1
|
Shi S, Qi W, Zhang J, Liang C, Liu W, Han H, Zhuang W, Chen T, Sun W, Chen Y. Proteo-Transcriptomic Analysis Reveals the Mechanisms Underlying Escherichia coli Phenotypic Shifts Under Blue Light. Biotechnol Bioeng 2025. [PMID: 39876573 DOI: 10.1002/bit.28939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Bacteria can adapt their lifestyles, including microbial growth, metabolism, and biofilm formation, in response to light signaling. However, the molecular pathways through which blue light affects the lifestyle of Escherichia coli (E. coli) remain incomplete and poorly understood. To address this gap, transcriptomic and proteomic approaches were employed to analyze the physiological differences of E. coli under dark and blue light conditions. Our results indicate that, compared to dark conditions, blue light attenuates flagellar assembly, reduces cell motility and communication, and decreases biofilm formation in E. coli. In addition, this study elucidates the signaling pathways involved in the blue light-mediated regulation of E. coli behavior, providing a theoretical framework for understanding how E. coli responds to blue light signaling to modulate biofilm formation for the production of food chemicals.
Collapse
Affiliation(s)
- Shuqi Shi
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenlu Qi
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jinming Zhang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Caice Liang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hui Han
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Zhuang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
2
|
Sheenu, Jain D. Transcription Regulation of Flagellins: A Structural Perspective. Biochemistry 2025. [PMID: 39874281 DOI: 10.1021/acs.biochem.4c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Bacterial flagella are complex molecular motors that are essential for locomotion and host colonization. They consist of 30 different proteins expressed in varying stoichiometries. Their assembly and function are governed by a hierarchical transcriptional regulatory network with multiple checkpoints primarily regulated by sigma factors. Expression of late flagellar genes requires the complete assembly of the flagellar basal body and hook. The extracellular segment of the flagellum, termed filament, is composed of self-assembling flagellin subunits encoded by the fliC gene and harbors potent antigenic epitopes. Structural studies have illuminated the molecular mechanisms underlying its assembly and its regulation at the transcription level. σ28, a key subunit of the RNA polymerase complex, binds to specific promoter sequences to initiate transcription of late flagellar genes, while its activity is controlled by the antisigma factor FlgM. This review summarizes current insights into the structural characterization of flagellins across various bacterial species, their transcription by σ28, and the structural mechanism controlling σ28 activity through FlgM. Additionally, we highlight the regulation of flagellin gene expression via transcription factors and their post-transcriptional regulation, providing a comprehensive overview of the intricate mechanisms that support bacterial motility and adaptation.
Collapse
Affiliation(s)
- Sheenu
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
3
|
Bai T, Li J, Chi X, Li H, Tang Y, Liu Z, Ma X. Cooperative and Independent Functionality of tmRNA and SmpB in Aeromonas veronii: A Multifunctional Exploration Beyond Ribosome Rescue. Int J Mol Sci 2025; 26:409. [PMID: 39796263 PMCID: PMC11722516 DOI: 10.3390/ijms26010409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the ssrA gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the ssrA and smpB genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in Aeromonas veronii, a pathogen that poses threats in aquaculture and human health. We characterized the expression dynamics of the ssrA and smpB genes at different growth stages of the pathogen, assessed the responses of deletion strains ΔssrA and ΔsmpB to various environmental stressors and carbon source supplementations, and identified the gene-regulatory networks involving both genes by integrating transcriptomic and phenotypic analyses. Our results showed that the gene ssrA maintained stable expression throughout the bacterial growth period, while smpB exhibited upregulated expression in response to nutrient deficiencies. Compared to the wild type, both the ΔssrA and ΔsmpB strains exhibited attenuated resistance to most stress conditions. However, ΔssrA independently responded to starvation, while ΔsmpB specifically showed reduced resistance to lower concentrations of Fe3+ and higher concentrations of Na+ ions, as well as increased utilization of the carbon source β-Methyl-D-glucoside. The transcriptomic analysis supported these phenotypic results, demonstrating that tmRNA and SmpB cooperate under nutrient-deficient conditions but operate independently in nutrient-rich environments. Phenotypic experiments confirmed that SsrA and SmpB collaboratively regulate genes involved in siderophore synthesis and iron uptake systems in response to extracellular iron deficiency. The findings of the present study provide crucial insights into the functions of the trans-translation system and highlight new roles for tmRNA and SmpB beyond trans-translation.
Collapse
Affiliation(s)
- Taipeng Bai
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Juanjuan Li
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Xue Chi
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Hong Li
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Yanqiong Tang
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Zhu Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Xiang Ma
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| |
Collapse
|
4
|
Parisutham V, Guharajan S, Lian M, Rogers H, Joyce S, Guillen MN, Brewster RC. E. coli transcription factors regulate promoter activity by a universal, homeostatic mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627516. [PMID: 39713321 PMCID: PMC11661191 DOI: 10.1101/2024.12.09.627516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Transcription factors (TFs) may activate or repress gene expression through an interplay of different mechanisms, including RNA polymerase (RNAP) recruitment, exclusion, and initiation. TFs often have drastically different regulatory behaviors depending on promoter context and interacting cofactors. However, the detailed mechanisms by which each TF affects transcription and produce promoter-dependent regulation is unclear. Here, we discover that a simple model explains the regulatory effects of E. coli TFs in a range of contexts. Specifically, we measure the relationship between basal promoter activity and its regulation by diverse TFs and find that the contextual changes in TF function are determined entirely by the basal strength of the regulated promoter: TFs exert lower fold-change on stronger promoters under a precise inverse scaling. Remarkably, this scaling relationship holds for both activators and repressors, indicating a universal mechanism of gene regulation. Our data, which spans between 100-fold activation to 1000-fold repression, is consistent with a model of regulation driven by stabilization of RNAP at the promoter for every TF. Crucially, this indicates that TFs naturally act to maintain homeostatic expression levels across genetic or environmental perturbations, ensuring robust expression of regulated genes.
Collapse
Affiliation(s)
- Vinuselvi Parisutham
- Department of Systems Biology, UMass Chan Medical School, Worcester MA, 01605, USA
| | - Sunil Guharajan
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston MA, 02115, USA
- Division of Pediatrics, Harvard Medical School, Boston MA, 02115, USA
| | - Melina Lian
- Department of Chemistry, University of Southern California, Los Angeles CA, 90089, USA
| | - Hannah Rogers
- Department of Systems Biology, UMass Chan Medical School, Worcester MA, 01605, USA
| | - Shannon Joyce
- Department of Systems Biology, UMass Chan Medical School, Worcester MA, 01605, USA
| | - Mariana Noto Guillen
- Department of Systems Biology, UMass Chan Medical School, Worcester MA, 01605, USA
| | - Robert C. Brewster
- Department of Systems Biology, UMass Chan Medical School, Worcester MA, 01605, USA
| |
Collapse
|
5
|
Zamba-Campero M, Soliman D, Yu H, Lasseter AG, Chang YY, Silberman JL, Liu J, Aravind L, Jewett MW, Storz G, Adams PP. Broadly conserved FlgV controls flagellar assembly and Borrelia burgdorferi dissemination in mice. Nat Commun 2024; 15:10417. [PMID: 39614093 DOI: 10.1038/s41467-024-54806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Flagella propel pathogens through their environments, yet are expensive to synthesize and are immunogenic. Thus, complex hierarchical regulatory networks control flagellar gene expression. Spirochetes are highly motile bacteria, but peculiarly, the archetypal flagellar regulator σ28 is absent in the Lyme spirochete Borrelia burgdorferi. Here, we show that gene bb0268 (flgV) in B. burgdorferi, previously and incorrectly annotated to encode the RNA-binding protein Hfq, is instead a structural flagellar component that modulates flagellar assembly. The flgV gene is broadly conserved in the flagellar superoperon alongside σ28 in many Spirochaetae, Firmicutes and other phyla, with distant homologs in Epsilonproteobacteria. We find that B. burgdorferi FlgV is localized within flagellar basal bodies, and strains lacking flgV produce fewer and shorter flagellar filaments and are defective in cell division and motility. During the enzootic cycle, flgV-deficient B. burgdorferi survive and replicate in Ixodes ticks but are attenuated for infection and dissemination in mice. Our work defines infection timepoints when spirochete motility is most crucial and implicates FlgV as a broadly distributed structural flagellar component that modulates flagellar assembly.
Collapse
Affiliation(s)
- Maxime Zamba-Campero
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Soliman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huaxin Yu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Amanda G Lasseter
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Yuen-Yan Chang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia L Silberman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - L Aravind
- Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Mollie W Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA.
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA.
- Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Santos R, Mateus C, Oleastro M, Ferreira S. Exploring flagellar contributions to motility and virulence in Arcobacter butzleri. World J Microbiol Biotechnol 2024; 40:367. [PMID: 39455472 DOI: 10.1007/s11274-024-04175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Flagella is a well-known bacterial structure crucial for motility, which also plays pivotal roles in pathogenesis. Arcobacter butzleri, an enteropathogen, possesses a distinctive polar flagellum whose functional aspects remain largely unexplored. Upon investigating the factors influencing A. butzleri motility, we uncovered that environmental conditions like temperature, oxygen levels, and nutrient availability play a significant role. Furthermore, compounds that are found in human gut, such as short-chain fatty acids, mucins and bile salts, have a role in modulating the motility, and in turn, the pathogenicity of A. butzleri. Further investigation demonstrated that A. butzleri ΔflaA mutant showed a reduction in motility with a close to null average velocity, as well as a reduction on biofilm formation. In addition, compared with the wild-type, the ΔflaA mutant showed a decreased ability to invade Caco-2 cells and to adhere to mucins. Taken together, our findings support the role of environmental conditions and gut host associated compounds influencing key physiological aspects of the gastrointestinal pathogen A. butzleri, such as motility, and support the role of the flagellum on bacterial virulence.
Collapse
Affiliation(s)
- Raquel Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Cristiana Mateus
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Susana Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal.
| |
Collapse
|
7
|
Ramesh Kumar U, Nguyen NT, Dewangan NK, Mohiuddin SG, Orman MA, Cirino PC, Conrad JC. Co-Expression of type 1 fimbriae and flagella in Escherichia coli: consequences for adhesion at interfaces. SOFT MATTER 2024; 20:7397-7404. [PMID: 39021099 DOI: 10.1039/d4sm00499j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Escherichia coli expresses surface appendages including fimbriae, flagella, and curli, at various levels in response to environmental conditions and external stimuli. Previous studies have revealed an interplay between expression of fimbriae and flagella in several E. coli strains, but how this regulation between fimbrial and flagellar expression affects adhesion to interfaces is incompletely understood. Here, we investigate how the concurrent expression of fimbriae and flagella by engineered strains of E. coli MG1655 affects their adhesion at liquid-solid and liquid-liquid interfaces. We tune fimbrial and flagellar expression on the cell surface through plasmid-based inducible expression of the fim operon and fliC-flhDC genes. We show that increased fimbrial expression increases interfacial adhesion as well as bacteria-driven actuation of micron-sized objects. Co-expression of flagella in fimbriated bacteria, however, does not greatly affect either of these properties. Together, these results suggest that interfacial adhesion as well as motion actuated by adherent bacteria can be altered by controlling the expression of surface appendages.
