1
|
Bertram MG, Ågerstrand M, Thoré ESJ, Allen J, Balshine S, Brand JA, Brooks BW, Dang Z, Duquesne S, Ford AT, Hoffmann F, Hollert H, Jacob S, Kloas W, Klüver N, Lazorchak J, Ledesma M, Maack G, Macartney EL, Martin JM, Melvin SD, Michelangeli M, Mohr S, Padilla S, Pyle G, Saaristo M, Sahm R, Smit E, Steevens JA, van den Berg S, Vossen LE, Wlodkowic D, Wong BBM, Ziegler M, Brodin T. EthoCRED: a framework to guide reporting and evaluation of the relevance and reliability of behavioural ecotoxicity studies. Biol Rev Camb Philos Soc 2024. [PMID: 39394884 DOI: 10.1111/brv.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Behavioural analysis has been attracting significant attention as a broad indicator of sub-lethal toxicity and has secured a place as an important subdiscipline in ecotoxicology. Among the most notable characteristics of behavioural research, compared to other established approaches in sub-lethal ecotoxicology (e.g. reproductive and developmental bioassays), are the wide range of study designs being used and the diversity of endpoints considered. At the same time, environmental hazard and risk assessment, which underpins regulatory decisions to protect the environment from potentially harmful chemicals, often recommends that ecotoxicological data be produced following accepted and validated test guidelines. These guidelines typically do not address behavioural changes, meaning that these, often sensitive, effects are not represented in hazard and risk assessments. Here, we propose a new tool, the EthoCRED evaluation method, for assessing the relevance and reliability of behavioural ecotoxicity data, which considers the unique requirements and challenges encountered in this field. This method and accompanying reporting recommendations are designed to serve as an extension of the "Criteria for Reporting and Evaluating Ecotoxicity Data (CRED)" project. As such, EthoCRED can both accommodate the wide array of experimental design approaches seen in behavioural ecotoxicology, and could be readily implemented into regulatory frameworks as deemed appropriate by policy makers of different jurisdictions to allow better integration of knowledge gained from behavioural testing into environmental protection. Furthermore, through our reporting recommendations, we aim to improve the reporting of behavioural studies in the peer-reviewed literature, and thereby increase their usefulness to inform chemical regulation.
Collapse
Affiliation(s)
- Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Melbourne, 3800, Australia
| | - Marlene Ågerstrand
- Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8c, Stockholm, 114 18, Sweden
| | - Eli S J Thoré
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Laboratory of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth, and Environment, University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
- TRANSfarm, Science, Engineering, and Technology Group, KU Leuven, Bijzondereweg 12, Bierbeek, 3360, Belgium
| | - Joel Allen
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. EPA, 26 Martin Luther King Drive West, Cincinnati, 45268, Ohio, USA
| | - Sigal Balshine
- Department of Psychology, Neuroscience, & Behaviour, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, Canada
| | - Jack A Brand
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Institute of Zoology, Zoological Society of London, Outer Circle, Regent's Park, London, NW1, 4RY, UK
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, 76798-7266, Texas, USA
| | - ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Sabine Duquesne
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, UK
| | - Frauke Hoffmann
- Department of Chemical and Product Safety, The German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Henner Hollert
- Goethe University Frankfurt, Max-von-Laue-Straße 13, Frankfurt am Main, 60438, Germany
| | - Stefanie Jacob
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| | - Nils Klüver
- Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig, 04318, Germany
| | - Jim Lazorchak
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. EPA, 26 Martin Luther King Drive West, Cincinnati, 45268, Ohio, USA
| | - Mariana Ledesma
- Swedish Chemicals Agency (KemI), Löfströms allé 5, Stockholm, 172 66, Sweden
| | - Gerd Maack
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Erin L Macartney
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Biological Sciences North (D26), Sydney, 2052, Australia
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, John Hopkins Drive, Sydney, 2006, Australia
| | - Jake M Martin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216, Australia
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Edmund Rice Drive, Southport, 4215, Australia
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, 4111, Australia
| | - Silvia Mohr
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, 109 T.W. Alexander Drive, Durham, 27711, North Carolina, USA
| | - Gregory Pyle
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, Alberta, Canada
| | - Minna Saaristo
- Environment Protection Authority Victoria, EPA Science, 2 Terrace Way, Macleod, 3085, Australia
| | - René Sahm
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
- Department of Freshwater Ecology in Landscape Planning, University of Kassel, Gottschalkstraße 24, Kassel, 34127, Germany
| | - Els Smit
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Jeffery A Steevens
- Columbia Environmental Research Center, U.S. Geological Survey (USGS), 4200 New Haven Road, Columbia, 65201, Missouri, USA
| | - Sanne van den Berg
- Wageningen University and Research, P.O. Box 47, Wageningen, 6700 AA, the Netherlands
| | - Laura E Vossen
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Ulls väg 26, Uppsala, 756 51, Sweden
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, 289 McKimmies Road, Melbourne, 3083, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Melbourne, 3800, Australia
| | - Michael Ziegler
- Eurofins Aquatic Ecotoxicology GmbH, Eutinger Strasse 24, Niefern-Öschelbronn, 75223, Germany
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, Tübingen, 72076, Germany
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
| |
Collapse
|
2
|
Zhao B, Liang L, Li J, Schaefke B, Wang L, Tseng YT. An escape-enhancing circuit involving subthalamic CRH neurons mediates stress-induced anhedonia in mice. Neurobiol Dis 2024; 200:106649. [PMID: 39187210 DOI: 10.1016/j.nbd.2024.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic predator stress (CPS) is an important and ecologically relevant tool for inducing anhedonia in animals, but the neural circuits underlying the associated neurobiological changes remain to be identified. Using cell-type-specific manipulations, we found that corticotropin-releasing hormone (CRH) neurons in the medial subthalamic nucleus (mSTN) enhance struggle behaviors in inescapable situations and lead to anhedonia, predominately through projections to the external globus pallidus (GPe). Recordings of in vivo neuronal activity revealed that CPS distorted mSTN-CRH neuronal responsivity to negative and positive stimuli, which may underlie CPS-induced behavioral despair and anhedonia. Furthermore, we discovered presynaptic inputs from the bed nucleus of the stria terminalis (BNST) to mSTN-CRH neurons projecting to the GPe that were enhanced following CPS, and these inputs may mediate such behaviors. This study identifies a neurocircuitry that co-regulates escape response and anhedonia in response to predator stress. This new understanding of the neural basis of defensive behavior in response to predator stress will likely benefit our understanding of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Binghao Zhao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lisha Liang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingfei Li
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bernhard Schaefke
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
3
|
Perrig M, Oppel S, Tschumi M, Keil H, Naef‐Daenzer B, Grüebler MU. Juvenile survival of little owls decreases with snow cover. Ecol Evol 2024; 14:e11379. [PMID: 38770120 PMCID: PMC11103642 DOI: 10.1002/ece3.11379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Global environmental changes are associated with warmer average temperatures and more extreme weather events, potentially affecting wildlife population dynamics by altering demographic processes. Extreme weather events can reduce food resources and survival in all seasons of the year. Estimates of season-specific survival probabilities are therefore crucial to understand the moderating effect of extreme events on annual mortality. Here, we analysed survival probabilities of 307 radio-tracked juvenile little owls (Athene noctua) over two-week periods from fledging to their first breeding attempt in the following spring to assess the contribution of extreme weather events. Survival probabilities were typically lowest during the first weeks after fledging in summer but were moderated by seasonal extremes in winter. The duration of snow cover in winter had a strong negative effect on survival probability, while being food supplemented during the nestling stage increased survival during the first weeks after fledging in summer and ultimately led to a larger proportion of birds surviving the first year. Overall annual survival probability over the first year varied by 34.3% between 0.117 (95% credible interval 0.052-0.223) and 0.178 (0.097-0.293) depending on the severity of the winter, and was as high as 0.233 (0.127-0.373) for food-supplemented fledglings. In years with mild winters, the season with the lowest survival was the summer post-fledging period (0.508; 0.428-0.594), but in years with extensive snow cover the winter was the season with the lowest survival (0.481; 0.337-0.626). We therefore show that extreme weather events occurring in a particular season reduced the proportion of first-year survivors. Increasing extreme weather events can moderate seasonal survival probability through altering food supply of juvenile little owls either during the nestling period or in winter, with similarly large effects on annual survival and the viability of populations.
Collapse
Affiliation(s)
- Marco Perrig
- Swiss Ornithological InstituteSempachSwitzerland
- Institute of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | | | | | - Herbert Keil
- Forschungsgemeinschaft zur Erhaltung einheimischer Eulen (FOGE)OberriexingenGermany
| | | | | |
Collapse
|
4
|
Fox JA, Wyatt Toure M, Heckley A, Fan R, Reader SM, Barrett RDH. Insights into adaptive behavioural plasticity from the guppy model system. Proc Biol Sci 2024; 291:20232625. [PMID: 38471561 DOI: 10.1098/rspb.2023.2625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Behavioural plasticity allows organisms to respond to environmental challenges on short time scales. But what are the ecological and evolutionary processes that underlie behavioural plasticity? The answer to this question is complex and requires experimental dissection of the physiological, neural and molecular mechanisms contributing to behavioural plasticity as well as an understanding of the ecological and evolutionary contexts under which behavioural plasticity is adaptive. Here, we discuss key insights that research with Trinidadian guppies has provided on the underpinnings of adaptive behavioural plasticity. First, we present evidence that guppies exhibit contextual, developmental and transgenerational behavioural plasticity. Next, we review work on behavioural plasticity in guppies spanning three ecological contexts (predation, parasitism and turbidity) and three underlying mechanisms (endocrinological, neurobiological and genetic). Finally, we provide three outstanding questions that could leverage guppies further as a study system and give suggestions for how this research could be done. Research on behavioural plasticity in guppies has provided, and will continue to provide, a valuable opportunity to improve understanding of the ecological and evolutionary causes and consequences of behavioural plasticity.
