1
|
Moghadam FF, Guzman BEG, Zheng X, Parsa M, Hozyen LM, Dannenberg H. Cholinergic dynamics in the septo-hippocampal system provide phasic multiplexed signals for spatial novelty and correlate with behavioral states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634097. [PMID: 39896475 PMCID: PMC11785060 DOI: 10.1101/2025.01.21.634097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In the hippocampal formation, cholinergic modulation from the medial septum/diagonal band of Broca (MSDB) is known to correlate with the speed of an animal's movements at sub-second timescales and also supports spatial memory formation. Yet, the extent to which sub-second cholinergic dynamics, if at all, align with transient behavioral and cognitive states supporting the encoding of novel spatial information remains unknown. In this study, we used fiber photometry to record the temporal dynamics in the population activity of septo-hippocampal cholinergic neurons at sub-second resolution during a hippocampus-dependent object location memory task using ChAT-Cre mice. Using a general linear model, we quantified the extent to which cholinergic dynamics were explained by changes in movement speed, behavioral states such as locomotion, grooming, and rearing, and hippocampus-dependent cognitive states such as recognizing a novel location of a familiar object. The data show that cholinergic dynamics contain a multiplexed code of fast and slow signals i) coding for the logarithm of movement speed at sub-second timescales, ii) providing a phasic spatial novelty signal during the brief periods of exploring a novel object location, and iii) coding for environmental novelty at a seconds-long timescale. Furthermore, behavioral event-related phasic cholinergic activity around the onset and offset of the behavior demonstrates that fast cholinergic transients help facilitate a switch in cognitive and behavioral state before and during the onset of behavior. These findings enhance understanding of the mechanisms by which cholinergic modulation contributes to the coding of movement speed and encoding of novel spatial information.
Collapse
|
2
|
Jedrasiak-Cape I, Rybicki-Kler C, Brooks I, Ghosh M, Brennan EK, Kailasa S, Ekins TG, Rupp A, Ahmed OJ. Cell-type-specific cholinergic control of granular retrosplenial cortex with implications for angular velocity coding across brain states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597341. [PMID: 38895393 PMCID: PMC11185600 DOI: 10.1101/2024.06.04.597341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cholinergic receptor activation enables the persistent firing of cortical pyramidal neurons, providing a key cellular basis for theories of spatial navigation involving working memory, path integration, and head direction encoding. The granular retrosplenial cortex (RSG) is important for spatially-guided behaviors, but how acetylcholine impacts RSG neurons is unknown. Here, we show that a transcriptomically, morphologically, and biophysically distinct RSG cell-type - the low-rheobase (LR) neuron - has a very distinct expression profile of cholinergic muscarinic receptors compared to all other neighboring excitatory neuronal subtypes. LR neurons do not fire persistently in response to cholinergic agonists, in stark contrast to all other principal neuronal subtypes examined within the RSG and across midline cortex. This lack of persistence allows LR neuron models to rapidly compute angular head velocity (AHV), independent of cholinergic changes seen during navigation. Thus, LR neurons can consistently compute AHV across brain states, highlighting the specialized RSG neural codes supporting navigation.
Collapse
Affiliation(s)
| | - Chloe Rybicki-Kler
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Isla Brooks
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Megha Ghosh
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Ellen K.W. Brennan
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Sameer Kailasa
- Dept. of Mathematics, University of Michigan, Ann Arbor, MI 48109
| | - Tyler G. Ekins
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Alan Rupp
- Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Omar J. Ahmed
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
3
|
Kniffin A, Bangasser DA, Parikh V. Septohippocampal cholinergic system at the intersection of stress and cognition: Current trends and translational implications. Eur J Neurosci 2024; 59:2155-2180. [PMID: 37118907 PMCID: PMC10875782 DOI: 10.1111/ejn.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Deficits in hippocampus-dependent memory processes are common across psychiatric and neurodegenerative disorders such as depression, anxiety and Alzheimer's disease. Moreover, stress is a major environmental risk factor for these pathologies and it exerts detrimental effects on hippocampal functioning via the activation of hypothalamic-pituitary-adrenal (HPA) axis. The medial septum cholinergic neurons extensively innervate the hippocampus. Although, the cholinergic septohippocampal pathway (SHP) has long been implicated in learning and memory, its involvement in mediating the adaptive and maladaptive impact of stress on mnemonic processes remains less clear. Here, we discuss current research highlighting the contributions of cholinergic SHP in modulating memory encoding, consolidation and retrieval. Then, we present evidence supporting the view that neurobiological interactions between HPA axis stress response and cholinergic signalling impact hippocampal computations. Finally, we critically discuss potential challenges and opportunities to target cholinergic SHP as a therapeutic strategy to improve cognitive impairments in stress-related disorders. We argue that such efforts should consider recent conceptualisations on the dynamic nature of cholinergic signalling in modulating distinct subcomponents of memory and its interactions with cellular substrates that regulate the adaptive stress response.
Collapse
Affiliation(s)
- Alyssa Kniffin
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Debra A. Bangasser
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| |
Collapse
|
4
|
Chhabra S, Mehan S, Khan Z, Gupta GD, Narula AS. Matrine mediated neuroprotective potential in experimental multiple sclerosis: Evidence from CSF, blood markers, brain samples and in-silico investigations. J Neuroimmunol 2023; 384:578200. [PMID: 37774554 DOI: 10.1016/j.jneuroim.2023.578200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Multiple sclerosis (MS) is a debilitating, inflammatory, and demyelinating disease of the central nervous system influenced by environmental and genetic factors. Around 2.8 million people worldwide are affected by MS due to its challenging diagnosis and treatment. Our study investigates the role of the JAK/STAT and PPAR-gamma signaling pathways in the progression of multiple sclerosis. Inflammation and demyelination can be caused by dysregulation of these pathways. Modulating the STAT-3, mTOR, and PPAR-gamma signaling pathways may offer therapeutic potential for multiple sclerosis. Matrine (40 and 80 mg/kg, i.p.), a quinolizidine alkaloid derived from Sophora flavescens, has been investigated for its therapeutic potential in our laboratory. Matrine has been studied for its neuroprotective effect in neurodegenerative diseases. It inhibits inflammatory responses and promotes regeneration of damaged myelin sheaths, indicating its potential efficacy in treating multiple sclerosis. Matrine exerts its neuroprotective effect by inhibiting STAT-3 and mTOR and promoting PPAR-gamma expression.GW9662, a PPAR-gamma antagonist (2 mg/kg, i.p.), was administered to evaluate the involvement of PPAR-gamma and to compare the efficacy of matrine's potential neuroprotective effect. Matrine's interaction with the STAT-3, mTOR, and PPAR-gamma pathways in multiple Sclerosis was also validated and confirmed through insilico investigation. In addition, matrine altered the CBC profile, intensifying the clinical presentation of multiple sclerosis. In addition, we evaluated the diagnostic potential of various biological samples, including CSF, blood plasma, and brain homogenates (striatum, cortex, hippocampus, and midbrain). These samples were used to evaluate the neurochemical changes caused by neurobehavioral alterations during the progression of multiple sclerosis. These results indicate that matrine treatment ameliorated multiple sclerosis and that the mechanism underlying these effects may be closely related to the modulation of the STAT-3/mTOR/PPAR-gamma signaling pathway.
