1
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Le T Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yana D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Denis O Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Naudi-Fabra S, Elena-Real CA, Vedel IM, Tengo M, Motzny K, Jiang PL, Schmieder P, Liu F, Milles S. An extended interaction site determines binding between AP180 and AP2 in clathrin mediated endocytosis. Nat Commun 2024; 15:5884. [PMID: 39003270 PMCID: PMC11246429 DOI: 10.1038/s41467-024-50212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
The early phases of clathrin mediated endocytosis are organized through a highly complex interaction network mediated by clathrin associated sorting proteins (CLASPs) that comprise long intrinsically disordered regions (IDRs). AP180 is a CLASP exclusively expressed in neurons and comprises a long IDR of around 600 residues, whose function remains partially elusive. Using NMR spectroscopy, we discovered an extended and strong interaction site within AP180 with the major adaptor protein AP2, and describe its binding dynamics at atomic resolution. We find that the 70 residue-long site determines the overall interaction between AP180 and AP2 in a dynamic equilibrium between its bound and unbound states, while weaker binding sites contribute to the overall affinity at much higher concentrations of AP2. Our data suggest that this particular interaction site might play a central role in recruitment of adaptors to the clathrin coated pit, whereas more transient and promiscuous interactions allow reshaping of the interaction network until cargo uptake inside a coated vesicle.
Collapse
Affiliation(s)
- Samuel Naudi-Fabra
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Carlos A Elena-Real
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Ida Marie Vedel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Maud Tengo
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Kathrin Motzny
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Pin-Lian Jiang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Sigrid Milles
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France.
| |
Collapse
|
3
|
Dali R, Estrada-Meza J, Langlet F. Tanycyte, the neuron whisperer. Physiol Behav 2023; 263:114108. [PMID: 36740135 DOI: 10.1016/j.physbeh.2023.114108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Reciprocal communication between neurons and glia is essential for normal brain functioning and adequate physiological functions, including energy balance. In vertebrates, the homeostatic process that adjusts food intake and energy expenditure in line with physiological requirements is tightly controlled by numerous neural cell types located within the hypothalamus and the brainstem and organized in complex networks. Within these neural networks, peculiar ependymoglial cells called tanycytes are nowadays recognized as multifunctional players in the physiological mechanisms of appetite control, partly by modulating orexigenic and anorexigenic neurons. Here, we review recent advances in tanycytes' impact on hypothalamic neuronal activity, emphasizing on arcuate neurons.
Collapse
Affiliation(s)
- Rafik Dali
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Judith Estrada-Meza
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Fanny Langlet
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
4
|
Insights of Endocytosis Signaling in Health and Disease. Int J Mol Sci 2023; 24:ijms24032971. [PMID: 36769293 PMCID: PMC9918140 DOI: 10.3390/ijms24032971] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Endocytosis in mammalian cells is a fundamental cellular machinery that regulates vital physiological processes, such as the absorption of metabolites, release of neurotransmitters, uptake of hormone cellular defense, and delivery of biomolecules across the plasma membrane. A remarkable characteristic of the endocytic machinery is the sequential assembly of the complex proteins at the plasma membrane, followed by internalization and fusion of various biomolecules to different cellular compartments. In all eukaryotic cells, functional characterization of endocytic pathways is based on dynamics of the protein complex and signal transduction modules. To coordinate the assembly and functions of the numerous parts of the endocytic machinery, the endocytic proteins interact significantly within and between the modules. Clathrin-dependent and -independent endocytosis, caveolar pathway, and receptor mediated endocytosis have been attributed to a greater variety of physiological and pathophysiological roles such as, autophagy, metabolism, cell division, apoptosis, cellular defense, and intestinal permeabilization. Notably, any defect or alteration in the endocytic machinery results in the development of pathological consequences associated with human diseases such as cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. In this review, an in-depth endeavor has been made to illustrate the process of endocytosis, and associated mechanisms describing pathological manifestation associated with dysregulated endocytosis machinery.
Collapse
|
5
|
Endocytosis of LXRs: Signaling in liver and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:347-375. [PMID: 36631198 DOI: 10.1016/bs.pmbts.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nuclear receptors are among one of the major transcriptional factors that induces gene regulation in the nucleus. Liver X receptor (LXR) is a transcription factor which regulates essential lipid homeostasis in the body including fatty acid, cholesterol and phospholipid synthesis. Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer is activated by either of the ligand binding on LXR or RXR. The promoter region of the gene which is targeted by LXR is bound to the response element of LXR. The activators bind to the heterodimer once the corepressor is dissociated. The cellular process such as endocytosis aids in intracellular trafficking and endosomal formation in transportation of molecules for essential signaling within the cell. LXR isotypes play a crucial role in maintaining lipid homeostasis by regulating the level of cholesterol. In the liver, the deficiency of LXRα can alter the normal physiological conditions depicting the symptoms of various cardiovascular and liver diseases. LXR can degrade low density lipoprotein receptors (LDLR) by the signaling of LXR-IDOL through endocytic trafficking in lipoprotein uptake. Various gene expressions associated with cholesterol level and lipid synthesis are regulated by LXR transcription factor. With its known diversified ligand binding, LXR is capable of regulating expression of various specific genes responsible for the progression of autoimmune diseases. The agonists and antagonists of LXR stand to be an important factor in transcription of the ABC family, essential for high density lipoprotein (HDL) formation. Endocytosis and signaling mechanism of the LXR family is broad and complex despite their involvement in cellular growth and proliferation. Here in this chapter, we aimed to emphasize the master regulation of LXR activation, regulators, and their implications in various metabolic activities especially in lipid homeostasis. Furthermore, we also briefed the significant role of LXR endocytosis in T cell immune regulation and a variety of human diseases including cardiovascular and neuroadaptive.
Collapse
|
6
|
Sharma P, Sharma BS, Raval H, Singh V. Endocytosis of GABA receptor: Signaling in nervous system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:125-139. [PMID: 36813355 DOI: 10.1016/bs.pmbts.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
GABA (ᵞ-aminobutyric acid), is the principal neurotransmitter known for its inhibitory role in chemical synapses. Being localized primarily in the central nervous system (CNS) it maintains a balance between excitatory (regulated by another neurotransmitter, glutamate) and inhibitory impulses. GABA acts by binding to their specific receptors GABAA and GABAB when released into the post-synaptic nerve terminal. Both of these receptors are responsible for fast and slow inhibition of neurotransmission, respectively. GABAA is a ligand-gated ionopore receptor which opens the Cl- ion channel and decreases the resting potential of the membrane resulting into inhibition of the synapse. On the other hand, GABAB is a metabotropic receptor which increases the K+ ion levels preventing Ca+ ion release inhibiting the release of other neurotransmitters into the presynaptic membrane. The internalization and trafficking of these receptors is also conducted through distinct pathways and mechanism, discussed in detail in the chapter. Without the desired levels of GABA in the body, the psychological and neurological states of brain get hard to maintain. Various neurodegenerative diseases/disorders have been associated to low levels of GABA, such as anxiety, mood disorders, fear, schizophrenia, hungtington's chorea, seizures, epilepsy, etc. The allosteric sites present on GABA receptors have been proved to be potent drug targets to pacify the pathological states of these brain related disorders to an extent. Further in depth studies focussing on the subtypes of GABA receptors and their comprehensive mechanism are required to explore new drug targets and therapeutic avenues for effectual management of GABA related neurological diseases.
Collapse
Affiliation(s)
- Preeti Sharma
- Shree Vipratech Diagnostics, Dehgam, Gujarat, India.
| | - B Sharan Sharma
- Rivaara Labs, KD Hospital, Vaishnodevi Circle, Ahmedabad, Gujarat, India
| | - Hardik Raval
- Shree Vipratech Diagnostics, Dehgam, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
7
|
Bending over backwards: BAR proteins and the actin cytoskeleton in mammalian receptor-mediated endocytosis. Eur J Cell Biol 2022; 101:151257. [PMID: 35863103 DOI: 10.1016/j.ejcb.2022.151257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
The role of the actin cytoskeleton during receptor-mediated endocytosis (RME) has been well characterized in yeast for many years. Only more recently has the interplay between the actin cytoskeleton and RME been extensively explored in mammalian cells. These studies have revealed the central roles of BAR proteins in RME, and have demonstrated significant roles of BAR proteins in linking the actin cytoskeleton to this cellular process. The actin cytoskeleton generates and transmits mechanical force to promote the extension of receptor-bound endocytic vesicles into the cell. Many adaptor proteins link and regulate the actin cytoskeleton at the sites of endocytosis. This review will cover key effectors, adaptors and signalling molecules that help to facilitate the invagination of the cell membrane during receptor-mediated endocytosis, including recent insights gained on the roles of BAR proteins. The final part of this review will explore associations of alterations to genes encoding BAR proteins with cancer.
