1
|
Ortiz Vanegas GO, Kim HW. Enhanced methane recovery from anaerobic membrane bioreactor coupled with cold plasma pretreatment for rapid hydrolysis and nitrogen removal. CHEMOSPHERE 2024; 357:141924. [PMID: 38599330 DOI: 10.1016/j.chemosphere.2024.141924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Research to increase biomethane recovery efficiency from thickened sewage sludge (TSWS) using sustainable anaerobic digestion (AD) in municipal wastewater treatment plants is ongoing. Pretreating substrates is known to increase organic biodegradation and biomethane conversion rates in AD. Cold plasma (CP), a recently adopted advanced oxidation processes (AOP) has emerged as an alternative to accelerate pretreatment times under different operation variables. This study assessed raw and CP-pretreated TSWS in an anaerobic sequencing batch reactor (ASBR) and anaerobic membrane bioreactor (AnMBR). The effects of incremental organic loading rates (OLR) and nitrogenous compounds concentration on enhanced CH4 bioconversion efficiency were evaluated. We found that the AnMBR outperformed the ASBR, with an overall chemical oxygen demand (COD) conversion rate of 67%, lower total nitrogen (T-N) accumulation (594 mg L-1), and an overall methane yield of 0.24 L CH4 g-1 COD. CP pretreatment improved TSWS AD, resulting in more efficient COD removal and methane recovery. This study suggests that CP technology is a promising pretreatment to improve AD when treating TSWS.
Collapse
Affiliation(s)
- Gerardo Oswaldo Ortiz Vanegas
- Department of Environment and Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| | - Hyun-Woo Kim
- Department of Environment and Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Environmental Engineering, Division of Civil, Environmental, Mineral Resources and Energy Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
2
|
Vu HP, Kuzhiumparambil U, Cai Z, Wang Q, Ralph PJ, Nghiem LD. Enhanced biomethane production from Scenedesmus sp. using polymer harvesting and expired COVID-19 disinfectant for pretreatment. CHEMOSPHERE 2024; 356:141869. [PMID: 38575081 DOI: 10.1016/j.chemosphere.2024.141869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
This study evaluates the repurposing of expired isopropanol (IPA) COVID-19 disinfectant (64% w/w) to pretreat algal biomass for enhancing methane (CH4) yield. The impact of harvesting methods (centrifugation and polymer flocculation) and microwave pretreatment on CH4 production from Scenedesmus sp. microalgal biomass were also investigated. Results show minimal impact of harvesting methods on the CH4 yield, with wet centrifuged and polymer-harvested biomass exhibiting comparable and low CH4 production at 66 and 74 L/kgvolatile solid, respectively. However, microalgae drying significantly increased CH4 yield compared to wet biomass, attributed to cell shrinkage and enhanced digestibility. Consequently, microwave and IPA pretreatment significantly enhanced CH4 production when applied to dried microalgae, yielding a 135% and 212% increase, respectively, compared to non-pretreated wet biomass. These findings underscore the advantage of using dried Scenedesmus sp. over wet biomass and highlight the synergistic effect of combining oven drying with IPA treatment to boost CH4 production whilst reducing COVID-19 waste.
Collapse
Affiliation(s)
- Hang P Vu
- Center for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | | | - Zhengqing Cai
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, 200237, China.
| | - Qilin Wang
- Center for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
3
|
Paritosh K, Bose A. Multi-criteria-based decision-making assessment for anaerobic digestion of ammonia-rich distillery wastewater: Effect of pyrochar and temperature. BIORESOURCE TECHNOLOGY 2024; 397:130493. [PMID: 38403171 DOI: 10.1016/j.biortech.2024.130493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Energy-efficient wastewater treatment units are imperative to achieve carbon neutrality and a circular economy at the industrial scale. In the present study, pyrochar loading and digestion temperature were tested to assess their impact on the performance of an anaerobic digester running on distillery wastewater. The digestion temperature (37 °C and 55 °C) and pyrochar loading (7.5 - 30 g/L.feed) were selected as two primary design factors. Experiments were designed using Taguchi's design of experiments and specific methane yield, total ammonia nitrogen, pH and buffering capacity were selected as experimental outputs for multi-criteria assessment. The results from the confirmation test indicated that the addition of pyrochar (7.5 g/Lfeed) improved the methane yield (276 ± 15 L/kg VS) significantly compared to the control (167 ± 15 L/kg VS) at 37 °C. The detailed post-digestion analysis showed that the adsorption of ammonia on pyrochar may be the primary reason for enhanced digester performance.
Collapse
Affiliation(s)
- Kunwar Paritosh
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.
| | - Archishman Bose
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Process and Chemical Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.
| |
Collapse
|
4
|
Ortiz Vanegas GO, Kim HW. Improved hydrolysis of sewage sludge by air-assisted non-thermal plasma for enhanced biomethane recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28814-28826. [PMID: 38561541 DOI: 10.1007/s11356-024-33006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Conventional pretreatment technologies have been assessed to resolve the slow hydrolysis of sewage sludge, but high operating costs have prevented their wide use. This study investigated non-thermal plasma (NTP) technologies as an alternative to promote anaerobic digestion (AD). Various contact time (CT) and temperature (T) conditions were used to assess how NTP pretreatment improves the methane conversion of organics in sewage sludge. A multi-response surface model (RSM) using a central composite design (CCD) identified the optimal CT (4.6 h) and T (45 °C). This statistical optimization of NTP pretreatment led to an enhanced biochemical methane potential of 297 ± 46 mL CH4 g-1 COD by reducing operating cost as power consumption as low as 0.08 USD L-1. The result was comparable to those of other advanced oxidation processes (0.14 - 0.60 USD L-1) demonstrating that accelerated hydrolysis of sewage sludge using NTP pretreatment show potential for improving renewable energy recovery from sewage sludge.
Collapse
Affiliation(s)
- Gerardo Oswaldo Ortiz Vanegas
- Department of Environment and Energy, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896, Republic of Korea
| | - Hyun-Woo Kim
- Department of Environment and Energy, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896, Republic of Korea.
- Department of Environmental Engineering, Division of Civil, Environmental, Mineral Resources and Energy Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
5
|
Rocha ME, Lazarino TC, Oliveira G, Teixeira L, Marques M, Mangiavacchi N. Analysis of biogas production from sewage sludge combining BMP experimental assays and the ADM1 model. PeerJ 2024; 12:e16720. [PMID: 38239297 PMCID: PMC10795531 DOI: 10.7717/peerj.16720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
The Anaerobic Digestion Model No. 1 (ADM1) was employed to simulate methane (CH4) production in an anaerobic reactor (AR), and the associated bench-scale biochemical methane potential (BMP) assay, having sewage sludge (SWS) from a municipal wastewater treatment plant (WWTP) as feedstock. The SWS presented the following physical-chemical characteristics: pH (7.4-7.6), alkalinity (2,382 ± 100 mg CaCO3 L-1), tCOD (21,903 ± 1,000 mg L-1), TOC (895 ± 100 mg L-1), TS, TVS, and VSS (2.0%, 1.1%, and 0.8%, respectively). The BMP assay was conducted in six replicates under anaerobic mesophilic conditions (37 ± 0.1°C) for 11 days with a CH4 yield registered of 137.6 ± 6.39 NmL CH4 or 124 ± 6.72 CH4 g-1 VS-1. When the results obtained with the BMP bench-scale reactors were compared to the output generated with computational data by the ADM1 model having as input data the same initial sewage tCOD, similar cumulative CH4 production curves were obtained, indicating the accuracy of the ADM1 model. This approach allowed the characterization of the sludge and estimation of its biogas production potential. The combination of BMP assays, experimental data, and ADM1 model simulations provided a framework for studying anaerobic digestion (AD) processes.
Collapse
Affiliation(s)
- Mariana Erthal Rocha
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Thais Carvalho Lazarino
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Gabriel Oliveira
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Lia Teixeira
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Norberto Mangiavacchi
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Islam MS, Ranade VV. Enhancement of biomethane potential of brown sludge by pre-treatment using vortex based hydrodynamic cavitation. Heliyon 2023; 9:e18345. [PMID: 37539188 PMCID: PMC10395541 DOI: 10.1016/j.heliyon.2023.e18345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Novel, non-thermal and economically benign pre-treatment process was developed for enhancing valorisation potential of brown sludge generated by dairy industry wastewater treatment plant (WWTP). Vortex-based hydrodynamic cavitation (HC) device was used to quantify influence of pretreatment by measuring biomethane potential (BMP) of untreated and treated brown sludge. Pre-treatment parameters, primarily, pressure drop and number of passes through the cavitation device were varied to quantify influence on BMP. BMP tests were performed at 39 °C containing 5% of total solids in each reactors using an automatic BMP measurement system containing 15 reactors with each volume of 500 mL fitted with overhead stirrer. HC treatment increased the soluble chemical oxygen demand (sCOD) by more than 25% which increased the BMP. HC treatment was able to push the BMP of treated sludge to more than 80% of the theoretical BMP. Volatile solids (VS) removal was more than 65%. Highest methane yield was 376 mL/g-VS of sludge. The methodology and results presented here show significant potential to valorise brown dairy sludge via vortex based hydrodynamic cavitation.
Collapse
|
7
|
Dynamic modeling and parameter estimation of biomethane production from microalgae co-digestion. Bioprocess Biosyst Eng 2023; 46:129-146. [PMID: 36472659 DOI: 10.1007/s00449-022-02818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
This work proposes a dynamic modeling procedure applied to biomethane production from microalgae residual co-digestion. A two-stage anaerobic digestion representation is selected, considering acidogenesis and methanogenesis as main reaction pathways. Based on the experimental database generated in the University of Mons Laboratories, several candidate models, assuming the presence or absence of biomass dynamics, are suggested, and parametric structural and local identifiability studies are performed. An original parameter estimation procedure is applied to a data-set partition used for model direct validation. The remaining experiment data are dedicated to cross-validation. The results point out how these dynamic models may serve as advanced monitoring software tools such as digital twins, even in the presence of incomplete process data.
