1
|
Phillips CD, Hodge AT, Myers CC, Leventhal DK, Burgess CR. Striatal Dopamine Contributions to Skilled Motor Learning. J Neurosci 2024; 44:e0240242024. [PMID: 38806248 PMCID: PMC11211718 DOI: 10.1523/jneurosci.0240-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Coordinated multijoint limb and digit movements-"manual dexterity"-underlie both specialized skills (e.g., playing the piano) and more mundane tasks (e.g., tying shoelaces). Impairments in dexterous skill cause significant disability, as occurs with motor cortical injury, Parkinson's disease, and a range of other pathologies. Clinical observations, as well as basic investigations, suggest that corticostriatal circuits play a critical role in learning and performing dexterous skills. Furthermore, dopaminergic signaling in these regions is implicated in synaptic plasticity and motor learning. Nonetheless, the role of striatal dopamine signaling in skilled motor learning remains poorly understood. Here, we use fiber photometry paired with a genetically encoded dopamine sensor to investigate striatal dopamine release in both male and female mice as they learn and perform a skilled reaching task. Dopamine rapidly increases during a skilled reach and peaks near pellet consumption. In the dorsolateral striatum, dopamine dynamics are faster than in the dorsomedial and ventral striatum. Across training, as reaching performance improves, dopamine signaling shifts from pellet consumption to cues that predict pellet availability, particularly in medial and ventral areas of the striatum. Furthermore, performance prediction errors are present across the striatum, with reduced dopamine release after an unsuccessful reach. These findings show that dopamine dynamics during skilled motor behaviors change with learning and are differentially regulated across striatal subregions.
Collapse
Affiliation(s)
- Chris D Phillips
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080
| | - Alexander T Hodge
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Courtney C Myers
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel K Leventhal
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
- Parkinson's Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, Michigan 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, VA Ann Arbor Health System, Ann Arbor, Michigan 48109
| | - Christian R Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
2
|
Phillips CD, Myers CC, Leventhal DK, Burgess CR. Striatal dopamine contributions to skilled motor learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579240. [PMID: 38370850 PMCID: PMC10871330 DOI: 10.1101/2024.02.06.579240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Coordinated multi-joint limb and digit movements - "manual dexterity" - underlie both specialized skills (e.g., playing the piano) and more mundane tasks (e.g., tying shoelaces). Impairments in dexterous skill cause significant disability, as occurs with motor cortical injury, Parkinson's Disease, and a range of other pathologies. Clinical observations, as well as basic investigations, suggest that cortico-striatal circuits play a critical role in learning and performing dexterous skills. Furthermore, dopaminergic signaling in these regions is implicated in synaptic plasticity and motor learning. Nonetheless, the role of striatal dopamine signaling in skilled motor learning remains poorly understood. Here, we use fiber photometry paired with a genetically encoded dopamine sensor to investigate striatal dopamine release as mice learn and perform a skilled reaching task. Dopamine rapidly increases during a skilled reach and peaks near pellet consumption. In dorsolateral striatum, dopamine dynamics are faster than in dorsomedial and ventral striatum. Across training, as reaching performance improves, dopamine signaling shifts from pellet consumption to cues that predict pellet availability, particularly in medial and ventral areas of striatum. Furthermore, performance prediction errors are present across the striatum, with reduced dopamine release after an unsuccessful reach. These findings show that dopamine dynamics during skilled motor behaviors change with learning and are differentially regulated across striatal subregions.
Collapse
Affiliation(s)
- Chris D. Phillips
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA, 75080
| | - Courtney C. Myers
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Daniel K. Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA, 48109
- Parkinson Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Neurology, VA Ann Arbor Health System, Ann Arbor, MI, USA, 48109
| | - Christian R. Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA, 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA, 48109
| |
Collapse
|
3
|
Jordan GA, Vishwanath A, Holguin G, Bartlett MJ, Tapia AK, Winter GM, Sexauer MR, Stopera CJ, Falk T, Cowen SL. Automated system for training and assessing reaching and grasping behaviors in rodents. J Neurosci Methods 2024; 401:109990. [PMID: 37866457 PMCID: PMC10731814 DOI: 10.1016/j.jneumeth.2023.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Reaching, grasping, and pulling behaviors are studied across species to investigate motor control and problem solving. String pulling is a distinct reaching and grasping behavior that is rapidly learned, requires bimanual coordination, is ethologically grounded, and has been applied across species and disease conditions. NEW METHOD Here we describe the PANDA system (Pulling And Neural Data Analysis), a hardware and software system that integrates a continuous string loop connected to a rotary encoder, feeder, microcontroller, high-speed camera, and analysis software for the assessment and training of reaching, grasping, and pulling behaviors and synchronization with neural data. RESULTS We demonstrate this system in rats implanted with electrodes in motor cortex and hippocampus and show how it can be used to assess relationships between reaching, pulling, and grasping movements and single-unit and local-field activity. Furthermore, we found that automating the shaping procedure significantly improved performance over manual training, with rats pulling > 100 m during a 15-minute session. COMPARISON WITH EXISTING METHODS String-pulling is typically shaped by tying food reward to the string and visually scoring behavior. The system described here automates training, streamlines video assessment with deep learning, and automatically segments reaching movements into distinct reach/pull phases. No system, to our knowledge, exists for the automated shaping and assessment of this behavior. CONCLUSIONS This system will be of general use to researchers investigating motor control, motivation, sensorimotor integration, and motor disorders such as Parkinson's disease and stroke.
Collapse
Affiliation(s)
- Gianna A Jordan
- Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | | | | | | | - Andrew K Tapia
- Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | | | | | | | - Torsten Falk
- Neurology, University of Arizona, Tucson, AZ, USA; Pharmacology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
4
|
Garau C, Hayes J, Chiacchierini G, McCutcheon JE, Apergis-Schoute J. Involvement of A13 dopaminergic neurons in prehensile movements but not reward in the rat. Curr Biol 2023; 33:4786-4797.e4. [PMID: 37816347 DOI: 10.1016/j.cub.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Tyrosine hydroxylase (TH)-containing neurons of the dopamine (DA) cell group A13 are well positioned to impact known DA-related functions as their descending projections innervate target regions that regulate vigilance, sensory integration, and motor execution. Despite this connectivity, little is known regarding the functionality of A13-DA circuits. Using TH-specific loss-of-function methodology and techniques to monitor population activity in transgenic rats in vivo, we investigated the contribution of A13-DA neurons in reward and movement-related actions. Our work demonstrates a role for A13-DA neurons in grasping and handling of objects but not reward. A13-DA neurons responded strongly when animals grab and manipulate food items, whereas their inactivation or degeneration prevented animals from successfully doing so-a deficit partially attributed to a reduction in grip strength. By contrast, there was no relation between A13-DA activity and food-seeking behavior when animals were tested on a reward-based task that did not include a reaching/grasping response. Motivation for food was unaffected, as goal-directed behavior for food items was in general intact following A13 neuronal inactivation/degeneration. An anatomical investigation confirmed that A13-DA neurons project to the superior colliculus (SC) and also demonstrated a novel A13-DA projection to the reticular formation (RF). These results establish a functional role for A13-DA neurons in prehensile actions that are uncoupled from the motivational factors that contribute to the initiation of forelimb movements and help position A13-DA circuits into the functional framework regarding centrally located DA populations and their ability to coordinate movement.
Collapse
Affiliation(s)
- Celia Garau
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK.
| | - Jessica Hayes
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Giulia Chiacchierini
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Physiology and Pharmacology, La Sapienza University of Rome, 00185 Rome, Italy; Laboratory of Neuropsychopharmacology, Santa Lucia Foundation, 00143 Rome, Italy
| | - James E McCutcheon
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037 Tromsø, Norway
| | - John Apergis-Schoute
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
5
|
Jordan GA, Vishwanath A, Holguin G, Bartlett MJ, Tapia AK, Winter GM, Sexauer MR, Stopera CJ, Falk T, Cowen SL. Automated system for training and assessing string-pulling behaviors in rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547431. [PMID: 37461637 PMCID: PMC10349952 DOI: 10.1101/2023.07.02.547431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
String-pulling tasks have been used for centuries to study coordinated bimanual motor behavior and problem solving. String pulling is rapidly learned, ethologically grounded, and has been applied to many species and disease conditions. Typically, training of string-pulling behaviors is achieved through manual shaping and baiting. Furthermore, behavioral assessment of reaching, grasping, and pulling is often performed through labor intensive manual video scoring. No system, to our knowledge, currently exists for the automated shaping and assessment of string-pulling behaviors. Here we describe the PANDA system (Pulling And Neural Data Analysis), an inexpensive hardware and software system that utilizes a continuous string loop connected to a rotary encoder, feeder, microcontroller, high-speed camera, and analysis software for assessment and training of string-pulling behaviors and synchronization with neural recording data. We demonstrate this system in unimplanted rats and rats implanted with electrodes in motor cortex and hippocampus and show how the PANDA system can be used to assess relationships between paw movements and single-unit and local-field activity. We also found that automating the shaping procedure significantly improved overall performance, with rats regularly pulling >100 meters during a 15-minute session. In conclusion, the PANDA system will be of general use to researchers investigating motor control, motivation, and motor disorders such as Parkinson's disease, Huntington's disease, and stroke. It will also support the investigation of neural mechanisms involved in sensorimotor integration.
Collapse
Affiliation(s)
| | | | | | | | - Andrew K. Tapia
- Biomedical Engineering, University of Arizona, Tucson Arizona
| | | | | | | | - Torsten Falk
- Neurology, University of Arizona, Tucson Arizona
- Pharmacology, University of Arizona, Tucson Arizona
| | | |
Collapse
|
6
|
Hart M, Blackwell AA, Whishaw IQ, Wallace DG, Cheatwood JL. Impairments and Compensation in String-pulling After Middle Cerebral Artery Occlusion in the Rat. Behav Brain Res 2023; 450:114469. [PMID: 37146723 DOI: 10.1016/j.bbr.2023.114469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 05/07/2023]
Abstract
Stroke is a leading cause of long-term disability in humans, and it is frequently associated with impairments in the skilled use of the arms and hands. Many human upper limb impairments and compensatory changes have been successfully modeled in rodent studies of neocortical stroke, especially those that evaluate single limb use in tasks, such as reaching for food. Humans also use their hands for bilaterally coordinated movements, dependent upon interhemispheric cortical projections, which are also compromised by unilateral stroke. This study describes middle cerebral artery occlusion (MCAO) dependent changes in the bilaterally dependent hand use behavior of string-pulling in the rat. The task involves making hand-over-hand movements to pull down a string that contains a food reward attached to its end. MCAO rats missed the string more often with both hands than Sham rats. When the string was missed on the contralateral to MCAO body side, rats continued to cycle through subcomponents of string-pulling behavior as if the string were grasped in the hand. Rats also failed to make a grasping motion with the contralateral to MCAO hand when the string was missed and instead, demonstrated an open-handed raking-like motions. Nevertheless, with repeated attempts, rats performed components of string-pulling well enough to obtain a reward on the end of the string. Thus, string-pulling behavior is sensitive to bilateral impairments but is achieved with compensatory adjustments following MCAO. These aspects of MCAO string-pulling provide a foundation for studies that investigate the efficacy of therapeutic intervention which might enhance neuroplasticity and recovery. DATA AVAILABILITY: The datasets generated during the current study are available upon request.
