1
|
Cordeiro-Araújo MK, Chia MA, Lorenzi AS, Bittencourt-Oliveira MDC. Assessing the response lettuce and arugula to MC-LR-contaminated water irrigation: photosynthetic changes and antioxidant defense. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56578-56592. [PMID: 39277832 DOI: 10.1007/s11356-024-34959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Irrigation of crops with cyanotoxin-contaminated water poses a significant risk to human health. The direct phytotoxic effects of microcystin-LR (MC-LR), one of the most toxic and prevalent microcystin variants in water bodies, can induce physiological stress and hinder crop development and production. This study investigated the impact of environmentally relevant concentrations of MC-LR (1 to 10 µg L-1) on photosynthetic parameters and antioxidant response of lettuce (Lactuca sativa L.) and arugula (Eruca sativa L.) following irrigation with contaminated water. During the 15-day experiment, lettuce and arugula were exposed to various concentrations of MC-LR, and their photosynthetic rates, stomatal conductance, leaf tissue transpiration, and intercellular CO2 concentrations were measured using an infrared gas analyzer. These results suggest that the influence of MC-LR on gas exchange in crops is concentration-dependent, with notable disruptions during exposure and recovery tendency during detoxification. Antioxidant response analysis revealed that glutathione S-transferase (GST) and superoxide dismutase (SOD) activities were upregulated during the exposure phase in the presence of MC-LR. However, GST activity decreased during the detoxification phase in both crops, although the effects of the toxin at 10 µg L-1 were still evident in arugula. The internal H2O2 concentration in the crops increased after exposure to MC-LR, showing a time- and concentration-dependent pattern, with an increase during the exposure phase (days 1-7) and a decrease during the detoxification phase (days 8-15). Irrigation of lettuce and arugula with MC-LR-contaminated water affected various aspects of the photosynthetic apparatus and antioxidant responses, which could influence the general health and productivity of exposed crops at environmentally relevant microcystin concentrations. Furthermore, investigation of additional vegetable species and long-term MC-LR exposure can be crucial for understanding the extent of contamination risk, detoxification mechanisms, and other parameters affecting these crops.
Collapse
Affiliation(s)
- Micheline Kézia Cordeiro-Araújo
- Department of Cell Biology, Postgraduate Program in Microbial Biology, University of Brasília - UnB, Brasília, DF, 70910-900, Brazil.
- Cyanobacteria Laboratory, Department of Biological Sciences, School of Agriculture (Escola Superior de Agricultura Luiz de Queiroz), University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil.
| | - Mathias Ahii Chia
- Cyanobacteria Laboratory, Department of Biological Sciences, School of Agriculture (Escola Superior de Agricultura Luiz de Queiroz), University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
- Department of Ecology, University of Brasilia - UnB, Brasília, DF, 70910-900, Brazil
- Department of Botany, Ahmadu Bello University, Zaria, 810001, Kaduna, Nigeria
| | - Adriana Sturion Lorenzi
- Cyanobacteria Laboratory, Department of Biological Sciences, School of Agriculture (Escola Superior de Agricultura Luiz de Queiroz), University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
| | - Maria do Carmo Bittencourt-Oliveira
- Cyanobacteria Laboratory, Department of Biological Sciences, School of Agriculture (Escola Superior de Agricultura Luiz de Queiroz), University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
2
|
Lin W, Hu F, Liu F, Liao L, Ling L, Li L, Yang J, Yang P. Microcystin-LR and polystyrene microplastics jointly lead to hepatic histopathological damage and antioxidant dysfunction in male zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123789. [PMID: 38490526 DOI: 10.1016/j.envpol.2024.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The co-occurrence of cyanobacterial blooms and nano-microplastic pollution in the water is becoming an emerging risk. To assess the combined hepatotoxicity of microcystin-LR (MC-LR) and polystyrene microplastics (PSMPs) on zebrafish (Danio rerio), male adult zebrafish were exposed to single MC-LR (0, 1, 5, 25 μg/L) and a mixture of MC-LR and PSMPs (100 μg/L). After 60 d exposure, the results indicated that PSMPs significantly increased the MC-LR bioaccumulation in the livers in contrast to the single 25 μg/L MC-LR treatment group. Moreover, the severity of hepatic pathological lesions was aggravated in the MC-LR + PSMPs treatment groups, which were mainly characterized by cellular vacuolar degeneration, swollen hepatocytes, and pyknotic nucleus. The ultrastructural changes also proved that PSMPs combined with MC-LR could enhance the swollen mitochondria and dilated endoplasmic reticulum. The biochemical results, including increased malondialdehyde (MDA) and decreased glutathione (GSH), indicated that PSMPs intensified the MC-LR-induced oxidative damage in the combined treatment groups. Concurrently, alterations of sod1 and keap1a mRNA levels also confirmed that PSMPs together with MC-LR jointly lead to enhanced oxidative injury. Our findings demonstrated that PSMPs enhanced the MC-LR bioavailability by acting as a vector and exacerbating the hepatic injuries and antioxidant dysfunction in zebrafish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China
| | - Fen Hu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Fang Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Liao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Ling
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China.
| |
Collapse
|
3
|
Ubero-Pascal N, Aboal M. Cyanobacteria and Macroinvertebrate Relationships in Freshwater Benthic Communities beyond Cytotoxicity. Toxins (Basel) 2024; 16:190. [PMID: 38668615 PMCID: PMC11054157 DOI: 10.3390/toxins16040190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Cyanobacteria are harmful algae that are monitored worldwide to prevent the effects of the toxins that they can produce. Most research efforts have focused on direct or indirect effects on human populations, with a view to gain easy accurate detection and quantification methods, mainly in planktic communities, but with increasing interest shown in benthos. However, cyanobacteria have played a fundamental role from the very beginning in both the development of our planet's biodiversity and the construction of new habitats. These organisms have colonized almost every possible planktic or benthic environment on earth, including the most extreme ones, and display a vast number of adaptations. All this explains why they are the most important or the only phototrophs in some habitats. The negative effects of cyanotoxins on macroinvertebrates have been demonstrated, but usually under conditions that are far from natural, and on forms of exposure, toxin concentration, or composition. The cohabitation of cyanobacteria with most invertebrate groups is long-standing and has probably contributed to the development of detoxification means, which would explain the survival of some species inside cyanobacteria colonies. This review focuses on benthic cyanobacteria, their capacity to produce several types of toxins, and their relationships with benthic macroinvertebrates beyond toxicity.
Collapse
Affiliation(s)
- Nicolás Ubero-Pascal
- Department of Zoology and Physical Anthropology, Faculty of Biology, Espinardo Campus, University of Murcia, E-30100 Murcia, Spain;
| | - Marina Aboal
- Laboratory of Algology, Faculty of Biology, Espinardo Campus, University of Murcia, E-30100 Murcia, Spain
| |
Collapse
|
4
|
Martinez I Quer A, Larsson Y, Johansen A, Arias CA, Carvalho PN. Cyanobacterial blooms in surface waters - Nature-based solutions, cyanotoxins and their biotransformation products. WATER RESEARCH 2024; 251:121122. [PMID: 38219688 DOI: 10.1016/j.watres.2024.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/18/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Cyanobacterial blooms are expected to become more frequent and severe in surface water reservoirs due to climate change and ecosystem degradation. It is an emerging challenge that especially countries relying on surface water supplies will face. Nature-based solutions (NBS) like constructed wetlands and biofilters can be used for cyanotoxin remediation. Both technologies are reviewed and critically assessed for different types of water resources. The available information on cyanotoxins (bio)transformation products (TPs) is reviewed to point out the potential research gaps and to disclose the most reliable enzymatic degradation pathways. Knowledge gaps were found, such as information on the performance of the revised NBS in pilot and full scales, the removal processes covering different cyanotoxins (besides the most widely studied microcystin-LR), and the difficulties for real-world implementation of technologies proposed in the literature. Also, most studies focus on bacterial degradation processes while fungi have been completely overlooked. This review also presents an up-to-date overview of the transformation of cyanotoxins, where degradation product data was compiled in a unified library of 22 metabolites for microcystins (MCs), 7 for cylindrospermopsin (CYN) and 10 for nodularin (NOD), most of them reported only in a single study. Major gaps are the lack of environmentally relevant studies with TPs in pilot and full- scale treatment systems, information on TP's toxicity, as well as limited knowledge of environmentally relevant degradation pathways. NBS have the potential to mitigate cyanotoxins in recreational and irrigation waters, enabling the water-energy-food nexus and avoiding the degradability of the ecosystems.
Collapse
Affiliation(s)
- Alba Martinez I Quer
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark.
| | - Yrsa Larsson
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Carlos A Arias
- WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark; Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus C 8000, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Jiang J, Shi Y, Tian F, Long T, Li X, Ying R. Bioaccumulation of Microcystin-LR and Induced Physio-Biochemical Changes in Rice ( Oryza sativa L.) at Vegetative Stage under Hydroponic Culture Conditions. Toxins (Basel) 2024; 16:82. [PMID: 38393160 PMCID: PMC10892845 DOI: 10.3390/toxins16020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Irrigation with water containing a variety of microcystins (MCs) may pose a potential threat to the normal growth of agricultural plants. To investigate the phytotoxicity of MC-LR at environmental concentrations on rice (Oryza sativa L.), the characteristics of uptake and accumulation in plant tissues, as well as a series of key physio-biochemical process changes in leaves of rice seedlings, were measured at concentrations of 0.10, 1.0, 10.0, and 50.0 μg·L-1 in hydroponic nutrient solutions for 7, 15, 20, and 34 days. Results showed that MC-LR could be detected in rice leaves and roots in exposure groups; however, a significant accumulation trend of MC-LR in plants (BCF > 1) was only found in the 0.10 μg·L-1 group. The time-course study revealed a biphasic response of O2•- levels in rice leaves to the exposure of MC-LR, which could be attributed to the combined effects of the antioxidant system and detoxification reaction in rice. Exposure to 1.0-50.0 μg·L-1 MC-LR resulted in significant depletion of GSH and MDA contents in rice leaves at later exposure times (15-34 days). Low MC-LR concentrations promoted nitric oxide synthase (NOS) activity, whereas high concentrations inhibited NOS activity during the later exposure times. The reduced sucrose synthase (SS) activities in rice exposed to MC-LR for 34 days indicated a decrease in the carbon accumulation ability of plants, and therefore may be directly related to the inhibition of plant growth under MC exposure. These findings indicate that the normal physiological status would be disrupted in terrestrial plants, even under exposure to low concentrations of MC-LR.
Collapse
Affiliation(s)
- Jinlin Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; (J.J.)
| | - Yue Shi
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; (J.J.)
- College of Defense Engineering, Army Engineering University, Nanjing 210007, China
| | - Feng Tian
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; (J.J.)
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; (J.J.)
| | - Xuzhi Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; (J.J.)
| | - Rongrong Ying
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; (J.J.)
| |
Collapse
|
6
|
Kim EJ, Jeon D, Park YJ, Woo H, Eyun SI. Dietary exposure of the water flea Daphnia galeata to microcystin-LR. Anim Cells Syst (Seoul) 2024; 28:25-36. [PMID: 38298818 PMCID: PMC10829830 DOI: 10.1080/19768354.2024.2302529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/01/2024] [Indexed: 02/02/2024] Open
Abstract
Harmful substances like the cyanotoxin microcystin-leucine-arginine (MC-LR) are commonly found in eutrophic freshwater environments, posing risks to aquatic organisms. The water flea, Daphnia, is a well-established model organism for environmental toxicology research. Nevertheless, there is currently insufficient research on the genes that respond to MC-LR in Daphnia galeata. This study aimed to gain insights into the notable genes that react significantly to MC-LR. In this study, we generated an extensive RNA-Seq sequences isolated from the D. galeata HK strain, Han River in Korea. This strain was nourished with a diet of the green microalga Chlorella vulgaris and treated with pure MC-LR at a concentration of 36 ug/L. The transcriptome profile in response to the MC-LR treatment was obtained and 336 differentially expressed genes were subjected to Gene Ontology (GO) and euKaryotic Orthologous Groups of proteins analyses. GO enrichment analysis showed that chemical stimulus, amino sugar metabolic and catabolic process, oxidative stress, and detoxification were highly enriched, in reverse, proteolysis and fucosylation were underpresented. Detoxification process related genes such as peroxidase-like, chorion, and thyroid peroxidase-like were enriched for eliminating or neutralizing MC_LR from an organism's body. Furthermore, functional protein classification revealed an upregulation of lipid and inorganic ion transport processes, while amino acid and carbohydrate transport processes were found to be downregulated. These findings offer insights into how organisms respond to ecotoxic stimuli, providing valuable information for understanding adaptation or defense pathways.
