1
|
Alharbi MA, Rhouati A, Zourob M. Development of a label-free electrochemical aptasensor for Rift Valley fever virus detection. Sci Rep 2024; 14:23892. [PMID: 39396078 PMCID: PMC11470950 DOI: 10.1038/s41598-024-74314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
In this research, we describe the first aptasensor for the detection of the Rift Valley Fever virus (RVFV). The process involved the selection of aptamers through the systematic evolution of ligands by the exponential enrichment (SELEX) technique. After 12 rounds of selection, 6 aptamers were selected and the corresponding binding affinities were assessed using fluorescence binding assays, revealing dissociation constants ranging from 15.45 to 40.98 nM. Notably, among the aptamers, RV2 and RV3 exhibited the highest binding affinities toward RVFV, with dissociation constants of 15.45 and 18.62 nM, respectively. Thiol-modified aptamers were subsequently immobilized onto screen-printed gold electrodes, facilitating the label-free detection of RVFV through square wave voltammetry. The voltammetric aptasensor demonstrated an excellent sensitivity, with a detection limit of 0.015 ng/mL. In addition, cross-reactivity assessments were conducted, where negligible response was obtained when the aptasensor was exposed to non-specific proteins.
Collapse
Affiliation(s)
- Maha A Alharbi
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Amina Rhouati
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
- Bioengineering Laboratory, Higher National School of Biotechnology, Constantine, Algeria
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia.
| |
Collapse
|
2
|
Lee S, Zhao Q, Lee S, Lee Y, Jung I, Park S. Plasmonic Nanotrenches with 1 nm Nanogaps for Surface-Enhanced Raman Scattering-Based Screening of His-Tagged Proteins. NANO LETTERS 2024; 24:12315-12322. [PMID: 39311749 DOI: 10.1021/acs.nanolett.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
This study represents a highly sensitive and selective approach to protein screening using surface-enhanced Raman scattering (SERS) facilitated by octahedral Au nanotrenches (OANTs). OANTs are a novel class of nanoparticles characterized by narrow, trench-like excavations indented into the eight facets of a Au octahedron. This unique configuration maximizes electromagnetic near-field focusing as the gap distance decreases to ∼1 nm. Owing to geometrical characteristics of the OANTs, near-field focusing can be maximized through the confinement and reflectance of light trapped within the trenches. We used Ni ions and molecular linkers to confer selective binding affinity for His-tagged proteins on the surfaces of the OANTs for SERS-based protein screening. Remarkably, SERS-based protein screening with the surface-modified OANTs yielded outstanding screening capabilities: 100% sensitivity and 100% selectivity in distinguishing His-tagged human serum albumin (HSA) from native HSA. This highlights the significantly enhanced protein screening capabilities achieved through the synergistic combination of SERS and the OANTs.
Collapse
Affiliation(s)
- Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qiang Zhao
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yujin Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Sommerfeld IK, Dälken EM, Elling L, Pich A. Nitrilotriacetic Acid Functionalized Microgels for Efficient Immobilization of Hyaluronan Synthase. Macromol Biosci 2024; 24:e2400075. [PMID: 39018489 DOI: 10.1002/mabi.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/23/2024] [Indexed: 07/19/2024]
Abstract
Enzymes play a vital role in synthesizing complex biological molecules like hyaluronic acid (HA). Immobilizing enzymes on support materials is essential for their efficient use and reuse in multiple cycles. Microgels, composed of cross-linked, highly swollen polymer networks, are ideal for enzyme uptake owing to their high porosity. This study demonstrates the immobilization of His6-tagged hyaluronan synthase from Pasteurella multocida (PmHAS) onto nitrilotriacetic acid functionalized microgels using different bivalent ions (Ni2+, Co2+, Mn2+, Mg2+, and Fe2+) via metal affinity binding. The results indicate that using Ni2+ yields the microgels with the highest enzyme uptake and HA formation. The immobilized PmHAS enables repetitive enzymatic production, producing high molecular weight HAs with decreasing dispersities in each step. Furthermore, the highest reported yield of HA with high molecular weight for immobilized PmHAS is achieved. This system establishes a foundation for continuous HA formation, with future works potentially enhancing PmHAS stability through protein engineering.
Collapse
Affiliation(s)
- Isabel Katja Sommerfeld
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Esther Maria Dälken
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen, 6167, The Netherlands
| |
Collapse
|
4
|
Mišković MZ, Wojtyś M, Winiewska-Szajewska M, Wielgus-Kutrowska B, Matković M, Domazet Jurašin D, Štefanić Z, Bzowska A, Leščić Ašler I. Location Is Everything: Influence of His-Tag Fusion Site on Properties of Adenylosuccinate Synthetase from Helicobacter pylori. Int J Mol Sci 2024; 25:7613. [PMID: 39062851 PMCID: PMC11276676 DOI: 10.3390/ijms25147613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The requirement for fast and dependable protein purification methods is constant, either for functional studies of natural proteins or for the production of biotechnological protein products. The original procedure has to be formulated for each individual protein, and this demanding task was significantly simplified by the introduction of affinity tags. Helicobacter pylori adenylosuccinate synthetase (AdSS) is present in solution in a dynamic equilibrium of monomers and biologically active homodimers. The addition of the His6-tag on the C-terminus (C-His-AdSS) was proven to have a negligible effect on the characteristics of this enzyme. This paper shows that the same enzyme with the His6-tag fused on its N-terminus (N-His-AdSS) has a high tendency to precipitate. Circular dichroism and X-ray diffraction studies do not detect any structural change that could explain this propensity. However, the dynamic light scattering, differential scanning fluorimetry, and analytical ultracentrifugation measurements indicate that the monomer of this construct is prone to aggregation, which shifts the equilibrium towards the insoluble precipitant. In agreement, enzyme kinetics measurements showed reduced enzyme activity, but preserved affinity for the substrates, in comparison with the wild-type and C-His-AdSS. The presented results reinforce the notion that testing the influence of the tag on protein properties should not be overlooked.
Collapse
Affiliation(s)
- Marija Zora Mišković
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia;
| | - Marta Wojtyś
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
| | - Maria Winiewska-Szajewska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
| | - Marija Matković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
| | - Darija Domazet Jurašin
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; (D.D.J.); (Z.Š.)
| | - Zoran Štefanić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; (D.D.J.); (Z.Š.)
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
| | - Ivana Leščić Ašler
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; (D.D.J.); (Z.Š.)
| |
Collapse
|
5
|
Paul S, Gupta M, Kumar Mahato A, Karak S, Basak A, Datta S, Banerjee R. Covalent Organic Frameworks for the Purification of Recombinant Enzymes and Heterogeneous Biocatalysis. J Am Chem Soc 2024; 146:858-867. [PMID: 38159294 DOI: 10.1021/jacs.3c11169] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Recombinant enzymes have gained prominence due to their diverse functionalities and specificity and are often a greener alternative in biocatalysis. This context makes purifying recombinant enzymes from host cells and other impurities crucial. The primary goal is to isolate the pure enzyme of interest and ensure its stability under ambient conditions. Covalent organic frameworks (COFs), renowned for their well-ordered structure and permeability, offer a promising approach for purifying histidine-tagged (His-tagged) enzymes. Furthermore, immobilizing enzymes within COFs represents a growing field in heterogeneous biocatalysis. In this study, we have developed a flow-based technology utilizing a nickel-infused covalent organic framework (Ni-TpBpy COF) to combine two distinct processes: the purification of His-tagged enzymes and the immobilization of enzymes simultaneously. Our work primarily focuses on the purification of three His-tagged enzymes β-glucosidase, cellobiohydrolase, and endoglucanase as well as two proteins with varying molecular weights, namely, green fluorescent protein (27 kDa) and BG Rho (88 kDa). We employed Ni-TpBpy as a column matrix to showcase the versatility of our system. Additionally, we successfully obtained a Ni-TpBpy COF immobilized with enzymes, which can serve as a heterogeneous catalyst for the hydrolysis of p-nitrophenyl-β-d-glucopyranoside and carboxymethylcellulose. These immobilized enzymes demonstrated catalytic activity comparable to that of their free counterparts, with the added advantages of recyclability and enhanced stability under ambient conditions for an extended period, ranging from 60 to 90 days. This contrasts with the free enzymes, which do not maintain their activity as effectively over time.