Collapse
Affiliation(s)
- Janay A Fox
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
| | - M Wyatt Toure
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York 10027-6902, NY, USA
| | - Alexis Heckley
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
| | - Raina Fan
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
| | - Simon M Reader
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
| | | |
Collapse
|
5
|
Wang C, Zhao X, Tao B, Peng J, Wang H, Yu J, Jin L. Do domestic budgerigars perceive predation risk? Anim Cogn 2024; 27:8. [PMID: 38429588 PMCID: PMC10907484 DOI: 10.1007/s10071-024-01847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 03/03/2024]
Abstract
Predation risk may affect the foraging behavior of birds. However, there has been little research on the ability of domestic birds to perceive predation risk and thus adjust their feeding behavior. In this study, we tested whether domestic budgerigars (Melopsittacus undulatus) perceived predation risk after the presentation of specimens and sounds of sparrowhawks (Accipiter nisus), domestic cats (Felis catus), and humans, and whether this in turn influenced their feeding behavior. When exposed to visual or acoustic stimuli, budgerigars showed significantly longer latency to feed under sparrowhawk, domestic cat, and human treatments than with controls. Budgerigars responded more strongly to acoustic stimuli than visual stimuli, and they showed the longest latency to feed and the least number of feeding times in response to sparrowhawk calls. Moreover, budgerigars showed shorter latency to feed and greater numbers of feeding times in response to human voices than to sparrowhawk or domestic cat calls. Our results suggest that domestic budgerigars may identify predation risk through visual or acoustic signals and adjust their feeding behavior accordingly.
Collapse
Affiliation(s)
- Chang Wang
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Xueqi Zhao
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Baodan Tao
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Jiaqi Peng
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Haitao Wang
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Jiangping Yu
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Longru Jin
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
6
|
Sun S, Yang Z, Ren J, Liu T, Jing X. Fitness of Nutrition Regulation in a Caterpillar Pest Mythimna separata (Walker): Insights from the Geometric Framework. INSECTS 2023; 14:937. [PMID: 38132610 PMCID: PMC10743772 DOI: 10.3390/insects14120937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
In nature, plants can contain variable nutrients depending upon the species, tissue, and developmental stage. Insect herbivores may regulate their nutrient intake behaviorally and physio- logically when encountering different foods. This study examined the nutritional regulation of the oriental armyworm, Mythimna separata, for the first time. In one experiment, we allowed the cater-pillars to choose between two nutritionally balanced but complementary diets. The caterpillars did not randomly consume the paired foods, but instead chose between the nutritionally balanced but complementary diets. This intake behavior was found to change with their developmental stages. Furthermore, the nutrient concentrations in food significantly impacted the insect's performance. In the other experiment, caterpillars were given one of eleven diets that reflected the different nutrient conditions in the field. The results showed that proteins were significantly associated with developmental time and fecundity. For example, by consuming protein-biased food, the caterpillars developed faster and produced more eggs. In contrast, carbohydrates were more strongly linked to lipid accumulation, and caterpillars accumulated more lipids when consuming the carbohydrate-biased food. Moreover, the caterpillars were also found to actively regulate their intake of proteins and carbohydrates based on food quality and to physiologically prepare for subsequent life stages. These findings enhance our understanding of how M. separata feeds and responds to different nutritional environments in the field, which could have implications for managing insect herbivores in agricultural settings.
Collapse
Affiliation(s)
- Shaolei Sun
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhen Yang
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
| | - Jinchan Ren
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
| | - Tongxian Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
| | - Xiangfeng Jing
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
| |
Collapse
|
7
|
Esattore B, Rossi AC, Bazzoni F, Riggio C, Oliveira R, Leggiero I, Ferretti F. Same place, different time, head up: Multiple antipredator responses to a recolonizing apex predator. Curr Zool 2023; 69:703-717. [PMID: 37876645 PMCID: PMC10591180 DOI: 10.1093/cz/zoac083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/10/2022] [Indexed: 10/26/2023] Open
Abstract
Prey adjust their antipredator behavioral tactics to minimize the risk of an encounter with predators. Spatiotemporal responses of prey to predators have been reported, but the nature of antipredator response is not ubiquitous and it is the object of increasing interest, especially considering the recent recovery of large carnivores in Europe, and the potential for behavioral antipredator responses to elicit consequences at the ecosystem level. We have tested multiple antipredator responses by fallow deer Dama dama to wolf Canis lupus in a Mediterranean protected area recently recolonized by this apex predator. Through intensive camera trapping, we tested for temporal and spatial association between predator and prey, and we have also studied deer vigilance in forest habitats where focal observations are usually impossible. Wolf detection rates were spatially associated with those of fallow deer. Accordingly, no evidence was found for fallow deer avoiding sites with higher predator detection rates. Temporal activity patterns were significantly different between the 2 species, with the wolf being mainly nocturnal whereas fallow deer was active especially during daylight. A comparison with a preliminary study strongly suggests an increase in the diurnal activity of fallow deer along with the stabilization of wolf presence in the area. Both the rate and the duration of vigilance of female fallow deer increased with the local frequency of wolf activity. We suggest an antipredator response based on temporal-rather than spatial-avoidance, as well as increased vigilance.
Collapse
Affiliation(s)
- Bruno Esattore
- Department of Ethology, Institute of Animal Science, Přátelství 815,104 00, Uhříněves, Prague, Czech Republic
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00, Suchdol, Prague, Czech Republic
| | - Agnese Carlotta Rossi
- Department of Life Sciences, Research Unit of Behavioral Ecology, Ethology and Wildlife Management, University of Siena, Via Pier Andrea Mattioli 4, 53100, Siena, Italy
| | - Francesco Bazzoni
- Department of Life Sciences, Research Unit of Behavioral Ecology, Ethology and Wildlife Management, University of Siena, Via Pier Andrea Mattioli 4, 53100, Siena, Italy
| | - Chiara Riggio
- Department of Life Sciences, Research Unit of Behavioral Ecology, Ethology and Wildlife Management, University of Siena, Via Pier Andrea Mattioli 4, 53100, Siena, Italy
| | - Raquel Oliveira
- Department of Life Sciences, Research Unit of Behavioral Ecology, Ethology and Wildlife Management, University of Siena, Via Pier Andrea Mattioli 4, 53100, Siena, Italy
| | - Ivan Leggiero
- Department of Life Sciences, Research Unit of Behavioral Ecology, Ethology and Wildlife Management, University of Siena, Via Pier Andrea Mattioli 4, 53100, Siena, Italy
| | - Francesco Ferretti
- Department of Life Sciences, Research Unit of Behavioral Ecology, Ethology and Wildlife Management, University of Siena, Via Pier Andrea Mattioli 4, 53100, Siena, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
8
|
Cohen H, Matar MA, Todder D, Cohen C, Zohar J, Hawlena H, Abramsky Z. Sounds of danger and post-traumatic stress responses in wild rodents: ecological validity of a translational model of post-traumatic stress disorder. Mol Psychiatry 2023; 28:4719-4728. [PMID: 37674017 PMCID: PMC10914612 DOI: 10.1038/s41380-023-02240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
In the wild, animals face a highly variable world full of predators. Most predator attacks are unsuccessful, and the prey survives. According to the conventional perspective, the fear responses elicited by predators are acute and transient in nature. However, the long-term, non-lethal effects of predator exposure on prey behavioral stress sequelae, such as anxiety and post-traumatic symptoms, remain poorly understood. Most experiments on animal models of anxiety-related behavior or post-traumatic stress disorder have been carried out using commercial strains of rats and mice. A fundamental question is whether laboratory rodents appropriately express the behavioral responses of wild species in their natural environment; in other words, whether behavioral responses to stress observed in the laboratory can be generalized to natural behavior. To further elucidate the relative contributions of the natural selection pressures influences, this study investigated the bio-behavioral and morphological effects of auditory predator cues (owl territorial calls) in males and females of three wild rodent species in a laboratory set-up: Acomys cahirinus; Gerbillus henleyi; and Gerbillus gerbillus. Our results indicate that owl territorial calls elicited not only "fight or flight" behavioral responses but caused PTSD-like behavioral responses in wild rodents that have never encountered owls in nature and could cause, in some individuals, enduring physiological and morphological responses that parallel those seen in laboratory rodents or traumatized people. In all rodent species, the PTSD phenotype was characterized by a blunting of fecal cortisol metabolite response early after exposure and by a lower hypothalamic orexin-A level and lower total dendritic length and number in the dentate gyrus granule cells eight days after predator exposure. Phenotypically, this refers to a significant functional impairment that could affect reproduction and survival and thus fitness and population dynamics.