Collapse
Affiliation(s)
- Muriel Hart
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Ashley A Blackwell
- Department of Psychology, Northern Illinois University, De Kalb, Illinois, 60115 USA.
| | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Douglas G Wallace
- Department of Psychology, Northern Illinois University, De Kalb, Illinois, 60115 USA
| | - Joseph L Cheatwood
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| |
Collapse
|
7
|
Patterned Stimulation of the Chrimson Opsin in Glutamatergic Motor Thalamus Neurons Improves Forelimb Akinesia in Parkinsonian Rats. Neuroscience 2022; 507:64-78. [PMID: 36343721 DOI: 10.1016/j.neuroscience.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/20/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Parkinson's disease (PD) is a motor disorder charactertised by altered neural activity throughout the basal ganglia-thalamocortical circuit. Electrical deep brain stimulation (DBS) is efficacious in alleviating motor symptoms, but has several notable side-effects, most likely reflecting the non-specific nature of electrical stimulation and/or the brain regions targeted. We determined whether specific optogenetic activation of glutamatergic motor thalamus (Mthal) neurons alleviated forelimb akinesia in a chronic rat model of PD. Parkinsonian rats (unilateral 6-hydroxydopamine injection) were injected with an adeno-associated viral vector (AAV5-CaMKII-Chrimson-GFP) to transduce glutamatergic Mthal neurons with the red-shifted Chrimson opsin. Optogenetic stimulation with orange light at 15 Hz tonic and a physiological pattern, previously recorded from a Mthal neuron in a control rat, significantly increased forelimb use in the reaching test (p < 0.01). Orange light theta burst stimulation, 15 Hz and control reaching patterns significantly reduced akinesia (p < 0.0001) assessed by the step test. In contrast, forelimb use in the cylinder test was unaffected by orange light stimulation with any pattern. Blue light (control) stimulation failed to alter behaviours. Activation of Chrimson using complex patterns in the Mthal may be an alternative treatment to recover movement in PD. These vector and opsin changes are important steps towards translating optogenetic stimulation to humans.
Collapse
|
8
|
Ohno Y, Horikoshi A, Imamura K. Reaching Task in Rats: Quantitative Evaluation and Effects of 6-OHDA into the Striatum. J Mot Behav 2022; 54:648-655. [PMID: 35392775 DOI: 10.1080/00222895.2022.2061410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, we developed an evaluation method using image analysis for reaching tasks. Using this method, we studied forearm function during the reaching task in rats that received a unilateral injection of 6-OHDA into the striatum. The success ratio of the reaching task reduced to 40.5% seven days after the injection. In addition, significant changes were observed in the pronation angle of the forearm, posture control, and targeting (i.e., the distance between all fingertips and the center of the target pellet). Thus, unilateral injection of 6-OHDA reduces dopaminergic function in the brain and causes deterioration of forearm function and posture control in the reaching task.
Collapse
Affiliation(s)
- Yoichi Ohno
- Department of Physical Therapy, Faculty of Health Care, Takasaki Univ. Health and Welfare, Takasaki City, Gunma, Japan.,Department of System Life Engineering, Maebashi Institute of Technology, Maebashi City, Gunma, Japan
| | - Akinori Horikoshi
- Department of System Life Engineering, Maebashi Institute of Technology, Maebashi City, Gunma, Japan
| | - Kazuyuki Imamura
- Department of System Life Engineering, Maebashi Institute of Technology, Maebashi City, Gunma, Japan
| |
Collapse
|
9
|
Bottenfield KR, Bowley BGE, Pessina MA, Medalla M, Rosene DL, Moore TL. Sex differences in recovery of motor function in a rhesus monkey model of cortical injury. Biol Sex Differ 2021; 12:54. [PMID: 34627376 PMCID: PMC8502310 DOI: 10.1186/s13293-021-00398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stroke disproportionately affects men and women, with women over 65 years experiencing increased severity of impairment and higher mortality rates than men. Human studies have explored risk factors that contribute to these differences, but additional research is needed to investigate how sex differences affect functional recovery and hence the severity of impairment. In the present study, we used our rhesus monkey model of cortical injury and fine motor impairment to compare sex differences in the rate and degree of motor recovery following this injury. METHODS Aged male and female rhesus monkeys were trained on a task of fine motor function of the hand before undergoing surgery to produce a cortical lesion limited to the hand area representation of the primary motor cortex. Post-operative testing began two weeks after the surgery and continued for 12 weeks. All trials were video recorded and latency to retrieve a reward was quantitatively measured to assess the trajectory of post-operative response latency and grasp pattern compared to pre-operative levels. RESULTS Postmortem analysis showed no differences in lesion volume between male and female monkeys. However, female monkeys returned to their pre-operative latency and grasp patterns significantly faster than males. CONCLUSIONS These findings demonstrate the need for additional studies to further investigate the role of estrogens and other sex hormones that may differentially affect recovery outcomes in the primate brain.
Collapse
Affiliation(s)
- Karen R Bottenfield
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.
| | - Bethany G E Bowley
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA
| | - Monica A Pessina
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA
| | - Maria Medalla
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Douglas L Rosene
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Tara L Moore
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
10
|
Bova A, Gaidica M, Hurst A, Iwai Y, Hunter J, Leventhal DK. Precisely timed dopamine signals establish distinct kinematic representations of skilled movements. eLife 2020; 9:e61591. [PMID: 33245045 PMCID: PMC7861618 DOI: 10.7554/elife.61591] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Brain dopamine is critical for normal motor control, as evidenced by its importance in Parkinson Disease and related disorders. Current hypotheses are that dopamine influences motor control by 'invigorating' movements and regulating motor learning. Most evidence for these aspects of dopamine function comes from simple tasks (e.g. lever pressing). Therefore, the influence of dopamine on motor skills requiring multi-joint coordination is unknown. To determine the effects of precisely timed dopamine manipulations on the performance of a complex, finely coordinated dexterous skill, we optogenetically stimulated or inhibited midbrain dopamine neurons as rats performed a skilled reaching task. We found that reach kinematics and coordination between gross and fine movements progressively changed with repeated manipulations. However, once established, rats transitioned abruptly between aberrant and baseline reach kinematics in a dopamine-dependent manner. These results suggest that precisely timed dopamine signals have immediate and long-term influences on motor skill performance, distinct from simply 'invigorating' movement.
Collapse
Affiliation(s)
- Alexandra Bova
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | - Matt Gaidica
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | - Amy Hurst
- Department of Neurology, University of MichiganAnn ArborUnited States
| | - Yoshiko Iwai
- Department of Neurology, University of MichiganAnn ArborUnited States
| | - Julia Hunter
- Department of Neurology, University of MichiganAnn ArborUnited States
| | - Daniel K Leventhal
- Department of Neurology, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Parkinson Disease Foundation Research Center of Excellence, University of MichiganAnn ArborUnited States
- Department of Neurology, VA Ann Arbor Health SystemAnn ArborUnited States
| |
Collapse
|
11
|
Fouad K, Ng C, Basso DM. Behavioral testing in animal models of spinal cord injury. Exp Neurol 2020; 333:113410. [PMID: 32735871 PMCID: PMC8325780 DOI: 10.1016/j.expneurol.2020.113410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023]
Abstract
This review is based on a lecture presented at the Craig H. Neilsen Foundation sponsored Spinal Cord Injury Training Program at Ohio State University. We discuss the advantages and challenges of injury models in rodents and theory relation to various behavioral outcome measures. We offer strategies and advice on experimental design, behavioral testing, and on the challenges, one will encounter with animal testing. This review is designed to guide those entering the field of spinal cord injury and/or involved with in vivo animal testing.
Collapse
Affiliation(s)
- K Fouad
- University of Alberta, Faculty of Rehabilitation Medicine, Dept of Physical Therapy, 3-48 Corbett Hall, Edmonton T6G 2G4, Canada; University of Alberta, Neuroscience and Mental Health Institute, 2-132 Li Ka Shing, Edmonton T6G 2E1, Canada.
| | - C Ng
- University of Alberta, Neuroscience and Mental Health Institute, 2-132 Li Ka Shing, Edmonton T6G 2E1, Canada
| | - D M Basso
- Ohio State University, College of Medicine, School of Health and Rehabilitation Sciences, 106A Atwell Hall, 453 W. 10th Ave, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Sims SKKC, Rizzo A, Howard K, Farrand A, Boger H, Adkins DL. Comparative Enhancement of Motor Function and BDNF Expression Following Different Brain Stimulation Approaches in an Animal Model of Ischemic Stroke. Neurorehabil Neural Repair 2020; 34:925-935. [PMID: 32909525 PMCID: PMC7572816 DOI: 10.1177/1545968320952798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Combinatory intervention such as high-frequency (50-100 Hz) excitatory cortical stimulation (ECS) given concurrently with motor rehabilitative training (RT) improves forelimb function, except in severely impaired animals after stroke. Clinical studies suggest that low-frequency (≤1 Hz) inhibitory cortical stimulation (ICS) may provide an alternative approach to enhance recovery. Currently, the molecular mediators of CS-induced behavioral effects are unknown. Brain-derived neurotrophic factor (BDNF) has been associated with improved recovery and neural remodeling after stroke and thus may be involved in CS-induced behavioral recovery. OBJECTIVE To investigate whether inhibitory stimulation during RT improves functional recovery of severely impaired rats, following focal cortical ischemia and if this recovery alters BDNF expression (study 1) and depends on BDNF binding to TrkB receptors (study 2). METHODS Rats underwent ECS + RT, ICS + RT, or noCS + RT treatment daily for 3 weeks following a unilateral ischemic lesion to the motor cortex. Electrode placement for stimulation was either placed ipsilateral (ECS) or contralateral (ICS) to the lesion. After treatment, BDNF expression was measured in cortical tissue samples (study 1). In study 2, the TrkB inhibitor, ANA-12, was injected prior to treatment daily for 21 days. RESULTS ICS + RT treatment significantly improved impaired forelimb recovery compared with ECS + RT and noCS + RT treatment. CONCLUSION ICS given concurrently with rehabilitation improves motor recovery in severely impaired animals, and alters cortical BDNF expression; nevertheless, ICS-mediated improvements are not dependent on BDNF binding to TrkB. Conversely, inhibition of TrkB receptors does disrupt motor recovery in ECS + RT treated animals.
