1
|
Kirchberg MC, Pinson C, Frank GKW. Pharmacotherapeutic strategies for the treatment of anorexia nervosa - novel targets to break a vicious cycle. Expert Opin Pharmacother 2024:1-13. [PMID: 39497232 DOI: 10.1080/14656566.2024.2424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
INTRODUCTION Anorexia nervosa (AN) has one of the highest mortality rates of all mental illnesses. No approved pharmacological treatments exist for AN, but novel neurobiological targets show promise. AREAS COVERED Studies show that in individuals with AN, there are alterations in brain neurotransmitter signaling, alongside associated mental rigidity and comorbid anxiety and depression. Available and new therapies could be used to improve alterations in neurobiology and behavior. This narrative review serves as a review of previously published literature assessing the efficacy of traditional pharmacotherapy in treating AN while also exploring novel treatments, including dissociative anesthetics, psychedelics, cannabinoids, hormones, neurosteroids, and ketogenic nutrition. EXPERT OPINION If best practice psychotherapeutic interventions have failed, we recommend a neuroscience and brain research-based medication approach that targets dopamine neurotransmitter receptors to enhance cognitive flexibility and illness insight while reducing dread and avoidance toward food. It is furthermore essential to recognize and treat comorbid conditions such as anxiety, depression, or obsessive-compulsive disorder as they interfere with recovery, and typically do not resolve even with successful AN treatment. Novel strategies have the promise to show efficacy in improving mood and reducing specific AN psychopathology with hopes to be used in clinical practice soon.
Collapse
Affiliation(s)
| | - Claire Pinson
- School of Medicine, University of California San Diego, CA, USA
| | - Guido K W Frank
- Department of Psychiatry, University of California San Diego, CA, USA
- Medical Behavioral Unit, Rady Children's Hospital San Diego, CA, USA
| |
Collapse
|
2
|
Ubhayarathna M, Langmead CJ, Diepenhorst NA, Stewart GD. Molecular and structural insights into the 5-HT 2C receptor as a therapeutic target for substance use disorders. Br J Pharmacol 2024; 181:4414-4429. [PMID: 37679998 DOI: 10.1111/bph.16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Substance use disorder (SUD) is a chronic condition, with maintained abuse of a substance leading to physiological and psychological alterations and often changes in cognitive and social behaviours. Current therapies include psychotherapy coupled with medication; however, high relapse rates reveal the shortcomings of these therapies. The signalling, expression profile, and neurological function of the serotonin 2C receptor (5-HT2C receptor) make it a candidate of interest for the treatment of SUD. Recently, psychedelics, which broadly act at 5-HT2 receptors, have indicated potential for the treatment of SUD, implicating the 5-HT2C receptor. The modern psychedelic movement has rekindled interest in the 5-HT2C receptor, resulting in many new studies, especially structural analyses. This review explores the structural, molecular and cellular mechanisms governing 5-HT2C receptor function in the context of SUD. This provides the basis of the preclinical and clinical evidence for their role in SUD and highlights the potential for future exploration.
Collapse
Affiliation(s)
- Maleesha Ubhayarathna
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - Natalie A Diepenhorst
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| |
Collapse
|
3
|
Weiner SP, Vasquez C, Song S, Zhao K, Ali O, Rosenkilde D, Froemke RC, Carr KD. Sex difference in the effect of environmental enrichment on food restriction-induced persistence of cocaine conditioned place preference and mechanistic underpinnings. ADDICTION NEUROSCIENCE 2024; 10:100142. [PMID: 38323217 PMCID: PMC10843874 DOI: 10.1016/j.addicn.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Psychosocial and environmental factors, including loss of natural reward, contribute to the risk of drug abuse. Reward loss has been modeled in animals by removal from social or sexual contact, transfer from enriched to impoverished housing, or restriction of food. We previously showed that food restriction increases the unconditioned rewarding effects of abused drugs and the conditioned incentive effects of drug-paired environments. Mechanistic studies provided evidence of decreased basal dopamine (DA) transmission, adaptive upregulation of signaling downstream of D1 DA receptor stimulation, synaptic upscaling and incorporation of calcium-permeable AMPA receptors (CP-AMPARs) in medium spiny neurons (MSNs) of nucleus accumbens (NAc). These findings align with the still evolving 'reward deficiency' hypothesis of drug abuse. The present study tested whether a compound natural reward that is known to increase DA utilization, environmental enrichment, would prevent the persistent expression of cocaine conditioned place preference (CPP) otherwise observed in food restricted rats, along with the mechanistic underpinnings. Because nearly all prior investigations of both food restriction and environmental enrichment effects on cocaine CPP were conducted in male rodents, both sexes were included in the present study. Results indicate that environmental enrichment curtailed the persistence of CPP expression, decreased signaling downstream of the D1R, and decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in NAc MSNs of food restricted male, but not female, rats. The failure of environmental enrichment to significantly decrease food restriction-induced synaptic insertion of CP-AMPARs, and how this may accord with previous pharmacological findings that blockade of CP-AMPARs reverses behavioral effects of food restriction is discussed. In addition, it is speculated that estrous cycle-dependent fluctuations in DA release, receptor density and MSN excitability may obscure the effect of increased DA signaling during environmental enrichment, thereby interfering with development of the cellular and behavioral effects that enrichment produced in males.
Collapse
Affiliation(s)
- Sydney P. Weiner
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Carolina Vasquez
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Diabetes Research Program, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Soomin Song
- Department of Pathology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kaiyang Zhao
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Omar Ali
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Danielle Rosenkilde
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Robert C. Froemke
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Otolaryngology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kenneth D. Carr
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
4
|
Negus SS. An economon model of drug addiction. Psychopharmacology (Berl) 2024; 241:417-425. [PMID: 38277005 PMCID: PMC10884072 DOI: 10.1007/s00213-024-06535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
The term "economon" (i:'ka.nə.muhn; plural: economa) is introduced here to describe an economic unit composed of two participants engaged in mutually reinforcing operant behavior. Economa are basic building blocks of transactional behavior that aggregate in social networks called economies. In a drug-addiction economon, operant behavior by one participant (the "supplier") provides an addictive drug as a reinforcer to the second participant (a "Person with Substance Use Disorder; PwSUD"). Reciprocal operant behavior by the PwSUD usually provides money as a reinforcer to the supplier. After defining the features of the drug-addiction economon, this article discusses its implications for (1) prevalence and virulence of drug addiction, (2) opportunities for drug-addiction research in general, (3) the "brain-disease model of addiction" in particular, and (4) factors that mitigate harm or promote risk of drug addiction. The economon model is intended to provide a novel perspective on the uniquely human disorder of drug addiction.
Collapse
Affiliation(s)
- S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12 St, Richmond, VA, 23298, USA.
| |
Collapse
|
5
|
Sayar-Atasoy N, Yavuz Y, Laule C, Dong C, Kim H, Rysted J, Flippo K, Davis D, Aklan I, Yilmaz B, Tian L, Atasoy D. Opioidergic signaling contributes to food-mediated suppression of AgRP neurons. Cell Rep 2024; 43:113630. [PMID: 38165803 PMCID: PMC10865729 DOI: 10.1016/j.celrep.2023.113630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 01/04/2024] Open
Abstract
Opioids are generally known to promote hedonic food consumption. Although much of the existing evidence is primarily based on studies of the mesolimbic pathway, endogenous opioids and their receptors are widely expressed in hypothalamic appetite circuits as well; however, their role in homeostatic feeding remains unclear. Using a fluorescent opioid sensor, deltaLight, here we report that mediobasal hypothalamic opioid levels increase by feeding, which directly and indirectly inhibits agouti-related protein (AgRP)-expressing neurons through the μ-opioid receptor (MOR). AgRP-specific MOR expression increases by energy surfeit and contributes to opioid-induced suppression of appetite. Conversely, its antagonists diminish suppression of AgRP neuron activity by food and satiety hormones. Mice with AgRP neuron-specific ablation of MOR expression have increased fat preference without increased motivation. These results suggest that post-ingestion release of endogenous opioids contributes to AgRP neuron inhibition to shape food choice through MOR signaling.
Collapse
Affiliation(s)
- Nilufer Sayar-Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yavuz Yavuz
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Physiology, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Connor Laule
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Chunyang Dong
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Hyojin Kim
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jacob Rysted
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kyle Flippo
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Debbie Davis
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Iltan Aklan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Bayram Yilmaz
- Department of Physiology, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
6
|
van der Westhuizen C, Botha TL, Finger-Baier K, Brouwer GD, Wolmarans DW. Contingency learning in zebrafish exposed to apomorphine- and levetiracetam. Behav Pharmacol 2023; 34:424-436. [PMID: 37578419 DOI: 10.1097/fbp.0000000000000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Cognitive rigidity (CR) refers to inadequate executive adaptation in the face of changing circumstances. Increased CR is associated with a number of psychiatric disorders, for example, obsessive-compulsive disorder, and improving cognitive functioning by targeting CR in these conditions, may be fruitful. Levetiracetam (LEV), clinically used to treat epilepsy, may have pro-cognitive effects by restoring balance to neuronal signalling. To explore this possibility, we applied apomorphine (APO) exposure in an attempt to induce rigid cue-directed responses following a cue (visual pattern)-reward (social conspecifics) contingency learning phase and to assess the effects of LEV on such behaviours. Briefly, zebrafish were divided into four different 39-day-long exposure groups ( n = 9-10) as follows: control (CTRL), APO (100 µg/L), LEV (750 µg/L) and APO + LEV (100 µg/L + 750 µg/L). The main findings of this experiment were that 1) all four exposure groups performed similarly with respect to reward- and cue-directed learning over the first two study phases, 2) compared to the CTRL group, all drug interventions, but notably the APO + LEV combination, lowered the degree of reward-directed behaviour during a dissociated presentation of the cue and reward, and 3) temporal and spatial factors influenced the manner in which zebrafish responded to the presentation of the reward. Future studies are needed to explore the relevance of these findings for our understanding of the potential cognitive effects of LEV.