Collapse
Affiliation(s)
- Satyadip Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Mani Gupta
- Department of Biological Sciences and Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Ashok Kumar Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Shayan Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Ananda Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Supratim Datta
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Department of Biological Sciences and Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
6
|
Bolzati C, Gobbi C, Ferro-Flores G, Turato S, Ocampo-Garcia B, Carpanese D, Marzano C, Spolaore B, Fracasso G, Rosato A, Meléndez-Alafort L. Development and Characterization of 99mTc-scFvD2B as a Potential Radiopharmaceutical for SPECT Imaging of Prostate Cancer. Int J Mol Sci 2023; 25:492. [PMID: 38203663 PMCID: PMC10779128 DOI: 10.3390/ijms25010492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Previously, we demonstrated that the 177Lu-labeled single-chain variable fragment of an anti-prostate-specific membrane antigen (PSMA) IgG D2B antibody (scFvD2B) showed higher prostate cancer (PCa) cell uptake and tumor radiation doses compared to 177Lu-labeled Glu-ureide-based PSMA inhibitory peptides. To obtain a 99mTc-/177Lu-scFvD2B theranostic pair, this research aimed to synthesize and biochemically characterize a novel 99mTc-scFvD2B radiotracer. The scFvD2B-Tag and scFvD2B antibody fragments were produced and purified. Then, two HYNIC derivatives, HYNIC-Gly-Gly-Cys-NH2 (HYNIC-GGC) and succinimidyl-HYNIC (S-HYNIC), were used to conjugate the scFvD2B-Tag and scFvD2B isoforms, respectively. Subsequently, chemical characterization, immunoreactivity tests (affinity and specificity), radiochemical purity tests, stability tests in human serum, cellular uptake and internalization in LNCaP(+), PC3-PIP(++) or PC3(-) PCa cells of the resulting unlabeled HYNIC-scFvD2B conjugates (HscFv) and 99mTc-HscFv agents were performed. The results showed that incorporating HYNIC as a chelator did not affect the affinity, specificity or stability of scFvD2B. After purification, the radiochemical purity of 99mTc-HscFv radiotracers was greater than 95%. A two-sample t-test of 99mTc-HscFv1 and 99mTc-HscFv1 uptake in PC3-PIP vs. PC3 showed a p-value < 0.001, indicating that the PSMA receptor interaction of 99mTc-HscFv agents was statistically significantly higher in PSMA-positive cells than in the negative controls. In conclusion, the results of this research warrant further preclinical studies to determine whether the in vivo pharmacokinetics and tumor uptake of 99mTc-HscFv still offer sufficient advantages over HYNIC-conjugated peptides to be considered for SPECT/PSMA imaging.
Collapse
Affiliation(s)
- Cristina Bolzati
- Institute of Condensed Matter Chemistry and Energy Technologies, Consiglio Nazionale delle Ricerche, Corso Stati Uniti 4, 35127 Padova, Italy; (C.B.); (C.G.)
| | - Carolina Gobbi
- Institute of Condensed Matter Chemistry and Energy Technologies, Consiglio Nazionale delle Ricerche, Corso Stati Uniti 4, 35127 Padova, Italy; (C.B.); (C.G.)
| | - Guillermina Ferro-Flores
- Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N. La Marquesa, Ocoyoacac 52750, Mexico; (G.F.-F.); (B.O.-G.)
| | - Sofia Turato
- Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35138 Padova, Italy; (S.T.); (A.R.)
| | - Blanca Ocampo-Garcia
- Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N. La Marquesa, Ocoyoacac 52750, Mexico; (G.F.-F.); (B.O.-G.)
| | - Debora Carpanese
- Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35138 Padova, Italy; (S.T.); (A.R.)
| | - Cristina Marzano
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy; (C.M.); (B.S.)
| | - Barbara Spolaore
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy; (C.M.); (B.S.)
| | - Giulio Fracasso
- Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Antonio Rosato
- Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35138 Padova, Italy; (S.T.); (A.R.)
- Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche, Università degli Studi di Padova, Via Gattamelata 64, 35138 Padova, Italy
| | - Laura Meléndez-Alafort
- Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35138 Padova, Italy; (S.T.); (A.R.)
| |
Collapse
|
7
|
Janisse SE, Fernandez RL, Heffern MC. Characterizing metal-biomolecule interactions by mass spectrometry. Trends Biochem Sci 2023; 48:815-825. [PMID: 37433704 DOI: 10.1016/j.tibs.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/13/2023]
Abstract
Metal micronutrients are essential for life and exist in a delicate balance to maintain an organism's health. The labile nature of metal-biomolecule interactions clouds the understanding of metal binders and metal-mediated conformational changes that are influential to health and disease. Mass spectrometry (MS)-based methods and technologies have been developed to better understand metal micronutrient dynamics in the intra- and extracellular environment. In this review, we describe the challenges associated with studying labile metals in human biology and highlight MS-based methods for the discovery and study of metal-biomolecule interactions.
Collapse
Affiliation(s)
- Samuel E Janisse
- Department of Chemistry, University of California, Davis, One Shields Drive, Davis, CA 95616, USA
| | - Rebeca L Fernandez
- Department of Chemistry, University of California, Davis, One Shields Drive, Davis, CA 95616, USA
| | - Marie C Heffern
- Department of Chemistry, University of California, Davis, One Shields Drive, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Luo W, Homma C, Hayamizu Y. Rational Design and Self-Assembly of Histidine-Rich Peptides on a Graphite Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7057-7062. [PMID: 37171391 DOI: 10.1021/acs.langmuir.3c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Histidine-rich peptides (HRPs) have been investigated to create functional biomolecules based on the nature of histidine, such as ion binding and catalytic activity. The organization of these HRPs on a solid surface can lead to surface functionalization with the well-known properties of HRPs. However, immobilization of HRPs on the surface has not been realized. Here, we design a series of octapeptides with histidine repeat units, aiming to establish their self-assembly on a graphite surface to produce a highly robust and active nanoscaffold. The new design has (XH)4, and we incorporated various types of hydrophobic amino acids at X in the sequence to facilitate their interaction with the surface. The effect of the pair of amino acids on their self-assembly was investigated by atomic force microscopy. Contact angle measurement revealed that these assemblies functionalized graphite surfaces with different wetting chemistry. Moreover, the secondary structure of peptides was characterized by Fourier transform infrared spectroscopy (FTIR), which gives us further insights into the conformation of histidine repeat peptides on the surface. Our results showed a new approach to applying histidine-rich peptides on the surface and tuning the self-assembly behavior by introducing different counter amino acids that could be integrated with a wide range of biosensing and biotechnology applications.
Collapse
Affiliation(s)
- Wei Luo
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Chishu Homma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| |
Collapse
|
9
|
Zhu L, Chang Y, Li Y, Qiao M, Liu L. Biosensors Based on the Binding Events of Nitrilotriacetic Acid-Metal Complexes. BIOSENSORS 2023; 13:bios13050507. [PMID: 37232868 DOI: 10.3390/bios13050507] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Molecular immobilization and recognition are two key events for the development of biosensors. The general ways for the immobilization and recognition of biomolecules include covalent coupling reactions and non-covalent interactions of antigen-antibody, aptamer-target, glycan-lectin, avidin-biotin and boronic acid-diol. Tetradentate nitrilotriacetic acid (NTA) is one of the most common commercial ligands for chelating metal ions. The NTA-metal complexes show high and specific affinity toward hexahistidine tags. Such metal complexes have been widely utilized in protein separation and immobilization for diagnostic applications since most of commercialized proteins have been integrated with hexahistidine tags by synthetic or recombinant techniques. This review focused on the development of biosensors with NTA-metal complexes as the binding units, mainly including surface plasmon resonance, electrochemistry, fluorescence, colorimetry, surface-enhanced Raman scattering spectroscopy, chemiluminescence and so on.
Collapse
Affiliation(s)
- Lin Zhu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingyi Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
10
|
Acar M, Abul N, Yildiz S, Taskesenligil ED, Gerni S, Unver Y, Kalin R, Ozdemir H. Affinity-based and in a single step purification of recombinant horseradish peroxidase A2A isoenzyme produced by Pichia pastoris. Bioprocess Biosyst Eng 2023; 46:523-534. [PMID: 36527454 DOI: 10.1007/s00449-022-02837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Horseradish peroxidase (HRP) is an oxidoreductase enzyme and oxidizes various inorganic and organic compounds. It has wide application areas such as immunological tests, probe-based test techniques, removal of phenolic pollutants from wastewater and organic synthesis. HRP is found in the root of the horseradish plant as a mixture of different isoenzymes, and it is very difficult to separate these enzymes from each other. In this regard, recombinant production is a very advantageous method in terms of producing the desired isoenzyme. This study was performed to produce HRP A2A isoenzyme extracellularly in Pichia pastoris and to purify this enzyme in a single step using a 3-amino-4-chloro benzohydrazide affinity column. First, codon-optimized HRP A2A gene was amplified and inserted into pPICZαC. So, obtained pPICZαC-HRPA2A was cloned in E. coli cells. Then, P. pastoris X-33 cells were transformed with linearized recombinant DNA and a yeast clone was cultivated for extracellular recombinant HRP A2A (rHRP A2A) enzyme production. Then, the purification of this enzyme was performed in a single step by affinity chromatography. The molecular mass of purified rHRP A2A enzyme was found to be about 40 kDa. According to characterization studies of the purified enzyme, the optimum pH and ionic strength for the rHRP A2A isoenzyme were determined to be 6.0 and 0.04 M, respectively, and o-dianisidine had the highest specificity with the lowest Km and Vmax values. Thus, this is an economical procedure to purify HRP A2A isoenzyme without time-consuming and laborious isolation from an isoenzyme mixture.