Collapse
Affiliation(s)
- Eun-jeong Kim
- Department of Life Science, Chung-ang University, Seoul, Korea
| | - Donggu Jeon
- Department of Life Science, Chung-ang University, Seoul, Korea
| | - Yeon-jeong Park
- Water Environmental Management Department, Korea Water Resources Corporation (K-water), Daejeon, Korea
| | - Hyunmin Woo
- Department of Life Science, Chung-ang University, Seoul, Korea
| | - Seong-il Eyun
- Department of Life Science, Chung-ang University, Seoul, Korea
| |
Collapse
|
7
|
Vieira LR, Souza T, Farias DF. AOP Report: Glutathione Conjugation Leading to Reproductive Dysfunction via Oxidative Stress. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2519-2528. [PMID: 37849373 DOI: 10.1002/etc.5751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
We propose an adverse outcome pathway (AOP) for reproductive dysfunction via oxidative stress (OS). The AOP was developed based on Organisation for Economic Co-operation and Development (OECD) Guidance Document 184 and on the specific considerations of the OECD users' handbook supplement to the guidance document for developing and assessing AOPs (no. 233). According to the qualitative and quantitative experimental data evaluation, glutathione (GSH) conjugation is the first upstream key event (KE) of this AOP to reproductive dysfunction triggering OS. This event causes depletion of GSH basal levels (KE2 ). Consequently, this drop of free GSH induces an increase of reactive oxygen species (KE3 ) generated by the natural cellular metabolic processes (cellular respiration) of the organism. Increased levels of these reactive species, in turn, induce an increase of lipid peroxidation (KE4 ). This KE consequently leads to a rise in the amount of toxic substances, such as malondialdehyde and hydroxynonenal, which are associated with decreased quality and competence of gamete cell division, consequently impairing fertility (KE5 and adverse outcome). The overall assessment of the general biological plausibility, the empirical support, and the essentiality of KE relationships was considered as high for this AOP. We conclude that GSH conjugation is able to lead to reproductive disorder in fishes and mammals, via OS, but that the amount of stressor needed to trigger the AOP differs between stressors. Environ Toxicol Chem 2023;42:2519-2528. © 2023 SETAC.
Collapse
Affiliation(s)
- Leonardo R Vieira
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | - Terezinha Souza
- Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | - Davi F Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
8
|
Haida M, El Khalloufi F, Tamegart L, Mugani R, Essadki Y, Redouane EM, Azevedo J, Araújo MJ, Campos A, Vasconcelos V, Gamrani H, Oudra B. Tracing the fate of microcystins from irrigation water to food chains: Studies with Fragaria vulgaris and Meriones shawi. Toxicon 2023; 236:107345. [PMID: 37963511 DOI: 10.1016/j.toxicon.2023.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023]
Abstract
Microcystins (MCs) are cyanobacterial toxins that can negatively impact human and animal health. This study investigated the bioaccumulation, transfer, depuration, and health risks of MCs in strawberry plants (Fragaria vulgaris) and Meriones shawi animals. The plants were irrigated with 1, 5, 10, and 20 μg/L MCs for 60 days (bioaccumulation phase) and then with clean water for 30 days (depuration phase). The harvested plants (roots and leaves) were then prepared in an aliquot form and used as feed for Meriones shawi. Liquid chromatography-mass spectrometry (LC/MS/MS) was used to measure MC concentrations in plant and animal tissues. The bioaccumulation of MCs was found to be highest in the roots, followed by leaves, fruits, liver, stomach, and fecal matter. The bioaccumulation factor (BAF) was highest in perlite (8.48), followed by roots (5.01), leaves (1.55), stomach (0.87), and fecal matter (1.18), indicating that the parts with high bioaccumulation factor had high translocation of MCs. The transfer of MCs to animal organs was low, and the daily toxin intake of adult consumers of strawberry fruit irrigated with 1, 5, 10, and 20 μg/L MC did not exceed the WHO-recommended limit of 0.04 μg MC-LR/Kg of bw/day. However, fruits from plants irrigated with 10 and 20 μg/L may pose a moderate health risk to children (25 Kg bw), and Meriones' consumption of leaves may pose a significant health risk. After the depuration phase, MC concentration in perlite, roots, leaves, and fruits decreased, indicating that depuration reduced the danger of MC transmission and bioaccumulation. The study also found that glutathione reductase and glutathione S-transferase activity were essential in the depuration of MCs in the tested plants. The findings suggest that legislation regulating the quality of irrigation water in terms of MC concentrations is necessary to prevent detrimental consequences to crops and human exposure.
Collapse
Affiliation(s)
- Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P: 145, 25000, Khouribga, Morocco
| | - Lahcen Tamegart
- Department of Biology, Faculty of Science, AbdelmalekEssaadi University, Tetouan, Morocco; Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Joana Azevedo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Mário Jorge Araújo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
9
|
Davidović P, Blagojević D, Meriluoto J, Simeunović J, Svirčev Z. Biotests in Cyanobacterial Toxicity Assessment-Efficient Enough or Not? BIOLOGY 2023; 12:biology12050711. [PMID: 37237524 DOI: 10.3390/biology12050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Cyanobacteria are a diverse group of organisms known for producing highly potent cyanotoxins that pose a threat to human, animal, and environmental health. These toxins have varying chemical structures and toxicity mechanisms and several toxin classes can be present simultaneously, making it difficult to assess their toxic effects using physico-chemical methods, even when the producing organism and its abundance are identified. To address these challenges, alternative organisms among aquatic vertebrates and invertebrates are being explored as more assays evolve and diverge from the initially established and routinely used mouse bioassay. However, detecting cyanotoxins in complex environmental samples and characterizing their toxic modes of action remain major challenges. This review provides a systematic overview of the use of some of these alternative models and their responses to harmful cyanobacterial metabolites. It also assesses the general usefulness, sensitivity, and efficiency of these models in investigating the mechanisms of cyanotoxicity expressed at different levels of biological organization. From the reported findings, it is clear that cyanotoxin testing requires a multi-level approach. While studying changes at the whole-organism level is essential, as the complexities of whole organisms are still beyond the reach of in vitro methodologies, understanding cyanotoxicity at the molecular and biochemical levels is necessary for meaningful toxicity evaluations. Further research is needed to refine and optimize bioassays for cyanotoxicity testing, which includes developing standardized protocols and identifying novel model organisms for improved understanding of the mechanisms with fewer ethical concerns. In vitro models and computational modeling can complement vertebrate bioassays and reduce animal use, leading to better risk assessment and characterization of cyanotoxins.
Collapse
Affiliation(s)
- Petar Davidović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Dajana Blagojević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Jussi Meriluoto
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| | - Jelica Simeunović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| |
Collapse
|
10
|
Bownik A, Adamczuk M, Skowrońska BP. Effects of cyanobacterial metabolites: Aeruginosin 98A, microginin-FR1, anabaenopeptin-A, cylindrospermopsin in binary and quadruple mixtures on the survival and oxidative stress biomarkers of Daphnia magna. Toxicon 2023; 229:107137. [PMID: 37121403 DOI: 10.1016/j.toxicon.2023.107137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/04/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
The aim of our study was to determine the effects of aeruginosin 98 A (ARE-A), microginin-FR1 (MG-FR1), anabaenopeptin-A (ANA-A) cylindrospermopsin (CYL) and their binary and quadruple mixtures on the survival and the levels of oxidative stress biomarkers in Daphnia magna: total glutathione (GSH), catalase (CAT), dismutase (SOD) and malondialdehyde (MDA). The biochemical indicators were measured with ELISA kits and the interactive effects were determined by isobole and polygonal analysis with Compusyn® computer software. The study revealed that oligopeptides did not decrease daphnid survival, only CYL inhibited this parameter, with synergistic effects when it was used as a component. The single metabolites at the two highest concentrations and all the binary and quadruple mixtures at all concentrations diminished GSH level, however both in the binary and in the quadruple mixtures most of the interactions between the metabolites were antagonistic. Nearly additive effects were found only in AER-A + CYL and MG-FR1+CYL. On the other hand, CAT activity was slightly increased in daphnids exposed to the binary mixtures with antagonistic interactions, however nearly addivive effects were found in animals exposed to the mixture of AER-A + ANA-A and synergistic in the quadruple mixture. SOD was elevated in daphnids exposed to single AER-A and MG-FR1, however it was diminished in the animals exposed to ANA-A and CYL. Binary mixtures in which CYL was present as a component decreased the level of this enzyme with nearly additive interactions in ANA-A + CYL. The quadruple mixture increased SOD level, with antagonistic interactions. Both single cyanobacterial metabolites, their binary and quadruple mixtures induced lipid peroxidation measured by MDA level and most of interactions in the binary mixtures were synergistic. The study suggested that antioxidative system of Daphnia magna responded to the tested metabolites and the real exposure to mixtures of these products may lead to various interactive effects with varied total toxicity.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Małgorzata Adamczuk
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Barbara Pawlik Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
11
|
Veerabadhran M, Manivel N, Sarvalingam B, Seenivasan B, Srinivasan H, Davoodbasha M, Yang F. State-of-the-art review on the ecotoxicology, health hazards, and economic loss of the impact of microcystins and their ultrastructural cellular changes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106417. [PMID: 36805195 DOI: 10.1016/j.aquatox.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Cyanobacteria are ubiquitously globally present in both freshwater and marine environments. Ample reports have been documented by researchers worldwide for pros and cons of cyanobacterial toxins. The implications of cyanobacterial toxin on health have received much attention in recent decades. Microcystins (MCs) represent the unique class of toxic metabolites produced by cyanobacteria. Although the beneficial aspects of cyanobacterial are numerous, the deleterious effect of MCs overlooked. Several studies on MCs evidently reported that MCs exhibit a plethora of harmful effect on animals, plants, and cell lines. Accordingly, numerous histopathological studies have also found that MCs cause detrimental effects to cells by damaging cellular organelles, including nuclear envelope, Golgi apparatus, endoplasmic reticulum, mitochondria, plastids, flagellum, pilus membrane structures and integrity, vesicle structures, and autolysosomes and autophagosomes. Such ultrastructural cellular damages holistically influence the morphological, biochemical, physiological, and genetic status of the host. Indeed, MCs have also been found to cause the deleterious effect to different animals and plants. Such deleterious effects of MCs have greater impact on agriculture, public health which in turn influences ecotoxicology and economic consequences. The impairments correspond to oxidative stress, organ failure, carcinogenesis, aquaculture loss, with an emphasis for blooms and respective bioaccumulation prospects. The preservation of mortality among life forms is addressed in a critical cellular perspective for multitude benefits. The comprehensive cellular assessment could provide opportunity to develop strategy for therapeutic implications.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Hunan 410078, China
| | - Nagarajan Manivel
- ICAR-Central Marine Fisheries Research Institute, Chennai 600 0028, India
| | - Barathkumar Sarvalingam
- National Centre for Coastal Research (NCCR), Ministry of Earth Science, NIOT Campus, Chennai 600100, India
| | - Boopathi Seenivasan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Hemalatha Srinivasan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
| |
Collapse
|
12
|
Microcystin-Detoxifying Recombinant Saccharomyces cerevisiae Expressing the mlrA Gene from Sphingosinicella microcystinivorans B9. Microorganisms 2023; 11:microorganisms11030575. [PMID: 36985150 PMCID: PMC10058252 DOI: 10.3390/microorganisms11030575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Contamination of water by microcystins is a global problem. These potent hepatotoxins demand constant monitoring and control methods in potable water. Promising approaches to reduce contamination risks have focused on natural microcystin biodegradation led by enzymes encoded by the mlrABCD genes. The first enzyme of this system (mlrA) linearizes microcystin structure, reducing toxicity and stability. Heterologous expression of mlrA in different microorganisms may enhance its production and activity, promote additional knowledge on the enzyme, and support feasible applications. In this context, we intended to express the mlrA gene from Sphingosinicella microcystinivorans B9 in an industrial Saccharomyces cerevisiae strain as an innovative biological alternative to degrade microcystins. The mlrA gene was codon-optimized for expression in yeast, and either expressed from a plasmid or through chromosomal integration at the URA3 locus. Recombinant and wild yeasts were cultivated in medium contaminated with microcystins, and the toxin content was analyzed during growth. Whereas no difference in microcystins content was observed in cultivation with the chromosomally integrated strain, the yeast strain hosting the mlrA expression plasmid reduced 83% of toxins within 120 h of cultivation. Our results show microcystinase A expressed by industrial yeast strains as a viable option for practical applications in water treatment.