Collapse
Affiliation(s)
- Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
5
|
Mani V, Arfeen M, Dhaked DK, Mohammed HA, Amirthalingam P, Elsisi HA. Neuroprotective Effect of Methanolic Ajwa Seed Extract on Lipopolysaccharide-Induced Memory Dysfunction and Neuroinflammation: In Vivo, Molecular Docking and Dynamics Studies. PLANTS (BASEL, SWITZERLAND) 2023; 12:934. [PMID: 36840284 PMCID: PMC9964647 DOI: 10.3390/plants12040934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Islamic literature has indicated that daily consumption of Ajwa dates heals a variety of chronic diseases and disorders. The current research investigates the neuroprotective effect of methanolic Ajwa seed extract (MASE) on lipopolysaccharide (LPS)-induced cognitive deficits using multiple approaches. For animal studies, MASE (200 and 400 mg/kg, p.o.) was administrated for thirty consecutive days, and four doses of LPS (250 µg/kg, i.p.) were injected to induce neurotoxicity. Memory functions were evaluated using elevated plus-maze and novel object recognition tests. Acetylcholine (ACh) and neuroinflammatory markers (cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, and transforming growth factor (TGF)-β1) were estimated in brain tissues. Studies of molecular docking and dynamics were conducted to provide insight into the molecular-level mechanisms. MASE administration resulted in a significant reversal of LPS-induced memory impairment in both maze models. Both doses of MASE elevated the ACh levels in an LPS-treated rat brain. In addition, the extract lowered COX-2 and proinflammatory cytokines (TNF-α and IL-6) while increasing anti-inflammatory cytokines (IL-10 and TGF-β1) in LPS-treated brain tissues. Molecular modeling results revealed that the compound's ellagic acid, epicatechin, catechin, kaempferol, quercetin, and apigenin have the potential to act as a dual inhibitor of acetylcholinesterase (AChE) and COX-2 and can be responsible for the improvement of both cholinergic and inflammatory conditions, while the cinnamic acid, hesperidin, hesperetin, narengin, and rutin compounds are responsible only for the improvement of cholinergic transmission. The above compounds acted by interacting with the key residues Trp84, Asp72, Gly118, Ser200, Tyr334, and His440, which are responsible for the hydrolysis of ACh in AChE, while the COX-2 is inhibited by interacting with the residues (Val349, Leu352, Tyr355, Tyr385, Ala527, Ser530, and Leu531) of the hydrophobic channel. By promoting cholinergic activity and protecting neuroinflammation in the rat brain, MASE provides neuroprotection against LPS-induced cognitive deficits. Our preliminary findings will help with further drug discovery processes related to neuroinflammation-related neurodegeneration.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata 700054, India
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Palanisamy Amirthalingam
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Hossam A. Elsisi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
6
|
Sumi T, Harada K. Muscarinic acetylcholine receptor-dependent and NMDA receptor-dependent LTP and LTD share the common AMPAR trafficking pathway. iScience 2023; 26:106133. [PMID: 36866246 PMCID: PMC9972575 DOI: 10.1016/j.isci.2023.106133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/30/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The forebrain cholinergic system promotes higher brain function in part by signaling through the M1 muscarinic acetylcholine receptor (mAChR). Long-term potentiation (LTP) and long-term depression (LTD) of excitatory synaptic transmission in the hippocampus are also induced by mAChR. An AMPA receptor (AMPAR) trafficking model for hippocampal neurons has been proposed to simulate N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity in the early phase. In this study, we demonstrated the validity of the hypothesis that the mAChR-dependent LTP/LTD shares a common AMPAR trafficking pathway associated with NMDAR-dependent LTP/LTD. However, unlike NMDAR, Ca2+ influx into the spine cytosol occurs owing to the Ca2+ stored inside the ER and is induced via the activation of inositol 1,4,5-trisphosphate (IP3) receptors during M1 mAChR activation. Moreover, the AMPAR trafficking model implies that alterations in LTP and LTD observed in Alzheimer's disease could be attributed to age-dependent reductions in AMPAR expression levels.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Corresponding author
| | - Kouji Harada
- Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan
- Center for IT-Based Education, Toyohashi University of Technology, Tempaku-cho, Toyohashi, 441-8580, Japan
| |
Collapse
|
7
|
Kopsick JD, Hartzell K, Lazaro H, Nambiar P, Hasselmo ME, Dannenberg H. Temporal dynamics of cholinergic activity in the septo-hippocampal system. Front Neural Circuits 2022; 16:957441. [PMID: 36092276 PMCID: PMC9452968 DOI: 10.3389/fncir.2022.957441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cholinergic projection neurons in the medial septum and diagonal band of Broca are the major source of cholinergic modulation of hippocampal circuit functions that support neural coding of location and running speed. Changes in cholinergic modulation are known to correlate with changes in brain states, cognitive functions, and behavior. However, whether cholinergic modulation can change fast enough to serve as a potential speed signal in hippocampal and parahippocampal cortices and whether the temporal dynamics in such a signal depend on the presence of visual cues remain unknown. In this study, we use a fiber-photometric approach to quantify the temporal dynamics of cholinergic activity in freely moving mice as a function of the animal's movement speed and visual cues. We show that the population activity of cholinergic neurons in the medial septum and diagonal band of Broca changes fast enough to be aligned well with changes in the animal's running speed and is strongly and linearly correlated to the logarithm of the animal's running speed. Intriguingly, the cholinergic modulation remains strongly and linearly correlated to the speed of the animal's neck movements during periods of stationary activity. Furthermore, we show that cholinergic modulation is unaltered during darkness. Lastly, we identify rearing, a stereotypic behavior where the mouse stands on its hindlimbs to scan the environment from an elevated perspective, is associated with higher cholinergic activity than expected from neck movements on the horizontal plane alone. Taken together, these data show that temporal dynamics in the cholinergic modulation of hippocampal circuits are fast enough to provide a potential running speed signal in real-time. Moreover, the data show that cholinergic modulation is primarily a function of the logarithm of the animal's movement speed, both during locomotion and during stationary activity, with no significant interaction with visual inputs. These data advance our understanding of temporal dynamics in cholinergic modulation of hippocampal circuits and their functions in the context of neural coding of location and running speed.
Collapse
Affiliation(s)
- Jeffrey D. Kopsick
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| | - Kyle Hartzell
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
| | - Hallie Lazaro
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Pranav Nambiar
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Michael E. Hasselmo
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Holger Dannenberg
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| |
Collapse
|
8
|
Mani V, Arfeen M, Mohammed HA, Elsisi HA, Sajid S, Almogbel Y, Aldubayan M, Dhanasekaran M, Alhowail A. Sukkari dates seed improves type-2 diabetes mellitus-induced memory impairment by reducing blood glucose levels and enhancing brain cholinergic transmission: In vivo and molecular modeling studies. Saudi Pharm J 2022; 30:750-763. [PMID: 35812141 PMCID: PMC9257867 DOI: 10.1016/j.jsps.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Cognitive decline is one of the serious complications associated with diabetes mellitus (T2DM) of type-2. In this reported work, the effect of aqueous sukkari dates seed extract (ASSE) was evaluated in T2DM-induced rats. T2DM was induced using intraperitoneal injection of nicotinamide and streptozocin (STZ) administration. The diabetic rats were then treated orally with 200 mg/kg and 400 mg/kg of dates seed extract for 30 days and results were compared with metformin-treated groups. The memory functions were assessed using three maze models. Glucose and insulin levels in the blood and acetylcholine, acetylcholinesterase brain homogenates were estimated. The results showed a significant reduction in transfer latency (TL) (p < 0.001) during the elevated plus maze (EPM) test. The novel object recognition (NOR) test revealed a longer exploration time (p > 0.05) with novel objects and a higher discrimination index (p > 0.05). The Y-maze test also showed a significant increase in the number of entries to the novel arm (p > 0.05) and the total number of entries in the trial (p > 0.01) as well as in test (p > 0.05) sessions. Reduction in blood glucose (p > 0.05) and improvement in blood insulin (p > 0.05) levels were also noted. Improvement in ACh levels (p > 0.001) with 400 mg/kg of ASSE and reduction in AChE (p > 0.001) with both doses of ASSE were also observed in the brain homogenates. The results of ASSE were found comparable with the metformin-treated rats. The estimation of phytochemical constituents displayed a significant presence of phenolic content. Further, molecular modeling studies showed ellagic acid, catechin, and epicatechin as the potential molecule interacting with GSK-3β, α-amylase, and AChE and may be responsible for observed bioactivity. In conclusion, ASSE has the ability to alleviate T2DM-related cognitive impairments.