Collapse
Affiliation(s)
- Hagit Cohen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel & Ministry of Health, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Beer-Sheva, Israel.
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Michael A Matar
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel & Ministry of Health, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
| | - Doron Todder
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel & Ministry of Health, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
| | - Carmit Cohen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel & Ministry of Health, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
| | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv University, Tel Aviv, 52621, Israel
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion Israel, Sde Boker, 8499000, Israel
| | - Zvika Abramsky
- Department of Life Sciences and Ramon Science Center, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
9
|
Batabyal A. Predator-prey systems as models for integrative research in biology: the value of a non-consumptive effects framework. J Exp Biol 2023; 226:jeb245851. [PMID: 37772622 DOI: 10.1242/jeb.245851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Predator-prey interactions are a cornerstone of many ecological and evolutionary processes that influence various levels of biological organization, from individuals to ecosystems. Predators play a crucial role in shaping ecosystems through the consumption of prey species and non-consumptive effects. Non-consumptive effects (NCEs) can induce changes in prey behavior, including altered foraging strategies, habitat selection, life history and anti-predator responses. These defensive strategies have physiological consequences for prey, affecting their growth, reproduction and immune function to name a few. Numerous experimental studies have incorporated NCEs in investigating predator-prey dynamics in the past decade. Interestingly, predator-prey systems can also be used as experimental models to answer physiology, cognition and adaptability questions. In this Commentary, I highlight research that uses NCEs in predator-prey systems to provide novel insights into cognition, adaptation, epigenetic inheritance and aging. I discuss the evolution of instinct, anxiety and other cognitive disorders, the shaping of brain connectomes, stress-induced aging and the development of behavioral coping styles. I outline how studies can integrate the investigation of NCEs with advanced behavioral, genomic and neurological tools to provide novel insights into physiological and cognitive health.
Collapse
Affiliation(s)
- Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| |
Collapse
|
10
|
Lopez LK, Gil MA, Crowley PH, Trimmer PC, Munson A, Ligocki IY, Michelangeli M, Sih A. Integrating animal behaviour into research on multiple environmental stressors: a conceptual framework. Biol Rev Camb Philos Soc 2023; 98:1345-1364. [PMID: 37004993 DOI: 10.1111/brv.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
While a large body of research has focused on the physiological effects of multiple environmental stressors, how behavioural and life-history plasticity mediate multiple-stressor effects remains underexplored. Behavioural plasticity can not only drive organism-level responses to stressors directly but can also mediate physiological responses. Here, we provide a conceptual framework incorporating four fundamental trade-offs that explicitly link animal behaviour to life-history-based pathways for energy allocation, shaping the impact of multiple stressors on fitness. We first address how small-scale behavioural changes can either mediate or drive conflicts between the effects of multiple stressors and alternative physiological responses. We then discuss how animal behaviour gives rise to three additional understudied and interrelated trade-offs: balancing the benefits and risks of obtaining the energy needed to cope with stressors, allocation of energy between life-history traits and stressor responses, and larger-scale escape from stressors in space or time via large-scale movement or dormancy. Finally, we outline how these trade-offs interactively affect fitness and qualitative ecological outcomes resulting from multiple stressors. Our framework suggests that explicitly considering animal behaviour should enrich our mechanistic understanding of stressor effects, help explain extensive context dependence observed in these effects, and highlight promising avenues for future empirical and theoretical research.
Collapse
Affiliation(s)
- Laura K Lopez
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- National Centre for Immunisation Research and Surveillance, Kids Research, Sydney Children's Hospitals Network, Corner Hawkesbury Road & Hainsworth Street, Westmead, New South Wales, 2145, Australia
| | - Michael A Gil
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122/Campus Box 334, Boulder, CO, 80309-0334, USA
| | - Philip H Crowley
- Department of Biology, University of Kentucky, 195 Huguelet Drive, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506-0225, USA
| | - Pete C Trimmer
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Psychology, University of Warwick, University Road, Coventry, CV4 7AL, UK
| | - Amelia Munson
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Isaac Y Ligocki
- Department of Biology, Millersville University of Pennsylvania, Roddy Science Hall, PO Box 1002, Millersville, PA, 17551, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Marcus Michelangeli
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, SE-907 36, Sweden
| | - Andrew Sih
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
11
|
Hernández MC, Lara RA, Redondo AJ. To Mob or Not to Mob: Habitat and Time of Day Influence in Mobbing Behavior in the Azure-Winged Magpie ( Cyanopica cookii). Zoolog Sci 2023; 40:273-277. [PMID: 37522597 DOI: 10.2108/zs230004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/17/2023] [Indexed: 08/01/2023]
Abstract
While mobbing, individuals utter distinctive calls and perform visual threatening displays. Like any other antipredatory strategies, it involves some costs (time, energy, injuries, and even death). Therefore, mobbing would be expected to vary depending on the perceived magnitude of the predation risk. Moreover, harassment behavior can also serve as a demonstration of social status and to teach juveniles to recognize predators and related behaviors. Therefore, mobbing could also persist even when predation risk is particularly low. To test our hypotheses, we used tawny owl playbacks and a taxidermy mount to elicit the mobbing response in azure-winged magpies throughout the daylight period. To classify mobbing intensity, we created five categories depending on the proximity to the owl model at which the mobbing was performed. The results revealed that mobbing behavior in azure-winged magpies was more intense where predation risk was higher: in the most suitable habitat for the tawny owl, the forest, although considerable levels of mobbing were found in the dehesa and the ecotone, which indicate that mobbing has different purposes. However, we did not find statistically significant differences in mobbing intensity depending on the time of the day. We could not show a daily adjustment of antipredator response, but magpies modulated mobbing depending on the perceived risk linked to the habitat.
Collapse
Affiliation(s)
- M Carmen Hernández
- Department of Biology, Universidad Autónoma de Madrid. C/ Darwin 2, Campus Universitario de Cantoblanco, 28049 Madrid, Spain,
| | - Rafael Ayala Lara
- Institute of Science and Environment, University of Saint Joseph, Macau, China
| | - Alberto J Redondo
- Department of Zoology, University of Córdoba, Campus Universitario de Rabanales (Edificio C-1), Carretera Nacional IV, 14071 Córdoba, Spain
| |
Collapse
|
12
|
Berisha H, Horváth G, Fišer Ž, Balázs G, Fišer C, Herczeg G. Sex-dependent increase of movement activity in the freshwater isopod Asellus aquaticus following adaptation to a predator-free cave habitat. Curr Zool 2023; 69:418-425. [PMID: 37614916 PMCID: PMC10443615 DOI: 10.1093/cz/zoac063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 08/25/2023] Open
Abstract
Populations experiencing negligible predation pressure are expected to evolve higher behavioral activity. However, when sexes have different expected benefits from high activity, the adaptive shift is expected to be sex-specific. Here, we compared movement activity of one cave (lack of predation) and three adjacent surface (high and diverse predation) populations of Asellus aquaticus, a freshwater isopod known for its independent colonization of several caves across Europe. We predicted 1) higher activity in cave than in surface populations, with 2) the difference being more pronounced in males as they are known for active mate searching behavior, while females are not. Activity was assessed both in the presence and absence of light. Our results supported both predictions: movement activity was higher in the cave than in the surface populations, particularly in males. Relaxed predation pressure in the cave-adapted population is most likely the main selective factor behind increased behavioral activity, but we also showed that the extent of increase is sex-specific.
Collapse
Affiliation(s)
- Hajriz Berisha
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Biological Institute, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
| | - Gergely Horváth
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Biological Institute, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
- ELKH-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
| | - Žiga Fišer
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gergely Balázs
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Biological Institute, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
- ELKH-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
| | - Cene Fišer
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gábor Herczeg
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Biological Institute, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
- ELKH-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
| |
Collapse
|
13
|
Forrester TR, Martin TE. Riskiness of Movement Lifestyle Varies Inversely with Adult Survival Probability among Species. Am Nat 2023; 202:166-180. [PMID: 37531279 DOI: 10.1086/725056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
AbstractWhy do species differ in their movement lifestyles? Animals that spend more time sitting motionless and acquire food using less conspicuous movements can be more vigilant and less obvious to predators. More active animals that use food types and sites that require more conspicuous behaviors increase vulnerability to predators. Life history theory predicts that aversiveness to mortality risk evolves inversely to adult survival probability. Consequently, we postulated that long-lived species evolved inconspicuous movement lifestyles, whereas shorter-lived species use more conspicuous movement lifestyles. We tested this hypothesis by quantifying the movement lifestyles of nine tropical songbird species. Use of conspicuous movement and foraging behaviors, such as flying and hovering, was greatest in shorter-lived species and decreased with increasing adult survival probability across species. Similarly, foraging speed decreased with increasing adult survival based on a meta-analysis of 64 songbird species. Faster and conspicuous movement lifestyles of shorter-lived species likely increase food acquisition rates, which fits with faster life history strategies that include more feeding trips for young and faster growth. Similarly, slow movement lifestyles of long-lived species fit with the reduced food needs of slower life history strategies. Movement lifestyles may have evolved as an integrated component of the slow-fast life history continuum.