Collapse
|
13
|
Yang X, Zhu J, Hu C, Yang W, Zheng Z. Integration of Transcriptomics and Microbiomics Reveals the Responses of Bellamya aeruginosa to Toxic Cyanobacteria. Toxins (Basel) 2023; 15:toxins15020119. [PMID: 36828433 PMCID: PMC9958990 DOI: 10.3390/toxins15020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Frequent outbreaks of harmful cyanobacterial blooms and the cyanotoxins they produce not only seriously jeopardize the health of freshwater ecosystems but also directly affect the survival of aquatic organisms. In this study, the dynamic characteristics and response patterns of transcriptomes and gut microbiomes in gastropod Bellamya aeruginosa were investigated to explore the underlying response mechanisms to toxic cyanobacterial exposure. The results showed that toxic cyanobacteria exposure induced overall hepatopancreatic transcriptome changes. A total of 2128 differentially expressed genes were identified at different exposure stages, which were mainly related to antioxidation, immunity, and metabolism of energy substances. In the early phase (the first 7 days of exposure), the immune system may notably be the primary means of resistance to toxin stress, and it performs apoptosis to kill damaged cells. In the later phase (the last 7 days of exposure), oxidative stress and the degradation activities of exogenous substances play a dominant role, and nutrient substance metabolism provides energy to the body throughout the process. Microbiomic analysis showed that toxic cyanobacteria increased the diversity of gut microbiota, enhanced interactions between gut microbiota, and altered microbiota function. In addition, the changes in gut microbiota were correlated with the expression levels of antioxidant-, immune-, metabolic-related differentially expressed genes. These results provide a comprehensive understanding of gastropods and intestinal microbiota response to toxic cyanobacterial stress.
Collapse
|
14
|
Zhang J, Yu M, Zhang Z, Zhang M, Gao Y, Dong J, Zhou C, Li X. Integrating regular and transcriptomic analyses reveal resistance mechanisms in Corbicula fluminea (Müller, 1774) in response to toxic Microcystis aeruginosa exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114553. [PMID: 36680989 DOI: 10.1016/j.ecoenv.2023.114553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The frequent occurrence of cyanobacterial blooms (CYBs) caused by toxic Microcystis aeruginosa poses a great threat to aquatic organisms. Although freshwater benthic bivalves have proven to be capable of uptake high levels of microcystins (MCs) due to their filter-feeding habits, there is a paucity of information concerning their systemic resistance mechanisms to MCs. In this study, the resistance mechanisms in Corbicula fluminea (O. F. Müller, 1774) in response to the exposure of toxic M. aeruginosa were explored through transcriptional analysis combined with histopathological and biochemical phenotypic analysis. Toxic M. aeruginosa exposure caused dose-dependent histological damage in the hepatopancreas. The conjugation reaction catalyzed by glutathione S-transferases was vulnerable to being activated by high concentrations of M. aeruginosa (10 ×105 cells mL-1). Additionally, reactive oxygen species scavenging processes mediated by superoxide dismutase and catalase were active in the initial stage of toxic M. aeruginosa exposure. The results of the integrated biomarker response index suggested that the biotransformation and antioxidant defense system in C. fluminea could be continuously activated after acute exposure to the high concentration of toxic M. aeruginosa. The eggNOG and GO analysis of the differentially expressed genes (DEGs) indicated that DEGs were significantly enriched in transporter activity, oxidant detoxification and response to oxidative stress categories, which were consistent with the alterations of biochemical indices. Besides, DEGs were significantly annotated in a few KEGG pathways involved in biotransformation (oxidation, cooxidation and conjugation) and immunoreaction (lysosome and phagosome responses), which could be responsible for the tolerance of C. fluminea to toxic M. aeruginosa. These findings improve our understanding of potential resistance mechanisms of freshwater bivalves to MCs.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Miao Yu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zehao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Man Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yunni Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jing Dong
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Chuanjiang Zhou
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
15
|
Du X, Liu H, Tian Z, Zhang S, Shi L, Wang Y, Guo X, Zhang B, Yuan S, Zeng X, Zhang H. PI3K/AKT/mTOR pathway mediated-cell cycle dysregulation contribute to malignant proliferation of mouse spermatogonia induced by microcystin-leucine arginine. ENVIRONMENTAL TOXICOLOGY 2023; 38:343-358. [PMID: 36288207 DOI: 10.1002/tox.23691] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Environmental cyanotoxin exposure may be a trigger of testicular cancer. Activation of PI3K/AKT/mTOR signaling pathway is the critical molecular event in testicular carcinogenesis. As a widespread cyanotoxin, microcystin-leucine arginine (MC-LR) is known to induce cell malignant transformation and tumorigenesis. However, the effects of MC-LR on the regulatory mechanism of PI3K/AKT/mTOR pathway in seminoma, the most common testicular tumor, are unknown. In this study, mouse spermatogonia cell line (GC-1) and nude mice were used to investigate the effects and mechanisms of MC-LR on the malignant transformation of spermatogonia by nude mouse tumorigenesis assay, cell migration invasion assay, western blot, and cell cycle assay, and so forth. The results showed that, after continuous exposure to environmentally relevant concentrations of MC-LR (20 nM) for 35 generations, the proliferation, migration, and invasion abilities of GC-1 cells were increased by 120%, 340%, and 370%, respectively. In nude mice, MC-LR-treated GC-1 cells formed tumors with significantly greater volume (0.998 ± 0.768 cm3 ) and weight (0.637 ± 0.406 g) than the control group (0.067 ± 0.039 cm3 ; 0.094 ± 0.087 g) (P < .05). Furthermore, PI3K inhibitor Wortmannin inhibited the PI3K/AKT/mTOR pathway and its downstream proteins (c-MYC, CDK4, CCND1, and MMP14) activated by MC-LR. Blocking PI3K alleviated MC-LR-induced cell cycle disorder and malignant proliferation, migration and invasive of GC-1 cells. Altogether, our findings suggest that MC-LR can induce malignant transformation of mouse spermatogonia, and the PI3K/AKT/mTOR pathway-mediated cell cycle dysregulation may be an important target for malignant proliferation. This study provides clues to further reveal the etiology and pathogenesis of seminoma.
Collapse
Affiliation(s)
- Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xin Zeng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Yu H, Cui J, Xu Y, Feng LJ, Zong W. Regulation Effectiveness and Mechanism of Biotransformation Pathway on the Toxicity of Microcystin-LR Target to Protein Phosphatase 2A. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:964. [PMID: 36673721 PMCID: PMC9859369 DOI: 10.3390/ijerph20020964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Biotransformation is recognized as a potential pathway to regulate the environmental risk of microcystins (MCs). To explore the regulation effectiveness and mechanism of the biotransformation pathway, six typical MCLR-biotransformation products (MCLR-BTPs) were prepared, and their inhibition effects on protein phosphatase 2A (PP2A) were evaluated. The inhibition effects of the MCLR-BTPs generally decreased with the increase in biothiol molecular weights and polarity, indicating that biotransformation was an effective pathway through which to regulate MCLR toxicity. To further explore the regulation mechanism, the key interaction processes between the MCLR/MCLR-BTPs and the PP2A were explored by homology modeling and molecular docking. The introduced biothiols blocked the covalent binding of Mdha7 to Cys269 but strengthened the hydrogen bond "Mdha7"→Arg268. The changed "Mdha7" intervened the combination of MCLR-BTPs to PP2A by weakening the hydrogen bonds Arg4←Arg214, Arg4→Pro213, Adda5←His118, and Ala1←Arg268, and the ionic bond Glu6-Mn12+. The weakening combination of the MCLR-BTPs to PP2A further attenuated the interactions between the conserved domain and the Mn2+ ions (including the ionic bonds Asp57-Mn12+ and Asp85-Mn12+ and the metal bonds Asp57-Mn12+ and Asn117-Mn12+) and increased the exposure of the Mn2+ ions. Meanwhile, the weakened hydrogen bond Arg4←Arg214 facilitated the combination of the phosphate group to Arg214 (with increased exposure). In this way, the catalytic activity of the PP2A was restored.
Collapse
Affiliation(s)
| | | | | | - Li-Juan Feng
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan 250014, China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan 250014, China
| |
Collapse
|
17
|
Zhang J, Yu M, Gao Y, Zhang M, Dong J, Li M, Li X. Feeding behavior, microcystin accumulation, biochemical response, and ultramicrostructure changes in edible freshwater bivalve Corbicula fluminea exposed to Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13560-13570. [PMID: 36136196 DOI: 10.1007/s11356-022-22833-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
As filter-feeders, bivalves naturally come into direct contact with microcystins (MCs) in eutrophic water bodies suffering from cyanobacteria blooms. To date, however, no studies have quantified the dynamics of microcystin accumulation and depuration in the edible freshwater bivalve Corbicula fluminea when exposed to dense bloom concentrations of Microcystis aeruginosa, while considering dynamic changes of biochemical indexes and feeding structure. In the present study, the bioaccumulation and detoxification of microcystin-LR (MC-LR) in C. fluminea were investigated. Our results showed that C. fluminea would graze equally efficiently on green algae and M. aeruginosa, irrespective of whether the M. aeruginosa strains were toxic or non-toxic. MCs could be accumulated and depurated by C. fluminea efficiently. In addition, linear and exposure time-dependent MC-LR accumulation patterns were observed in C. fluminea. Activities of biotransformation (glutathione S-transferase, GST) and antioxidant enzymes (superoxide dismutase, SOD, and catalase, CAT) and malondialdehyde (MDA) contents in various tissues of treated clams were stimulated by MCs in a tissue-specific manner. Our findings indicated that C. fluminea hepatopancreas was the primary target organ for MC-LR detoxification processes, as evidenced by a significant increase in GST activity. Besides, gills and mantle were more sensitive than the other tissues to oxidative stress in the initial microcystin exposure period with a significant increase in SOD activity. The scanning electron microscopy (SEM) observations revealed that the lateral cilia in the gill aperture were well developed during the MCs exposure period, which could perform the filter-feeding function instead of the damaged frontal cilium. This study provides insight into the possible tolerance of C. fluminea exposed to dense bloom concentrations of M. aeruginosa.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Miao Yu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Yunni Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Man Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jing Dong
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Mei Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
18
|
Turner AD, Beach DG, Foss A, Samdal IA, Løvberg KLE, Waack J, Edwards C, Lawton LA, Dean KJ, Maskrey BH, Lewis AM. A Feasibility Study into the Production of a Mussel Matrix Reference Material for the Cyanobacterial Toxins Microcystins and Nodularins. Toxins (Basel) 2022; 15:27. [PMID: 36668847 PMCID: PMC9867187 DOI: 10.3390/toxins15010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Microcystins and nodularins, produced naturally by certain species of cyanobacteria, have been found to accumulate in aquatic foodstuffs such as fish and shellfish, resulting in a risk to the health of the seafood consumer. Monitoring of toxins in such organisms for risk management purposes requires the availability of certified matrix reference materials to aid method development, validation and routine quality assurance. This study consequently targeted the preparation of a mussel tissue reference material incurred with a range of microcystin analogues and nodularins. Nine targeted analogues were incorporated into the material as confirmed through liquid chromatography with tandem mass spectrometry (LC-MS/MS), with an additional 15 analogues detected using LC coupled to non-targeted high resolution mass spectrometry (LC-HRMS). Toxins in the reference material and additional source tissues were quantified using LC-MS/MS, two different enzyme-linked immunosorbent assay (ELISA) methods and with an oxidative-cleavage method quantifying 3-methoxy-2-methyl-4-phenylbutyric acid (MMPB). Correlations between the concentrations quantified using the different methods were variable, likely relating to differences in assay cross-reactivities and differences in the abilities of each method to detect bound toxins. A consensus concentration of total soluble toxins determined from the four independent test methods was 2425 ± 575 µg/kg wet weight. A mean 43 ± 9% of bound toxins were present in addition to the freely extractable soluble form (57 ± 9%). The reference material produced was homogenous and stable when stored in the freezer for six months without any post-production stabilization applied. Consequently, a cyanotoxin shellfish reference material has been produced which demonstrates the feasibility of developing certified seafood matrix reference materials for a large range of cyanotoxins and could provide a valuable future resource for cyanotoxin risk monitoring, management and mitigation.
Collapse
Affiliation(s)
- Andrew D. Turner
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Daniel G. Beach
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada
| | - Amanda Foss
- Greenwater Laboratories, 205 Zeagler Drive, Suite 302, Palatka, FL 32177, USA
| | | | | | - Julia Waack
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Christine Edwards
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Linda A. Lawton
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Karl J. Dean
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Benjamin H. Maskrey
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Adam M. Lewis
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| |
Collapse
|
19
|
Painefilú JC, González C, Cárcamo JG, Bianchi VA, Luquet CM. Microcystin-LR modulates multixenobiotic resistance proteins in the middle intestine of rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106327. [PMID: 36274501 DOI: 10.1016/j.aquatox.2022.106327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Global climate change favors explosive population growth events (blooms) of phytoplanktonic species, often producing toxic products, e.g., several genera of cyanobacteria synthesize a family of cyanotoxins called microcystins (MCs). Freshwater fish such as the rainbow trout Oncorhynchus mykiss can uptake MCs accumulated in the food chain. We studied the toxic effects and modulation of the activity and expression of multixenobiotic resistance proteins (ABCC transporters and the enzyme glutathione S-transferase (GST) in the O. mykiss middle intestine by microcystin-LR (MCLR). Juvenile fish were fed with MCLR incorporated in the food every 12 h and euthanized at 12, 24, or 48 h. We estimated the ABCC-mediated transport in ex vivo intestinal strips to estimate ABCC-mediated transport activity. We measured total and reduced (GSH) glutathione contents and GST and glutathione reductase (GR) activities. We studied MCLR cytotoxicity by measuring protein phosphatase 1 (PP1) activity and lysosomal membrane stability. Finally, we examined the relationship between ROS production and lysosomal membrane stability through in vitro experiments. Dietary MCLR had a time-dependent effect on ABCC-mediated transport, from inhibition at 12 h to a significant increase after 48 h. GST activity decreased only at 12 h, and GR activity only increased at 48 h. There were no effects on GSH or total glutathione contents. MCLR inhibited PP1 activity and diminished the lysosomal membrane stability at the three experimental times. In the in vitro study, the lysosomal membrane stability decreased in a concentration-dependent fashion from 0 to 5 µmol L - 1 MCLR, while ROS production increased only at 5 µmol L - 1 MCLR. MCLR did not affect mRNA expression of abcc2 or gst-π. We conclude that MCLR modulates ABCC-mediated transport activity in O. mykiss's middle intestine in a time-dependent manner. The transport rate increase does not impair MCLR cytotoxic effects.