Collapse
|
8
|
Yang HQ, Echeverry FA, ElSheikh A, Gando I, Anez Arredondo S, Samper N, Cardozo T, Delmar M, Shyng SL, Coetzee WA. Subcellular trafficking and endocytic recycling of K ATP channels. Am J Physiol Cell Physiol 2022; 322:C1230-C1247. [PMID: 35508187 PMCID: PMC9169827 DOI: 10.1152/ajpcell.00099.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Sarcolemmal/plasmalemmal ATP-sensitive K+ (KATP) channels have key roles in many cell types and tissues. Hundreds of studies have described how the KATP channel activity and ATP sensitivity can be regulated by changes in the cellular metabolic state, by receptor signaling pathways and by pharmacological interventions. These alterations in channel activity directly translate to alterations in cell or tissue function, that can range from modulating secretory responses, such as insulin release from pancreatic β-cells or neurotransmitters from neurons, to modulating contractile behavior of smooth muscle or cardiac cells to elicit alterations in blood flow or cardiac contractility. It is increasingly becoming apparent, however, that KATP channels are regulated beyond changes in their activity. Recent studies have highlighted that KATP channel surface expression is a tightly regulated process with similar implications in health and disease. The surface expression of KATP channels is finely balanced by several trafficking steps including synthesis, assembly, anterograde trafficking, membrane anchoring, endocytosis, endocytic recycling, and degradation. This review aims to summarize the physiological and pathophysiological implications of KATP channel trafficking and mechanisms that regulate KATP channel trafficking. A better understanding of this topic has potential to identify new approaches to develop therapeutically useful drugs to treat KATP channel-related diseases.
Collapse
Affiliation(s)
- Hua-Qian Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China
| | | | - Assmaa ElSheikh
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Ivan Gando
- Department of Pathology, NYU School of Medicine, New York, New York
| | | | - Natalie Samper
- Department of Pathology, NYU School of Medicine, New York, New York
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - Mario Delmar
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
- Department of Medicine, NYU School of Medicine, New York, New York
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| | - William A Coetzee
- Department of Pathology, NYU School of Medicine, New York, New York
- Department of Neuroscience & Physiology, NYU School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
9
|
Moulton MJ, Barish S, Ralhan I, Chang J, Goodman LD, Harland JG, Marcogliese PC, Johansson JO, Ioannou MS, Bellen HJ. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer's disease-associated genes. Proc Natl Acad Sci U S A 2021; 118:e2112095118. [PMID: 34949639 PMCID: PMC8719885 DOI: 10.1073/pnas.2112095118] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
A growing list of Alzheimer's disease (AD) genetic risk factors is being identified, but the contribution of each variant to disease mechanism remains largely unknown. We have previously shown that elevated levels of reactive oxygen species (ROS) induces lipid synthesis in neurons leading to the sequestration of peroxidated lipids in glial lipid droplets (LD), delaying neurotoxicity. This neuron-to-glia lipid transport is APOD/E-dependent. To identify proteins that modulate these neuroprotective effects, we tested the role of AD risk genes in ROS-induced LD formation and demonstrate that several genes impact neuroprotective LD formation, including homologs of human ABCA1, ABCA7, VLDLR, VPS26, VPS35, AP2A, PICALM, and CD2AP Our data also show that ROS enhances Aβ42 phenotypes in flies and mice. Finally, a peptide agonist of ABCA1 restores glial LD formation in a humanized APOE4 fly model, highlighting a potentially therapeutic avenue to prevent ROS-induced neurotoxicity. This study places many AD genetic risk factors in a ROS-induced neuron-to-glia lipid transfer pathway with a critical role in protecting against neurotoxicity.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jinlan Chang
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Jake G Harland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | | | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030;
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston TX 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
10
|
Trofimenko E, Homma Y, Fukuda M, Widmann C. The endocytic pathway taken by cationic substances requires Rab14 but not Rab5 and Rab7. Cell Rep 2021; 37:109945. [PMID: 34731620 DOI: 10.1016/j.celrep.2021.109945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/23/2021] [Accepted: 10/13/2021] [Indexed: 02/01/2023] Open
Abstract
Endocytosis and endosome dynamics are controlled by proteins of the small GTPase Rab family. Besides possible recycling routes to the plasma membrane and various organelles, previously described endocytic pathways (e.g., clathrin-mediated endocytosis, macropinocytosis, CLIC/GEEC pathway) all appear to funnel the endocytosed material to Rab5-positive early endosomes that then mature into Rab7-positive late endosomes/lysosomes. By studying the uptake of a series of cell-penetrating peptides (CPPs), we identify an endocytic pathway that moves material to nonacidic Lamp1-positive late endosomes. Trafficking via this endocytic route is fully independent of Rab5 and Rab7 but requires the Rab14 protein. The pathway taken by CPPs differs from the conventional Rab5-dependent endocytosis at the stage of vesicle formation already, as it is not affected by a series of compounds that inhibit macropinocytosis or clathrin-mediated endocytosis. The Rab14-dependent pathway is also used by physiological cationic molecules such as polyamines and homeodomains found in homeoproteins.
Collapse
Affiliation(s)
- Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Wang J, Lai X, Yao S, Chen H, Cai J, Luo Y, Wang Y, Qiu Y, Huang Y, Wei X, Wang B, Lu Q, Guan Y, Wang T, Li S, Xiang AP. Nestin promotes pulmonary fibrosis via facilitating recycling of TGF-β receptor I. Eur Respir J 2021; 59:13993003.03721-2020. [PMID: 34625478 PMCID: PMC9068978 DOI: 10.1183/13993003.03721-2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/16/2021] [Indexed: 12/03/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that is characterised by aberrant proliferation of activated myofibroblasts and pathological remodelling of the extracellular matrix. Previous studies have revealed that the intermediate filament protein nestin plays key roles in tissue regeneration and wound healing in different organs. Whether nestin plays a critical role in the pathogenesis of IPF needs to be clarified. Methods Nestin expression in lung tissues from bleomycin-treated mice and IPF patients was determined. Transfection with nestin short hairpin RNA vectors in vitro that regulated transcription growth factor (TGF)-β/Smad signalling was conducted. Biotinylation assays to observe plasma membrane TβRI, TβRI endocytosis and TβRI recycling after nestin knockdown were performed. Adeno-associated virus serotype (AAV)6-mediated nestin knockdown was assessed in vivo. Results We found that nestin expression was increased in a murine pulmonary fibrosis model and IPF patients, and that the upregulated protein primarily localised in lung α-smooth muscle actin-positive myofibroblasts. Mechanistically, we determined that nestin knockdown inhibited TGF-β signalling by suppressing recycling of TβRI to the cell surface and that Rab11 was required for the ability of nestin to promote TβRI recycling. In vivo, we found that intratracheal administration of AAV6-mediated nestin knockdown significantly alleviated pulmonary fibrosis in multiple experimental mice models. Conclusion Our findings reveal a pro-fibrotic function of nestin partially through facilitating Rab11-dependent recycling of TβRI and shed new light on pulmonary fibrosis treatment. Nestin regulates the vesicular trafficking system by promoting Rab11-dependent recycling of TβRI and thereby contributes to the progression of pulmonary fibrosis. Precise targeting of nestin may represent a potential therapeutic strategy for IPF.https://bit.ly/3zO75c3
Collapse
Affiliation(s)
- Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.,These authors contributed equally to this work
| | - Xiaofan Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,These authors contributed equally to this work
| | - Senyu Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,These authors contributed equally to this work
| | - Hainan Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,These authors contributed equally to this work
| | - Jianye Cai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, China
| | - Yulong Luo
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yinong Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyue Wei
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Boyan Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Qiying Lu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yuanjun Guan
- Core Facility of Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Shiyue Li
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Lin B, Xu X, Zhang X, Yu Y, Wang X. Photodynamic Treatment of Colorectal Cancer Using Chlorin e6-Loaded Poly(lactide-co-glycolide)- Based Nanoparticles. J Biomed Nanotechnol 2021; 17:1939-1950. [PMID: 34706794 DOI: 10.1166/jbn.2021.3170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We prepared poly(lactide-co-glycolide) (PLGA) encapsulated with chlorin e6 (Ce6) in an effort to increase the stability and efficiency of photosensitizers for photodynamic therapy (PDT). We determined that Ce6-loaded PLGA nanoparticles (PLGA-Ce6 NPs) had drug-loading efficiency of 5%. The efficiency of encapsulation was 82%, the zeta potential was- 25 mV, and the average diameter was 130 nm. The encapsulation of Ce6 in PLGA nanoparticles showed excellent stability. The nanoparticles exhibited sustained Ce6 release profiles with 50% released at the end of 3 days, whereas free Ce6 showed rapid release within 1 day. Ce6 release patterns were controlled by encapsulation into PLGA. The uptake of PLGA-Ce6 NPs was significantly enhanced by endocytosis in the first 8 hours in the HCT-116 cell line. An intracellular reactive oxygen species assay revealed the enhanced uptake of the nanoparticles. An in vitro anti-tumor activity assay showed that the PLGA-Ce6 NPs exhibited enhanced phototoxicity toward HCT-116 cells and a slightly lower IC50 value in HCT-116 cells than Ce6 solution alone. Exposure of HCT-116 cell spheroids to PLGA-Ce6 NPs penetrated more profoundly and had better phototoxicity than pure drugs. These findings suggest that PLGA-Ce6 NPs might serve as PDT for colorectal cancer.