Collapse
|
9
|
Mani V, Arfeen M, Sajid S, Almogbel Y. Aqueous Ajwa dates seeds extract improves memory impairment in type-2 diabetes mellitus rats by reducing blood glucose levels and enhancing brain cholinergic transmission. Saudi J Biol Sci 2022; 29:2738-2748. [PMID: 35531250 PMCID: PMC9072939 DOI: 10.1016/j.sjbs.2021.12.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 01/17/2023] Open
Abstract
Diabetes is a metabolic disorder prevalent across the globe and is known to cause brain dysfunction, especially memory and cognitive decline. The current study investigates the effect of aqueous Ajwa seeds extract (AASE) on type-2 diabetes mellitus (T2DM)-induced memory deficits using a rat model. T2DM was induced by an administration of nicotinamide (120 mg/kg, i.p.) and streptozotocin (STZ) (60 mg/kg, i.p.). AASE (200 and 400 mg/kg, p.o.) were treated to T2DM rats for 30 days and the results were compared with the metformin (200 mg/kg). Elevated plus maze (EPM), Y-maze, and novel object recognition (NOR) tests were performed to assess the memory functions. The blood glucose and plasma insulin levels were estimated to assess the anti-diabetic effects of AASE. Acetylcholine (ACh) and acetylcholinesterase (AChE) levels were estimated from brain homogenates to assess cholinergic transmission. Treatment with AASE resulted in the reversal of behavioral deficits. EPM showed, a significant reduction in transfer latency (TL) among T2DM rats. High exploration time with a novel object and improvement in discrimination index were observed among treated groups during the NOR test. The Y-Maze test improved the entries and also time spent in the novel arm. Moreover, treatment of AASE reversed hyperglycemic and enhanced plasma insulin levels (200 mg/kg: 3.81 ± 0.08 ng/ml and 400 mg/kg: 4.09 ± 0.10 ng/ml) among T2DM rats (2.81 ± 0.15 ng/ml). Improved ACh levels (200 mg/kg: 186.6 ± 9.51 pg/mg protein and 400 mg/kg: 165.5 ± 9.25 pg/mg protein) and reduced AChE levels (200 mg/kg: 0.29 ± 0.02 ng/mg protein and 400 mg/kg: 0.32 ± 0.03 ng/mg protein) were also noted in the brain of AASE treated groups as referred to diabetic group (ACh: 107.1 ± 7.16 pg/mg protein and AChE: 0.51 ± 0.03 ng/mg protein). The above results were found to be comparable with the metformin-treated groups. From the results, it can be concluded that AASE has the potential to improve T2DM associated cognitive deficits.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
- Corresponding author at: Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia.
| | - Sultan Sajid
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Yasser Almogbel
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Noschang C, Krolow R, Arcego DM, Marcolin M, Ferreira AG, da Cunha AA, Wyse ATS, Dalmaz C. Early-life stress affects behavioral and neurochemical parameters differently in male and female juvenile Wistar rats. Int J Dev Neurosci 2020; 80:547-557. [PMID: 32683715 DOI: 10.1002/jdn.10050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/14/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Neonatal handling is an early life stressor that leads to behavioral and neurochemical changes in adult rats in a sex-specific manner and possibly affects earlier stages of development. Here, we investigated the effects of neonatal handling (days 1-10 after birth) on juvenile rats focusing on biochemical parameters and olfactory memory after weaning. Male neonatal handled rats performed more crossings on the hole-board task, increased Na+ /K+ -ATPase activity in the olfactory bulb, and decreased acetylcholinesterase activity in the hippocampus versus non-handled males. Female neonatal handled animals increased the number of rearing and nose-pokes on the hole-board task, decreased glutathione peroxidase activity, and total thiol content in the hippocampus versus non-handled females. This study reinforces that early life stress affects behavioral and neurochemical parameters in a sex-specific manner even before the puberty onset.
Collapse
Affiliation(s)
- C Noschang
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R Krolow
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - D M Arcego
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M Marcolin
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - A G Ferreira
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - A A da Cunha
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - A T S Wyse
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - C Dalmaz
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
11
|
Mergenthal AR, Bouteiller JMC, Berger TW. Cholinergic Modulation of CA1 Pyramidal Cells via M1 Muscarinic Receptor Activation: A Computational Study at Physiological and Supraphysiological Levels. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1396-1399. [PMID: 30440653 DOI: 10.1109/embc.2018.8512574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The hippocampus receives extensive cholinergic modulation from the basal forebrain, which has been shown to have a prominent role in attention, learning, and synaptic plasticity. Disruptions of this modulation have been linked to a variety of neural disorders including Alzheimer's Disease. Pyramidal cells of the CA1 region of the hippocampus express several cholinergic receptor types in different locations throughout the cells' morphology. Developing a computational model of these cells and their modulation provides a unique opportunity to explore how each receptor type alters the overall computational role of the cell. To this end we implemented a kinetic model of the most widely distributed receptor type, the M1 muscarinic receptor and examined its role on excitation of a compartmental model of a CA1 pyramidal cell. We demonstrate that the proposed model replicates the increased pyramidal cell excitability seen in experimental results. We then used the model to replicate the effect of organophosphates, a class of pesticides and chemical weapons, whose effects consist in inhibiting the hydrolysis of acetylcholine; we demonstrated the effect of increasing concentrations of acetylcholine on the pyramidal cell's excitability. The cell model we implemented and its associated modulation constitute a basis for exploring the effects of cholinergic modulation in a large scale network model of the hippocampus both under physiological and supraphysiological levels.
Collapse
|
12
|
Effects of cafeteria diet on memory and hippocampal oxidative stress in a rat model of Alzheimer-like disease: Neuroprotection of green tea supplementation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Zannone S, Brzosko Z, Paulsen O, Clopath C. Acetylcholine-modulated plasticity in reward-driven navigation: a computational study. Sci Rep 2018; 8:9486. [PMID: 29930322 PMCID: PMC6013476 DOI: 10.1038/s41598-018-27393-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/29/2018] [Indexed: 11/08/2022] Open
Abstract
Neuromodulation plays a fundamental role in the acquisition of new behaviours. In previous experimental work, we showed that acetylcholine biases hippocampal synaptic plasticity towards depression, and the subsequent application of dopamine can retroactively convert depression into potentiation. We also demonstrated that incorporating this sequentially neuromodulated Spike-Timing-Dependent Plasticity (STDP) rule in a network model of navigation yields effective learning of changing reward locations. Here, we employ computational modelling to further characterize the effects of cholinergic depression on behaviour. We find that acetylcholine, by allowing learning from negative outcomes, enhances exploration over the action space. We show that this results in a variety of effects, depending on the structure of the model, the environment and the task. Interestingly, sequentially neuromodulated STDP also yields flexible learning, surpassing the performance of other reward-modulated plasticity rules.
Collapse
Affiliation(s)
- Sara Zannone
- Imperial College London, Department of Bioengineering, South Kensington Campus, London, United Kingdom
| | - Zuzanna Brzosko
- University of Cambridge, Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Ole Paulsen
- University of Cambridge, Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Claudia Clopath
- Imperial College London, Department of Bioengineering, South Kensington Campus, London, United Kingdom.
| |
Collapse
|
14
|
Microdialysis and its use in behavioural studies: Focus on acetylcholine. J Neurosci Methods 2018; 300:206-215. [DOI: 10.1016/j.jneumeth.2017.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 12/28/2022]
|
15
|
Dannenberg H, Young K, Hasselmo M. Modulation of Hippocampal Circuits by Muscarinic and Nicotinic Receptors. Front Neural Circuits 2017; 11:102. [PMID: 29321728 PMCID: PMC5733553 DOI: 10.3389/fncir.2017.00102] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
This article provides a review of the effects of activation of muscarinic and nicotinic receptors on the physiological properties of circuits in the hippocampal formation. Previous articles have described detailed computational hypotheses about the role of cholinergic neuromodulation in enhancing the dynamics for encoding in cortical structures and the role of reduced cholinergic modulation in allowing consolidation of previously encoded information. This article will focus on addressing the broad scope of different modulatory effects observed within hippocampal circuits, highlighting the heterogeneity of cholinergic modulation in terms of the physiological effects of activation of muscarinic and nicotinic receptors and the heterogeneity of effects on different subclasses of neurons.