Collapse
Affiliation(s)
- Udayanidhi Ramesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Nam T Nguyen
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Narendra K Dewangan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Sayed Golam Mohiuddin
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Mehmet A Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
8
|
Bourgeois JS, Hu LT. Hitchhiker's Guide to Borrelia burgdorferi. J Bacteriol 2024; 206:e0011624. [PMID: 39140751 PMCID: PMC11411949 DOI: 10.1128/jb.00116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Don't Panic. In the nearly 50 years since the discovery of Lyme disease, Borrelia burgdorferi has emerged as an unlikely workhorse of microbiology. Interest in studying host-pathogen interactions fueled significant progress in making the fastidious microbe approachable in laboratory settings, including the development of culture methods, animal models, and genetic tools. By developing these systems, insight has been gained into how the microbe is able to survive its enzootic cycle and cause human disease. Here, we discuss the discovery of B. burgdorferi and its development as a model organism before diving into the critical lessons we have learned about B. burgdorferi biology at pivotal stages of its lifecycle: gene expression changes during the tick blood meal, colonization of a new vertebrate host, and developing a long-lasting infection in that vertebrate until a new tick feeds. Our goal is to highlight the advancements that have facilitated B. burgdorferi research and identify gaps in our current understanding of the microbe.
Collapse
Affiliation(s)
- Jeffrey S. Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Liu Z, Zhao Q, Xu C, Song H. Compensatory evolution of chromosomes and plasmids counteracts the plasmid fitness cost. Ecol Evol 2024; 14:e70121. [PMID: 39170056 PMCID: PMC11336059 DOI: 10.1002/ece3.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Plasmids incur a fitness cost that has the potential to restrict the dissemination of resistance in bacterial pathogens. However, bacteria can overcome this disadvantage by compensatory evolution to maintain their resistance. Compensatory evolution can occur via both chromosomes and plasmids, but there are a few reviews regarding this topic, and most of them focus on plasmids. In this review, we provide a comprehensive overview of the currently reported mechanisms underlying compensatory evolution on chromosomes and plasmids, elucidate key targets regulating plasmid fitness cost, and discuss future challenges in this field. We found that compensatory evolution on chromosomes primarily arises from mutations in transcriptional regulatory factors, whereas compensatory evolution of plasmids predominantly involves three pathways: plasmid copy number regulation, conjugation transfer efficiency, and expression of antimicrobial resistance (AMR) genes. Furthermore, the importance of reasonable selection of research subjects and effective integration of diverse advanced research methods is also emphasized in our future study on compensatory mechanisms. Overall, this review establishes a theoretical framework that aims to provide innovative ideas for minimizing the emergence and spread of AMR genes.
Collapse
Affiliation(s)
- Ziyi Liu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Qiuyun Zhao
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Chenggang Xu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Houhui Song
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
10
|
Samgane G, Karaçam S, Tunçer Çağlayan S. Unveiling the synergistic potency of chlorhexidine and azithromycin in combined action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5975-5987. [PMID: 38376540 PMCID: PMC11329591 DOI: 10.1007/s00210-024-03010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
The growing challenge of antibiotic resistance necessitates novel approaches for combating bacterial infections. This study explores the distinctive synergy between chlorhexidine, an antiseptic and disinfectant agent, and azithromycin, a macrolide antibiotic, in their impact on bacterial growth and virulence factors using Escherichia coli strain Crooks (ATCC 8739) as a model. Our findings reveal that the chlorhexidine and azithromycin combination demonstrates enhanced anti-bacterial effects compared to individual treatments. Intriguingly, the combination induced oxidative stress, decreased flagellin expression, impaired bacterial motility, and enhanced bacterial autoaggregation. Notably, the combined treatment also demonstrated a substantial reduction in bacterial adherence to colon epithelial cells and downregulated NF-κB in the epithelial cells. In conclusion, these results shed light on the potential of the chlorhexidine and azithromycin synergy as a compelling strategy to address the rising challenge of antibiotic resistance and may pave the way for innovative therapeutic interventions in tackling bacterial infections.
Collapse
Affiliation(s)
- Gizem Samgane
- Department of Biotechnology, Bilecik Şeyh Edebali University, Bilecik, 11100, Turkey
| | - Sevinç Karaçam
- Department of Biotechnology, Bilecik Şeyh Edebali University, Bilecik, 11100, Turkey
- Central Research and Application Laboratory, Bilecik Şeyh Edebali University, Bilecik, 11100, Turkey
| | - Sinem Tunçer Çağlayan
- Department of Medical Services and Techniques, Vocational School of Health Services, Bilecik Şeyh Edebali University, Pelitözü Mah. Fatih Sultan Mehmet Bulvarı No:27, Bilecik, 11100, Turkey.
| |
Collapse
|
11
|
Poli N, Keel CJ, Garrido-Sanz D. Expanding the Pseudomonas diversity of the wheat rhizosphere: four novel species antagonizing fungal phytopathogens and with plant-beneficial properties. Front Microbiol 2024; 15:1440341. [PMID: 39077740 PMCID: PMC11284033 DOI: 10.3389/fmicb.2024.1440341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Plant-beneficial Pseudomonas bacteria hold the potential to be used as inoculants in agriculture to promote plant growth and health through various mechanisms. The discovery of new strains tailored to specific agricultural needs remains an open area of research. In this study, we report the isolation and characterization of four novel Pseudomonas species associated with the wheat rhizosphere. Comparative genomic analysis with all available Pseudomonas type strains revealed species-level differences, substantiated by both digital DNA-DNA hybridization and average nucleotide identity, underscoring their status as novel species. This was further validated by the phenotypic differences observed when compared to their closest relatives. Three of the novel species belong to the P. fluorescens species complex, with two representing a novel lineage in the Pseudomonas phylogeny. Functional genome annotation revealed the presence of specific features contributing to rhizosphere colonization, including flagella and components for biofilm formation. The novel species have the genetic potential to solubilize nutrients by acidifying the environment, releasing alkaline phosphatases and their metabolism of nitrogen species, indicating potential as biofertilizers. Additionally, the novel species possess traits that may facilitate direct promotion of plant growth through the modulation of the plant hormone balance, including the ACC deaminase enzyme and auxin metabolism. The presence of biosynthetic clusters for toxins such as hydrogen cyanide and non-ribosomal peptides suggests their ability to compete with other microorganisms, including plant pathogens. Direct inoculation of wheat roots significantly enhanced plant growth, with two strains doubling shoot biomass. Three of the strains effectively antagonized fungal phytopathogens (Thielaviopsis basicola, Fusarium oxysporum, and Botrytis cinerea), demonstrating their potential as biocontrol agents. Based on the observed genetic and phenotypic differences from closely related species, we propose the following names for the four novel species: Pseudomonas grandcourensis sp. nov., type strain DGS24T ( = DSM 117501T = CECT 31011T), Pseudomonas purpurea sp. nov., type strain DGS26T ( = DSM 117502T = CECT 31012T), Pseudomonas helvetica sp. nov., type strain DGS28T ( = DSM 117503T = CECT 31013T) and Pseudomonas aestiva sp. nov., type strain DGS32T ( = DSM 117504T = CECT 31014T).
Collapse
Affiliation(s)
| | - Christoph Joseph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Sato Y, Takita A, Suzue K, Hashimoto Y, Hiramoto S, Murakami M, Tomita H, Hirakawa H. TusDCB, a sulfur transferase complex involved in tRNA modification, contributes to UPEC pathogenicity. Sci Rep 2024; 14:8978. [PMID: 38637685 PMCID: PMC11026471 DOI: 10.1038/s41598-024-59614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
tRNA modifications play a crucial role in ensuring accurate codon recognition and optimizing translation levels. While the significance of these modifications in eukaryotic cells for maintaining cellular homeostasis and physiological functions is well-established, their physiological roles in bacterial cells, particularly in pathogenesis, remain relatively unexplored. The TusDCB protein complex, conserved in γ-proteobacteria like Escherichia coli, is involved in sulfur modification of specific tRNAs. This study focused on the role of TusDCB in the virulence of uropathogenic E. coli (UPEC), a bacterium causing urinary tract infections. The findings indicate that TusDCB is essential for optimal production of UPEC's virulence factors, including type 1 fimbriae and flagellum, impacting the bacterium's ability to aggregate in bladder epithelial cells. Deletion of tusDCB resulted in decreased virulence against urinary tract infection mice. Moreover, mutant TusDCB lacking sulfur transfer activity and tusE- and mnmA mutants revealed the indispensability of TusDCB's sulfur transfer activity for UPEC pathogenicity. The study extends its relevance to highly pathogenic, multidrug-resistant strains, where tusDCB deletion reduced virulence-associated bacterial aggregation. These insights not only deepen our understanding of the interplay between tRNA sulfur modification and bacterial pathogenesis but also highlight TusDCB as a potential therapeutic target against UPEC strains resistant to conventional antimicrobial agents.
Collapse
Affiliation(s)
- Yumika Sato
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ayako Takita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yusuke Hashimoto
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Suguru Hiramoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi Maebashi, Gunma, 371-8511, Japan
| | - Hidetada Hirakawa
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
13
|
Pradhan P, Taviti AC, Beuria TK. The bacterial division protein MinDE has an independent function in flagellation. J Biol Chem 2024; 300:107117. [PMID: 38403244 PMCID: PMC10963238 DOI: 10.1016/j.jbc.2024.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024] Open
Abstract
Before preparing for division, bacteria stop their motility. During the exponential growth phase in Escherichia coli, when the rate of bacterial division is highest, the expression of flagellar genes is repressed and bacterial adhesion is enhanced. Hence, it is evident that cell division and motility in bacteria are linked; however, the specific molecular mechanism by which these two processes are linked is not known. While observing E. coli, we found that compared to the WT, the E. coli (Δmin) cells show higher motility and flagellation. We demonstrated that the higher motility was due to the absence of the Min system and can be restored to normal in the presence of Min proteins, where Min system negatively regulates flagella formation. The Min system in E. coli is widely studied for its role in the inhibition of polar Z-ring formation through its pole-to-pole oscillation. However, its role in bacterial motility is not explored. MinD homologs, FlhG and FleN, are known to control flagellar expression through their interaction with FlrA and FleQ, respectively. AtoC, a part of the two-component system AtoSC complex, is homologous to FlrA/FleQ, and the complex is involved in E. coli flagellation via its interaction with the fliA promoter. We have shown that MinD interacts directly with the AtoS of AtoSC complex and controls the fliA expression. Our findings suggest that the Min system acts as a link between cell division and motility in E. coli.
Collapse
Affiliation(s)
- Pinkilata Pradhan
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ashoka Chary Taviti
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Tushar Kant Beuria
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
14
|
Zhai Y, Tian W, Chen K, Lan L, Kan J, Shi H. Flagella-mediated adhesion of Escherichia coli O157:H7 to surface of stainless steel, glass and fresh produces during sublethal injury and recovery. Food Microbiol 2024; 117:104383. [PMID: 37918998 DOI: 10.1016/j.fm.2023.104383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 11/04/2023]
Abstract
E. coli O157:H7 can be induced into sublethally injured (SI) state by lactic acid (LA) and regain activity in nutrient environments. This research clarified the role of flagella-related genes (fliD, fliS, cheA and motA) in adhesion of E. coli O157:H7 onto stainless steel, glass, lettuce, spinach, red cabbage and cucumber during LA-induced SI and recovery by plate counting. Results of adhesion showed improper flagellar rotation caused by the deletion of motA resulting in the decreased adhesion. Motility of wildtype determined by diameter of motility halo decreased in SI state and repaired with recovery time increasing, lagging behind changes in expression of flagella-related genes. Flagellar function-impaired strains all exhibited non-motile property. Thus, we speculated that flagella-mediated motility is critical in early stage of adhesion. We also found the effects of Fe2+, Ca2+ and Mn2+ on adhesion or motility of wildtype was independent of bacterial states. However, the addition of Ca2+ and Mn2+ did not affect motility of flagellar function-impaired strains as they did on wildtype. This research provides new insights to understand the role of flagella and cations in bacterial adhesion, which will aid in development of anti-adhesion agents to reduce bio-contamination in food processing.