Collapse
Affiliation(s)
- Beibei Lin
- Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuegu Xu
- Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaobi Zhang
- Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yinfei Yu
- Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaoling Wang
- Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
13
|
Zhang X, Lin ZI, Yang J, Liu GL, Hu Z, Huang H, Li X, Liu Q, Ma M, Xu Z, Xu G, Yong KT, Tsai WC, Tsai TH, Ko BT, Chen CK, Yang C. Carbon Dioxide-Derived Biodegradable and Cationic Polycarbonates as a New siRNA Carrier for Gene Therapy in Pancreatic Cancer. NANOMATERIALS 2021; 11:nano11092312. [PMID: 34578632 PMCID: PMC8472555 DOI: 10.3390/nano11092312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is an aggressive malignancy associated with poor prognosis and a high tendency in developing infiltration and metastasis. K-ras mutation is a major genetic disorder in pancreatic cancer patient. RNAi-based therapies can be employed for combating pancreatic cancer by silencing K-ras gene expression. However, the clinical application of RNAi technology is appreciably limited by the lack of a proper siRNA delivery system. To tackle this hurdle, cationic poly (cyclohexene carbonate) s (CPCHCs) using widely sourced CO2 as the monomer are subtly synthesized via ring-opening copolymerization (ROCOP) and thiol-ene functionalization. The developed CPCHCs could effectively encapsulate therapeutic siRNA to form CPCHC/siRNA nanoplexes (NPs). Serving as a siRNA carrier, CPCHC possesses biodegradability, negligible cytotoxicity, and high transfection efficiency. In vitro study shows that CPCHCs are capable of effectively protecting siRNA from being degraded by RNase and promoting a sustained endosomal escape of siRNA. After treatment with CPCHC/siRNA NPs, the K-ras gene expression in both pancreatic cancer cell line (PANC-1 and MiaPaCa-2) are significantly down-regulated. Subsequently, the cell growth and migration are considerably inhibited, and the treated cells are induced into cell apoptotic program. These results demonstrate the promising potential of CPCHC-mediated siRNA therapies in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan;
| | - Jingyu Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
| | - Zulu Hu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Haoqiang Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Xiang Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Mingze Ma
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wei-Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (W.-C.T.); (T.-H.T.)
| | - Tzu-Hsien Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (W.-C.T.); (T.-H.T.)
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
- Correspondence: (B.-T.K.); (C.-K.C.); (C.Y.); Tel.: +886-4-2284-0411 (ext. 715) (B.-T.K.); +886-7-525-2000 (ext. 4060) (C.-K.C.); +86-0755-2693-2683 (C.Y.)
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan;
- Correspondence: (B.-T.K.); (C.-K.C.); (C.Y.); Tel.: +886-4-2284-0411 (ext. 715) (B.-T.K.); +886-7-525-2000 (ext. 4060) (C.-K.C.); +86-0755-2693-2683 (C.Y.)
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
- Correspondence: (B.-T.K.); (C.-K.C.); (C.Y.); Tel.: +886-4-2284-0411 (ext. 715) (B.-T.K.); +886-7-525-2000 (ext. 4060) (C.-K.C.); +86-0755-2693-2683 (C.Y.)
| |
Collapse
|
14
|
Zhao J, Stephens T, Zhao Y. Molecular Regulation of Lysophosphatidic Acid Receptor 1 Maturation and Desensitization. Cell Biochem Biophys 2021; 79:477-483. [PMID: 34032994 PMCID: PMC8887818 DOI: 10.1007/s12013-021-00999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Lysophosphatidic acid receptor 1 (LPA1) belongs to the G protein-coupled receptor family. The ligand for LPA1 is LPA, the simplest lysophospholipid. LPA is considered a growth factor and induces cell proliferation, anti-apoptosis, and cell migration. The pro-inflammatory and pro-fibrotic roles of LPA have also been well-demonstrated. Most of the biological functions of LPA are mostly executed through LPA1. The mature form of LPA1 is glycosylated and localized on the plasma membrane. LPA1 is bound to heterotrimetric G proteins and transduces intracellular signaling in response to ligation to LPA. Desensitization of LPA1 negatively regulates LPA1-mediated signaling and the resulting biological functions. Phosphorylation and ubiquitination are well-demonstrated posttranslational modifications of GPCR. In this review, we will discuss our knowledge of LPA1 glycosylation, maturation, and trafficking from the endoplasmic reticulum (ER)/Golgi to the plasma membrane. Moreover, in light of recent findings, we will also discuss molecular regulation of LPA1 internalization and stability.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Physiology and Cell Biology, the Ohio State University, Columbus, OH, USA
| | - Thomas Stephens
- Department of Physiology and Cell Biology, the Ohio State University, Columbus, OH, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, the Ohio State University, Columbus, OH, USA.