Collapse
Affiliation(s)
- Holger Dannenberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Kimberly Young
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Michael Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
16
|
Maurer SV, Williams CL. The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells. Front Immunol 2017; 8:1489. [PMID: 29167670 PMCID: PMC5682336 DOI: 10.3389/fimmu.2017.01489] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Degeneration of central cholinergic neurons impairs memory, and enhancement of cholinergic synapses improves cognitive processes. Cholinergic signaling is also anti-inflammatory, and neuroinflammation is increasingly linked to adverse memory, especially in Alzheimer's disease. Much of the evidence surrounding cholinergic impacts on the neuroimmune system focuses on the α7 nicotinic acetylcholine (ACh) receptor, as stimulation of this receptor prevents many of the effects of immune activation. Microglia and astrocytes both express this receptor, so it is possible that some cholinergic effects may be via these non-neuronal cells. Though the presence of microglia is required for memory, overactivated microglia due to an immune challenge overproduce inflammatory cytokines, which is adverse for memory. Blocking these exaggerated effects, specifically by decreasing the release of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6), has been shown to prevent inflammation-induced memory impairment. While there is considerable evidence that cholinergic signaling improves memory, fewer studies have linked the "cholinergic anti-inflammatory pathway" to memory processes. This review will summarize the current understanding of the cholinergic anti-inflammatory pathway as it relates to memory and will argue that one mechanism by which the cholinergic system modulates hippocampal memory processes is its influence on neuroimmune function via the α7 nicotinic ACh receptor.
Collapse
Affiliation(s)
- Sara V. Maurer
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Christina L. Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
17
|
Correa-Netto NF, Coelho LS, Galfano GS, Nishide F, Tamura F, Shimizu MK, Santos JG, Linardi A. Chronic intermittent exposure to ayahuasca during aging does not affect memory in mice. Braz J Med Biol Res 2017; 50:e6037. [PMID: 28591380 PMCID: PMC5463533 DOI: 10.1590/1414-431x20176037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/11/2017] [Indexed: 11/22/2022] Open
Abstract
The Quechua term ayahuasca refers to a beverage obtained from decoctions of the liana Banisteriopsis caapi with leaves of Psychotria viridis. The ritualistic use of ayahuasca is becoming a global phenomenon, with some individuals using this beverage throughout life, including in old age. Cognitive impairment is a common manifestation during aging. There are conflicting reports on the ability of some ayahuasca compounds to exert neuroprotective or neurotoxic effects that could improve or impair learning and memory. Animal models provide a relevant and accessible means of investigating the behavioral effects of ayahuasca without the environmental conditions associated with the ritualistic use of the beverage. In this study, we investigated the influence of chronic ayahuasca exposure throughout aging on the spatial reference and habituation memories of mice. Twenty-eight male c57bl/6 mice (6 months old) received ayahuasca or water (1.5 mL/kg, orally) twice a week for 12 months and were tested in the Morris water maze (MWM), open field and elevated plus maze (EPM) tasks before and after treatment. During aging, there was significant impairment in the evocation (but not acquisition) of spatial reference memory and in habituation to the open field. There was also a decrease in locomotor activity in the open field and EPM tests, whereas the anxiety parameters were unaltered. Ayahuasca treatment did not alter any of these parameters associated with aging. These findings indicate that chronic exposure to ayahuasca during aging did not affect memory in mice.
Collapse
Affiliation(s)
- N F Correa-Netto
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - L S Coelho
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - G S Galfano
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - F Nishide
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - F Tamura
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - M K Shimizu
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - J G Santos
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - A Linardi
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
18
|
Dendritic GIRK Channels Gate the Integration Window, Plateau Potentials, and Induction of Synaptic Plasticity in Dorsal But Not Ventral CA1 Neurons. J Neurosci 2017; 37:3940-3955. [PMID: 28280255 DOI: 10.1523/jneurosci.2784-16.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/28/2017] [Accepted: 03/04/2017] [Indexed: 01/05/2023] Open
Abstract
Studies comparing neuronal activity at the dorsal and ventral poles of the hippocampus have shown that the scale of spatial information increases and the precision with which space is represented declines from the dorsal to ventral end. These dorsoventral differences in neuronal output and spatial representation could arise due to differences in computations performed by dorsal and ventral CA1 neurons. In this study, we tested this hypothesis by quantifying the differences in dendritic integration and synaptic plasticity between dorsal and ventral CA1 pyramidal neurons of rat hippocampus. Using a combination of somatic and dendritic patch-clamp recordings, we show that the threshold for LTP induction is higher in dorsal CA1 neurons and that a G-protein-coupled inward-rectifying potassium channel mediated regulation of dendritic plateau potentials and dendritic excitability underlies this gating. By contrast, similar regulation of LTP is absent in ventral CA1 neurons. Additionally, we show that generation of plateau potentials and LTP induction in dorsal CA1 neurons depends on the coincident activation of Schaffer collateral and temporoammonic inputs at the distal apical dendrites. The ventral CA1 dendrites, however, can generate plateau potentials in response to temporally dispersed excitatory inputs. Overall, our results highlight the dorsoventral differences in dendritic computation that could account for the dorsoventral differences in spatial representation.SIGNIFICANCE STATEMENT The dorsal and ventral parts of the hippocampus encode spatial information at very different scales. Whereas the place-specific firing fields are small and precise at the dorsal end of the hippocampus, neurons at the ventral end have comparatively larger place fields. Here, we show that the dorsal CA1 neurons have a higher threshold for LTP induction and require coincident timing of excitatory synaptic inputs for the generation of dendritic plateau potentials. By contrast, ventral CA1 neurons can integrate temporally dispersed inputs and have a lower threshold for LTP. Together, these dorsoventral differences in the threshold for LTP induction could account for the differences in scale of spatial representation at the dorsal and ventral ends of the hippocampus.
Collapse
|
19
|
Forced Treadmill Exercise Prevents Spatial Memory Deficits in Aged Rats Probably Through the Activation of Na+, K+-ATPase in the Hippocampus. Neurochem Res 2017; 42:1422-1429. [DOI: 10.1007/s11064-017-2196-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 01/13/2023]
|
20
|
The atypical antipsychotic olanzapine disturbs depotentiation by modulating mAChRs and impairs reversal learning. Neuropharmacology 2016; 114:1-11. [PMID: 27866902 DOI: 10.1016/j.neuropharm.2016.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/13/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022]
Abstract
Antipsychotic medication is an essential component for treating schizophrenia, which is a serious mental disorder that affects approximately 1% of the global population. Olanzapine (Olz), one of the most frequently prescribed atypical antipsychotics, is generally considered a first-line drug for treating schizophrenia. In contrast to psychotic symptoms, the effects of Olz on cognitive symptoms of schizophrenia are still unclear. In addition, the mechanisms by which Olz affects the neural circuits associated with cognitive function are unknown. Here we show that Olz interrupts depotentiation (reversal of long-term potentiation) without disturbing de novo LTP (long-term potentiation) and LTD (long-term depression). At hippocampal SC-CA1 synapses, inhibition of NMDARs (N-methyl-d-aspartate receptors), mGluRs (metabotropic glutamate receptors), or mAChRs (muscarinic acetylcholine receptors) disrupted depotentiation. In addition, co-activation of NMDARs, mGluRs, and mAChRs reversed stably expressed LTP. Olz inhibits the activation of mAChRs, which amplifies glutamate signaling through enhanced NMDAR opening and Gq (Gq class of G protein)-mediated signal transduction. Behaviorally, Olz impairs spatial reversal learning of mice in the Morris water maze test. Our results uncover a novel mechanism underpinning the cognitive modulation of Olz and show that the anticholinergic property of Olz affects glutamate signaling and synaptic plasticity.