Collapse
Affiliation(s)
- Yujun Zhai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Weina Tian
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, China
| | - Kewei Chen
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Linshu Lan
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Hui Shi
- College of Food Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
15
|
Zamba-Campero M, Soliman D, Yu H, Lasseter AG, Chang YY, Liu J, Aravind L, Jewett MW, Storz G, Adams PP. Broadly conserved FlgV controls flagellar assembly and Borrelia burgdorferi dissemination in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574855. [PMID: 38260563 PMCID: PMC10802407 DOI: 10.1101/2024.01.09.574855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Flagella propel pathogens through their environments yet are expensive to synthesize and are immunogenic. Thus, complex hierarchical regulatory networks control flagellar gene expression. Spirochetes are highly motile bacteria, but peculiarly in the Lyme spirochete Borrelia burgdorferi, the archetypal flagellar regulator σ28 is absent. We rediscovered gene bb0268 in B. burgdorferi as flgV, a broadly-conserved gene in the flagellar superoperon alongside σ28 in many Spirochaetes, Firmicutes and other phyla, with distant homologs in Epsilonproteobacteria. We found that B. burgdorferi FlgV is localized within flagellar motors. B. burgdorferi lacking flgV construct fewer and shorter flagellar filaments and are defective in cell division and motility. During the enzootic cycle, B. burgdorferi lacking flgV survive and replicate in Ixodes ticks but are attenuated for dissemination and infection in mice. Our work defines infection timepoints when spirochete motility is most crucial and implicates FlgV as a broadly distributed structural flagellar component that modulates flagellar assembly.
Collapse
Affiliation(s)
- Maxime Zamba-Campero
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Soliman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaxin Yu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Amanda G. Lasseter
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Yuen-Yan Chang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip P. Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
- Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Melamed S, Zhang A, Jarnik M, Mills J, Silverman A, Zhang H, Storz G. σ 28-dependent small RNA regulation of flagella biosynthesis. eLife 2023; 12:RP87151. [PMID: 37843988 PMCID: PMC10578931 DOI: 10.7554/elife.87151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Flagella are important for bacterial motility as well as for pathogenesis. Synthesis of these structures is energy intensive and, while extensive transcriptional regulation has been described, little is known about the posttranscriptional regulation. Small RNAs (sRNAs) are widespread posttranscriptional regulators, most base pairing with mRNAs to affect their stability and/or translation. Here, we describe four UTR-derived sRNAs (UhpU, MotR, FliX and FlgO) whose expression is controlled by the flagella sigma factor σ28 (fliA) in Escherichia coli. Interestingly, the four sRNAs have varied effects on flagellin protein levels, flagella number and cell motility. UhpU, corresponding to the 3´ UTR of a metabolic gene, likely has hundreds of targets including a transcriptional regulator at the top flagella regulatory cascade connecting metabolism and flagella synthesis. Unlike most sRNAs, MotR and FliX base pair within the coding sequences of target mRNAs and act on ribosomal protein mRNAs connecting ribosome production and flagella synthesis. The study shows how sRNA-mediated regulation can overlay a complex network enabling nuanced control of flagella synthesis.
Collapse
Affiliation(s)
- Sahar Melamed
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Aixia Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Michal Jarnik
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Joshua Mills
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Aviezer Silverman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Hongen Zhang
- Bioinformatics and Scientific Computing Core, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| |
Collapse
|
17
|
Wang Z, Zhao A, Qiao J, Yu J, He F, Bi Y, Yu L, Wang X. Engineering Escherichia coli MG1655 to Efficiently Produce 3-Deacyl-4'-monophosphoryl Lipid A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13376-13390. [PMID: 37656614 DOI: 10.1021/acs.jafc.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Monophosphoryl lipid A, derived from Salmonella minnesota R595, has been used in various adjuvant formulations. Escherichia coli can produce lipid A, but its structure is different. In this study, E. coli MG1655 has been engineered to efficiently produce the monophosphoryl lipid A. First, 126 genes relevant to the biosynthesis of the fimbriae, flagella, and ECA were deleted in MG1655, resulting in WQM027. Second, the genes pldA, mlaA, and mlaC related to the phospholipid transport system, the gene ptsG related to the carbohydrate phosphotransferase system, and the gene eptA encoding phosphoethanolamine transferase for lipid A modification were further deleted from WQM027, resulting in MW020. Third, lpxE from Francisella novicida and pagP and pagL from Salmonella were overexpressed in pFT24, resulting in pTEPL. pTEPL was transformed into MW020, resulting in MW020/pTEPL. Finally, fabI encoding an enoyl-ACP reductase was deleted from the genome of MW020/pTEPL, resulting in MW021/pTEPL. MW021/pTEPL could produce 85.31 mg/L of lipid A species after 26 h of fed-batch fermentation. Mainly two monophosphoryl lipid A species were produced in MW021/pTEPL, one is 3-deacyl-2-acyloxyacyl-4'-monophosphoryl lipid A and the other is 3-deacyl-4'-monophosphoryl lipid A. E. coli MW021/pTEPL constructed in this study could be an ideal host for the industrial production of monophosphoryl lipid A.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Aizhen Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fenfang He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yibing Bi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Letong Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Hirakawa H, Shimokawa M, Noguchi K, Tago M, Matsuda H, Takita A, Suzue K, Tajima H, Kawagishi I, Tomita H. The PapB/FocB family protein TosR acts as a positive regulator of flagellar expression and is required for optimal virulence of uropathogenic Escherichia coli. Front Microbiol 2023; 14:1185804. [PMID: 37533835 PMCID: PMC10392849 DOI: 10.3389/fmicb.2023.1185804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is a major causative agent of urinary tract infections. The bacteria internalize into the uroepithelial cells, where aggregate and form microcolonies. UPEC fimbriae and flagella are important for the formation of microcolonies in uroepithelial cells. PapB/FocB family proteins are small DNA-binding transcriptional regulators consisting of approximately 100 amino acids that have been reported to regulate the expression of various fimbriae, including P, F1C, and type 1 fimbriae, and adhesins. In this study, we show that TosR, a member of the PapB/FocB family is the activator of flagellar expression. The tosR mutant had similar expression levels of type 1, P and F1C fimbriae as the parent strain, but flagellar production was markedly lower than in the parent strain. Flagellin is a major component of flagella. The gene encoding flagellin, fliC, is transcriptionally activated by the sigma factor FliA. The fliA expression is induced by the flagellar master regulator FlhDC. The flhD and flhC genes form an operon. The promoter activity of fliC, fliA and flhD in the tosR mutant was significantly lower than in the parent strain. The purified recombinant TosR does not bind to fliC and fliA but to the upstream region of the flhD gene. TosR is known to bind to an AT-rich DNA sequence consisting of 29 nucleotides. The characteristic AT-rich sequence exists 550-578 bases upstream of the flhD gene. The DNA fragment lacking this sequence did not bind TosR. Furthermore, loss of the tosR gene reduced motility and the aggregation ability of UPEC in urothelial cells. These results indicate that TosR is a transcriptional activator that increases expression of the flhDC operon genes, contributing to flagellar expression and optimal virulence.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Mizuki Shimokawa
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Koshi Noguchi
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Minori Tago
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroshi Matsuda
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Ayako Takita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hirotaka Tajima
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
| | - Ikuro Kawagishi
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
19
|
Bakiyev S, Smekenov I, Zharkova I, Kobegenova S, Sergaliyev N, Absatirov G, Bissenbaev A. Characterization of atypical pathogenic Aeromonas salmonicida isolated from a diseased Siberian sturgeon ( Acipenser baerii). Heliyon 2023; 9:e17775. [PMID: 37483743 PMCID: PMC10359828 DOI: 10.1016/j.heliyon.2023.e17775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
Acipenser baerii (Siberian sturgeon) is native to Kazakhstan and is currently endangered and is listed within the first class of protected animals. Sturgeon aquaculture is becoming an important tool for the recovery of this endangered species. Nonetheless, diseases involving typical symptoms of skin ulceration and systemic bacterial hemorrhagic septicemia have occurred in cultured A. baerii on a fish farm located in Western Kazakhstan. In this study, an infectious strain of bacteria isolated from an ulcer of diseased A. baerii was identified as Aeromonas salmonicida (strain AB001). This identification involved analyses of 16S rRNA, gyrB, rpoD, and flaA genes' sequences. Even though strain AB001 belongs to A. salmonicida, it exhibited noticeable mobility and growth at temperatures of ≥37 °C. Profiling of virulence genes uncovered the presence of seven such genes related to pathogenicity. Antibiotic sensitivity testing showed that the strain is sensitive to aminoglycosides, amphenicols, nitrofurans, quinolones, and tetracyclines. Half-lethal doses (LD50) of strain AB001 for Oreochromis mossambicus and A. baerii were determined: respectively 1.7 × 108 and 7.2 × 107 colony-forming units per mL. The experimentally induced infection revealed that strain AB001 causes considerable histological lesions in O. mossambicus, including tissue degeneration, necrosis, and hemorrhages of varied severity.
Collapse
Affiliation(s)
- Serik Bakiyev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Izat Smekenov
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Irina Zharkova
- Department of Biodiversity and Bioresources, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Saidina Kobegenova
- Department of Biodiversity and Bioresources, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Nurlan Sergaliyev
- Makhambet Utemisov West Kazakhstan University, Uralsk 090000, Kazakhstan
| | - Gaisa Absatirov
- West Kazakhstan Innovation and Technological University, Uralsk 090000, Kazakhstan
| | - Amangeldy Bissenbaev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
20
|
Cho SY, Oh HB, Yoon SI. Hexameric structure of the flagellar master regulator FlhDC from Cupriavidus necator and its interaction with flagellar promoter DNA. Biochem Biophys Res Commun 2023; 672:97-102. [PMID: 37343320 DOI: 10.1016/j.bbrc.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Bacterial flagella are assembled with ∼30 different proteins in a defined order via diverse regulatory systems. In gram-negative bacteria from the Gammaproteobacteria and Betaproteobacteria classes, the transcription of flagellar genes is strictly controlled by the master regulator FlhDC. In Gammaproteobacteria species, the FlhDC complex has been shown to activate flagellar expression by directly interacting with the promoter region in flagellar genes. To obtain the DNA-binding mechanism of FlhDC and determine the conserved and distinct structural features of Betaproteobacteria and Gammaproteobacteria FlhDCs that are necessary for their functions, we determined the crystal structure of Betaproteobacteria Cupriavidus necator FlhDC (cnFlhDC) and biochemically analyzed its DNA-binding capacity. cnFlhDC specifically recognized the promoter DNA of the class II flagellar genes flgB and flhB. cnFlhDC adopts a ring-like heterohexameric structure (cnFlhD4C2) and harbors two Zn-Cys clusters, as observed for Gammaproteobacteria Escherichia coli FlhDC (ecFlhDC). The cnFlhDC structure exhibits positively charged surfaces across two FlhDC subunits as a putative DNA-binding site. Noticeably, the positive patch of cnFlhDC is continuous, in contrast to the separated patches of ecFlhDC. Moreover, the ternary intersection of cnFlhD4C2 behind the Zn-Cys cluster forms a unique protruding neutral structure, which is replaced with a charged cavity in the ecFlhDC structure.