Collapse
|
8
|
Guérin-Rechdaoui S, Bize A, Levesque-Ninio C, Janvier A, Lacroix C, Le Brizoual F, Barbier J, Amsaleg CR, Azimi S, Rocher V. Fate of SARS-CoV-2 coronavirus in wastewater treatment sludge during storage and thermophilic anaerobic digestion. ENVIRONMENTAL RESEARCH 2022; 214:114057. [PMID: 35995225 PMCID: PMC9391084 DOI: 10.1016/j.envres.2022.114057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Since the COVID-19 outbreak has started in late 2019, SARS-CoV-2 has been widely detected in human stools and in urban wastewater. No infectious SARS-CoV-2 particles have been detected in raw wastewater until now, but it has been reported occasionally in human stools. This has raised questions on the fate of SARS-CoV-2 during wastewater treatment and notably in its end-product, wastewater treatment sludge, which is classically valorized by land spreading for agricultural amendment. In the present work, we focused on SARS-CoV-2 stability in wastewater treatment sludge, either during storage (4 °C, room temperature) or thermophilic anaerobic digestion (50 °C). Anaerobic digestion is one of the possible processes for sludge valorization. Experiments were conducted in laboratory pilots; SARS-CoV-2 detection was based on RT-quantitative PCR or RT-digital droplet PCR. In addition to SARS-CoV-2, Bovine Coronavirus (BCoV) particles were used as surrogate virus. The RNA from SARS-CoV-2 particles, inactivated or not, was close to the detection limit but stable in wastewater treatment sludge, over the whole duration of the assays at 4 °C (55 days) and at ambient temperature (∼20 °C, 25 days). By contrast, the RNA levels of BCoV and inactivated SARS-CoV-2 particles decreased rapidly during the thermophilic anaerobic digestion of wastewater treatment sludge lasting for 5 days, with final levels that were close to the detection limit. Although the particles' infectivity was not assessed, these results suggest that thermophilic anaerobic digestion is a suitable process for sludge sanitation, consistent with previous knowledge on other coronaviruses.
Collapse
Affiliation(s)
| | - Ariane Bize
- Université Paris-Saclay, INRAE, PROSE, Antony, 92160, France
| | - Camille Levesque-Ninio
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Alice Janvier
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Carlyne Lacroix
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| | - Florence Le Brizoual
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Jérôme Barbier
- ID Solutions, Development Department, Grabels, 34790, France
| | | | - Sam Azimi
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| | - Vincent Rocher
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| |
Collapse
|
9
|
Jasim HS, Ismail ZZ. Experimental and kinetic studies of biogas production from petroleum oily sludge by anaerobic co-digestion with animals’ dung at thermophilic conditions. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2022-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Anaerobic co-digestion technology is widely used for biogas generation from organic wastes. In this study, co-digestion of petroleum oily sludge (POS) for biogas production in bench-scale anaerobic digesters at thermophilic conditions was investigated. The effects of inoculum type on the biogas production were considered. Three types of inoculums were examined individually for the co-digestion of POS which were; poultry manure, cattle manure, and cow dung. The results revealed that the biogas production from poultry manure, cattle manure, and cow dung exceeded its production from uninoculated POS by 64.6, 20.94 and 6.1% respectively. Effect of C/N on the co-digestion process was also considered in this study. Modified Gompertz model was applied to describe the kinetic of the co-digestion process. The predicted and experimental results of biogas generation were fitted well with coefficients of determination > 0.96 indicating appropriate conditions of the co-digestion process. Statistical analysis was performed to estimate if there were significant differences in terms of cumulative biogas yield. A significance level value of < 0.05 was obtained.
Collapse
Affiliation(s)
- Hassan S. Jasim
- Department of Environmental Engineering , Baghdad University , Baghdad , Iraq
| | - Zainab Z. Ismail
- Department of Environmental Engineering , Baghdad University , Baghdad , Iraq
| |
Collapse
|
10
|
de Quadros TCF, Mangerino Sicchieri I, Fernandes F, Kiyomi Kuroda E. Selection of additive materials for anaerobic co-digestion of fruit and vegetable waste and layer chicken manure. BIORESOURCE TECHNOLOGY 2022; 361:127659. [PMID: 35872273 DOI: 10.1016/j.biortech.2022.127659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to assess the potential of different additive materials in enhancing the stability and methane production of anaerobic co-digestion of fruit and vegetable waste and layer chicken manure. A biochemical methane potential assay was conducted to evaluate the co-digestion of substrates with the addition of additive materials (10 g L-1): biochars produced (450 and 550 °C) (from fruit and vegetable waste, layer chicken manure, and wood pruning waste), powdered activated carbon, and zeolites. All additive materials increased methane production. Biochars showed better results regarding methane production (increments of 17 to 28 %). The surface of biochars favored the adhesion of microorganisms, this was confirmed by spectra after co-digestion. Furthermore, the redox-active groups in the biochars may have contributed to the microbiological syntrophism, increasing methane rates. These materials are viable for application in co-digestion systems, and the use of waste for their production is an option for solid waste management.
Collapse
Affiliation(s)
- Thainara Camila Fernandes de Quadros
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil.
| | - Isabela Mangerino Sicchieri
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil
| | - Fernando Fernandes
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil
| | - Emília Kiyomi Kuroda
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil
| |
Collapse
|
11
|
Pan S, Zabed HM, Li Z, Qi X, Wei Y. Enrichment and balancing of nutrients for improved methane production using three compositionally different agro-livestock wastes: Process performance and microbial community analysis. BIORESOURCE TECHNOLOGY 2022; 357:127360. [PMID: 35609750 DOI: 10.1016/j.biortech.2022.127360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Balanced nutrition is important for maximizing anaerobic digestion (AD) performance. Herein, the strategy of balancing sugar-fiber-nitrogen nutrients was first established for improved methane production by co-digesting two agricultural and one livestock wastes with complementary compositional properties, such as banana pseudo-stem (BPS), sugarcane baggage (SCB), and chicken manure (CM) having high sugar, fiber and nitrogen contents, respectively. The maximum methane yield was 186.5 mL/g VSadded with a mixture of 45.7% BPS, 26.2% SCB and 28.1% CM (with 1: 11.3: 0.3 of sugar to fiber to nitrogen ratio), increasing by 16.1%, 53.3%, 122.6% than those of mono- BPS, SCB, and CM, respectively. The co-digestion process remained stable under an organic load of 4 g VS/(L·day), which was attributed to the predominant presence of Bacteroidetes, Proteobacteria, Thauera, uncultured_bacterium_p_Aegiribacteria, and hydrogenotrophic methanogens. This study provides a deeper understanding of the co-digestion with agricultural and livestock wastes from the perspective of nutrient balance.
Collapse
Affiliation(s)
- Shiyou Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhenchong Li
- Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yutuo Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
12
|
Silva Júnior FDCGD, Menezes CAD, Cavalcante WA, Aragão OP, Zaiat M, Leitão RC. Characterization of Fruits and Vegetables Waste Generated at a Central Horticultural Wholesaler: A Case Study for Energy Production Via Biogas. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Willame Araújo Cavalcante
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo São Carlos, Brazil
| | | | - Marcelo Zaiat
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo São Carlos, Brazil
| | | |
Collapse
|
13
|
Effect of Endogenous Methane Production: A Step Forward in the Validation of Biochemical Methane Potential (BMP) Tests. ENERGIES 2022. [DOI: 10.3390/en15134696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work evaluates the influence of the inoculum type, the pre-consumption of the residual substrate and the ratio of blanks’ headspace volume to working volume (Hv Wv−1, 0.6 to 10) on Biochemical Methane Potential (BMP) measurements when methane is monitored by gas chromatography. Different inocula were tested: digested sewage sludge—DSS, granular sludge—GS and fresh dairy manure—DM. Microcrystalline cellulose was used as the substrate. BMP surpassed the maximum theoretical value (BMPmax = 414 L kg−1) when methane produced in the blanks was not discounted, showing that degassing cannot stand alone as an alternative to the procedure of discounting the inoculum’s background production. Still, when the residual substrate concentration is high (e.g., in DM), degassing is mandatory because methane produced from its digestion will conceal the methane produced from the substrate in the BMP determination. For inocula with a low residual substrate (e.g., GS), short degassing periods are recommended in order to avoid detrimental effects on methanogenic activity. For moderate residual substrate concentrations (e.g., DSS), BMP values closer to BMPmax (90–97%) were achieved after degassing and discounting the blanks with lower Hv Wv−1. For higher Hv ∙ Wv−1, less accurate quantification occurred, likely due to error propagation. Proper inoculum pre-incubation time and discounting the methane production from blanks with low Hv Wv−1 (adjusted according to the estimated background methane) are essential for accurate BMP determinations.
