing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China.
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, 10 Xitoutiao, Fengtai District, Beijing 100069, PR China.
| |
Collapse
|