Collapse
|
21
|
Dannenberg H, Hinman JR, Hasselmo ME. Potential roles of cholinergic modulation in the neural coding of location and movement speed. ACTA ACUST UNITED AC 2016; 110:52-64. [PMID: 27677935 DOI: 10.1016/j.jphysparis.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/06/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022]
Abstract
Behavioral data suggest that cholinergic modulation may play a role in certain aspects of spatial memory, and neurophysiological data demonstrate neurons that fire in response to spatial dimensions, including grid cells and place cells that respond on the basis of location and running speed. These neurons show firing responses that depend upon the visual configuration of the environment, due to coding in visually-responsive regions of the neocortex. This review focuses on the physiological effects of acetylcholine that may influence the sensory coding of spatial dimensions relevant to behavior. In particular, the local circuit effects of acetylcholine within the cortex regulate the influence of sensory input relative to internal memory representations via presynaptic inhibition of excitatory and inhibitory synaptic transmission, and the modulation of intrinsic currents in cortical excitatory and inhibitory neurons. In addition, circuit effects of acetylcholine regulate the dynamics of cortical circuits including oscillations at theta and gamma frequencies. These effects of acetylcholine on local circuits and network dynamics could underlie the role of acetylcholine in coding of spatial information for the performance of spatial memory tasks.
Collapse
Affiliation(s)
- Holger Dannenberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| | - James R Hinman
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
22
|
Activation of endocannabinoid system in the rat basolateral amygdala improved scopolamine-induced memory consolidation impairment. Behav Brain Res 2016; 311:183-191. [DOI: 10.1016/j.bbr.2016.05.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 12/28/2022]
|
23
|
Knudstrup S, Zochowski M, Booth V. Network burst dynamics under heterogeneous cholinergic modulation of neural firing properties and heterogeneous synaptic connectivity. Eur J Neurosci 2016; 43:1321-39. [PMID: 26869313 DOI: 10.1111/ejn.13210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/19/2016] [Accepted: 02/08/2016] [Indexed: 01/16/2023]
Abstract
The characteristics of neural network activity depend on intrinsic neural properties and synaptic connectivity in the network. In brain networks, both of these properties are critically affected by the type and levels of neuromodulators present. The expression of many of the most powerful neuromodulators, including acetylcholine (ACh), varies tonically and phasically with behavioural state, leading to dynamic, heterogeneous changes in intrinsic neural properties and synaptic connectivity properties. Namely, ACh significantly alters neural firing properties as measured by the phase response curve in a manner that has been shown to alter the propensity for network synchronization. The aim of this simulation study was to build an understanding of how heterogeneity in cholinergic modulation of neural firing properties and heterogeneity in synaptic connectivity affect the initiation and maintenance of synchronous network bursting in excitatory networks. We show that cells that display different levels of ACh modulation have differential roles in generating network activity: weakly modulated cells are necessary for burst initiation and provide synchronizing drive to the rest of the network, whereas strongly modulated cells provide the overall activity level necessary to sustain burst firing. By applying several quantitative measures of network activity, we further show that the existence of network bursting and its characteristics, such as burst duration and intraburst synchrony, are dependent on the fraction of cell types providing the synaptic connections in the network. These results suggest mechanisms underlying ACh modulation of brain oscillations and the modulation of seizure activity during sleep states.
Collapse
Affiliation(s)
- Scott Knudstrup
- Department of Mathematics, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, USA
| | - Michal Zochowski
- Department of Physics and Biophysics Program, University of Michigan, 450 Church St, Ann Arbor, MI, 48109, USA
| | - Victoria Booth
- Department of Mathematics, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
CDRI-08 Attenuates REST/NRSF-Mediated Expression of NMDAR1 Gene in PBDE-209-Exposed Mice Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:403840. [PMID: 26413122 PMCID: PMC4564648 DOI: 10.1155/2015/403840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/16/2015] [Accepted: 02/22/2015] [Indexed: 11/17/2022]
Abstract
CDRI-08 is a standardized bacoside enriched ethanolic extract of Bacopa monnieri, a nootropic plant. We reported that CDRI-08 attenuated oxidative stress and memory impairment in mice, induced by a flame retardant, PBDE-209. In order to explore the mechanism, present study was designed to examine the role of CDRI-08 on the expression of NMDAR1 (NR1) and the binding of REST/NRSF to NR1 promoter against postnatal exposure of PBDE-209. Male mice pups were orally supplemented with CDRI-08 at the doses of 40, 80, or 120 mg/kg along with PBDE-209 (20 mg/kg) during PND 3–10 and frontal cortex and hippocampus were collected at PND 11 and 60 to study the expression and regulation of NR1 by RT-PCR and electrophoretic mobility shift assay, respectively. The findings showed upregulated expression of NR1 and decreased binding of REST/NRSF to NR1 promoter after postnatal exposure of PBDE-209. Interestingly, supplementation with CDRI-08 significantly restored the expression of NR1 and binding of REST/NRSF to NR1 promoter near to the control value at the dose of 120 mg/kg. In conclusion, the results suggest that CDRI-08 possibly acts on glutamatergic system through expression and regulation of NR1 and may restore memory, impaired by PBDE-209 as reported in our previous study.
Collapse
|
25
|
Molecular and Functional Characterization of Bacopa monniera: A Retrospective Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:945217. [PMID: 26413131 PMCID: PMC4564644 DOI: 10.1155/2015/945217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/24/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022]
Abstract
Over the last 50 years, laboratories around the world analyzed the pharmacological effect of Bacopa monniera extract in different dimensions, especially as a nerve tonic and memory enhancer. Studies in animal model evidenced that Bacopa treatment can attenuate dementia and enhances memory. Further, they demonstrate that Bacopa primarily either acts via antioxidant mechanism (i.e., neuroprotection) or alters different neurotransmitters (serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA), acetylcholine (ACh), γ-aminobutyric acid (GABA)) to execute the pharmacological effect. Among them, 5-HT has been shown to fine tune the neural plasticity, which is a substrate for memory formation. This review focuses on the studies which trace the effect of Bacopa treatment on serotonergic system and 5-HT mediated key molecular changes that are associated with memory formation.
Collapse
|
26
|
Sambeth A, Riedel WJ, Klinkenberg I, Kähkönen S, Blokland A. Biperiden selectively induces memory impairment in healthy volunteers: no interaction with citalopram. Psychopharmacology (Berl) 2015; 232:1887-97. [PMID: 25466702 DOI: 10.1007/s00213-014-3822-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/14/2014] [Indexed: 12/24/2022]
Abstract
RATIONALE Traditionally, the non-selective muscarinic antagonist scopolamine has been used to induce episodic memory impairments as found in Alzheimer's disease (AD). However, it also impairs attention and induces drowsiness. Muscarinic antagonists more selective for the M1 receptor might, therefore, be preferred. OBJECTIVES We examined the effects of the M1 antagonist biperiden on cognitive functions in order to test the specificity of this drug on memory performance. Additionally, we assessed whether the selective serotonin re-uptake inhibitor citalopram can reverse a possible biperiden-induced impairment. METHODS The study was conducted according to a double-blind, placebo-controlled, four-way cross-over design. Sixteen volunteers received biperiden (2 mg), citalopram (20 mg), a combination of the two, or a placebo in counterbalanced order with a washout of at least 4 days. Cognitive tests (verbal memory, continuous recognition memory, spatial memory, choice reaction) were performed 4 and 1 h after treatment with citalopram and biperiden, respectively. RESULTS Biperiden impaired memory performance in the verbal learning task, the continuous recognition memory test, and the spatial memory task. Effects on attention and side effects, as measured using the choice reaction time test and questionnaires respectively, could be neglected. Citalopram did not affect any of the memory or attention measures taken. Most importantly, citalopram was also unable to reverse the biperiden-induced memory impairments. CONCLUSIONS Our results, thus, show that the M1 antagonist biperiden may serve as a translational model to induce episodic memory deficits as seen in AD. However, the interactive influence of acetylcholine and serotonin on memory could not be confirmed.