Collapse
|
14
|
Emetere ME, Chikwendu L, Afolalu SA. Improved Biogas Production from Human Excreta Using Chicken Feather Powder: A Sustainable Option to Eradicating Poverty. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100117. [PMID: 35712022 PMCID: PMC9189137 DOI: 10.1002/gch2.202100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/08/2022] [Indexed: 06/15/2023]
Abstract
It has been proposed that providing energy for cooking and lighting would solve over 65% of energy needs in rural communities. The use of biomass resources has been found not sustainable as other bioproducts such as biodiesel and bioethanol depend on it. More so that there is a depletion of bioresources in some parts of the world. The shift into animal waste such as poultry droppings and cattle dung has huge prospects, but it is not sustainable in the long term as rural farmers depend on it. The use of human excreta is the most available and sustainable due to the human population. This research aims to provide a workable blueprint of biogas production to meet energy needs. The research considers a laboratory-scale experiment whose result is used to project the medium-scale biodigester. Microbial culturing from human waste is used to initiate the codigestion of human excreta and powdered chicken feathers. It is observed that this procedure drastically reduces the high nitrogen content in the biogas and improves its methane and carbon dioxide content. It is observed that the scaled-up biodigester in a worst case scenario can function at 67%. Design parameters are documented for the onward adoption of the technique.
Collapse
Affiliation(s)
- Moses E. Emetere
- Department of Mechanical Engineering ScienceUniversity of JohannesburgJohannesburg2006South Africa
| | - L. Chikwendu
- Department of PhysicsCovenant University Canaan landOtaPMB 1023Nigeria
| | - S. A. Afolalu
- Department of Mechanical EngineeringAfe Babalola UniversityAdo Ekiti360102Nigeria
| |
Collapse
|
15
|
Aravani VP, Tsigkou K, Papadakis VG, Kornaros M. Biochemical Μethane potential of most promising agricultural residues in Northern and Southern Greece. CHEMOSPHERE 2022; 296:133985. [PMID: 35176306 DOI: 10.1016/j.chemosphere.2022.133985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/30/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Greece produces significant amounts of residual biomass due to its intense agricultural and agro-industrial sector. The anaerobic digestion process has been frequently considered as the best environmental and economic solution for energy recovery from different biodegradable waste such as agricultural waste, livestock manure, agro-industrial waste, as well as for their co-digestion. The aim of this study was the assessment of biochemical methane potential (BMP) of biomass feedstocks representative of Northern and Southern Greece, which are available during the fall/winter and spring/summer seasons, through the implementation of BMP assays. The raw residues evaluated in the current work included: (a) crop residues (corn silage and unsuitable for human consumption watermelon), (b) agro-industrial residues (malt, tomato processing residues, orange peels and olive pomace) and (c) livestock (cattle) manure. Tests of both single substrates and various mixtures were conducted for the evaluation of their methane yields. The results of the mono-substrates are in accordance with other studies in the literature, with watermelon presenting the highest methane potential (421.0 ± 3.4 ml CH4/g VSadded). After the evaluation of the mixtures and mono-substrates results, the most promising mixtures seemed to be the following: a) for Northern Greece, 10% corn silage-80% cattle manure-10% malt, b) for Southern Greece spring/summer season, 10% corn silage-14% cattle manure-66% watermelon-10% tomato processing residues, and c) for Southern Greece fall/winter season, 10% corn silage-57% cattle manure-23% orange peels-10% olive pomace.
Collapse
Affiliation(s)
- Vasiliki P Aravani
- Department of Environmental Engineering, University of Patras, 2 Seferi Str, 30100, Agrinio, Greece
| | - Konstantina Tsigkou
- Department of Chemical Engineering, University of Patras, 1 Karatheodori Str, University Campus-Rio, 26504, Patras, Greece
| | - Vagelis G Papadakis
- Department of Environmental Engineering, University of Patras, 2 Seferi Str, 30100, Agrinio, Greece
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori Str, University Campus-Rio, 26504, Patras, Greece.
| |
Collapse
|
16
|
Factors That Affect Methane Yield Using Raw Olive Alperujo (Unhydrolyzed) as Substrate in BMP Assays. RECYCLING 2022. [DOI: 10.3390/recycling7020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The olive alperujo (OA) corresponds to the solid waste generated in the olive oil extraction process using the two-phase centrifugation method. OA is produced in large quantities (800 kg OA/ton olives processed) and is characterized by its high moisture content, organic matter, and low pH. In Chile, the olive oil industry is recent, and one of its main challenges is to be able to manage OA to reduce the impact caused by its disposal. In this sense, its valorization as biogas by means of anaerobic digestion is an economically attractive option. For this, it is previously necessary to evaluate the biomethane potential (BMP) of the raw OA using batch assays. This study was focused on evaluating the factors that most affect the methane yield (MY) when using OA as substrate in BMP tests. First, a sweep analysis (Plackett–Burman) was applied to determine those factors that, according to the literature, would have an influence on the BMP tests. Among the factors studied, the most significant were preincubation, OA concentration, and agitation level. Subsequently, a 23 factorial experimental design was applied to evaluate the effect of these factors on MY at different levels. Results show that the OA concentration was the most significant factor affecting MY.
Collapse
|
17
|
Nordell E, Björn A, Waern S, Shakeri Yekta S, Sundgren I, Moestedt J. Thermal post-treatment of digestate in order to increase biogas production with simultaneous pasteurization. J Biotechnol 2021; 344:32-39. [PMID: 34929206 DOI: 10.1016/j.jbiotec.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023]
Abstract
Biogas production by anaerobic digestion (AD) of organic wastes is important for the transition to fossil free fuels in both the transport sector, industries and shipping. The aim of this study was to target the residual organic matter in the outgoing residue from the AD process, so called digestate, with different thermal treatment methods in order to improve digestate degradability and biogas potential upon post-digestion. The thermal treatment was performed at 55 °C in 24 h, 70 °C in 1 h and by thermal hydrolysis process (THP; 165 °C, 8 bar in 0.33 h), and were carefully selected to offer a simultaneous possibility for pasteurization of the digestate according to the regulations in Sweden. Digestates from ten full-scale biogas plants were collected, with different substrate profiles including wastewater treatment plant (WWTP), food waste digestion, agriculture digestion and manure digestion. The results showed that all thermal treatment methods caused increased dissolved organic carbon concentration (DOC). Four of the thermal treated digestates with the highest increase in DOC were subsequently tested for the bio-methane potential. Thermal treatments at 70 °C and THP, respectively, resulted in the highest increase in bio-methane potentials, with an increase of 15-39% for one WWTP, 38 - 40% for digestate from an agriculture digestion plant and 20 - 22% for digestate from a co-digestion plant treating food waste. Interestingly, the bio-methane potential from digestate treated with the energy-intense THP method, did not show any significant difference compared to thermal treatment at 70 °C for 1 h. The outcomes of this study suggest that placing a pasteurization unit between a main digester and a post digester, when applying two-step digestion allows for a combined pasteurization and increased biogas production.
Collapse
Affiliation(s)
- E Nordell
- Tekniska verken i Linköping AB, Department of Biogas R &D, Box 1500, Linköping SE-581 15, Sweden; Biogas Research Center, Linköping University, Linköping SE-581 83, Sweden
| | - A Björn
- Biogas Research Center, Linköping University, Linköping SE-581 83, Sweden; Department of Thematic Studies-Environmental Change, Linköping University, Linköping SE-581 83, Sweden
| | - S Waern
- Tekniska verken i Linköping AB, Department of Biogas R &D, Box 1500, Linköping SE-581 15, Sweden; Biogas Research Center, Linköping University, Linköping SE-581 83, Sweden
| | - S Shakeri Yekta
- Biogas Research Center, Linköping University, Linköping SE-581 83, Sweden; Department of Thematic Studies-Environmental Change, Linköping University, Linköping SE-581 83, Sweden
| | - I Sundgren
- Biogas Research Center, Linköping University, Linköping SE-581 83, Sweden; Department of Thematic Studies-Environmental Change, Linköping University, Linköping SE-581 83, Sweden
| | - J Moestedt
- Tekniska verken i Linköping AB, Department of Biogas R &D, Box 1500, Linköping SE-581 15, Sweden; Biogas Research Center, Linköping University, Linköping SE-581 83, Sweden; Department of Thematic Studies-Environmental Change, Linköping University, Linköping SE-581 83, Sweden.
| |
Collapse
|
18
|
Nagarajan S, Ranade VV. Valorizing Waste Biomass via Hydrodynamic Cavitation and Anaerobic Digestion. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sanjay Nagarajan
- Multiphase Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, U.K
| | - Vivek V. Ranade
- Multiphase Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, U.K
- Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
19
|
Niedzialkoski RK, Marostica R, Damaceno FM, Costa LADM, Costa MSSDM. Combination of biological processes for agro-industrial poultry waste management: Effects on vermicomposting and anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113127. [PMID: 34346400 DOI: 10.1016/j.jenvman.2021.113127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the combination of bioprocesses to increase the utilization of agro-industrial poultry wastes. Composting piles were submitted to hydration and fraction separation (FS) and then, the solid fraction was vermicomposted and the liquid fraction was anaerobically digested. Composting followed by hydration and FS prior to vermicomposting enhanced earthworm adaptation and survival by reducing salt levels (50%), total organic carbon, and total nitrogen which may be limiting to vermicomposting at high concentrations. These strategies providing the production of up to 300 new cocoons and 360 young earthworms more than the control treatment. In addition to providing a favorable environment for earthworm growth, the combination of bioprocesses resulted in a high-quality organic fertilizer free of phytotoxic compounds and with phytostimulant properties (germination index higher than 100%). Energy recovery was greater in the treatment without the precomposting step (T0) (461.8 L CH4 kg-1. Volatile Solidsadded). The results show that combining the bioprocesses is a sustainable alternative for managing poultry wastes not only in terms of the recycling of nutrients but also by providing a clean source of energy.