Collapse
Affiliation(s)
- So Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Han Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
21
|
Huang C, Li W, Chen J. Transcriptomic Analysis Reveals Key Roles of (p)ppGpp and DksA in Regulating Metabolism and Chemotaxis in Yersinia enterocolitica. Int J Mol Sci 2023; 24:ijms24087612. [PMID: 37108773 PMCID: PMC10142893 DOI: 10.3390/ijms24087612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The stringent response is a rapid response system that is ubiquitous in bacteria, allowing them to sense changes in the external environment and undergo extensive physiological transformations. However, the regulators (p)ppGpp and DksA have extensive and complex regulatory patterns. Our previous studies demonstrated that (p)ppGpp and DksA in Yersinia enterocolitica positively co-regulated motility, antibiotic resistance, and environmental tolerance but had opposite roles in biofilm formation. To reveal the cellular functions regulated by (p)ppGpp and DksA comprehensively, the gene expression profiles of wild-type, ΔrelA, ΔrelAΔspoT, and ΔdksAΔrelAΔspoT strains were compared using RNA-Seq. Results showed that (p)ppGpp and DksA repressed the expression of ribosomal synthesis genes and enhanced the expression of genes involved in intracellular energy and material metabolism, amino acid transport and synthesis, flagella formation, and the phosphate transfer system. Additionally, (p)ppGpp and DksA inhibited amino acid utilization (such as arginine and cystine) and chemotaxis in Y. enterocolitica. Overall, the results of this study unraveled the link between (p)ppGpp and DksA in the metabolic networks, amino acid utilization, and chemotaxis in Y. enterocolitica and enhanced the understanding of stringent responses in Enterobacteriaceae.
Collapse
Affiliation(s)
- Can Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, 17 Qinghua East Rd., Beijing 100083, China
| | - Wenqian Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, 17 Qinghua East Rd., Beijing 100083, China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, 17 Qinghua East Rd., Beijing 100083, China
| |
Collapse
|
22
|
Gonçalves ASC, Leitão MM, Simões M, Borges A. The action of phytochemicals in biofilm control. Nat Prod Rep 2023; 40:595-627. [PMID: 36537821 DOI: 10.1039/d2np00053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2009 to 2021Antimicrobial resistance is now rising to dangerously high levels in all parts of the world, threatening the treatment of an ever-increasing range of infectious diseases. This has becoming a serious public health problem, especially due to the emergence of multidrug-resistance among clinically important bacterial species and their ability to form biofilms. In addition, current anti-infective therapies have low efficacy in the treatment of biofilm-related infections, leading to recurrence, chronicity, and increased morbidity and mortality. Therefore, it is necessary to search for innovative strategies/antibacterial agents capable of overcoming the limitations of conventional antibiotics. Natural compounds, in particular those obtained from plants, have been exhibiting promising properties in this field. Plant secondary metabolites (phytochemicals) can act as antibiofilm agents through different mechanisms of action from the available antibiotics (inhibition of quorum-sensing, motility, adhesion, and reactive oxygen species production, among others). The combination of different phytochemicals and antibiotics have revealed synergistic or additive effects in biofilm control. This review aims to bring together the most relevant reports on the antibiofilm properties of phytochemicals, as well as insights into their structure and mechanistic action against bacterial pathogens, spanning December 2008 to December 2021.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel M Leitão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
23
|
Flagellar motility mediates biofilm formation in Aeromonas dhakensis. Microb Pathog 2023; 177:106059. [PMID: 36878334 DOI: 10.1016/j.micpath.2023.106059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/27/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Aeromonas dhakensis possesses dual flagellar systems for motility under different environments. Flagella-mediated motility is necessary for biofilm formation through an initial attachment of bacteria to the surface, but this has not been elucidated in A. dhakensis. This study investigates the role of polar (flaH, maf1) and lateral (lafB, lafK and lafS) flagellar genes in the biofilm formation of a clinical A. dhakensis strain WT187 isolated from burn wound infection. Five deletion mutants and corresponding complemented strains were constructed using pDM4 and pBAD33 vectors, respectively, and analyzed for motility and biofilm formation using crystal violet staining and real-time impedance-based assays. All mutants were significantly reduced in swimming (p < 0.0001), swarming (p < 0.0001) and biofilm formation using crystal violet assay (p < 0.05). Real-time impedance-based analysis revealed WT187 biofilm was formed between 6 to 21 h, consisting of early (6-10 h), middle (11-18 h), and late (19-21 h) stages. The highest cell index of 0.0746 was recorded at 22-23 h and biofilms began to disperse starting from 24 h. Mutants Δmaf1, ΔlafB, ΔlafK and ΔlafS exhibited reduced cell index values at 6-48 h when compared to WT187 which indicates less biofilm formation. Two complemented strains cmaf1 and clafB exhibited full restoration to wild-type level in swimming, swarming, and biofilm formation using crystal violet assay, hence suggesting that both maf1 and lafB genes are involved in biofilm formation through flagella-mediated motility and surface attachment. Our study shows the role of flagella in A. dhakensis biofilm formation warrants further investigations.
Collapse
|
24
|
Snyder C, Centlivre JP, Bhute S, Shipman G, Friel AD, Viver T, Palmer M, Konstantinidis KT, Sun HJ, Rossello-Mora R, Nadeau J, Hedlund BP. Microbial Motility at the Bottom of North America: Digital Holographic Microscopy and Genomic Motility Signatures in Badwater Spring, Death Valley National Park. ASTROBIOLOGY 2023; 23:295-307. [PMID: 36625891 DOI: 10.1089/ast.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Motility is widely distributed across the tree of life and can be recognized by microscopy regardless of phylogenetic affiliation, biochemical composition, or mechanism. Microscopy has thus been proposed as a potential tool for detection of biosignatures for extraterrestrial life; however, traditional light microscopy is poorly suited for this purpose, as it requires sample preparation, involves fragile moving parts, and has a limited volume of view. In this study, we deployed a field-portable digital holographic microscope (DHM) to explore microbial motility in Badwater Spring, a saline spring in Death Valley National Park, and complemented DHM imaging with 16S rRNA gene amplicon sequencing and shotgun metagenomics. The DHM identified diverse morphologies and distinguished run-reverse-flick and run-reverse types of flagellar motility. PICRUSt2- and literature-based predictions based on 16S rRNA gene amplicons were used to predict motility genotypes/phenotypes for 36.0-60.1% of identified taxa, with the predicted motile taxa being dominated by members of Burkholderiaceae and Spirochaetota. A shotgun metagenome confirmed the abundance of genes encoding flagellar motility, and a Ralstonia metagenome-assembled genome encoded a full flagellar gene cluster. This study demonstrates the potential of DHM for planetary life detection, presents the first microbial census of Badwater Spring and brine pool, and confirms the abundance of mobile microbial taxa in an extreme environment.
Collapse
Affiliation(s)
- Carl Snyder
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Jakob P Centlivre
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Shrikant Bhute
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Gözde Shipman
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Ariel D Friel
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | | | - Henry J Sun
- Desert Research Institute, Las Vegas, Nevada, USA
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Jay Nadeau
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
- Nevada Institute of Personalized Medicine, Las Vegas, Nevada, USA
| |
Collapse
|
25
|
Duplicated Flagellins in Pseudomonas Divergently Contribute to Motility and Plant Immune Elicitation. Microbiol Spectr 2023; 11:e0362122. [PMID: 36629446 PMCID: PMC9927476 DOI: 10.1128/spectrum.03621-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Flagellins are the main constituents of the flagellar filaments that provide bacterial motility, chemotactic ability, and host immune elicitation ability. Although the functions of flagellins have been extensively studied in bacteria with a single flagellin-encoding gene, the function of multiple flagellin-encoding genes in a single bacterial species is largely unknown. Here, the model plant-growth-promoting bacterium Pseudomonas kilonensis F113 was used to decipher the divergent functions of duplicated flagellins. We demonstrate that the two flagellins (FliC-1 and FliC-2) in 12 Pseudomonas strains, including F113, are evolutionarily distinct. Only the fliC-1 gene but not the fliC-2 gene in strain F113 is responsible for flagellar biogenesis, motility, and plant immune elicitation. The transcriptional expression of fliC-2 was significantly lower than that of fliC-1 in medium and in planta, most likely due to variations in promoter activity. In silico prediction revealed that all fliC-2 genes in the 12 Pseudomonas strains have a poorly conserved promoter motif. Compared to the Flg22-2 epitope (relative to FliC-2), Flg22-1 (relative to FliC-1) induced stronger FLAGELLIN SENSING 2 (FLS2)-mediated microbe-associated molecular pattern-triggered immunity and significantly inhibited plant root growth. A change in the 19th amino acid in Flg22-2 reduced its binding affinity to the FLS2/brassinosteroid insensitive 1-associated kinase 1 complex. Also, Flg22-2 epitopes in the other 11 Pseudomonas strains were presumed to have low binding affinity due to the same change in the 19th amino acid. These findings suggest that Pseudomonas has evolved duplicate flagellins, with only FliC-1 contributing to motility and plant immune elicitation. IMPORTANCE Flagellins have emerged as important microbial patterns. This work focuses on flagellin duplication in some plant-associated Pseudomonas. Our findings on the divergence of duplicated flagellins provide a conceptual framework for better understanding the functional determinant flagellin and its peptide in multiple-flagellin plant-growth-promoting rhizobacteria.
Collapse
|
26
|
Takada H, Kijima K, Ishiguro A, Ishihama A, Shimada T. Genomic SELEX Reveals Pervasive Role of the Flagella Master Regulator FlhDC in Carbon Metabolism. Int J Mol Sci 2023; 24:3696. [PMID: 36835109 PMCID: PMC9962212 DOI: 10.3390/ijms24043696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Flagella are vital bacterial organs that allow microorganisms to move to favorable environments. However, their construction and operation consume a large amount of energy. The master regulator FlhDC mediates all flagellum-forming genes in E. coli through a transcriptional regulatory cascade, the details of which remain elusive. In this study, we attempted to uncover a direct set of target genes in vitro using gSELEX-chip screening to re-examine the role of FlhDC in the entire E. coli genome regulatory network. We identified novel target genes involved in the sugar utilization phosphotransferase system, sugar catabolic pathway of glycolysis, and other carbon source metabolic pathways in addition to the known flagella formation target genes. Examining FlhDC transcriptional regulation in vitro and in vivo and its effects on sugar consumption and cell growth suggested that FlhDC activates these new targets. Based on these results, we proposed that the flagella master transcriptional regulator FlhDC acts in the activation of a set of flagella-forming genes, sugar utilization, and carbon source catabolic pathways to provide coordinated regulation between flagella formation, operation and energy production.
Collapse
Grants
- 22K06184 Ministry of Education, Culture, Sports, Science and Technology
- 18310133 Ministry of Education, Culture, Sports, Science and Technology
- 25430173 Ministry of Education, Culture, Sports, Science and Technology
- 15K18676 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Hiraku Takada
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-0003, Japan
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Kaede Kijima
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Akira Ishiguro
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
27
|
Tang C, Li J, Shen Y, Liu M, Liu H, Liu H, Xun L, Xia Y. A sulfide-sensor and a sulfane sulfur-sensor collectively regulate sulfur-oxidation for feather degradation by Bacillus licheniformis. Commun Biol 2023; 6:167. [PMID: 36765168 PMCID: PMC9918477 DOI: 10.1038/s42003-023-04538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Bacillus licheniformis MW3 degrades bird feathers. Feather keratin is rich in cysteine, which is metabolized to produce hazardous sulfide and sulfane sulfur. A challenge to B. licheniformis MW3 growing on feathers is to detoxify them. Here we identified a gene cluster in B. licheniformis MW3 to deal with these toxicity. The cluster contains 11 genes: the first gene yrkD encodes a repressor, the 8th and 9th genes nreB and nreC encode a two-component regulatory system, and the 10th and 11th genes encode sulfide: quinone reductase (SQR) and persulfide oxygenase (PDO). SQR and PDO collectively oxidize sulfide and sulfane sulfur to sulfite. YrkD sensed sulfane sulfur to derepress the 11 genes. The NreBC system sensed sulfide and further amplified the transcription of sqr and pdo. The two regulatory systems synergistically controlled the expression of the gene cluster, which was required for the bacterium to grow on feather. The findings highlight the necessity of removing sulfide and sulfane sulfur during feather degradation and may help with bioremediation of feather waste and sulfide pollution.