Collapse
Affiliation(s)
- Anke Sambeth
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands,
| | | | | | | | | |
Collapse
|
27
|
Hawley WR, Witty CF, Daniel JM, Dohanich GP. Choline acetyltransferase in the hippocampus is associated with learning strategy preference in adult male rats. Behav Brain Res 2015; 289:118-24. [PMID: 25930215 DOI: 10.1016/j.bbr.2015.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 03/21/2015] [Accepted: 04/20/2015] [Indexed: 12/24/2022]
Abstract
One principle of the multiple memory systems hypothesis posits that the hippocampus-based and striatum-based memory systems compete for control over learning. Consistent with this notion, previous research indicates that the cholinergic system of the hippocampus plays a role in modulating the preference for a hippocampus-based place learning strategy over a striatum-based stimulus--response learning strategy. Interestingly, in the hippocampus, greater activity and higher protein levels of choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine, are associated with better performance on hippocampus-based learning and memory tasks. With this in mind, the primary aim of the current study was to determine if higher levels of ChAT and the high-affinity choline uptake transporter (CHT) in the hippocampus were associated with a preference for a hippocampus-based place learning strategy on a task that also could be solved by relying on a striatum-based stimulus--response learning strategy. Results confirmed that levels of ChAT in the dorsal region of the hippocampus were associated with a preference for a place learning strategy on a water maze task that could also be solved by adopting a stimulus-response learning strategy. Consistent with previous studies, the current results support the hypothesis that the cholinergic system of the hippocampus plays a role in balancing competition between memory systems that modulate learning strategy preference.
Collapse
Affiliation(s)
- Wayne R Hawley
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA.
| | - Christine F Witty
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| | - Jill M Daniel
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA; Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| | - Gary P Dohanich
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA; Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
28
|
Giovannini MG, Lana D, Pepeu G. The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory. Neurobiol Learn Mem 2015; 119:18-33. [PMID: 25595880 DOI: 10.1016/j.nlm.2014.12.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 11/28/2022]
Abstract
The purpose of this review is to summarize the present knowledge on the interplay among the cholinergic system, Extracellular signal-Regulated Kinase (ERK) and Mammalian Target of Rapamycin (mTOR) pathways in the development of short and long term memories during the acquisition and recall of the step-down inhibitory avoidance in the hippocampus. The step-down inhibitory avoidance is a form of associative learning that is acquired in a relatively simple one-trial test through several sensorial inputs. Inhibitory avoidance depends on the integrated activity of hippocampal CA1 and other brain areas. Recall can be performed at different times after acquisition, thus allowing for the study of both short and long term memory. Among the many neurotransmitter systems involved, the cholinergic neurons that originate in the basal forebrain and project to the hippocampus are of crucial importance in inhibitory avoidance processes. Acetylcholine released from cholinergic fibers during acquisition and/or recall of behavioural tasks activates muscarinic and nicotinic acetylcholine receptors and brings about a long-lasting potentiation of the postsynaptic membrane followed by downstream activation of intracellular pathway (ERK, among others) that create conditions favourable for neuronal plasticity. ERK appears to be salient not only in long term memory, but also in the molecular mechanisms underlying short term memory formation in the hippocampus. Since ERK can function as a biochemical coincidence detector in response to extracellular signals in neurons, the activation of ERK-dependent downstream effectors is determined, in part, by the duration of ERK phosphorylation itself. Long term memories require protein synthesis, that in the synapto-dendritic compartment represents a direct mechanism that can produce rapid changes in protein content in response to synaptic activity. mTOR in the brain regulates protein translation in response to neuronal activity, thereby modulating synaptic plasticity and long term memory formation. Some studies demonstrate a complex interplay among the cholinergic system, ERK and mTOR. It has been shown that co-activation of muscarinic acetylcholine receptors and β-adrenergic receptors facilitates the conversion of short term to long term synaptic plasticity through an ERK- and mTOR-dependent mechanism which requires translation initiation. It seems therefore that the complex interplay among the cholinergic system, ERK and mTOR is crucial in the development of new inhibitory avoidance memories in the hippocampus.
Collapse
Affiliation(s)
- Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Giancarlo Pepeu
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
29
|
Mitsushima D. Contextual Learning Requires Functional Diversity at Excitatory and Inhibitory Synapses onto CA1 Pyramidal Neurons. AIMS Neurosci 2015. [DOI: 10.3934/neuroscience.2015.1.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Çalışkan G, Schulz SB, Gruber D, Behr J, Heinemann U, Gerevich Z. Corticosterone and corticotropin-releasing factor acutely facilitate gamma oscillations in the hippocampus in vitro. Eur J Neurosci 2014; 41:31-44. [PMID: 25306895 DOI: 10.1111/ejn.12750] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 09/06/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022]
Abstract
Stressful experiences do not only cause peripheral changes in stress hormone levels, but also affect central structures such as the hippocampus, implicated in spatial orientation, stress evaluation, and learning and memory. It has been suggested that formation of memory traces is dependent on hippocampal gamma oscillations observed during alert behaviour and rapid eye movement sleep. Furthermore, during quiescent behaviour, sharp wave-ripple (SW-R) activity emerges. These events provide a temporal window during which reactivation of memory ensembles occur. We hypothesized that stress-responsive modulators, such as corticosterone (CORT), corticotropin-releasing factor (CRF) and the neurosteroid 3α, 21-dihydroxy-5α-pregnan-20-one (THDOC) are able to modulate gamma oscillations and SW-Rs. Using in vitro hippocampal slices, we studied acute and subacute (2 h) impact of these agents on gamma oscillations in area cornu ammonis 3 of the ventral hippocampus induced by acetylcholine (10 μm) combined with physostigmine (2 μm). CORT increased the gamma oscillations in a dose-dependent fashion. This effect was mediated by glucocorticoid receptors. Likewise, CRF augmented gamma oscillations via CRF type 1 receptor. Lastly, THDOC was found to diminish cholinergic gamma oscillations in a dose-dependent manner. Neither CORT, CRF nor THDOC modulated gamma power when pre-applied for 1 h, 2 h before the induction of gamma oscillations. Interestingly, stress-related neuromodulators had rather mild effects on spontaneous SW-R compared with their effects on gamma oscillations. These data suggest that the alteration of hippocampal gamma oscillation strength in vitro by stress-related agents is an acute process, permitting fast adaptation to new attention-requiring situations in vivo.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Gomar A, Hosseini A, Mirazi N. Evaluation ofSalvia officinalis L. (sage) leaves on morphine-induced memory impairment in adult male rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/fct.12132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ali Gomar
- Department of Biology; Faculty of Basic Science; Bu-Ali Sina University; Hamedan Iran
| | - Abdolkarim Hosseini
- Department of Biology; Faculty of Basic Science; Bu-Ali Sina University; Hamedan Iran
| | - Naser Mirazi
- Department of Biology; Faculty of Basic Science; Bu-Ali Sina University; Hamedan Iran
| |
Collapse
|
32
|
Hassanpoor H, Fallah A, Raza M. Mechanisms of hippocampal astrocytes mediation of spatial memory and theta rhythm by gliotransmitters and growth factors. Cell Biol Int 2014; 38:1355-66. [PMID: 24947407 DOI: 10.1002/cbin.10326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022]
Abstract
Our knowledge about encoding and maintenance of spatial memory emphasizes the integrated functional role of the grid cells and the place cells of the hippocampus in the generation of theta rhythm in spatial memory formation. However, the role of astrocytes in these processes is often underestimated in their contribution to the required structural and functional characteristics of hippocampal neural network operative in spatial memory. We show that hippocampal astrocytes, by the secretion of gliotransmitters, such as glutamate, d-serine, and ATP and growth factors such as BDNF and by the expression of receptors and channels such as those of TNFα and aquaporin, have several diverse fuctions in spatial memory. We specifically focus on the role of astrocytes on five phases of spatial memory: (1) theta rhythm generation, (2) theta phase precession, (3) formation of spatial memory by mapping data of entorhinal grid cells into the place cells, (4) storage of spatial information, and (5) maintenance of spatial memory. Finally, by reviewing the literature, we propose specific mechanisms mentioned in the form of a hypothesis suggesting that astrocytes are important in spatial memory formation.