Collapse
Affiliation(s)
- Melek Acar
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Nurgul Abul
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Seyda Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Ezgi Dag Taskesenligil
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Serpil Gerni
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| | - Ramazan Kalin
- Department of Basic Sciences, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Hasan Ozdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
11
|
Yang YJ, Chang HC, Wang MY, Suen SY. Preparation of Polyacrylonitrile-Based Immobilized Copper-Ion Affinity Membranes for Protein Adsorption. MEMBRANES 2023; 13:271. [PMID: 36984658 PMCID: PMC10056745 DOI: 10.3390/membranes13030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
A polyacrylonitrile (PAN)-based immobilized metal-ion affinity membrane (IMAM) was prepared with a high capacity for protein adsorption. PAN was selected as the substrate due to its excellent thermal and chemical stability. The cyano groups on the PAN membrane were substituted with carboxyl groups, followed by reactions with ethylenediamine (EDA) and ethylene glycol diglycidyl ether (EGDGE) to produce the terminal epoxy groups. The chelating agent iminodiacetic acid (IDA) was then bound to the modified PAN membrane and further chelated with copper ions. The immobilized copper ion amount of membrane was analyzed to obtain the optimal reaction conditions, which were 60 °C/3 h for EDA coupling and 60 °C/4 h for EGDGE grafting. Furthermore, under the use of minor IDA and copper ion concentrations, the immobilized copper ion capacity of the IMAM was 4.8 μmol/cm2 (253.4 µmol/mL, or 1.47 μmol/mg). At a neutral pH, the cationic lysozyme exhibited a large adsorption capacity with the IMAM (1.96 μmol/mL), which was most likely multilayer binding, whereas the adsorption capacity for bovine serum albumin (BSA) and histidine-tagged green fluorescent protein (GFP-His6) was 0.053 μmol/mL and 0.135 μmol/mL, respectively, with a monolayer adsorption arrangement. The protein desorption efficiency was greater than 95%, implying that the prepared IMAM could be reused for protein adsorption.
Collapse
Affiliation(s)
- Yin-Jie Yang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Hou-Chien Chang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Ying Wang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Shing-Yi Suen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
12
|
Cho S, Park TH. Advances in the Production of Olfactory Receptors for Industrial Use. Adv Biol (Weinh) 2023; 7:e2200251. [PMID: 36593488 DOI: 10.1002/adbi.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/11/2022] [Indexed: 01/04/2023]
Abstract
In biological olfactory systems, olfactory receptors (ORs) can recognize and discriminate between thousands of volatile organic compounds with very high sensitivity and specificity. The superior properties of ORs have led to the development of OR-based biosensors that have shown promising potential in many applications over the past two decades. In particular, newly designed technologies in gene synthesis, protein expression, solubilization, purification, and membrane mimetics for membrane proteins have greatly opened up the previously inaccessible industrial potential of ORs. In this review, gene design, expression and solubilization strategies, and purification and reconstitution methods available for modern industrial applications are examined, with a focus on ORs. The limitations of current OR production technology are also estimated, and future directions for further progress are suggested.
Collapse
Affiliation(s)
- Seongyeon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
13
|
An J, Zhang Y, Ying Z, Li H, Liu W, Wang J, Liu X. The Formation, Structural Characteristics, Absorption Pathways and Bioavailability of Calcium–Peptide Chelates. Foods 2022; 11:foods11182762. [PMID: 36140890 PMCID: PMC9497609 DOI: 10.3390/foods11182762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
Calcium is one of the most important mineral elements in the human body and is closely related to the maintenance of human health. To prevent calcium deficiency, various calcium supplements have been developed, but their application tends to be limited by low calcium content and highly irritating effects on the stomach, among other side effects. Recently, calcium–peptide chelates, which have excellent stability and are easily absorbed, have received attention as an alternative emerging calcium supplement. Calcium-binding peptides (CaBP) are usually obtained via the hydrolysis of animal or plant proteins, and calcium-binding capacity (CaBC) can be further improved through chromatographic purification techniques. In calcium ions, the phosphate group, carboxylic group and nitrogen atom in the peptide are the main binding sites, and the four modes of combination are the unidentate mode, bidentate mode, bridging mode and α mode. The stability and safety of calcium–peptide chelates are discussed in this paper, the intestinal absorption pathways of calcium elements and peptides are described, and the bioavailability of calcium–peptide chelates, both in vitro and in vivo, is also introduced. This review of the research status of calcium–peptide chelates aims to provide a reasonable theoretical basis for their application as calcium supplementation products.
Collapse
Affiliation(s)
- Jiulong An
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yinxiao Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhiwei Ying
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (H.L.); (X.L.); Tel.: +86-10-68984481 (H.L.)
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Junru Wang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (H.L.); (X.L.); Tel.: +86-10-68984481 (H.L.)
| |
Collapse
|
14
|
Janisse SE, Sharma VA, Caceres A, Medici V, Heffern MC. Systematic evaluation of Copper(II)-loaded immobilized metal affinity chromatography for selective enrichment of copper-binding species in human serum and plasma. Metallomics 2022; 14:mfac059. [PMID: 35929804 PMCID: PMC9434637 DOI: 10.1093/mtomcs/mfac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022]
Abstract
Copper is essential in a host of biological processes, and disruption of its homeostasis is associated with diseases including neurodegeneration and metabolic disorders. Extracellular copper shifts in its speciation between healthy and disease states, and identifying molecular components involved in these perturbations could widen the panel of biomarkers for copper status. While there have been exciting advances in approaches for studying the extracellular proteome with mass spectrometry-based methods, the typical workflows disrupt metal-protein interactions due to the lability of these bonds either during sample preparation or in gas-phase environments. We sought to develop and apply a workflow to enrich for and identify protein populations with copper-binding propensities in extracellular fluids using an immobilized metal affinity chromatography (IMAC) resin. The strategy was optimized using human serum to allow for maximum quantity and diversity of protein enrichment. Protein populations could be differentiated based on protein load on the resin, likely on account of differences in abundance and affinity. The enrichment workflow was applied to plasma samples from patients with Wilson's disease and protein IDs and differential abundancies relative to healthy subjects were compared to those yielded from a traditional proteomic workflow. While the IMAC workflow preserved differential abundance and protein ID information from the traditional workflow, it identified several additional proteins being differentially abundant including those involved in lipid metabolism, immune system, and antioxidant pathways. Our results suggest the potential for this IMAC workflow to identify new proteins as potential biomarkers in copper-associated disease states.
Collapse
Affiliation(s)
- Samuel E Janisse
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Vibha A Sharma
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Amanda Caceres
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA 95817, USA
| | - Marie C Heffern
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
15
|
Akbari V, Mohammadi S, Mehrabi M, Ghobadi S, Farrokhi A, Khodarahmi R. Investigation of the role of prolines 232/233 in RTPPK motif in tau protein aggregation: An in vitro study. Int J Biol Macromol 2022; 219:1100-1111. [PMID: 36049563 DOI: 10.1016/j.ijbiomac.2022.08.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/26/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
Disease-related tau protein in Alzheimer's disease is hyperphosphorylated and aggregates into neurofibrillary tangles. The cis-proline isomer of the pSer/Thr-Pro sequence has been proposed to act as a precursor of aggregation ('Cistauosis' hypothesis), but this aggregation scheme is not yet entirely accepted. Hence to investigate isomer-specific-aggregation of tau, proline residues at the RTPPK motif were replaced by alanine residues (with permanent trans configuration) employing genetic engineering methods. RTPAK, RTAPK, and RTAAK mutant variants of tau were generated, and their in vitro aggregation propensity was investigated using multi-spectroscopic techniques. Besides, the cell toxicity of oligomers/fibrils was analyzed and compared to those of the wild-type (WT) tau. Analyses of mutant variants have shown to be in agreement (to some degree) to the theory of the 'cistauosis' hypothesis. The results showed that the trans isomer in the 232-rd residue (P232A mutant rather than P233A) had reduced aggregation propensity. However, this study did not illustrate any statistically significant difference between the wild and the mutant protein aggregations concerning cell toxicity.
Collapse
Affiliation(s)
- Vali Akbari
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Soheila Mohammadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Sirous Ghobadi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Alireza Farrokhi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran.
| |
Collapse
|
16
|
Viscosity increase/gelation of therapeutic IgG monoclonal antibodies induced by Zn 2+: one possible root cause of clogging of staked-in-needle prefilled syringes. Eur J Pharm Biopharm 2022; 178:179-186. [PMID: 36029938 DOI: 10.1016/j.ejpb.2022.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
We investigated the elution of zinc ions (Zn2+) from the elastomer of rigid needle shields (RNS) attached to staked-in-needle prefilled syringes (SIN-PFS) and the physicochemical impacts of Zn2+ on therapeutic IgG monoclonal antibody (mAb) solutions. The elution of metal ions from typical RNS elastomer under realistic buffer and storage conditions was investigated by inductively coupled plasma-mass spectrometry. Among the metal ions examined, only Zn2+ was detected. The elution of Zn2+ from RNS elastomer was found to be buffer-dependent. We investigated the influence of Zn2+ on the viscosity of seven mAb solutions at 180 mg/mL. The effect of Zn2+ clearly depended on antibody type. Drastic increases in viscosity or gelation were observed in four out of the seven mAbs. Dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) showed the effect of Zn2+ on mAb viscosity was explained by the colloidal destabilization of mAb solutions. Thus, Zn2+ leaching from RNS elastomer may possibly increase viscosity or cause gelation, and consequently cause possible needle clogging during long-term storage. DLS and SAXS can predict reactivity of mAbs to Zn2+, and require only small amounts of samples. This makes it possible to predict compatibility with RNS elastomer and evaluate needle clogging risk in SIN-PFSs in the early stages of mAb development.