Collapse
Affiliation(s)
| | | | | | - Ariana Farrand
- Medical University of South Carolina, Charleston, SC, USA
| | - Heather Boger
- Medical University of South Carolina, Charleston, SC, USA
| | - DeAnna L Adkins
- National Institute of Neurological Diseases and Stroke, Rockville, MD, USA
| |
Collapse
|
13
|
Latchoumane CFV, Barany DA, Karumbaiah L, Singh T. Neurostimulation and Reach-to-Grasp Function Recovery Following Acquired Brain Injury: Insight From Pre-clinical Rodent Models and Human Applications. Front Neurol 2020; 11:835. [PMID: 32849253 PMCID: PMC7396659 DOI: 10.3389/fneur.2020.00835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
Reach-to-grasp is an evolutionarily conserved motor function that is adversely impacted following stroke and traumatic brain injury (TBI). Non-invasive brain stimulation (NIBS) methods, such as transcranial magnetic stimulation and transcranial direct current stimulation, are promising tools that could enhance functional recovery of reach-to-grasp post-brain injury. Though the rodent literature provides a causal understanding of post-injury recovery mechanisms, it has had a limited impact on NIBS protocols in human research. The high degree of homology in reach-to-grasp circuitry between humans and rodents further implies that the application of NIBS to brain injury could be better informed by findings from pre-clinical rodent models and neurorehabilitation research. Here, we provide an overview of the advantages and limitations of using rodent models to advance our current understanding of human reach-to-grasp function, cortical circuitry, and reorganization. We propose that a cross-species comparison of reach-to-grasp recovery could provide a mechanistic framework for clinically efficacious NIBS treatments that could elicit better functional outcomes for patients.
Collapse
Affiliation(s)
- Charles-Francois V. Latchoumane
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Deborah A. Barany
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| | - Lohitash Karumbaiah
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Tarkeshwar Singh
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Pessina MA, Bowley BGE, Rosene DL, Moore TL. A method for assessing recovery of fine motor function of the hand in a rhesus monkey model of cortical injury: an adaptation of the Fugl-Meyer Scale and Eshkol-Wachman Movement Notation. Somatosens Mot Res 2020; 36:69-77. [PMID: 31072219 DOI: 10.1080/08990220.2019.1594751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Motor dysfunction of the upper extremity can result from stroke, cortical injury and neurological diseases and causes significant disruption of activities of daily living. While some spontaneous recovery in terms of compensatory movements does occur after injury to cortical motor areas, full recovery is rare. The distinction between complete recovery and compensatory recovery is important as the development of compensatory movements in the upper extremity may not translate into full functional use in human patients. However, current animal models of stroke do not distinguish full recovery from compensatory recovery. We have developed a Non-Human Primate Grasp Assessment Scale (GRAS) to quantify the precise recovery of composite movement, individual digit action, and finger-thumb pinch in our rhesus monkey model of cortical injury. To date, we have applied this GRAS scale to assess the recovery of fine motor function of the hand in young control and cell-therapy treated monkeys with cortical injury confined to the hand representation in the dominant primary motor cortex. We have demonstrated that with this scale we can detect and quantify significant impairments in fine motor function of the hand, the development of compensatory function during recovery and finally a return to full fine motor function of the hand in monkeys treated with a cell therapy.
Collapse
Affiliation(s)
- Monica A Pessina
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Bethany G E Bowley
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Douglas L Rosene
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA.,b Yerkes National Primate Research Center , Emory University , Atlanta , GA , USA
| | - Tara L Moore
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| |
Collapse
|
15
|
Moore TL, Bowley BGE, Pessina MA, Calderazzo SM, Medalla M, Go V, Zhang ZG, Chopp M, Finklestein S, Harbaugh AG, Rosene DL, Buller B. Mesenchymal derived exosomes enhance recovery of motor function in a monkey model of cortical injury. Restor Neurol Neurosci 2020; 37:347-362. [PMID: 31282441 DOI: 10.3233/rnn-190910] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Exosomes from mesenchymal stromal cells (MSCs) are endosome-derived vesicles that have been shown to enhance functional recovery in rodent models of stroke. OBJECTIVE Building on these findings, we tested exosomes as a treatment in monkeys with cortical injury. METHODS After being trained on a task of fine motor function of the hand, monkeys received a cortical injury to the hand representation in primary motor cortex. Twenty-four hours later and again 14 days after injury, monkeys received exosomes or vehicle control. Recovery of motor function was followed for 12 weeks. RESULTS Compared to monkeys that received vehicle, exosome treated monkeys returned to pre-operative grasp patterns and latency to retrieve a food reward in the first three-five weeks of recovery. CONCLUSIONS These results provide evidence that in monkeys exosomes delivered after cortical injury enhance recovery of motor function.
Collapse
Affiliation(s)
- T L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA
| | - B G E Bowley
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA
| | - M A Pessina
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA
| | - S M Calderazzo
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA
| | - M Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA
| | - V Go
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Z G Zhang
- Department of Neurology, Henry Ford Health Systems, Detroit, MI, USA
| | - M Chopp
- Department of Neurology, Henry Ford Health Systems, Detroit, MI, USA
| | - S Finklestein
- Stemetix, Inc. Needham, MA, USA.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - A G Harbaugh
- Department Mathematics & Statistics, Boston University, Boston, MA, USA
| | - D L Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA
| | - B Buller
- Department of Neurology, Henry Ford Health Systems, Detroit, MI, USA
| |
Collapse
|
16
|
Two types of memory-based (pantomime) reaches distinguished by gaze anchoring in reach-to-grasp tasks. Behav Brain Res 2020; 381:112438. [PMID: 31857149 DOI: 10.1016/j.bbr.2019.112438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 11/24/2022]
Abstract
Comparisons of target-based reaching vs memory-based (pantomime) reaching have been used to obtain insight into the visuomotor control of reaching. The present study examined the contribution of gaze anchoring, reaching to a target that is under continuous gaze, to both target-based and memory-based reaching. Participants made target-based reaches for discs located on a table or food items located on a pedestal or they replaced the objects. They then made memory-based reaches in which they pantomimed their target-based reaches. Participants were fitted with hand sensors for kinematic tracking and an eye tracker to monitor gaze. When making target-based reaches, participants directed gaze to the target location from reach onset to offset without interrupting saccades. Similar gaze anchoring was present for memory-based reaches when the surface upon which the target had been placed remained. When the target and its surface were both removed there was no systematic relationship between gaze and the reach. Gaze anchoring was also present when participants replaced a target on a surface, a movement featuring a reach but little grasp. That memory-based reaches can be either gaze anchor-associated or gaze anchor-independent is discussed in relation to contemporary views of the neural control of reaching.
Collapse
|
17
|
Hyland BI, Seeger-Armbruster S, Smither RA, Parr-Brownlie LC. Altered Recruitment of Motor Cortex Neuronal Activity During the Grasping Phase of Skilled Reaching in a Chronic Rat Model of Unilateral Parkinsonism. J Neurosci 2019; 39:9660-9672. [PMID: 31641050 PMCID: PMC6880456 DOI: 10.1523/jneurosci.0720-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease causes prominent difficulties in the generation and execution of voluntary limb movements, including regulation of distal muscles and coordination of proximal and distal movement components to achieve accurate grasping. Difficulties with manual dexterity have a major impact on activities of daily living. We used extracellular single neuron recordings to investigate the neural underpinnings of parkinsonian movement deficits in the motor cortex of chronic unilateral 6-hydroxydopamine lesion male rats performing a skilled reach-to-grasp task the. Both normal movements and parkinsonian deficits in this task have striking homology to human performance. In lesioned animals there were several differences in the activity of cortical neurons during reaches by the affected limb compared with control rats. These included an increase in proportions of neurons showing rate decreases, along with increased amplitude of their average rate-decrease response at specific times during the reach, suggesting a shift in the balance of net excitation and inhibition of cortical neurons; a significant increase in the duration of rate-increase responses, which could result from reduced coupling of cortical activity to specific movement components; and changes in the timing and incidence of neurons with pure rate-increase or biphasic responses, particularly at the end of reach when grasping would normally be occurring. The changes in cortical activity may account for the deficits that occur in skilled distal motor control following dopamine depletion, and highlight the need for treatment strategies targeted toward modulating cortical mechanisms for fine distal motor control in patients.SIGNIFICANCE STATEMENT We show for the first time in a chronic lesion rat model of Parkinson's disease movement deficits that there are specific changes in motor cortex neuron activity associated with the grasping phase of a skilled motor task. Such changes provide a possible mechanism underpinning the problems with manual dexterity seen in Parkinson's patients and highlight the need for treatment strategies targeted toward distal motor control.
Collapse
Affiliation(s)
| | | | - Roseanna A Smither
- Department of Physiology and
- Department of Anatomy, School of Biomedical Science and Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand and the Brain Research New Zealand Centre of Research Excellence
| | - Louise C Parr-Brownlie
- Department of Anatomy, School of Biomedical Science and Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand and the Brain Research New Zealand Centre of Research Excellence
| |
Collapse
|
18
|
Occupational Therapy for Parkinsonian Patients: A Retrospective Study. PARKINSON'S DISEASE 2019; 2019:4561830. [PMID: 31781364 PMCID: PMC6875269 DOI: 10.1155/2019/4561830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/24/2019] [Accepted: 07/04/2019] [Indexed: 11/20/2022]
Abstract
Background Hand functionality and finger dexterity are impaired in patients with Parkinson's disease (PD). These disturbances lead to a dependency in activities of daily living (ADL) and poor quality of life (QoL). Objective We aimed to evaluate whether a specific occupational therapy (OT) program is effective in improving finger and hand dexterity and its impact on ADL in PD patients. Methods We retrospectively studied PD patients, hospitalized for a 4-week multidisciplinary intensive rehabilitation treatment (MIRT) between January 2015 and June 2018. All patients underwent 1 h/day OT treatment, 5 days a week. The primary outcome measure was the O'Connor finger dexterity test; secondary outcome measures were the Minnesota dexterity test, UPDRS II, and Self-Assessment Parkinson's Disease Disability Scale (SPDDS). These measures were assessed at admission (T0) and discharge (T1). Results Based on the Hoehn and Yahr scale (H&Y), patients were divided into two groups: 262 subjects in H&Y stage <3 (early-stage PD patients) and 220 in H&Y stage ≥3 (medium-advanced stage PD patients). As expected, at baseline, all measures were worse in higher H&Y stages. After treatment, both groups experienced significant improvements in all outcomes. Significant differences between early-stage and medium-advanced stage PD patients were observed only for the changes in UPDRS II, with a better improvement in patients in H&Y stage ≥3. Conclusions We showed that PD patients who underwent a rehabilitation protocol including OT experienced improvements in finger dexterity and hand functionality. Our results underline the relevance of OT in improving autonomy and QoL in PD patients.
Collapse
|
19
|
Ryait H, Bermudez-Contreras E, Harvey M, Faraji J, Mirza Agha B, Gomez-Palacio Schjetnan A, Gruber A, Doan J, Mohajerani M, Metz GAS, Whishaw IQ, Luczak A. Data-driven analyses of motor impairments in animal models of neurological disorders. PLoS Biol 2019; 17:e3000516. [PMID: 31751328 PMCID: PMC6871764 DOI: 10.1371/journal.pbio.3000516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Behavior provides important insights into neuronal processes. For example, analysis of reaching movements can give a reliable indication of the degree of impairment in neurological disorders such as stroke, Parkinson disease, or Huntington disease. The analysis of such movement abnormalities is notoriously difficult and requires a trained evaluator. Here, we show that a deep neural network is able to score behavioral impairments with expert accuracy in rodent models of stroke. The same network was also trained to successfully score movements in a variety of other behavioral tasks. The neural network also uncovered novel movement alterations related to stroke, which had higher predictive power of stroke volume than the movement components defined by human experts. Moreover, when the regression network was trained only on categorical information (control = 0; stroke = 1), it generated predictions with intermediate values between 0 and 1 that matched the human expert scores of stroke severity. The network thus offers a new data-driven approach to automatically derive ratings of motor impairments. Altogether, this network can provide a reliable neurological assessment and can assist the design of behavioral indices to diagnose and monitor neurological disorders.