Collapse
Affiliation(s)
- Julio C Painefilú
- Laboratorio de Ictiología y Acuicultura Experimental, IPATEC (CONICET-UNCo). Quintral 1250. San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Carolina González
- Agua y Saneamientos Argentinos, Tucumán 752, 1049 Buenos Aires, Argentina; Laboratorio de Limnología, Facultad de Ciencias Exactas y Naturales, UBA, Argentina
| | - Juan G Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Virginia A Bianchi
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-UNCo). Ruta provincial 61, km 3, Junín de los Andes, 8371 Neuquén, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-UNCo). Ruta provincial 61, km 3, Junín de los Andes, 8371 Neuquén, Argentina.
| |
Collapse
|
20
|
Schwarzenberger A. Negative Effects of Cyanotoxins and Adaptative Responses of Daphnia. Toxins (Basel) 2022; 14:770. [PMID: 36356020 PMCID: PMC9694520 DOI: 10.3390/toxins14110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
The plethora of cyanobacterial toxins are an enormous threat to whole ecosystems and humans. Due to eutrophication and increases in lake temperatures from global warming, changes in the distribution of cyanobacterial toxins and selection of few highly toxic species/ strains are likely. Globally, one of the most important grazers that controls cyanobacterial blooms is Daphnia, a freshwater model organism in ecology and (eco)toxicology. Daphnia-cyanobacteria interactions have been studied extensively, often focusing on the interference of filamentous cyanobacteria with Daphnia's filtering apparatus, or on different nutritional constraints (the lack of essential amino acids or lipids) and grazer toxicity. For a long time, this toxicity only referred to microcystins. Currently, the focus shifts toward other deleterious cyanotoxins. Still, less than 10% of the total scientific output deals with cyanotoxins that are not microcystins; although these other cyanotoxins can occur just as frequently and at similar concentrations as microcystins in surface water. This review discusses the effects of different cyanobacterial toxins (hepatotoxins, digestive inhibitors, neurotoxins, and cytotoxins) on Daphnia and provides an elaborate and up-to-date overview of specific responses and adaptations of Daphnia. Furthermore, scenarios of what we can expect for the future of Daphnia-cyanobacteria interactions are described by comprising anthropogenic threats that might further increase toxin stress in Daphnia.
Collapse
Affiliation(s)
- Anke Schwarzenberger
- Limnological Institute, University Konstanz, Mainaustr. 252, 78464 Konstanz, Germany
| |
Collapse
|
21
|
Benayache NY, Afri-Mehennaoui FZ, Kherief-Nacereddine S, Vo-Quoc B, Hushchyna K, Nguyen-Quang T, Bouaïcha N. Massive fish death associated with the toxic cyanobacterial Planktothrix sp. bloom in the Béni-Haroun Reservoir (Algeria). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80849-80859. [PMID: 35729384 DOI: 10.1007/s11356-022-21538-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
In July 2017, a massive bloom of the potentially toxic cyanobacterial species Planktothrix sp. was observed in the Béni-Haroun Reservoir (Algeria), which was followed by a massive fish death. Many questions were raised in association with the role of cyanotoxins and the fish massive mortality. The objective of this paper is twofold: (1) to investigate the variability of physicochemical and cyanobacterial parameters (chlorophyll-a, phycocyanin, allophycocyanin, and microcystins) throughout the period of July 2017 to June 2018; and (2) to determine the free and total MC levels in viscera and muscle tissues of the common carp (Cyprinus carpio), which are found dead in the considered reservoir in October 2017. Our results showed microcystin (MC) concentrations in water samples (by the protein phosphatase PP2A assay) had reached 651.2 ng MC-LR equiv./L. Total MC levels (free + bound) in the viscera and muscle tissues of sampled dead fish were at 960.24 and 438.54 µg MC-LR equiv./kg dw, respectively. It is assumed that high concentrations of MC observed in the tissues of common carp induced a strong degradation of the visceral contents resulting in the complete lysis of the hepatopancreas, and presumably the massive fish death.
Collapse
Affiliation(s)
- Naila-Yasmine Benayache
- Laboratoire Biologie Et Environnement, Université Frères Mentouri, Constantine1, 25000, Constantine, Algeria.
- Laboratoire Ecologie, Systématique, Evolution UMR 8079, Université Paris-Saclay, 12 Route 128 (Bât. IDEEV), 91190, Gif-sur Yvette, France.
| | | | - Saliha Kherief-Nacereddine
- Laboratoire Biologie Et Environnement, Université Frères Mentouri, Constantine1, 25000, Constantine, Algeria
| | - Bao Vo-Quoc
- Biofluids and Biosystems Modeling Lab (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro-Bible Hill, NS, B2N 5E3, Canada
| | - Kateryna Hushchyna
- Biofluids and Biosystems Modeling Lab (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro-Bible Hill, NS, B2N 5E3, Canada
| | - Tri Nguyen-Quang
- Biofluids and Biosystems Modeling Lab (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro-Bible Hill, NS, B2N 5E3, Canada
| | - Noureddine Bouaïcha
- Laboratoire Ecologie, Systématique, Evolution UMR 8079, Université Paris-Saclay, 12 Route 128 (Bât. IDEEV), 91190, Gif-sur Yvette, France
| |
Collapse
|
22
|
Bouteiller P, Lance E, Guérin T, Biré R. Analysis of Total-Forms of Cyanotoxins Microcystins in Biological Matrices: A Methodological Review. Toxins (Basel) 2022; 14:toxins14080550. [PMID: 36006212 PMCID: PMC9416067 DOI: 10.3390/toxins14080550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Microcystins (MCs) are cyclic heptapeptidic toxins produced by many cyanobacteria. Microcystins can be accumulated in various matrices in two forms: a free cellular fraction and a covalently protein-bound form. To detect and quantify the concentration of microcystins, a panel of techniques on various matrices (water, sediments, and animal tissues) is available. The analysis of MCs can concern the free or the total (free plus covalently bound) fractions. Free-form analyses of MCs are the most common and easiest to detect, whereas total-form analyses are much less frequent and more complex to achieve. The objective of this review is to summarize the different methods of extraction and analysis that have been developed for total forms. Four extraction methods were identified: MMPB (2-methyl-3-methoxy-4-phenylbutyric acid) method, deconjugation at basic pH, ozonolysis, and laser irradiation desorption. The study of the bibliography on the methods of extraction and analysis of the total forms of MCs showed that the reference method for the subject remains the MMPB method even if alternative methods and, in particular, deconjugation at basic pH, showed results encouraging the continuation of the methodological development on different matrices and on naturally-contaminated samples.
Collapse
Affiliation(s)
- Pierre Bouteiller
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039, CEDEX 2, F-51687 Reims, France
- Laboratory for Food Safety, ANSES, F-94701 Maisons-Alfort, France
| | - Emilie Lance
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039, CEDEX 2, F-51687 Reims, France
- UMR MNHN/CNRS MCAM, Muséum National d’Histoire Naturelle, F-75005 Paris, France
- Correspondence:
| | - Thierry Guérin
- Strategy and Programs Department, ANSES, F-94701 Maisons-Alfort, France
| | - Ronel Biré
- Laboratory for Food Safety, ANSES, F-94701 Maisons-Alfort, France
| |
Collapse
|
23
|
Possibility for Water Quality Biocontrol: Observation of Microcystin Transfer in the “Cyanobacteria–Cladohorn–Fish” Food Chain. WATER 2022. [DOI: 10.3390/w14121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microcystins appear to be considered one of the most dangerous cyanobacterial toxins in the world. The accumulation and change of microcystins MC-LR and MC-RR in the “cyanobacteria–cladocera–fish” food chain were studied. Microcystis aeruginosa was fed to Moina macrocopa at three densities, 5.0 × 103, 5.0 × 105, and 5.0 × 106 cells/mL, and then passed to Cyprinus flammans. The total amount of MCs in the cyanobacteria cell extract increased with increasing density. The content of MCs in M. macrocopa increased with the feeding density of M. aeruginosa. In the final stage of experiments, MC-RR was the only MC that could be transmitted by M. macrocopa and persisted in red carp. In this study, changes in the concentrations of MC-LR and MC-RR in the liver of red carp seem to indicate some kind of transformation or degradation mechanism. It shows the possibility of MCs concentration-controlled biodefense in eutrophic waters.
Collapse
|
24
|
Cai S, Shu Y, Tian C, Wang C, Fang T, Xiao B, Wu X. Effects of chronic exposure to microcystin-LR on life-history traits, intestinal microbiota and transcriptomic responses in Chironomus pallidivittatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153624. [PMID: 35124034 DOI: 10.1016/j.scitotenv.2022.153624] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanobacterial toxins that can exert adverse effects on aquatic organisms, but aside from the study of the harmful effect of cyanobacterial blooms, little is known about the effect of released MCs on the growth and development of chironomid larvae. To assess the harmful effect and the toxic mechanism of MCs on midges, the life-history traits, intestinal microbiota, and transcriptome of Chironomus pallidivittatus were analyzed after chronic exposure to 30 μg/L of MC-LR. Exposure inhibited larvae body length by 35.61% and wet weight by 21.92%, increased emergence time of midges, damaged mitochondria in the intestine, promoted oxidative stress, dysregulated lipid metabolism of chironomid larvae, and increased detoxification enzymes glutathione S-transferase (GST) and superoxide dismutase (SOD) by 32.44% and 17.41%, respectively. Exposure also altered the diversity and abundance of the intestinal microbiota, favoring pathogenic and MC degradation bacteria. RNA sequencing identified 261 differentially expressed genes under MC-LR stress, suggesting that impairment of the peroxisome proliferator-activated receptor signaling pathway upregulated fatty acid biosynthesis and elongation to promote lipid accumulation. In addition, exposure-induced detoxification and antioxidant responses, indicating that the chironomid larvae had the potential ability to resist MC-LR. To our knowledge, this is the first time that lipid accumulation, oxidative stress, and detoxification have been studied in this organism at the environmentally relevant concentration of MC-LR; the information may assist in ecological risk assessment of cyanobacterial toxins and their effects on benthic organisms.
Collapse
Affiliation(s)
- Shenghe Cai
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China
| | - Cuicui Tian
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chunbo Wang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
25
|
Davidović PG, Blagojević DJ, Lazić GG, Simeunović JB. Gene expression changes in Daphnia magna following waterborne exposure to cyanobacterial strains from the genus Nostoc. HARMFUL ALGAE 2022; 115:102232. [PMID: 35623688 DOI: 10.1016/j.hal.2022.102232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria can produce highly potent cyanotoxins, however, limited information is provided about their toxicity mechanisms in exposed aquatic invertebrates at the molecular level. In the present study, the effects of cyanobacterial strains from the genus Nostoc (Nostoc Z1 and Nostoc 2S3B) in Daphnia magna after waterborne exposure were investigated. Examined endpoints included immobilization (survival) in acute toxicity tests and selected gene expression changes (cyp314, cyp360A8, gst, p-gp, vtg) analyzed by the quantitative real-time polymerase chain reaction (RT-PCR). In addition, enzyme-linked immunosorbent assay (ELISA) was performed to determine whether the observed changes could be due to the presence of microcystins, the most widespread group of cyanotoxins. The results of acute toxicity tests have shown only minor changes in survival rates, which have not exceeded 20% after 48 h of exposure to either strain. On the other hand, significant changes were recorded in molecular responses of Daphnia to tested strains. Treatment with the aquatic strain Nostoc Z1 altered the expression levels of all analyzed genes. Both strains caused a significant p-glycoprotein (p-gp) induction at 75 µg ml-1 which suggests the involvement of p-gp mediated multixenobiotic resistance mechanism (MXR) in facilitating excretion of toxic cyanobacterial compounds in daphnids. Additionally, these strains caused an increase in the expression levels of cyp360A8, indicating that genes related to detoxification processes could be sensitive indicators of cyanobacterial toxicity. Statistically significant induction of cyp314, as well as increases in expression of gst and vtg, were observed only after exposure to Nostoc Z1. This study indicates the potential of certain cyanobacterial metabolites to modify the expression of toxicant responsive genes involved in phase I and phase III of the xenobiotic metabolism, as well as possible interference with growth and reproduction in D. magna. Low microcystin concentrations found in both samples suggest that these cyanotoxins were not responsible for the detected toxic effects.