Collapse
Affiliation(s)
- Chao Tang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Jingjing Li
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China ,grid.10388.320000 0001 2240 3300Present Address: Institut für Mikrobiologie & Biotechnologie of Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Yuemeng Shen
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Menghui Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Honglei Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Huaiwei Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China. .,School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520, USA.
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
28
|
Tan A, Alsenani Q, Lanz M, Birchall C, Drage LKL, Picton D, Mowbray C, Ali A, Harding C, Pickard RS, Hall J, Aldridge PD. Evasion of toll-like receptor recognition by Escherichia coli is mediated via population level regulation of flagellin production. Front Microbiol 2023; 14:1093922. [PMID: 37032848 PMCID: PMC10078357 DOI: 10.3389/fmicb.2023.1093922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Uropathogenic Escherichia coli is a major cause of urinary tract infections. Analysis of the innate immune response in immortalized urothelial cells suggests that the bacterial flagellar subunit, flagellin, is key in inducing host defenses. A panel of 48 clinical uro-associated E. coli isolates recovered from either cystitis, pyelonephritis asymptomatic bacteriuria (ABU) or UTI-associated bacteraemia infections were characterized for motility and their ability to induce an innate response in urothelial cells stably transfected with a NF-κB luciferase reporter. Thirty-two isolates (67%) were identified as motile with strains recovered from cystitis patients exhibiting an uneven motility distribution pattern; seven of the cystitis isolates were associated with a > 5-fold increase in NF-κB signaling. To explore whether the NF-κB signaling response reflected antigenic variation, flagellin was purified from 14 different isolates. Purified flagellin filaments generated comparable NF-κB signaling responses, irrespective of either the source of the isolate or H-serotype. These data argued against any variability between isolates being related to flagellin itself. Investigations also argued that neither TLR4 dependent recognition of bacterial lipopolysaccharide nor growth fitness of the isolates played key roles in leading to the variable host response. To determine the roles, if any, of flagellar abundance in inducing these variable responses, flagellar hook numbers of a range of cystitis and ABU isolates were quantified. Images suggested that up to 60% of the isolate population exhibited flagella with the numbers averaging between 1 and 2 flagella per bacterial cell. These data suggest that selective pressures exist in the urinary tract that allow uro-associated E. coli strains to maintain motility, but exploit population heterogeneity, which together function to prevent host TLR5 recognition and bacterial killing.
Collapse
Affiliation(s)
- Aaron Tan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Qusai Alsenani
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marcello Lanz
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher Birchall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lauren K. L. Drage
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Picton
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine Mowbray
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ased Ali
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher Harding
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Urology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert S. Pickard
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Urology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Judith Hall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Judith Hall,
| | - Phillip D. Aldridge
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Phillip D. Aldridge,
| |
Collapse
|
29
|
Tang Y, Wang Y, Yang Q, Zhang Y, Wu Y, Yang Y, Mei M, He M, Wang X, Yang S. Molecular mechanism of enhanced ethanol tolerance associated with hfq overexpression in Zymomonas mobilis. Front Bioeng Biotechnol 2022; 10:1098021. [PMID: 36588936 PMCID: PMC9797736 DOI: 10.3389/fbioe.2022.1098021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Zymomonas mobilis is a promising microorganism for industrial bioethanol production. However, ethanol produced during fermentation is toxic to Z. mobilis and affects its growth and bioethanol production. Although several reports demonstrated that the RNA-binding protein Hfq in Z. mobilis contributes to the tolerance against multiple lignocellulosic hydrolysate inhibitors, the role of Hfq on ethanol tolerance has not been investigated. In this study, hfq in Z. mobilis was either deleted or overexpressed and their effects on cell growth and ethanol tolerance were examined. Our results demonstrated that hfq overexpression improved ethanol tolerance of Z. mobilis, which is probably due to energy saving by downregulating flagellar biosynthesis and heat stress response proteins, as well as reducing the reactive oxygen species induced by ethanol stress via upregulating the sulfate assimilation and cysteine biosynthesis. To explore proteins potentially interacted with Hfq, the TEV protease mediated Yeast Endoplasmic Reticulum Sequestration Screening system (YESS) was established in Z. mobilis. YESS results suggested that Hfq may modulate the cytoplasmic heat shock response by interacting with the heat shock proteins DnaK and DnaJ to deal with the ethanol inhibition. This study thus not only revealed the underlying mechanism of enhanced ethanol tolerance by hfq overexpression, but also provided an alternative approach to investigate protein-protein interactions in Z. mobilis.
Collapse
Affiliation(s)
- Ying Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Yi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Qing Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Youpeng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Yalun Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Ministry of Agriculture, Chengdu, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China,*Correspondence: Xia Wang, ; Shihui Yang,
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China,*Correspondence: Xia Wang, ; Shihui Yang,
| |
Collapse
|
30
|
The Assembly of Flagella in Enteropathogenic Escherichia coli Requires the Presence of a Functional Type III Secretion System. Int J Mol Sci 2022; 23:ijms232213705. [PMID: 36430181 PMCID: PMC9694695 DOI: 10.3390/ijms232213705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In enteropathogenic Escherichia coli (EPEC), the production of flagella and the type III secretion system (T3SS) is activated in the presence of host cultured epithelial cells. The goal of this study was to investigate the relationship between expression of flagella and the T3SS. Mutants deficient in assembling T3SS basal and translocon components (ΔespA, ΔespB, ΔespD, ΔescC, ΔescN, and ΔescV), and in secreting effector molecules (ΔsepD and ΔsepL) were tested for flagella production under several growth conditions. The ΔespA mutant did not produce flagella in any condition tested, although fliC was transcribed. The remaining mutants produced different levels of flagella upon growth in LB or in the presence of cells but were significantly diminished in flagella production after growth in Dulbecco's minimal essential medium. We also investigated the role of virulence and global regulator genes in expression of flagella. The ΔqseB and ΔqseC mutants produced abundant flagella only when growing in LB and in the presence of HeLa cells, indicating that QseB and QseC act as negative regulators of fliC transcription. The ΔgrlR, ΔperA, Δler, Δhns, and Δfis mutants produced low levels of flagella, suggesting these regulators are activators of fliC expression. These data suggest that the presence of an intact T3SS is required for assembly of flagella highlighting the existence in EPEC of a cross-talk between these two virulence-associated T3SSs.
Collapse
|
31
|
Favate JS, Liang S, Cope AL, Yadavalli SS, Shah P. The landscape of transcriptional and translational changes over 22 years of bacterial adaptation. eLife 2022; 11:e81979. [PMID: 36214449 PMCID: PMC9645810 DOI: 10.7554/elife.81979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022] Open
Abstract
Organisms can adapt to an environment by taking multiple mutational paths. This redundancy at the genetic level, where many mutations have similar phenotypic and fitness effects, can make untangling the molecular mechanisms of complex adaptations difficult. Here, we use the Escherichia coli long-term evolution experiment (LTEE) as a model to address this challenge. To understand how different genomic changes could lead to parallel fitness gains, we characterize the landscape of transcriptional and translational changes across 12 replicate populations evolving in parallel for 50,000 generations. By quantifying absolute changes in mRNA abundances, we show that not only do all evolved lines have more mRNAs but that this increase in mRNA abundance scales with cell size. We also find that despite few shared mutations at the genetic level, clones from replicate populations in the LTEE are remarkably similar in their gene expression patterns at both the transcriptional and translational levels. Furthermore, we show that the majority of the expression changes are due to changes at the transcriptional level with very few translational changes. Finally, we show how mutations in transcriptional regulators lead to consistent and parallel changes in the expression levels of downstream genes. These results deepen our understanding of the molecular mechanisms underlying complex adaptations and provide insights into the repeatability of evolution.
Collapse
Affiliation(s)
- John S Favate
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Shun Liang
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Alexander L Cope
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Robert Wood Johnson Medical School, Rutgers UniversityNew BrunswickUnited States
| | - Srujana S Yadavalli
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - Premal Shah
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Human Genetics Institute of New Jersey, Rutgers UniversityPiscatawayUnited States
| |
Collapse
|
32
|
Kim HR, Han MS, Eom YB. Anti-bacterial and Anti-biofilm Effects of Equol on Yersinia enterocolitica. Indian J Microbiol 2022; 62:401-410. [PMID: 35974918 PMCID: PMC9375796 DOI: 10.1007/s12088-022-01020-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/02/2022] [Indexed: 12/29/2022] Open
Abstract
Yersinia enterocolitica has clinical significance due to its etiological role in yersiniosis and gastroenteritis. This study was designed to assess anti-bacterial and anti-biofilm effects of equol on Y. enterocolitica via phenotypic and genetic analyses. To determine its anti-bacterial activity, minimum inhibitory concentrations (MICs) of equol against clinically isolated Y. enterocolitica strains were analyzed. Subsequently, it was confirmed that the sub-MIC90 value of equol could inhibit biofilm formation and reduce preformed biofilm. Furthermore, it was found that equol could reduce the expression of biofilm-related (hmsT) gene in Y. enterocolitica. This study also demonstrated that equol not only reduced levels of bacterial motility, but also decreased the expression of a motility-related (flhDC) gene in Y. enterocolitica. XTT [2,3-bis (2-metoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction analysis revealed that equol attenuated cellular metabolic activities in Y. enterocolitica biofilm. Additionally, changes in biomass and cell density in equol-treated biofilms were visualized using a confocal laser scanning microscope. In conclusion, this study suggests that equol is a potential anti-bacterial and anti-biofilm agent to treat Y. enterocolitica.
Collapse
Affiliation(s)
- Hye-Rim Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, Chungcheongnam-do 31538 Republic of Korea
| | - Mi-Suk Han
- Present Address: Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, 22 Soonchunhyang-ro, Sinchang-myeon, Asan-si, Chungcheongnam-do 31538 Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, Chungcheongnam-do 31538 Republic of Korea
- Present Address: Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, 22 Soonchunhyang-ro, Sinchang-myeon, Asan-si, Chungcheongnam-do 31538 Republic of Korea
| |
Collapse
|
33
|
Arakawa K, Yanai J, Watanabe K. Study of the Ca2+-dependent gene expression of EuPrt, an extracellular metalloprotease produced by the psychro-tolerant bacterium Exiguobacterium undae Su-1. Biosci Biotechnol Biochem 2022; 86:1308-1317. [PMID: 35776951 DOI: 10.1093/bbb/zbac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022]
Abstract
The effect of a Ca2+ ion on the gene expression of an on-demand type of metalloprotease from psychrotrophic Exiguobacterium undae Su-1 (EuPrt) was studied. We first established a modified mM9 medium for strain Su-1 to examine its effect in more detail. Then, when the strain was cultured in mM9 medium and 1.0 mM CaCl2 was added, we detected the mature EuPrt and its precursor proteins via Western blotting analysis and found the relative protease activity and its transcription increased by 50-fold and 7-fold, respectively, at the peak. Furthermore, the intracellular concentration of Ca2+ ions was analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES) with other metal ions along the growth of strain Su-1. The intracellular concentration of Ca2+ ion was found to increase as much as 3-fold in response to the addition of an extracellular Ca2+ ions, indicating that euPrt gene expression is regulated by sensing its intracellular concentration.