Collapse
Affiliation(s)
| | - Tarryn L Botha
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Karin Finger-Baier
- Max Planck Institute of Neurobiology, now: Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Geoffrey de Brouwer
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health, North-West University
| | - De Wet Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health, North-West University
| |
Collapse
|
7
|
Zhong S, Su T, Gong J, Huang L, Wang Y. Brain functional alterations in patients with anorexia nervosa: A meta-analysis of task-based functional MRI studies. Psychiatry Res 2023; 327:115358. [PMID: 37544086 DOI: 10.1016/j.psychres.2023.115358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
The goal of this study was to discern the neural activation patterns associated with anorexia nervosa (AN) in response to tasks related to body-, food-, emotional-, cognitive-, and reward- processing. A meta-analysis was performed on task-based fMRI studies, revealing that patients with AN showed increased activity in the left superior temporal gyrus and bilaterally in the ACC during a reward-related task. During cognitive-related tasks, patients with AN also showed increased activity in the left superior parietal gyrus, right middle temporal gyrus, but decreased activity in the MCC. Additionally, patients with AN showed increased activity bilaterally in the cerebellum, MCC, and decreased activity bilaterally in the bilateral precuneus/PCC, right middle temporal gyrus, left ACC when they viewed food images. During emotion-related tasks, patients with AN showed increased activity in the left cerebellum, but decreased activity bilaterally in the striatum, right mPFC, and right superior parietal gyrus. Patients with AN also showed increased activity in the right striatum and decreased activity in the right inferior temporal gyrus and bilaterally in the mPFC during body-related tasks. The present meta-analysis provides a comprehensive overview of the patterns of brain activity evoked by task stimuli, thereby augmenting the current comprehension of the pathophysiology in AN.
Collapse
Affiliation(s)
- Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jiaying Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China; Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
8
|
Merino D, Gérard AO, Destere A, Askenazy F, Dor E, Benoit M, Cherikh F, Drici MD. Iatrogenic triggers for anorexia nervosa and bulimia nervosa: A WHO safety database disproportionality analysis. Psychiatry Res 2023; 327:115415. [PMID: 37611327 DOI: 10.1016/j.psychres.2023.115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Eating disorders, characterized by abnormal eating, weight control behaviors or both include anorexia nervosa (AN) and bulimia nervosa (BN). We investigated their potential iatrogenic triggers, using real-world data from the WHO safety database (VigiBase®). VigiBase® was queried for all AN and BN reports. The reports were classified as `pediatric' or `adult' according to age. Disproportionality analyses relied on the Information Component (IC), in which a 95% confidence interval lower-end positivity was required to suspect a signal. Our queries yielded 309 AN and 499 BN reports. Isotretinoin was disproportionately reported in pediatric AN (IC 3.6; [2.6-4.3]), adult AN (IC 3.1; [1.7-4.0]), and pediatric BN (IC 3.9; [3.0-4.7]). Lamivudine (IC 4.2; [3.2-4.9]), nevirapine (IC 3.7; [2.6-4.6]), and zidovudine (IC 3.4; [2.0-4.3]) had the highest ICs in adult AN. AN was associated with isotretinoin, anticonvulsants in minors, and antiretroviral drugs in adults. In adults, BN was related to psychotropic and hormonally active drugs. Before treatment initiation, an anamnesis should seek out mental health conditions, allowing the identification of patients at risk of developing or relapsing into AN or BN. In addition to misuse, the hypothesis of iatrogenic triggers for AN and BN should also be considered.
Collapse
Affiliation(s)
- Diane Merino
- Department of Psychiatry, University Hospital of Nice, Nice, France; Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital Center of Nice, Nice, France
| | - Alexandre Olivier Gérard
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital Center of Nice, Nice, France; Université Côte d'Azur Laboratory of Molecular Physio Medicine (LP2M), UMR 7370, CNRS, Nice, France
| | - Alexandre Destere
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital Center of Nice, Nice, France; Université Côte d'Azur, Inria, CNRS, Laboratoire J.A. Dieudonné, Maasai team, Nice, France
| | - Florence Askenazy
- Department of Child and Adolescent Psychiatry, Children's Hospitals of Nice, CHU-Lenval Nice, France; CoBTek Laboratory, Université Côte d'Azur, 06000 Nice, France
| | - Emmanuelle Dor
- Department of Child and Adolescent Psychiatry, Children's Hospitals of Nice, CHU-Lenval Nice, France; CoBTek Laboratory, Université Côte d'Azur, 06000 Nice, France
| | - Michel Benoit
- Department of Psychiatry, University Hospital of Nice, Nice, France
| | - Faredj Cherikh
- Department of Addiction, University Hospital of Nice, Nice, France
| | - Milou-Daniel Drici
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital Center of Nice, Nice, France.
| |
Collapse
|
9
|
Ryakiotakis E, Fousfouka D, Stamatakis A. Maternal neglect alters reward-anticipatory behavior, social status stability, and reward circuit activation in adult male rats. Front Neurosci 2023; 17:1201345. [PMID: 37521688 PMCID: PMC10375725 DOI: 10.3389/fnins.2023.1201345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Adverse early life experiences affect neuronal growth and maturation of reward circuits that modify behavior under reward predicting conditions. Previous studies demonstrate that rats undergoing denial of expected reward in the form of maternal contact (DER-animal model of maternal neglect) during early post-natal life developed anhedonia, aggressive play-fight behaviors and aberrant prefrontal cortex structure and neurochemistry. Although many studies revealed social deficiency following early-life stress most reports focus on individual animal tasks. Thus, attention needs to be given on the social effects during group tasks in animals afflicted by early life adversity. Methods To investigate the potential impact of the DER experience on the manifestation of behavioral responses induced by natural rewards, we evaluated: 1) naïve adult male sexual preference and performance, and 2) anticipatory behavior during a group 2-phase food anticipation learning task composed of a context-dependent and a cue-dependent learning period. Results DER rats efficiently spent time in the vicinity of and initiated sexual intercourse with receptive females suggesting an intact sexual reward motivation and consummation. Interestingly, during the context-dependent phase of food anticipation training DER rats displayed a modified exploratory activity and lower overall reward-context association. Moreover, during the cue-dependent phase DER rats displayed a mild deficit in context-reward association while increased cue-dependent locomotion. Additionally, DER rats displayed unstable food access priority following food presentation. These abnormal behaviours were accompanied by overactivation of the ventral prefrontal cortex and nucleus accumbens, as assessed by pCREB levels. Conclusions/discussion Collectively, these data show that the neonatal DER experience resulted in adulthood in altered activation of the reward circuitry, interfered with the normal formation of context-reward associations, and disrupted normal reward access hierarchy formation. These findings provide additional evidence to the deleterious effects of early life adversity on reward system, social hierarchy formation, and brain function.
Collapse
Affiliation(s)
- Ermis Ryakiotakis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Fousfouka
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- MSc Program in Molecular Biomedicine, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Stamatakis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Vasiliu O. The complex interplay between psychosocial and biological factors in pregorexia nervosa - a rapid review. Front Psychol 2023; 14:1168696. [PMID: 37404586 PMCID: PMC10315849 DOI: 10.3389/fpsyg.2023.1168696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
The importance of detecting eating disorders (EDs) during pregnancy cannot be overemphasized, because of the major negative effects this pathology has on both maternal and fetal health. Based on a rapid review including primary and secondary reports, PN may still be considered an elusive diagnosis entity, that partially overlaps with other EDs, either well-defined, like anorexia nervosa, or still in search of their own diagnosis criteria, like orthorexia nervosa. Neurochemical and hormonal factors, psychological and social mechanisms, along with lifestyle changes create a very complex framework for clinicians interested in defining the typical features of pregorexia nervosa (PN). The personal history of EDs is considered one of the most important risk factors for PN. The core diagnostic criteria for this entity are, so far, lack of gaining weight during pregnancy, an excessive focus on counting calories and/or intense physical exercising with a secondary decrease of interest in the fetus's health, lack of acceptance of the change in body shape during pregnancy, and pathological attention for own body image. Regarding the treatment of PN, nutritional and psychosocial interventions are recommended but no specific therapeutic strategies for this disorder have been detected in the literature. Psychotherapy is considered the main intervention for pregnant women with associated EDs and mood disorders, as the pharmacological agents could have teratogenic effects or insufficient data to support their safety in this population. In conclusion, taking into consideration the methodological limitations of a rapid review, data supporting the existence of PN were found, mainly regarding tentative diagnostic criteria, risk factors, and pathophysiological aspects. These data, corroborated with the importance of preserving optimal mental health in a vulnerable population, e.g., pregnant women, justify the need for further research focused on finding specific diagnostic criteria and targeted therapeutic approaches.
Collapse
|
11
|
Trinko R, Diaz DM, Foscue E, Thompson SL, Taylor JR, DiLeone RJ. Ketogenic diet enhances the effects of oxycodone in mice. Sci Rep 2023; 13:7507. [PMID: 37160959 PMCID: PMC10170077 DOI: 10.1038/s41598-023-33458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
Opioids have been used to manage pain for thousands of years, but they have significant potential for abuse. Prescription opioids, like oxycodone, are associated with 32% of overdoses, that have reached a total of 75,673 deaths in 2021. A major challenge is maximizing their therapeutic potential while minimizing the negative side effects including opioid use disorder (OUD). The Ketogenic Diet (KD) has been reported to reduce pain and decrease the severity of alcohol use disorder, yet its effects on oxycodone responses remain unknown. KD mice displayed increased oxycodone-induced locomotor activity and enhanced antinociceptive effects of oxycodone, suggesting a dietary effect on opiate sensitivity. Male KD mice exposed to chronic oxycodone exhibited increased naloxone-induced jumps, suggesting a sex-specific effect of diet on opioid withdrawal. Consistent with this, male KD mice self-administered less oxycodone while female KD mice did not differ from controls. Finally, no effect of KD on motivation to obtain oxycodone was observed during a progressive ratio schedule. These data suggest sex-biased effects of KD on responses to opioids that should be considered and potentially leveraged in both clinical pain management and treatment of OUD.
Collapse
Affiliation(s)
- R Trinko
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - D M Diaz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - E Foscue
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - S L Thompson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - J R Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - R J DiLeone
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA.
| |
Collapse
|
12
|
Donka RM, Hsu T, Roitman MF, Roitman JD. Chronic water restriction reduces sensitivity to brain stimulation reward in male and female rats. Physiol Behav 2023; 263:114110. [PMID: 36740136 PMCID: PMC10064935 DOI: 10.1016/j.physbeh.2023.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
States of physiological need motivate individuals to seek and consume stimuli that restore homeostatic balance. This goal-directed behavior is driven, in part, by pathways that process reward and are sensitive to changes in physiological state, including the mesolimbic dopamine system. The effects of hunger and its physiological markers have been more widely studied for their role in modulating reward signaling pathways. However, fluid need produces robust goal-directed behavior and has also been shown to affect neural substrates of reward processing. To test how acute and chronic states of thirst might alter reward sensitivity, we used the intracranial self-stimulation (ICSS) rate-frequency paradigm (Carlezon & Chartoff, 2007) with male and female Long Evans rats. We hypothesized that sensitivity to ICSS would increase under an acute need state for water and would decrease under chronic deprivation. We found that acute water deprivation for 22-hours prior to the ICSS session did not alter any parameters of reward sensitivity. To elicit motivated behavior toward water in the absence of physiological need, we chemogenetically activated glutamatergic neurons of the subfornical organ (SFO). Despite eliciting more water consumption than acute deprivation, acute chemogenetic activation of SFO neurons also did not alter reward sensitivity. Finally, subjects underwent a five-day chronic water restriction protocol with daily ICSS sessions to determine the effects of sustained physiological need. Chronic water restriction resulted in reduced sensitivity to ICSS. Together, these results indicate that persistent changes in physiological state alter the responsiveness of reward circuitry that could potentially exacerbate maladaptive reward-seeking behaviors.