Collapse
Affiliation(s)
- Hardeep Ryait
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Edgar Bermudez-Contreras
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Matthew Harvey
- Coastline Automation, San Jose, California, United States of America
| | - Jamshid Faraji
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Faculty of Nursing & Midwifery, Golestan University of Medical Sciences, Gorgan, Iran
| | - Behroo Mirza Agha
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | - Aaron Gruber
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jon Doan
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid Mohajerani
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gerlinde A. S. Metz
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ian Q. Whishaw
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Artur Luczak
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
20
|
Orczykowski ME, Calderazzo SM, Shobin E, Pessina MA, Oblak AL, Finklestein SP, Kramer BC, Mortazavi F, Rosene DL, Moore TL. Cell based therapy reduces secondary damage and increases extent of microglial activation following cortical injury. Brain Res 2019; 1717:147-159. [PMID: 30998931 PMCID: PMC6530569 DOI: 10.1016/j.brainres.2019.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
Abstract
Cortical injury elicits long-term cytotoxic and cytoprotective mechanisms within the brain and the balance of these pathways can determine the functional outcome for the individual. Cytotoxicity is exacerbated by production of reactive oxygen species, accumulation of iron, and peroxidation of cell membranes and myelin. There are currently no neurorestorative treatments to aid in balancing the cytotoxic and cytoprotective mechanisms following cortical injury. Cell based therapies are an emerging treatment that may function in immunomodulation, reduction of secondary damage, and reorganization of surviving structures. We previously evaluated human umbilical tissue-derived cells (hUTC) in our non-human primate model of cortical injury restricted to the hand area of primary motor cortex. Systemic hUTC treatment resulted in significantly greater recovery of fine motor function compared to vehicle controls. Here we investigate the hypothesis that hUTC treatment reduces oxidative damage and iron accumulation and increases the extent of the microglial response to cortical injury. To test this, brain sections from these monkeys were processed using immunohistochemistry to quantify oxidative damage (4-HNE) and activated microglia (LN3), and Prussian Blue to quantify iron. hUTC treated subjects exhibited significantly reduced oxidative damage in the sublesional white matter and iron accumulation in the perilesional area as well as a significant increase in the extent of activated microglia along white matter pathways. Increased perilesional iron accumulation was associated with greater perilesional oxidative damage and larger reconstructed lesion volume. These findings support the hypothesis that systemic hUTC administered 24 h after cortical damage decreases the cytotoxic response while increasing the extent of microglial activation.
Collapse
Affiliation(s)
- Mary E Orczykowski
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Samantha M Calderazzo
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | - Eli Shobin
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | - Monica A Pessina
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | - Adrian L Oblak
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Brian C Kramer
- Janssen Scientific Affairs, LLC, 800 Ridgeview Drive, Horsham, PA 19044, USA
| | - Farzad Mortazavi
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA; Yerkes National Primate Research Center, 201 Dowman Drive, Emory University, Atlanta, GA 30322, USA
| | - Tara L Moore
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA; Department of Neurology, 72 E. Concord Street, C3, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
21
|
Borgognon S, Cottet J, Moret V, Chatagny P, Carrara L, Fregosi M, Bloch J, Brunet JF, Rouiller EM, Badoud S. Fine Manual Dexterity Assessment After Autologous Neural Cell Ecosystem (ANCE) Transplantation in a Non-human Primate Model of Parkinson's Disease. Neurorehabil Neural Repair 2019; 33:553-567. [PMID: 31170868 DOI: 10.1177/1545968319850133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Autologous neural cell ecosystem (ANCE) transplantation improves motor recovery in MPTP monkeys. These motor symptoms were assessed using semi-quantitative clinical rating scales, widely used in many studies. However, limitations in terms of sensitivity, combined with relatively subjective assessment of their different items, make inter-study comparisons difficult to achieve. Objective. The aim of this study was to quantify the impact of MPTP intoxication in macaque monkeys on manual dexterity and assess whether ANCE can contribute to functional recovery. Methods. Four animals were trained to perform 2 manual dexterity tasks. After reaching a motor performance plateau, the animals were subjected to an MPTP lesion. After the occurrence of a spontaneous functional recovery plateau, all 4 animals were subjected to ANCE transplantation. Results. Two of 4 animals underwent a full spontaneous recovery before the ANCE transplantation, whereas the 2 other animals (symptomatic) presented moderate to severe Parkinson's disease (PD)-like symptoms affecting manual dexterity. The time to grasp small objects using the precision grip increased in these 2 animals. After ANCE transplantation, the 2 symptomatic animals underwent a significant functional recovery, reflected by a decrease in time to execute the different tasks, as compared with the post-lesion phase. Conclusions. Manual dexterity is affected in symptomatic MPTP monkeys. The 2 manual dexterity tasks reported here as pilot are pertinent to quantify PD symptoms and reliably assess a treatment in MPTP monkeys, such as the present ANCE transplantation, to be confirmed in a larger cohort of animals before future clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jocelyne Bloch
- 2 Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | | | | |
Collapse
|
22
|
Sacrey LAR, Zwaigenbaum L, Bryson S, Brian J, Smith IM. The reach-to-grasp movement in infants later diagnosed with autism spectrum disorder: a high-risk sibling cohort study. J Neurodev Disord 2018; 10:41. [PMID: 30587102 PMCID: PMC6307213 DOI: 10.1186/s11689-018-9259-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/06/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although autism spectrum disorder (ASD) is characterized by impairments in social communication and the presence of repetitive behavior and/or restricted interests, there is evidence that motor impairments may be a contributing factor to the ASD phenotype. The purpose of this study was to examine the motor act of reaching-to-grasp in children at high risk (HR; with an older sibling diagnosed with ASD) and low-risk (LR; no family history of ASD) for ASD. METHODS Children were compared for differences in reaching-to-grasp based on sibling status and diagnostic outcome. Children were enrolled between 6 and 12 months of age and the reach-to-grasp movement was scored at 6, 9, (where available) 12, 15, 18, 24, and 36 months of age using the qualitative Skilled Reaching Rating Scale to determine the presence of any group-, age-, or sex-related differences in the mechanics of the reach-to-grasp movement using a Mixed Models analysis. At 36 months, all children underwent a gold-standard diagnostic assessment, which resulted in three outcome groups: HR children diagnosed with ASD (HR-ASD; n = 10), HR children not diagnosed with ASD (HR-N; n = 10), and low-risk children not diagnosed with ASD (LR; n = 10). RESULTS The group of children who were later diagnosed with ASD (HR-ASD group) showed higher (worse) total scores on the reach-to-grasp movement, as well as higher scores on the components of Orient, Lift, and Pronate compared to children in the LR and HR-N groups. CONCLUSIONS Our results support the growing literature indicating that children who are later diagnosed with ASD show impaired early motor performance. These results highlight the importance of early surveillance of children who are at elevated risk for ASD, and early initiatives should focus on early signs of the phenotype, including both movement and sensory differences (prodromal signs) prior to the emergence of diagnostic characteristics.
Collapse
Affiliation(s)
- Lori-Ann R. Sacrey
- Department of Pediatrics, University of Alberta, Edmonton, Alberta Canada
- Autism Research Centre, Glenrose Rehabilitation Hospital, (E209) 10230 - 111 Avenue, Edmonton, Alberta T5G 0B7 Canada
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, University of Alberta, Edmonton, Alberta Canada
- Autism Research Centre, Glenrose Rehabilitation Hospital, (E209) 10230 - 111 Avenue, Edmonton, Alberta T5G 0B7 Canada
| | - Susan Bryson
- Dalhousie University/IWK Health Centre, Halifax, Nova Scotia Canada
- Autism Research Centre, IWK Health Centre, Halifax, Nova Scotia Canada
| | - Jessica Brian
- Bloorview Research Institute, Toronto, Ontario Canada
- University of Toronto, Toronto, Ontario Canada
| | - Isabel M. Smith
- Dalhousie University/IWK Health Centre, Halifax, Nova Scotia Canada
- Autism Research Centre, IWK Health Centre, Halifax, Nova Scotia Canada
| |
Collapse
|
23
|
On the Use of t-Distributed Stochastic Neighbor Embedding for Data Visualization and Classification of Individuals with Parkinson's Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:8019232. [PMID: 30532798 PMCID: PMC6247646 DOI: 10.1155/2018/8019232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 09/16/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that remains incurable. The available treatments for the disorder include pharmacologic therapies and deep brain stimulation (DBS). These approaches may cause distinct side effects and motor responses. This work presents the application of t-distributed stochastic neighbor embedding (t-SNE), which is a machine learning algorithm for nonlinear dimensionality reduction and data visualization, for the problem of discriminating neurologically healthy individuals from those suffering from PD (treated with levodopa and DBS). Furthermore, the assessment of classification methods is presented. Inertial and electromyographic data were collected while the subjects executed a sequence of four motor tasks. The results were focused on the comparison of the classification performance of a support vector machine (SVM) while discriminating two-dimensional feature sets estimated from Principal Component Analysis (PCA), Sammon's mapping, and t-SNE. The results showed visual and statistical differences for all three investigated groups. Classification accuracy for PCA, Sammon's mapping, and t-SNE was, respectively, 73.5%, 78.6%, and 96.9% for the training set and 67.8%, 74.1%, and 76.6% for the test set. The possibility of discriminating healthy individuals from those with PD treated with levodopa and DBS highlights the fact that each treatment method produces distinct motor behavior. The scatter plots resulting from t-SNE could be used in the clinical practice as an objective tool for measuring the discrepancy between normal and abnormal motor behaviors, being thus useful for the adjustment of treatments and the follow-up of the disorder.
Collapse
|
24
|
van Rootselaar NA, Flindall JW, Gonzalez CLR. Hear speech, change your reach: changes in the left-hand grasp-to-eat action during speech processing. Exp Brain Res 2018; 236:3267-3277. [PMID: 30229305 DOI: 10.1007/s00221-018-5376-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/06/2018] [Indexed: 11/29/2022]
Abstract
Research has shown that the kinematic characteristics of right-hand movements change when executed during both speech production and processing. Despite the variety of prehension and manual actions used to examine this relationship, the literature has yet to examine potential movement effects using an action with a distinct kinematic signature: the hand-to-mouth (grasp-to-eat) action. In this study, participants performed grasp-to-eat and grasp-to-place actions in (a) a quiet environment and (b) while processing speech. Results during the quiet condition replicated the previous findings; consistently smaller grasp-to-eat (compared to grasp-to-place), maximum grip apertures appeared only when using the right hand. Interestingly, in the listen condition, smaller maximum grip apertures in the grasp-to-eat movement appeared in both the right and left hands, despite the fact that participants were right-handed. This paper addresses these results in relation with similar behaviour observed in children, and discusses implications for functional lateralization and neural organization.