Collapse
|
14
|
Fakan EP, Allan BJM, Illing B, Hoey AS, McCormick MI. Habitat complexity and predator odours impact on the stress response and antipredation behaviour in coral reef fish. PLoS One 2023; 18:e0286570. [PMID: 37379294 DOI: 10.1371/journal.pone.0286570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/18/2023] [Indexed: 06/30/2023] Open
Abstract
Mass coral bleaching events coupled with local stressors have caused regional-scale loss of corals on reefs globally. Following the loss of corals, the structural complexity of these habitats is often reduced. By providing shelter, obscuring visual information, or physically impeding predators, habitat complexity can influence predation risk and the perception of risk by prey. Yet little is known on how habitat complexity and risk assessment interact to influence predator-prey interactions. To better understand how prey's perception of threats may shift in degraded ecosystems, we reared juvenile Pomacentrus chrysurus in environments of various habitat complexity levels and then exposed them to olfactory risk odours before simulating a predator strike. We found that the fast-start escape responses were enhanced when forewarned with olfactory cues of a predator and in environments of increasing complexity. However, no interaction between complexity and olfactory cues was observed in escape responses. To ascertain if the mechanisms used to modify these escape responses were facilitated through hormonal pathways, we conducted whole-body cortisol analysis. Cortisol concentrations interacted with habitat complexity and risk odours, such that P. chrysurus exhibited elevated cortisol levels when forewarned with predator odours, but only when complexity levels were low. Our study suggests that as complexity is lost, prey may more appropriately assess predation risk, likely as a result of receiving additional visual information. Prey's ability to modify their responses depending on the environmental context suggests that they may be able to partly alleviate the risk of increased predator-prey interactions as structural complexity is reduced.
Collapse
Affiliation(s)
- Eric P Fakan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- College of Sciences and Engineering, James Cook University, Townsville, QLD, Australia
| | - Bridie J M Allan
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Björn Illing
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Thünen Institute of Fisheries Ecology, Bremerhaven, Germany
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- College of Sciences and Engineering, James Cook University, Townsville, QLD, Australia
| | - Mark I McCormick
- Coastal Marine Field Station, School of Science, University of Waikato, Tauranga, New Zealand
| |
Collapse
|
15
|
Bhargava M, Dubey B. Trade-off and chaotic dynamics of prey-predator system with two discrete delays. CHAOS (WOODBURY, N.Y.) 2023; 33:2893148. [PMID: 37229637 DOI: 10.1063/5.0144182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
In our ecological system, prey species can defend themselves by casting strong and effective defenses against predators, which can slow down the growth rate of prey. Predator has more at stake when pursuing a deadly prey than just the chance of missing the meal. Prey have to "trade off" between reproduction rate and safety and whereas, predator have to "trade off" between food and safety. In this article, we investigate the trade-off dynamics of both predator and prey when the predator attacks a dangerous prey. We propose a two-dimensional prey and predator model considering the logistic growth rate of prey and Holling type-2 functional response to reflect predator's successful attacks. We examine the cost of fear to reflect the trade-off dynamics of prey, and we modify the predator's mortality rate by introducing a new function that reflects the potential loss of predator as a result of an encounter with dangerous prey. We demonstrated that our model displays bi-stability and undergoes transcritical bifurcation, saddle node bifurcation, Hopf bifurcation, and Bogdanov-Taken bifurcations. To explore the intriguing trade-off dynamics of both prey and predator population, we investigate the effects of our critical parameters on both population and observed that either each population vanishes simultaneously or the predator vanishes depending on the value of the handling time of the predator. We determined the handling time threshold upon which dynamics shift, demonstrating the illustration of how predators risk their own health from hazardous prey for food. We have conducted a sensitivity analysis with regard to each parameter. We further enhanced our model by including fear response delay and gestation delay. Our delay differential equation system is chaotic in terms of fear response delay, which is evidenced by the positivity of maximum Lyapunov exponent. We have used numerical analysis to verify our theoretical conclusions, which include the influence of vital parameters on our model through bifurcation analysis. In addition, we used numerical simulations to showcase the bistability between co-existence equilibrium and prey only equilibrium with their basins of attraction. The results that are reported in this article might be useful in interpreting the biological insights gained from studying the interactions between prey and predator.
Collapse
Affiliation(s)
- Masoom Bhargava
- Department of Mathematics, BITS Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Balram Dubey
- Department of Mathematics, BITS Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| |
Collapse
|
16
|
Li D, Zhang C, Cao Y, Gao M, Chang S, Xu M, Jin Z, Ni H. Food preference strategy of four sympatric rodents in a temperate forest in northeast China. Zookeys 2023; 1158:163-177. [PMID: 37234253 PMCID: PMC10208086 DOI: 10.3897/zookeys.1158.96886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/13/2023] [Indexed: 05/27/2023] Open
Abstract
Rodents are well known as both seed predators and dispersers of various plant species in forest ecosystems, and they play an important role in the regeneration of vegetation. Thus, the research on seed selection and vegetation regeneration by sympatric rodents is an interesting topic. To understand the characteristics of preferences of rodents for different seeds, a semi-natural enclosure experiment was performed with four rodent species (Apodemuspeninsulae, Apodemusagrarius, Tscherskiatriton, and Clethrionomysrufocanus) and the seeds of seven plant species (Pinuskoraiensis, Corylusmandshurica, Quercusmongolica, Juglansmandshurica, Armeniacasibirica, Prunussalicina, and Cerasustomentosa) to investigate the differentiation in niches and patterns of resource utilization of sympatric rodents. The results showed that all the rodents had consumed many seeds of Pi.koraiensis, Co.mandshurica, and Q.mongolica but differed significantly in how they selected the different seeds. The rate of utilization (Ri) of Pi.koraiensis, Co.mandshurica, and Q.mongolica exhibited the highest values. The Ei values indicated that the rodents tested exhibited differences in their priorities used to select the seeds from different plant species. All four species of rodents exhibited obvious preferences for certain seeds. Korean field mice preferentially consumed the seeds of Q.mongolica, Co.mandshurica, and Pi.koraiensis. Striped field mice favor the seeds of Co.mandshurica, Q.mongolica, P.koraiensis, and Nanking cherry. Greater long-tailed hamsters prefer to consume the seeds of Pi.koraiensis, Co.mandshurica, Q.mongolica, Pr.salicina, and Ce.tomentosa. Clethrionomysrufocanus likes to eat the seeds of Pi.koraiensis, Q.mongolica, Co.mandshurica, and Ce.tomentosa. The results supported our hypothesis that sympatric rodents overlap in food selection. However, each rodent species has a marked preference for food selection, and different rodent species differ in their food preferences. This reflects the role of distinct food niche differentiation in their coexistence.
Collapse
Affiliation(s)
- Dianwei Li
- Heilongjiang Academy of Forestry, No. 134 Haping Road, Harbin, Heilongjiang 150081, ChinaHeilongjiang Academy of ForestryHarbinChina
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, ChinaMudanjiang Normal UniversityMudanjiangChina
- College of Wildlife and Protected Area, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, ChinaNortheast Forestry UniversityHarbinChina
| | - Chengzhi Zhang
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, ChinaMudanjiang Normal UniversityMudanjiangChina
| | - Yuwei Cao
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, ChinaMudanjiang Normal UniversityMudanjiangChina
| | - Ming Gao
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, ChinaMudanjiang Normal UniversityMudanjiangChina
| | - Shiqi Chang
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, ChinaMudanjiang Normal UniversityMudanjiangChina
| | - Menghao Xu
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, ChinaMudanjiang Normal UniversityMudanjiangChina
| | - Zhimin Jin
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, ChinaMudanjiang Normal UniversityMudanjiangChina
| | - Hongwei Ni
- Heilongjiang Academy of Forestry, No. 134 Haping Road, Harbin, Heilongjiang 150081, ChinaHeilongjiang Academy of ForestryHarbinChina
| |
Collapse
|
17
|
Fear generalization and behavioral responses to multiple dangers. Trends Ecol Evol 2023; 38:369-380. [PMID: 36428124 DOI: 10.1016/j.tree.2022.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022]
Abstract
Animals often exhibit consistent-individual differences (CIDs) in boldness/fearfulness, typically studied in the context of predation risk. We focus here on fear generalization, where fear of one danger (e.g., predators) is correlated with fear of other dangers (e.g., humans, pathogens, moving vehicles, or fire). We discuss why fear generalization should be ecologically important, and why we expect fear to correlate across disparate dangers. CIDs in fear are well studied for some dangers in some taxa (e.g., human fear of pathogens), but not well studied for most dangers. Fear of some dangers has been found to correlate with general fearfulness, but some cases where we might expect correlated fears (e.g., between fear of humans, familiar predators, and exotic predators) are surprisingly understudied.
Collapse
|
18
|
Matsumura K, Miyatake T. Latitudinal cline of death-feigning behaviour in a beetle ( Tribolium castaneum). Biol Lett 2023; 19:20230028. [PMID: 36987613 PMCID: PMC10050934 DOI: 10.1098/rsbl.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Death-feigning behaviour is a phenomenon in which a prey is rendered motionless due to stimulation or threat from a predator. This anti-predator defence mechanism has been observed across numerous animal taxa and is considered adaptive in nature. However, longer durations of death feigning can result in decreased opportunities for feeding and reproduction, and therefore is often associated with fitness costs as compared to environments without predators. Differences have also been observed in the frequencies and durations of death feigning within populations, and these differences are thought to be influenced by the balance between survival and other fitness costs. Furthermore, this balance is predicted to vary in response to changes in environmental conditions. In this study, we examined the death feigning in 38 populations of the red flour beetle (Tribolium castaneum). Our results demonstrate that frequencies and durations of the death feigning in T. castaneum show geographical variations and a latitude cline, indicating that this behaviour is influenced by location as well as latitude. This study is the first to demonstrate the existence of a latitudinal cline in death feigning and suggests that death-feigning behaviour might have evolved in response to environmental factors that vary with latitude.