Collapse
Affiliation(s)
- Rosana Krauss Niedzialkoski
- Research Group on Water Resources and Environmental Sanitation, Western Paraná State University, Agricultural Engineering Graduate Program, Rua Universitária, 2069, Jardim Universitário, 85.819-110, Cascavel, Parana, Brazil
| | - Ritieli Marostica
- Research Group on Water Resources and Environmental Sanitation, Western Paraná State University, Agricultural Engineering Graduate Program, Rua Universitária, 2069, Jardim Universitário, 85.819-110, Cascavel, Parana, Brazil
| | - Felippe Martins Damaceno
- Research Group on Water Resources and Environmental Sanitation, Western Paraná State University, Agricultural Engineering Graduate Program, Rua Universitária, 2069, Jardim Universitário, 85.819-110, Cascavel, Parana, Brazil
| | - Luiz Antonio de Mendonça Costa
- Research Group on Water Resources and Environmental Sanitation, Western Paraná State University, Agricultural Engineering Graduate Program, Rua Universitária, 2069, Jardim Universitário, 85.819-110, Cascavel, Parana, Brazil
| | - Monica Sarolli Silva de Mendonça Costa
- Research Group on Water Resources and Environmental Sanitation, Western Paraná State University, Agricultural Engineering Graduate Program, Rua Universitária, 2069, Jardim Universitário, 85.819-110, Cascavel, Parana, Brazil.
| |
Collapse
|
20
|
Nagarajan S, Prasad Sarvothaman V, Knörich M, Ranade VV. A simplified model for simulating anaerobic digesters: Application to valorisation of bagasse and distillery spent wash. BIORESOURCE TECHNOLOGY 2021; 337:125395. [PMID: 34130231 DOI: 10.1016/j.biortech.2021.125395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Current anaerobic digestion (AD) design methods rely on crude empirical models or sophisticated anaerobic digestion models (like ADM1) requiring a large number of parameters which are difficult to obtain experimentally. A simplified model for simulating AD was developed in this work. The model requires knowledge of CH4/CO2 ratio in biogas or indigestible fraction in substrate and batch biomethane potential (BMP) data for estimating three kinetic parameters (maximum specific growth rate, half velocity constant and cell death rate). Reported lab scale BMP data of sugarcane bagasse and spent wash were used to first estimate the kinetics and then to simulate corresponding largescale AD. Simulated results of specific methane yield and digester performance were consistent with available largescale AD data. The potential of the model to simulate single and multi-stage AD were illustrated. The presented approach and model will be useful for effectively valorising a variety of complex biomass substrates to biogas.
Collapse
Affiliation(s)
- Sanjay Nagarajan
- Multiphase Flows, Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, United Kingdom
| | - Varaha Prasad Sarvothaman
- Multiphase Flows, Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, United Kingdom
| | - Martin Knörich
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Vivek V Ranade
- Multiphase Flows, Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, United Kingdom; Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland.
| |
Collapse
|
21
|
Making sense of gas measurements: quantification of multicomponent gas mixtures in biological and chemical laboratory experiments. CHEMTEXTS 2021. [DOI: 10.1007/s40828-021-00151-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractTextbooks in physical chemistry start from the treatise of the ideal gas. Gaseous compounds are important reactants and products of (bio)chemical reactions, and thus their absolute amounts are needed to establish mass balances. However, in contrast to solid, for dissolved and liquid compounds, their qualitative and especially quantitative analysis is less widely established in biological and chemical laboratories. This can be mainly ascribed to the seemingly simple chemical nature of gaseous compounds that is in contrast to the effort needed for their precise quantification. In this article, we will guide the reader through the considerations and steps needed to perform a meaningful analysis of multicomponent gas mixtures, which are reactants for or products of (bio)chemical reactions in aqueous solutions in the laboratory environment and scale. After a brief introduction, special focus is set on the methods for quantification and calculations needed to derive absolute amounts of gases in a mixture. The overall concept will be exemplified by biogas production as well as by an electroorganic reaction (Kolbe electrolysis of n-hexanoic acid), and general pitfalls will be highlighted.
Collapse
|
22
|
Otero A, Mendoza M, Carreras R, Fernández B. Biogas production from slaughterhouse waste: Effect of blood content and fat saponification. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 133:119-126. [PMID: 34391987 DOI: 10.1016/j.wasman.2021.07.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/02/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The effect of fat saponification and the inclusion or exclusion of blood in slaughterhouse mixtures were assessed in terms of anaerobic digestion performance. Mixtures of animal by-products (ABP) were collected for 1 year, whereby following the daily activity and waste generation at a slaughterhouse facility, seasonal fluctuations were found. The blood content of ABP mixtures was variable, affecting both the methane yield and the production rate (287.8-320.5 NLCH4 kgCOD-1 and 80.3-94.7 and NLCH4 kgCOD-1 d-1, respectively). The saponification of fatty ABP materials was studied to assess the methane production rate, singularly or combined, with and without the addition of blood. Data showed that saponification significantly reduced the lag phase, from 2.2 to 1.5 days in winter mixtures and from 1.5 to 0.9 days in summer mixtures (all with blood), and from 0.3 to 0.1 days in summer mixtures without blood. Finally, the percentage of energy demand at the slaughterhouse potentially covered by net biogas energy was estimated, finding that the facility could be 100% energy self-sufficient in winter, whereas this would be reduced to 85% in the summer due to different methane yields of ABP mixtures based on season.
Collapse
Affiliation(s)
- A Otero
- IRTA, Sustainability in Biosystems Program. Torre Marimon, 08140, Caldes de Montbui, Barcelona, Spain; Enginyeria i Ciències Aplicades, Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain; Mafrica S.A., Paratge Can Canals Nou, S/N, 08250 Sant Joan de Vilatorrada, Spain.
| | - M Mendoza
- IRTA, Sustainability in Biosystems Program. Torre Marimon, 08140, Caldes de Montbui, Barcelona, Spain; Enginyeria i Ciències Aplicades, Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - R Carreras
- Mafrica S.A., Paratge Can Canals Nou, S/N, 08250 Sant Joan de Vilatorrada, Spain
| | - B Fernández
- IRTA, Sustainability in Biosystems Program. Torre Marimon, 08140, Caldes de Montbui, Barcelona, Spain
| |
Collapse
|
23
|
Chen L, Wu D, Ekama GA, Chen G. Optimization of biochemical sulfide potential (BSP) assay for anaerobic biodegradability assessment. WATER RESEARCH 2021; 200:117216. [PMID: 34022629 DOI: 10.1016/j.watres.2021.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
The anaerobic biodegradability assessment (biodegradation extent and kinetics) of organic wastes is critical for optimum design and evaluating treatment efficiencies for anaerobic treatment technologies. The biochemical sulfide potential (BSP) assay has previously demonstrated the advantages of its time efficiency and measurement accuracy for biologically assessing substrate degradability, while its application is limited by undefined operational parameters. In this study, the BSP assay was further optimized through a systematic investigation of a critical parameter, inoculum-to-substrate ratio (ISR), and the applicable kinetic model to unravel the potential use of BSP assays for anaerobic waste treatment. Under two series of experimental scenarios, the common ISR ranges of 0.5-4.0 (based on the traditional BMP assay) and extreme ISRs (as low as 0.1) were studied, in which the advantage of a BSP assay on extreme ISRs was highlighted. Meanwhile, the underlying cause and mechanism for biodegradability discrepancies under different ISRs (0.1-6.0) were further investigated. The extracellular polymeric substance (EPS) characterization of residual organics and the two-substrate first-order hydrolysis model analyses revealed that the hydrolysis process of slowly-biodegradable organics fraction was hindered under improper ISR conditions. Furthermore, the Cone model was evaluated as more appropriate for biodegradation kinetics analysis in BSP assays among the five common kinetic models (i.e., Exponential, Fitzhugh, Cone, Transference, and modified Gompertz models). Overall, the results provide fundamental guidance on designing consistent BSP assays and put a step forward in standardizing the BSP assay for anaerobic biodegradability assessments.
Collapse
Affiliation(s)
- Lin Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Technology Lab, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Technology Lab, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
24
|
Effect of Particle Size on the Aerobic and Anaerobic Digestion Characteristics of Whole Rice Straw. ENERGIES 2021. [DOI: 10.3390/en14133960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of reducing particle size on physical properties, the methane yield and energy flow were investigated through the biochemical methane potential (BMP) experiment of aerobic-anaerobic digestion (AAD) of rice straw (RS). The whole straw was crushed through four sieves of different aperture sizes (1, 3, 5, and 7 mm) to obtain the actual and non-uniform particle size distribution (PSD). The results indicated that the actual particle sizes were normally or logarithmic normally distributed. Reducing particle size could significantly promote the aerobic hydrolysis and acidification process, increase the content of volatile fatty acids (VFAs) from 4408.78 to 6225.15 mg/L and the degradation of volatile solids (VS) from 40.56% to 50.49%. The results of path analysis suggested that particle size reduction played an important role in improving lignocellulosic degradability, which was the main factor affecting methane production with the comprehensive decision of 0.4616. The maximum methane production obtained at 1 mm sieve size was 176.47 mLCH4g−1 VS. The phyla of Firmicutes (61.5%), Proteobacteria (9.3%), Chloroflexi (8.3%), Bacteroidetes (4.1%), Cyanobacteria/Chloroplast (4.6%) were mainly responsible for VFAs production and lignocellulose degradation. However, the net negative energy balance was observed at the 1 mm sieve size due to the increased energy input. Therefore, the optimum sieve size for AAD was 3 mm.