Collapse
Affiliation(s)
- Petar G Davidović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia
| | - Dajana J Blagojević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia
| | - Gospava G Lazić
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, Novi Sad 21000, Republic of Serbia
| | - Jelica B Simeunović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia.
| |
Collapse
|
26
|
Paul B, Purkayastha KD, Bhattacharya S, Gogoi N. Eco-bioengineering tools in ecohydrological assessment of eutrophic water bodies. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:581-601. [PMID: 35022955 DOI: 10.1007/s10646-021-02509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Eutrophication of water bodies and deterioration of water quality are emerging environmental crises. The root causes and consequences of eutrophication are multidirectional. Thus, they provide a huge scope of risk-analysis and risk-assessment in the domain of remediation studies. However, recent restoration studies reveal a global trend of utilizing traditional restoration methods combined with advanced pioneer innovative techniques developed in the field of science and technology. This review introduces a novel approach to consider ecohydrological assessment of eutrophication by classical biomanipulation practices emphasising on their evolution into innovative 'eco-bioengineering' methods. The main objective of this study is to critically analyse and recognize the research gaps in classical biomanipulation and appreciate the reproducibility and efficacy of eco-bioengineering methods at micro- and macrolevel aquatic ecosystems. Comprehensive literature review was conducted on offline and online platforms. Our survey revealed (a) continuation of a historical trend in classical biomanipulation practices (61.64%) and (b) an ascending drift in eco-bioengineering research (38.36%) in the last decade (2010-2021). At a global scale, recent biomanipulation research has a skewed distribution in Europe (41.10%), East Asia (32.88%), North America (10.96%), South Africa (4.11%), South America (2.74%), Middle East (1.37%), Oceania (1.37%), and non-specific regions (5.48%). Finally, this review analysis revealed the comprehensiveness of eco-bioengineering methods and their strong ecological resilience to recurrence of eutrophication and fluctuating environmental flows in the future. Therefore, our review reinforces the supremacy of eco-bioengineering methods as cost-effective green technologies providing sustainable solutions to restore the eutrophic waters at a global scale.
Collapse
Affiliation(s)
- Bishal Paul
- Department of Environmental Science, Tezpur University, Napaam, 784028, Assam, India
| | | | | | - Nayanmoni Gogoi
- Department of Environmental Science, Tezpur University, Napaam, 784028, Assam, India.
| |
Collapse
|
27
|
Germoush MO, Fouda MMA, Kamel M, Abdel-Daim MM. Spirulina platensis protects against microcystin-LR-induced toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11320-11331. [PMID: 34533748 DOI: 10.1007/s11356-021-16481-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Microcystis aeruginosa produces an abundant cyanotoxin (microcystins (MCs) in freshwater supplies. MCs have adverse health hazards to animals and humans. Microcystin-leucine-arginine (microcystin-LR or MC-LR) is the most studied among these MCs due to their high toxicity. So, this study was designed to evaluate the possible therapeutic role of the natural algal food supplement, Spirulina platensis (SP), against MC-LR-induced toxic effects in male Wistar rats. Forty rats were randomly divided into five groups. Control and SP groups orally administered distilled water and SP (1000 mg/kg/daily), respectively, for 21 days. MC-LR group was intraperitoneally injected with MC-LR (10 μg/kg/day) for 14 days. MC-LR-SP500 and MC-LR-SP1000 groups were orally treated with SP (500 and 1000 mg/kg, respectively) for 7 days and concomitantly with MC-LR for 14 days. MC-LR induced oxidative hepatorenal damage, cardiotoxicity, and neurotoxicity greatly, which was represented by reduction of reduced glutathione content and the activities of glutathione peroxidase, catalase, and superoxide dismutase and elevation of concentrations of nitric oxide and malondialdehyde in renal, hepatic, brain, and heart tissues. In addition, it increased serum levels of urea, creatinine, tumor necrosis factor-alfa, interleukin-1beta and interleukin-6 and serum activities of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, creatine kinase, and creatine kinase-MB. However, S. platensis restored normal levels of measured serum parameters, ameliorated MC-LR-induced oxidative damage, and normalized tissue antioxidant biomarkers. In conclusion, SP alleviated MC-induced organ toxicities by mitigating oxidative and nitrosative stress and lipid peroxidation.
Collapse
Affiliation(s)
- Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Maged M A Fouda
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Science, Al-Azhar University, Assuit Branch, Assuit, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
28
|
Gorokhova E, El-Shehawy R. Antioxidant Responses in Copepods Are Driven Primarily by Food Intake, Not by Toxin-Producing Cyanobacteria in the Diet. Front Physiol 2022; 12:805646. [PMID: 35058807 PMCID: PMC8764287 DOI: 10.3389/fphys.2021.805646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
The association between oxidative processes and physiological responses has received much attention in ecotoxicity assessment. In the Baltic Sea, bloom-forming cyanobacterium Nodularia spumigena is a significant producer of various bioactive compounds, and both positive and adverse effects on grazers feeding in cyanobacteria blooms are reported. To elucidate the effect mechanisms and species sensitivity to the cyanobacteria-dominating diet, we exposed two Baltic copepods, Acartia bifilosa and Eurytemora affinis, to a diet consisting of toxin-producing cyanobacteria N. spumigena and a high-quality food Rhodomonas salina at 0–300 μg C L−1; the control food was R. salina provided as a monodiet at the same food levels. The subcellular responses to food type and availability were assayed using a suite of biomarkers – antioxidant enzymes [superoxide dismutases (SOD), catalase (CAT), and glutathione S-transferases (GST)] and acetylcholinesterase (AChE). In parallel, we measured feeding activity using gut content (GC) assayed by real-time PCR analysis that quantified amounts of the prey DNA in copepod stomachs. As growth and reproduction endpoints, individual RNA content (a proxy for protein synthesis capacity), egg production rate (EPR), and egg viability (EV%) were used. In both toxic and nontoxic foods, copepod GC, RNA content, and EPR increased with food availability. Antioxidant enzyme activities increased with food availability regardless of the diet type. Moreover, CAT (both copepods), SOD, and GST (A. bifilosa) were upregulated in the copepods receiving cyanobacteria; the response was detectable when adjusted for the feeding and/or growth responses. By contrast, the diet effects were not significant when food concentration was used as a co-variable. A bimodal response in AChE was observed in A. bifilosa feeding on cyanobacteria, with up to 52% increase at the lower levels (5–25 μg C L−1) and 32% inhibition at the highest food concentrations. These findings contribute to the refinement of biomarker use for assessing environmental stress and mechanistic understanding of cyanobacteria effects in grazers. They also suggest that antioxidant and AChE responses to feeding activity and diet should be accounted for when using biomarker profiles in field-collected animals in the Baltic Sea and, perhaps other systems, where toxic cyanobacteria are common.
Collapse
Affiliation(s)
- Elena Gorokhova
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Rehab El-Shehawy
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
29
|
Bieczynski F, Painefilú JC, Venturino A, Luquet CM. Expression and Function of ABC Proteins in Fish Intestine. Front Physiol 2021; 12:791834. [PMID: 34955897 PMCID: PMC8696203 DOI: 10.3389/fphys.2021.791834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
In fish, the intestine is fundamental for digestion, nutrient absorption, and other functions like osmoregulation, acid-base balance, and excretion of some metabolic products. These functions require a large exchange surface area, which, in turn, favors the absorption of natural and anthropogenic foreign substances (xenobiotics) either dissolved in water or contained in the food. According to their chemical nature, nutrients, ions, and water may cross the intestine epithelium cells' apical and basolateral membranes by passive diffusion or through a wide array of transport proteins and also through endocytosis and exocytosis. In the same way, xenobiotics can cross this barrier by passive diffusion or taking advantage of proteins that transport physiological substrates. The entry of toxic substances is counterbalanced by an active efflux transport mediated by diverse membrane proteins, including the ATP binding cassette (ABC) proteins. Recent advances in structure, molecular properties, and functional studies have shed light on the importance of these proteins in cellular and organismal homeostasis. There is abundant literature on mammalian ABC proteins, while the studies on ABC functions in fish have mainly focused on the liver and, to a minor degree, on the kidney and other organs. Despite their critical importance in normal physiology and as a barrier to prevent xenobiotics incorporation, fish intestine's ABC transporters have received much less attention. All the ABC subfamilies are present in the fish intestine, although their functionality is still scarcely studied. For example, there are few studies of ABC-mediated transport made with polarized intestinal preparations. Thus, only a few works discriminate apical from basolateral transport activity. We briefly describe the main functions of each ABC subfamily reported for mammals and other fish organs to help understand their roles in the fish intestine. Our study considers immunohistochemical, histological, biochemical, molecular, physiological, and toxicological aspects of fish intestinal ABC proteins. We focus on the most extensively studied fish ABC proteins (subfamilies ABCB, ABCC, and ABCG), considering their apical or basolateral location and distribution along the intestine. We also discuss the implication of fish intestinal ABC proteins in the transport of physiological substrates and aquatic pollutants, such as pesticides, cyanotoxins, metals, hydrocarbons, and pharmaceutical products.
Collapse
Affiliation(s)
- Flavia Bieczynski
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue – Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Julio C. Painefilú
- Instituto Patagónico de Tecnologías Biológicas y Geoambientales, Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Comahue, Bariloche, Argentina
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue – Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Carlos M. Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET – UNCo), Junín de los Andes, Argentina
| |
Collapse
|
30
|
Lin W, Hung TC, Kurobe T, Wang Y, Yang P. Microcystin-Induced Immunotoxicity in Fishes: A Scoping Review. Toxins (Basel) 2021; 13:765. [PMID: 34822549 PMCID: PMC8623247 DOI: 10.3390/toxins13110765] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cyanobacteria (blue-green algae) have been present on Earth for over 2 billion years, and can produce a variety of bioactive molecules, such as cyanotoxins. Microcystins (MCs), the most frequently detected cyanotoxins, pose a threat to the aquatic environment and to human health. The classic toxic mechanism of MCs is the inhibition of the protein phosphatases 1 and 2A (PP1 and PP2A). Immunity is known as one of the most important physiological functions in the neuroendocrine-immune network to prevent infections and maintain internal homoeostasis in fish. The present review aimed to summarize existing papers, elaborate on the MC-induced immunotoxicity in fish, and put forward some suggestions for future research. The immunomodulatory effects of MCs in fish depend on the exposure concentrations, doses, time, and routes of exposure. Previous field and laboratory studies provided strong evidence of the associations between MC-induced immunotoxicity and fish death. In our review, we summarized that the immunotoxicity of MCs is primarily characterized by the inhibition of PP1 and PP2A, oxidative stress, immune cell damage, and inflammation, as well as apoptosis. The advances in fish immunoreaction upon encountering MCs will benefit the monitoring and prediction of fish health, helping to achieve an ecotoxicological goal and to ensure the sustainability of species. Future studies concerning MC-induced immunotoxicity should focus on adaptive immunity, the hormesis phenomenon and the synergistic effects of aquatic microbial pathogens.
Collapse
Affiliation(s)
- Wang Lin
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
- Department of Fisheries Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Tomofumi Kurobe
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA;
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Pinhong Yang
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
| |
Collapse
|
31
|
Wan X, Cheng C, Gu Y, Shu X, Xie L, Zhao Y. Acute and chronic toxicity of microcystin-LR and phenanthrene alone or in combination to the cladoceran (Daphnia magna). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112405. [PMID: 34130182 DOI: 10.1016/j.ecoenv.2021.112405] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Hazardous substances, such as microcystin-LR (MC-LR) and phenanthrene (Phe) are ubiquitous co-contaminants in eutrophic freshwaters, which cause harms to aquatic organisms. However, the risks associated with the co-exposure of aquatic biota to these two chemicals in the environment have received little attention. In this study, the single and mixture toxic effects of MC-LR and Phe mixtures were investigated in Daphnia magna after acute and chronic exposure. Acute tests showed that the median effective concentrations (48 h) for MC-LR, Phe and their mixtures were 13.46, 0.57 and 8.84 mg/L, respectively. Mixture toxicity prediction results indicated that the independent action model was more applicable than the concentration addition model. Moreover, combination index method suggested that the mixture toxicity was concentration dependent. Synergism was elicited at low concentrations of MC-LR and Phe exposure (≤4.04 + 0.17 mg/L), whereas antagonistic or additive effects were induced at higher concentrations. The involved mechanism of antagonism was presumably attributable to the protective effects of detoxification genes activated by high concentrations of MC-LR in mixtures. Additionally, chronic results also showed that exposure to a MC-LR and Phe mixture at low concentrations (≤50 +2 μg/L) resulted in greater toxic effects on D. magna life history than either chemical acting alone. The significant inhibition on detoxification genes and increased accumulation of MC-LR could be accounted for their synergistic toxic effects on D. magna. Our findings revealed the exacerbated ecological hazard of MC-LR and Phe at environmental concentrations (≤50 +2 μg/L), and provided new insights to the potential toxic mechanisms of MC-LR and Phe in aquatic animals.