Collapse
|
17
|
Development of a Methodology to Adapt an Equilibrium Buffer/Wash Applied to the Purification of hGPN2 Protein Expressed in Escherichia coli Using an IMAC Immobilized Metal Affinity Chromatography System. SEPARATIONS 2022. [DOI: 10.3390/separations9070164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Protein purification is a complex and non-standardized process; the fact that proteins have different structural types making it difficult to create a standard methodology to obtain them in a pure, soluble, and homogeneous form. The present study shows the selective development of a buffer suitable for proteins of interest that allows high concentrations of hGPN2 protein to be obtained with low polydispersion and high homogeneity and purity. By taking the different reagents used in the construction of different buffers as a basis and performing purifications using different additives in different concentrations to determine the optimal amounts, the developed process helps to minimize the bonds, maintain solubility, release the proteins present in inclusion bodies, and provide an adequate environment for obtaining high concentrations of pure protein. GPN proteins are of unknown function, have not been purified in high concentrations, and have been found as part of the RNA polymerase assembly; if they are not expressed, the cell dies, and overexpression of certain GPN proteins has been linked to decreased survival in patients with invasive ductal carcinoma breast cancer types ER+ and HER2+. The results of the present study show that the use of the buffer developed for recombinant hGPN2 protein expressed in Escherichia coli could be manipulated in order to isolate the protein in a totally pure form and without the use of protease inhibitor tablets. The resulting homogeneity and low polydispersion was corroborated by studies carried out using dynamic dispersion analysis. Thanks to these properties, it can be used for crystallography or structural genomics studies.
Collapse
|
18
|
Haas S, Desombre M, Kirschhöfer F, Huber MC, Schiller SM, Hubbuch J. Purification of a Hydrophobic Elastin-Like Protein Toward Scale-Suitable Production of Biomaterials. Front Bioeng Biotechnol 2022; 10:878838. [PMID: 35814018 PMCID: PMC9257828 DOI: 10.3389/fbioe.2022.878838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Elastin-like proteins (ELPs) are polypeptides with potential applications as renewable bio-based high-performance polymers, which undergo a stimulus-responsive reversible phase transition. The ELP investigated in this manuscript—ELP[V2Y-45]—promises fascinating mechanical properties in biomaterial applications. Purification process scalability and purification performance are important factors for the evaluation of potential industrial-scale production of ELPs. Salt-induced precipitation, inverse transition cycling (ITC), and immobilized metal ion affinity chromatography (IMAC) were assessed as purification protocols for a polyhistidine-tagged hydrophobic ELP showing low-temperature transition behavior. IMAC achieved a purity of 86% and the lowest nucleic acid contamination of all processes. Metal ion leakage did not propagate chemical modifications and could be successfully removed through size-exclusion chromatography. The simplest approach using a high-salt precipitation resulted in a 60% higher target molecule yield compared to both other approaches, with the drawback of a lower purity of 60% and higher nucleic acid contamination. An additional ITC purification led to the highest purity of 88% and high nucleic acid removal. However, expensive temperature-dependent centrifugation steps are required and aggregation effects even at low temperatures have to be considered for the investigated ELP. Therefore, ITC and IMAC are promising downstream processes for biomedical applications with scale-dependent economical costs to be considered, while salt-induced precipitation may be a fast and simple alternative for large-scale bio-based polymer production.
Collapse
Affiliation(s)
- Sandra Haas
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Monika Desombre
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Frank Kirschhöfer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Matthias C. Huber
- Center for Biosystems Analysis, Albert‐Ludwigs‐University Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Stefan M. Schiller
- Center for Biosystems Analysis, Albert‐Ludwigs‐University Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- *Correspondence: Jürgen Hubbuch,
| |
Collapse
|
19
|
Asena Özbek M, Çimen D, Bereli N, Denizli A. Metal-chelated polyamide hollow fiber membranes for ovalbumin purification from egg white. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123293. [DOI: 10.1016/j.jchromb.2022.123293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/17/2022] [Accepted: 05/08/2022] [Indexed: 12/17/2022]
|
20
|
Forstater JH, Grosser ST. Data-rich process development of immobilized biocatalysts in flow. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00298h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The authors describe an automated, data-rich screening and process development method for rapid discovery, development, and optimization of immobilized enzymes, critical to many biocatalytic processes.
Collapse
Affiliation(s)
- Jacob H. Forstater
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Shane T. Grosser
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
21
|
Abstract
Antibodies are an integral part of many biological assays and biotherapeutics. However, the sources from which antibodies are derived frequently contain other contaminants which may interfere with assays or cause adverse reactions if administered in vivo. Therefore, a means of isolating these antibodies from their source at high levels of purity is critical. Affinity chromatography is currently one of the most widely applied methods for the purification of antibodies. This method relies on specific and reversible, interactions between antibody structures, or recombinant tags fused to these structures, and ligands immobilized on solid support matrices, generally within a column. Herein, common chromatographic methods applied to antibody purification are described. These include the purification of IgG, and its recombinant forms, through protein A, protein G and immobilized metal affinity chromatography.
Collapse
Affiliation(s)
- Arabelle Cassedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland.
- Hamad Bin Khalifa University, Doha, Qatar.
- Qatar Foundation, Doha, Qatar.
| |
Collapse
|
22
|
Tetala KKR. Preparation of Affinity Chromatography Monolith in Miniaturized Format and Application for Protein Separation. Methods Mol Biol 2022; 2466:229-240. [PMID: 35585321 DOI: 10.1007/978-1-0716-2176-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Affinity chromatography is one of the versatile technique to selectively separate target biomolecules from complex biological sources (plasma, saliva, urine, etc.). Conventional chromatography resins possess technical limitations at mini-analytical scale, which was overcome with the use of alternative material known as monoliths. This chapter discusses on the how to modify the fused silica capillary inner surface, prepare polymer monoliths within the capillary confinements, chelation of metal-ions on monoliths and protein separation from diluted human plasma using metal-ion monolith microcolumn.
Collapse
Affiliation(s)
- Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
23
|
Ko H, Kang M, Kim MJ, Yi J, Kang J, Bae JH, Sohn JH, Sung BH. A novel protein fusion partner, carbohydrate-binding module family 66, to enhance heterologous protein expression in Escherichia coli. Microb Cell Fact 2021; 20:232. [PMID: 34963459 PMCID: PMC8715580 DOI: 10.1186/s12934-021-01725-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022] Open
Abstract
Background Proteins with novel functions or advanced activities developed by various protein engineering techniques must have sufficient solubility to retain their bioactivity. However, inactive protein aggregates are frequently produced during heterologous protein expression in Escherichia coli. To prevent the formation of inclusion bodies, fusion tag technology has been commonly employed, owing to its good performance in soluble expression of target proteins, ease of application, and purification feasibility. Thus, researchers have continuously developed novel fusion tags to expand the expression capacity of high-value proteins in E. coli. Results A novel fusion tag comprising carbohydrate-binding module 66 (CBM66) was developed for the soluble expression of heterologous proteins in E. coli. The target protein solubilization capacity of the CBM66 tag was verified using seven proteins that are poorly expressed or form inclusion bodies in E. coli: four human-derived signaling polypeptides and three microbial enzymes. Compared to native proteins, CBM66-fused proteins exhibited improved solubility and high production titer. The protein-solubilizing effect of the CBM66 tag was compared with that of two commercial tags, maltose-binding protein and glutathione-S-transferase, using poly(ethylene terephthalate) hydrolase (PETase) as a model protein; CBM66 fusion resulted in a 3.7-fold higher expression amount of soluble PETase (approximately 370 mg/L) compared to fusion with the other commercial tags. The intact PETase was purified from the fusion protein upon serial treatment with enterokinase and affinity chromatography using levan-agarose resin. The bioactivity of the three proteins assessed was maintained even when the CBM66 tag was fused. Conclusions The use of the CBM66 tag to improve soluble protein expression facilitates the easy and economic production of high-value proteins in E. coli. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01725-w.
Collapse
Affiliation(s)
- Hyunjun Ko
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Minsik Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Mi-Jin Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiyeon Yi
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
24
|
Long M, Krock B, Castrec J, Tillmann U. Unknown Extracellular and Bioactive Metabolites of the Genus Alexandrium: A Review of Overlooked Toxins. Toxins (Basel) 2021; 13:905. [PMID: 34941742 PMCID: PMC8703713 DOI: 10.3390/toxins13120905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Various species of Alexandrium can produce a number of bioactive compounds, e.g., paralytic shellfish toxins (PSTs), spirolides, gymnodimines, goniodomins, and also uncharacterised bioactive extracellular compounds (BECs). The latter metabolites are released into the environment and affect a large range of organisms (from protists to fishes and mammalian cell lines). These compounds mediate allelochemical interactions, have anti-grazing and anti-parasitic activities, and have a potentially strong structuring role for the dynamic of Alexandrium blooms. In many studies evaluating the effects of Alexandrium on marine organisms, only the classical toxins were reported and the involvement of BECs was not considered. A lack of information on the presence/absence of BECs in experimental strains is likely the cause of contrasting results in the literature that render impossible a distinction between PSTs and BECs effects. We review the knowledge on Alexandrium BEC, (i.e., producing species, target cells, physiological effects, detection methods and molecular candidates). Overall, we highlight the need to identify the nature of Alexandrium BECs and urge further research on the chemical interactions according to their ecological importance in the planktonic chemical warfare and due to their potential collateral damage to a wide range of organisms.