| |
Collapse
|
15
|
Lü JM, Liang Z, Liu D, Zhan B, Yao Q, Chen C. Two Antibody-Guided Lactic-co-Glycolic Acid-Polyethylenimine (LGA-PEI) Nanoparticle Delivery Systems for Therapeutic Nucleic Acids. Pharmaceuticals (Basel) 2021; 14:841. [PMID: 34577541 PMCID: PMC8470087 DOI: 10.3390/ph14090841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023] Open
Abstract
We previously reported a new polymer, lactic-co-glycolic acid-polyethylenimine (LGA-PEI), as an improved nanoparticle (NP) delivery for therapeutic nucleic acids (TNAs). Here, we further developed two antibody (Ab)-conjugated LGA-PEI NP technologies for active-targeting delivery of TNAs. LGA-PEI was covalently conjugated with a single-chain variable fragment antibody (scFv) against mesothelin (MSLN), a biomarker for pancreatic cancer (PC), or a special Ab fragment crystallizable region-binding peptide (FcBP), which binds to any full Ab (IgG). TNAs used in the current study included tumor suppressor microRNA mimics (miR-198 and miR-520h) and non-coding RNA X-inactive specific transcript (XIST) fragments; green fluorescence protein gene (GFP plasmid DNA) was also used as an example of plasmid DNA. MSLN scFv-LGA-PEI NPs with TNAs significantly improved their binding and internalization in PC cells with high expression of MSLN in vitro and in vivo. Anti-epidermal growth factor receptor (EGFR) monoclonal Ab (Cetuximab) binding to FcBP-LGA-PEI showed active-targeting delivery of TNAs to EGFR-expressing PC cells.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| | - Zhengdong Liang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| | - Dongliang Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| | - Bin Zhan
- National School of Tropical Medicine and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA;
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| |
Collapse
|
16
|
Wang G, Møller-Hansen I, Babaei M, D'Ambrosio V, Christensen HB, Darbani B, Jensen MK, Borodina I. Transportome-wide engineering of Saccharomyces cerevisiae. Metab Eng 2021; 64:52-63. [PMID: 33465478 PMCID: PMC7970624 DOI: 10.1016/j.ymben.2021.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 01/10/2021] [Indexed: 12/17/2022]
Abstract
Synthetic biology enables the production of small molecules by recombinant microbes for pharma, food, and materials applications. The secretion of products reduces the cost of separation and purification, but it is challenging to engineer due to the limited understanding of the transporter proteins' functions. Here we describe a method for genome-wide transporter disruption that, in combination with a metabolite biosensor, enables the identification of transporters impacting the production of a given target metabolite in yeast Saccharomyces cerevisiae. We applied the method to study the transport of xenobiotic compounds, cis,cis-muconic acid (CCM), protocatechuic acid (PCA), and betaxanthins. We found 22 transporters that influenced the production of CCM or PCA. The transporter of the 12-spanner drug:H(+) antiporter (DHA1) family Tpo2p was further confirmed to import CCM and PCA in Xenopus expression assays. We also identified three transporter proteins (Qdr1p, Qdr2p, and Apl1p) involved in betaxanthins transport. In summary, the described method enables high-throughput transporter identification for small molecules in cell factories.
Collapse
Affiliation(s)
- Guokun Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Iben Møller-Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mahsa Babaei
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Vasil D'Ambrosio
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Hanne Bjerre Christensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Michael Krogh Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
17
|
Shi R, Hou L, Wei L, Quan R, Zhou B, Jiang H, Wang J, Zhu S, Song J, Wang D, Liu J. Porcine Circovirus Type 3 Enters Into PK15 Cells Through Clathrin- and Dynamin-2-Mediated Endocytosis in a Rab5/Rab7 and pH-Dependent Fashion. Front Microbiol 2021; 12:636307. [PMID: 33679671 PMCID: PMC7928314 DOI: 10.3389/fmicb.2021.636307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 01/20/2023] Open
Abstract
Porcine circovirus type 3 (PCV3) invades multiple tissues and organs of pigs of different ages and are widely spread throughout pig farms, emerging as an important viral pathogen that can potentially damage the pig industry worldwide. Since PCV3 is a newly discovered virus, many aspects of its life cycle remain unknown. Porcine kidney epithelial cells are important host targets for PCV3. Here, we used systematic approaches to dissect the molecular mechanisms underlying the cell entry and intracellular trafficking of PCV3 in PK15 cells, a cell line of porcine kidney epithelial origin. A large number of PCV3 viral particles were found to colocalize with clathrin but not caveolin-1 after entry, and PCV3 infection was significantly decreased when treated with chlorpromazine, dynasore, knockdown of clathrin heavy chain expression via RNA interference, or overexpression of a dominant-negative mutant of EPS15 in PCV3-infected cells. After internalization, the viral particles were further observed to colocalize with Rab5 and Rab7, and knockdown of both expression by RNA interference significantly inhibited PCV3 replication. We also found that PCV3 infection was impeded by ammonium chloride treatment, which indicated the requirement of an acidic environment for viral entry. Taken together, our findings demonstrate that PCV3 enters PK15 cells through a clathrin- and dynamin-2-mediated endocytic pathway, which requires early and late endosomal trafficking, as well as an acidic environment, providing an insightful theoretical basis for further understanding the PCV3 life cycle and its pathogenesis.
Collapse
Affiliation(s)
- Ruihan Shi
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Khan I, Steeg PS. Endocytosis: a pivotal pathway for regulating metastasis. Br J Cancer 2021; 124:66-75. [PMID: 33262521 PMCID: PMC7782782 DOI: 10.1038/s41416-020-01179-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
A potentially important aspect in the regulation of tumour metastasis is endocytosis. This process consists of internalisation of cell-surface receptors via pinocytosis, phagocytosis or receptor-mediated endocytosis, the latter of which includes clathrin-, caveolae- and non-clathrin or caveolae-mediated mechanisms. Endocytosis then progresses through several intracellular compartments for sorting and routing of cargo, ending in lysosomal degradation, recycling back to the cell surface or secretion. Multiple endocytic proteins are dysregulated in cancer and regulate tumour metastasis, particularly migration and invasion. Importantly, four metastasis suppressor genes function in part by regulating endocytosis, namely, the NME, KAI, MTSS1 and KISS1 pathways. Data on metastasis suppressors identify a new point of dysregulation operative in tumour metastasis, alterations in signalling through endocytosis. This review will focus on the multicomponent process of endocytosis affecting different steps of metastasis and how metastatic-suppressor genes use endocytosis to suppress metastasis.
Collapse
Affiliation(s)
- Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
19
|
Hara T, Saeki M, Negishi Y, Kaji T, Yamamoto C. Cell density-dependent accumulation of low polarity gold nanocluster in cultured vascular endothelial cells. J Toxicol Sci 2020; 45:795-800. [PMID: 33268679 DOI: 10.2131/jts.45.795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We have previously reported the cytotoxicity and various biological responses of organic-inorganic hybrid molecules. However, because all the molecules used were electrophilic, the effect of the hybrid molecule without electrophilicity remains unclear. The glutathione-protected gold nanocluster, Au25(SG)18, is an organic-inorganic hybrid molecule that shows a low intramolecular polarity and high stability. In this study, we examined the cytotoxicity and intracellular accumulation of Au25(SG)18 in cultured vascular endothelial cells and compared these characteristics with those of negatively charged gold nanoparticles (AuNPs). Both Au25(SG)18 and AuNPs accumulated in vascular endothelial cells in a dose-dependent manner without cytotoxicity and more accumulation was observed at low cell densities. However, Au25(SG)18 accumulated significantly less than AuNPs in the cells. These results suggest that the intramolecular polarity of organic-inorganic hybrid molecules could regulate intracellular accumulation.
Collapse
Affiliation(s)
- Takato Hara
- Faculty of Pharmaceutical Sciences, Toho University
| | - Misato Saeki
- Faculty of Pharmaceutical Sciences, Toho University.,Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | - Toshiyuki Kaji
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | |
Collapse
|
20
|
Mavri M, Spiess K, Rosenkilde MM, Rutland CS, Vrecl M, Kubale V. Methods for Studying Endocytotic Pathways of Herpesvirus Encoded G Protein-Coupled Receptors. Molecules 2020; 25:E5710. [PMID: 33287269 PMCID: PMC7730005 DOI: 10.3390/molecules25235710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Endocytosis is a fundamental process involved in trafficking of various extracellular and transmembrane molecules from the cell surface to its interior. This enables cells to communicate and respond to external environments, maintain cellular homeostasis, and transduce signals. G protein-coupled receptors (GPCRs) constitute a family of receptors with seven transmembrane alpha-helical domains (7TM receptors) expressed at the cell surface, where they regulate physiological and pathological cellular processes. Several herpesviruses encode receptors (vGPCRs) which benefits the virus by avoiding host immune surveillance, supporting viral dissemination, and thereby establishing widespread and lifelong infection, processes where receptor signaling and/or endocytosis seem central. vGPCRs are rising as potential drug targets as exemplified by the cytomegalovirus-encoded receptor US28, where its constitutive internalization has been exploited for selective drug delivery in virus infected cells. Therefore, studying GPCR trafficking is of great importance. This review provides an overview of the current knowledge of endocytic and cell localization properties of vGPCRs and methodological approaches used for studying receptor internalization. Using such novel approaches, we show constitutive internalization of the BILF1 receptor from human and porcine γ-1 herpesviruses and present motifs from the eukaryotic linear motif (ELM) resources with importance for vGPCR endocytosis.