Collapse
Affiliation(s)
- Xiang Wan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Chen Cheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Yurong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Xiubo Shu
- Hangzhou Water Group Co. Ltd., 168 South Jianguo Road, Hangzhou 310009, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
32
|
Palikova M, Kopp R, Kohoutek J, Blaha L, Mares J, Ondrackova P, Papezikova I, Minarova H, Pojezdal L, Adamovsky O. Cyanobacteria Microcystis aeruginosa Contributes to the Severity of Fish Diseases: A Study on Spring Viraemia of Carp. Toxins (Basel) 2021; 13:601. [PMID: 34564605 PMCID: PMC8473110 DOI: 10.3390/toxins13090601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
Fish are exposed to numerous stressors in the environment including pollution, bacterial and viral agents, and toxic substances. Our study with common carps leveraged an integrated approach (i.e., histology, biochemical and hematological measurements, and analytical chemistry) to understand how cyanobacteria interfere with the impact of a model viral agent, Carp sprivivirus (SVCV), on fish. In addition to the specific effects of a single stressor (SVCV or cyanobacteria), the combination of both stressors worsens markers related to the immune system and liver health. Solely combined exposure resulted in the rise in the production of immunoglobulins, changes in glucose and cholesterol levels, and an elevated marker of impaired liver, alanine aminotransferase (ALT). Analytical determination of the cyanobacterial toxin microcystin-LR (MC-LR) and its structurally similar congener MC-RR and their conjugates showed that SVCV affects neither the levels of MC in the liver nor the detoxification capacity of the liver. MC-LR and MC-RR were depurated from liver mostly in the form of cysteine conjugates (MC-LR-Cys, MC-RR-Cys) in comparison to glutathione conjugates (LR-GSH, RR-GSH). Our study brought new evidence that cyanobacteria worsen the effect of viral agents. Such inclusion of multiple stressor concept helps us to understand how and to what extent the relevant environmental stressors co-influence the health of the fish population.
Collapse
Affiliation(s)
- Miroslava Palikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (M.P.); (I.P.); (H.M.)
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy, Mendel University in Brno, 61300 Brno, Czech Republic; (R.K.); (J.M.)
| | - Radovan Kopp
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy, Mendel University in Brno, 61300 Brno, Czech Republic; (R.K.); (J.M.)
| | - Jiri Kohoutek
- RECETOX (Research Centre for Toxic Compounds in the Environment), Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (L.B.)
| | - Ludek Blaha
- RECETOX (Research Centre for Toxic Compounds in the Environment), Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (L.B.)
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy, Mendel University in Brno, 61300 Brno, Czech Republic; (R.K.); (J.M.)
| | - Petra Ondrackova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 62100 Brno, Czech Republic; (P.O.); (L.P.)
| | - Ivana Papezikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (M.P.); (I.P.); (H.M.)
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy, Mendel University in Brno, 61300 Brno, Czech Republic; (R.K.); (J.M.)
| | - Hana Minarova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (M.P.); (I.P.); (H.M.)
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 62100 Brno, Czech Republic; (P.O.); (L.P.)
| | - Lubomir Pojezdal
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 62100 Brno, Czech Republic; (P.O.); (L.P.)
| | - Ondrej Adamovsky
- RECETOX (Research Centre for Toxic Compounds in the Environment), Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (L.B.)
| |
Collapse
|
33
|
Arman T, Clarke JD. Microcystin Toxicokinetics, Molecular Toxicology, and Pathophysiology in Preclinical Rodent Models and Humans. Toxins (Basel) 2021; 13:toxins13080537. [PMID: 34437407 PMCID: PMC8402503 DOI: 10.3390/toxins13080537] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Microcystins are ubiquitous toxins produced by photoautotrophic cyanobacteria. Human exposures to microcystins occur through the consumption of contaminated drinking water, fish and shellfish, vegetables, and algal dietary supplements and through recreational activities. Microcystin-leucine-arginine (MCLR) is the prototypical microcystin because it is reported to be the most common and toxic variant and is the only microcystin with an established tolerable daily intake of 0.04 µg/kg. Microcystin toxicokinetics is characterized by low intestinal absorption, rapid and specific distribution to the liver, moderate metabolism to glutathione and cysteinyl conjugates, and low urinary and fecal excretion. Molecular toxicology involves covalent binding to and inhibition of protein phosphatases, oxidative stress, cell death (autophagy, apoptosis, necrosis), and cytoskeleton disruption. These molecular and cellular effects are interconnected and are commonly observed together. The main target organs for microcystin toxicity are the intestine, liver, and kidney. Preclinical data indicate microcystins may also have nervous, pulmonary, cardiac, and reproductive system toxicities. Recent evidence suggests that exposure to other hepatotoxic insults could potentiate microcystin toxicity and increase the risk for chronic diseases. This review summarizes the current knowledge for microcystin toxicokinetics, molecular toxicology, and pathophysiology in preclinical rodent models and humans. More research is needed to better understand human toxicokinetics and how multifactorial exposures contribute to disease pathogenesis and progression.
Collapse
|
34
|
Omidi A, Pflugmacher S, Kaplan A, Kim YJ, Esterhuizen M. Reviewing Interspecies Interactions as a Driving Force Affecting the Community Structure in Lakes via Cyanotoxins. Microorganisms 2021; 9:1583. [PMID: 34442662 PMCID: PMC8401979 DOI: 10.3390/microorganisms9081583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022] Open
Abstract
The escalating occurrence of toxic cyanobacterial blooms worldwide is a matter of concern. Global warming and eutrophication play a major role in the regularity of cyanobacterial blooms, which has noticeably shifted towards the predomination of toxic populations. Therefore, understanding the effects of cyanobacterial toxins in aquatic ecosystems and their advantages to the producers are of growing interest. In this paper, the current literature is critically reviewed to provide further insights into the ecological contribution of cyanotoxins in the variation of the lake community diversity and structure through interspecies interplay. The most commonly detected and studied cyanobacterial toxins, namely the microcystins, anatoxins, saxitoxins, cylindrospermopsins and β-N-methylamino-L-alanine, and their ecotoxicity on various trophic levels are discussed. This work addresses the environmental characterization of pure toxins, toxin-containing crude extracts and filtrates of single and mixed cultures in interspecies interactions by inducing different physiological and metabolic responses. More data on these interactions under natural conditions and laboratory-based studies using direct co-cultivation approaches will provide more substantial information on the consequences of cyanotoxins in the natural ecosystem. This review is beneficial for understanding cyanotoxin-mediated interspecies interactions, developing bloom mitigation technologies and robustly assessing the hazards posed by toxin-producing cyanobacteria to humans and other organisms.
Collapse
Affiliation(s)
- Azam Omidi
- Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, 10587 Berlin, Germany;
| | - Stephan Pflugmacher
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Wallace Bldg., 125 Dysart Rd, Winnipeg, MB R3T 2N2, Canada;
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Young Jun Kim
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
| | - Maranda Esterhuizen
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
- Finland and Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland
| |
Collapse
|
35
|
Zaidi H, Amrani A, Sedrati F, Maaref H, Leghrib F, Benamara M, Amara H, Wang Z, Nasri H. Histological and chemical damage induced by microcystin-LR and microcystin-RR on land snail Helix aspersa tissues after acute exposure. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109031. [PMID: 33737222 DOI: 10.1016/j.cbpc.2021.109031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/09/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
Microcystins (MCs) are the most common cyanotoxins with more than 200 variants. Among these cyanotoxins, microcystin-LR (MC-LR) and microcystin-RR (MC-RR) are the most studied congeners due to their high toxicity and frequent occurrence in surface waters. MC-LR has been detected in more than 75% of natural cyanobacteria bloom, along with other toxic and less toxic congeners. Accumulation of several microcystins variants (MC-LR and MC-RR) has been confirmed in aquatic snails exposed naturally or in the laboratory to toxic blooms. Thus, this paper aims to compare the biochemical and histological impact of both toxic variants (microcystin-LR and microcystin-RR) and their mixed form on a bioindicator, the land snail Helix aspersa. During experiments, snails were gavaged with a single acute dose (0.5 μg/g) of purified MC-LR, MC-RR, or mixed MC-LR + MC-RR (0.25 + 0.25 μg/g). After 96 h of exposure, effects on the hepatopancreas, kidney, intestine and lungs were assessed by histological observations and analysis of oxidative stress biomarkers. The results show that a small dose of MCs variants can increase the non-enzymatic antioxidant glutathione (GSH), inhibit glutathione-s-transferase (GST) level and trigger a defense system by activating glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). Microcystin-RR causes serious anomalies in the hepatopancreas and kidney than Microcystin-LR. The organ most affected is the kidney. The damage caused by MC-LR + MC-RR is greater than that caused by single variants.
Collapse
Affiliation(s)
- H Zaidi
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - A Amrani
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - F Sedrati
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - H Maaref
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria; Central Pathology Laboratory, El Taref Hospital, El Tarf, Algeria
| | - F Leghrib
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - M Benamara
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - H Amara
- Central Pathology Laboratory, El Taref Hospital, El Tarf, Algeria
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation, Hubei, Institute of Geodesy and Geophysics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - H Nasri
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria; Thematic Agency for Research in Health Sciences, Oran, Algeria.
| |
Collapse
|
36
|
Wang R, Wang T, Qu G, Zhang Y, Guo X, Jia H, Zhu L. Insights into the underlying mechanisms for integrated inactivation of A. spiroides and depression of disinfection byproducts by plasma oxidation. WATER RESEARCH 2021; 196:117027. [PMID: 33744659 DOI: 10.1016/j.watres.2021.117027] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacteria blooms threaten water supply and are potential sources for disinfection byproducts (DBPs) formation. In this study, the underlying mechanisms for effective removal of A. spiroides and the following depression on the formation of DBPs were disclosed. Highly efficient inactivation (more than 99.99%) of A. spiroides was realized by the plasma treatment within 12 min, and 93.4% of Anatoxin-a was also removed within 12 min, with no signals of resurrection after 7 days' re-cultivation. Transcriptomic analysis demonstrated that the expressions of the genes related to cell walls and peripherals, thylakoid membranes, photosynthetic membranes, and detoxification of toxins were distinctly altered. The generated reactive oxidative species (ROS), including ·OH, O2·-, and 1O2, attacked A. spiroides and resulted in membrane damage and algae organic matter (AOM) release. EEM-PARAFAC analysis illustrated that the AOM compositions were subsequently decomposed by the ROS. As a result, the formation potentials of the C-DBPs and N-DBPs were significantly inhibited, due to the effectively removal of AOM and Anatoxin-a. This study disclosed the underneath mechanisms for the effective inactivation of A. spiroides and inhibition of the following formation of the DBPs, and supplied a prospective technique for integrated pollutant control of cyanobacterial containing drinking water.
Collapse
Affiliation(s)
- Ruigang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Ying Zhang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
37
|
Acute exposure to microcystin-LR induces hepatopancreas toxicity in the Chinese mitten crab (Eriocheir sinensis). Arch Toxicol 2021; 95:2551-2570. [PMID: 33977345 DOI: 10.1007/s00204-021-03061-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
The Chinese mitten crab is an important economic species in the Chinese aquaculture industry due to its rich nutritional value and distinct flavor. The hepatopancreas is a popular edible part of the Chinese mitten crab, and therefore, hepatopancreatic health directly determines its quality. However, a large-scale outbreak of hepatopancreatic necrosis syndrome ("Shuibiezi" disease in Chinese), which is caused by abiotic agents correlated with cyanobacteria bloom outbreaks, adversely affects the Chinese mitten crab breeding industry. Cyanobacterial blooms that occur in high-density farming ponds can produce microcystin-LR (MC-LR), which is hepatotoxic in fish and mammals. Hepatopancreas toxicity of MC-LR (0, 25, 50 and 75 μg/kg) was investigated after 48 h of exposure. The MC-LR can cause hepatopancreatic injury by inducing hepatopancreatic structural damage, subcellular structural changes, and cell apoptosis, followed by enhanced lipid peroxidase, reactive oxygen species, and apoptosis-related enzyme (Caspase 3, 8, and 9) activities. These in turn promote gene and protein expression of apoptosis-associated proteases (Caspase 3, 7, and 8, Bcl-2, and Bax), and alter antioxidant system responses (superoxide dismutase, glutathione S-transferase, glutathione peroxidase, glutathione reductase activities, and glutathione content). The present study is the first report on MC-LR hepatotoxicity in the Chinese mitten crab and confirms hepatopancreas toxicity, providing a theoretical basis for enhancing MCs resistance and developing preventive and curative measures against hepatopancreatic disease in the Chinese mitten crab breeding industry.