Collapse
|
25
|
Damtie MM, Shin J, Jang HM, Cho HU, Wang J, Kim YM. Effects of biological pretreatments of microalgae on hydrolysis, biomethane potential and microbial community. BIORESOURCE TECHNOLOGY 2021; 329:124905. [PMID: 33676351 DOI: 10.1016/j.biortech.2021.124905] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Parameters of temperature-phased anaerobic digestion (TPAD) were varied to study their effects on hydrolysis, biomethane potential (BMP), and microbial diversity of microalgae biodegradation. Anaerobic pretreatments at 85 °C demonstrated the release of soluble carbohydrate and protein molecules under low microbial metabolic activity. However, at 55 °C, anaerobic pretreatments showed superior performance in methane yield, nutrient release, and volatile fatty acids (VFAs) production due to dominant Clostridium. Furthermore, the highest destruction of volatile solids (VS) was observed during aerobic pretreatments at 55 °C under the influence of various quantities of these genera - Luteimonas, Symbiobacterium, Soehngenia, Thermobacillus, and Ureibacillus. Statistical analysis revealed that hydrolysis and BMP were not correlated. However, soluble nitrogen and phosphorous showed strong correlation with methane (r = 0.623 and 0.948, respectively) under thermo-anaerobic pretreatment, while VS removal and concentrations of acetic and butyric acids and lipids were positively correlated with each other under thermo-aerobic pretreatment.
Collapse
Affiliation(s)
- Mekdimu Mezmir Damtie
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jingyeong Shin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyun Min Jang
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 57896, Republic of Korea
| | - Hyun Uk Cho
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam 53064, Republic of Korea
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
26
|
Yu D, Zhang Q, De Jaegher B, Liu J, Sui Q, Zheng X, Wei Y. Effect of proton pump inhibitor on microbial community, function, and kinetics in anaerobic digestion with ammonia stress. BIORESOURCE TECHNOLOGY 2021; 319:124118. [PMID: 32957047 DOI: 10.1016/j.biortech.2020.124118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The proton pump is a convincing mechanism for ammonia inhibition in anaerobic digestion, which explained how the ammonia accumulated intercellularly due to diffusion of free ammonia. Proton pump inhibitor (PPI) was dosed for mitigating the accumulation in anaerobic digestion with ammonia stress, with respect to kinetics. Results show PPI inhibited β-oxidation of fatty acids by targeting ATPase in anaerobic digestion with ammonia stress. Alternatively, PPI stimulated syntrophic acetate oxidization. Random forest located key genera as syntrophic consortia. Methane increased 18.72 ± 7.39% with 20 mg/L PPI at the first peak, consistent with microbial results. The deterministic Gompertz kinetics and stochastic Gaussian processes contributed 97.63 ± 8.93% and 2.37 ± 8.93% in accumulated methane production, respectively. Thus, the use of PPI for anaerobic digestion allowed mitigate ammonia inhibition based on the mechanism of proton pump, facilitate intercellularly ammonia accumulation, stimulate syntrophic consortia, and eliminate uncertainty of process failure, which resulted in efficient methane production under ammonia stress.
Collapse
Affiliation(s)
- Dawei Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Qingqing Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Bram De Jaegher
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Jibao Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Anaerobic Digestion of Steam-Exploded Wheat Straw and Co-Digestion Strategies for Enhanced Biogas Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228284] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Wheat straw (WS) is considered a favourable substrate for biogas production. However, due to its rigid structure and high carbon to nitrogen (C/N ratio), its biodegradability during anaerobic digestion (AD) is usually low. In the present study, the effect of steam explosion pre-treatment on WS, combined with C/N adjustment with inorganic nitrogen, on biogas production was evaluated. Additionally, co-digestion of WS with protein-rich agri-industrial by-products (dried distillers’ grains with solubles (DDGS) and rapeseed meal (RM)) was assessed. Steam explosion enhanced biogas production from WS, whereas the addition of NH4Cl was beneficial (p < 0.05) for the digestion of steam-exploded wheat straw (SE). Furthermore, mono-digestion of the four different substrates seemed to be efficient in both inoculum to substrate ratios (I/S) tested (3.5 and 1.75 (w/w)). Finally, during co-digestion of WS and SE with DDGS and RM, an increase in the cumulative methane production was noted when higher amounts of DDGS and RM were co-digested. This study demonstrated that DDGS and RM can be used as an AD supplement to stimulate gas production and improve wheat straw biodegradability, while their addition at 10% on an AD system operating with WS can enhance gas yields at levels similar to those achieved by steam-exploded straw.
Collapse
|
28
|
Wright A, Rollinson A, Yadav D, Lisowski S, Iza F, Holdich R, Radu T, Hemaka Bandulasena H. Plasma-assisted pre-treatment of lignocellulosic biomass for anaerobic digestion. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Thermophilic Methane Production from Hydrothermally Pretreated Norway Spruce (Picea abies). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Norway spruce (Picea abies) is an industrially important softwood species available in northern Europe and can be used to produce bio-methane after proper pretreatment to overcome its recalcitrant complex structure. Hot water extraction (HWE) pretreatment at two different conditions (170 °C for 90 min (severity 4.02) and 140 °C for 300 min (severity 3.65)) was applied to extract hemicellulosic sugars from Norway spruce for thermophilic anaerobic digestion (AD) of the hydrolysate. The methane yield of hydrolysate prepared at the lower pretreatment severity was found to be 189 NmL/gCOD compared to 162 NmL/gCOD after the higher pretreatment severity suggesting higher pretreatment severity hampers the methane yield due to the presence of inhibitors formed due to sugars and lignin degradation and soluble lignin, extracted partially along with hemicellulosic sugars. Synthetic hydrolysates simulating real hydrolysates (H170syn and H140syn) had improved methane yield of 285 NmL/gCOD and 295 NmL/gCOD, respectively in the absence of both the inhibitors and soluble lignin. An effect of organic loadings (OLs) on the methane yield was observed with a negative correlation between OL and methane yield. The maximum methane yield was 290 NmL/gCOD for hydrolysate pretreated at 140 °C compared to 195 NmL/gCOD for hydrolyate pretreated at 170 °C, both at the lowest OL of 6 gCOD/L. Therefore, both pretreatment conditions and OL need to be considered for efficient methane production from extracted hydrolysate. Such substrates can be utilized in continuous flow industrial AD with well-adapted cultures with stable organic loading rates.
Collapse
|
30
|
Blasius JP, Contrera RC, Maintinguer SI, Alves de Castro MCA. Effects of temperature, proportion and organic loading rate on the performance of anaerobic digestion of food waste. ACTA ACUST UNITED AC 2020; 27:e00503. [PMID: 32714853 PMCID: PMC7369326 DOI: 10.1016/j.btre.2020.e00503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
Abstract
Food waste mixtures were digested under different temperatures and organic loads. The optimal ratio of pre-prepared waste (PPW)/leftover (LW) were 100/0 and 75/25 %. The mesophilic reactor showed greater efficiency generating methane. The CH4 yield and TVS removal efficiency were decreased as OLR gradually increased.
In Brazil, a significant amount of organic waste is produced in households and restaurants. This study thus aimed to determine the ideal conditions for generating methane from the treatment of household waste by anaerobic digestion, under mesophilic (37 °C) and thermophilic (55 °C) conditions, to determine the maximum organic loading rate (OLR) in the reactors, and to evaluate kinetic parameters by statistical models: Modified Gompertz, First-Order, Logistic and Transference functions. The experiments were conducted in anaerobic batch reactors. Different proportions of pre-prepared waste (PPW)/leftover waste (LW) were used: 100/0, 75/25, 50/50, 25/75, and 0/100 and different ORL: 0.15; 0.30; 0.45; 0.60; and 0.90 g TVS (Total Volatile Solids).L−1.d−1. For both conditions, the optimal proportions of PPW/LW were 100/0 and 75/25 %. Under mesophilic condition, the best results were observed (869 mL of CH4.g TVS−1). The maximum organic load was 0.30 g TVS.L−1.d−1. The best data adjustment was performed by the Transference function.
Collapse
Affiliation(s)
- Jandir Pereira Blasius
- Graduate Program in Geosciences and Environment, Institute of Geosciences and Exact Sciences, São Paulo State University, Júio de Mesquita Filho (UNESP), Av. 24-A, Bela Vista, CEP: 13506-900, Rio Claro, SP, Brazil
| | - Ronan Cleber Contrera
- Hydraulic and Environmental Engineering Department (PhD), Escola Politécnica/ School of Engineering (EP), Universidade de São Paulo (USP), Av. Prof. Almeida Prado, 83 trav. 2, Cidade Universitária, CEP: 05508-900, São Paulo, SP, Brazil
| | - Sandra Imaculada Maintinguer
- Bioenergy Department, Bioenergy Research Institute - Central Laboratory (IPBEN) - São Paulo State University: Júlio de Mesquita Filho (UNESP) (PhD), R. 10, 2527 - Estádio, 13500-230, Rio Claro, SP, Brazil.,University of Araraquara, R. Voluntarios da Patria, 1309, 14801-320, Araraquara, SP, Brazil
| | - Marcus Cesar Avezum Alves de Castro
- Graduate Program in Geosciences and Environment, Institute of Geosciences and Exact Sciences, São Paulo State University, Júio de Mesquita Filho (UNESP), Av. 24-A, Bela Vista, CEP: 13506-900, Rio Claro, SP, Brazil.,University of Araraquara, R. Voluntarios da Patria, 1309, 14801-320, Araraquara, SP, Brazil
| |
Collapse
|
31
|
Improving Inter-Laboratory Reproducibility in Measurement of Biochemical Methane Potential (BMP). WATER 2020. [DOI: 10.3390/w12061752] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biochemical methane potential (BMP) tests used to determine the ultimate methane yield of organic substrates are not sufficiently standardized to ensure reproducibility among laboratories. In this contribution, a standardized BMP protocol was tested in a large inter-laboratory project, and results were used to quantify sources of variability and to refine validation criteria designed to improve BMP reproducibility. Three sets of BMP tests were carried out by more than thirty laboratories from fourteen countries, using multiple measurement methods, resulting in more than 400 BMP values. Four complex but homogenous substrates were tested, and additionally, microcrystalline cellulose was used as a positive control. Inter-laboratory variability in reported BMP values was moderate. Relative standard deviation among laboratories (RSDR) was 7.5 to 24%, but relative range (RR) was 31 to 130%. Systematic biases were associated with both laboratories and tests within laboratories. Substrate volatile solids (VS) measurement and inoculum origin did not make major contributions to variability, but errors in data processing or data entry were important. There was evidence of negative biases in manual manometric and manual volumetric measurement methods. Still, much of the observed variation in BMP values was not clearly related to any of these factors and is probably the result of particular practices that vary among laboratories or even technicians. Based on analysis of calculated BMP values, a set of recommendations was developed, considering measurement, data processing, validation, and reporting. Recommended validation criteria are: (i) test duration at least 1% net 3 d, (ii) relative standard deviation for cellulose BMP not higher than 6%, and (iii) mean cellulose BMP between 340 and 395 NmLCH4 gVS−1. Evidence from this large dataset shows that following the recommendations—in particular, application of validation criteria—can substantially improve reproducibility, with RSDR < 8% and RR < 25% for all substrates. The cellulose BMP criterion was particularly important. Results show that is possible to measure very similar BMP values with different measurement methods, but to meet the recommended validation criteria, some laboratories must make changes to their BMP methods. To help improve the practice of BMP measurement, a new website with detailed, up-to-date guidance on BMP measurement and data processing was established.