Collapse
Affiliation(s)
- Hossein Hassanpoor
- Department of Bioelectrics, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, IR, Iran
| | | | | |
Collapse
|
33
|
Gomar A, Hosseini A, Mirazi N. Memory enhancement by administration of ginger (Zingiber officinale) extract on morphine-induced memory impairment in male rats. JOURNAL OF ACUTE DISEASE 2014. [DOI: 10.1016/s2221-6189(14)60047-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Hippocampal long term memory: Effect of the cholinergic system on local protein synthesis. Neurobiol Learn Mem 2013; 106:246-57. [DOI: 10.1016/j.nlm.2013.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 11/23/2022]
|
35
|
Brain enhancing ingredients from Āyurvedic medicine: quintessential example of Bacopa monniera, a narrative review. Nutrients 2013; 5:478-97. [PMID: 23389306 PMCID: PMC3635207 DOI: 10.3390/nu5020478] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/30/2012] [Accepted: 12/06/2012] [Indexed: 11/16/2022] Open
Abstract
Āyurveda, the science (ved) of life (ayu), owing its origin to Veda, the oldest recorded wisdom of human civilization written in 3500 BCE, contains extensive knowledge of various diseases and their therapeutic approaches. It essentially relied on nature and the immune system of an individual, and therapeutic interventions were introduced only to augment the immune system. Āyurveda had eight specialties, including psycho-neuroscience (a combination of psychology, clinical psychology and psychiatry) and a unique promotive therapy encompassing nutrition, rejuvenation and geriatrics. The symptoms of various brain disorders, including memory disorder, were well defined. The goal of Āyurveda was to help an individual to achieve his cherished goal of leading a healthy life of 100 years. To achieve this, great emphasis was laid on nutrition, diet and a good conduct by the two great exponents of Āyurveda viz. Carak and Suśruta. By following these regimens, an individual could lead a less stressful life free from emotional disturbances. Both Carak and Suśruta had believed that these in combination with rasayana (rejuvenating) plants could enable an individual to lead a healthy life of 100 years.
Collapse
|
36
|
Pavlovsky L, Bitan Y, Shalev H, Serlin Y, Friedman A. Stress-induced altered cholinergic–glutamatergic interactions in the mouse hippocampus. Brain Res 2012; 1472:99-106. [DOI: 10.1016/j.brainres.2012.05.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/12/2012] [Accepted: 05/31/2012] [Indexed: 12/29/2022]
|
37
|
Choline dietary supplementation improves LiCl-induced context aversion retention in adult rats. Physiol Behav 2012; 106:451-6. [DOI: 10.1016/j.physbeh.2012.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 02/13/2012] [Accepted: 03/05/2012] [Indexed: 01/08/2023]
|
38
|
Piechal A, Blecharz-Klin K, Wyszogrodzka E, Kołomańska P, Rok-Bujko P, Krząścik P, Kostowski W, Widy-Tyszkiewicz E, Filip M, Stefański R. Neonatal serotonin (5-HT) depletion does not affect spatial learning and memory in rats. Pharmacol Rep 2012; 64:266-74. [DOI: 10.1016/s1734-1140(12)70764-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 11/21/2011] [Indexed: 01/28/2023]
|
39
|
Zingiber officinale Improves Cognitive Function of the Middle-Aged Healthy Women. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:383062. [PMID: 22235230 PMCID: PMC3253463 DOI: 10.1155/2012/383062] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022]
Abstract
The development of cognitive enhancers from plants possessing antioxidants has gained much attention due to the role of oxidative stress-induced cognitive impairment. Thus, this study aimed to determine the effect of ginger extract, or Zingiber officinale, on the cognitive function of middle-aged, healthy women. Sixty participants were randomly assigned to receive a placebo or standardized plant extract at doses of 400 and 800 mg once daily for 2 months. They were evaluated for working memory and cognitive function using computerized battery tests and the auditory oddball paradigm of event-related potentials at three different time periods: before receiving the intervention, one month, and two months. We found that the ginger-treated groups had significantly decreased P300 latencies, increased N100 and P300 amplitudes, and exhibited enhanced working memory. Therefore, ginger is a potential cognitive enhancer for middle-aged women.
Collapse
|
40
|
Itou Y, Nochi R, Kuribayashi H, Saito Y, Hisatsune T. Cholinergic activation of hippocampal neural stem cells in aged dentate gyrus. Hippocampus 2011; 21:446-59. [PMID: 20054812 DOI: 10.1002/hipo.20761] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adult hippocampal neurogenesis contributes to the hippocampal circuit's role in cognitive functioning. New neurons are generated from hippocampal neural stem cells (NSCs) throughout life, but their generation is substantially diminished in aged animals due to a decrease in NSC proliferation. Because acetylcholine (ACh) is an important neurotransmitter released in the hippocampus during learning and exercise that is known to decrease with aging, we investigated whether aged NSCs can respond to ACh. In this study, we found that cholinergic stimulation has a positive effect on NSC proliferation in both young adult (8-12 weeks old) and aged mice (>2 years old). In fresh hippocampal slices, we observed a rapid calcium increase in NSCs in the dentate gyrus after muscarinic cholinergic stimulation, in both age groups. Furthermore, we found that the exercise-induced promotion of aged NSC proliferation was abrogated by the specific lesioning of the septal cholinergic system. In turn, cholinergic activation by either eserine (physostigmine) or donepezil treatment promoted the proliferation of NSCs in aged mice. These results indicate that NSCs respond to cholinergic stimulation by proliferating in aged animals. Physiological and/or pharmacological cholinergic stimulation(s) may ameliorate cognitive decline in aged animals, by supporting adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Yoshie Itou
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | |
Collapse
|
41
|
Deiana S, Platt B, Riedel G. The cholinergic system and spatial learning. Behav Brain Res 2011; 221:389-411. [DOI: 10.1016/j.bbr.2010.11.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 12/30/2022]
|
42
|
Ferreira AGK, Scherer EB, da Cunha MJ, Machado FR, Cunha AAD, Graeff JS, Netto CA, Wyse ATS. Physical exercise reverses cognitive impairment in rats subjected to experimental hyperprolinemia. Neurochem Res 2011; 36:2306-15. [PMID: 21792675 DOI: 10.1007/s11064-011-0555-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 12/20/2022]
Abstract
This study investigated whether physical exercise would reverse proline-induced performance deficits in water maze tasks, as well as its effects on brain-derived neurotrophic factor (BDNF) immunocontent and brain acetylcholinesterase (AChE) activity in Wistar rats. Proline administration followed partial time (6th-29th day of life) or full time (6th-60th day of life) protocols. Treadmill exercise was performed from 30th to 60th day of life, when behavioral testing was started. After that, animals were sacrificed for BDNF and AChE determination. Results show that proline impairs cognitive performance, decreases BDNF in cerebral cortex and hippocampus and increases AChE activity in hippocampus. All reported effects were prevented by exercise. These results suggest that cognitive, spatial learning/memory, deficits caused by hyperprolinemia may be associated, at least in part, to the decrease in BDNF levels and to the increase in AChE activity, as well as support the role of physical exercise as a potential neuroprotective strategy.