Collapse
Affiliation(s)
- Maša Mavri
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, Medical Faculty, Sutton, Bonington Campus, University of Nottingham, Sutton Bonington LE12 5RD, UK;
| | - Milka Vrecl
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
| | - Valentina Kubale
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
| |
Collapse
|
21
|
Fagiani F, Lanni C, Racchi M, Pascale A, Govoni S. Amyloid-β and Synaptic Vesicle Dynamics: A Cacophonic Orchestra. J Alzheimers Dis 2020; 72:1-14. [PMID: 31561377 DOI: 10.3233/jad-190771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now more than two decades since amyloid-β (Aβ), the proteolytic product of the amyloid-β protein precursor (AβPP), was first demonstrated to be a normal and soluble product of neuronal metabolism. To date, despite a growing body of evidence suggests its regulatory role on synaptic function, the exact cellular and molecular pathways involved in Aβ-driven synaptic effects remain elusive. This review provides an overview of the mounting evidence showing Aβ-mediated effects on presynaptic functions and neurotransmitter release from axon terminals, focusing on its interaction with synaptic vesicle cycle. Indeed, Aβ peptides have been found to interact with key presynaptic scaffold proteins and kinases affecting the consequential steps of the synaptic vesicle dynamics (e.g., synaptic vesicles exocytosis, endocytosis, and trafficking). Defects in the fine-tuning of synaptic vesicle cycle by Aβ and deregulation of key molecules and kinases, which orchestrate synaptic vesicle availability, may alter synaptic homeostasis, possibly contributing to synaptic loss and cognitive decline. Elucidating the presynaptic mechanisms by which Aβ regulate synaptic transmission is fundamental for a deeper comprehension of the biology of presynaptic terminals as well as of Aβ-driven early synaptic defects occurring in prodromal stage of AD. Moreover, a better understating of Aβ involvement in cellular signal pathways may allow to set up more effective therapeutic interventions by detecting relevant molecular mechanisms, whose imbalance might ultimately lead to synaptic impairment in AD.
Collapse
Affiliation(s)
- Francesca Fagiani
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy.,Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| |
Collapse
|
22
|
Mayberry CL, Maginnis MS. Taking the Scenic Route: Polyomaviruses Utilize Multiple Pathways to Reach the Same Destination. Viruses 2020; 12:v12101168. [PMID: 33076363 PMCID: PMC7602598 DOI: 10.3390/v12101168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
Members of the Polyomaviridae family differ in their host range, pathogenesis, and disease severity. To date, some of the most studied polyomaviruses include human JC, BK, and Merkel cell polyomavirus and non-human subspecies murine and simian virus 40 (SV40) polyomavirus. Although dichotomies in host range and pathogenesis exist, overlapping features of the infectious cycle illuminate the similarities within this virus family. Of particular interest to human health, JC, BK, and Merkel cell polyomavirus have all been linked to critical, often fatal, illnesses, emphasizing the importance of understanding the underlying viral infections that result in the onset of these diseases. As there are significant overlaps in the capacity of polyomaviruses to cause disease in their respective hosts, recent advancements in characterizing the infectious life cycle of non-human murine and SV40 polyomaviruses are key to understanding diseases caused by their human counterparts. This review focuses on the molecular mechanisms by which different polyomaviruses hijack cellular processes to attach to host cells, internalize, traffic within the cytoplasm, and disassemble within the endoplasmic reticulum (ER), prior to delivery to the nucleus for viral replication. Unraveling the fundamental processes that facilitate polyomavirus infection provides deeper insight into the conserved mechanisms of the infectious process shared within this virus family, while also highlighting critical unique viral features.
Collapse
Affiliation(s)
- Colleen L. Mayberry
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
- Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04469, USA
- Correspondence:
| |
Collapse
|
23
|
Estadella I, Pedrós-Gámez O, Colomer-Molera M, Bosch M, Sorkin A, Felipe A. Endocytosis: A Turnover Mechanism Controlling Ion Channel Function. Cells 2020; 9:E1833. [PMID: 32759790 PMCID: PMC7463639 DOI: 10.3390/cells9081833] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 01/08/2023] Open
Abstract
Ion channels (IChs) are transmembrane proteins that selectively drive ions across membranes. The function of IChs partially relies on their abundance and proper location in the cell, fine-tuned by the delicate balance between secretory, endocytic, and degradative pathways. The disruption of this balance is associated with several diseases, such as Liddle's and long QT syndromes. Because of the vital role of these proteins in human health and disease, knowledge of ICh turnover is essential. Clathrin-dependent and -independent mechanisms have been the primary mechanisms identified with ICh endocytosis and degradation. Several molecular determinants recognized by the cellular internalization machinery have been discovered. Moreover, specific conditions can trigger the endocytosis of many IChs, such as the activation of certain receptors, hypokalemia, and some drugs. Ligand-dependent receptor activation primarily results in the posttranslational modification of IChs and the recruitment of important mediators, such as β-arrestins and ubiquitin ligases. However, endocytosis is not a final fate. Once internalized into endosomes, IChs are either sorted to lysosomes for degradation or recycled back to the plasma membrane. Rab proteins are crucial participants during these turnover steps. In this review, we describe the major ICh endocytic pathways, the signaling inputs triggering ICh internalization, and the key mediators of this essential cellular process.
Collapse
Affiliation(s)
- Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Oriol Pedrós-Gámez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Manel Bosch
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| |
Collapse
|
24
|
MIP-1α Expression Induced by Co-Stimulation of Human Monocytic Cells with Palmitate and TNF-α Involves the TLR4-IRF3 Pathway and Is Amplified by Oxidative Stress. Cells 2020; 9:cells9081799. [PMID: 32751118 PMCID: PMC7465096 DOI: 10.3390/cells9081799] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Metabolic inflammation is associated with increased expression of saturated free fatty acids, proinflammatory cytokines, chemokines, and adipose oxidative stress. Macrophage inflammatory protein (MIP)-1α recruits the inflammatory cells such as monocytes, macrophages, and neutrophils in the adipose tissue; however, the mechanisms promoting the MIP-1α expression remain unclear. We hypothesized that MIP-1α co-induced by palmitate and tumor necrosis factor (TNF)-α in monocytic cells/macrophages could be further enhanced in the presence of reactive oxygen species (ROS)-mediated oxidative stress. To investigate this, THP-1 monocytic cells and primary human macrophages were co-stimulated with palmitate and TNF-α and mRNA and protein levels of MIP-1α were measured by using quantitative reverse transcription, polymerase chain reaction (qRT-PCR) and commercial enzyme-linked immunosorbent assays (ELISA), respectively. The cognate receptor of palmitate, toll-like receptor (TLR)-4, was blunted by genetic ablation, neutralization, and chemical inhibition. The involvement of TLR4-downstream pathways, interferon regulatory factor (IRF)-3 or myeloid differentiation (MyD)-88 factor, was determined using IRF3-siRNA or MyD88-deficient cells. Oxidative stress was induced in cells by hydrogen peroxide (H2O2) treatment and ROS induction was measured by dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. The data show that MIP-1α gene/protein expression was upregulated in cells co-stimulated with palmitate/TNF-α compared to those stimulated with either palmitate or TNF-α (P < 0.05). Further, TLR4-IRF3 pathway was implicated in the cooperative induction of MIP-1α in THP-1 cells, and this cooperativity between palmitate and TNF-α was clathrin-dependent and also required signaling through c-Jun and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Notably, ROS itself induced MIP-1α and could further promote MIP-1α secretion together with palmitate and TNF-α. In conclusion, palmitate and TNF-α co-induce MIP-1α in human monocytic cells via the TLR4-IRF3 pathway and signaling involving c-Jun/NF-κB. Importantly, oxidative stress leads to ROS-driven MIP-1α amplification, which may have significance for metabolic inflammation.
Collapse
|
25
|
Immunopathology of Zika virus infection. Adv Virus Res 2020; 107:223-246. [PMID: 32711730 DOI: 10.1016/bs.aivir.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne virus of the flavivirus genus in the Flaviviridae family. Flaviviruses are single-stranded, positive-sense RNA viruses that have been responsible for numerous human epidemics. Notable flaviviruses include mosquito-borne viruses such as yellow fever virus (YFV), Dengue virus (DENV), West Nile virus (WNV), Japanese encephalitis virus (JEV), as well as tick-borne viruses including Powassan virus (POWV) and tick-borne encephalitis virus (TBEV). Despite having been relatively obscure until the past decade, ZIKV has become a major global health concern, and is a topic of active research following multiple outbreaks across the globe. Here, we discuss ZIKV pathogenesis and the associated immunopathology, as well as advances in research, therapies, and vaccines developed using models of ZIKV pathogenesis.