Collapse
|
32
|
Biomethane Potential Test: Influence of Inoculum and the Digestion System. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072589] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High precision of measurement of methane potential is important for the economic operation of biogas plants in the future. The biochemical methane potential (BMP) test based on the VDI 4630 protocol is the state-of-the-art method to determine the methane potential in Germany. The coefficient of variation (CV) of methane yield was >10% in several previous inter-laboratory tests. The aim of this work was to investigate the effects of inoculum and the digestion system on the measurement variability. Methane yield and methane percentage of five substrates were investigated in a Hohenheim biogas yield test (D-HBT) by using five inocula, which were used several times in inter- laboratory tests. The same substrates and inocula were also tested in other digestion systems. To control the quality of the inocula, the effect of adding trace elements (TE) and the microbial community was investigated. Adding TE had no influence for the selected, well- supplied inocula and the community composition depended on the source of the inocula. The CV of the specific methane yield was <4.8% by using different inocula in one D-HBT (D-HBT1) and <12.8% by using different digestion systems compared to D-HBT1. Incubation time between 7 and 14 days resulted in a deviation in CV of <4.8%.
Collapse
|
33
|
Tsigkou K, Sakarika M, Kornaros M. Inoculum origin and waste solid content influence the biochemical methane potential of olive mill wastewater under mesophilic and thermophilic conditions. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Donoso-Bravo A, Ortega V, Lesty Y, Bossche HV, Olivares D. Addressing the synergy determination in anaerobic co-digestion and the inoculum activity impact on BMP test. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:387-396. [PMID: 31537775 DOI: 10.2166/wst.2019.292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anaerobic mono-digestion and co-digestion are nowadays widely used in wastewater treatment plants (WWTP). However, the data processing of the conventional biochemical potential test (BMP) carried out to assess potential substrates should be enhanced to reduce the uncertainty of the results. In this study, two methodologies aiming to improve the data processing in anaerobic digestion studies were proposed. The methodologies aimed at the estimation of synergy in anaerobic co-digestion of organic waste and the standardization of the BMP test results by considering the activity of the inoculums under mono-digestion conditions. Both methodologies comprise the application of the Gompertz equation. For the first methodology, four cosubstrates and two types of substrates were used. Regarding synergy estimation, the cosubstrates dairy whey and grease sludge had an impact on the degradation kinetic. In regard to the second methodology, the results indicate that the activity of the inoculums exerts an influence on the BMP analysis, and it should be considered. This can be meaningful when comparing results among studies when different inoculums are used or even for studies where the same inoculum is used but it is taken at different reactor operational moments.
Collapse
Affiliation(s)
- Andres Donoso-Bravo
- Cetaqua, Centro Tecnológico del Agua, Los Pozos 7340, Santiago, Chile E-mail:
| | - Valentina Ortega
- Cetaqua, Centro Tecnológico del Agua, Los Pozos 7340, Santiago, Chile E-mail:
| | - Yves Lesty
- Gerencia Economía Circular, Aguas Andinas, Chile
| | | | - Diego Olivares
- Cetaqua, Centro Tecnológico del Agua, Los Pozos 7340, Santiago, Chile E-mail:
| |
Collapse
|
35
|
Nagarajan S, Ranade VV. Pretreatment of Lignocellulosic Biomass Using Vortex-Based Devices for Cavitation: Influence on Biomethane Potential. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00859] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sanjay Nagarajan
- Multiphase Flows, Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, United Kingdom
| | - Vivek V. Ranade
- Multiphase Flows, Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, United Kingdom
| |
Collapse
|
36
|
Zahan Z, Othman MZ. Effect of pre-treatment on sequential anaerobic co-digestion of chicken litter with agricultural and food wastes under semi-solid conditions and comparison with wet anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 281:286-295. [PMID: 30826514 DOI: 10.1016/j.biortech.2019.01.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Sequential co-digestion batch assays were conducted using feedstocks of chicken litter (CL), food waste (FW) and wheat straw (WS) mixed to a C/N ratio of 26.5 and 15% TS. Untreated mixture produced biogas of 321.6 ± 13.4 mLN/g VSadded which improved up to 50% when either CL or WS pre-treated substrates were fed. However, when both pre-treated CL and WS were fed, 80% and 88% increase in total biogas were found with associated VS removal of 49% and 55%, respectively, for alkali and sequential acid pre-treatment. Also, reactors received pre-treated substrates showed reduction in ammonia and digestate cellulose fraction with an increase in water soluble contents. Biogas production using sequential AD at 15% was almost 38% less than BMP biogas at 4%, however this was negated with the pre-treatment indicating that co-digestion at high TS of 15% is achievable. Further testing is required to confirm these results under semi-continuous conditions.
Collapse
Affiliation(s)
- Zubayeda Zahan
- School of Engineering, RMIT University, P.O. Box 2476, Melbourne, Victoria 3001, Australia
| | - Maazuza Z Othman
- School of Engineering, RMIT University, P.O. Box 2476, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
37
|
Anfar Z, Amedlous A, Ait El Fakir A, Ait Ahsaine H, Zbair M, Lhanafi S, El Haouti R, Jada A, El Alem N. Combined Methane Energy Recovery and Toxic Dye Removal by Porous Carbon Derived from Anaerobically Modified Digestate. ACS OMEGA 2019; 4:9434-9445. [PMID: 31460034 PMCID: PMC6648374 DOI: 10.1021/acsomega.9b00524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/17/2019] [Indexed: 05/16/2023]
Abstract
Valorization of agri-food organic waste in order to reach zero waste using cleaner methods is still a challenge. Therefore, both anaerobic co-digestion (ACD) (biological process) and adsorption (physicochemical process) were used in combination for this objective. ACD allows the activation of biodegradable organic matter by microbial action and produces a digestate (co-product). This coproduct was used as a raw material to produce porous carbon having a high specific surface area after chemical treatment using sulfuric acid and thermal activations at temperature T = 350 °C. The resulted material was used for the preparation of core-shell particles with a core made of porous carbon and a shell consisting mainly of alginate and a calcium ion layer. The final core-shell particles were then used for dye treating wastewater and solving the solid-liquid separation problem in the adsorption process. We show here that in the ACD process, significant bio-methane potential (BMP) was produced. Furthermore, the data indicate that 153 L CH4 kg·SV-1 of BMP was produced under optimum conditions of pH = 8 and inoculum/load ratio = 1.2. The overall results concerning the methylene blue (MB) adsorption from water onto the core-shell particles show the occurrence of a maximum adsorbed amount equal to 26.178 mg g-1, and good agreement was found between the experimental adsorption data with pseudo-second-order and Langmuir theoretical models. The response surface methodology coupled with the central composite design has allowed the identification of optimal conditions for MB removal and has led to the elucidation of adsorption mechanism and the regeneration of the adsorbent without the occurrence of the solid/liquid separation problem.
Collapse
Affiliation(s)
- Zakaria Anfar
- Laboratory
of Materials and Environment, Ibn Zohr University, Agadir 80000, Morocco
- Institute
of Materials Science of Mulhouse, CNRS,
Haute Alsace University, Mulhouse F-68100, France
- University
of Strasbourg, Strasbourg F 67081, France
- E-mail: , (Z.A.)
| | - Abdallah Amedlous
- Laboratory
of Materials, Catalysis and Valorization of Natural Resources, Hassan II University, Casablanca 20650, Morocco
| | | | - Hassan Ait Ahsaine
- Laboratory
of Materials and Environment, Ibn Zohr University, Agadir 80000, Morocco
- E-mail: (H.A.A.)
| | - Mohamed Zbair
- Laboratory
of Catalysis and Corrosion of Materials, Chouaïb Doukkali University, El Jadida 24000, Morocco
| | - Saaida Lhanafi
- Laboratory
of Materials and Environment, Ibn Zohr University, Agadir 80000, Morocco
| | - Rachid El Haouti
- Laboratory
of Materials and Environment, Ibn Zohr University, Agadir 80000, Morocco
| | - Amane Jada
- Institute
of Materials Science of Mulhouse, CNRS,
Haute Alsace University, Mulhouse F-68100, France
- University
of Strasbourg, Strasbourg F 67081, France
- E-mail: (A.J.)
| | - Noureddine El Alem
- Laboratory
of Materials and Environment, Ibn Zohr University, Agadir 80000, Morocco
| |
Collapse
|
38
|
Ohemeng-Ntiamoah J, Datta T. Perspectives on variabilities in biomethane potential test parameters and outcomes: A review of studies published between 2007 and 2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:1052-1062. [PMID: 30901780 DOI: 10.1016/j.scitotenv.2019.02.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Biomethane Potential (BMP) test continues to be a useful and inexpensive assay to estimate the digestibility and maximum methane production of various organic substrates in anaerobic digestion or co-digestion processes. Despite its usefulness and several published efforts toward standardizing it, the BMP test still do not follow a universally accepted standard protocol. This makes the comparison of results among studies quite challenging. In this context, this paper analyzes 78 peer-reviewed BMP studies published between 2007 and 2018 that used the BMP test primarily to assess methane potential of commonly digested substrates, such as food waste, wastewater sludge and manure. We focused on the similarities and differences in the methodologies used and, where possible, the results obtained from these studies were compared and discussed. It was observed that many studies do not provide adequate information on salient aspects of the BMP methodology, and results are sometimes reported in different units of measurements. The inoculum to substrate ratio (ISR), substrate concentration and/or load should be clearly indicated in future studies, and positive controls should be included to validate BMP results. It is recommended that more studies assess the impact of nutrient addition, potential effects of continuous and intermittent mixing and mixing intensities and the influence of reactor size and headspace volume on BMP results.