Collapse
Affiliation(s)
- Rachel M Donka
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, United States
| | - Ted Hsu
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, United States
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, United States
| | - Jamie D Roitman
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, United States.
| |
Collapse
|
13
|
Haynos AF, Koithan E, Hagan KE. Learned industriousness as a translational mechanism in anorexia nervosa. NATURE REVIEWS PSYCHOLOGY 2023; 2:112-126. [PMID: 37693302 PMCID: PMC10485812 DOI: 10.1038/s44159-022-00134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 09/12/2023]
Abstract
It remains unexplained why some behaviours persist despite being non-hedonic and ostensibly aversive. This phenomenon is especially baffling when such behaviours are taken to excess in the form of psychopathology. Anorexia nervosa is one psychiatric disorder in which effortful behaviours that most people find unpleasant (suchas restrictive eating) are persistently performed. We propose thatthe social psychology theory of learned industriousness providesa novel mechanistic account for such phenomena. This theoryposits that high-effort behaviour can be conditioned to acquire secondary reinforcing properties through repeated pairing with reward. Accordingly, effort sensations become less aversive andmore appetitive, increasing willingness to engage in effortful behaviour. In this Perspective, we review pre-clinical behaviouraland biological data that support learned industriousness, contrast learned industriousness with other models of non-hedonic persistence (such as habit learning), highlight evidence that supports learned industriousness in individuals with anorexia nervosa and consider implications of the model, including translation to other psychiatric presentations.
Collapse
Affiliation(s)
- Ann F. Haynos
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Emily Koithan
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kelsey E. Hagan
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
14
|
Orellana E, Horvath N, Farokhnia M, Leggio L, Hajnal A. Changes in Plasma Ghrelin Levels Following Surgical and Non-Surgical Weight-Loss in Female Rats Predict Alcohol Use. Brain Res Bull 2022; 188:179-186. [PMID: 35901985 DOI: 10.1016/j.brainresbull.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/02/2022]
Abstract
The weight-loss surgery Roux-en Y gastric bypass (RYGB) is a relatively effective, long-term treatment option for patients with morbid obesity. However, accumulating clinical evidence suggests that patients receiving RYGB may be at increased risk of developing alcohol use disorder. This observation has been repeatedly supported by preclinical studies showing rodents increase intake of ethanol (EtOH) after RYGB, and has been further confirmed by human studies. A promising alternative to RYGB is sleeve gastrectomy (SG), which has resulted in decreased EtOH consumption in some rodent studies. The exact mechanism underlying the differential alcohol outcomes after RYGB versus SG has yet to be elucidated. However, the gut hormone ghrelin has emerged as a potential candidate from previous preclinical studies specific to RYGB surgeries and due to its action to stimulate food and alcohol intake and cravings. To directly assess changes in plasma ghrelin levels following weigh loss surgeries in the context of alcohol intake, 24 female rats were separated into three surgical groups receiving RYGB, SG, or Sham surgery followed by caloric restriction to produce adiposity matched controls (Sham-AM). Blood was drawn for fasted and fed plasma ghrelin (acyl and des-acyl) assays at multiple time points: while on a normal diet (ND), after 5-week exposure to a high fat diet (HFD), following surgery, and after a series of two-bottle alcohol choice test with increasing concentrations (2%, 4%, 6%, 8%) of EtOH. Consistent with previous observations, RYGB rats drank more EtOH than SG rats across all concentrations. As expected, fasted ghrelin levels were blunted after HFD feeding, compared to normal diet baseline. After RYGB, fasted ghrelin levels returned to higher levels while remained blunted after SG and Sham-AM. Fed acyl ghrelin levels were significantly increased to above "normal" levels after RYGB, but remain low after SG and Sham-AM. Given that post-RYGB acyl ghrelin levels are raised to a fasted state regardless of actual prandial status, we conclude that RYGB may results in a hormonal state reminiscence of a fasted state with the inability of feeding to inhibit ghrelin production, an effect which could potentially contribute to increased EtOH intake following the surgery. In contrast, following SG, ghrelin levels in rats remain consistent with the fed state regardless of prandial status, potentially explaining lower alcohol intake and lower risk of developing AUD.
Collapse
Affiliation(s)
- Elise Orellana
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences.
| | - Nelli Horvath
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
| | - Andras Hajnal
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| |
Collapse
|
15
|
Neurobiological Mechanisms Modulating Emotionality, Cognition and Reward-Related Behaviour in High-Fat Diet-Fed Rodents. Int J Mol Sci 2022; 23:ijms23147952. [PMID: 35887310 PMCID: PMC9317076 DOI: 10.3390/ijms23147952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
Affective and substance-use disorders are associated with overweight and obesity-related complications, which are often due to the overconsumption of palatable food. Both high-fat diets (HFDs) and psychostimulant drugs modulate the neuro-circuitry regulating emotional processing and metabolic functions. However, it is not known how they interact at the behavioural level, and whether they lead to overlapping changes in neurobiological endpoints. In this literature review, we describe the impact of HFDs on emotionality, cognition, and reward-related behaviour in rodents. We also outline the effects of HFD on brain metabolism and plasticity involving mitochondria. Moreover, the possible overlap of the neurobiological mechanisms produced by HFDs and psychostimulants is discussed. Our in-depth analysis of published results revealed that HFDs have a clear impact on behaviour and underlying brain processes, which are largely dependent on the developmental period. However, apart from the studies investigating maternal exposure to HFDs, most of the published results involve only male rodents. Future research should also examine the biological impact of HFDs in female rodents. Further knowledge about the molecular mechanisms linking stress and obesity is a crucial requirement of translational research and using rodent models can significantly advance the important search for risk-related biomarkers and the development of clinical intervention strategies.
Collapse
|
16
|
Calorie restriction changes the anxiety-like behaviour of ageing male Wistar rats in an onset- and duration-dependent manner. Mech Ageing Dev 2022; 204:111666. [DOI: 10.1016/j.mad.2022.111666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/28/2023]
|
17
|
Ventura R, Cabib S, Babicola L, Andolina D, Di Segni M, Orsini C. Interactions Between Experience, Genotype and Sex in the Development of Individual Coping Strategies. Front Behav Neurosci 2022; 15:785739. [PMID: 34987364 PMCID: PMC8721137 DOI: 10.3389/fnbeh.2021.785739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023] Open
Abstract
Coping strategies, the first line of defense against adversities, develop through experience. There is consistent evidence that both genotype and sex contribute to the development of dysfunctional coping, leading to maladaptive outcomes of adverse experiences or to adaptive coping that fosters rapid recovery even from severe stress. However, how these factors interact to influence the development of individual coping strategies is just starting to be investigated. In the following review, we will consider evidence that experience, sex, and genotype influence the brain circuits and neurobiological processes involved in coping with adversities and discuss recent results pointing to the specific effects of the interaction between early experiences, genotype, and stress in the development of functional and dysfunctional coping styles.
Collapse
Affiliation(s)
- Rossella Ventura
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Simona Cabib
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Lucy Babicola
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Matteo Di Segni
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Cristina Orsini
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Repetitive and Inflexible Active Coping and Addiction-like Neuroplasticity in Stressed Mice of a Helplessness-Resistant Inbred Strain. Behav Sci (Basel) 2021; 11:bs11120174. [PMID: 34940109 PMCID: PMC8698352 DOI: 10.3390/bs11120174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023] Open
Abstract
Dysfunctional coping styles are involved in the development, persistence, and relapse of psychiatric diseases. Passive coping with stress challenges (helplessness) is most commonly used in animal models of dysfunctional coping, although active coping strategies are associated with generalized anxiety disorder, social anxiety disorder, panic, and phobias as well as obsessive-compulsive and post-traumatic stress disorder. This paper analyzes the development of dysfunctional active coping strategies of mice of the helplessness–resistant DBA/2J (D2) inbred strain, submitted to temporary reduction in food availability in an uncontrollable and unavoidable condition. The results indicate that food-restricted D2 mice developed a stereotyped form of food anticipatory activity and dysfunctional reactive coping in novel aversive contexts and acquired inflexible and perseverant escape strategies in novel stressful situations. The evaluation of FosB/DeltaFosB immunostaining in different brain areas of food-restricted D2 mice revealed a pattern of expression typically associated with behavioral sensitization to addictive drugs and compulsivity. These results support the conclusion that an active coping style represents an endophenotype of mental disturbances characterized by perseverant and inflexible behavior.
Collapse
|
19
|
Tsujimoto Y, Nakamura Y, Banno M, Kohmura K, Tsujimoto H, Kataoka Y. Humour-based interventions for people with schizophrenia. Cochrane Database Syst Rev 2021; 10:CD013367. [PMID: 34644398 PMCID: PMC8514248 DOI: 10.1002/14651858.cd013367.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Humour-based interventions are defined as any intervention that promotes health and wellness by stimulating a playful discovery, expression, or appreciation of the absurdity or incongruity of life's situations. Humour-based interventions can be implemented in different settings, including hospitals, nursing homes and day care centres. They have been posed as an adjunct to usual care for people with schizophrenia, but a summary of the evidence is lacking. OBJECTIVES To examine the effects of humour-based interventions as an add-on intervention to standard care for people with schizophrenia. SEARCH METHODS On 31 July 2019 and 10 February 2021 we searched the Cochrane Schizophrenia Group's study-based register of trials, which is based on CENTRAL, CINAHL, ClinicalTrials.Gov, Embase, ISRCTN, MEDLINE, PsycINFO, PubMed, and WHO ICTRP. SELECTION CRITERIA We included all randomised controlled trials comparing humour-based interventions with active controls, other psychological interventions, or standard care for people with schizophrenia. We excluded studies fulfilling our prespecified selection criteria but without useable data from further quantitative synthesis. DATA COLLECTION AND ANALYSIS Two review authors independently inspected citations, selected studies, extracted data and appraised study quality, following the guidance from the Cochrane Handbook for Systematic Reviews of Interventions. For binary outcomes we calculated risk ratios (RRs) and their 95% confidence intervals (CIs). For continuous outcomes we calculated the mean differences (MDs) and their 95% CIs. We assessed risks of bias for included studies and created summary of findings tables using the GRADE approach. MAIN RESULTS We included three studies in this review for qualitative synthesis, although one study did not report any relevant outcomes. We therefore include two studies (n = 96) in our quantitative synthesis. No data were available on the following prespecified primary outcomes: clinically-important change in general mental state, clinically-important change in negative symptoms, clinically-important change in overall quality of life, and adverse effects. As compared with active control, humour-based interventions may not improve the average endpoint score of a general mental state scale (Positive and Negative Syndrome Scale (PANSS) total score: MD -1.70, 95% CI -17.01 to 13.61; 1 study, 30 participants; very low certainty of evidence); positive symptoms (PANSS positive symptom score: MD 0.00, 95% CI -2.58 to 2.58; 1 study, 30 participants; low certainty of evidence), negative symptoms (PANSS negative symptom score: MD -0.70, 95% CI -4.22 to 2.82; 1 study, 30 participants; very low certainty of evidence) and anxiety (State-Trait Anxiety Inventory (STAI): MD -2.60, 95% CI -5.76 to 0.56; 1 study, 30 participants; low certainty of evidence). Due to the small sample size, we remain uncertain about the effect of humour-based interventions on leaving the study early as compared with active control (no event, 1 study, 30 participants; very low certainty of evidence). On the other hand, humour-based interventions may reduce depressive symptoms (Beck Depression Inventory (BDI): MD -6.20, 95% CI -12.08 to -0.32; 1 study, 30 participants; low certainty of evidence). Compared with standard care, humour-based interventions may not improve depressive symptoms (BDI second edition: MD 0.80, 95% CI -2.64 to 4.24; 1 study, 59 participants; low certainty of evidence). We are uncertain about the effect of humour-based interventions on leaving the study early for any reason compared with standard care (risk ratio 0.38, 95% CI 0.08 to 1.80; 1 study, 66 participants; very low certainty of evidence). AUTHORS' CONCLUSIONS We are currently uncertain whether the evidence supports the use of humour-based interventions in people with schizophrenia. Future research with rigorous and transparent methodology investigating clinically important outcomes is warranted.