Collapse
Affiliation(s)
- Andréa G K Ferreira
- Laboratório de Neuroproteção e Doença Metabólica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Attenuation of 1-(m-chlorophenyl)-biguanide induced hippocampus-dependent memory impairment by a standardised extract of Bacopa monniera (BESEB CDRI-08). Neurochem Res 2011; 36:2136-44. [PMID: 21735137 DOI: 10.1007/s11064-011-0538-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2011] [Indexed: 10/25/2022]
Abstract
Bacopa monniera is a well-known medhya-rasayana (memory enhancing and rejuvenating) plant in Indian traditional medical system of Ayurveda. The effect of a standardized extract of Bacopa monniera (BESEB CDRI-08) on serotonergic receptors and its influence on other neurotransmitters during hippocampal-dependent learning was evaluated in the present study. Wistar rat pups received a single dose of BESEB CDRI-08 during postnatal days 15-29 showed higher latency during hippocampal-dependent learning accompanied with enhanced 5HT(3A) receptor expression, serotonin and acetylcholine levels in hippocampus. Furthermore, 5HT(3A) receptor agonist 1-(m-chlorophenyl)-biguanide (mCPBG) impaired learning in the passive avoidance task followed by reduction of 5HT(3A) receptor expression, 5HT and ACh levels. Administration of BESEB CDRI-08 along with mCPBG attenuated mCPBG induced behavioral, molecular and neurochemical alterations. Our results suggest that BESEB CDRI-08 possibly acts on serotonergic system, which in turn influences the cholinergic system through 5-HT(3) receptor to improve the hippocampal-dependent task.
Collapse
|
44
|
Meneses A, Perez-Garcia G, Ponce-Lopez T, Tellez R, Castillo C. Serotonin transporter and memory. Neuropharmacology 2011; 61:355-63. [PMID: 21276807 DOI: 10.1016/j.neuropharm.2011.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/15/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
The serotonin transporter (SERT) has been associated to diverse functions and diseases, though seldom to memory. Therefore, we made an attempt to summarize and discuss the available publications implicating the involvement of the SERT in memory, amnesia and anti-amnesic effects. Evidence indicates that Alzheimer's disease and drugs of abuse like d-methamphetamine (METH) and (+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") have been associated to decrements in the SERT expression and memory deficits. Several reports have indicated that memory formation and amnesia affected the SERT expression. The SERT expression seems to be a reliable neural marker related to memory mechanisms, its alterations and potential treatment. The pharmacological, neural and molecular mechanisms associated to these changes are of great importance for investigation.
Collapse
Affiliation(s)
- Alfredo Meneses
- Depto. de Farmacobiología, CINVESTAV-IPN, Tenorios 235, Granjas Coapa, Mexico City 14330, Mexico.
| | | | | | | | | |
Collapse
|
45
|
Mitsushima D. Sex differences in the septo-hippocampal cholinergic system in rats: behavioral consequences. Curr Top Behav Neurosci 2011; 8:57-71. [PMID: 21769723 DOI: 10.1007/7854_2010_95] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The hippocampus is processing temporal and spatial information in particular contexts or episodes. Using freely moving rats, we monitored extracellular levels of acetylcholine (ACh), a critical neurotransmitter activating hippocampal circuits. We found that the ACh release in the dorsal hippocampus increases during the period of learning or exploration, exhibiting a sex-specific 24-h release profile. Moreover, neonatal increase in circulating androgen not only androgenizes behavioral and hormonal features, but also produces male-type ACh release profile after the development. The results suggest neonatal sexual differentiation of septo-hippocampal cholinergic system. Environmental conditions (such as stress, housing or food) of animals further affected the ACh release.Although recent advances of neuroscience successfully revealed molecular/cellular mechanism of learning and memory, most research were performed using male animals at specific time period. Sex-specific or time-dependent hippocampal functions are still largely unknown.
Collapse
Affiliation(s)
- Dai Mitsushima
- Department of Physiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawaku, Yokohama, 236-0004, Japan.
| |
Collapse
|
46
|
Weijenberg R, Scherder E, Lobbezoo F. Mastication for the mind—The relationship between mastication and cognition in ageing and dementia. Neurosci Biobehav Rev 2011; 35:483-97. [DOI: 10.1016/j.neubiorev.2010.06.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 06/05/2010] [Accepted: 06/08/2010] [Indexed: 01/14/2023]
|
47
|
Spatiotemporal coupling between hippocampal acetylcholine release and theta oscillations in vivo. J Neurosci 2010; 30:13431-40. [PMID: 20926669 DOI: 10.1523/jneurosci.1144-10.2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Both acetylcholine (ACh) and theta oscillations are important for learning and memory, but the dynamic interaction between these two processes remains unclear. Recent advances in amperometry techniques have revealed phasic ACh releases in vivo. However, it is unknown whether phasic ACh release co-occurs with theta oscillations. We investigated this issue in the CA1 region of urethane-anesthetized male rats using amperometric and electrophysiological recordings. We found that ACh release was highly correlated with the appearance of both spontaneous and induced theta oscillations. Moreover, the maximal ACh release was observed around or slightly above the pyramidal layer. Interestingly, such release lagged behind theta initiation by 25-60 s. The slow ACh release profile was matched by the slow firing rate increase of a subset of medial-septal low-firing-rate neurons. Together, these results establish, for the first time, the in vivo coupling between phasic ACh release and theta oscillations on spatiotemporal scales much finer than previously known. These findings also suggest that phasic ACh is not required for theta initiation and may instead operate synergistically with theta oscillations to promote neural plasticity in the service of learning and memory.
Collapse
|
48
|
Azami NS, Piri M, Oryan S, Jahanshahi M, Babapour V, Zarrindast MR. Involvement of dorsal hippocampal α-adrenergic receptors in the effect of scopolamine on memory retrieval in inhibitory avoidance task. Neurobiol Learn Mem 2010; 93:455-62. [DOI: 10.1016/j.nlm.2010.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 01/02/2010] [Accepted: 01/06/2010] [Indexed: 11/26/2022]
|
49
|
Gonadal hormones modulate the potency of the disruptive effects of donepezil in male rats responding under a nonspatial operant learning and performance task. Behav Pharmacol 2010; 21:121-34. [PMID: 20177375 DOI: 10.1097/fbp.0b013e328337be3a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In contrast to estrogen in female rats, testosterone in male rats may decrease cholinergic activity in the brain, thereby attenuating behaviors mediated by the cholinergic system. To investigate this possibility, the interactive effects of the gonadal hormones and donepezil, an acetylcholinesterase (AChE) inhibitor, on the responding of male rats were examined under a multiple schedule of repeated acquisition and performance of response sequences and on AChE activity in specific brain regions. Donepezil dose-effect curves (0.56-10 mg/kg) were determined in males that were gonadally intact, gonadectomized (GX), GX with testosterone replacement (GX+T) or GX with estradiol replacement (GX+E). In all four groups, donepezil produced dose-dependent rate-decreasing and error-increasing effects in the acquisition and performance components. However, disruptions of response rate and accuracy in both components occurred at lower doses in GX and GX+E males than in intact males. The GX+E males also had the highest percentage of errors under control (saline) conditions in the acquisition components. In terms of AChE activity, GX males had higher levels in the prefrontal cortex, striatum and hippocampus, but lower levels in the midbrain, compared with intact males; hypothalamic and cortical levels were comparable for the GX and intact groups. Together, these results in male rats indicate that the potency of donepezil's disruptive effects on the responding under a complex operant procedure requiring learning and performance of response sequences depends upon the gonadal hormone status, and that the effects of testosterone on cholinergic activity vary among brain regions.
Collapse
|
50
|
Mitsushima D. Sex Steroids and Acetylcholine Release in the Hippocampus. HORMONES OF THE LIMBIC SYSTEM 2010; 82:263-77. [DOI: 10.1016/s0083-6729(10)82014-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|