Collapse
Affiliation(s)
- Juliet Ohemeng-Ntiamoah
- Center for the Management, Utilization and Protection of Water Resources, Department of Civil and Environmental Engineering, Tennessee Tech University, Box 5033, Cookeville, TN 38505, USA
| | - Tania Datta
- Center for the Management, Utilization and Protection of Water Resources, Department of Civil and Environmental Engineering, Tennessee Tech University, Box 5033, Cookeville, TN 38505, USA.
| |
Collapse
|
39
|
Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research. WATER 2019. [DOI: 10.3390/w11050921] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biochemical methane potential (BMP) tests are widely used for characterizing a substrate’s influence on the anaerobic digestion process. As of 2018, there continues to be a lack of standardization of units and techniques, which impacts the comparability and validity of BMP results. However, BMP methods continue to evolve, and key aspects are studied to further eliminate systematic errors. This paper aims to update these key aspects with the latest research progress both to introduce the importance of each variable to those new to BMP measurements and to show the complexity required to design an accurate BMP test.
Collapse
|
40
|
Rajesh Banu J, Tamilarasan K, Uma Rani R, Gunasekaran M, Cho SK, Al-Muhtaseb AH. Dispersion aided tenside disintegration of seagrass Syringodium isoetifolium: Towards biomethanation, kinetics, energy exploration and evaluation. BIORESOURCE TECHNOLOGY 2019; 277:62-67. [PMID: 30658337 DOI: 10.1016/j.biortech.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
In this study, an attempt was made to enhance the biomethanation potential of seagrass (Syringodium isoetifolium) by the aid of disperser-tenside (polysorbate 80) disintegration for the first time in literature. A disperser rpm of 10,000 for 20 min and PS 80 dose of 0.000864 g/g TS were selected as ideal parameters for effectual seagrass biomass disintegration. Dispersion aided tenside disintegration (DTD) with a disperser energy consumption of 349 kJ/kg TS, was observed to be efficacious with a biomass lysis rate of 25.6%. The impact of DTD on bioacidification and biomethanation assay with respect to volatile fatty acids concentration (1100 mg/L) and methane generation (0.256 g/g COD), was greater than dispersion disintegration (DD) (800 mg/L; 0.198 g/g COD). Thus, S. isoetifolium is considered as a promising substrate to attain the third generation biofuel goals in the near future.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamilnadu, India
| | - K Tamilarasan
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamilnadu, India
| | - R Uma Rani
- Department of Civil Engineering, Ponjesly College of Engineering, Nagercoil, Tamilnadu, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamilnadu, India
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Ala'a H Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
41
|
Howell G, Bennett C, Materić D. A comparison of methods for early prediction of anaerobic biogas potential on biologically treated municipal solid waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:887-894. [PMID: 30530279 DOI: 10.1016/j.jenvman.2018.11.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/07/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Anaerobic gas production tests, generically Biochemical Methane Potential (BMP) or Biogas Potential (BP) tests, are often used to assess biodegradability, though long duration limits their utility. This research investigated whether simple modelling approaches could provide a reliable earlier prediction of total biogas production. Data were assessed from a non-automated biogas test on a large number of both fresh and processed municipal solid waste (MSW) samples, sourced from a mechanical biological treatment (MBT) plant. Non-linear models of biogas production curves were useful in identifying a suitable test endpoint, supporting a test duration of 50 days. Biogas production at 50 days (B50) was predicted using the first 14 days of test data, using (a) linear correlation, (b) a new linearisation process, and (c) non-linear kinetic models. Prediction errors were quantified as relative root mean squared error of prediction (rRMSEP), and bias. Predictions from most models were improved by removing the initial exponential increase phase. Linear correlation gave the most precise and accurate predictions at 14 days (rRMSEP = 2.8%, bias under 0.05%) and allowed acceptable prediction (rRMSEP <10%) both at 8 days, and at 6 days using separate correlations for each sample type. Of the other predictions, the new linearisation process gave the lowest rRMSEP (10.6%) at 14 days. More complex non-linear models conferred no advantage in prediction of B50. These results demonstrate that early prediction of anaerobic gas production is possible for a well-optimised test, using only basic equipment and without recourse to external data sources or complex mathematical modelling.
Collapse
Affiliation(s)
- Graham Howell
- School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - Chris Bennett
- School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Dušan Materić
- Faculty of Science, Institute for Marine and Atmospheric Research, Utrecht University, Princetonplein5, 3584 CC, Utrecht, Netherlands.
| |
Collapse
|
42
|
Zahan Z, Georgiou S, Muster TH, Othman MZ. Semi-continuous anaerobic co-digestion of chicken litter with agricultural and food wastes: A case study on the effect of carbon/nitrogen ratio, substrates mixing ratio and organic loading. BIORESOURCE TECHNOLOGY 2018; 270:245-254. [PMID: 30219576 DOI: 10.1016/j.biortech.2018.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
In this study, four agro-industrial substrates, chicken litter (CL), food waste (FW), wheat straw (WS) and hay grass (HG) were assessed as feedstock for anaerobic digestion (AD) under semi-continuous conditions at organic loading rates (OLRs) of 2.0-3.0 g TS/L.d and hydraulic retention time (HRT) of 20 days. Six different substrate mixtures were prepared such that the C/N ratio of each was 20 or more. Using principal component analysis 68.1% of data variability was explained. Biogas production from CL, as a single substrate, was 181.3 ± 9.8mLN biogas/g VSadded at OLR of 2.0gTS/L.d. The optimum substrates mixture was CL:FW:WS 60:20:20, where 73.0%, 167.2% and 116.9% increase in total biogas production at OLR of 2.0, 2.5, 3.0gTS/L.d, respectively, compared to that from CL, was obtained. Digestate sequential fractionation revealed carbohydrate degradation is an important factor that can explain the variation in performance and production of biogas for feedstocks of balanced C/N ratio.
Collapse
Affiliation(s)
- Zubayeda Zahan
- School of Engineering, RMIT University, P.O. Box 2476, Melbourne, Victoria 3001, Australia
| | - Stelios Georgiou
- School of Science, RMIT University, P.O. Box 2476, Melbourne, Victoria 3001, Australia
| | - Tim H Muster
- CSIRO Land and Water, Private Bag 2, Glen Osmond 5064, South Australia, Australia
| | - Maazuza Z Othman
- School of Engineering, RMIT University, P.O. Box 2476, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
43
|
Lavergne C, Jeison D, Ortega V, Chamy R, Donoso-Bravo A. A need for a standardization in anaerobic digestion experiments? Let's get some insight from meta-analysis and multivariate analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:141-147. [PMID: 29807264 DOI: 10.1016/j.jenvman.2018.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
An important variability in the experimental results in anaerobic digestion lab test has been reported. This study presents a meta-analysis coupled with multivariate analysis aiming to assess the impact of this experimental variability in batch and continuous operation at mesophilic and thermophilic anaerobic digestion of waste activated sludge. An analysis of variance showed that there was no significant difference between mesophilic and thermophilic conditions in both continuous and batch conditions. Concerning the operation mode, the values of methane yield were significantly higher in batch experiment than in continuous reactors. According to the PCA, for both cases, the methane yield is positive correlated to the temperature rises. Interestingly, in the batch experiments, the higher the volatile solids in the substrate was, the lowest was the methane production, which is correlated to experimental flaws when setting up those tests. In continuous mode, unlike the batch test, the methane yield is strongly (positively) correlated to the organic content of the substrate. Experimental standardization, above all, in batch conditions are urgently necessary or move to continuous experiments for reporting results. The modeling can also be a source of disturbance in batch test.
Collapse
Affiliation(s)
- Céline Lavergne
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica Valparaíso, Avenida Brasil 2085, 234000, Valparaíso, Chile.