Collapse
|
26
|
Proteomics analysis of lipid droplets indicates involvement of membrane trafficking proteins in lipid droplet breakdown in the oleaginous diatom Fistulifera solaris. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Rópolo AS, Feliziani C, Touz MC. Unusual proteins in Giardia duodenalis and their role in survival. ADVANCES IN PARASITOLOGY 2019; 106:1-50. [PMID: 31630755 DOI: 10.1016/bs.apar.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The capacity of the parasite Giardia duodenalis to perform complex functions with minimal amounts of proteins and organelles has attracted increasing numbers of scientists worldwide, trying to explain how this parasite adapts to internal and external changes to survive. One explanation could be that G. duodenalis evolved from a structurally complex ancestor by reductive evolution, resulting in adaptation to its parasitic lifestyle. Reductive evolution involves the loss of genes, organelles, and functions that commonly occur in many parasites, by which the host renders some structures and functions redundant. However, there is increasing data that Giardia possesses proteins able to perform more than one function. During recent decades, the concept of moonlighting was described for multitasking proteins, which involves only proteins with an extra independent function(s). In this chapter, we provide an overview of unusual proteins in Giardia that present multifunctional properties depending on the location and/or parasite requirement. We also discuss experimental evidence that may allow some giardial proteins to be classified as moonlighting proteins by examining the properties of moonlighting proteins in general. Up to date, Giardia does not seem to require the numerous redundant proteins present in other organisms to accomplish its normal functions, and thus this parasite may be an appropriate model for understanding different aspects of moonlighting proteins, which may be helpful in the design of drug targets.
Collapse
Affiliation(s)
- Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
28
|
Thomas TJ, Tajmir-Riahi HA, Pillai CKS. Biodegradable Polymers for Gene Delivery. Molecules 2019; 24:molecules24203744. [PMID: 31627389 PMCID: PMC6832905 DOI: 10.3390/molecules24203744] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The cellular transport process of DNA is hampered by cell membrane barriers, and hence, a delivery vehicle is essential for realizing the potential benefits of gene therapy to combat a variety of genetic diseases. Virus-based vehicles are effective, although immunogenicity, toxicity and cancer formation are among the major limitations of this approach. Cationic polymers, such as polyethyleneimine are capable of condensing DNA to nanoparticles and facilitate gene delivery. Lack of biodegradation of polymeric gene delivery vehicles poses significant toxicity because of the accumulation of polymers in the tissue. Many attempts have been made to develop biodegradable polymers for gene delivery by modifying existing polymers and/or using natural biodegradable polymers. This review summarizes mechanistic aspects of gene delivery and the development of biodegradable polymers for gene delivery.
Collapse
Affiliation(s)
- T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, KTL N102, 675 Hoes Lane, Piscataway, NJ 08854, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| | | | - C K S Pillai
- Department of Chemistry-Biochemistry-Physics, University of Québec in Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada.
| |
Collapse
|
29
|
Handrich MR, Garg SG, Sommerville EW, Hirt RP, Gould SB. Characterization of the BspA and Pmp protein family of trichomonads. Parasit Vectors 2019; 12:406. [PMID: 31426868 PMCID: PMC6701047 DOI: 10.1186/s13071-019-3660-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/08/2019] [Indexed: 11/16/2022] Open
Abstract
Background Trichomonas vaginalis is a human-infecting trichomonad and as such the best studied and the only for which the full genome sequence is available considering its parasitic lifestyle, T. vaginalis encodes an unusually high number of proteins. Many gene families are massively expanded and some genes are speculated to have been acquired from prokaryotic sources. Among the latter are two gene families that harbour domains which share similarity with proteins of Bacteroidales/Spirochaetales and Chlamydiales: the BspA and the Pmp proteins, respectively. Results We sequenced the transcriptomes of five trichomonad species and screened for the presence of BspA and Pmp domain-containing proteins and characterized individual candidate proteins from both families in T. vaginalis. Here, we demonstrate that (i) BspA and Pmp domain-containing proteins are universal to trichomonads, but specifically expanded in T. vaginalis; (ii) in line with a concurrent expansion of the endocytic machinery, there is a high number of BspA and Pmp proteins which carry C-terminal endocytic motifs; and (iii) both families traffic through the ER and have the ability to increase adhesion performance in a non-virulent T. vaginalis strain and Tetratrichomonas gallinarum by a so far unknown mechanism. Conclusions Our results initiate the functional characterization of these two broadly distributed protein families and help to better understand the origin and evolution of BspA and Pmp domains in trichomonads. Electronic supplementary material The online version of this article (10.1186/s13071-019-3660-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria R Handrich
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ewen W Sommerville
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
30
|
Hitti RJ, Oliver JAC, Schofield EC, Bauer A, Kaukonen M, Forman OP, Leeb T, Lohi H, Burmeister LM, Sargan D, Mellersh CS. Whole Genome Sequencing of Giant Schnauzer Dogs with Progressive Retinal Atrophy Establishes NECAP1 as a Novel Candidate Gene for Retinal Degeneration. Genes (Basel) 2019; 10:genes10050385. [PMID: 31117272 PMCID: PMC6562617 DOI: 10.3390/genes10050385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/08/2019] [Accepted: 05/17/2019] [Indexed: 12/30/2022] Open
Abstract
Canine progressive retinal atrophies (PRA) are genetically heterogeneous diseases characterized by retinal degeneration and subsequent blindness. PRAs are untreatable and affect multiple dog breeds, significantly impacting welfare. Three out of seven Giant Schnauzer (GS) littermates presented with PRA around four years of age. We sought to identify the causal variant to improve our understanding of the aetiology of this form of PRA and to enable development of a DNA test. Whole genome sequencing of two PRA-affected full-siblings and both unaffected parents was performed. Variants were filtered based on those segregating appropriately for an autosomal recessive disorder and predicted to be deleterious. Successive filtering against 568 canine genomes identified a single nucleotide variant in the gene encoding NECAP endocytosis associated 1 (NECAP1): c.544G>A (p.Gly182Arg). Five thousand one hundred and thirty canids of 175 breeds, 10 cross-breeds and 3 wolves were genotyped for c.544G>A. Only the three PRA-affected GS were homozygous (allele frequency in GS, excluding proband family = 0.015). In addition, we identified heterozygotes belonging to Spitz and Dachshund varieties, demonstrating c.544G>A segregates in other breeds of German origin. This study, in parallel with the known retinal expression and role of NECAP1 in clathrin mediated endocytosis (CME) in synapses, presents NECAP1 as a novel candidate gene for retinal degeneration in dogs and other species.
Collapse
Affiliation(s)
- Rebekkah J Hitti
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - James A C Oliver
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | - Ellen C Schofield
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | - Anina Bauer
- Institute of Genetics, University of Bern, 3001 Bern, Switzerland.
| | - Maria Kaukonen
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland.
- Department of Medical Genetics, University of Helsinki, 00014 Helsinki, Finland.
- Folkhälsan Research Center, 00290 Helsinki, Finland.
| | - Oliver P Forman
- Wisdom Health, Waltham-on-the-Wolds, Leicestershire LE14 4RS, UK.
| | - Tosso Leeb
- Institute of Genetics, University of Bern, 3001 Bern, Switzerland.
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland.
- Department of Medical Genetics, University of Helsinki, 00014 Helsinki, Finland.