Collapse
Affiliation(s)
- Kentarou Matsumura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takahisa Miyatake
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
19
|
Ly A, Barker A, Prévost ED, McGovern DJ, Kilpatrick Z, Root DH. Bed Nucleus of the Stria Terminalis GABA neurons are necessary for changes in foraging behavior following an innate threat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530051. [PMID: 36865159 PMCID: PMC9980185 DOI: 10.1101/2023.02.25.530051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Foraging is a universal behavior that has co-evolved with predation pressure. We investigated the role of bed nucleus of the stria terminalis (BNST) GABA neurons in robotic and live predator threat processing and their consequences in post-threat encounter foraging. Mice were trained to procure food in a laboratory-based foraging apparatus in which food pellets were placed at discrete and incrementally greater distances from a nest zone. After mice learned to forage, they were exposed to either a robotic or live predator threat, while BNST GABA neurons were chemogenetically inhibited. Post-robotic threat encounter, mice spent more time in the nest zone, but other foraging parameters were unchanged compared to pre-encounter behavior. Inhibition of BNST GABA neurons had no effect on foraging behavior post-robotic threat encounter. Following live predator exposure, control mice spent significantly more time in the nest zone, increased their latency to successfully forage, and their overall foraging performance was significantly a ltered. I nhibition o f BNST GABA neurons during live predator exposure prevented changes in foraging behavior from developing after live predator threat. BNST GABA neuron inhibition did not alter foraging behavior during robotic or live predator threat. We conclude that while both robotic and live predator encounter effectively intrude on foraging behavior, the perceived risk and behavioral consequence of the threats are distinguishable. Additionally, BNST GABA neurons may play a role in the integration of prior innate predator threat experience that results in hypervigilance during post-encounter foraging behavior.
Collapse
Affiliation(s)
- Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Alexandra Barker
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Dillon J. McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Zachary Kilpatrick
- Department of Applied Mathematics, University of Colorado Boulder, 11 Engineering Dr, Boulder, CO 80309
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| |
Collapse
|
20
|
Fardell LL, Pavey CR, Dickman CR. Influences of roaming domestic cats on wildlife activity in patchy urban environments. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Roaming domestic cats (Felis catus) are recognised as a threat to wildlife globally. Yet management of pet cats in urbanised areas is not regularly mandated, and management of feral cats in urbanised areas is rarely implemented. Mounting evidence emphasises the value of urban environments as hot spots of wildlife activity, which as the human population continues to grow may become the best or only habitats available to some wildlife species. Wildlife in urban environments must navigate introduced stressors that can compound with natural stressors. Additional, often novel, predators such as free-roaming pet and feral cats that are prevalent in urban environments could have high nonconsumptive fear/stress impacts on urban wildlife that influence their activity and adversely affect their health and reproduction capabilities, possibly more so than direct predation effects do. Cat roaming activity, particularly that of pet cats, could be managed with the support of the community, though motivation needs to be ensured. Understanding if roaming cat activity influences urban wildlife activity via perceived fear/stress impacts will help to build community motivation for the need for domestic cat management in urbanised areas. Using infrared motion sensor cameras positioned in both yards and green space edge habitats, we observed whether the presence and times active of native and introduced small mammals, and native birds, were impacted by domestic cat activity within a 24-h period and by their activity in the prior-24-h period. We found evidence of cat roaming activity during the hours of most wildlife activity, and show that wildlife navigated “landscapes of fear” relative to cat activity, as wildlife observed across a 24-h period increased their activity in the absence of cats in the same 24-h period and in the previous 24-h period. We also tested if cat activity was relative to previous cat activity, or disturbances, and found that cats reduced activity in response to each, but were still consistently present. Our results provide justification for the need to increase management of domestic cats in urbanised areas and offer fear/stress impacts as a novel approach to engender community support of such management.
Collapse
|
21
|
Manuel R, Johannes T, Sathyan R, Couldridge VCK. Temporal partitioning of Bullacris unicolor (Orthoptera: Pneumoridae) calling activity to avoid predation. BIOACOUSTICS 2023. [DOI: 10.1080/09524622.2023.2170469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Robyn Manuel
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Tarné Johannes
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Rekha Sathyan
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | | |
Collapse
|
22
|
Ausilio G, Wikenros C, Sand H, Wabakken P, Eriksen A, Zimmermann B. Environmental and anthropogenic features mediate risk from human hunters and wolves for moose. Ecosphere 2022. [DOI: 10.1002/ecs2.4323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- G. Ausilio
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad Inland Norway University of Applied Sciences Koppang Norway
| | - C. Wikenros
- Grimsö Wildlife Research Station, Department of Ecology Swedish University of Agricultural Sciences Riddarhyttan Sweden
| | - H. Sand
- Grimsö Wildlife Research Station, Department of Ecology Swedish University of Agricultural Sciences Riddarhyttan Sweden
| | - P. Wabakken
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad Inland Norway University of Applied Sciences Koppang Norway
| | - A. Eriksen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad Inland Norway University of Applied Sciences Koppang Norway
| | - B. Zimmermann
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad Inland Norway University of Applied Sciences Koppang Norway
| |
Collapse
|
23
|
Barbee BE, Lin MKR, Min IA, Takenami AM, Philson CS, Blumstein DT. Nutrient enrichment alters risk assessment in Giant clams. J Zool (1987) 2022. [DOI: 10.1111/jzo.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- B. E. Barbee
- Department of Ecology and Evolutionary Biology University of California at Los Angeles Los Angeles CA USA
| | - M. K. R. Lin
- Department of Ecology and Evolutionary Biology University of California at Los Angeles Los Angeles CA USA
| | - I. A. Min
- Department of Ecology and Evolutionary Biology University of California at Los Angeles Los Angeles CA USA
| | - A. M. Takenami
- Department of Ecology and Evolutionary Biology University of California at Los Angeles Los Angeles CA USA
| | - C. S. Philson
- Department of Ecology and Evolutionary Biology University of California at Los Angeles Los Angeles CA USA
| | - D. T. Blumstein
- Department of Ecology and Evolutionary Biology University of California at Los Angeles Los Angeles CA USA
| |
Collapse
|
24
|
Knight CJ, Dunn RP, Long JD. Conspecific cues, not starvation, mediate barren urchin response to predation risk. Oecologia 2022; 199:859-869. [PMID: 35907124 DOI: 10.1007/s00442-022-05225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Prey state and prey density mediate antipredator responses that can shift community structure and alter ecosystem processes. For example, well-nourished prey at low densities (i.e., prey with higher per capita predation risk) should respond strongly to predators. Although prey state and density often co-vary across habitats, it is unclear if prey responses to predator cues are habitat-specific. We used mesocosms to compare the habitat-specific responses of purple sea urchins (Strongylocentrotus purpuratus) to waterborne cues from predatory lobsters (Panulirus interruptus). We predicted that urchins from kelp forests (i.e., in well-nourished condition) tested at low densities typically observed in this habitat would respond more strongly to predation risk than barren urchins (i.e., in less nourished condition) tested at high densities typically observed in this habitat. Indeed, when tested at densities associated with respective habitats, urchins from forests, but not barrens, reduced kelp grazing by 69% when exposed to lobster risk cues. Barren urchins that were unresponsive to predator cues at natural, high densities suddenly responded strongly to lobster cues when conspecific densities were reduced. Strong responses of low densities of barren urchins persisted across feeding history (i.e. 0-64 days of starvation). This suggests that barren urchins can respond to predators but typically do not because of high conspecific densities. Because high densities of urchins in barrens should weaken the non-consumptive effects of lobsters, urchins in these habitats may continue to graze in the presence of predators thereby providing a feedback that maintains urchin barrens.
Collapse
Affiliation(s)
- Christopher J Knight
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, San Diego, CA, 92182, USA.