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica Valparaíso, Avenida Brasil 2085, 234000, Valparaíso, Chile
| | - Valentina Ortega
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica Valparaíso, Avenida Brasil 2085, 234000, Valparaíso, Chile
| | - Rolando Chamy
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica Valparaíso, Avenida Brasil 2085, 234000, Valparaíso, Chile
| | | |
Collapse
|
44
|
Substrate-Induced Response in Biogas Process Performance and Microbial Community Relates Back to Inoculum Source. Microorganisms 2018; 6:microorganisms6030080. [PMID: 30081593 PMCID: PMC6163493 DOI: 10.3390/microorganisms6030080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
This study investigated whether biogas reactor performance, including microbial community development, in response to a change in substrate composition is influenced by initial inoculum source. For the study, reactors previously operated with the same grass–manure mixture for more than 120 days and started with two different inocula were used. These reactors initially showed great differences depending on inoculum source, but eventually showed similar performance and overall microbial community structure. At the start of the present experiment, the substrate was complemented with milled feed wheat, added all at once or divided into two portions. The starting hypothesis was that process performance depends on initial inoculum source and microbial diversity, and thus that reactor performance is influenced by the feeding regime. In response to the substrate change, all reactors showed increases and decreases in volumetric and specific methane production, respectively. However, specific methane yield and development of the microbial community showed differences related to the initial inoculum source, confirming the hypothesis. However, the different feeding regimes had only minor effects on process performance and overall community structure, but still induced differences in the cellulose-degrading community and in cellulose degradation.
Collapse
|
45
|
Methodical Aspects of Biogas Production in Small-Volume Bioreactors in Laboratory Investigations. ENERGIES 2018. [DOI: 10.3390/en11061378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Chen L, Tsui TH, Ekama GA, Mackey HR, Hao T, Chen G. Development of biochemical sulfide potential (BSP) test for sulfidogenic biotechnology application. WATER RESEARCH 2018; 135:231-240. [PMID: 29477061 DOI: 10.1016/j.watres.2018.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
The determination of organics biodegradability and corresponding biodegradation kinetics provides valuable information on the optimal design and operation of anaerobic biotechnology especially for sulfidogenesis. This study proposes a deterministic method, i.e. a biochemical sulfide potential (BSP) test, and compares it to the conventional biochemical methane potential (BMP) test in terms of their ability to characterize sulfate-laden organic waste biodegradability. It demonstrated 1.48 times higher degradation of volatile suspended solids (VSS) and 2.60 times more chemical oxygen demand (COD) conversion in its major metabolites than the BMP test. Moreover, it required only four days to complete, compared to the 35 days required by the BMP test. Through the two-substrate first-order hydrolysis model, it was revealed that the shortened time was attributed to the enhanced degradation rates from both readily (eight times) and slowly (nearly 10 times) biodegradable organic substrates in the BSP test compared with the BMP test for the same sulfate-laden organic waste. The findings highlight the inappropriateness of the BMP test to sulfidogenic applications due to the underestimated predictions of organic waste biodegradability and excessive time requirements. Furthermore, the ability of the BSP test to identify the average elemental composition (CxHyOzNaPbSc) of substrate biodegradable particulate organics (BPO) is explored and verified using a casein-based validation test. Using BPO elemental composition as the input variable, a BSP biochemical kinetic model is thereby developed to predict BSR performance and possible dynamic process control. Overall, this study demonstrates the applicability and advantages of the BSP test in sulfidogenic applications for characterization of organics biodegradability and identification of BPO average elemental composition, furthermore develops a process model utilizing the derived BPO average elemental composition to provide optimized reactor retention time and substrates feed mixture for optimum performance.
Collapse
Affiliation(s)
- Lin Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - To-Hung Tsui
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Hamish R Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
47
|
Ward AJ, Feng L, Moset V, Moller HB. Estimation of Methane Yields in Continuous Biogas Reactors Using Kinetic and Mass Flow Models. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alastair James Ward
- Aarhus University; Biological and Chemical Engineering; Blichers Allé 20 8830 Tjele Denmark
| | - Lu Feng
- Aarhus University; Biological and Chemical Engineering; Blichers Allé 20 8830 Tjele Denmark
| | - Veronica Moset
- Aarhus University; Biological and Chemical Engineering; Blichers Allé 20 8830 Tjele Denmark
| | - Henrik Bjarne Moller
- Aarhus University; Biological and Chemical Engineering; Blichers Allé 20 8830 Tjele Denmark
| |
Collapse
|
48
|
Pearse LF, Hettiaratchi JP, Kumar S. Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste - A review. BIORESOURCE TECHNOLOGY 2018; 254:312-324. [PMID: 29395741 DOI: 10.1016/j.biortech.2018.01.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
The applicability of slurry-based (semi-liquids) BMP assay in determining biodegradation kinetic parameters of landfilled waste is critically reviewed. Factors affecting the amount and rate of methane (CH4) production during anaerobic degradation of municipal solid waste (MSW) and optimal values of these factors specific to landfill conditions are presented. The history of conventional BMP, and some existing procedures are reviewed. A landfill BMP (LBMP) assay is proposed that manipulates some of the key factors, such as moisture content, particle and sample size, that affects the rate of CH4 production and the CH4 generation potential of landfilled MSW (LMSW). By selecting proper conditions for these factors, a representative BMP assay could be conducted to ensure accurate determinations of CH4 potential and the kinetic parameters k; first order rate coefficient and Lo; methane generation potential.
Collapse
Affiliation(s)
- Lauretta Feyisetan Pearse
- Center for Environmental Engineering Research and Education (CEERE), Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Joseph Patrick Hettiaratchi
- Center for Environmental Engineering Research and Education (CEERE), Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Mrag, Nagpur 440 020, India.
| |
Collapse
|
49
|
Park JK, Chong YG, Tameda K, Lee NH. Methods for determining the methane generation potential and methane generation rate constant for the FOD model: a review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2018; 36:200-220. [PMID: 29415628 DOI: 10.1177/0734242x17753532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the first order decay (FOD) model of landfill methane generation, the methane generation potential ( L0) and methane generation rate constant ( k) for both bulk municipal solid waste (MSW) and individual waste components have been determined by a variety of approaches throughout various literature. Differences in the determination methods for L0 and k are related to differences in our understanding of the waste decomposition dynamics. A thorough understanding of the various available methods for determining L0 and k values is critical for comparative study and the drawing of valid conclusions. The aim of this paper is to review the literature on the available determining methods and the ranges for L0 and k values of both bulk MSW and individual waste components, while focusing on understanding the decomposition of waste, including the role of lignin. L0 estimates in the literature are highly variable and have been derived from theoretical stoichiometric calculations, laboratory experiments, or actual field measurements. The lignin concentration in waste is correlated with the fraction of total degradable organic carbon (DOCf) that will actually anaerobically degrade in the landfill. The k value has been determined by precipitation rates, laboratory simulations, aged-defined waste sample, and model fitting or regression analysis using actual gas data. However, the lignin concentration does not correlate well with the k value, presumably due to the impact of lignin arrangement and structure on cellulose bioavailability and degradation rate. In sum, this review summarizes the literature on the measurement of L0 and k values, including the dynamics and decomposition of bulk MSW and individual waste components within landfills.
Collapse
Affiliation(s)
- Jin-Kyu Park
- 1 Ecowillplus Co., Ltd., Anyang, Republic of Korea
| | - Yong-Gil Chong
- 2 Dreampark Establishment Department, Sudokwon Landfill Site Management Corporation, Incheon, Republic of Korea
| | - Kazuo Tameda
- 3 Graduate School of Engineering, Fukuoka University, Japan
| | - Nam-Hoon Lee
- 4 Department of Environmental and Energy Engineering, Anyang University, Republic of Korea
| |
Collapse
|
50
|
Edwiges T, Frare L, Mayer B, Lins L, Mi Triolo J, Flotats X, de Mendonça Costa MSS. Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:618-625. [PMID: 28554802 DOI: 10.1016/j.wasman.2017.05.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/04/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
This study investigates the influence of chemical composition on the biochemical methane potential (BMP) of twelve different batches of fruit and vegetable waste (FVW) with different compositions collected over one year. BMP ranged from 288 to 516LNCH4kgVS-1, with significant statistical differences between means, which was explained by variations in the chemical composition over time. BMP was most strongly correlated to lipid content and high calorific values. Multiple linear regression was performed to develop statistical models to more rapidly predict methane potential. Models were analysed that considered chemical compounds and that considered only high calorific value as a single parameter. The best BMP prediction was obtained using the statistical model that included lipid, protein, cellulose, lignin, and high calorific value (HCV), with R2 of 92.5%; lignin was negatively correlated to methane production. Because HCV and lipids are strongly correlated, and because HCV can be determined more rapidly than overall chemical composition, HCV may be useful for predicting BMP.
Collapse
Affiliation(s)
- Thiago Edwiges
- Department of Biological and Environmental Sciences, Federal University of Technology - Parana, Avenida Brasil 4232, Medianeira, Brazil; Research Group on Water Resources and Environmental Sanitation, Western Parana State University, Agricultural Engineering Graduate Program, Rua Universitária, 2069 Jardim Universitário, 85.819-110 Cascavel, Paraná, Brazil
| | - Laercio Frare
- Department of Biological and Environmental Sciences, Federal University of Technology - Parana, Avenida Brasil 4232, Medianeira, Brazil
| | - Bruna Mayer
- Department of Biological and Environmental Sciences, Federal University of Technology - Parana, Avenida Brasil 4232, Medianeira, Brazil
| | - Leonardo Lins
- International Center on Renewable Energy - Biogas, Avenida Tancredo Neves 6731, Foz do Iguaçu, Brazil
| | - Jin Mi Triolo
- Institute of Chemical Engineering, Biotechnology and Environmental Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Xavier Flotats
- GIRO Joint Research Unit IRTA/UPC, Department of Agrifood Engineering and Biotechnology, Universitat Politècnica de Catalunya Barcelona TECH, Campus Mediterreni de la Tecnologia, Building D4, E-08860 Castelldefels, Spain
| | - Mônica Sarolli Silva de Mendonça Costa
- Research Group on Water Resources and Environmental Sanitation, Western Parana State University, Agricultural Engineering Graduate Program, Rua Universitária, 2069 Jardim Universitário, 85.819-110 Cascavel, Paraná, Brazil.
| |
Collapse
|