Collapse
Affiliation(s)
- Yasushi Tsujimoto
- Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine / School of Public Health, Kyoto, Japan
- Department of Nephrology and Dialysis, Kyoritsu Hospital, Kawanishi, Japan
- Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan
| | - Yuri Nakamura
- Department of Clinical Psychology, Kawasaki Univrsity of Medical Welfare, Okayama, Japan
| | - Masahiro Banno
- Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Psychiatry, Seichiryo Hospital, Nagoya, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiro Kohmura
- Department of Psychiatry, Seichiryo Hospital, Nagoya, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiraku Tsujimoto
- Hospital Care Research Unit, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - Yuki Kataoka
- Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Internal Medicine, Kyoto Min-iren Asukai Hospital, Kyoto, Japan
- Section of Clinical Epidemiology, Department of Community Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Healthcare Epidemiology, Kyoto University Graduate School of Medicine / School of Public Health, Kyoto, Japan
| |
Collapse
|
20
|
Gnazzo FG, Mourra D, Guevara C, Beeler JA. Chronic food restriction enhances dopamine-mediated intracranial self-stimulation. Neuroreport 2021; 32:1128-1133. [PMID: 34284450 PMCID: PMC8373704 DOI: 10.1097/wnr.0000000000001700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Dopamine-mediated reinforcement and behavioral adaptation is essential to survival. Here, we test the effects of food restriction on dopamine-mediated learning and reinforcement using optical intracranial self-stimulation (oICSS), an optogenetic version of conventional electrical ICSS (also known as brain stimulation reward, BSR). Using mouse genetic lines to express channelrhodopsin selectively in midbrain dopamine neurons, we demonstrate that genetically expressed channelrhodopsin can mediate optically evoked dopamine release and support self-stimulation in a lever-pressing paradigm. Using this midbrain dopamine oICSS preparation, we compare acquisition and rate of pressing in ad libitum versus food restricted mice. Food restriction facilitated both more rapid acquisition of self-stimulation behavior and higher rates of responding; reversing food status after acquisition modulated response vigor in already established behavior. These data suggest that food restriction enhances both the acquisition and expression of dopamine-reinforced self-stimulation responding. These data demonstrate the utility of oICSS for examining changes in reinforcement learning concomitant to neuroadaptations induced in dopamine signaling by experimental manipulations such as food restriction.
Collapse
Affiliation(s)
- Federico G. Gnazzo
- Department of Psychology, Queens College, City University New York, New York, NY, USA
| | - Devry Mourra
- Department of Psychology, Queens College, City University New York, New York, NY, USA
- CUNY Neuroscience Collaborative, The Graduate Center, City University New York, New York, NY, USA
| | - Christopher Guevara
- Department of Psychology, Queens College, City University New York, New York, NY, USA
- (current ) Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeff A. Beeler
- Department of Psychology, Queens College, City University New York, New York, NY, USA
- CUNY Neuroscience Collaborative, The Graduate Center, City University New York, New York, NY, USA
- Biology Program, The Graduate Center, City University New York, New York, NY, USA
| |
Collapse
|
21
|
Robertson SH, Jutkiewicz EM. Effects of food restriction on the conditioned reinforcing properties of an opioid-associated stimulus. Behav Pharmacol 2021; 32:505-514. [PMID: 34320518 PMCID: PMC8373806 DOI: 10.1097/fbp.0000000000000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Food restriction promotes drug self-administration; however, the effects of food restriction on the conditioned reinforcing properties of drug-associated stimuli are less clear. We tested the extent to which food restriction modified the conditioned reinforcing properties of a remifentanil-associated stimulus following conditioning with 3.2 or 1.0 μg/kg/infusion of remifentanil. First, we provided restricted (20 g/day standard chow) or ad libitum access to standard chow to rats. Second, within each feeding condition, we exposed rats to 20 intravenous infusions of remifentanil and 20 stimulus presentations that were delivered response independently each day for 5 days. For the experimental group (paired Pavlovian), the remifentanil infusions and stimulus presentations were delivered concurrently. The control group (random control) received the same number of infusions and stimulus presentations, but were not paired. For 28 sessions, we tested the extent to which the stimulus functioned as a conditioned reinforcer by allowing rats to freely respond for presentations of the remifentanil-associated stimulus. Following conditioning with 3.2 μg/kg/infusion of remifentanil, we found that rats that in the Paired Pavlovian group responded for the remifentanil-associated stimulus significantly more than rats in the Random control group, regardless of feeding condition. Following conditioning with 1.0 μg/kg/infusion of remifentanil, the remifentanil-associated stimulus was not associated with conditioned reinforcing properties, regardless of feeding condition. These findings confirm previous research demonstrating that a remifentanil-associated stimulus takes on conditioned reinforcing properties in a dose-dependent manner.
Collapse
Affiliation(s)
- Stephen H Robertson
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
22
|
Orellana ER, Piscura MK, Horvath N, Hajnal A. Differential Response in Ethanol Behaviors of Female Rats Given Various Weight Loss Surgeries. Alcohol Alcohol 2021; 56:599-604. [PMID: 34343232 DOI: 10.1093/alcalc/agab054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
AIMS Currently, the only effective treatment for morbid obesity and its comorbidities is weight loss surgery (WLS). Growing evidence suggests that different types of WLS, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), have differential effects on alcohol consumption in humans and rats. Thus, we aimed to directly compare the effects of these two surgical procedures, for the first time in female rats, and to determine whether presence or absence of the ghrelin-producing stomach tissue has critical influence on postoperative alcohol intake. METHODS We performed two experiments using an identical behavioral protocol, a continuous-access two-bottle choice protocol for various concentrations of ethanol (EtOH). In Experiment 1, 23 high fat diet (HFD) obese, female rats were randomized to three groups: RYGB, SG or sham-operated food-restricted (Sham) controls. In Experiment 2, HFD obese female rats received either sham (n = 11) or a modified RYGB surgery where the remnant stomach was removed (RYGB-X; n = 12). RESULTS SG rats drank significantly less than RYGB for 4, 6 and 8% and significantly less than Sham for 6, 8 and 8% reinstatement. RYGB-X consumed significantly less EtOH than Sham across all concentrations, reaching significance for 6 and 8% reinstatement. CONCLUSION These findings confirm reduced EtOH consumption by female SG rats as opposed to increased intake following RYGB, and provide the first experimental evidence that the remnant stomach in the RYGB procedure is contributory. Future studies in rats and humans are warranted to confirm that ghrelin plays a critical role in susceptibility to AUD development following WLS.
Collapse
Affiliation(s)
- Elise R Orellana
- Georgetown University, School of Medicine, Department of Biochemistry and Molecular & Cellular Biology, 3900 Reservoir Road NW, Washington, DC, 20009
| | - Mary K Piscura
- The Pennsylvania State University, College of Medicine, Department of Neural and Behavioral Sciences, 700 HMC Crescent road, Hershey, PA 17033
| | - Nelli Horvath
- The Pennsylvania State University, College of Medicine, Department of Neural and Behavioral Sciences, 700 HMC Crescent road, Hershey, PA 17033
| | - Andras Hajnal
- The Pennsylvania State University, College of Medicine, Department of Neural and Behavioral Sciences, 700 HMC Crescent road, Hershey, PA 17033
| |
Collapse
|
23
|
Nabinger DD, Altenhofen S, Peixoto JV, da Silva JMK, Gerlai R, Bonan CD. Feeding status alters exploratory and anxiety-like behaviors in zebrafish larvae exposed to quinpirole. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110179. [PMID: 33212194 DOI: 10.1016/j.pnpbp.2020.110179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023]
Abstract
The dysfunction of dopaminergic signaling is associated with several neurological disorders. The use of pharmacological agents that interact with this signaling system may be employed to understand mechanisms underlying such disorders. Nutritional status can impact dopamine reuptake, receptor affinity, transporter activity, and the effects of drugs that bind to dopamine receptors or interact with dopaminergic system. Here we evaluated the effects of quinpirole (a dopamine D2/D3 receptor agonist) exposure on fed and non-fed zebrafish larvae. Zebrafish larvae (6 days post-fertilization, dpf) were exposed to quinpirole (5.5, 16.7, and 50.0 μM) or water (control group) for one hour. To evaluate the effect of feeding status on quinpirole exposure, the experiments were performed on fed and non-fed animals, a between subject experimental design. Both fed and non-fed quinpirole treated larvae exhibited increased erratic movements compared to controls in an open tank exploration task. No alterations were observed on the main parameters of exploratory behavior and swim activity for non-fed larvae treated with quinpirole compared to controls. However, fed animals exposed to quinpirole exhibited increased locomotor activity, anxiety-like behavior, and repetitive circular movements when compared to controls and non-fed exposed animals. In addition, we observed quinpirole exposure to have no effects on morphological parameters and heartbeat, but to impair optomotor responses in both fed and non-fed larvae compared to control. We also found quinpirole effects to interact with feeding status, as quinpirole-treated fed larvae improved while quinpirole treated non-fed larvae impaired their avoidance reaction towards an aversive stimulus. These results indicate that the behavioral effects of quinpirole exposure depended upon feeding status. They showed that consumption of food, a naturally rewarding stimulus known to engage the dopaminergic system, made this neurotransmitter system more susceptible to quinpirole's effects.