Collapse
Affiliation(s)
- Nicole A van Rootselaar
- The Brain in Action Laboratory, Department of Kinesiology and Physical Education, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Jason W Flindall
- The Brain in Action Laboratory, Department of Kinesiology and Physical Education, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Claudia L R Gonzalez
- The Brain in Action Laboratory, Department of Kinesiology and Physical Education, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
25
|
Annetta NV, Friend J, Schimmoeller A, Buck VS, Friedenberg DA, Bouton CE, Bockbrader MA, Ganzer PD, Colachis Iv SC, Zhang M, Mysiw WJ, Rezai AR, Sharma G. A High Definition Noninvasive Neuromuscular Electrical Stimulation System for Cortical Control of Combinatorial Rotary Hand Movements in a Human With Tetraplegia. IEEE Trans Biomed Eng 2018; 66:910-919. [PMID: 30106673 DOI: 10.1109/tbme.2018.2864104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Paralysis resulting from spinal cord injury (SCI) can have a devastating effect on multiple arm and hand motor functions. Rotary hand movements, such as supination and pronation, are commonly impaired by upper extremity paralysis, and are essential for many activities of daily living. In this proof-of-concept study, we utilize a neural bypass system (NBS) to decode motor intention from motor cortex to control combinatorial rotary hand movements elicited through stimulation of the arm muscles, effectively bypassing the SCI of the study participant. We describe the NBS system architecture and design that enabled this functionality. METHODS The NBS consists of three main functional components: 1) implanted intracortical microelectrode array, 2) neural data processing using a computer, and, 3) a noninvasive neuromuscular electrical stimulation (NMES) system. RESULTS We address previous limitations of the NBS, and confirm the enhanced capability of the NBS to enable, in real-time, combinatorial hand rotary motor functions during a functionally relevant object manipulation task. CONCLUSION This enhanced capability was enabled by accurate decoding of multiple movement intentions from the participant's motor cortex, interleaving NMES patterns to combine hand movements, and dynamically switching between NMES patterns to adjust for hand position changes during movement. SIGNIFICANCE These results have implications for enabling complex rotary hand functions in sequence with other functionally relevant movements for patients suffering from SCI, stroke, and other sensorimotor dysfunctions.
Collapse
|
26
|
Clinch SP, Busse M, Lelos MJ, Rosser AE. Rethinking Functional Outcome Measures: The Development of a Novel Upper Limb Token Transfer Test to Assess Basal Ganglia Dysfunction. Front Neurosci 2018; 12:366. [PMID: 29899687 PMCID: PMC5988893 DOI: 10.3389/fnins.2018.00366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/11/2018] [Indexed: 01/27/2023] Open
Abstract
The basal ganglia are implicated in a wide range of motor, cognitive and behavioral activities required for normal function. This region is predominantly affected in Huntington's disease (HD), meaning that functional ability progressively worsens. However, functional outcome measures for HD, particularly those for the upper limb, are limited meaning there is an imperative for well-defined, quantitative measures. Here we describe the development and evaluation of the Moneybox test (MBT). This novel, functional upper limb assessment was developed in accordance with translational neuroscience and physiological principles for people with a broad disease manifestation, such as HD. Participants with HD (n = 64) and healthy controls (n = 21) performed the MBT, which required subjects to transfer tokens into a container in order of size (Baseline Transfer), value (Complex Transfer) with and without reciting the alphabet (Dual Transfer). Disease specific measures of motor, cognition, behavior, and function were collected. HD patients were grouped into disease stage, from which, discriminative and convergent validity was assessed using Analysis of Variance and Pearson's correlation respectively. Manifest HD participants were slower than pre-manifest and control participants, and achieved significantly lower MBT total scores. Performance in the Complex Transfer and Dual Transfer tasks were significantly different between pre-manifest and stage 1 HD. All MBT performance variables significantly correlated with routinely used measures of motor, cognition, behavior, and function. The MBT provides a valid, sensitive, and affordable functional outcome measure. Unlike current assessments, MBT performance significantly distinguished the subtle differences between the earliest disease stages of HD, which are the populations typically targeted in clinical trials.
Collapse
Affiliation(s)
| | - Monica Busse
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Mariah J. Lelos
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E. Rosser
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
27
|
Orczykowski ME, Arndt KR, Palitz LE, Kramer BC, Pessina MA, Oblak AL, Finklestein SP, Mortazavi F, Rosene DL, Moore TL. Cell based therapy enhances activation of ventral premotor cortex to improve recovery following primary motor cortex injury. Exp Neurol 2018. [PMID: 29540323 DOI: 10.1016/j.expneurol.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stroke results in enduring damage to the brain which is accompanied by innate neurorestorative processes, such as reorganization of surviving circuits. Nevertheless, patients are often left with permanent residual impairments. Cell based therapy is an emerging therapeutic that may function to enhance the innate neurorestorative capacity of the brain. We previously evaluated human umbilical tissue-derived cells (hUTC) in our non-human primate model of cortical injury limited to the hand area of primary motor cortex. Injection of hUTC 24 h after injury resulted in significantly enhanced recovery of fine motor function compared to vehicle treated controls (Moore et al., 2013). These monkeys also received an injection of Bromodeoxyuridine (BrdU) 8 days after cortical injury to label cells undergoing replication. This was followed by 12 weeks of behavioral testing, which culminated 3 h prior to perfusion in a final behavioral testing session using only the impaired hand. In this session, the neuronal activity initiating hand movements leads to the upregulation of the immediate early gene c-Fos in activated cells. Following perfusion-fixation of the brain, sections were processed using immunohistochemistry to label c-Fos activated cells, pre-synaptic vesicle protein synaptophysin, and BrdU labeled neuroprogenitor cells to investigate the hypothesis that hUTC treatment enhanced behavioral recovery by facilitating reorganization of surviving cortical tissues. Quantitative analysis revealed that c-Fos activated cells were significantly increased in the ipsi- and contra-lesional ventral premotor but not the dorsal premotor cortices in the hUTC treated monkeys compared to placebo controls. Furthermore, the increase in c-Fos activated cells in the ipsi- and contra-lesional ventral premotor cortex correlated with a decrease in recovery time and improved grasp topography. Interestingly, there was no difference between treatment groups in the number of synaptophysin positive puncta in either ipsi- or contra-lesional ventral or dorsal premotor cortices. Nor was there a significant difference in the density of BrdU labeled cells in the subgranular zone of the hippocampus or the subventricular zone of the lateral ventricle. These findings support the hypothesis that hUTC treatment enhances the capacity of the brain to reorganize after cortical injury and that bilateral plasticity in ventral premotor cortex is a critical locus for this recovery of function. This reorganization may be accomplished through enhanced activation of pre-existing circuits within ventral premotor, but it could also reflect ventral premotor projections to the brainstem or spinal cord.
Collapse
Affiliation(s)
- Mary E Orczykowski
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Kevin R Arndt
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lauren E Palitz
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | - Brian C Kramer
- Janssen Scientific Affairs, LLC 800 Ridgeview Drive, Horsham 19044, PA, USA
| | - Monica A Pessina
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | - Adrian L Oblak
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Farzad Mortazavi
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA; Yerkes National Primate Research Center, 201 Dowman Drive, Emory University, Atlanta 30322, GA, USA
| | - Tara L Moore
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA; Department of Neurology, 72 E. Concord Street C3, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
28
|
Kuntz JR, Karl JM, Doan JB, Whishaw IQ. Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action–perception theory. Exp Brain Res 2018; 236:1091-1103. [DOI: 10.1007/s00221-018-5196-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
29
|
Kandaswamy D, M M, Alexander M, Prabhu K, S MG, Krothapalli SB. Quantitative Assessment of Hand Dysfunction in Patients with Early Parkinson's Disease and Focal Hand Dystonia. J Mov Disord 2018; 11:35-44. [PMID: 29316781 PMCID: PMC5790625 DOI: 10.14802/jmd.17046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/23/2017] [Accepted: 10/19/2017] [Indexed: 12/04/2022] Open
Abstract
Objective
Motor impairments related to hand function are common symptoms in patients with movement disorders, such as Parkinson’s disease (PD) and focal hand dystonia (FHD). However, hand dysfunction has not been quantitatively assessed as a clinical tool for screening patient groups from healthy controls (HCs). The aim of our study was 1) to quantitatively assess hand dysfunction in patients with PD and FHD and its usefulness as a screening tool 2) to grade disease severity in PD and FHD based on hand dysfunction. Methods
The current case-control study included HCs (n = 50) and patients with known history of PD (n = 25) or FHD (n = 16). Hand function was assessed by a precision grip task while participants lifted objects of 1.3 N and 1.7 N under dry skin conditions, followed by very wet skin conditions (VWSCs). Receiver operating characteristic and summative scoring analyses were performed. Results
In PD, the combination of loading phase duration and lifting phase duration at quantitative cutoffs of 0.36 and 0.74 seconds identified 21/25 patients as diseased and 49/50 subjects as HCs with 1.7 N under VWSCs. In PD, 5/21 was graded as “mild” and 16/21 as “moderate cases.” In FHD, slip force at a cutoff of 1.2 N identified 13/16 patients as diseased and 41/50 subjects as HC with 1.7 N under VWSCs, but disease severity could not be graded. Conclusion
Our results demonstrate the use of precision grip task as an important clinical tool in assessment of hand dysfunction in movement disorder patients. Use of quantitative cutoffs may improve diagnostic accuracy and serve as a valuable adjunct to existing clinical assessment methods.