Collapse
Affiliation(s)
- Kiyoaki Arakawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo, Kyoto, Japan
| | - Junta Yanai
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo, Kyoto, Japan
| | - Kunihiko Watanabe
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo, Kyoto, Japan
| |
Collapse
|
34
|
Gupta V, Shekhawat SS, Kulshreshtha NM, Gupta AB. A systematic review on chlorine tolerance among bacteria and standardization of their assessment protocol in wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:261-291. [PMID: 35906907 DOI: 10.2166/wst.2022.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Though chlorine is a cost-effective disinfectant for water and wastewaters, the bacteria surviving after chlorination pose serious public health and environmental problems. This review critically assesses the mechanism of chlorine disinfection as described by various researchers; factors affecting chlorination efficacy; and the re-growth potential of microbial contaminations in treated wastewater post chlorination to arrive at meaningful doses for ensuring health safety. Literature analysis shows procedural inconsistencies in the assessment of chlorine tolerant bacteria, making it extremely difficult to compare the tolerance characteristics of different reported tolerant bacteria. A comparison of logarithmic reduction after chlorination and the concentration-time values for prominent pathogens led to the generation of a standard protocol for the assessment of chlorine tolerance. The factors that need to be critically monitored include applied chlorine doses, contact time, determination of chlorine demands of the medium, and the consideration of bacterial counts immediately after chlorination and in post chlorinated samples (regrowth). The protocol devised here appropriately assesses the chlorine-tolerant bacteria and urges the scientific community to report the regrowth characteristics as well. This would increase the confidence in data interpretation that can provide a better understanding of chlorine tolerance in bacteria and aid in formulating strategies for effective chlorination.
Collapse
Affiliation(s)
- Vinayak Gupta
- Alumnus, Department of Civil and Environmental Engineering, National University of Singapore, Singapore; School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Sandeep Singh Shekhawat
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail: ; School of Life and Basic Sciences, SIILAS Campus, Jaipur National University Jaipur, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| |
Collapse
|
35
|
Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. Int J Mol Sci 2022; 23:ijms23137084. [PMID: 35806089 PMCID: PMC9266447 DOI: 10.3390/ijms23137084] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities in the biosphere. As viruses that solely infect bacteria, phages have myriad healthcare and agricultural applications including phage therapy and antibacterial treatments in the foodservice industry. Phage therapy has been explored since the turn of the twentieth century but was no longer prioritized following the invention of antibiotics. As we approach a post-antibiotic society, phage therapy research has experienced a significant resurgence for the use of phages against antibiotic-resistant bacteria, a growing concern in modern medicine. Phages are extraordinarily diverse, as are their host receptor targets. Flagellotropic (flagellum-dependent) phages begin their infection cycle by attaching to the flagellum of their motile host, although the later stages of the infection process of most of these phages remain elusive. Flagella are helical appendages required for swimming and swarming motility and are also of great importance for virulence in many pathogenic bacteria of clinical relevance. Not only is bacterial motility itself frequently important for virulence, as it allows pathogenic bacteria to move toward their host and find nutrients more effectively, but flagella can also serve additional functions including mediating bacterial adhesion to surfaces. Flagella are also a potent antigen recognized by the human immune system. Phages utilizing the flagellum for infections are of particular interest due to the unique evolutionary tradeoff they force upon their hosts: by downregulating or abolishing motility to escape infection by a flagellotropic phage, a pathogenic bacterium would also likely attenuate its virulence. This factor may lead to flagellotropic phages becoming especially potent antibacterial agents. This review outlines past, present, and future research of flagellotropic phages, including their molecular mechanisms of infection and potential future applications.
Collapse
|
36
|
Chen Y, Lv M, Liang Z, Liu Z, Zhou J, Zhang L. Cyclic di-GMP modulates sessile-motile phenotypes and virulence in Dickeya oryzae via two PilZ domain receptors. MOLECULAR PLANT PATHOLOGY 2022; 23:870-884. [PMID: 35254732 PMCID: PMC9104268 DOI: 10.1111/mpp.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 05/03/2023]
Abstract
Dickeya oryzae is a bacterial pathogen causing the severe rice stem rot disease in China and other rice-growing countries. We showed recently that the universal bacterial second messenger c-di-GMP plays an important role in modulation of bacterial motility and pathogenicity, but the mechanism of regulation remains unknown. In this study, bioinformatics analysis of the D. oryzae EC1 genome led to the identification of two proteins, YcgR and BcsA, both of which contain a conserved c-di-GMP receptor domain, known as the PilZ-domain. By deleting all the genes encoding c-di-GMP-degrading enzymes in D. oryzae EC1, the resultant mutant 7ΔPDE with high c-di-GMP levels became nonmotile, formed hyperbiofilm, and lost the ability to colonize and invade rice seeds. These phenotypes were partially reversed by deletion of ycgR in the mutant 7ΔPDE, whereas deletion of bcsA only reversed the hyperbiofilm phenotype of mutant 7ΔPDE. Significantly, double deletion of ycgR and bcsA in mutant 7ΔPDE rescued its motility, biofilm formation, and virulence to levels of wild-type EC1. In vitro biochemical experiments and in vivo phenotypic assays further validated that YcgR and BcsA proteins are the receptors for c-di-GMP, which together play a critical role in regulating the c-di-GMP-associated functionality. The findings from this study fill a gap in our understanding of how c-di-GMP modulates bacterial motility and biofilm formation, and provide useful clues for further elucidation of sophisticated virulence regulatory mechanisms in this important plant pathogen.
Collapse
Affiliation(s)
- Yufan Chen
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Mingfa Lv
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Zhibin Liang
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Zhiqing Liu
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Lian‐Hui Zhang
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
37
|
Li Z, Nees M, Bettenbrock K, Rinas U. Is energy excess the initial trigger of carbon overflow metabolism? Transcriptional network response of carbon-limited Escherichia coli to transient carbon excess. Microb Cell Fact 2022; 21:67. [PMID: 35449049 PMCID: PMC9027384 DOI: 10.1186/s12934-022-01787-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022] Open
Abstract
Background Escherichia coli adapted to carbon-limiting conditions is generally geared for energy-efficient carbon utilization. This includes also the efficient utilization of glucose, which serves as a source for cellular building blocks as well as energy. Thus, catabolic and anabolic functions are balanced under these conditions to minimize wasteful carbon utilization. Exposure to glucose excess interferes with the fine-tuned coupling of anabolism and catabolism leading to the so-called carbon overflow metabolism noticeable through acetate formation and eventually growth inhibition. Results Cellular adaptations towards sudden but timely limited carbon excess conditions were analyzed by exposing slow-growing cells in steady state glucose-limited continuous culture to a single glucose pulse. Concentrations of metabolites as well as time-dependent transcriptome alterations were analyzed and a transcriptional network analysis performed to determine the most relevant transcription and sigma factor combinations which govern these adaptations. Down-regulation of genes related to carbon catabolism is observed mainly at the level of substrate uptake and downstream of pyruvate and not in between in the glycolytic pathway. It is mainly accomplished through the reduced activity of CRP-cAMP and through an increased influence of phosphorylated ArcA. The initiated transcriptomic change is directed towards down-regulation of genes, which contribute to active movement, carbon uptake and catabolic carbon processing, in particular to down-regulation of genes which contribute to efficient energy generation. Long-term changes persisting after glucose depletion and consumption of acetete encompassed reduced expression of genes related to active cell movement and enhanced expression of genes related to acid resistance, in particular acid resistance system 2 (GABA shunt) which can be also considered as an inefficient bypass of the TCA cycle. Conclusions Our analysis revealed that the major part of the trancriptomic response towards the glucose pulse is not directed towards enhanced cell proliferation but towards protection against excessive intracellular accumulation of potentially harmful concentration of metabolites including among others energy rich compounds such as ATP. Thus, resources are mainly utilized to cope with “overfeeding” and not for growth including long-lasting changes which may compromise the cells future ability to perform optimally under carbon-limiting conditions (reduced motility and ineffective substrate utilization). Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01787-4.
Collapse
Affiliation(s)
- Zhaopeng Li
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany.,Technical Chemistry - Life Science, Leibniz University of Hannover, Callinstr. 5, 30167, Hannover, Germany
| | - Markus Nees
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Ursula Rinas
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany. .,Technical Chemistry - Life Science, Leibniz University of Hannover, Callinstr. 5, 30167, Hannover, Germany.
| |
Collapse
|
38
|
Avelino-Flores F, Soria-Bustos J, Saldaña-Ahuactzi Z, Martínez-Laguna Y, Yañez-Santos JA, Cedillo-Ramírez ML, Girón JA. The Transcription of Flagella of Enteropathogenic Escherichia coli O127:H6 Is Activated in Response to Environmental and Nutritional Signals. Microorganisms 2022; 10:microorganisms10040792. [PMID: 35456842 PMCID: PMC9032864 DOI: 10.3390/microorganisms10040792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The flagella of enteropathogenic Escherichia coli (EPEC) O127:H6 E2348/69 mediate adherence to host proteins and epithelial cells. What environmental and nutritional signals trigger or down-regulate flagella expression in EPEC are largely unknown. In this study, we analyzed the influence of pH, oxygen tension, cationic and anionic salts (including bile salt), carbon and nitrogen sources, and catecholamines on the expression of the flagellin gene (fliC) of E2348/69. We found that sodium bicarbonate, which has been shown to induce the expression of type III secretion effectors, down-regulated flagella expression, explaining why E2348/69 shows reduced motility and flagellation when growing in Dulbecco’s Minimal Essential Medium (DMEM). Further, growth under a 5% carbon dioxide atmosphere, in DMEM adjusted to pH 8.2, in M9 minimal medium supplemented with 80 mM glucose or sucrose, and in DMEM containing 150 mM sodium chloride, 0.1% sodium deoxycholate, or 30 µM epinephrine significantly enhanced fliC transcription to different levels in comparison to growth in DMEM alone. When EPEC was grown in the presence of HeLa cells or in supernatants of cultured HeLa cells, high levels (4-fold increase) of fliC transcription were detected in comparison to growth in DMEM alone. Our data suggest that nutritional and host signals that EPEC may encounter in the intestinal niche activate fliC expression in order to favor motility and host colonization.
Collapse
Affiliation(s)
- Fabiola Avelino-Flores
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge Soria-Bustos
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca 42160, Mexico;
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| | - Ygnacio Martínez-Laguna
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge A. Yañez-Santos
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - María L. Cedillo-Ramírez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
- Correspondence:
| |
Collapse
|
39
|
Yadav M, Pundir S, Kumari R, Kumar A, Venugopal SJ, Panigrahy R, Tak V, Chunchanur SK, Gautam H, Kapil A, Das B, Sood S, Salve HR, Malhotra S, Kant S, Hari P, Chaudhuri S, Mohapatra S. Virulence gene mutations as a differentiator of clinical phenotypes: insights from community-acquired uropathogenic Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35380532 DOI: 10.1099/mic.0.001161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) remains an important cause of urinary tract infection during pregnancy. Multiple molecular virulence determinants and antibiotic resistant genes facilitate its pathogenesis and virulence phenotype. Hence it is hypothesized that there will be considerable variation in genes among the isolates from symptomatic as well as asymptomatic bacteriuria (ABU) during pregnancy. The aim of this study was to decipher the genetic variation among the two phenotypes. Six different UPEC isolates collected from urine specimens of consecutive pregnant females (five, symptomatic bacteriuria and one, ABU) were tested for their growth kinetics, and biofilm formation. A total of 87 virulence determinants and 56 antibiotic resistance genes were investigated using whole-genome sequencing, to identify putative drives of virulence phenotype. In this analysis, we identified eight different types of fully functional toxin antitoxin (TA) systems [HipAB, YefM-YoeB, YeeU-YeeV (CbtA), YhaV-PrlF, ChpBS, HigAB, YgiUT and HicAB] in the isolates from symptomatic bacteriuria; whereas partially functional TA system with mutations were observed in the asymptomatic one. Isolates of both the groups showed equivalent growth characteristics and biofilm-formation ability. Genes for an iron transport system (Efe UOB system, Fhu system except FhuA) were observed functional among all symptomatic and asymptomatic isolates, however functional mutations were observed in the latter group. Gene YidE was observed predominantly associated with the biofilm formation along with few other genes (BssR, BssS, YjgK, etc.). This study outlines putative critical relevance of specific variations in the genes for the TA system, biofilm formation, cell adhesion and colonization among UPEC isolates from symptomatic and asymptomatic bacteriuria among pregnant women. Further functional genomic study in the same cohort is warranted to establish the pathogenic role of these genes.