- Folkhälsan Research Center, 00290 Helsinki, Finland.
| | - Louise M Burmeister
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | - David Sargan
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - Cathryn S Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| |
Collapse
|
31
|
JC Polyomavirus Entry by Clathrin-Mediated Endocytosis Is Driven by β-Arrestin. J Virol 2019; 93:JVI.01948-18. [PMID: 30700597 DOI: 10.1128/jvi.01948-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/22/2019] [Indexed: 01/09/2023] Open
Abstract
JC polyomavirus (JCPyV) establishes a persistent, lifelong, asymptomatic infection within the kidney of the majority of the human population. Under conditions of severe immunosuppression or immune modulation, JCPyV can reactivate in the central nervous system (CNS) and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease. Initiation of infection is mediated through viral attachment to α2,6-sialic acid-containing lactoseries tetrasaccharide c (LSTc) on the surface of host cells. JCPyV internalization is dependent on serotonin 5-hydroxytryptamine subfamily 2 receptors (5-HT2Rs), and entry is thought to occur by clathrin-mediated endocytosis (CME). However, the JCPyV entry process and the cellular factors involved in viral internalization remain poorly understood. Treatment of cells with small-molecule chemical inhibitors and RNA interference of 5-HT2R endocytic machinery, including β-arrestin, clathrin, AP2, and dynamin, significantly reduced JCPyV infection. However, infectivity of the polyomavirus simian virus 40 (SV40) was not affected by CME-specific treatments. Inhibition of clathrin or β-arrestin specifically reduced JCPyV internalization but did not affect viral attachment. Furthermore, mutagenesis of a β-arrestin binding domain (Ala-Ser-Lys) within the intracellular C terminus of 5-HT2AR severely diminished internalization and infection, suggesting that β-arrestin interactions with 5-HT2AR are critical for JCPyV infection and entry. These conclusions illuminate key host factors that regulate clathrin-mediated endocytosis of JCPyV, which is necessary for viral internalization and productive infection.IMPORTANCE Viruses usurp cellular factors to invade host cells. Activation and utilization of these proteins upon initiation of viral infection are therefore required for productive infection and resultant viral disease. The majority of healthy individuals are asymptomatically infected by JC polyomavirus (JCPyV), but if the host immune system is compromised, JCPyV can cause progressive multifocal leukoencephalopathy (PML), a rare, fatal, demyelinating disease. Individuals infected with HIV or taking prolonged immunomodulatory therapies have a heightened risk for developing PML. The cellular proteins and pathways utilized by JCPyV to mediate viral entry are poorly understood. Our findings further characterize how JCPyV utilizes the clathrin-mediated endocytosis pathway to invade host cells. We have identified specific components of this pathway that are necessary for the viral entry process and infection. Collectively, the conclusions increase our understanding of JCPyV infection and pathogenesis and may contribute to the future development of novel therapeutic strategies for PML.
Collapse
|
32
|
Impact of diet-induced obesity on the mouse brain phosphoproteome. J Nutr Biochem 2018; 58:102-109. [DOI: 10.1016/j.jnutbio.2018.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 04/16/2018] [Accepted: 04/26/2018] [Indexed: 12/27/2022]
|
33
|
Mechanisms of Entry and Endosomal Pathway of African Swine Fever Virus. Vaccines (Basel) 2017; 5:vaccines5040042. [PMID: 29117102 PMCID: PMC5748609 DOI: 10.3390/vaccines5040042] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/19/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
Abstract
African Swine Fever Virus (ASFV) causes a serious swine disease that is endemic in Africa and Sardinia and presently spreading in Russia and neighboring countries, including Poland and recently, the Czech Republic. This uncontrolled dissemination is a world-wide threat, as no specific protection or vaccine is available. ASFV is a very complex icosahedral, enveloped virus about 200 nm in diameter, which infects several members of pigs. The virus enters host cells by receptor-mediated endocytosis that depends on energy, vacuolar pH and temperature. The specific receptor(s) and attachment factor(s) involved in viral entry are still unknown, although macropinocytosis and clathrin-dependent mechanisms have been proposed. After internalization, ASFV traffics through the endolysosomal system. The capsid and inner envelope are found in early endosomes or macropinosomes early after infection, colocalizing with EEA1 and Rab5, while at later times they co-localize with markers of late endosomes and lysosomes, such as Rab7 or Lamp 1. A direct relationship has been established between the maturity of the endosomal pathway and the progression of infection in the cell. Finally, ASFV uncoating first involves the loss of the outer capsid layers, and later fusion of the inner membrane with endosomes, releasing the nude core into the cytosol.
Collapse
|
34
|
Fast hyperbaric decompression after heliox saturation altered the brain proteome in rats. PLoS One 2017; 12:e0185765. [PMID: 28977037 PMCID: PMC5627932 DOI: 10.1371/journal.pone.0185765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/19/2017] [Indexed: 01/28/2023] Open
Abstract
Better understanding of the physiological mechanisms and neurological symptoms involved in the development of decompression sickness could contribute to improvements of diving procedures. The main objective of the present study was to determine effects on the brain proteome of fast decompression (1 bar/20 s) compared to controls (1 bar/10 min) after heliox saturation diving, using rats in a model system. The protein S100B, considered a biomarker for brain injury, was not significantly different in serum samples from one week before, immediately after, and one week after the dive. Alterations in the rat brain proteome due to fast decompression were investigated using both iontrap and orbitrap LC-MS, and 967 and 1062 proteins were quantified, respectively. Based on the significantly regulated proteins in the iontrap (56) and orbitrap (128) datasets, the networks “synaptic vesicle fusion and recycling in nerve terminals” and “translation initiation” were significantly enriched in a system biological database analysis (Metacore). Ribosomal proteins (RLA2, RS10) and the proteins hippocalcin-like protein 4 and proteasome subunit beta type-7 were significantly upregulated in both datasets. The heat shock protein 105 kDa, Rho-associated protein kinase 2 and Dynamin-1 were significantly downregulated in both datasets. Another main effect of hyperbaric fast decompression in our experiment is inhibition of endocytosis and stimulation of exocytosis of vesicles in the presynaptic nerve terminal. In addition, fast decompression affected several proteins taking parts in these two main mechanisms of synaptic strength, especially alteration in CDK5/calcineurin are associated with a broad range of neurological disorders. In summary, fast decompression after heliox saturation affected the brain proteome in a rat model for diving, potentially disturbing protein homeostasis, e.g. in synaptic vesicles, and destabilizing cytoskeletal components. Data are available via ProteomeXchange with identifier PXD006349
Collapse
|
35
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
36
|
Szymanowski F, Hugo AA, Alves P, Simões PN, Gómez-Zavaglia A, Pérez PF. Endocytosis and intracellular traffic of cholesterol-PDMAEMA liposome complexes in human epithelial-like cells. Colloids Surf B Biointerfaces 2017; 156:38-43. [PMID: 28500977 DOI: 10.1016/j.colsurfb.2017.04.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/04/2017] [Accepted: 04/29/2017] [Indexed: 12/22/2022]
Abstract
Liposomes are generally used as delivery systems, as they are capable of encapsulating a wide variety of molecules (i.e. plasmids, recombinant proteins, therapeutic drugs). However, liposomal drug delivery have to fulfill different requirements, such as the effective internalization by the target cells and avoidance of the degradative activity of the intracellular compartments. The use of polymer lipid complexes (PLCs), by including different polymers in the liposome formulation, could improve internalization and intracellular release of drugs. The aim of the present work is to study the mechanisms of cellular uptaking and the intracellular trafficking of PLCs formed with cholesterol-poly(2-(dimethylamino)ethyl methacrylate) CHO-PDMAEMA and lecithin (LC CHO-PD). Calcein-loaded liposomes were used to determine cellular uptake and intracellular localization by flow cytometry and confocal microscopy. Incorporation of CHO-PDMAEMA to lecithin liposomes enhanced the internalization capacity of PLCs. Internalization of PLCs by human epithelial-like cells (HEK-293) diminished at 4°C, suggesting uptake by endocytosis. PLCs showed no co-localization with acidic compartments after internalization. Experiments with endocytosis inhibitors and co-localization of liposomes and albumin, suggested the caveolae endocytic pathway as the most probable route for intracellular trafficking of PLCs. In this work, we demonstrated an efficient uptake of LC CHO-PDs by human epithelial-like cells (HEK-293) through the non-degradative caveolae endocytic pathway. The mode of internalization and the intracellular fate of liposomes under study, suggest a promising use of LC CHO-PDs as drug delivery systems.