Collapse
|
38
|
Schwarzenberger A, Martin-Creuzburg D. Daphnia's Adaptive Molecular Responses to the Cyanobacterial Neurotoxin Anatoxin-α Are Maternally Transferred. Toxins (Basel) 2021; 13:toxins13050326. [PMID: 33946510 PMCID: PMC8147185 DOI: 10.3390/toxins13050326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Cyanobacterial blooms are an omnipresent and well-known result of eutrophication and climate change in aquatic systems. Cyanobacteria produce a plethora of toxic secondary metabolites that affect humans, animals and ecosystems. Many cyanotoxins primarily affect the grazers of phytoplankton, e.g., Daphnia. The neurotoxin anatoxin-α has been reported world-wide; despite its potency, anatoxin-α and its effects on Daphnia have not been thoroughly investigated. Here, we investigated the effects of the anatoxin-α-producing Tychonema on life-history parameters and gene expression of nicotine-acetylcholine receptors (NAR), the direct targets of anatoxin-α, using several D. magna clones. We used juvenile somatic growth rates as a measure of fitness and analyzed gene expression by qPCR. Exposure to 100% Tychonema reduced the clones' growth rates and caused an up-regulation of NAR gene expression. When 50% of the food consisted of Tychonema, none of the clones were reduced in growth and only one of them showed an increase in NAR gene expression. We demonstrate that this increased NAR gene expression can be maternally transferred and that offspring from experienced mothers show a higher growth rate when treated with 50% Tychonema compared with control offspring. However, the addition of further (anthropogenic) stressors might impair Daphnia's adaptive responses to anatoxin-α. Especially the presence of certain pollutants (i.e., neonicotinoids), which also target NARs, might reduce Daphnia's capability to cope with anatoxin-α.
Collapse
|
39
|
Abstract
The extensive and random application of major organic pollutants, mainly pesticides, threatens ecosystems and human health. The present study was conducted to isolate and identify microorganisms from some water resources contaminated with pesticides. We investigated the ability of the identified microbes to grow in water spiked with dimethoate and methomyl. We also evaluated the potential effect of the identified microbial isolates on dimethoate and methomyl biodegradation in water. In addition, the total detoxification of dimethoate and methomyl residues in water after treatment with the most effective microbial isolates was confirmed using toxicity tests and analyzing biochemical parameters and histopathological changes in the kidney and liver of treated rats. The microbial isolates were identified as Xanthomonas campestris pv. Translucens and Aspergillus fumigates. Results showed that X. campestris pv. Translucens and A. fumigatus grow in media supplemented with dimethoate and methomyl faster than in other media without both pesticides. About 97.8% and 91.2% of dimethoate and 95% and 87.8% of methomyl (initial concentration of both 5 mg L−1) were biodegraded within 32 days of incubation with X. campestris pv. Translucens and A. fumigatus, respectively. There was no remaining toxicity in rats treated with dimethoate- and methomyl-contaminated water with respect to biochemical parameters and histopathological changes. Collectively, the identified bacterial isolate showed high potential for the complete degradation of dimethoate and methomyl residues in water.
Collapse
|
40
|
Saleh N, Al-Jassabi S, Eid AH, Nau WM. Cucurbituril Ameliorates Liver Damage Induced by Microcystis aeruginosa in a Mouse Model. Front Chem 2021; 9:660927. [PMID: 33937198 PMCID: PMC8079933 DOI: 10.3389/fchem.2021.660927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Microcystis aeruginosa is a cyanobacterium that produces a variety of cyclic heptapeptide toxins in freshwater. The protective effects of the macromolecular container cucurbit[7]uril (CB7) were evaluated using mouse models of cyanotoxin-induced liver damage. Biochemical analysis of liver function was performed to gauge the extent of liver damage after exposure to cyanobacterial crude extract [CCE; LD50 = 35 mg/kg body weight; intraperitoneal (i.p.)] in the absence or presence of CB7 (35 mg/kg body weight, i.p.). CCE injection resulted in liver enlargement, potentiated the activities of alanine aminotransferase (ALT) and glutathione S-transferase (GST), increased lipid peroxidation (LPO), and reduced protein phosphatase 1 (PP1) activity. CCE-induced liver enlargement, ALT and GST activities, and LPO were significantly reduced when CB7 was coadministered. Moreover, the CCE-induced decline of PP1 activity was also ameliorated in the presence of CB7. Treatment with CB7 alone did not affect liver function, which exhibited a dose tolerance of 100 mg/kg body wt. Overall, our results illustrated that the addition of CB7 significantly reduced CCE-induced hepatotoxicity (P < 0.05).
Collapse
Affiliation(s)
- Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates (UAE) University, Al Ain, United Arab Emirates
| | - Saad Al-Jassabi
- Faculty of Medicine, Unishams University, Kuala Ketil, Malaysia
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Werner M Nau
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
41
|
Bojadzija Savic G, Colinet H, Bormans M, Edwards C, Lawton LA, Briand E, Wiegand C. Cell free Microcystis aeruginosa spent medium affects Daphnia magna survival and stress response. Toxicon 2021; 195:37-47. [PMID: 33716069 DOI: 10.1016/j.toxicon.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/01/2022]
Abstract
Primary consumers in freshwater ecosystems, such as the zooplankton organism Daphnia magna, are highly affected by cyanobacteria, both as they may use it as a food source but also by cyanobacterial metabolites present in the water. Here, we investigate the impacts of cyanobacterial metabolites focussing on the environmental realistic scenario of the naturally released mixture without crushing cyanobacterial cells or their uptake as food. Therefore, D. magna were exposed to two concentrations of cell free cyanobacterial spent medium from Microcystis aeruginosa PCC 7806 to represent higher and lower ecologically-relevant concentrations of cyanobacterial metabolites. Including microcystin-LR, 11 metabolites have been detected of which 5 were quantified. Hypothesising concentration and time dependent negative impact, survival, gene expression marking digestion and metabolism, oxidative stress response, cell cycle and molting as well as activities of detoxification and antioxidant enzymes were followed for 7 days. D. magna suffered from oxidative stress as both catalase and glutathione S-transferase enzyme activities significantly decreased, suggesting enzyme exhaustibility after 3 and 7 days. Moreover, gene-expressions of the 4 stress markers (glutathione S-transferase, glutathione peroxidase, catalase and thioredoxin) were merely downregulated after 7 days of exposure. Energy allocation (expression of glyceraldehyde-3-phosphate dehydrogenase) was increased after 3 days but decreased as well after 7 days exposure. Cell cycle was impacted time dependently but differently by the two concentrations, along with an increasing downregulation of myosin heavy chain responsible for cell arrangement and muscular movements. Deregulation of nuclear hormone receptor genes indicate that D. magna hormonal steering including molting seemed impaired despite no detection of microviridin J in the extracts. As a consequence of all those responses and presumably of more than investigated molecular and physiological changes, D. magna survival was impaired over time, in a concentration dependent manner. Our results confirm that besides microcystin-LR, other secondary metabolites contribute to negative impact on D. magna survival and stress response.
Collapse
Affiliation(s)
| | - Hervé Colinet
- UMR ECOBIO, 6553 CNRS, Université de Rennes 1, Campus de Beaulieu, Rennes, France.
| | - Myriam Bormans
- UMR ECOBIO, 6553 CNRS, Université de Rennes 1, Campus de Beaulieu, Rennes, France.
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, United Kingdom.
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, United Kingdom.
| | - Enora Briand
- IFREMER, Phycotoxins Laboratory, F-44311, Nantes, France.
| | - Claudia Wiegand
- UMR ECOBIO, 6553 CNRS, Université de Rennes 1, Campus de Beaulieu, Rennes, France.
| |
Collapse
|
42
|
Camacho-Muñoz D, Waack J, Turner AD, Lewis AM, Lawton LA, Edwards C. Rapid uptake and slow depuration: Health risks following cyanotoxin accumulation in mussels? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116400. [PMID: 33421845 PMCID: PMC7859834 DOI: 10.1016/j.envpol.2020.116400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 12/25/2020] [Indexed: 05/04/2023]
Abstract
Freshwater cyanobacteria produce highly toxic secondary metabolites, which can be transported downstream by rivers and waterways into the sea. Estuarine and coastal aquaculture sites exposed to toxic cyanobacteria raise concerns that shellfish may accumulate and transfer cyanotoxins in the food web. This study aims to describe the competitive pattern of uptake and depuration of a wide range of microcystins (MC-LR, MC-LF, MC-LW, MC-LY, [Asp3]-MC-LR/[Dha7]-MC-LR, MC-HilR) and nodularins (NOD cyclic and linear) within the common blue mussel Mytilus edulis exposed to a combined culture of Microcystis aeruginosa and Nodularia spumigena into the coastal environment. Different distribution profiles of MCs/NODs in the experimental system were observed. The majority of MCs/NODs were present intracellularly which is representative of healthy cyanobacterial cultures, with MC-LR and NOD the most abundant analogues. Higher removal rate was observed for NOD (≈96%) compared to MCs (≈50%) from the water phase. Accumulation of toxins in M. edulis was fast, reaching up to 3.4 μg/g shellfish tissue four days after the end of the 3-days exposure period, with NOD (1.72 μg/g) and MC-LR (0.74 μg/g) as the dominant toxins, followed by MC-LF (0.35 μg/g) and MC-LW (0.31 μg/g). Following the end of the exposure period depuration was incomplete after 27 days (0.49 μg/g of MCs/NODs). MCs/NODs were also present in faecal material and extrapallial fluid after 24 h of exposure with MCs the main contributors to the total cyanotoxin load in faecal material and NOD in the extrapallial fluid. Maximum concentration of MCs/NODs accumulated in a typical portion of mussels (20 mussels, ≈4 g each) was beyond greater the acute, seasonal and lifetime tolerable daily intake. Even after 27 days of depuration, consuming mussels harvested during even short term harmful algae blooms in close proximity to shellfish beds might carry a high health risk, highlighting the need for testing.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| | - Julia Waack
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK; Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Adam M Lewis
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK
| |
Collapse
|
43
|
Yang GL, Huang MJ, Tan AJ, Lv SM. Joint effects of naphthalene and microcystin-LR on physiological responses and toxin bioaccumulation of Landoltia punctata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105710. [PMID: 33338701 DOI: 10.1016/j.aquatox.2020.105710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
The co-contamination of naphthalene (NAP) and microcystin-LR (MC-LR) commonly occurs in eutrophic waters. However, the joint effects of NAP and MC-LR on plants in aquatic environments remain unknown. Landoltia punctata is characterized by high starch yields and high biomass in polluted waters and has been proven to be a bioenergy crop and phytoremediation plant. In this study, L. punctata was cultured in a nutrient medium with environmentally relevant NAP (0.1, 1, 3, 5, and 10 μg/L) and MC-LR (5, 10, 25, 50, and 100 μg/L) to determine individual and joint toxic effects. The effects of NAP and MC-LR on physiological responses of L. punctata, including growth, starch accumulation, and antioxidant responses, were studied. Bioaccumulation of MC-LR in L. punctata, with or without NAP, was also examined. The results showed that growth and chlorophyll-a contents of L. punctata were reduced at high concentrations of MC-LR (≥ 25 μg/L), NAP (≥ 10 μg/L) and their mixture (≥ 10 + 1 μg/L) after exposure for 7 d. Starch accumulation in L. punctata did not decrease when exposed to NAP and MC-LR, and higher starch content of 29.8 % ± 2.7 % DW could be due to the destruction of starch-degrading enzymes. The antioxidant responses of L. punctata were stronger after exposure to MC-LR + NAP than when exposed to a single pollutant, although not enough to avoid oxidative damage. NAP enhanced the bioaccumulation of MC-LR in L. punctata when NAP concentration was higher than 5 μg/L, suggesting that higher potentials of MC-LR phytoremediation with L. punctata may be observed in NAP and MC-LR co-concomitant waters. This study provides theoretical support for the application of duckweed in eutrophic waters containing organic chemical pollutants.