Collapse
Affiliation(s)
- Manisha Yadav
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Swati Pundir
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumari
- Department of Obstetrics and Gynaecology, All India Institute of Medical Science, New Delhi, India
| | - Arvind Kumar
- Department of Medicine, All India Institute of Medical Science, New Delhi, India
| | - Shwetha J Venugopal
- Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore, India
| | - Rajashree Panigrahy
- Department of Microbiology, Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Vibhor Tak
- Department of Microbiology, All India Institute of Medical Science, Jodhpur, India
| | - Sneha K Chunchanur
- Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore, India
| | - Hitender Gautam
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Sood
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Harshal Ramesh Salve
- Centre for Community Medicine, All India Institute of Medical Science, New Delhi, India
| | - Sumit Malhotra
- Centre for Community Medicine, All India Institute of Medical Science, New Delhi, India
| | - Shashi Kant
- Centre for Community Medicine, All India Institute of Medical Science, New Delhi, India
| | - Pankaj Hari
- Department of Pediatrics, All India Institute of Medical Science, New Delhi, India
| | - Susmita Chaudhuri
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Sarita Mohapatra
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
40
|
Pan-Genome Analysis of Delftia tsuruhatensis Reveals Important Traits Concerning the Genetic Diversity, Pathogenicity, and Biotechnological Properties of the Species. Microbiol Spectr 2022; 10:e0207221. [PMID: 35230132 PMCID: PMC9045143 DOI: 10.1128/spectrum.02072-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Delftia tsuruhatensis strains have long been known to promote plant growth and biological control. Recently, it has become an emerging opportunistic pathogen in humans. However, the genomic characteristics of the genetic diversity, pathogenicity, and biotechnological properties have not yet been comprehensively investigated. Here, a comparative pan-genome analysis was constructed. The open pan-genome with a large and flexible gene repertoire exhibited a high degree of genetic diversity. The purifying selection was the main force to drive pan-genome evolution. Significant differences were observed in the evolutionary relationship, functional enrichment, and degree of selective pressure between the different components of the pan-genome. A high degree of genetic plasticity was characterized by the determinations of diverse mobile genetic elements (MGEs), massive genomic rearrangement, and horizontal genes. Horizontal gene transfer (HGT) plays an important role in the genetic diversity of this bacterium and the formation of genomic traits. Our results revealed the occurrence of diverse virulence-related elements associated with macromolecular secretion systems, virulence factors associated with multiple nosocomial infections, and antimicrobial resistance, indicating the pathogenic potential. Lateral flagellum, T1SS, T2SS, T6SS, Tad pilus, type IV pilus, and a part of virulence-related genes exhibited general properties, whereas polar flagellum, T4SS, a part of virulence-related genes, and resistance genes presented heterogeneous properties. The pan-genome also harbors abundant genetic traits related to secondary metabolism, carbohydrate active enzymes (CAZymes), and phosphate transporter, indicating rhizosphere adaptation, plant growth promotion, and great potential uses in agriculture and biological control. This study provides comprehensive insights into this uncommon species from the genomic perspective. IMPORTANCED. tsuruhatensis is considered a plant growth-promoting rhizobacterium (PGPR), an organic pollutant degradation strain, and an emerging opportunistic pathogen to the human. However, the genetic diversity, the evolutionary dynamics, and the genetic basis of these remarkable traits are still little known. We constructed a pan-genome analysis for D. tsuruhatensis and revealed extensive genetic diversity and genetic plasticity exhibited by open pan-genome, diverse mobile genetic elements (MGEs), genomic rearrangement, and horizontal genes. Our results highlight that horizontal gene transfer (HGT) and purifying selection are important forces in D. tsuruhatensis genetic evolution. The abundant virulence-related elements associated with macromolecular secretion systems, virulence factors, and antimicrobial resistance could contribute to the pathogenicity of this bacterium. Therefore, clinical microbiologists need to be aware of D. tsuruhatensis as an opportunistic pathogen. The genetic profiles of secondary metabolism, carbohydrate active enzymes (CAZymes), and phosphate transporter could provide insight into the genetic armory of potential applications for agriculture and biological control of D. tsuruhatensis in general.
Collapse
|
41
|
Lee J, Shin E, Yeom JH, Park J, Kim S, Lee M, Lee K. Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium. Microb Pathog 2022; 165:105460. [DOI: 10.1016/j.micpath.2022.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
|
42
|
Choe Y, Lee D, Seong M, Yoon JB, Yang JH, Yang JY, Moon KH, Kang HY. Characterization of Edwardsiella piscicida CK108 flagellin genes and evaluation of their potential as vaccine targets in the zebrafish model. JOURNAL OF FISH DISEASES 2022; 45:249-259. [PMID: 34843109 DOI: 10.1111/jfd.13550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The control of bacterial pathogens, including Edwardsiella piscicida, in the aquaculture industry has high economic importance. This study aimed to identify a potential live vaccine candidate against E. piscicida infection to minimize the side effects and elicit immunity in the host. This study evaluated the virulence factors of E. piscicida CK108, with a special focus on the flagella. E. piscicida has two important homologous flagellin genes, namely flagellin-associated protein (fap) and flagellin domain-containing protein (fdp). CK226 (Δfap), CK247 (Δfdp) and CK248 (Δfap, fdp) mutant strains were constructed. Both CK226 and CK247 displayed decreased length and thickness of flagellar filaments, resulting in reduced bacterial swimming motility, while CK248 was non-motile as it lacked flagella. The loss of flagella and decreased motility was expected to decrease the pathogenicity of CK248. However, the median lethal dose (LD50 ) of CK248 against zebrafish was lower than those of the wild-type, CK226 and CK247 strains. The protective immunity and cytokine gene expression levels in the CK248-infected zebrafish were lower than those in the wild type-infected zebrafish. In conclusion, Fap and Fdp are essential for flagella formation and motility, and for stimulating fish immune response, which can be utilized as a potential adjuvants for E. piscicida vaccination.
Collapse
Affiliation(s)
- Yunjeong Choe
- Department of Microbiology, Pusan National University, Busan, Korea
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Donghee Lee
- Department of Microbiology, Pusan National University, Busan, Korea
- Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, USA
| | - Minji Seong
- Department of Microbiology, Pusan National University, Busan, Korea
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
- Mucosal Immunology Lab., Department of Biological Sciences, Pusan National University, Busan, Korea
| | - Ju Bin Yoon
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime & Ocean University, Busan, Korea
- Lab. of Marine Microbiology, Division of Convergence on Marine Science, Korea Maritime & Ocean University, Busan, Korea
| | - Jun Hyeok Yang
- Lab. of Marine Microbiology, Division of Convergence on Marine Science, Korea Maritime & Ocean University, Busan, Korea
- Department of Marine Bioscience and Environment, Korea Maritime & Ocean University, Busan, Korea
| | - Jin-Young Yang
- Mucosal Immunology Lab., Department of Biological Sciences, Pusan National University, Busan, Korea
| | - Ki Hwan Moon
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime & Ocean University, Busan, Korea
- Lab. of Marine Microbiology, Division of Convergence on Marine Science, Korea Maritime & Ocean University, Busan, Korea
- Department of Marine Bioscience and Environment, Korea Maritime & Ocean University, Busan, Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan, Korea
| |
Collapse
|
43
|
Pareek V, Gupta R, Devineau S, Sivasankaran SK, Bhargava A, Khan MA, Srikumar S, Fanning S, Panwar J. Does Silver in Different Forms Affect Bacterial Susceptibility and Resistance? A Mechanistic Perspective. ACS APPLIED BIO MATERIALS 2022; 5:801-817. [PMID: 35073697 DOI: 10.1021/acsabm.1c01179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The exceptional increase in antibiotic resistance in past decades motivated the scientific community to use silver as a potential antibacterial agent. However, due to its unknown antibacterial mechanism and the pattern of bacterial resistance to silver species, it has not been revolutionized in the health sector. This study deciphers mechanistic aspects of silver species, i.e., ions and lysozyme-coated silver nanoparticles (L-Ag NPs), against E. coli K12 through RNA sequencing analysis. The obtained results support the reservoir nature of nanoparticles for the controlled release of silver ions into bacteria. This study differentiates between the antibacterial mechanism of silver species by discussing the pathway of their entry in bacteria, sequence of events inside cells, and response of bacteria to overcome silver stress. Controlled release of ions from L-Ag NPs not only reduces bacterial growth but also reduces the likelihood of resistance development. Conversely, direct exposure of silver ions, leads to rapid activation of the bacterial defense system leading to development of resistance against silver ions, like the well-known antibiotic resistance problem. These findings provide valuable insight on the mechanism of silver resistance and antibacterial strategies deployed by E. coli K12, which could be a potential target for the generation of aim-based and effective nanoantibiotics.
Collapse
Affiliation(s)
- Vikram Pareek
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India.,School of Public Health, Physiotherapy and Sports Science, Centre for Food Safety, Science Centre South, University College Dublin, Dublin 4, Ireland
| | - Rinki Gupta
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India
| | | | | | - Arpit Bhargava
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India
| | - Mohd Azeem Khan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India
| | - Shabrinath Srikumar
- Department of Food, Nutrition and Health, College of Food and Agriculture, UAE University, Al Ain 15551, UAE
| | - Séamus Fanning
- School of Public Health, Physiotherapy and Sports Science, Centre for Food Safety, Science Centre South, University College Dublin, Dublin 4, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India
| |
Collapse
|
44
|
Li Y, Yan J, Guo X, Wang X, Liu F, Cao B. The global regulators ArcA and CytR collaboratively modulate Vibrio cholerae motility. BMC Microbiol 2022; 22:22. [PMID: 35021992 PMCID: PMC8753867 DOI: 10.1186/s12866-022-02435-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Vibrio cholerae, a Gram-negative bacterium, is highly motile owing to the presence of a single polar flagellum. The global anaerobiosis response regulator, ArcA regulates the expression of virulence factors and enhance biofilm formation in V. cholerae. However, the function of ArcA for the motility of V. cholerae is yet to be elucidated. CytR, which represses nucleoside uptake and catabolism, is known to play a chief role in V. cholerae pathogenesis and flagellar synthesis but the mechanism that CytR influences motility is unclear.
Results
In this study, we found that the ΔarcA mutant strain exhibited higher motility than the WT strain due to ArcA directly repressed flrA expression. We further discovered that CytR directly enhanced fliK expression, which explained why the ΔcytR mutant strain was retarded in motility. On the other hand, cytR was a direct ArcA target and cytR expression was directly repressed by ArcA. As expected, cytR expression was down-regulated.