Collapse
Affiliation(s)
- Marc Long
- IFREMER, Centre de Brest, DYNECO Pelagos, 29280 Plouzané, France;
| | - Bernd Krock
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| | - Justine Castrec
- University Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France;
- Station de Recherches Sous-Marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | - Urban Tillmann
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| |
Collapse
|
25
|
Moore CP, Pieterson K, DeSousa JM, Toote LE, Wright DW. Characterization and utility of immobilized metal affinity-functionalized cellulose membranes for point-of-care malaria diagnostics. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1186:123023. [PMID: 34788723 PMCID: PMC8633758 DOI: 10.1016/j.jchromb.2021.123023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/18/2022]
Abstract
Immobilized metal affinity chromatography (IMAC) is a well-established technique for protein separation and purification. IMAC has been previously utilized to capture the malaria biomarker histidine-rich protein 2 (HRP2) from blood, enhancing the sensitivity of field-appropriate diagnostic tools such as lateral flow assays. However, little work has been done to translate this technique to a truly field-usable design. In this study, IMAC-functionalized cellulose membranes are created and characterized fully for future use in applied malaria diagnostics. IMAC-functionalized cellulose membranes were investigated across a range of cellulose substrates, IMAC ligands, and divalent transition metals before use in a capture and elution flowthrough workflow. Following characterization and optimization, it was found that iminodiacetic acid bound to Zn(II) was the most promising ligand-metal pair, with three available coordination sites and a molar loading capacity of 57.7 μmol of metal/cm3 of cellulose. Using these parameters, more than 99% of HRP2 was captured from a large-volume lysed blood sample in a simple flow-through assay and 89% of the captured protein was eluted from the membrane using the chelating compound ethylenediaminetetraacetic acid. Use of this enhancement protocol on an in-house HRP2 lateral flow assay (LFA) yielded a limit of detection of 7 parasites/μL, a 15.8x enhancement factor compared to traditional LFA methods.
Collapse
Affiliation(s)
- Carson P Moore
- Vanderbilt University, Department of Chemistry, 1234 Stevenson Center Lane, Nashville, TN 37212, USA
| | - Kristina Pieterson
- Vanderbilt University, Department of Chemistry, 1234 Stevenson Center Lane, Nashville, TN 37212, USA
| | - Jenna M DeSousa
- Vanderbilt University, Department of Chemistry, 1234 Stevenson Center Lane, Nashville, TN 37212, USA
| | - Lauren E Toote
- Elizabethtown College, Department of Chemistry and Biochemistry, 1 Alpha Drive, Elizabethtown, PA 17022, USA
| | - David W Wright
- Vanderbilt University, Department of Chemistry, 1234 Stevenson Center Lane, Nashville, TN 37212, USA.
| |
Collapse
|
26
|
Tian Q, Fan Y, Hao L, Wang J, Xia C, Wang J, Hou H. A comprehensive review of calcium and ferrous ions chelating peptides: Preparation, structure and transport pathways. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34761991 DOI: 10.1080/10408398.2021.2001786] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Calcium and iron play crucial roles in human health, deficiencies of which have globally generated public health risks. The poor solubility, low bioavailability and gastrointestinal irritation of existing commercial mineral supplements limit their further application. As an emerging type of mineral supplement, mineral chelating peptides have drawn plenty of attention due to their advantages in stability, absorptivity and safety. A majority of calcium and ferrous ions chelating peptides have been isolated from food processing by-products. Enzymatic hydrolysis combined with affinity chromatography, gel filtration and other efficient separation techniques is the predominant method to obtain peptides with high calcium and ferrous affinity. Peptides with small molecular weight are more likely to chelate metals, and carboxyl, amino groups and nitrogen, oxygen, sulfur atoms in the side chain, which can provide lone-pair electrons to combine with metallic ions. Unidentate, bidentate, tridentate, bridging and α mode are regarded as common chelating modes. Moreover, the stability of peptide-mineral complexes in the gastrointestinal tract and possible transport pathways were summarized. This review is to present an overview of the latest research progress, existing problems and research prospects in the field of peptide-mineral complexes and to provide a more comprehensive theoretical basis for their exploitation in food industry.
Collapse
Affiliation(s)
- Qiaoji Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yan Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Li Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chensi Xia
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
27
|
Xu J, Miao H, Zou L, Tse Sum Bui B, Haupt K, Pan G. Evolution of Molecularly Imprinted Enzyme Inhibitors: From Simple Activity Inhibition to Pathological Cell Regulation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingjing Xu
- Center for Molecular Recognition and Biosensing School of Life Sciences Shanghai University Shanghai 200444 P. R. China
| | - Haohan Miao
- Institute for Advanced Materials School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Lihua Zou
- Center for Molecular Recognition and Biosensing School of Life Sciences Shanghai University Shanghai 200444 P. R. China
| | - Bernadette Tse Sum Bui
- Université de Technologie de Compiègne CNRS Enzyme and Cell Engineering Laboratory Rue du Docteur Schweitzer 60203 Compiègne Cedex France
| | - Karsten Haupt
- Université de Technologie de Compiègne CNRS Enzyme and Cell Engineering Laboratory Rue du Docteur Schweitzer 60203 Compiègne Cedex France
| | - Guoqing Pan
- Institute for Advanced Materials School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| |
Collapse
|
28
|
Xu J, Miao H, Zou L, Tse Sum Bui B, Haupt K, Pan G. Evolution of Molecularly Imprinted Enzyme Inhibitors: From Simple Activity Inhibition to Pathological Cell Regulation. Angew Chem Int Ed Engl 2021; 60:24526-24533. [PMID: 34418248 DOI: 10.1002/anie.202106657] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/11/2021] [Indexed: 02/06/2023]
Abstract
Molecular imprinting represents one of the most promising strategies to design artificial enzyme inhibitors. However, the study of molecularly imprinted enzyme inhibitors (MIEIs) remains at a primary stage. Advanced applications of MIEIs for cell regulation have rarely been explored. Using a solid-phase oriented imprinting strategy so as to leave the active site of the enzymes accessible, we synthesized two MIEIs that exhibit high specificity and potent inhibitory effects (inhibition constant at low nM range) towards trypsin and angiogenin. The trypsin MIEI inhibits trypsin activity, tryptic digestion-induced extracellular matrix lysis and cell membrane destruction, indicating its utility in the treatment of active trypsin-dependent cell injury. The angiogenin MIEI blocks cancer cell proliferation by suppressing the ribonuclease activity of angiogenin and decreasing the angiogenin level inside and outside HeLa cells. Our work demonstrates the versatility of MIEIs for both enzyme inhibition and cell fate manipulation, showing their great potential as therapeutic drugs in biomedicine.
Collapse
Affiliation(s)
- Jingjing Xu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Haohan Miao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lihua Zou
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Bernadette Tse Sum Bui
- Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue du Docteur Schweitzer, 60203, Compiègne Cedex, France
| | - Karsten Haupt
- Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue du Docteur Schweitzer, 60203, Compiègne Cedex, France
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
29
|
Boonyakida J, Utomo DIS, Soma FN, Park EY. Two-step purification of tag-free norovirus-like particles from silkworm larvae (Bombyx mori). Protein Expr Purif 2021; 190:106010. [PMID: 34737040 DOI: 10.1016/j.pep.2021.106010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Recombinantly expressed VP1 of norovirus self-assembled and formed norovirus-like particles (NoV-LPs). This native VP1 was expressed using the Bombyx mori nucleopolyhedrovirus (BmNPV) expression system in silkworm larva. NoV-LPs were collected from silkworm fat body lysate by density gradient centrifugation. To improve the purity of the NoV-LP, the proteins were further purified using immobilized metal affinity chromatography based on the surface exposed side chain of histidine residues. The additional purification led to a highly purified virus-like particle (VLP). The morphology and size of the purified VLPs were examined using a transmission electron microscope, and dynamic light scattering revealed a monodispersed spherical morphology with a diameter of 34 nm. The purified product had a purity of >90% with a recovery yield of 48.7% (equivalent to 930 μg) from crude lysate, obtained from seven silkworm larvae. In addition, the purified VLP could be recognized by antibodies against GII norovirus in sandwich enzyme-linked immunosorbent assay, which indicated that the silkworm-derived VLP is biologically functional as a NoV-LP in its native state, is structurally correct, and exerts its biological function. Our results suggest that the silkworm-derived NoV-LP may be useful for subsequent applications, such as in a vaccine platform. Moreover, the silkworm-based expression system is known for its robustness, facile up-scalability, and relatively low expense compared to insect cell systems.