Collapse
Affiliation(s)
- Deepa Kandaswamy
- Neurophysiology Laboratory, Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - MuthuKumar M
- Neurophysiology Laboratory, Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Mathew Alexander
- Neurology Division, Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Krishna Prabhu
- Neurosurgery Division, Department of Neurological Sciences, Christian Medical College, Vellore, India
| | | | - Srinivasa Babu Krothapalli
- Neurophysiology Laboratory, Department of Neurological Sciences, Christian Medical College, Vellore, India
| |
Collapse
|
30
|
Boltze J, Nitzsche F, Jolkkonen J, Weise G, Pösel C, Nitzsche B, Wagner DC. Concise Review: Increasing the Validity of Cerebrovascular Disease Models and Experimental Methods for Translational Stem Cell Research. Stem Cells 2017; 35:1141-1153. [DOI: 10.1002/stem.2595] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Johannes Boltze
- Department of Translational Medicine and Cell Technology; Fraunhofer Research Institution for Marine Biotechnology and Cell Technology; Lübeck Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck; Lübeck Germany
| | - Franziska Nitzsche
- Department of Cell Therapy; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Department of Radiology; McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pennsylvania USA
| | - Jukka Jolkkonen
- Department of Neurology; Institute of Clinical Medicine, University of Eastern Finland; Kuopio Finland
| | - Gesa Weise
- Department of Cell Therapy; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Department of Neurology; University of Leipzig; Germany
| | - Claudia Pösel
- Department of Cell Therapy; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
| | - Björn Nitzsche
- Department of Cell Therapy; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Department of Nuclear Medicine; University Hospital Leipzig; Germany
| | - Daniel-Christoph Wagner
- Department of Cell Therapy; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Institute of Pathology, University Medical Center Mainz; Germany
| |
Collapse
|
31
|
Machado ARP, Zaidan HC, Paixão APS, Cavalheiro GL, Oliveira FHM, Júnior JAFB, Naves K, Pereira AA, Pereira JM, Pouratian N, Zhuo X, O'Keeffe A, Sharim J, Bordelon Y, Yang L, Vieira MF, Andrade AO. Feature visualization and classification for the discrimination between individuals with Parkinson's disease under levodopa and DBS treatments. Biomed Eng Online 2016; 15:169. [PMID: 28038673 PMCID: PMC5203727 DOI: 10.1186/s12938-016-0290-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/26/2016] [Indexed: 12/15/2022] Open
Abstract
Background Over the years, a number of distinct treatments have been adopted for the management of the motor symptoms of Parkinson’s disease (PD), including pharmacologic therapies and deep brain stimulation (DBS). Efficacy is most often evaluated by subjective assessments, which are prone to error and dependent on the experience of the examiner. Our goal was to identify an objective means of assessing response to therapy. Methods In this study, we employed objective analyses in order to visualize and identify differences between three groups: healthy control (N = 10), subjects with PD treated with DBS (N = 12), and subjects with PD treated with levodopa (N = 16). Subjects were assessed during execution of three dynamic tasks (finger taps, finger to nose, supination and pronation) and a static task (extended arm with no active movement). Measurements were acquired with two pairs of inertial and electromyographic sensors. Feature extraction was applied to estimate the relevant information from the data after which the high-dimensional feature space was reduced to a two-dimensional space using the nonlinear Sammon’s map. Non-parametric analysis of variance was employed for the verification of relevant statistical differences among the groups (p < 0.05). In addition, K-fold cross-validation for discriminant analysis based on Gaussian Finite Mixture Modeling was employed for data classification. Results The results showed visual and statistical differences for all groups and conditions (i.e., static and dynamic tasks). The employed methods were successful for the discrimination of the groups. Classification accuracy was 81 ± 6% (mean ± standard deviation) and 71 ± 8%, for training and test groups respectively. Conclusions This research showed the discrimination between healthy and diseased groups conditions. The methods were also able to discriminate individuals with PD treated with DBS and levodopa. These methods enable objective characterization and visualization of features extracted from inertial and electromyographic sensors for different groups.
Collapse
Affiliation(s)
- Alessandro R P Machado
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil.
| | - Hudson Capanema Zaidan
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | - Ana Paula Souza Paixão
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | - Guilherme Lopes Cavalheiro
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | - Fábio Henrique Monteiro Oliveira
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | - João Areis Ferreira Barbosa Júnior
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | - Kheline Naves
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | - Adriano Alves Pereira
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Xiaoyi Zhuo
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Andrew O'Keeffe
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Justin Sharim
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, USA
| | - Laurice Yang
- Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Marcus Fraga Vieira
- Bioengineering and Biomechanics Laboratory, Federal University of Goiás, Goiânia, Brazil
| | - Adriano O Andrade
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
32
|
Flindall JW, Gonzalez CLR. The destination defines the journey: an examination of the kinematics of hand-to-mouth movements. J Neurophysiol 2016; 116:2105-2113. [PMID: 27512020 DOI: 10.1152/jn.00222.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/04/2016] [Indexed: 11/22/2022] Open
Abstract
Long-train electrical stimulation of the motor and premotor cortices of nonhuman primates can produce either hand-to-mouth or grasp-to-inspect movements, depending on the precise location of stimulation. Furthermore, single-neuron recording studies identify discrete neuronal populations in the inferior parietal and ventral premotor cortices that respond uniquely to either grasp-to-eat or grasp-to-place movements, despite their identical mechanistic requirements. These studies demonstrate that the macaque motor cortex is organized around producing functional, goal-oriented movements, rather than simply fulfilling muscular prerequisites of action. In humans, right-handed hand-to-mouth movements have a unique kinematic signature; smaller maximum grip apertures are produced when grasping to eat than when grasping to place identical targets. This is evidence that the motor cortex in humans is also organized around producing functional movements. However, in both macaques and humans, grasp-to-eat/hand-to-mouth movements have always been elicited using edible targets and have (necessarily) been paired with mouth movement. It is therefore unknown whether the kinematic distinction is a natural result of grasping food and/or is simply attributable to concurrent opening of the mouth while grasping. In experiment 1, we used goal-differentiated grasping tasks, directed toward edible and inedible targets, to show that the unique kinematic signature is present even with inedible targets. In experiment 2, we used the same goal-differentiated grasping tasks, either coupled with or divorced from an open-mouth movement, to show that the signature is not attributable merely to a planned opening of the mouth during the grasp. These results are discussed in relation to the role of hand-to-mouth movements in human development, independently of grasp-to-eat behavior.
Collapse
Affiliation(s)
- Jason W Flindall
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Claudia L R Gonzalez
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
33
|
Moore TL, Pessina MA, Finklestein SP, Killiany RJ, Bowley B, Benowitz L, Rosene DL. Inosine enhances recovery of grasp following cortical injury to the primary motor cortex of the rhesus monkey. Restor Neurol Neurosci 2016; 34:827-48. [PMID: 27497459 PMCID: PMC6503840 DOI: 10.3233/rnn-160661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Inosine, a naturally occurring purine nucleoside, has been shown to stimulate axonal growth in cell culture and promote corticospinal tract axons to sprout collateral branches after stroke, spinal cord injury and TBI in rodent models. OBJECTIVE To explore the effects of inosine on the recovery of motor function following cortical injury in the rhesus monkey. METHODS After being trained on a test of fine motor function of the hand, monkeys received a lesion limited to the area of the hand representation in primary motor cortex. Beginning 24 hours after this injury and continuing daily thereafter, monkeys received orally administered inosine (500 mg) or placebo. Retesting of motor function began on the 14th day after injury and continued for 12 weeks. RESULTS During the first 14 days after surgery, there was evidence of significant recovery within the inosine-treated group on measures of fine motor function of the hand, measures of hand strength and digit flexion. While there was no effect of treatment on the time to retrieve a reward, the treated monkeys returned to asymptotic levels of grasp performance significantly faster than the untreated monkeys. Additionally, the treated monkeys evidenced a greater degree of recovery in terms of maturity of grasp pattern. CONCLUSION These findings demonstrate that inosine can enhance recovery of function following cortical injury in monkeys.
Collapse
Affiliation(s)
- Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Monica A. Pessina
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | | | - Ronald J. Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Bethany Bowley
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Larry Benowitz
- Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
34
|
Synchrony of the Reach and the Grasp in pantomime reach-to-grasp. Exp Brain Res 2016; 234:3291-3303. [DOI: 10.1007/s00221-016-4727-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022]
|
35
|
Ellens DJ, Gaidica M, Toader A, Peng S, Shue S, John T, Bova A, Leventhal DK. An automated rat single pellet reaching system with high-speed video capture. J Neurosci Methods 2016; 271:119-27. [PMID: 27450925 DOI: 10.1016/j.jneumeth.2016.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Single pellet reaching is an established task for studying fine motor control in which rats reach for, grasp, and eat food pellets in a stereotyped sequence. Most incarnations of this task require constant attention, limiting the number of animals that can be tested and the number of trials per session. Automated versions allow more interventions in more animals, but must be robust and reproducible. NEW METHOD Our system automatically delivers single reward pellets for rats to grasp with their forepaw. Reaches are detected using real-time computer vision, which triggers video acquisition from multiple angles using mirrors. This allows us to record high-speed (>300 frames per second) video, and trigger interventions (e.g., optogenetics) with high temporal precision. Individual video frames are triggered by digital pulses that can be synchronized with behavior, experimental interventions, or recording devices (e.g., electrophysiology). The system is housed within a soundproof chamber with integrated lighting and ventilation, allowing multiple skilled reaching systems in one room. RESULTS We show that rats acquire the automated task similarly to manual versions, that the task is robust, and can be synchronized with optogenetic interventions. COMPARISON WITH EXISTING METHODS Existing skilled reaching protocols require high levels of investigator involvement, or, if ad libitum, do not allow for integration of high-speed, synchronized data collection. CONCLUSION This task will facilitate the study of motor learning and control by efficiently recording large numbers of skilled movements. It can be adapted for use with modern neurophysiology, which demands high temporal precision.
Collapse
Affiliation(s)
- Damien J Ellens
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Matt Gaidica
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States
| | - Andrew Toader
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Sophia Peng
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Shirley Shue
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Titus John
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Alexandra Bova
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States
| | - Daniel K Leventhal
- Neurology Service, VA Ann Arbor Health System, Ann Arbor, MI 48109, United States; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
36
|
Zepeda R, Contreras V, Pissani C, Stack K, Vargas M, Owen GI, Lazo OM, Bronfman FC. Venlafaxine treatment after endothelin-1-induced cortical stroke modulates growth factor expression and reduces tissue damage in rats. Neuropharmacology 2016; 107:131-145. [PMID: 26965219 DOI: 10.1016/j.neuropharm.2016.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 02/02/2023]
Abstract
Neuromodulators, such as antidepressants, may contribute to neuroprotection by modulating growth factor expression to exert anti-inflammatory effects and to support neuronal plasticity after stroke. Our objective was to study whether early treatment with venlafaxine, a serotonin-norepinephrine reuptake inhibitor, modulates growth factor expression and positively contributes to reducing the volume of infarcted brain tissue resulting in increased functional recovery. We studied the expression of BDNF, FGF2 and TGF-β1 by examining their mRNA and protein levels and cellular distribution using quantitative confocal microscopy at 5 days after venlafaxine treatment in control and infarcted brains. Venlafaxine treatment did not change the expression of these growth factors in sham rats. In infarcted rats, BDNF mRNA and protein levels were reduced, while the mRNA and protein levels of FGF2 and TGF-β1 were increased. Venlafaxine treatment potentiated all of the changes that were induced by cortical stroke alone. In particular, increased levels of FGF2 and TGF-β1 were observed in astrocytes at 5 days after stroke induction, and these increases were correlated with decreased astrogliosis (measured by GFAP) and increased synaptophysin immunostaining at twenty-one days after stroke in venlafaxine-treated rats. Finally, we show that venlafaxine reduced infarct volume after stroke resulting in increased functional recovery, which was measured using ladder rung motor tests, at 21 days after stroke. Our results indicate that the early oral administration of venlafaxine positively contributes to neuroprotection during the acute and late events that follow stroke.