Conclusions
Overall, ArcA plays a critical role in V. cholerae motility by regulating flrA expression directly and fliK indirectly in the manner of cytR.
Collapse
|
45
|
Schröder NCH, Korša A, Wami H, Mantel O, Dobrindt U, Kurtz J. Serial passage in an insect host indicates genetic stability of the human probiotic Escherichia coli Nissle 1917. Evol Med Public Health 2022; 10:71-86. [PMID: 35186295 PMCID: PMC8853844 DOI: 10.1093/emph/eoac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/17/2021] [Indexed: 11/14/2022] Open
Abstract
Background and objectives The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to effectively prevent and alleviate intestinal diseases. Despite the widespread medical application of EcN, we still lack basic knowledge about persistence and evolution of EcN outside the human body. Such knowledge is important also for public health aspects, as in contrast to abiotic therapeutics, probiotics are living organisms that have the potential to evolve. This study made use of experimental evolution of EcN in an insect host, the red flour beetle Tribolium castaneum, and its flour environment. Methodology Using a serial passage approach, we orally introduced EcN to larvae of T.castaneum as a new host, and also propagated it in the flour environment. After eight propagation cycles, we analyzed phenotypic attributes of the passaged replicate EcN lines, their effects on the host in the context of immunity and infection with the entomopathogen Bacillus thuringiensis, and potential genomic changes using WGS of three of the evolved lines. Results We observed weak phenotypic differences between the ancestral EcN and both, beetle and flour passaged EcN lines, in motility and growth at 30°C, but neither any genetic changes, nor the expected increased persistence of the beetle-passaged lines. One of these lines displayed distinct morphological and physiological characteristics. Conclusions and implications Our findings suggest that EcN remains rather stable during serial passage in an insect. Weak phenotypic changes in growth and motility combined with a lack of genetic changes indicate a certain degree of phenotypic plasticity of EcN. Lay Summary For studying adaptation of the human probiotic Escherichia coli strain Nissle 1917, we introduced it to a novel insect host system and its environment using a serial passage approach. After passage, we observed weak phenotypic changes in growth and motility but no mutations or changes in persistence inside the host.
Collapse
Affiliation(s)
- Nicolas C H Schröder
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Ana Korša
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Haleluya Wami
- Institute for Hygiene, UKM Münster, Münster, Germany
| | - Olena Mantel
- Institute for Hygiene, UKM Münster, Münster, Germany
| | | | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
46
|
Coloma-Rivero RF, Flores-Concha M, Molina RE, Soto-Shara R, Cartes Á, Oñate ÁA. Brucella and Its Hidden Flagellar System. Microorganisms 2021; 10:83. [PMID: 35056531 PMCID: PMC8781033 DOI: 10.3390/microorganisms10010083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella, a Gram-negative bacterium with a high infective capacity and a wide spectrum of hosts in the animal world, is found in terrestrial and marine mammals, as well as amphibians. This broad spectrum of hosts is closely related to the non-classical virulence factors that allow this pathogen to establish its replicative niche, colonizing epithelial and immune system cells, evading the host's defenses and defensive response. While motility is the primary role of the flagellum in most bacteria, in Brucella, the flagellum is involved in virulence, infectivity, cell growth, and biofilm formation, all of which are very important facts in a bacterium that to date has been described as a non-motile organism. Evidence of the expression of these flagellar proteins that are present in Brucella makes it possible to hypothesize certain evolutionary aspects as to where a free-living bacterium eventually acquired genetic material from environmental microorganisms, including flagellar genes, conferring on it the ability to reach other hosts (mammals), and, under selective pressure from the environment, can express these genes, helping it to evade the immune response. This review summarizes relevant aspects of the presence of flagellar proteins and puts into context their relevance in certain functions associated with the infective process. The study of these flagellar genes gives the genus Brucella a very high infectious versatility, placing it among the main organisms in urgent need of study, as it is linked to human health by direct contact with farm animals and by eventual transmission to the general population, where flagellar genes and proteins are of great relevance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ángel A. Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4030000, Chile; (R.F.C.-R.); (M.F.-C.); (R.E.M.); (R.S.-S.); (Á.C.)
| |
Collapse
|
47
|
Li B, Hou C, Ju X, Feng Y, Ye ZQ, Xiao Y, Gu M, Fu C, Wei C, You C. Gain of Spontaneous clpX Mutations Boosting Motility via Adaption to Environments in Escherichia coli. Front Bioeng Biotechnol 2021; 9:772397. [PMID: 34900963 PMCID: PMC8652233 DOI: 10.3389/fbioe.2021.772397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Motility is finely regulated and is crucial to bacterial processes including colonization and biofilm formation. There is a trade-off between motility and growth in bacteria with molecular mechanisms not fully understood. Hypermotile Escherichia coli could be isolated by evolving non-motile cells on soft agar plates. Most of the isolates carried mutations located upstream of the flhDC promoter region, which upregulate the transcriptional expression of the master regulator of the flagellum biosynthesis, FlhDC. Here, we identified that spontaneous mutations in clpX boosted the motility of E. coli largely, inducing several folds of changes in swimming speed. Among the mutations identified, we further elucidated the molecular mechanism underlying the ClpXV78F mutation on the regulation of E. coli motility. We found that the V78F mutation affected ATP binding to ClpX, resulting in the inability of the mutated ClpXP protease to degrade FlhD as indicated by both structure modeling and in vitro protein degradation assays. Moreover, our proteomic data indicated that the ClpXV78F mutation elevated the stability of known ClpXP targets to various degrees with FlhD as one of the most affected. In addition, the specific tag at the C-terminus of FlhD being recognized for ClpXP degradation was identified. Finally, our transcriptome data characterized that the enhanced expression of the motility genes in the ClpXV78F mutations was intrinsically accompanied by the reduced expression of stress resistance genes relating to the reduced fitness of the hypermotile strains. A similar pattern was observed for previously isolated hypermotile E. coli strains showing high expression of flhDC at the transcriptional level. Hence, clpX appears to be a hot locus comparable to the upstream of the flhDC promoter region evolved to boost bacterial motility, and our finding provides insight into the reduced fitness of the hypermotile bacteria.
Collapse
Affiliation(s)
- Bingyu Li
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Health Science Center, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, China.,Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chaofan Hou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, China
| | - Xian Ju
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, China
| | - Yong Feng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, China
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yunzhu Xiao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, China
| | - Mingyao Gu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chaoliang Wei
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Health Science Center, Shenzhen University, Shenzhen, China
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, China
| |
Collapse
|
48
|
Homma M, Nishikino T, Kojima S. Achievements in bacterial flagellar research with focus on Vibrio species. Microbiol Immunol 2021; 66:75-95. [PMID: 34842307 DOI: 10.1111/1348-0421.12954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022]
Abstract
In 1980's, the most genes involved in the bacterial flagellar function and formation had been isolated though many of their functions or roles were not clarified. Bacterial flagella are the primary locomotive organ and are not necessary for growing in vitro but are probably essential for living in natural condition and are involved in the pathogenicity. In vitro, the flagella-deficient strains can grow at rates similar to wild-type strains. More than 50 genes are responsible for flagellar function, and the flagellum is constructed by more than 20 structural proteins. The maintenance cost of flagellum is high as several genes are required for its development. The fact that it evolved as a motor organ even with such the high cost shows that the motility is indispensable to survive under the harsh environment of Earth. In this review, we focus on flagella-related research conducted by the authors for about 40 years and flagellar research focused on Vibrio spp. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University
| | | | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
49
|
Seco EM, Fernández LÁ. Efficient markerless integration of genes in the chromosome of probiotic E. coli Nissle 1917 by bacterial conjugation. Microb Biotechnol 2021; 15:1374-1391. [PMID: 34755474 PMCID: PMC9049610 DOI: 10.1111/1751-7915.13967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 01/30/2023] Open
Abstract
The probiotic strain Escherichia coli Nissle 1917 (EcN) is a common bacterial chassis in synthetic biology developments for therapeutic applications given its long track record of safe administration in humans. Chromosomal integration of the genes of interest (GOIs) in the engineered bacterium offers significant advantages in genetic stability and to control gene dose, but common methodologies relying on the transformation of EcN are inefficient. In this work, we implement in EcN the use of bacterial conjugation in combination with markerless genome engineering to efficiently insert multiple GOIs at different loci of EcN chromosome, leaving no antibiotic resistance genes, vector sequences or scars in the modified bacterium. The resolution of cointegrants that leads to markerless insertion of the GOIs requires expression of I-SceI endonuclease and its efficiency is enhanced by λ Red proteins. We show the potential of this strategy by integrating different genes encoding fluorescent and bioluminescent reporters (i.e. GFP, mKate2, luxCDABE) both individually and sequentially. We also demonstrate its application for gene deletions in EcN (ΔflhDC) and to replace the endogenous regulation of chromosomal locus (i.e. flhDC) by heterologous regulatory elements (e.g. tetR-Ptet) in order to have an ectopic control of gene expression in EcN with an external inducer to alter bacterial behaviour (e.g. flagellar motility). Whole-genome sequencing confirmed the introduction of the designed modifications without off-target alterations in the genome. This straightforward approach accelerates the generation of multiple modifications in EcN chromosome for the generation of living bacterial therapeutics.
Collapse
Affiliation(s)
- Elena M Seco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Campus UAM Cantoblanco, Madrid, 28049, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Campus UAM Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
50
|
Alakavuklar MA, Heckel BC, Stoner AM, Stembel JA, Fuqua C. Motility control through an anti-activation mechanism in Agrobacterium tumefaciens. Mol Microbiol 2021; 116:1281-1297. [PMID: 34581467 DOI: 10.1111/mmi.14823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022]
Abstract
Many bacteria can migrate from a free-living, planktonic state to an attached, biofilm existence. One factor regulating this transition in the facultative plant pathogen Agrobacterium tumefaciens is the ExoR-ChvG-ChvI system. Periplasmic ExoR regulates the activity of the ChvG-ChvI two-component system in response to environmental stress, most notably low pH. ChvI impacts hundreds of genes, including those required for type VI secretion, virulence, biofilm formation, and flagellar motility. Previous studies revealed that activated ChvG-ChvI represses expression of most of class II and class III flagellar biogenesis genes, but not the master motility regulator genes visN, visR, and rem. In this study, we characterized the integration of the ExoR-ChvG-ChvI and VisNR-Rem pathways. We isolated motile suppressors of the non-motile ΔexoR mutant and thereby identified the previously unannotated mirA gene encoding a 76 amino acid protein. We report that the MirA protein interacts directly with the Rem DNA-binding domain, sequestering Rem and preventing motility gene activation. The ChvG-ChvI pathway activates mirA expression and elevated mirA is sufficient to block motility. This study reveals how the ExoR-ChvG-ChvI pathway prevents flagellar motility in A. tumefaciens. MirA is also conserved among other members of the Rhizobiales suggesting similar mechanisms of motility regulation.
Collapse
Affiliation(s)
| | - Brynn C Heckel
- Indiana University, Bloomington, Indiana, USA.,California State University, Dominguez Hills, Carson, California, USA
| | - Ari M Stoner
- Indiana University, Bloomington, Indiana, USA.,Indiana University Medical School, Indianapolis, Indiana, USA
| | - Joseph A Stembel
- Indiana University, Bloomington, Indiana, USA.,University of Washington, Seattle, Washington, USA
| | - Clay Fuqua
- Indiana University, Bloomington, Indiana, USA
| |
Collapse
|