Collapse
Affiliation(s)
- Jirayu Boonyakida
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Doddy Irawan Setyo Utomo
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Fahmida Nasrin Soma
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
30
|
Chen Y, Zhao K, Huang J, Li M, Sun X, Li J. Detection of salinomycin and lasalocid in chicken liver by icELISA based on functional bispecific single-chain antibody (scDb) and interpretation of molecular recognition mechanism. Anal Bioanal Chem 2021; 413:7031-7041. [PMID: 34661725 DOI: 10.1007/s00216-021-03666-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Salinomycin (SAL) and lasalocid (LAS) are widely used as ionophore antibiotics for coccidiosis control. However, their common use as feed additives has led to the occurrence of feed cross-contamination, which has toxic effects on non-target animals. There have been few reports on multiple-residue detection for SAL and LAS in recent years. In this study, two single-chain antibody fragments (scFvs) capable of specifically recognizing SAL and LAS were constructed. Using LAS-scFv and SAL-scFv as parent antibodies, a complete bispecific single-chain diabody (scDb) against both LAS and SAL was built using splicing by overlap extension polymerase chain reaction (SOE-PCR). In addition, the key amino acid sites and interaction energy of antibody variable regions for small-molecule recognition were preliminarily studied by homology modeling and molecular docking. Finally, IC50 values of 12.9 and 8.6 ng/mL, with a linear range of 6.9-24.0 and 4.7-16.0 ng/mL, were obtained for LAS-scFv and SAL-scFv, respectively. An indirect competitive enzyme-linked immunosorbent assay (icELISA) method was established using scDb to obtain an IC50 of 3.5 ng/mL for LAS and 4.1 ng/mL for SAL, which showed better sensitivity and specificity than those of the parent scFv antibodies. The recoveries of LAS and SAL in chicken liver were 89.2-92.7%(CV<4.7%) and 88.6-90.2% (CV<6.8%)), respectively.
Collapse
Affiliation(s)
- Yingxian Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Kunxia Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Jingjie Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Miao Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Xiaojuan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Jiancheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China.
| |
Collapse
|
31
|
López-Laguna H, Sánchez JM, Carratalá JV, Rojas-Peña M, Sánchez-García L, Parladé E, Sánchez-Chardi A, Voltà-Durán E, Serna N, Cano-Garrido O, Flores S, Ferrer-Miralles N, Nolan V, de Marco A, Roher N, Unzueta U, Vazquez E, Villaverde A. Biofabrication of functional protein nanoparticles through simple His-tag engineering. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:12341-12354. [PMID: 34603855 PMCID: PMC8483566 DOI: 10.1021/acssuschemeng.1c04256] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Indexed: 05/03/2023]
Abstract
We have developed a simple, robust, and fully transversal approach for the a-la-carte fabrication of functional multimeric nanoparticles with potential biomedical applications, validated here by a set of diverse and unrelated polypeptides. The proposed concept is based on the controlled coordination between Zn2+ ions and His residues in His-tagged proteins. This approach results in a spontaneous and reproducible protein assembly as nanoscale oligomers that keep the original functionalities of the protein building blocks. The assembly of these materials is not linked to particular polypeptide features, and it is based on an environmentally friendly and sustainable approach. The resulting nanoparticles, with dimensions ranging between 10 and 15 nm, are regular in size, are architecturally stable, are fully functional, and serve as intermediates in a more complex assembly process, resulting in the formation of microscale protein materials. Since most of the recombinant proteins produced by biochemical and biotechnological industries and intended for biomedical research are His-tagged, the green biofabrication procedure proposed here can be straightforwardly applied to a huge spectrum of protein species for their conversion into their respective nanostructured formats.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Julieta M. Sánchez
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Universidad
Nacional de Córdoba, Facultad de
Ciencias Exactas, Físicas y Naturales, ICTA and Departamento
de Química, Cátedra de Química
Biológica, Av. Vélez Sársfield
1611, Córdoba 5016, Argentina
- CONICET-Universidad
Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas
(IIByT), Av. Velez Sarsfield
1611, Córdoba, 5016, Argentina
| | - José Vicente Carratalá
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Mauricio Rojas-Peña
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Laura Sánchez-García
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Eloi Parladé
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Alejandro Sánchez-Chardi
- Servei de
Microscòpia, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat
de Biologia, Universitat de Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
| | - Eric Voltà-Durán
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Naroa Serna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Olivia Cano-Garrido
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Sandra Flores
- Universidad
Nacional de Córdoba, Facultad de
Ciencias Exactas, Físicas y Naturales, ICTA and Departamento
de Química, Cátedra de Química
Biológica, Av. Vélez Sársfield
1611, Córdoba 5016, Argentina
- CONICET-Universidad
Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas
(IIByT), Av. Velez Sarsfield
1611, Córdoba, 5016, Argentina
| | - Neus Ferrer-Miralles
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Verónica Nolan
- Universidad
Nacional de Córdoba, Facultad de
Ciencias Exactas, Físicas y Naturales, ICTA and Departamento
de Química, Cátedra de Química
Biológica, Av. Vélez Sársfield
1611, Córdoba 5016, Argentina
- CONICET-Universidad
Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas
(IIByT), Av. Velez Sarsfield
1611, Córdoba, 5016, Argentina
| | - Ario de Marco
- Laboratory
for Environmental and Life Sciences, University
of Nova Gorica, Nova Gorica 5000, Slovenia
| | - Nerea Roher
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
- Departament
de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Ugutz Unzueta
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
- Biomedical
Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, Barcelona 08025, Spain
| | - Esther Vazquez
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Antonio Villaverde
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| |
Collapse
|
32
|
Lopes M, Coutinho T, Farinas C. Modification of zeolite with metallic ions improves the immobilization of phytase. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
López-Laguna H, Voltà-Durán E, Parladé E, Villaverde A, Vázquez E, Unzueta U. Insights on the emerging biotechnology of histidine-rich peptides. Biotechnol Adv 2021; 54:107817. [PMID: 34418503 DOI: 10.1016/j.biotechadv.2021.107817] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
In the late 70's, the discovery of the restriction enzymes made possible the biological production of functional proteins by recombinant DNA technologies, a fact that largely empowered both biotechnological and pharmaceutical industries. Short peptides or small protein domains, with specific molecular affinities, were developed as purification tags in downstream processes to separate the target protein from the culture media or cell debris, upon breaking the producing cells. Among these tags, and by exploiting the interactivity of the imidazole ring of histidine residues, the hexahistidine peptide (H6) became a gold standard. Although initially used almost exclusively in protein production, H6 and related His-rich peptides are progressively proving a broad applicability in novel utilities including enzymatic processes, advanced drug delivery systems and diagnosis, through a so far unsuspected adaptation of their binding capabilities. In this context, the coordination of histidine residues and metals confers intriguing functionalities to His-rich sequences useable in the forward-thinking design of protein-based nano- and micro-materials and devices, through strategies that are comprehensively presented here.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain.
| |
Collapse
|
34
|
Removal of protein wastes by cylinder-shaped NaY zeolite adsorbents decorated with heavy metal wastes. Int J Biol Macromol 2021; 185:761-772. [PMID: 34216668 DOI: 10.1016/j.ijbiomac.2021.06.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/09/2021] [Accepted: 06/27/2021] [Indexed: 01/01/2023]
Abstract
Cylinder-shaped NaY zeolite was used as an adsorbent for eradicating both heavy metal ions (Cu2+, Zn2+, Ni2+, and Co2+) and proteins from the waste streams. As a pseudo-metal ion affinity adsorbent, NaY zeolite was used in the capture of heavy metal ions in the first stage. The amount (molar basis) of metal ions adsorbed onto NaY zeolite decreased in the order of Cu2+ > Zn2+ > Co2+ > Ni2+. Bovine serum albumin (BSA) was utilized as a model of proteins used in the waste adsorption process by NaY zeolite. The adsorption capacities of NaY zeolite and Cu/NaY zeolite for BSA were 14.90 mg BSA/g zeolite and 84.61 mg BSA/g zeolite, respectively. Moreover, Cu/NaY zeolite was highly stable in the solutions made of 2 M NaCl, 500 mM imidazole or 125 mM EDTA solutions. These conditions indicated that the minimal probability of secondary contamination caused by metal ions and soluble proteins in the waste stream. This study demonstrates the potential of Cu/NaY zeolite complex as an efficient pseudo-metal chelate adsorbent that could remove metal ions and water-soluble proteins from wastewater concurrently.
Collapse
|
35
|
Improved adenylate cyclase activity via affinity immobilization onto co-modified GO with bio-inspired adhesive and PEI. Colloids Surf B Biointerfaces 2021; 205:111888. [PMID: 34091372 DOI: 10.1016/j.colsurfb.2021.111888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
Adenylate cyclase (AC) can efficiently catalyze the conversion of adenosine triphosphate (ATP) to cyclic adenosine-3', 5'-monophosphate (cAMP). However, AC directly immobilized on substrate is not desirable due to enzyme inactivation. Herein, bio-inspired adhesive of polydopamine and polyethyleneimine (PDA/PEI) was used as flexible chains to graft on graphene oxide (GO), and the AC was directionally immobilized through affinity between metal ions and his-tags of AC. The properties of modified GO and the activity of immobilized AC were studied in detail. PDA/PEI layers have been proved to improve the amino density of GO surface for affinity groups decoration and adjust the interaction between AC and support. And modified GO by this novel method contributes to subsequent grafting and immobilization of AC by affinity. AC immobilized on modified GO exhibited high activity recovery with about 90 % of free AC, while enzyme immobilized on unmodified GO has been inactivated. This study offers a versatile approach for support modification and enzyme oriented immobilization. PDA/PEI functionalized GO can be used as a promising carrier to immobilize other his-tagged enzymes.