Collapse
Affiliation(s)
- Rodrigo Zepeda
- MINREB and Center for Aging and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Contreras
- MINREB and Center for Aging and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Pissani
- MINREB and Center for Aging and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherine Stack
- MINREB and Center for Aging and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Vargas
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar M Lazo
- MINREB and Center for Aging and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Francisca C Bronfman
- MINREB and Center for Aging and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
37
|
Ribeiro RP, Santos DB, Colle D, Naime AA, Gonçalves CL, Ghizoni H, Hort MA, Godoi M, Dias PF, Braga AL, Farina M. Decreased forelimb ability in mice intracerebroventricularly injected with low dose 6-hydroxidopamine: A model on the dissociation of bradykinesia from hypokinesia. Behav Brain Res 2016; 305:30-6. [PMID: 26921691 DOI: 10.1016/j.bbr.2016.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 12/20/2022]
Abstract
Bradykinesia and hypokinesia represent well-known motor symptoms of Parkinson's disease (PD). While bradykinesia (slow execution of movements) is present in less affected PD patients and aggravates as the disease severity increases, hypokinesia (reduction of movement) seems to emerge prominently only in the more affected patients. Here we developed a model based on the central infusion of low dose (40μg) 6-hydroxydopamine (6-OHDA) in mice in an attempt to discriminate bradykinesia (accessed through forelimb inability) from hypokinesia (accessed through locomotor and exploratory activities). The potential beneficial effects of succinobucol against 6-OHDA-induced forelimb inability were also evaluated. One week after the beginning of treatment with succinobucol (i.p. injections, 10mg/kg/day), mice received a single i.c.v. infusion of 6-OHDA (40μg/site). One week after 6-OHDA infusion, general locomotor/exploratory activities (open field test), muscle strength (grid test), forelimb skill (single pellet task), as well as striatal biochemical parameters related to oxidative stress and cellular homeostasis (glutathione peroxidase, glutathione reductase and NADH dehydrogenases activities, lipid peroxidation and TH levels), were evaluated. 6-OHDA infusions did not change locomotor/exploratory activities and muscle strength, as well as the evaluated striatal biochemical parameters. However, 6-OHDA infusions caused significant reductions (50%) in the single pellet reaching task performance, which detects forelimb skill inability and can be used to experimentally identify bradykinesia. Succinobucol partially protected against 6-OHDA-induced forelimb inability. The decreased forelimb ability with no changes in locomotor/exploratory behavior indicates that our 6-OHDA-based protocol represents a useful tool to mechanistically study the dissociation of bradykinesia and hypokinesia in PD.
Collapse
Affiliation(s)
- Renata Pietsch Ribeiro
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil; Departamento Acadêmico de Saúde e Serviço, Instituto Federal de Santa Catarina, 88020030 Florianópolis, Santa Catarina, Brazil
| | - Danúbia Bonfanti Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Dirleise Colle
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Aline Aita Naime
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Cinara Ludvig Gonçalves
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Heloisa Ghizoni
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Mariana Appel Hort
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Marcelo Godoi
- Escola de Química e Alimentos, Universidade Federal de Rio Grande, Campus Santo Antônio da Patrulha, Rio Grande do Sul, Brazil
| | - Paulo Fernando Dias
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Antonio Luiz Braga
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Marcelo Farina
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
38
|
O'Bryant AJ, Adkins DL, Sitko AA, Combs HL, Nordquist SK, Jones TA. Enduring Poststroke Motor Functional Improvements by a Well-Timed Combination of Motor Rehabilitative Training and Cortical Stimulation in Rats. Neurorehabil Neural Repair 2016; 30:143-54. [PMID: 25527486 PMCID: PMC4474792 DOI: 10.1177/1545968314562112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND In animal stroke models, peri-infarct cortical stimulation (CS) combined with rehabilitative reach training (RT) enhances motor functional outcome and cortical reorganization, compared with RT alone. It was unknown whether the effects of CS + RT (a) persist long after treatment, (b) can be enhanced by forcing greater use of the paretic limb, and (C) vary with treatment onset time. OBJECTIVE To test the endurance, time sensitivity, and the potential for augmentation by forced forelimb use of CS + RT treatment effects following ischemic stroke. METHODS Adult rats that were proficient in skilled reaching received unilateral ischemic motor cortical lesions. RT was delivered for 3 weeks alone or concurrently with 100-Hz cathodal epidural CS, delivered at 50% of movement thresholds. In study 1, this treatment was initiated at 14 days postinfarct, with some subgroups receiving an overlapping period of continuous constraint of the nonparetic forelimb to force use of the paretic limb. The function of the paretic limb was assessed weekly for 9 to 10 months posttreatment. In study 2, rats underwent CS, RT, and the combination during the chronic postinfarct period. RESULTS Early onset CS + RT resulted in greater functional improvements than RT alone. The CS-related gains persisted for 9 to 10 months posttreatment and were not significantly influenced by forced use of the paretic limb. When treatment onset was delayed until 3 months post-infarct, RT alone improved function, but CS + RT was no more effective than RT alone. CONCLUSION CS can enhance the persistence, as well as the magnitude of RT-driven functional improvements, but its effectiveness in doing so may vary with time postinfarct.
Collapse
|
39
|
Flindall JW, Gonzalez CL. Children’s bilateral advantage for grasp-to-eat actions becomes unimanual by age 10years. J Exp Child Psychol 2015; 133:57-71. [DOI: 10.1016/j.jecp.2015.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 12/31/2022]
|
40
|
Bosch-Bouju C, Smither RA, Hyland BI, Parr-Brownlie LC. Reduced reach-related modulation of motor thalamus neural activity in a rat model of Parkinson's disease. J Neurosci 2014; 34:15836-50. [PMID: 25429126 PMCID: PMC6608476 DOI: 10.1523/jneurosci.0893-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 02/06/2023] Open
Abstract
Motor thalamus (Mthal) is a key node in the corticobasal ganglia (BG) loop that controls complex, cognitive aspects of movement. In Parkinson's disease (PD), profound alterations in neuronal activity occur in BG nuclei and cortex. Because Mthal is located between these two structures, altered Mthal activity has been assumed to underlie the pathogenesis of PD motor deficits. However, to date, inconsistent changes in neuronal firing rate and pattern have been reported in parkinsonian animals. Moreover, although a distinct firing pattern of Mthal neurons, called low-threshold calcium spike bursts (LTS bursts), is observed in reduced preparations, it remains unknown whether they occur or what their role might be in behaving animals. We recorded Mthal spiking activity in control and unilateral 6-hydroxydopamine lesioned rats performing a skilled forelimb-reaching task. We show for the first time that Mthal firing rate in control rats is modulated in a temporally precise pattern during reach-to-grasp movements, with a peak at the time of the reach-end and troughs just before and after it. We identified LTS-like events on the basis of LTS burst characteristics. These were rare, but also modulated, decreasing in incidence just after reach-end. The inhibitory modulations in firing rate and LTS-like events were abolished in parkinsonian rats. These data confirm that nigrostriatal dopamine depletion is accompanied by profound and specific deficits in movement-related Mthal activity. These changes would severely impair Mthal contributions to motor program development in motor cortex and are likely to be an important factor underlying the movement deficits of PD.
Collapse
Affiliation(s)
| | - Roseanna A Smither
- Department of Physiology, Otago School of Medical Science, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| | - Brian I Hyland
- Department of Physiology, Otago School of Medical Science, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| | | |
Collapse
|
41
|
Ulupinar E, Erol K, Ay H, Yucel F. Rearing conditions differently affect the motor performance and cerebellar morphology of prenatally stressed juvenile rats. Behav Brain Res 2014; 278:235-43. [PMID: 25315128 DOI: 10.1016/j.bbr.2014.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 02/05/2023]
Abstract
The cerebellum is one of the most vulnerable parts of the brain to environmental changes. In this study, the effect of diverse environmental rearing conditions on the motor performances of prenatally stressed juvenile rats and its reflection to the cerebellar morphology were investigated. Prenatally stressed Wistar rats were grouped according to different rearing conditions (Enriched=EC, Standard=SC and Isolated=IC) after weaning. Six weeks later, male and female offspring from different litters were tested behaviorally. In rotarod and string suspension tests, females gained better scores than males. Significant gender and housing effects were observed especially on the motor functions requiring fine skills with the best performance by enriched females, but the worst by enriched males. The susceptibility of cerebellar macro- and micro-neurons to environmental conditions was compared using stereological methods. In female groups, no differences were observed in the volume proportions of cerebellar layers, soma sizes and the numerical densities of granule or Purkinje cells. However, a significant interaction between housing and gender was observed in the granule to Purkinje cell ratio of males, due to the increased numerical densities of the granule cells in enriched males. These data imply that proper functioning of the cerebellum relies on its well organized and evolutionarily conserved structure and circuitry. Although early life stress leads to long term behavioral and neurobiological consequences in the offspring, diverse rearing conditions can alter the motor skills of animals and synaptic connectivity between Purkinje and granular cells in a gender dependent manner.
Collapse
Affiliation(s)
- Emel Ulupinar
- Department of Anatomy, Faculty of Medicine, Eskişehir Osmangazi University, 26040 Eskisehir, Turkey; Interdisciplinary Neuroscience Department, Health Science Institute of Eskişehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Kevser Erol
- Interdisciplinary Neuroscience Department, Health Science Institute of Eskişehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Pharmacology, Faculty of Medicine, Eskişehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Hakan Ay
- Department of Anatomy, Faculty of Medicine, Eskişehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Ferruh Yucel
- Department of Anatomy, Faculty of Medicine, Eskişehir Osmangazi University, 26040 Eskisehir, Turkey; Interdisciplinary Neuroscience Department, Health Science Institute of Eskişehir Osmangazi University, 26040 Eskisehir, Turkey
| |
Collapse
|
42
|
Flindall JW, Stone KD, Gonzalez CLR. Evidence for right-hand feeding biases in a left-handed population. Laterality 2014; 20:287-305. [PMID: 25256315 DOI: 10.1080/1357650x.2014.961472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We have recently shown that actions with similar kinematic requirements, but different end-state goals may be supported by distinct neural networks. Specifically, we demonstrated that when right-handed individuals reach-to-grasp food items with intent to eat, they produce smaller maximum grip apertures (MGAs) than when they grasp the same item with intent to place it in a location near the mouth. This effect was restricted to right-handed movements; left-handed movements showed no difference between tasks. The current study investigates whether (and to which side) the effect may be lateralized in left-handed individuals. Twenty-one self-identified left-handed participants grasped food items of three different sizes while grasp kinematics were captured via an Optotrak Certus motion capture array. A main effect of task was identified wherein the grasp-to-eat action generated significantly smaller MGAs than did the grasp-to-place action. Further analysis revealed that similar to the findings in right-handed individuals, this effect was significant only during right-handed movements. Upon further inspection however, we found individual differences in the magnitude and direction of the observed lateralization. These results underscore the evolutionary significance of the grasp-to-eat movement in producing population-level right-handedness in humans as well as highlighting the heterogeneity of the left-handed population.