Collapse
Affiliation(s)
- Gui-Li Yang
- College of Life Sciences, Guizhou University, Guiyang 550025, China; Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China.
| | - Meng-Jun Huang
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ai-Juan Tan
- College of Life Sciences, Guizhou University, Guiyang 550025, China; Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Shi-Ming Lv
- College of Animal Science, Guizhou University, Guiyang 50025, China.
| |
Collapse
|
44
|
Won EJ, Kim D, Yoo JW, In S, Shin KH, Lee YM. Oxidative stress responses in brackish water flea exposed to microcystin-LR and algal bloom waters from Nakdong River, Republic of Korea. MARINE POLLUTION BULLETIN 2021; 162:111868. [PMID: 33279800 DOI: 10.1016/j.marpolbul.2020.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Microcystis blooms and the impact of their toxins, particularly microcystin (MC), in coastal ecosystems is an emerging threat, but the species-specific effects of MC and the potential for bioconcentration are not fully understood. We exposed the brackish water flea, Diaphanosoma celebensis, to MC-LR, which showed antioxidant responses measured at the molecular to enzyme levels but no acute toxicity. We extended our experimental investigation to measure the released MC and its uptake by D. celebensis exposed to river water. In a short-term exposure (48 h) experiment, D. celebensis exposed to water from an algal bloom (approximately 2 μg L-1 MC) assimilated more than 50 pg MC per individual. The significant increase of MCs suggests the potential for the species to accumulate MCs. The dose-dependent increase in the antioxidant response observed in the mRNA levels also showed that D. celebensis exposed to diluted algal bloom waters were affected by toxins from cyanobacteria.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea; Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea.
| | - Dokyun Kim
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Soyeon In
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea; Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
45
|
Pan C, Zhang L, Meng X, Qin H, Xiang Z, Gong W, Luo W, Li D, Han X. Chronic exposure to microcystin-LR increases the risk of prostate cancer and induces malignant transformation of human prostate epithelial cells. CHEMOSPHERE 2021; 263:128295. [PMID: 33297237 DOI: 10.1016/j.chemosphere.2020.128295] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Microcystins-LR (MC-LR) acts as a possible carcinogen for humans and causes a serious risk to public environmental health. The current study aimed to evaluate the interaction between MC-LR exposure and prostate cancer development and elucidate the underlying mechanism. In this study, mice were exposed to MC-LR at various doses for 180 days. MC-LR was able to induce the progression of prostatic intraepithelial neoplasia (PIN) and microinvasion. Furthermore, MC-LR notably increased angiogenesis and susceptibility to prostate cancer in vivo. In vitro, over 25 weeks of MC-LR exposure, normal human prostate epithelial (RWPE-1) cells increased secretion of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and colony formation, features typical for cancer cells. These MC-LR-transformed prostate epithelial cells displayed increased expression of forkhead box M1 (FOXM1) and cyclooxygenase-2 (COX-2); abrogation of FOXM1 or COX-2 activity by specific inhibitors could abolish the invasion and migration of MC-LR-treated cells. In conclusion, we have provided compelling evidence demonstrating the induction of a malignant phenotype in human prostate epithelial cells and the in vivo development of prostate cancer by exposure to MC-LR, which might be a potential tumor promoter in the progression of prostate cancer.
Collapse
Affiliation(s)
- Chun Pan
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Ling Zhang
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Haixiang Qin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wenyue Gong
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Wenxin Luo
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
46
|
Gavrilović BR, Petrović TG, Radovanović TB, Despotović SG, Gavrić JP, Krizmanić II, Ćirić MD, Prokić MD. Hepatic oxidative stress and neurotoxicity in Pelophylax kl. esculentus frogs: Influence of long-term exposure to a cyanobacterial bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141569. [PMID: 32853936 DOI: 10.1016/j.scitotenv.2020.141569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Although the long-term exposure of aquatic organisms to cyanobacterial blooms is a regular occurrence in the environment, the prooxidant and neurotoxic effects of such conditions are still insufficiently investigated in situ. We examined the temporal dynamics of the biochemical parameters in the liver of Pelophylax kl. esculentus frogs that inhabit the northern (N) side of Lake Ludaš (Serbia) with microcystins (MCs) produced in a cyanobacterial bloom over three summer months. The obtained data were compared with data on frogs that live on the southern (S), MC-free side of the same lake. Our results showed that the MC-producing bloom induced oxidative damage to proteins and lipids, observed as a decrease in the concentration of protein -SH groups and increased lipid peroxidation (LPO) in the liver of N frogs in comparison to S frogs. Glutathione (GSH) played a key role in the transient defense against the MC-induced development of LPO. The low glutathione peroxidase (GPx) activity detected in all groups of frogs from the N site was crucial for the observed prooxidant consequences. The bloom impaired cholinergic homeostasis as a result of a decrease in ChE activity. A delayed neurotoxic effect in relation to the prooxidant outcomes was observed. Our results also showed that even though the integrated biomarker response (IBR) of the antioxidant biomarkers increased during exposure, the individual biochemical parameters did not exhibit a well-defined time-dependent pattern because of specific adaptation dynamics and/or additional effects of the physicochemical parameters of the water. This comprehensive environmental ecotoxicological evaluation of the cyanobacterial bloom-induced biochemical alterations in the liver of frogs provides a new basis for further investigations of the prolonged, real-life ecotoxicity of the blooms.
Collapse
Affiliation(s)
- Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Imre I Krizmanić
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Miloš D Ćirić
- Scientific Institution Institute of Chemistry, Technology and Metallurgy - National Institute, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
47
|
Physiological and antioxidant responses of Euryale ferox salisb seedlings to microcystins. Toxicon 2020; 190:50-57. [PMID: 33338447 DOI: 10.1016/j.toxicon.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/23/2020] [Accepted: 12/13/2020] [Indexed: 11/22/2022]
Abstract
Lake Taihu is the third largest freshwater lake located in eastern China. In recent years, it has experienced extensive cyanobacterial (Microcystis spp.) blooms that produce toxic microcystins (MCs), which may have acute and chronic hepatotoxic effects in animals and humans. Although the impact of MCs on both terrestrial and aquatic plants is well documented, the effects and underlying mechanisms of the harmful toxin MC-LR on Euryale ferox Salisb seedlings have rarely been reported. Thus, herein, the antioxidant response mechanisms and the biosynthesis of secondary metabolites during the exposure of E. ferox Salisb seedlings to varying MC-LR concentrations (0.05, 0.2, 1, and 5 μg/L) were thoroughly investigated after exposure periods (7, 14, 21 d). Our study revealed that the seedling growth was inhibited with increasing MC-LR exposure concentration that significantly induced at 1 μg/L and reached a maximum level at 5 μg/L, whereas the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in the seedling cells increased gradually with increasing MC-LR concentration and longer exposure time. The maximum malondialdehyde (MDA) content was 4.3-fold higher than that of the control group under an MC-LR concentration of 5.0 μg/L after 7 days of exposure treatment. The study of the seedling detoxification mechanism revealed that the content of total glutathione (tGSH) and reduced glutathione (GSH), as well as the activities of GSH sparse transferase (GST) and glutathione reductase (GR), increased to varying degrees and reached a maximum level at 1 μg/L. Therefore, the exposure to MC-LR can promote the accumulation of secondary metabolites and increase the activities of secondary metabolic enzymes in the seedlings. Further investigation of these antioxidative mechanisms will provide additional information for the identification and development of bio-indicators to evaluate the environmental impact of MCs on aquatic ecosystems.
Collapse
|
48
|
Liu Y, Yang M, Zheng L, Nguyen H, Ni L, Song S, Sui Y. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to toxic Microcystis aeruginosa and thermal stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140754. [PMID: 32758840 DOI: 10.1016/j.scitotenv.2020.140754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/20/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Harmful algal blooms (HABs) and thermal stress as climate changes become more common in global water ecosystem, especially under eutrophic habitats. Here our study examined the combined impacts of bloom forming cyanobacteria Microcystis aeruginosa and thermal stress on the antioxidant responses of the ecologically important species triangle sail mussel Hyriopsis cumingii. The differential responses of a series of enzymes, e.g. superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST), as well as signal metabolites including reactive oxygen species (ROS), malondialdehyde (MDA) and glutathione (GSH) involved in antioxidant defense mechanisms were analyzed during 14 d exposure to toxic cyanobacterium M. aeruginosa and 7 d depuration period. The activities of SOD and GPx as well as the content of ROS and MDA in H. cumingii increased, while CAT activity reduced due to M. aeruginosa exposure. Thermal stress resulted in decrease of CAT, the accumulation of GSH and the enhance of GST and SOD. Meanwhile, the interactive effects among M. aeruginosa, thermal stress and time were also observed on most parameters except for GST activity. The total amount of microcystins (MC) in sail mussels increased with concentrations of exposed M. aeruginosa, independently of the presence or absence of thermal stress. Although around 50% of MC in mussels dropped in the depuration period, most parameters showed alterations because of cyanobacteria exposure and thermal stress. Overall, these findings suggested that toxic cyanobacteria or thermal stress induces oxidative stress and severely affects the enzymes activities and intermediates level associated with antioxidant defense mechanisms in sail mussels respectively. More importantly, the toxic impacts on sail mussels could be intensified by their combination.
Collapse
Affiliation(s)
- Yimeng Liu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Min Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liang Zheng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Haidang Nguyen
- Research Institute for Aquaculture No.1, Bac Ninh 16315, Viet Nam
| | - Liangping Ni
- Yueqing Guangyu Biological Technology Co., LTD, Wenzhou 325608, China
| | - Shanshan Song
- King Abdullah University of Science and Technology, Thuwal 239556, Saudi Arabia.
| | - Yanming Sui
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Department of Ocean Technology, College of Chemistry and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
49
|
Zhou X, He Y, Li H, Wei Y, Zhao L, Yang G, Chen X. Using flocculation and subsequent biomanipulation to control microcystis blooms: A laboratory study. HARMFUL ALGAE 2020; 99:101917. [PMID: 33218442 DOI: 10.1016/j.hal.2020.101917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/27/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The frequent occurrence and long-term duration of Microcystis harmful algal blooms (HABs) are of great concern. Chemical flocculation is thought to be an effective way to deal with the HABs, while the application of the flocculants at a high dosage pose potential adverse impacts to the aquatic ecosystems. In this study, an alternative approach is proposed that involves the employment of polyaluminum chloride (PAC) combined with the Daphnia magna (D. magna) to achieve sustainable HABs removal efficiency with an acceptable ecological risk. It was found that under a dense Microcystis HABs (algal density of 1.5 × 107 cells/ml), a PAC dosage of 30 mg/l triggered >95% algae removal, but the released Al3+ caused 90% mortality of planktonic D. magna. Reducing the PAC dosage to 15 mg/l resulted in a slightly lower algal removal efficiency (>90%). In addition the reduced PAC dosage benefited the proliferation of the remaining unicellular algal cells, which tended to form a large colony during the 25-day experiment. Incubation of D. magna following flocculation with 15 mg/l PAC effectively grazed the remaining algal cells, meanwhile increasing the D. magna density by approximately 40-folds, and enlarging the body size by 1.37-1.50 times. This result implied that the released Al3+ was not detrimental to the D. magna. Flocculation with a reduced dosage is sufficient for colonial and large algal cells mitigation, which creates a window time for the biomanipulation of the residual tiny algae. Hence, the subsequent addition of D. magna triggered the sustainable removal of the HABs cells. The present study provides an environmentally friendly strategy for cleaning up the green tides without obvious detrimental effects on the aquatic ecosystem.
Collapse
Affiliation(s)
- Xin Zhou
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Lei Zhao
- The second Construction Engineering Co., Ltd of the third Bureau of China Construction Co., Ltd., Wuhan, China
| | - Guofeng Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xudong Chen
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
50
|
Schwarzenberger A, Kurmayer R, Martin-Creuzburg D. Toward Disentangling the Multiple Nutritional Constraints Imposed by Planktothrix: The Significance of Harmful Secondary Metabolites and Sterol Limitation. Front Microbiol 2020; 11:586120. [PMID: 33193235 PMCID: PMC7609654 DOI: 10.3389/fmicb.2020.586120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
The harmful bloom-forming cyanobacterium Planktothrix is commonly considered to be nutritionally inadequate for zooplankton grazers, resulting in limited top-down control. However, interactions between Planktothrix and zooplankton grazers are poorly understood. The food quality of Planktothrix is potentially constrained by morphological properties (i.e., filament formation), the production of harmful secondary metabolites, and a deficiency in essential lipids (i.e., primarily sterols). Here, we investigated the relative significance of toxin production (microcystins, carboxypeptidase A inhibitors, protease inhibitors) and sterol limitation for the performance of Daphnia feeding on one Planktothrix rubescens and one P. agardhii wild-type/microcystin knock-out mutant pair. Our data suggest that the poor food quality of both Planktothrix spp. is due to deleterious effects mediated by various harmful secondary metabolites and that the impact of sterol limitation is partially or completely superimposed by toxicity. The significance of the different factors seems to depend on the metabolite profile of the considered Planktothrix strain and the Daphnia clone that is used for the experiments. The toxin-responsive gene expression (transporter genes, gpx, and trypsin) and enzyme activity patterns revealed strain-specific food quality constraints and that Daphnia is capable of modulating its physiological responses according to the ingested Planktothrix strain. Future studies need to consider that Planktothrix-grazer interactions are simultaneously modulated by multiple factors to improve our understanding of top-down influences on Planktothrix bloom formation.
Collapse
Affiliation(s)
| | - Rainer Kurmayer
- Research Department for Limnology, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|