Collapse
|
36
|
Kannan K, Mukherjee J, Mishra P, Gupta MN. Nickel Ferrite Nanoparticles as an Adsorbent for Immobilized Metal Affinity Chromatography of Proteins. J Chromatogr Sci 2021; 59:262-268. [PMID: 33257978 DOI: 10.1093/chromsci/bmaa102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022]
Abstract
A simple method of preparing amorphous nickel ferrite nanoparticles of about 5 nm diameter is described. These particles were characterized by dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The nanoparticles were evaluated for their use as a magnetic material for immobilized metal affinity chromatography (IMAC). The ferrite nanoparticles bound to bovine serum albumin (BSA) and the binding fitted Langmuir isotherm model. A high capacity of 916 mg BSA/g dried nanoparticle was observed. Six proteins (Soybean trypsin inhibitor (STI), lactate dehydrogenase (LDH), papain, catalase, β-galactosidase and casein) were used and all were found to bind at >90% level (except papain which showed 84% binding). All the proteins except LDH and β-galactosidase could be eluted with 1 M imidazole and with % activity recovery of >80%. Papain could be purified from its dried crude latex by 5-fold and purified papain showed a single band on SDS-PAGE. These nanoparticles constitute a high capacity and are magnetic material useful for IMAC and do not require any pre-functionalization.
Collapse
Affiliation(s)
- Kayambu Kannan
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.,PG and Research Department of Chemistry, Raja Doraisingam Government Arts College, Sivagangai, Tamil Nadu 630561, India
| | - Joyeeta Mukherjee
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Munishwar N Gupta
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
37
|
Zhou J, Wu Y, Zhang Q, Xu G, Ni Y. Co-immobilized Alcohol Dehydrogenase and Glucose Dehydrogenase with Resin Extraction for Continuous Production of Chiral Diaryl Alcohol. Appl Biochem Biotechnol 2021; 193:2742-2758. [PMID: 33826065 DOI: 10.1007/s12010-021-03561-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Ni2+-functionalized porous ceramic/agarose composite beads (Ni-NTA Cerose) can be used as carrier materials to immobilize enzymes harboring a metal affinity tag. Here, a 6×His-tag fusion alcohol dehydrogenase Mu-S5 and glucose dehydrogenase from Bacillus megaterium (BmGDH) were co-immobilized on Ni-NTA Cerose to construct a packed bed reactor (PBR) for the continuous synthesis of the chiral intermediate (S)-(4-chlorophenyl)-(pyridin-2-yl) methanol ((S)-CPMA) NADPH recycling, and in situ product adsorption was achieved simultaneously by assembling a D101 macroporous resin column after the PBR. Using an optimum enzyme activity ratio of 2:1 (Mu-S5: BmGDH) and hydroxypropyl-β-cyclodextrin as co-solvent, a space-time yield of 1560 g/(L·d) could be achieved in the first three days at a flow rate of 5 mL/min and substrate concentration of 10 mM. With simplified selective adsorption and extraction procedures, (S)-CPMA was obtained in 84% isolated yield.
Collapse
Affiliation(s)
- Jieyu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yanfei Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qingye Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
38
|
Tian J, Jia R, Wenge D, Sun H, Wang Y, Chang Y, Luo H. One-step purification and immobilization of recombinant proteins using SpyTag/SpyCatcher chemistry. Biotechnol Lett 2021; 43:1075-1087. [PMID: 33591462 DOI: 10.1007/s10529-021-03098-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 02/03/2021] [Indexed: 01/03/2023]
Abstract
Based on the specific and spontaneous formation of isopeptide bonds by SpyCatcher/SpyTag, we have developed a one-step method for purification and immobilization of recombinant proteins. The procedure is to immobilize SpyCatcher on glyoxyl agarose gels, and then the SpyCatcher immobilisate can be used to immobilize the SpyTag-fused protein in the crude extract selectively. A mutant of SpyCatcher (mSC), in which a peptide (LysGlyLysGlyLysGly) was added to the C-terminus of SpyCatcher and three lysine residues around the SpyTag/SpyCatcher binding domain were replaced with arginine, was designed to improve the attachment of SpyCatcher to the support. Compared with wild-type SpyCatcher, mSC can be immobilized on the glyoxyl-agarose support more efficiently, which enables the obtained mSC derivative a high binding capacity of the SpyTag-fused protein. The results showed that the target proteins in the crude enzyme extract were purified and immobilized in one step, and the thermal stability of the immobilized target proteins was also remarkably improved.
Collapse
Affiliation(s)
- Junwei Tian
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ruiqi Jia
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dong Wenge
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongxu Sun
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yue Wang
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanhong Chang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Hui Luo
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
39
|
Udechukwu MC, Dang C, Udenigwe CC. Identification of zinc-binding peptides in ADAM17-inhibiting whey protein hydrolysates using IMAC-Zn2+ coupled with shotgun peptidomics. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-020-00048-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Food components possessing zinc ligands can be used to inhibit zinc-dependent enzymes. In this study, zinc-binding peptides were derived from whey protein hydrolysates, and their ultrafiltration (> 1 and < 1 kDa) fractions, produced with Esperase (WPH-Esp), Everlase and Savinase. Immobilized metal affinity chromatography (IMAC-Zn2+) increased the zinc-binding capacity of the peptide fraction (83%) when compared to WPH-Esp (23%) and its < 1 kDa fraction (40%). The increased zinc-binding capacity of the sample increased the inhibitory activity against the zinc-dependent “a disintegrin and metalloproteinase 17”. LC-MS/MS analysis using a shotgun peptidomics approach resulted in the identification of 24 peptides originating from bovine β-lactoglobulin, α-lactalbumin, serum albumin, β-casein, κ-casein, osteopontin-k, and folate receptor-α in the fraction. The identified peptides contained different combinations of the strong zinc-binding group of residues, His+Cys, Asp+Glu and Phe+Tyr, although Cys residues were absent in the sequences. In silico predictions showed that the IMAC-Zn2+ peptides were non-toxins. However, the peptides possessed poor drug-like and pharmacokinetic properties; this was possibly due to their long chain lengths (5–19 residues). Taken together, this work provided an array of food peptide-based zinc ligands for further investigation of structure-function relationships and development of nutraceuticals against inflammatory and other zinc-related diseases.
Graphical abstract
Collapse
|
40
|
Kielkopf CL, Bauer W, Urbatsch IL. Expressing Cloned Genes for Protein Production, Purification, and Analysis. Cold Spring Harb Protoc 2021; 2021:pdb.top102129. [PMID: 33272973 DOI: 10.1101/pdb.top102129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Obtaining high quantities of a specific protein directly from native sources is often challenging, particularly when dealing with human proteins. To overcome this obstacle, many researchers take advantage of heterologous expression systems by cloning genes into artificial vectors designed to operate within easily cultured cells, such as Escherichia coli, Pichia pastoris (yeast), and several varieties of insect and mammalian cells. Heterologous expression systems also allow for easy modification of the protein to optimize expression, mutational analysis of specific sites within the protein and facilitate their purification with engineered affinity tags. Some degree of purification of the target protein is usually required for functional analysis. Purification to near homogeneity is essential for characterization of protein structure by X-ray crystallography or nuclear magnetic resonance (NMR) and characterization of the biochemical and biophysical properties of a protein, because contaminating proteins almost always adversely affect the results. Methods for producing and purifying proteins in several different expression platforms and using a variety of vectors are introduced here.
Collapse
|
41
|
Varghese PK, Abu-Asab M, Dimitriadis EK, Dolinska MB, Morcos GP, Sergeev YV. Tyrosinase Nanoparticles: Understanding the Melanogenesis Pathway by Isolating the Products of Tyrosinase Enzymatic Reaction. Int J Mol Sci 2021; 22:E734. [PMID: 33450959 PMCID: PMC7828394 DOI: 10.3390/ijms22020734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
Human Tyrosinase (Tyr) is the rate-limiting enzyme of the melanogenesis pathway. Tyr catalyzes the oxidation of the substrate L-DOPA into dopachrome and melanin. Currently, the characterization of dopachrome-related products is difficult due to the absence of a simple way to partition dopachrome from protein fraction. Here, we immobilize catalytically pure recombinant human Tyr domain (residues 19-469) containing 6xHis tag to Ni-loaded magnetic beads (MB). Transmission electron microscopy revealed Tyr-MB were within limits of 168.2 ± 24.4 nm while the dark-brown melanin images showed single and polymerized melanin with a diameter of 121.4 ± 18.1 nm. Using Hill kinetics, we show that Tyr-MB has a catalytic activity similar to that of intact Tyr. The diphenol oxidase reactions of L-DOPA show an increase of dopachrome formation with the number of MB and with temperature. At 50 °C, Tyr-MB shows some residual catalytic activity suggesting that the immobilized Tyr has increased protein stability. In contrast, under 37 °C, the dopachrome product, which is isolated from Tyr-MB particles, shows that dopachrome has an orange-brown color that is different from the color of the mixture of L-DOPA, Tyr, and dopachrome. In the future, Tyr-MB could be used for large-scale productions of dopachrome and melanin-related products and finding a treatment for oculocutaneous albinism-inherited diseases.