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA, 93950, USA.
| | - Robert P Dunn
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, San Diego, CA, 92182, USA
- North Inlet-Winyah Bay National Estuarine Research Reserve, Georgetown, SC, 29440, USA
- Baruch Marine Field Laboratory, University of South Carolina, 2306 Crabhall Road Georgetown, Columbia, SC, 29440, USA
| | - Jeremy D Long
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, San Diego, CA, 92182, USA
| |
Collapse
|
25
|
Baker HK, Li SS, Samu SC, Jones NT, Symons CC, Shurin JB. Prey naiveté alters the balance of consumptive and non‐consumptive predator effects and shapes trophic cascades in freshwater plankton. OIKOS 2022. [DOI: 10.1111/oik.09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Henry K. Baker
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
| | - Stephanie S. Li
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
- School of Environment and Natural Resources, The Ohio State Univ. Columbus OH USA
| | - Stefan C. Samu
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
| | - Natalie T. Jones
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
- School of Biological Sciences, Univ. of Queensland St. Lucia QLD Australia
| | - Celia C. Symons
- Dept of Ecology and Evolutionary Biology, Univ. of California Irvine CA USA
| | - Jonathan B. Shurin
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
| |
Collapse
|
26
|
McPeek MA, McPeek SJ, Fu F. Character displacement when natural selection pushes in only one direction. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mark A. McPeek
- Department of Biological Sciences Dartmouth College Hanover New Hampshire USA
| | | | - Feng Fu
- Department of Mathematics Dartmouth College Hanover New Hampshire USA
| |
Collapse
|
27
|
Size-dependent fitness trade-offs of foraging in the presence of predators for prey with different growth patterns. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Feng L, Qin H, Li J, Li X, Feng J, Jiang T. Extrinsic and intrinsic factors influencing the emergence and return of the Asian particolored bat Vespertilio sinensis to the summer roost. Ecol Evol 2022; 12:e8890. [PMID: 35600692 PMCID: PMC9106590 DOI: 10.1002/ece3.8890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 11/07/2022] Open
Abstract
Circadian rhythms play a crucial role in the health and survival of organisms. However, little is known concerning how intrinsic and extrinsic factors affect animal daily rhythms in the field, especially in nocturnal animals. Here, we investigated the first emergence, mid-emergence, and return times of Vespertilio sinensis, and also integrated environmental conditions (temperature, humidity, and light intensity) and biotic factors (reproductive status and predation risk) to determine causes of variation in the activity rhythms of the bats. We found that variation in the first emergence time, the mid-emergence time, and the final return time were distinct. The results demonstrated that the emergence and return times of bats were affected by light intensity, reproductive status, and predation risk in a relatively complex pattern. Light intensity had the greatest contribution to activity rhythms. Moreover, we first investigated the effects of actual predators on the activity rhythms of bats; the results showed that the mid-emergence time of bats was earlier as predators were hunting, but the final return time was later when predators were present. Finally, our results also highlighted the importance of higher energy demands during the lactation in bats to variation in activity rhythms. These results improve our understanding of the patterns and causes of variation in activity rhythms in bats and other nocturnal animals.
Collapse
Affiliation(s)
- Lei Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology of Education MinistryInstitute of Grassland ScienceNortheast Normal UniversityChangchunChina
| | - Hexuan Qin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology of Education MinistryInstitute of Grassland ScienceNortheast Normal UniversityChangchunChina
| | - Jingjing Li
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Xin Li
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology of Education MinistryInstitute of Grassland ScienceNortheast Normal UniversityChangchunChina
| |
Collapse
|
29
|
|
30
|
Hoffmann CF, Pilfold NW, Ruppert KA, Letoluai A, Lenguya L, Limo I, Montgomery RA. The Integral Nature of Encounter Rate in Predicting Livestock Depredation Risk. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.808043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carnivore depredation of livestock is one of the primary drivers of human-carnivore conflict globally, threatening the well-being of livestock owners, and fueling large carnivore population declines. Interventions designed to reduce carnivore depredation typically center around predictions of depredation risk. However, these spatial risk models tend to be informed by data depicting the number of livestock attacked by carnivores. Importantly, such models omit key stages in the predation sequence which are required to predict predation risk, or in this case depredation risk. Applying the classic predation risk model defined by Lima and Dill demonstrates that depredation risk is dependent upon quantifying the rates at which carnivores encounter livestock before attacking. However, encounter rate is challenging to estimate, necessitating novel data collection systems. We developed and applied such a system to quantify carnivore-livestock encounters at livestock corrals (i.e., bomas) across a 9-month period in Central Kenya. Concurrently, we monitored the number of livestock attacked by carnivores at these bomas. We calculated carnivore-livestock encounter rates, attack rates, and depredation risk at the boma. We detected 1,383 instances in which carnivores encountered livestock at the bomas. However, we only recorded seven attacks. We found that the encounter rate and attack rate for spotted hyenas were almost six and three times higher than that for any other species, respectively. Consequently, spotted hyenas posed the greatest depredation risk for livestock at the boma. We argue that better understanding of carnivore-livestock encounter rates is necessary for effective prediction and mitigation of carnivore depredation of livestock.
Collapse
|
31
|
Polverino G, Soman VR, Karakaya M, Gasparini C, Evans JP, Porfiri M. Ecology of fear in highly invasive fish revealed by robots. iScience 2022; 25:103529. [PMID: 35106458 PMCID: PMC8786638 DOI: 10.1016/j.isci.2021.103529] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/19/2021] [Accepted: 11/23/2021] [Indexed: 11/06/2022] Open
Abstract
Invasive species threaten biodiversity and ecosystem functioning. We develop an innovative experimental approach, integrating biologically inspired robotics, time-series analysis, and computer vision, to build a detailed profile of the effects of non-lethal stress on the ecology and evolution of mosquitofish (Gambusia holbrooki)—a global pest. We reveal that brief exposures to a robotic predator alter mosquitofish behavior, increasing fear and stress responses, and mitigate the impact of mosquitofish on native tadpoles (Litoria moorei) in a cause-and-effect fashion. Effects of predation risk from the robot carry over to routine activity and feeding rate of mosquitofish weeks after exposure, resulting in weight loss, variation in body shape, and reduction in the fertility of both sexes—impairing survival, reproduction, and ecological success. We capitalize on evolved responses of mosquitofish to reduce predation risk—neglected in biological control practices—and provide scientific foundations for widespread use of state-of-the-art robotics in ecology and evolution research. Can robotic predators reveal the vulnerabilities of invasive and pest species? Our predator selectively targets invasive fish to protect native amphibians Stress from the robot compromises behavior, health, and reproduction of invaders We open new frontiers for robotics in ecology, evolution, and biocontrol research
Collapse
Affiliation(s)
- Giovanni Polverino
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Vrishin R Soman
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia.,Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| | - Mert Karakaya
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| | - Clelia Gasparini
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia.,Department of Biology, University of Padova, Padova, Italy
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA.,Center for Urban Science and Progress, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
32
|
Yu F, Li G, Wei S, Yi X, Ma J, Ma K, Chen G. Rodent-mediated plant seed dispersal: What happens to the seeds after entering the gaps with different sizes? Ecol Evol 2022; 12:e8286. [PMID: 35136541 PMCID: PMC8809425 DOI: 10.1002/ece3.8286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
In general, it is accepted that gap formation significantly affects the placement of scatter-hoarded seeds by small rodents, but the effects of different forest gap sizes on the seed-eating and scatter-hoarding behaviors of small rodents remain unclear. Thus, we examined the effects of a closed-canopy forest, forest edge, and gaps with different sizes on the spatial dispersal of Quercus variabilis acorns and cache placement by small rodents using coded plastic tags in the Taihang Mountains, China. The seeds were removed rapidly, and there were significant differences in the seed-eating and caching strategies between the stand types. We found that Q. variabilis acorns were usually eaten after being removed from the closed-canopy forest and forest edges. By contrast, the Q. variabilis acorns in the forest gap stands were more likely to be scatter-hoarded. The dispersal distances of Q. variabilis acorns were significantly longer in the forest gap plots compared with the closed canopy and forest edge plots. However, the proportion of scatter-hoarded seeds did not increase significantly as the gap size increased. In small-scale oak reforestation projects or research, creating small gaps to promote rodent-mediated seed dispersal may effectively accelerate forest recovery and successional processes.
Collapse
Affiliation(s)
- Fei Yu
- College of Life SciencesHenan Normal UniversityXinxiangChina
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Guangjie Li
- College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Shanshan Wei
- College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Xianfeng Yi
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Jianmin Ma
- College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Keming Ma
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Guangwen Chen
- College of Life SciencesHenan Normal UniversityXinxiangChina
| |
Collapse
|
33
|
Menezes J, Moura B. Mobility-limiting antipredator response in the rock-paper-scissors model. Phys Rev E 2021; 104:054201. [PMID: 34942823 DOI: 10.1103/physreve.104.054201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Antipredator behavior is present in many biological systems where individuals collectively react to an imminent attack. The antipredator response may influence spatial pattern formation and ecosystem stability but requires an organism's cost to contribute to the collective effort. We investigate a nonhierarchical tritrophic system, whose predator-prey interactions are described by the rock-paper-scissors game rules. In our spatial stochastic simulations, the radius of antipredator response defines the maximum prey group size that disturbs the predator's action, determining the individual cost to participate in antipredator strategies. We consider that each organism contributes equally to the collective effort, having its mobility limited by the proportion of energy devoted to the antipredator reaction. Our outcomes show that the antipredator response leads to spiral patterns, with the segregation of organisms of the same species occupying departed spatial domains. We found that a less localized antipredator response increases the average size of the single-species patches, improving the protection of individuals against predation. Finally, our findings show that although the increase of the predation risk for a more localized antipredator response, the high mobility constraining benefits species coexistence. Our results may help ecologists understand the mechanisms leading to the stability of biological systems where locality is crucial to behavioral interactions among species.