Collapse
Affiliation(s)
- Jason W Flindall
- a The Brain in Action Laboratory, Department of Kinesiology and Physical Education , University of Lethbridge , Lethbridge , AB , Canada
| | | | | |
Collapse
|
43
|
Girard S, Murray KN, Rothwell NJ, Metz GAS, Allan SM. Long-term functional recovery and compensation after cerebral ischemia in rats. Behav Brain Res 2014; 270:18-28. [PMID: 24821402 PMCID: PMC4090421 DOI: 10.1016/j.bbr.2014.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia is one of the most common causes of disabilities in adults and leads to long-term motor and cognitive impairments with limited therapeutic possibilities. Treatment options have proven efficient in preclinical models of cerebral ischemia but have failed in the clinical setting. This limited translation may be due to the suitability of models used and outcomes measured as most studies have focused on the early period after injury with gross motor scales, which have limited correlation to the clinical situation. The aim of this study was to determine long-term functional outcomes after cerebral ischemia in rats, focusing on fine motor function, social and depressive behavior as clinically relevant measures. A secondary objective was to evaluate the effects of an anti-inflammatory treatment (interleukin-1 receptor antagonist (IL-1Ra)) on functional recovery and compensation. Infarct volume was correlated with long-term (25 days) impairments in fine motor skills, but not with emotional components of behavior. Motor impairments could not be detected using conventional neurological tests and only detailed analysis allowed differentiation between recovery and compensation. Acute systemic administration of IL-1Ra (at reperfusion) led to a faster and more complete recovery, but delayed (24h) IL-1Ra treatment had no effect. In summary functional assessment after brain injury requires detailed motor tests in order to address long-term impairments and compensation processes that are mediated by intact tissues. Functional deficits in skilled movement after brain injury represent ideal predictors of long-term outcomes and should become standard measures in the assessment of preclinical animal models.
Collapse
Affiliation(s)
- Sylvie Girard
- Faculty of Life Science, University of Manchester, Manchester, UK.
| | - Katie N Murray
- Faculty of Life Science, University of Manchester, Manchester, UK
| | - Nancy J Rothwell
- Faculty of Life Science, University of Manchester, Manchester, UK
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Stuart M Allan
- Faculty of Life Science, University of Manchester, Manchester, UK
| |
Collapse
|
44
|
Flindall JW, Gonzalez CLR. Eating interrupted: the effect of intent on hand-to-mouth actions. J Neurophysiol 2014; 112:2019-25. [PMID: 24990561 DOI: 10.1152/jn.00295.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence from recent neurophysiological studies on nonhuman primates as well as from human behavioral studies suggests that actions with similar kinematic requirements but different end-state goals are supported by separate neural networks. It is unknown whether these different networks supporting seemingly similar reach-to-grasp actions are lateralized, or if they are equally represented in both hemispheres. Recently published behavioral evidence suggests certain networks are lateralized to the left hemisphere. Specifically, when participants used their right hand, their maximum grip aperture (MGA) was smaller when grasping to eat food items than when grasping to place the same items. Left-handed movements showed no difference between tasks. The present study investigates whether the differences between grasp-to-eat and grasp-to-place actions are driven by an intent to eat, or if placing an item into the mouth (sans ingestion) is sufficient to produce asymmetries. Twelve right-handed adults were asked to reach to grasp food items to 1) eat them, 2) place them in a bib, or 3) place them between their lips and then toss them into a nearby receptacle. Participants performed each task with large and small food items, using both their dominant and nondominant hands. The current study replicated the previous finding of smaller MGAs for the eat condition during right-handed but not left-handed grasps. MGAs in the eat and spit conditions did not significantly differ from each other, suggesting that eating and bringing a food item to the mouth both utilize similar motor plans, likely originating within the same neural network. Results are discussed in relation to neurophysiology and development.
Collapse
Affiliation(s)
- Jason W Flindall
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Claudia L R Gonzalez
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
45
|
Karl JM, Whishaw IQ. Haptic grasping configurations in early infancy reveal different developmental profiles for visual guidance of the Reach versus the Grasp. Exp Brain Res 2014; 232:3301-16. [DOI: 10.1007/s00221-014-4013-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
46
|
Holschneider DP, Guo Y, Wang Z, Roch M, Scremin OU. Remote brain network changes after unilateral cortical impact injury and their modulation by acetylcholinesterase inhibition. J Neurotrauma 2014; 30:907-19. [PMID: 23343118 DOI: 10.1089/neu.2012.2657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We explored whether cerebral cortical impact injury (CCI) effects extend beyond direct lesion sites to affect remote brain networks, and whether acetylcholinesterase (AChE) inhibition elicits discrete changes in functional activation of motor circuits following CCI. Adult male rats underwent unilateral motor-sensory CCI or sham injury. Physostigmine (AChE inhibitor) or saline were administered subcutaneously continuously via implanted minipumps (1.6 micromoles/kg/day) for 3 weeks, followed by cerebral perfusion mapping during treadmill walking using [(14)C]-iodoantipyrine. Quantitative autoradiographs were analyzed by statistical parametric mapping and functional connectivity (FC) analysis. CCI resulted in functional deficits in the ipsilesional basal ganglia, with increased activation contralesionally. Recruitment was also observed, especially contralesionally, of the red nucleus, superior colliculus, pedunculopontine tegmental nucleus, thalamus (ventrolateral n., central medial n.), cerebellum, and sensory cortex. FC decreased significantly within ipsi- and contralesional motor circuits and between hemispheres, but increased between midline cerebellum and select regions of the basal ganglia within each hemisphere. Physostigmine significantly increased functional brain activation in the cerebellar thalamocortical pathway (midline cerebellum→ventrolateral thalamus→motor cortex), subthalamic nucleus/zona incerta, and red nucleus and bilateral sensory cortex. In conclusion, CCI resulted in increased functional recruitment of contralesional motor cortex and bilateral subcortical motor regions, as well as recruitment of the cerebellar-thalamocortical circuit and contralesional sensory cortex. This phenomenon, augmented by physostigmine, may partially compensate motor deficits. FC decreased inter-hemispherically and in negative, but not positive, intra-hemispherical FC, and it was not affected by physostigmine. Circuit-based approaches into functional brain reorganization may inform future behavioral or molecular strategies to augment targeted neurorehabilitation.
Collapse
Affiliation(s)
- Daniel P Holschneider
- Department of Psychiatry, Keck School of Medicine at University of Southern California , Los Angeles, California 90033, USA.
| | | | | | | | | |
Collapse
|
47
|
Moore TL, Pessina MA, Finklestein SP, Kramer BC, Killiany RJ, Rosene DL. Recovery of fine motor performance after ischemic damage to motor cortex is facilitated by cell therapy in the rhesus monkey. Somatosens Mot Res 2013; 30:185-96. [PMID: 23758412 PMCID: PMC6503838 DOI: 10.3109/08990220.2013.790806] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We investigated the efficacy on recovery of function following controlled cortical ischemia in the monkey of the investigational cell drug product, CNTO 0007. This drug contains a cellular component, human umbilical tissue-derived cells, in a proprietary thaw and inject formulation. Results demonstrate significantly better recovery of motor function in the treatment group with no difference between groups in the volume or surface area of ischemic damage, suggesting that the cells stimulated plasticity.
Collapse
Affiliation(s)
- Tara L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine , Boston, MA , USA
| | | | | | | | | | | |
Collapse
|
48
|
Flindall JW, Gonzalez CLR. On the evolution of handedness: evidence for feeding biases. PLoS One 2013; 8:e78967. [PMID: 24236078 PMCID: PMC3827312 DOI: 10.1371/journal.pone.0078967] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/17/2013] [Indexed: 11/23/2022] Open
Abstract
Many theories have been put forward to explain the origins of right-handedness in humans. Here we present evidence that this preference may stem in part from a right hand advantage in grasping for feeding. Thirteen participants were asked to reach-to-grasp food items of 3 different sizes: SMALL (Cheerios®), MEDIUM (Froot Loops®), and LARGE (Oatmeal Squares®). Participants used both their right- and left-hands in separate blocks (50 trials each, starting order counterbalanced) to grasp the items. After each grasp, participants either a) ate the food item, or b) placed it inside a bib worn beneath his/her chin (25 trials each, blocked design, counterbalanced). The conditions were designed such that the outward and inward movement trajectories were similar, differing only in the final step of placing it in the mouth or bib. Participants wore Plato liquid crystal goggles that blocked vision between trials. All trials were conducted in closed-loop with 5000 ms of vision. Hand kinematics were recorded by an Optotrak Certus, which tracked the position of three infrared diodes attached separately to the index finger, thumb, and wrist. We found a task (EAT/PLACE) by hand (LEFT/RIGHT) interaction on maximum grip aperture (MGA; the maximum distance between the index finger and thumb achieved during grasp pre-shaping). MGAs were smaller during right-handed movements, but only when grasping with intent to eat. Follow-up tests show that the RIGHT-HAND/EAT MGA was significantly smaller than all other hand/task conditions. Because smaller grip apertures are typically associated with greater precision, our results demonstrate a right-hand advantage for the grasp-to-eat movement. From an evolutionary perspective, early humans may have preferred the hand that could grasp food with more precision, thereby maximizing the likelihood of retrieval, consumption, and consequently, survival.
Collapse
Affiliation(s)
- Jason W. Flindall
- The Brain in Action Laboratory, Department of Kinesiology and Physical Education, University of Lethbridge, Lethbridge, Alberta, Canada
- * E-mail:
| | - Claudia L. R. Gonzalez
- The Brain in Action Laboratory, Department of Kinesiology and Physical Education, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
49
|
Sacrey LAR, Bryson SE, Zwaigenbaum L. Prospective examination of visual attention during play in infants at high-risk for autism spectrum disorder: a longitudinal study from 6 to 36 months of age. Behav Brain Res 2013; 256:441-50. [PMID: 24004846 DOI: 10.1016/j.bbr.2013.08.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/14/2013] [Accepted: 08/18/2013] [Indexed: 02/01/2023]
Abstract
Regulation of visual attention is essential to learning about one's environment. Children with autism spectrum disorder (ASD) exhibit impairments in regulating their visual attention, but little is known about how such impairments develop over time. This prospective longitudinal study is the first to describe the development of components of visual attention, including engaging, sustaining, and disengaging attention, in infants at high-risk of developing ASD (each with an older sibling with ASD). Non-sibling controls and high-risk infant siblings were filmed at 6, 9, 12, 15, 18, 24, and 36 months of age as they engaged in play with small, easily graspable toys. Duration of time spent looking at toy targets before moving the hand toward the target and the duration of time spent looking at the target after grasp were measured. At 36 months of age, an independent, gold standard diagnostic assessment for ASD was conducted for all participants. As predicted, infant siblings subsequently diagnosed with ASD were distinguished by prolonged latency to disengage ('sticky attention') by 12 months of age, and continued to show this characteristic at 15, 18, and 24 months of age. The results are discussed in relation to how the development of visual attention may impact later cognitive outcomes of children diagnosed with ASD.
Collapse
Affiliation(s)
- Lori-Ann R Sacrey
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
50
|
A behavioral method for identifying recovery and compensation: Hand use in a preclinical stroke model using the single pellet reaching task. Neurosci Biobehav Rev 2013; 37:950-67. [DOI: 10.1016/j.neubiorev.2013.03.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 12/12/2022]
|