Collapse
Affiliation(s)
- Paul K. Varghese
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.K.V.); (M.A.-A.); (M.B.D.); (G.P.M.)
| | - Mones Abu-Asab
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.K.V.); (M.A.-A.); (M.B.D.); (G.P.M.)
| | - Emilios K. Dimitriadis
- NIH Shared Resources on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Monika B. Dolinska
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.K.V.); (M.A.-A.); (M.B.D.); (G.P.M.)
| | - George P. Morcos
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.K.V.); (M.A.-A.); (M.B.D.); (G.P.M.)
| | - Yuri V. Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.K.V.); (M.A.-A.); (M.B.D.); (G.P.M.)
| |
Collapse
|
42
|
Abstract
The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific toward particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications in proteins and peptides widen the application of affinity ligand-tag receptors pairs toward universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely the affinity tags and receptors employed on the production of recombinant fusion proteins, and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.
Collapse
|
43
|
Li J, Zhan X. Mass spectrometry-based proteomics analyses of post-translational modifications and proteoforms in human pituitary adenomas. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140584. [PMID: 33321259 DOI: 10.1016/j.bbapap.2020.140584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Pituitary adenoma (PA) is a common intracranial neoplasm, which affects the hypothalamus-pituitary-target organ axis systems, and is hazardous to human health. Post-translational modifications (PTMs), including phosphorylation, ubiquitination, nitration, and sumoylation, are vitally important in the PA pathogenesis. The large-scale analysis of PTMs could provide a global view of molecular mechanisms for PA. Proteoforms, which are used to define various protein structural and functional forms originated from the same gene, are the future direction of proteomics research. The global studies of different proteoforms and PTMs of hypophyseal hormones such as growth hormone (GH) and prolactin (PRL) and the proportion change of different GH proteoforms or PRL proteoforms in human pituitary tissue could provide new insights into the clinical value of pituitary hormones in PAs. Multiple quantitative proteomics methods, including mass spectrometry (MS)-based label-free and stable isotope-labeled strategies in combination with different PTM-peptide enrichment methods such as TiO2 enrichment of tryptic phosphopeptides and antibody enrichment of other PTM-peptides increase the feasibility for researchers to study PA proteomes. This article reviews the research status of PTMs and proteoforms in PAs, including the enrichment method, technical limitation, quantitative proteomics strategies, and the future perspectives, to achieve the goals of in-depth understanding its molecular pathogenesis, and discovering effective biomarkers and clinical therapeutic targets for predictive, preventive, and personalized treatment of PA patients.
Collapse
Affiliation(s)
- Jiajia Li
- University Creative Research Initiatives Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117, P. R. China; Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 P. R. China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Xianquan Zhan
- University Creative Research Initiatives Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117, P. R. China; Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 P. R. China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China.
| |
Collapse
|
44
|
You CX, Huang PH, Lin SC. Concomitant selective adsorption and covalent immobilization of a His-tagged protein switch with silica-based metal chelate-epoxy bifunctional adsorbents. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Hameed O, Ozcan F, Ertul S, Cagil EM. Preparation of Immobilized Metal Affinity Nanofiber for Globulin Depletion. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Chen YL, Huang CT. Establishment of a two-step purification scheme for tag-free recombinant Taiwan native norovirus P and VP1 proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1159:122357. [PMID: 32920339 DOI: 10.1016/j.jchromb.2020.122357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/17/2022]
Abstract
The protruding (P) domain of the major capsid protein VP1 of norovirus (NoV) is the crucial element for immune recognition and host receptor binding. The heterologous P protein expressed by Pichia pastoris self-assembles into P particles. However, tag-free NoV protein purification schemes have rarely been reported due to the low isoelectric point of NoV proteins, which leads to highly competitive binding between the target protein and yeast host cell proteins at alkaline pH. In this study, a two-step purification scheme based on surface histidines and the charge on the NoV GII.4 strain P protein was developed. Using HisTrap and ion exchange chromatography, the P protein was directly purified, with a recovery of 28.1% and purity of 82.1%. Similarly, the NoV capsid protein VP1 was also purified using HisTrap and gel filtration chromatography based on native surface histidines and self-assembly ability, with 20% recovery and over 90% purity. Dynamic light scattering and transmission electron microscopy analyses of the purified NoV P revealed that most of these small P particles were triangle-, square- and ring-shaped, with a diameter of approximately 14 nm, and that the purified NoV VP1 self-assembles into particles with a diameter of approximately 47 nm. Both the purified NoV P and VP1 particles retained human histo-blood group antigen-binding ability, as evidenced by a saliva-binding assay.
Collapse
Affiliation(s)
- Yu-Ling Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taiwan
| | - Ching-Tsan Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taiwan.
| |
Collapse
|
47
|
Cserjan-Puschmann M, Lingg N, Engele P, Kröß C, Loibl J, Fischer A, Bacher F, Frank AC, Öhlknecht C, Brocard C, Oostenbrink C, Berkemeyer M, Schneider R, Striedner G, Jungbauer A. Production of Circularly Permuted Caspase-2 for Affinity Fusion-Tag Removal: Cloning, Expression in Escherichia coli, Purification, and Characterization. Biomolecules 2020; 10:E1592. [PMID: 33255244 PMCID: PMC7760212 DOI: 10.3390/biom10121592] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
Caspase-2 is the most specific protease of all caspases and therefore highly suitable as tag removal enzyme creating an authentic N-terminus of overexpressed tagged proteins of interest. The wild type human caspase-2 is a dimer of heterodimers generated by autocatalytic processing which is required for its enzymatic activity. We designed a circularly permuted caspase-2 (cpCasp2) to overcome the drawback of complex recombinant expression, purification and activation, cpCasp2 was constitutively active and expressed as a single chain protein. A 22 amino acid solubility tag and an optimized fermentation strategy realized with a model-based control algorithm further improved expression in Escherichia coli and 5.3 g/L of cpCasp2 in soluble form were obtained. The generated protease cleaved peptide and protein substrates, regardless of N-terminal amino acid with high activity and specificity. Edman degradation confirmed the correct N-terminal amino acid after tag removal, using Ubiquitin-conjugating enzyme E2 L3 as model substrate. Moreover, the generated enzyme is highly stable at -20 °C for one year and can undergo 25 freeze/thaw cycles without loss of enzyme activity. The generated cpCasp2 possesses all biophysical and biochemical properties required for efficient and economic tag removal and is ready for a platform fusion protein process.
Collapse
Affiliation(s)
- Monika Cserjan-Puschmann
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Nico Lingg
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Petra Engele
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Christina Kröß
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Julian Loibl
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
| | - Andreas Fischer
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
| | - Florian Bacher
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
| | - Anna-Carina Frank
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Christoph Öhlknecht
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Cécile Brocard
- Biopharma Process Science Austria, Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria; (C.B.); (M.B.)
| | - Chris Oostenbrink
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Matthias Berkemeyer
- Biopharma Process Science Austria, Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria; (C.B.); (M.B.)
| | - Rainer Schneider
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Gerald Striedner
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Alois Jungbauer
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
48
|
Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnol Adv 2020; 45:107653. [PMID: 33157154 DOI: 10.1016/j.biotechadv.2020.107653] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Tag-assisted protein purification is a method of choice for both academic researches and large-scale industrial demands. Application of the purification tags in the protein production process can help to save time and cost, but the design and application of tagged fusion proteins are challenging. An appropriate tagging strategy must provide sufficient expression yield and high purity for the final protein products while preserving their native structure and function. Thanks to the recent advances in the bioinformatics and emergence of high-throughput techniques (e.g. SEREX), many new tags are introduced to the market. A variety of interfering and non-interfering tags have currently broadened their application scope beyond the traditional use as a simple purification tool. They can take part in many biochemical and analytical features and act as solubility and protein expression enhancers, probe tracker for online visualization, detectors of post-translational modifications, and carrier-driven tags. Given the variability and growing number of the purification tags, here we reviewed the protein- and peptide-structured purification tags used in the affinity, ion-exchange, reverse phase, and immobilized metal ion affinity chromatographies. We highlighted the demand for purification tags in the pharmaceutical industry and discussed the impact of self-cleavable tags, aggregating tags, and nanotechnology on both the column-based and column-free purification techniques.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Singh P, Khan A, Kumar R, Kumar R, Singh VK, Srivastava A. Recent developments in siderotyping: procedure and application. World J Microbiol Biotechnol 2020; 36:178. [PMID: 33128090 DOI: 10.1007/s11274-020-02955-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022]
Abstract
Siderophores are metal chelating secondary metabolites secreted by almost all organisms. Beside iron starvation, the ability to produce siderophores depends upon several other factors. Chemical structure of siderophore is very complex with vast structural diversity, thus the principle challenge involves its detection, quantification, purification and characterisation. Metal chelation is its most fascinating attribute. This metal chelation property is now forming the basis of its application as molecular markers, siderotyping tool for taxonomic clarification, biosensors and bioremediation agents. This has led researchers to develop and continuously modify previous techniques in order to provide accurate and reproducible methods of studying siderophores. Knowledge obtained via computational approaches provides a new horizon in the field of siderophore biosynthetic gene clusters and their interaction with various proteins/peptides. This review illustrates various techniques, bioinformatics tools and databases employed in siderophores' studies, the principle of analytical methods and their recent applications.
Collapse
Affiliation(s)
- Pratika Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Azmi Khan
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Rakesh Kumar
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Vijay Kumar Singh
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India.
| |
Collapse
|
50
|
Önal B, Odabaşı M. Design and application of a newly generated bio/synthetic cryogel column for DNA capturing. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03387-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|