Collapse
Affiliation(s)
- J Menezes
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte Caixa Postal 1524, 59072-970 Natal, RN, Brazil.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B Moura
- Departamento de Engenharia Biomédica, Universidade Federal do Rio Grande do Norte Av. Senador Salgado Filho, 300, 59078-970 Natal, RN, Brazil.,Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute Av Santos Dumont, 1560, 59280-000 Macaiba, RN, Brazil
| |
Collapse
|
34
|
Greig K, Rawlence NJ. The Contribution of Kurī (Polynesian Dog) to the Ecological Impacts of the Human Settlement of Aotearoa New Zealand. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.757988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The pre-human Aotearoa New Zealand fauna was dominated by avian and reptilian species. Prior to first human settlement by East Polynesian colonists, the top predators were two giant raptorial birds. Aside from humans themselves, colonisation also resulted in the simultaneous introduction of two novel mammalian predators into this naive ecosystem, the kiore (Pacific rat) and kurī (Polynesian dog). While the ecological impacts of kiore are relatively well understood, those of kurī are difficult to assess, and as such kurī have frequently been disregarded as having any meaningful impact on New Zealand’s biodiversity. Here we use the archaeological and palaeoecological record to reassess the potential impacts of kurī on this ecosystem. We argue that far from being confined to villages, kurī could have had a significant widespread but relatively localised impact on New Zealand’s avian, reptilian and marine mammal (seals and sea lions) fauna as a novel predator of medium-sized species. In this way, kurī potentially amplified the already significant impacts of Polynesian colonists and their descendants on New Zealand’s ecosystem, prior to European arrival. As such, kurī should be included in models of human impact in addition to over-hunting, environmental modification and predation by kiore.
Collapse
|
35
|
Fardell LL, Nano CEM, Pavey CR, Dickman CR. Small Prey Animal Habitat Use in Landscapes of Fear: Effects of Predator Presence and Human Activity Along an Urban Disturbance Gradient. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.750094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human activity can impose additional stressors to wildlife, both directly and indirectly, including through the introduction of predators and influences on native predators. As urban and adjacent environments are becoming increasingly valuable habitat for wildlife, it is important to understand how susceptible taxa, like small prey animals, persist in urban environments under such additional stressors. Here, in order to determine how small prey animals’ foraging patterns change in response to habitat components and distances to predators and human disturbances, we used filmed giving-up density (GUD) trials under natural conditions along an urban disturbance gradient. We then ran further GUD trials with the addition of experimentally introduced stressors of: the odors of domestic cat (Felis catus)/red fox (Vulpes vulpes) as predator cues, light and sound as human disturbance cues, and their combinations. Small mammals were mostly observed foraging in the GUD trials, and to a lesser degree birds. Animals responded to proximity to predators and human disturbances when foraging under natural conditions, and used habitat components differently based on these distances. Along the urban disturbance gradient situation-specific responses were evident and differed under natural conditions compared to additional stressor conditions. The combined predator with human disturbance treatments resulted in responses of higher perceived risk at environments further from houses. Animals at the urban-edge environment foraged more across the whole site under the additional stressor conditions, but under natural conditions perceived less risk when foraging near predators and further from human disturbance (houses). Contrastingly, at the environments further from houses, foraging near human disturbance (paths/roads) when close to a predator was perceived as lower risk, but when foraging under introduced stressor conditions these disturbances were perceived as high risk. We propose that sensory and behavioral mechanisms, and stress exposure best explain our findings. Our results indicate that habitat components could be managed to reduce the impacts of high predation pressure and human activity in disturbed environments.
Collapse
|
36
|
Menezes JF, Tiano I, Kotler BP. Gerbils from populations located in low vegetation habitats emerge later than those from more densely vegetated habitats. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1988721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jorge F.S. Menezes
- Marco and Louise Mitrani Department of Desert Ecology, Sideer, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Beersheba 8499000, Israel
| | - Inbal Tiano
- Marco and Louise Mitrani Department of Desert Ecology, Sideer, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Beersheba 8499000, Israel
| | - Burt P. Kotler
- Marco and Louise Mitrani Department of Desert Ecology, Sideer, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Beersheba 8499000, Israel
| |
Collapse
|
37
|
Luttbeg B, Beaty LE, Ambardar M, Grindstaff JL. Mathematical modeling reveals how the speed of endocrine regulation should affect baseline and stress-induced glucocorticoid levels. Horm Behav 2021; 136:105059. [PMID: 34508875 PMCID: PMC8629843 DOI: 10.1016/j.yhbeh.2021.105059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/10/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Unpredictable environmental changes displace individuals from homeostasis and elicit a stress response. In vertebrates, the stress response is mediated mainly by glucocorticoids (GCs) which initiate physiological changes while minimizing allostatic overload. Individuals and species vary consistently in baseline and stress-induced GC levels and the speed with which GC levels can be upregulated or downregulated, but the extent to which variation in hormone regulation influences baseline and stress-induced GC levels is unclear. Using mathematical modeling, we tested how GC regulation rate, frequencies and durations of acute stressors, fitness functions, and allostatic overload affect GC levels during control and acute stress periods. As GC regulation rate slows, baseline and acute stress-induced GC levels become more similar. When the speed of up- and downregulation decreased, hormone levels became more linked to anticipated future conditions to avoid fitness costs of mismatching a new environmental state. More frequent acute stressors caused baseline and acute stress-induced GC levels to converge. When fitness was more tightly linked to hormone levels during acute stress periods than during control states, the speed of upregulation influenced optimal hormone levels more than the downregulation rate. With allostatic overload costs included, predicted GC levels were lower and more dependent on the frequency of past acute stressors. Our results show the value of optimality modeling to study the hormonal response to stressors and suggest GC levels depend on past and anticipated future environmental states as well as individual differences in hormone regulation.
Collapse
Affiliation(s)
- Barney Luttbeg
- Department of Integrative Biology, Oklahoma State University, OK 74078, United States.
| | - Lynne E Beaty
- School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, United States
| | - Medhavi Ambardar
- Department of Biological Sciences, Fort Hays State University, Hays, KS 67601, United States
| | - Jennifer L Grindstaff
- Department of Integrative Biology, Oklahoma State University, OK 74078, United States
| |
Collapse
|
38
|
Occupancy and activity rhythms of the Siberian roe deer. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Modak S, Brown WD, Balakrishnan R. Decoupling of female phonotaxis and mating propensity in a tree cricket. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Hubbard AJ, Foster MJ, Daigle CL. Impact of social mixing on beef and dairy cattle—A scoping review. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
41
|
Cain PW, Mitchell WA. Modelling the sequential behaviours of simultaneous predator and prey patch use. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
DelGiudice GD, Ahmadkhani M, St‐Louis V, Severud WJ, Obermoller TR. Exploring the role of parental proximity in the maternal–neonate bond and parental investment in moose (
Alces alces
) through postcapture movement dynamics. Ecol Evol 2021. [DOI: 10.1002/ece3.7680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Glenn D. DelGiudice
- Forest Wildlife Populations and Research Group Minnesota Department of Natural Resources Forest Lake MN USA
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota Saint Paul MN USA
| | - Mohsen Ahmadkhani
- Department of Geography, Environment, and Society University of Minnesota Minneapolis MN USA
| | - Véronique St‐Louis
- Wildlife Biometrics Unit Section of Wildlife Minnesota Department of Natural Resources Forest Lake MN USA
| | - William J. Severud
- Department of Veterinary Population Medicine University of Minnesota Saint Paul MN USA
| | - Tyler R. Obermoller
- Farmland Wildlife Populations and Research Group Minnesota Department of Natural Resources Madelia MN USA
| |
Collapse
|
43
|
Nordberg E, Denny R, Schwarzkopf L. Testing measures of boldness and exploratory activity in native versus invasive species: geckos as a model system. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Chen E, Zielinski C, Deno J, Singh R, Bell AM, Hellmann JK. The specificity of sperm-mediated paternal effects in threespine sticklebacks. Behav Ecol Sociobiol 2021; 75:68. [PMID: 37283951 PMCID: PMC10241442 DOI: 10.1007/s00265-021-03001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Parental effects may help offspring respond to challenging environments, but whether parental exposure to different environmental challenges induces similar responses in offspring is largely unknown. We compared the offspring of threespine stickleback (Gasterosteus aculeatus) fathers who had been exposed to a potentially threatening stimulus (net), a native predator (sculpin), or who had been left unexposed (control). Relative to offspring of control fathers, offspring of sculpin-exposed fathers were more responsive (greater change in activity) to a simulated sculpin predator attack, while offspring of net-exposed fathers were less responsive (fewer antipredator behaviors) and showed altered stress responses compared to the control. To evaluate whether parental exposure primes offspring to respond to specific stimuli (e.g., offspring of net-exposed fathers respond most strongly to a net), we then exposed offspring of each paternal treatment to nets, native sculpin models, or non-native trout models. Paternal treatment did not influence offspring response to different stimuli; instead, offspring were generally more responsive to the native sculpin predator compared to nets or non-native trout predator, suggesting that sticklebacks have innate predator recognition of native predators. Collectively, these results underscore that, while parental exposure to non-ecologically relevant stressors elicits effects in intergenerational studies, these findings may not mirror those produced when parents encounter ecologically relevant stressors. Knowing that parental effects can be predator-specific furthers our understanding of the ways in which parental effects may evolve to be adaptive and suggests the potential for transgenerational plasticity to affect how animals respond to human induced environmental change, including non-native predators.