Collapse
Affiliation(s)
- Débora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Vasconcellos Peixoto
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Maria Kuhl da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Santiago AN, Makowicz EA, Du M, Aoki C. Food Restriction Engages Prefrontal Corticostriatal Cells and Local Microcircuitry to Drive the Decision to Run versus Conserve Energy. Cereb Cortex 2021; 31:2868-2885. [PMID: 33497440 DOI: 10.1093/cercor/bhaa394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
Food restriction (FR) evokes running, which may promote adaptive foraging in times of food scarcity, but can become lethal if energy expenditure exceeds caloric availability. Here, we demonstrate that chemogenetic activation of either the general medial prefrontal cortex (mPFC) pyramidal cell population, or the subpopulation projecting to dorsal striatum (DS) drives running specifically during hours preceding limited food availability, and not during ad libitum food availability. Conversely, suppression of mPFC pyramidal cells generally, or targeting mPFC-to-DS cells, reduced wheel running specifically during FR and not during ad libitum food access. Post mortem c-Fos analysis and electron microscopy of mPFC layer 5 revealed distinguishing characteristics of mPFC-to-DS cells, when compared to neighboring non-DS-projecting pyramidal cells: 1) greater recruitment of GABAergic activity and 2) less axo-somatic GABAergic innervation. Together, these attributes position the mPFC-to-DS subset of pyramidal cells to dominate mPFC excitatory outflow, particularly during FR, revealing a specific and causal role for mPFC-to-DS control of the decision to run during food scarcity. Individual differences in GABAergic activity correlate with running response to further support this interpretation. FR enhancement of PFC-to-DS activity may influence neural circuits both in studies using FR to motivate animal behavior and in human conditions hallmarked by FR.
Collapse
Affiliation(s)
- Adrienne N Santiago
- Center for Neural Science, New York University, 4 Washington place, New York, NY 10003, USA
| | - Emily A Makowicz
- Center for Neural Science, New York University, 4 Washington place, New York, NY 10003, USA.,Hunter College, City University of New York, 695 Park Ave, New York, NY, 10065, USA
| | - Muzi Du
- Center for Neural Science, New York University, 4 Washington place, New York, NY 10003, USA.,Langone Neuroscience Institute, New York University, 435 East 30th St, New York, NY 10016, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, 4 Washington place, New York, NY 10003, USA.,New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China
| |
Collapse
|
25
|
Anderson EM, Demis S, D’Acquisto H, Engelhardt A, Hearing M. The Role of Parvalbumin Interneuron GIRK Signaling in the Regulation of Affect and Cognition in Male and Female Mice. Front Behav Neurosci 2021; 15:621751. [PMID: 33841107 PMCID: PMC8032990 DOI: 10.3389/fnbeh.2021.621751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Pathological impairments in the regulation of affect (i.e., emotion) and flexible decision-making are commonly observed across numerous neuropsychiatric disorders and are thought to reflect dysfunction of cortical and subcortical circuits that arise in part from imbalances in excitation and inhibition within these structures. Disruptions in GABA transmission, in particular, that from parvalbumin-expressing interneurons (PVI), has been highlighted as a likely mechanism by which this imbalance arises, as they regulate excitation and synchronization of principle output neurons. G protein-gated inwardly rectifying potassium ion (GIRK/Kir3) channels are known to modulate excitability and output of pyramidal neurons in areas like the medial prefrontal cortex and hippocampus; however, the role GIRK plays in PVI excitability and behavior is unknown. Male and female mice lacking GIRK1 in PVI (Girk1flox/flox:PVcre) and expressing td-tomato in PVI (Girk1flox/flox:PVCre:PVtdtom) exhibited increased open arm time in the elevated plus-maze, while males showed an increase in immobile episodes during the forced swim test (FST). Loss of GIRK1 did not alter motivated behavior for an appetitive reward or impair overall performance in an operant-based attention set-shifting model of cognitive flexibility; however it did alter types of errors committed during the visual cue test. Unexpectedly, baseline sex differences were also identified in these tasks, with females exhibiting overall poorer performance compared to males and distinct types of errors, highlighting potential differences in task-related problem-solving. Interestingly, reductions in PVI GIRK signaling did not correspond to changes in membrane excitability but did increase action potential (AP) firing at higher current injections in PVI of males, but not females. This is the first investigation on the role that PVI GIRK-signaling has on membrane excitability, AP firing, and their role on affect and cognition together increasing the understanding of PVI cellular mechanisms and function.
Collapse
Affiliation(s)
| | | | | | | | - Matthew Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
26
|
Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021; 11:1425-1447. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long-term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood-brain barrier) or indirectly (e.g., via vagal input) the "homeostatic" brainstem-hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425-1447, 2021.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Mitchell A Head
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
27
|
Ramos C, Roberts JB, Jasso KR, Ten Eyck TW, Everett T, Pozo P, Setlow B, McIntyre JC. Neuron-specific cilia loss differentially alters locomotor responses to amphetamine in mice. J Neurosci Res 2020; 99:827-842. [PMID: 33175436 DOI: 10.1002/jnr.24755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022]
Abstract
The neural mechanisms that underlie responses to drugs of abuse are complex, and impacted by a number of neuromodulatory peptides. Within the past 10 years it has been discovered that several of the receptors for neuromodulators are enriched in the primary cilia of neurons. Primary cilia are microtubule-based organelles that project from the surface of nearly all mammalian cells, including neurons. Despite what we know about cilia, our understanding of how cilia regulate neuronal function and behavior is still limited. The primary objective of this study was to investigate the contributions of primary cilia on specific neuronal populations to behavioral responses to amphetamine. To test the consequences of cilia loss on amphetamine-induced locomotor activity we selectively ablated cilia from dopaminergic or GAD2-GABAergic neurons in mice. Cilia loss had no effect on baseline locomotion in either mouse strain. In mice lacking cilia on dopaminergic neurons, locomotor activity compared to wild- type mice was reduced in both sexes in response to acute administration of 3.0 mg/kg amphetamine. In contrast, changes in the locomotor response to amphetamine in mice lacking cilia on GAD2-GABAergic neurons were primarily driven by reductions in locomotor activity in males. Following repeated amphetamine administration (1.0 mg kg-1 day-1 over 5 days), mice lacking cilia on GAD2-GABAergic neurons exhibited enhanced sensitization of the locomotor stimulant response to the drug, whereas mice lacking cilia on dopaminergic neurons did not differ from wild-type controls. These results indicate that cilia play neuron-specific roles in both acute and neuroplastic responses to psychostimulant drugs of abuse.
Collapse
Affiliation(s)
- Carlos Ramos
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jonté B Roberts
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kalene R Jasso
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Thomas Everett
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Patricia Pozo
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA.,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Jeremy C McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Godfrey N, Borgland SL. Sex differences in the effect of acute fasting on excitatory and inhibitory synapses onto ventral tegmental area dopamine neurons. J Physiol 2020; 598:5523-5539. [PMID: 32886798 DOI: 10.1113/jp280412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Fasting can increase motivation for food and can energize reward-seeking. Ventral tegmental area (VTA) dopamine neurons respond to motivationally relevant information and fasting can influence mesolimbic dopamine concentration. An acute overnight fast differentially alters food approach behaviours and excitatory synaptic transmission onto VTA dopamine neurons of male or female mice. While inhibitory synapses onto VTA dopamine neurons are not altered by fasting in male or female mice, male mice had strengthened excitatory synapses whereas female mice had increased endocannabinoid-mediated short-term plasticity at excitatory synapses. These results help us understand how fasting differentially influences excitatory synaptic transmission onto dopamine neurons and may inform different strategies for fasting-induced food seeking by male and female mice. ABSTRACT Dopamine neurons in the ventral tegmental area (VTA) are important for energizing goal-directed behaviour towards food and are sensitive to changes in metabolic states. Fasting increases the incentive motivation for food and the mobilization of energy stores and has sex-dependent effects. However, it is unknown how acute fasting alters excitatory or inhibitory synaptic transmission onto VTA dopamine neurons. An acute 16 h overnight fast induced increased food-seeking behaviour that was more predominant in male mice. Fasting increased miniature excitatory postsynaptic current frequency and amplitude in male, but not female, mice. This effect was not due to altered release probability as there was no change in the paired pulse ratio, nor was it due to an altered postsynaptic response as there was no change in the AMPA receptor/NMDA receptor ratio or response to glutamate uncaging. However, this effect was consistent with an increase in the number of release sites. In addition, depolarization-induced suppression of excitation, a measure of short-term endocannabinoid-mediated plasticity, was enhanced in female but not male fasted mice. There were no fasting-induced changes at inhibitory synapses onto dopamine neurons of male or female mice. Taken together, these results demonstrate that fasting influences excitatory synapses differentially in male and female mice, but preserves inhibitory synapses onto dopamine neurons, indicating that the mesolimbic circuits of male and female mice respond differently to acute energy deprivation.
Collapse
Affiliation(s)
- Nathan Godfrey
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
29
|
Tapp DN, Zerkle HL, McMurray MS. Extent of food restriction affects probability but not delay-based decision-making. J Exp Anal Behav 2020; 114:179-192. [PMID: 32776567 DOI: 10.1002/jeab.624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/11/2022]
Abstract
Rodent studies on decision-making often use food rewards and food-restrict subjects in order to motivate performance. However, food restriction has widespread effects on brain and behavior, which depend on factors including extent of restriction and feeding schedule. These factors are well recognized for their effects on motivation, but may also cause effects on decision-making independent of motivation. We examined how the degree of weight-based food restriction in rats influenced decision-making on the probability and delay discounting tasks. Additionally, we examined how the method of food restriction (consistent amount vs. time constrained feeding schedule) influenced decision-making. Our results showed that the degree of weight-based food restriction significantly altered probability, but not delay discounting, and that these effects were not entirely explainable by differences in motivation. Additionally, the method of food restriction did not significantly influence discounting when animals were within the same range of weight-based restriction. Together, our findings suggest that the degree of food restriction may modulate the neural circuitry responsible for selective aspects of decision-making related to probability. Further, these data support the need for tight control and reporting of weight and feeding in studies relying on food restriction, and suggest that the effects of food restriction may be broader than previously considered.