Collapse
Affiliation(s)
- Eunice Chen
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Christian Zielinski
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jack Deno
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Raiza Singh
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Alison M. Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jennifer K. Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Present address: Department of Biology, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
45
|
Li D, Liu Y, Shan H, Li N, Hao J, Yang B, Peng T, Jin Z. Effects of season and food on the scatter-hoarding behavior of rodents in temperate forests of Northeast China. Zookeys 2021; 1025:73-89. [PMID: 33814946 PMCID: PMC7997858 DOI: 10.3897/zookeys.1025.60972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
To explore the differences in hoarding strategies of rodents for different seeds in various seasons, we labeled and released the seeds of Pinuskoraiensis, Corylusmandshurica, Quercusmongolica and Prunussibirica in temperate forests of Northeast China and investigated the fate of the seeds in spring and autumn. The analysis showed that the hoarding strategies of the rodents varied substantially between seasons. The seeds were consumed faster in the spring than in the autumn. More than 50% of the seeds in the two seasons were consumed by the 16th day. It took 36 days to consume 75% of the seeds in the spring and 44 days in the autumn. The rate of consumption of the seeds in the spring was greater than in the autumn, and the rate of spread of the seeds was greater in the autumn. The distances of removal for the consumption and dispersal of seeds in the spring (3.26 ± 3.21 m and 4.15 ± 3.52 m, respectively) were both shorter than those in the autumn (3.74 ± 3.41 m and 4.87 ± 3.94 m, respectively). In addition, the fate of different seeds varied significantly owing to differences in hoarding strategies. The seeds of the three preferred species, P.koraiensis, C.mandshurica, and Q.mongolica, were quickly consumed. More than 90% of the seeds of these species were consumed. Only 21% of Pr.sibirica seeds were slowly consumed, and the two seasons had the same seed consumption rate patterns: the consumption rate of P.koraiensis seeds was the highest, followed by C.mandshurica, then Q.mongolica, and finally Pr.sibirica. The median removal times of the two seasons were different, but the rules were the same: P.koraiensis was the shortest, followed by C.mandshurica, and the third was Q.mongolica. In both seasons, the most predated in situ seeds were those of P.koraiensis; the most hoarded seeds were those of C.mandshurica, and the most unconsumed seeds were those of Pr.sibirica.
Collapse
Affiliation(s)
- Dianwei Li
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, China Mudanjiang Normal University Mudanjiang China.,College of Wildlife and Protected Area, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China Northeast Forestry University Harbin China.,Heilongjiang Academy of Forestry, No. 134 Haping Road, Harbin, Heilongjiang 150081, China Heilongjiang Academy of Forestry Harbin China
| | - Yang Liu
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, China Mudanjiang Normal University Mudanjiang China
| | - Hongjia Shan
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, China Mudanjiang Normal University Mudanjiang China
| | - Na Li
- Mudanjiang Medical School No. 5 Fangzhier Road, Mudanjiang, Heilongjiang 157009, China Mudanjiang Medical School Mudanjiang China
| | - Jingwei Hao
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, China Mudanjiang Normal University Mudanjiang China
| | - Binbin Yang
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, China Mudanjiang Normal University Mudanjiang China
| | - Ting Peng
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, China Mudanjiang Normal University Mudanjiang China
| | - Zhimin Jin
- College of Life Sciences and Technology, Mudanjiang Normal University, No. 191 Wenhua Road, Mudanjiang, Heilongjiang 157011, China Mudanjiang Normal University Mudanjiang China
| |
Collapse
|
46
|
Food level and light conditions affect the antipredator behavior in larvae of a stream-breeding amphibian. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02966-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Lyu Y, Weaver KJ, Shaukat HA, Plumoff ML, Tjilos M, Promislow DE, Pletcher SD. Drosophila serotonin 2A receptor signaling coordinates central metabolic processes to modulate aging in response to nutrient choice. eLife 2021; 10:59399. [PMID: 33463526 PMCID: PMC7909950 DOI: 10.7554/elife.59399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
It has been recognized for nearly a century that diet modulates aging. Despite early experiments suggesting that reduced caloric intake augmented lifespan, accumulating evidence indicates that other characteristics of the diet may be equally or more influential in modulating aging. We demonstrate that behavior, metabolism, and lifespan in Drosophila are affected by whether flies are provided a choice of different nutrients or a single, complete medium, largely independent of the amount of nutrients that are consumed. Meal choice elicits a rapid metabolic reprogramming that indicates a potentiation of TCA cycle and amino acid metabolism, which requires serotonin 2A receptor. Knockdown of glutamate dehydrogenase, a key TCA pathway component, abrogates the effect of dietary choice on lifespan. Our results reveal a mechanism of aging that applies in natural conditions, including our own, in which organisms continuously perceive and evaluate nutrient availability to promote fitness and well-being. The foods we eat can affect our lifespan, but it is also possible that thinking about food may have effects on our health. Choosing what to eat is one of the main ways we think about food, and most animals, including the fruit fly Drosophila melanogaster, choose their foods. The effects of these choices can affect health via a chemical in the brain called serotonin. This chemical interacts with proteins called serotonin 2A receptors in the brain, which then likely primes the body to process nutrients. To understand how serotonin affected the lifespan and health of fruit flies, Lyu et al. compared flies that were offered a single food to those that could choose between several foods. The flies that had a choice of foods lived shorter lives and produced more serotonin, but these effects were reversed when Lyu et al. limited the amount of a protein called glutamate dehydrogenase, which helps cells process nutrients. These results suggest that choosing what we eat can impact lifespan, ageing and health. Human and fly brains share many similarities, but human brain chemistry is more complex, as is our experience of food. This work demonstrates that food choices can affect lifespan. More research into this phenomenon may shed further light onto how our thoughts and decision-making impact our health.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, United States
| | - Kristina J Weaver
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, United States
| | - Humza A Shaukat
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, United States
| | - Marta L Plumoff
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, United States
| | - Maria Tjilos
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, United States
| | - Daniel El Promislow
- Department of Lab Medicine & Pathology, University of Washington School of Medicine, Seattle, United States.,Department of Biology, University of Washington, Seattle, United States
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, United States
| |
Collapse
|
48
|
Hayes HG, Hollander ENR, Vydro SA, Williams DM, Blumstein DT. Cautious clams? Energetic state modifies risk assessment in giant clams. J Zool (1987) 2020. [DOI: 10.1111/jzo.12853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- H. G. Hayes
- Department of Ecology & Evolutionary Biology University of California Los Angeles Los Angeles CA USA
| | - E. N. R. Hollander
- Department of Ecology & Evolutionary Biology University of California Los Angeles Los Angeles CA USA
| | - S. A. Vydro
- Department of Ecology & Evolutionary Biology University of California Los Angeles Los Angeles CA USA
| | - D. M. Williams
- Department of Ecology & Evolutionary Biology University of California Los Angeles Los Angeles CA USA
| | - D. T. Blumstein
- Department of Ecology & Evolutionary Biology University of California Los Angeles Los Angeles CA USA
| |
Collapse
|
49
|
Palacios MDM, McCormick MI. Positive indirect effects of top‐predators on the behaviour and survival of juvenile fishes. OIKOS 2020. [DOI: 10.1111/oik.07731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria del Mar Palacios
- ARC Centre of Excellence for Coral Reef Studies, James Cook Univ. Townsville Queensland Australia
- School of Life and Environmental Sciences, Deakin Univ. Victoria Australia
| | - Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook Univ. Townsville Queensland Australia
| |
Collapse
|
50
|
Mathot KJ, Kok EMA, van den Hout P, Dekinga A, Piersma T. Red knots ( Calidris canutus islandica) manage body mass with dieting and activity. ACTA ACUST UNITED AC 2020; 223:jeb.231993. [PMID: 32967997 DOI: 10.1242/jeb.231993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022]
Abstract
Mass regulation in birds is well documented. For example, birds can increase body mass in response to lower availability and/or predictability of food and decrease body mass in response to increased predation danger. Birds also demonstrate an ability to maintain body mass across a range of food qualities. Although the adaptive significance of mass regulation has received a great deal of theoretical and empirical attention, the mechanisms by which birds achieve this have not. Several non-exclusive mechanisms could facilitate mass regulation in birds. Birds could regulate body mass by adjusting food intake (dieting), activity, baseline energetic requirements (basal metabolic rate), mitochondrial efficiency or assimilation efficiency. Here, we present the results of two experiments in captive red knots (Calidris canutus islandica) that assess three of these proposed mechanisms: dieting, activity and up- and down-regulation of metabolic rate. In the first experiment, knots were exposed to cues of predation risk that led them to exhibit presumably adaptive mass loss. In the second experiment, knots maintained constant body mass despite being fed alternating high- and low-quality diets. In both experiments, regulation of body mass was achieved through a combination of changes in food intake and activity. Both experiments also provide some evidence for a role of metabolic adjustments. Taken together, these two experiments demonstrate that fine-scale management of body mass in knots is achieved through multiple mechanisms acting simultaneously.
Collapse
Affiliation(s)
- Kimberley J Mathot
- Canada Research Chair in Integrative Ecology, Department of Biological Sciences, University of Alberta, Edmonton, Canada, T6G 2E9 .,NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB den Burg, Texel, The Netherlands
| | - Eva M A Kok
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB den Burg, Texel, The Netherlands.,Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Piet van den Hout
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB den Burg, Texel, The Netherlands
| | - Anne Dekinga
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB den Burg, Texel, The Netherlands
| | - Theunis Piersma
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB den Burg, Texel, The Netherlands.,Rudi Drent Chair in Global Flyway Ecology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| |
Collapse
|