Collapse
|
30
|
Fasting may increase incentive signaling for nonfood rewards. Nutr Res 2020; 77:43-53. [PMID: 32315894 DOI: 10.1016/j.nutres.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 11/22/2022]
Abstract
During acute energy deprivation, hunger signaling mechanisms support homeostasis by enhancing incentive for food. There is some evidence (primarily based on nonhuman experiments) that fasting heightens incentive signaling for nonfood reward as well. We hypothesized that, consistent with results from research in rodent and nonhuman primates, human participants would evidence increased incentive-related brain activity for nonfood rewards during fast (relative to satiety) and that this increase would be heightened when available rewards were immediate. To assess these possibilities, healthy participants with body mass index between 18 and 29 kg/m2 completed a task which engaged participants in opportunities to win immediate and delayed money (Monetary Incentive Delay Task) during 2 neuroimaging sessions (1 postprandial, 1 fasted). Analyses of participants (N = 18 included, body mass index 22.12± 2.72, age 21.39± 3.52) focused on brain activity during the incentive window of the task. Region of interest, as well as whole-brain analyses, supported the hypothesized increase in incentive signaling during fasting in regions that included caudate and putamen. No evidence of interaction was observed between fasting and the effect of reward immediacy or reward magnitude. Although provisional given the modest sample size, these results suggest that acute fasting can heighten incentive signaling for nonfood rewards.
Collapse
|
31
|
Smith AD, Sanchez N, Reynolds C, Casamassima M, Verros M, Annameier SK, Melby C, Johnson SA, Lucas-Thompson RG, Shomaker LB. Associations of parental feeding practices and food reward responsiveness with adolescent stress-eating. Appetite 2020; 152:104715. [PMID: 32315656 DOI: 10.1016/j.appet.2020.104715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 01/23/2023]
Abstract
Rates of adolescent obesity have continued to rise over the past decade. As adolescence is an important time for developing eating habits that endure into adulthood, more information is needed about the potentially modifiable family- and individual-level factors that influence the development of common overeating behaviors such as stress-eating during adolescence. In this study, we conducted secondary data analyses to evaluate how parental feeding practices and adolescents' food reward responsiveness related to adolescents' stress-eating during a laboratory test meal. Participants were 90 healthy adolescents (50% female), 12-17 years of age (M = 14.3, SD = 1.7 years), at risk for excess weight gain (BMI percentile M = 92.7, SD = 7.5). Parental feeding behaviors were assessed with parent-report on the Child Feeding Questionnaire-Adolescent Version. Adolescents' relative reward value of food was measured with a behavioral task. Stress-eating was assessed as total energy intake from a buffet lunch meal after adolescents participated in the Trier Social Stress Test adapted for adolescents. Results revealed that parental concern about their child's weight (t = 2.27, p = .02) and adolescents' relative reward value of food (t = 2.24, p = .03) were related to greater stress-eating, controlling for BMI standard score, age, sex, and general perceived stress. Parental restriction was not related to stress-eating in this sample (p = .21). These findings suggest that parental attitudes about their adolescent's weight and adolescents' own internalized responsiveness to food as a reward may play a role in propensity to engage in overeating in response to stress.
Collapse
Affiliation(s)
- Amy D Smith
- Human Development & Family Studies, Colorado State University, 1570 Campus Delivery, Fort Collins, CO, 80523, United States
| | - Natalia Sanchez
- Colorado School of Public Health, 1612 Campus Delivery, Fort Collins, CO, 80523, United States
| | - Chelsea Reynolds
- Human Development & Family Studies, Colorado State University, 1570 Campus Delivery, Fort Collins, CO, 80523, United States
| | - Milena Casamassima
- Colorado School of Public Health, 1612 Campus Delivery, Fort Collins, CO, 80523, United States
| | - Megan Verros
- Colorado School of Public Health, 1612 Campus Delivery, Fort Collins, CO, 80523, United States
| | - Shelly K Annameier
- Human Development & Family Studies, Colorado State University, 1570 Campus Delivery, Fort Collins, CO, 80523, United States
| | - Christopher Melby
- Colorado School of Public Health, 1612 Campus Delivery, Fort Collins, CO, 80523, United States; Food Science & Human Nutrition, Colorado State University, 1501 Campus Delivery, Fort Collins, CO, 80523, United States
| | - Sarah A Johnson
- Food Science & Human Nutrition, Colorado State University, 1501 Campus Delivery, Fort Collins, CO, 80523, United States
| | - Rachel G Lucas-Thompson
- Human Development & Family Studies, Colorado State University, 1570 Campus Delivery, Fort Collins, CO, 80523, United States
| | - Lauren B Shomaker
- Human Development & Family Studies, Colorado State University, 1570 Campus Delivery, Fort Collins, CO, 80523, United States; Colorado School of Public Health, 1612 Campus Delivery, Fort Collins, CO, 80523, United States.
| |
Collapse
|
32
|
Simon MJ, Zafra MA, Puerto A. Differential rewarding effects of electrical stimulation of the lateral hypothalamus and parabrachial complex: Functional characterization and the relevance of opioid systems and dopamine. J Psychopharmacol 2019; 33:1475-1490. [PMID: 31282233 DOI: 10.1177/0269881119855982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since the discovery of rewarding intracranial self-stimulation by Olds and Milner, extensive data have been published on the biological basis of reward. Although participation of the mesolimbic dopaminergic system is well documented, its precise role has not been fully elucidated, and some authors have proposed the involvement of other neural systems in processing specific aspects of reinforced behaviour. AIMS AND METHODS We reviewed published data, including our own findings, on the rewarding effects induced by electrical stimulation of the lateral hypothalamus (LH) and of the external lateral parabrachial area (LPBe) - a brainstem region involved in processing the rewarding properties of natural and artificial substances - and compared its functional characteristics as observed in operant and non-operant behavioural procedures. RESULTS Brain circuits involved in the induction of preferences for stimuli associated with electrical stimulation of the LBPe appear to functionally and neurochemically differ from those activated by electrical stimulation of the LH. INTERPRETATION We discuss the possible involvement of the LPBe in processing emotional-affective aspects of the brain reward system.
Collapse
Affiliation(s)
- Maria J Simon
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Maria A Zafra
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Amadeo Puerto
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
33
|
Equal response rates maintained by concurrent drug and nondrug reinforcers: a design for treatment evaluation. Behav Pharmacol 2019; 31:458-464. [PMID: 31770113 PMCID: PMC7351288 DOI: 10.1097/fbp.0000000000000525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During daily 3-h sessions, four rhesus monkeys had concurrent access to 16% alcohol (w/v) and saccharin. A response occurred when a monkey made mouth contact with the metal spout and thereby completed a drinkometer circuit. The liquids were available under concurrent nonindependent fixed-ratio 32 schedules. With these schedules, responses on the right spout decremented both the right and left fixed-ratio counters and vice versa. Responding was well maintained by both alcohol and saccharin. Increases in saccharin concentration produced increases in saccharin responding to the point that saccharin responding exceeded alcohol responding. Responses per saccharin delivery were also a direct function of the saccharin concentration. In contrast, responses per alcohol delivery generally decreased as the saccharin concentration became greater. Changeover or switching responses were also a direct function of the saccharin concentration. Relative reinforcing effects of each combination of liquid pairs were measured for each monkey. For all monkeys, it was possible to establish equal rates of responding for both reinforcers and frequent switching between reinforcers. The balanced responding can serve as a baseline for the evaluation of potential treatments that may alter relative reinforcing effects.
Collapse
|
34
|
Liu S, Borgland SL. Insulin actions in the mesolimbic dopamine system. Exp Neurol 2019; 320:113006. [DOI: 10.1016/j.expneurol.2019.113006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/21/2019] [Accepted: 07/03/2019] [Indexed: 01/22/2023]
|
35
|
MacCormack JK, Muscatell KA. The metabolic mind: A role for leptin and ghrelin in affect and social cognition. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2019. [DOI: 10.1111/spc3.12496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
|
37
|
Alhadeff AL, Goldstein N, Park O, Klima ML, Vargas A, Betley JN. Natural and Drug Rewards Engage Distinct Pathways that Converge on Coordinated Hypothalamic and Reward Circuits. Neuron 2019; 103:891-908.e6. [PMID: 31277924 DOI: 10.1016/j.neuron.2019.05.050] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/06/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022]
Abstract
Motivated behavior is influenced by neural networks that integrate physiological needs. Here, we describe coordinated regulation of hypothalamic feeding and midbrain reward circuits in awake behaving mice. We find that alcohol and other non-nutritive drugs inhibit activity in hypothalamic feeding neurons. Interestingly, nutrients and drugs utilize different pathways for the inhibition of hypothalamic neuron activity, as alcohol signals hypothalamic neurons in a vagal-independent manner, while fat and satiation signals require the vagus nerve. Concomitantly, nutrients, alcohol, and drugs also increase midbrain dopamine signaling. We provide evidence that these changes are interdependent, as modulation of either hypothalamic neurons or midbrain dopamine signaling influences reward-evoked activity changes in the other population. Taken together, our results demonstrate that (1) food and drugs can engage at least two peripheral→central pathways to influence hypothalamic neuron activity, and (2) hypothalamic and dopamine circuits interact in response to rewards.
Collapse
Affiliation(s)
- Amber L Alhadeff
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nitsan Goldstein
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Onyoo Park
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle L Klima
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Vargas
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Audira G, Sarasamma S, Chen JR, Juniardi S, Sampurna BP, Liang ST, Lai YH, Lin GM, Hsieh MC, Hsiao CD. Zebrafish Mutants Carrying Leptin a (lepa) Gene Deficiency Display Obesity, Anxiety, Less Aggression and Fear, and Circadian Rhythm and Color Preference Dysregulation. Int J Mol Sci 2018; 19:ijms19124038. [PMID: 30551684 PMCID: PMC6320766 DOI: 10.3390/ijms19124038] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023] Open
Abstract
Leptin, a hormone secreted by peripheral adipose tissues, regulates the appetite in animals. Recently, evidence has shown that leptin also plays roles in behavioral response in addition to controlling appetite. In this study, we examined the potential function of leptin on non-appetite behaviors in zebrafish model. By using genome editing tool of Transcription activator-like effector nuclease (TALEN), we successfully knocked out leptin a (lepa) gene by deleting 4 bp within coding region to create a premature-translation stop. Morphological and appetite analysis showed the lepa KO fish display a phenotype with obese, good appetite and elevation of Agouti-related peptide (AgRP) and Ghrelin hormones, consistent with the canonical function of leptin in controlling food intake. By multiple behavior endpoint analyses, including novel tank, mirror biting, predator avoidance, social interaction, shoaling, circadian rhythm, and color preference assay, we found the lepa KO fish display an anxiogenic phenotype showing hyperactivity with rapid swimming, less freezing time, less fear to predator, loose shoaling area forming, and circadian rhythm and color preference dysregulations. Using biochemical assays, melatonin, norepinephrine, acetylcholine and serotonin levels in the brain were found to be significantly reduced in lepa KO fish, while the levels of dopamine, glycine and cortisol in the brain were significantly elevated. In addition, the brain ROS level was elevated, and the anti-oxidative enzyme catalase level was reduced. Taken together, by performing loss-of-function multiple behavior endpoint testing and biochemical analysis, we provide strong evidence for a critical role of lepa gene in modulating anxiety, aggression, fear, and circadian rhythm behaviors in zebrafish for the first time.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Sreeja Sarasamma
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Jung-Ren Chen
- Department of Biological Science & Technology College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan.
| | - Stevhen Juniardi
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | | | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan.
| | - Geng-Ming Lin
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State OceanicAdministration, Xiamen 361005, China.
| | - Ming-Chia Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua 50094, Taiwan.
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center of Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
39
|
Nikolaidis PT, Rosemann T, Knechtle B. A Brief Review of Personality in Marathon Runners: The Role of Sex, Age and Performance Level. Sports (Basel) 2018; 6:E99. [PMID: 30231559 PMCID: PMC6162387 DOI: 10.3390/sports6030099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/25/2023] Open
Abstract
The participation of recreational runners in sport events ranging from 5 km to ultra-endurance races have increased dramatically during the last decades and this phenomenon has attracted scientific interest. Most research has focused on the physiological characteristics of these runners and less in their psychological characteristics. Therefore, the aim of the present study was to review the existing knowledge with regards to the personality of recreational endurance runners and the role of sex, age and performance. It was concluded that limited information was available with regards to the personality of recreational marathon runners. So far, our knowledge on the personality of marathon runners relied on studies conducted a few decades ago, mostly on competitive marathon runners, highlighting the need for original research on recreational runners.
Collapse
Affiliation(s)
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, 9001 Zurich, Switzerland.
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, 9001 Zurich, Switzerland.
| |
Collapse
|
40
|
Maske CB, Loney GC, Lilly N, Terrill SJ, Williams DL. Intragastric nutrient infusion reduces motivation for food in male and female rats. Am J Physiol Endocrinol Metab 2018; 315. [PMID: 29533738 PMCID: PMC6087724 DOI: 10.1152/ajpendo.00308.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The idea that gut-derived satiation signals influence food reward has recently gained traction, but this hypothesis is largely based on studies focused on neural circuitry, not the peripherally released signals. Here, we directly tested the hypothesis that intragastric (IG) nutrient infusion can suppress motivation for food. In a series of experiments, IG sucrose infusion (15 kcal) significantly and reliably reduced operant responding for a sucrose reward on a progressive ratio (PR) schedule. Moreover, food deprivation for 24 h before the test session did not prevent the suppressive effect of nutrients. The suppressive effect of IG sucrose on fixed ratio 5 (FR5) operant responding was also assessed as a comparison. The effect of IG nutrients to reduce motivation was not limited to sucrose; IG Ensure infusion (9.3 kcal) also significantly reduced PR operant responding for sucrose pellets. To verify that these effects were not secondary to the osmotic challenge of concentrated nutrients, we tested IG infusion of noncaloric saline solutions equiosmolar to 40% sucrose or Ensure and found no effect. Finally, we focused on glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) as candidate mediators for the effect of IG nutrients. Pretreatment with exendin-9, a GLP-1 receptor antagonist, delivered intraperitoneally, significantly attenuated the ability of IG nutrients to suppress PR responding and breakpoint in males, but not in females, whereas pretreatment with devazepide, a CCKA receptor antagonist, failed to do so in both sexes. Together, these data support the idea that nutrient-induced satiation signals influence food reward and may implicate GLP-1 in this process.
Collapse
Affiliation(s)
- Calyn B Maske
- Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Gregory C Loney
- Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Nicole Lilly
- Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Sarah J Terrill
- Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Diana L Williams
- Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
41
|
Enhancement of a visual reinforcer by D-amphetamine and nicotine in adult rats: relation to habituation and food restriction. Psychopharmacology (Berl) 2018; 235:803-814. [PMID: 29199358 DOI: 10.1007/s00213-017-4796-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVES Nicotine and D-amphetamine can strengthen reinforcing effects of unconditioned visual stimuli. We investigated whether these reinforcement-enhancing effects reflect a slowing of stimulus habituation and depend on food restriction. METHODS Adult male rats pressed an active lever to illuminate a cue light during daily 60-min sessions. Depending on the experiment, rats were challenged with fixed or varying doses of D-amphetamine (0.25-2 mg/kg IP) and nicotine (0.025-0.2 mg/kg SC) or with the tobacco constituent norharman (0.03-10 μg/kg IV). Experiment 1 tested for possible reinforcement-enhancing effects of D-amphetamine and norharman. Experiment 2 investigated whether nicotine and amphetamine inhibited the spontaneous within-session decline in lever pressing. Experiment 3 assessed the effects of food restriction. RESULTS Amphetamine (0.25-1 mg/kg) and nicotine (0.1 mg/kg) increased active lever pressing specifically (two- to threefold increase). The highest doses of nicotine and amphetamine also affected inactive lever responding (increase and decrease, respectively). With the visual reinforcer omitted, responding was largely extinguished. Neither drug appeared to slow habituation, as assessed by the within-session decline in lever pressing, and reinforcement-enhancing effects still occurred if the drugs were given after this decline had occurred. Food restriction enhanced the reinforcement-enhancing effect of amphetamine but not that of nicotine. CONCLUSIONS Responding remained goal-directed after several weeks of testing. Low doses of D-amphetamine and nicotine produced reinforcement enhancement even in free-feeding subjects, independent of the spontaneous within-session decline in responding. Reinforcement enhancement by amphetamine, but not nicotine, was enhanced by concurrent subchronic food restriction.
Collapse
|
42
|
Beeler JA, Mourra D. To Do or Not to Do: Dopamine, Affordability and the Economics of Opportunity. Front Integr Neurosci 2018; 12:6. [PMID: 29487508 PMCID: PMC5816947 DOI: 10.3389/fnint.2018.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Five years ago, we introduced the thrift hypothesis of dopamine (DA), suggesting that the primary role of DA in adaptive behavior is regulating behavioral energy expenditure to match the prevailing economic conditions of the environment. Here we elaborate that hypothesis with several new ideas. First, we introduce the concept of affordability, suggesting that costs must necessarily be evaluated with respect to the availability of resources to the organism, which computes a value not only for the potential reward opportunity, but also the value of resources expended. Placing both costs and benefits within the context of the larger economy in which the animal is functioning requires consideration of the different timescales against which to compute resource availability, or average reward rate. Appropriate windows of computation for tracking resources requires corresponding neural substrates that operate on these different timescales. In discussing temporal patterns of DA signaling, we focus on a neglected form of DA plasticity and adaptation, changes in the physical substrate of the DA system itself, such as up- and down-regulation of receptors or release probability. We argue that changes in the DA substrate itself fundamentally alter its computational function, which we propose mediates adaptations to longer temporal horizons and economic conditions. In developing our hypothesis, we focus on DA D2 receptors (D2R), arguing that D2R implements a form of “cost control” in response to the environmental economy, serving as the “brain’s comptroller”. We propose that the balance between the direct and indirect pathway, regulated by relative expression of D1 and D2 DA receptors, implements affordability. Finally, as we review data, we discuss limitations in current approaches that impede fully investigating the proposed hypothesis and highlight alternative, more semi-naturalistic strategies more conducive to neuroeconomic investigations on the role of DA in adaptive behavior.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| | - Devry Mourra
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
43
|
Sahafzadeh M, Karimi-Haghighi S, Mousavi Z, Haghparast A. Role of the orexin receptors within the nucleus accumbens in the drug priming-induced reinstatement of morphine seeking in the food deprived rats. Brain Res Bull 2017; 137:217-224. [PMID: 29258865 DOI: 10.1016/j.brainresbull.2017.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/29/2022]
Abstract
Orexin plays a key role in mediating stress-induced drug relapse. However, the role of different types of orexinergic receptors that modulate stress-induced drug seeking remains unknown. The nucleus accumbens (NAc) has an important role in the reward system and receives orexinergic projections of the lateral hypothalamus. In addition, orexin interacts with other receptors that are involved in drug reinstatement. Therefore, in the present study, the role of orexin receptors in the NAc in morphine priming- induced reinstatement and the effect of food deprivation (FD) on drug reinstatement were examined. The extinguished morphine preference rats were tested for reinstatement following the 24-h FD condition after conditioning was induced. In the other groups, the animals were given intra-accumbal administration of SB334867 (01, 1 and 10 nM/0.5 μl DMSO) as an orexin-1 receptor antagonist and TCSOX229 (1, 5 and 25 nM/0.5 μl DMSO), as an orexin-2 receptor antagonist. The results showed that the blockade of two types of orexin receptors in the NAc remarkably attenuated the effect of FD on the drug reinstatement; however, they were more effective in FD condition. These findings indicate that the NAc is a brain area within which orexin has a fundamental role in the effect of stress on morphine-induced reinstatement and the effect of food deprivation- on the reinstatement of morphine.
Collapse
Affiliation(s)
- Marjan Sahafzadeh
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Nutritional and Food Sciences, Faculty of Agriculture, Rheinische Friedrich-Wilhelm University of Bonn, Bonn, Germany
| | - Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Fortin SM, Roitman MF. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core. Physiol Behav 2017; 176:17-25. [PMID: 28315693 PMCID: PMC5763906 DOI: 10.1016/j.physbeh.2017.03.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/23/2017] [Accepted: 03/14/2017] [Indexed: 11/24/2022]
Abstract
Drugs of abuse increase the frequency and magnitude of brief (1-3s), high concentration (phasic) dopamine release events in terminal regions. These are thought to be a critical part of drug reinforcement and ultimately the development of addiction. Recently, metabolic regulatory peptides, including the satiety signal glucagon-like peptide-1 (GLP-1), have been shown to modulate cocaine reward-driven behavior and sustained dopamine levels after cocaine administration. Here, we use fast-scan cyclic voltammetry (FSCV) to explore GLP-1 receptor (GLP-1R) modulation of dynamic dopamine release in the nucleus accumbens (NAc) during cocaine administration. We analyzed dopamine release events in both the NAc shell and core, as these two subregions are differentially affected by cocaine and uniquely contribute to motivated behavior. We found that central delivery of the GLP-1R agonist Exendin-4 suppressed the induction of phasic dopamine release events by intravenous cocaine. This effect was selective for dopamine signaling in the NAc core. Suppression of phasic signaling in the core by Exendin-4 could not be attributed to interference with cocaine binding to one of its major substrates, the dopamine transporter, as cocaine-induced increases in reuptake were unaffected. The results suggest that GLP-1R activation, instead, exerts its suppressive effects by altering dopamine release - possibly by suppressing the excitability of dopamine neurons. Given the role of NAc core dopamine in the generation of conditioned responses based on associative learning, suppression of cocaine-induced dopamine signaling in this subregion by GLP-1R agonism may decrease the reinforcing properties of cocaine. Thus, GLP-1Rs remain viable targets for the treatment and prevention of cocaine seeking, taking and relapse.
Collapse
Affiliation(s)
- Samantha M Fortin
- Graduate Program in Neuroscience, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, USA.
| | - Mitchell F Roitman
- Graduate Program in Neuroscience, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, USA; Department of Psychology, University of Illinois at Chicago, 1007 W Harrison St, Chicago, IL 60607, USA.
| |
Collapse
|
45
|
DeGuzman M, Shott ME, Yang TT, Riederer J, Frank GKW. Association of Elevated Reward Prediction Error Response With Weight Gain in Adolescent Anorexia Nervosa. Am J Psychiatry 2017; 174:557-565. [PMID: 28231717 PMCID: PMC5607032 DOI: 10.1176/appi.ajp.2016.16060671] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Anorexia nervosa is a psychiatric disorder of unknown etiology. Understanding associations between behavior and neurobiology is important in treatment development. Using a novel monetary reward task during functional magnetic resonance brain imaging, the authors tested how brain reward learning in adolescent anorexia nervosa changes with weight restoration. METHOD Female adolescents with anorexia nervosa (N=21; mean age, 16.4 years [SD=1.9]) underwent functional MRI (fMRI) before and after treatment; similarly, healthy female control adolescents (N=21; mean age, 15.2 years [SD=2.4]) underwent fMRI on two occasions. Brain function was tested using the reward prediction error construct, a computational model for reward receipt and omission related to motivation and neural dopamine responsiveness. RESULTS Compared with the control group, the anorexia nervosa group exhibited greater brain response 1) for prediction error regression within the caudate, ventral caudate/nucleus accumbens, and anterior and posterior insula, 2) to unexpected reward receipt in the anterior and posterior insula, and 3) to unexpected reward omission in the caudate body. Prediction error and unexpected reward omission response tended to normalize with treatment, while unexpected reward receipt response remained significantly elevated. Greater caudate prediction error response when underweight was associated with lower weight gain during treatment. Punishment sensitivity correlated positively with ventral caudate prediction error response. CONCLUSIONS Reward system responsiveness is elevated in adolescent anorexia nervosa when underweight and after weight restoration. Heightened prediction error activity in brain reward regions may represent a phenotype of adolescent anorexia nervosa that does not respond well to treatment. Prediction error response could be a neurobiological marker of illness severity that can indicate individual treatment needs.
Collapse
Affiliation(s)
- Marisa DeGuzman
- From the Department of Psychiatry, University of Colorado School of Medicine, and the Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora; and the Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco
| | - Megan E Shott
- From the Department of Psychiatry, University of Colorado School of Medicine, and the Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora; and the Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco
| | - Tony T Yang
- From the Department of Psychiatry, University of Colorado School of Medicine, and the Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora; and the Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco
| | - Justin Riederer
- From the Department of Psychiatry, University of Colorado School of Medicine, and the Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora; and the Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco
| | - Guido K W Frank
- From the Department of Psychiatry, University of Colorado School of Medicine, and the Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora; and the Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco
| |
Collapse
|
46
|
Opiol H, de Zavalia N, Delorme T, Solis P, Rutherford S, Shalev U, Amir S. Exploring the role of locomotor sensitization in the circadian food entrainment pathway. PLoS One 2017; 12:e0174113. [PMID: 28301599 PMCID: PMC5354457 DOI: 10.1371/journal.pone.0174113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/03/2017] [Indexed: 01/23/2023] Open
Abstract
Food entrainment is the internal mechanism whereby the phase and period of circadian clock genes comes under the control of daily scheduled food availability. Food entrainment allows the body to efficiently realign the internal timing of behavioral and physiological functions such that they anticipate food intake. Food entrainment can occur with or without caloric restriction, as seen with daily schedules of restricted feeding (RF) or restricted treat (RT) that restrict food or treat intake to a single feeding time. However, the extent of clock gene control is more pronounced with caloric restriction, highlighting the role of energy balance in regulating clock genes. Recent studies have implicated dopamine (DA) to be involved in food entrainment and caloric restriction is known to affect dopaminergic pathways to enhance locomotor activity. Since food entrainment results in the development of a distinct behavioral component, called food anticipatory activity (FAA), we examined the role of locomotor sensitization (LS) in food entrainment by 1) observing whether amphetamine (AMPH) sensitization results in enhanced locomotor output of FAA and 2) measuring LS of circadian and non-circadian feeding paradigms to an acute injection of AMPH (AMPH cross-sensitization). Unexpectedly, AMPH sensitization did not show enhancement of FAA. On the contrary, LS did develop with sufficient exposure to RF. LS was present after 2 weeks of RF, but not after 1, 3 or 7 days into RF. When food was returned and rats regain their original body weight at 10-15 days post-RF, LS remained present. LS did not develop to RT, nor to feedings of a non-circadian schedule, e.g. variable restricted feeding (VRF) or variable RT (VRT). Further, when RF was timed to the dark period, LS was observed only when tested at night; RF timed to the light period resulted in LS that was present during day and night. Taken together our results show that LS develops with food entrainment to RF, an effect that is dependent on the chronicity and circadian phase of RF but independent of body weight. Given that LS involves reorganization of DA-regulated motor circuitry, our work provides indirect support for the role of DA in the food entrainment pathway of RF. The findings also suggest differences in neuronal pathways involved in LS from AMPH sensitization and LS from RF.
Collapse
Affiliation(s)
- Hanna Opiol
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Nuria de Zavalia
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Tara Delorme
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Pavel Solis
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Spencer Rutherford
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Uri Shalev
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Shimon Amir
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
47
|
Mavrikaki M, Pravetoni M, Page S, Potter D, Chartoff E. Oxycodone self-administration in male and female rats. Psychopharmacology (Berl) 2017; 234:977-987. [PMID: 28127624 PMCID: PMC7250466 DOI: 10.1007/s00213-017-4536-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/10/2017] [Indexed: 02/04/2023]
Abstract
RATIONALE Oxycodone is one of the most widely prescribed painkillers in the USA. However, its use is complicated by high abuse potential. As sex differences have been described in drug addiction, the present study tested for sex differences in intravenous oxycodone self-administration in rats. METHODS Male and female Sprague-Dawley rats were implanted with jugular vein catheters and trained to self-administer oxycodone (0.03 mg/kg/infusion) under fixed ratio 1 (FR1), FR2, and FR5 schedules of reinforcement followed by a dose-response study to assess sensitivity to the reinforcing effects of oxycodone. In separate rats, sucrose pellet self-administration was assessed under an FR1 schedule to determine whether sex differences in oxycodone self-administration could be generalized across reinforcers. In separate rats, oxycodone distribution to plasma and brain was measured after intravenous drug delivery. RESULTS In the first 3 trials under an FR1 schedule of reinforcement, male rats self-administered more oxycodone than females. In contrast, females self-administered more sucrose pellets. Under FR2 and FR5 schedules, no significant sex differences in oxycodone intake were observed, although female rats had significantly more inactive lever presses. Male and female rats showed similar inverted U-shaped dose-effect functions, with females tending to self-administer more oxycodone than males at higher doses. No significant sex differences were observed in plasma or brain oxycodone levels, suggesting that sex differences in oxycodone self-administration behavior were not due to pharmacokinetics. CONCLUSION Our results suggest subtle sex differences in oxycodone self-administration, which may influence the abuse liability of oxycodone and have ramifications for prescription opioid addiction treatment.
Collapse
Affiliation(s)
- Maria Mavrikaki
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA.
| | - Marco Pravetoni
- Department of Medicine and Pharmacology, Minneapolis Medical Research Foundation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah Page
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - David Potter
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Elena Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| |
Collapse
|
48
|
Santos BM, de Andrade CA, Menani JV, De Luca LA. Short-term cross-sensitizion of need-free sugar intake by combining sodium depletion and hypertonic NaCl intake. Appetite 2016; 107:79-85. [DOI: 10.1016/j.appet.2016.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/09/2016] [Accepted: 07/14/2016] [Indexed: 02/01/2023]
|
49
|
Kong KL, Epstein LH. Food reinforcement during infancy. Prev Med 2016; 92:100-105. [PMID: 27373207 PMCID: PMC5361189 DOI: 10.1016/j.ypmed.2016.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/26/2022]
Abstract
The motivation to eat, as operationalized by measuring how hard someone will work for food, is cross-sectionally and prospectively related to obesity. Persons high in food reinforcement consume more calories, and energy intake mediates the relationship between food reinforcement and obesity. Research has shown avid sucking for milk in early infancy predicts later adiposity, and the relationship between food reinforcement and excess body weight has been observed in infants as young as 9months of age. New methodological developments in studying food reinforcement in infants and young children provide the first opportunity to study the origin of food reinforcement. This review seeks to provide background on the measurement of food reinforcement, and to present, for the first time, prenatal and postnatal predictors of infant food reinforcement. Lastly, potential mechanisms for an increasing trajectory of food reinforcement throughout development are proposed.
Collapse
Affiliation(s)
- Kai Ling Kong
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY, 14214-3000, United States.
| | - Leonard H Epstein
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY, 14214-3000, United States.
| |
Collapse
|
50
|
Meisch RA, Gomez TH. Concurrent nonindependent fixed-ratio schedules of alcohol self-administration: Effects of schedule size on choice. J Exp Anal Behav 2016; 106:75-92. [PMID: 27402525 PMCID: PMC5095790 DOI: 10.1002/jeab.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022]
Abstract
Choice behavior was studied under concurrent nonindependent fixed‐ratio fixed‐ratio (nFR) schedules of reinforcement, as these schedules result in frequent changeover responses. With these schedules, responses on either operandum count toward the completion of the ratio requirements of both schedules. Five monkeys were subjects, and two pairs of liquid reinforcers were concurrently available: 16% (w/v) and 0% ethanol or 16% and 8% ethanol. For each pair of reinforcers, the nFR sizes were systematically altered across sessions while keeping the schedule size equal for both liquids. Responding varied as a function of reinforcer pair and nFR size. With the 16% and 0% pair, higher response rates were maintained by 16% and were an inverted U‐shape function of nFR size. With 16% and 8%, a greater number of responses initially occurred on the schedule that delivered 8% ethanol. However, as nFR size increased, preference reversed such that responses that delivered 16% ethanol were greater. When the nFR size was subsequently decreased, preference reverted back to 8%. Number of responses emitted per delivery was a dependent variable and, in behavioral economic terms, was the price paid for each liquid delivery. With 16% and 0%, changeover responses initially increased and then decreased as schedule size became larger. In contrast, with the 16% and 8% pair, changeover responses increased directly with schedule size. Responding under nFR schedules is sensitive to differences in reinforcer magnitude and demonstrates that relative reinforcing effects can change as a function of schedule size.
Collapse
Affiliation(s)
| | - Thomas H Gomez
- The University of Texas Health Science Center at Houston
| |
Collapse
|