Collapse
Affiliation(s)
- F Szymanowski
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA,-CCT-CONICET La Plata), 47 y 116 (s/n) B1900AJI. La Plata, Argentina
| | - A A Hugo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA,-CCT-CONICET La Plata), 47 y 116 (s/n) B1900AJI. La Plata, Argentina
| | - P Alves
- Department of Chemical Engineering, University of Coimbra, P-3030-790 Coimbra, Portugal
| | - P N Simões
- Department of Chemical Engineering, University of Coimbra, P-3030-790 Coimbra, Portugal
| | - A Gómez-Zavaglia
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA,-CCT-CONICET La Plata), 47 y 116 (s/n) B1900AJI. La Plata, Argentina
| | - Pablo F Pérez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA,-CCT-CONICET La Plata), 47 y 116 (s/n) B1900AJI. La Plata, Argentina; Cátedra de Microbiología, Facultad de Ciencias Exactas (FCE), UNLP, 47 y 115 (s/n) 1900 La Plata, Argentina.
| |
Collapse
|
37
|
Investigation of the morphological transition of a phospholipid bilayer membrane in an external electric field via molecular dynamics simulation. J Mol Model 2017; 23:113. [PMID: 28289956 DOI: 10.1007/s00894-017-3292-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022]
Abstract
Elucidating the mechanisms for morphological transitions of the phospholipid bilayer membrane during cellular activity should lead to greater understanding of these membrane transitions and allow us to optimize biotechnologies such as drug delivery systems in organisms. To investigate the mechanism for and the dynamics of morphological changes in the phospholipid membrane, we performed molecular dynamics simulation of a phospholipid membrane with and without membrane protein under the influence of electric fields with different strengths. In the absence of membrane protein, it was possible to control the transition from one lamellar membrane morphology to another by applying a strong electric field. The strong electric field initially disordered the lipid molecules in the membrane, leading to the formation of a hydrophilic pore. The lipid molecules then spontaneously fused into a new lamellar membrane morphology. In the presence of membrane protein, a morphological transition from lamellar membrane to vesicle under the influence of a strong electric field was observed. Studying the complex transition dynamics associated with these changes in membrane morphology allowed us to gain deep insight into the electrofusion and electroporation that occur in the presence or absence of membrane protein, and the results obtained here should prove useful in work aimed at controlling membrane morphology. Graphical Abstract Memebrane morphological transition under the electric field of 0.6 V/nm with the membrane protein (down) and without membrane protein (up).
Collapse
|
38
|
Pauletto M, Milan M, Huvet A, Corporeau C, Suquet M, Planas JV, Moreira R, Figueras A, Novoa B, Patarnello T, Bargelloni L. Transcriptomic features of Pecten maximus oocyte quality and maturation. PLoS One 2017; 12:e0172805. [PMID: 28253290 PMCID: PMC5333834 DOI: 10.1371/journal.pone.0172805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/09/2017] [Indexed: 11/19/2022] Open
Abstract
The king scallop Pecten maximus is a high valuable species of great interest in Europe for both fishery and aquaculture. Notably, there has been an increased investment to produce seed for enhancement programmes of wild scallop populations. However, hatchery production is a relatively new industry and it is still underdeveloped. Major hurdles are spawning control and gamete quality. In the present study, a total of 14 scallops were sampled in the bay of Brest (Brittany, France) to compare transcriptomic profiles of mature oocytes collected by spawning induction or by stripping. To reach such a goal, a microarray analysis was performed by using a custom 8x60K oligonucleotide microarray representing 45,488 unique scallop contigs. First we identified genes that were differentially expressed depending on oocyte quality, estimated as the potential to produce D-larvae. Secondly, we investigated the transcriptional features of both stripped and spawned oocytes. Genes coding for proteins involved in cytoskeletal dynamics, serine/threonine kinases signalling pathway, mRNA processing, response to DNA damage, apoptosis and cell-cycle appeared to be of crucial importance for both oocyte maturation and developmental competence. This study allowed us to dramatically increase the knowledge about transcriptional features of oocyte quality and maturation, as well as to propose for the first time putative molecular markers to solve a major bottleneck in scallop aquaculture.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Arnaud Huvet
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin (LEMAR), Plouzané, France
| | - Charlotte Corporeau
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin (LEMAR), Plouzané, France
| | - Marc Suquet
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin (LEMAR), Plouzané, France
| | - Josep V. Planas
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona i Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - Rebeca Moreira
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Pontevedra, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Pontevedra, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Pontevedra, Spain
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| |
Collapse
|
39
|
Pandey AP, Sawant KK. Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:904-918. [DOI: 10.1016/j.msec.2016.07.066] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/16/2016] [Accepted: 07/24/2016] [Indexed: 12/21/2022]
|
40
|
Zhang J, Yu J, Jiang J, Chen X, Sun Y, Yang Z, Yang T, Cai C, Zhao X, Ding P. Uptake Pathways of Guandinylated Disulfide Containing Polymers as Nonviral Gene Carrier Delivering DNA to Cells. J Cell Biochem 2016; 118:903-913. [PMID: 27764887 DOI: 10.1002/jcb.25769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022]
Abstract
Polymers of guanidinylated disulfide containing poly(amido amine)s (Gua-SS-PAAs), have shown high transfection efficiency and low cytotoxicity. Previously, we synthesized two Gua-SS-PAA polymers, using guanidino containing monomers (i.e., arginine and agmatine, denoted as ARG and AGM, respectively) and N,N'-cystaminebisacrylamide (CBA). In this study, these two polymers, AGM-CBA and ARG-CBA were complexed with plasmid DNA, and their uptake pathway was investigated. Complexes distribution in MCF-7 cells, and changes on cell endosomes/lysosomes and membrane after the cells were exposed to complexes were tested. In addition, how the transfection efficiency changed with the cell cycle status as well as endocytosis inhibitors were studied. The polymers of AGM-CBA and ARG-CBA can avoid endosomal/lysosomal trap, therefore, greatly delivering plasmid DNA (pDNA) to the cell nucleoli. It is the guanidine groups in the polymers that enhanced complexes' permeation through cell membrane with slight membrane damage, and targeting to the nucleoli. J. Cell. Biochem. 118: 903-913, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinmin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiankun Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingzheng Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, School of life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
41
|
|
42
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
43
|
Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, Valmier J, Copeland NG, Jenkins NA, Richard S, Marmigère F. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. eLife 2016; 5. [PMID: 26857994 PMCID: PMC4760953 DOI: 10.7554/elife.11627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
Although cardio-vascular incidents and sudden cardiac death (SCD) are among the leading causes of premature death in the general population, the origins remain unidentified in many cases. Genome-wide association studies have identified Meis1 as a risk factor for SCD. We report that Meis1 inactivation in the mouse neural crest leads to an altered sympatho-vagal regulation of cardiac rhythmicity in adults characterized by a chronotropic incompetence and cardiac conduction defects, thus increasing the susceptibility to SCD. We demonstrated that Meis1 is a major regulator of sympathetic target-field innervation and that Meis1 deficient sympathetic neurons die by apoptosis from early embryonic stages to perinatal stages. In addition, we showed that Meis1 regulates the transcription of key molecules necessary for the endosomal machinery. Accordingly, the traffic of Rab5+ endosomes is severely altered in Meis1-inactivated sympathetic neurons. These results suggest that Meis1 interacts with various trophic factors signaling pathways during postmitotic neurons differentiation. DOI:http://dx.doi.org/10.7554/eLife.11627.001 Nerve cells called sympathetic neurons can control the activity of almost all of our organs without any conscious thought on our part. For example, these nerve cells are responsible for accelerating the heart rate during exercise. In a developing embryo, there are initially more of these neurons than are needed, and only those that develop correctly and form a connection with a target cell will survive. This is because the target cells provide the growing neurons with vital molecules called neurotrophins, which are trafficked back along the nerve fiber and into the main body of the nerve cell to ensure its survival. However, it is largely unknown which proteins or genes are also involved in this developmental process. Now, Bouilloux, Thireau et al. show that if a gene called Meis1 is inactivated in mice, the sympathetic neurons start to develop and grow nerve fibers, but then fail to establish connections with their target cells and finally die. The Meis1 gene encodes a transcription factor, which is a protein that regulates gene activity. Therefore, Bouilloux, Thireau et al. looked for the genes that are regulated by this transcription factor in sympathetic neurons. This search uncovered several genes that are involved in the packaging and trafficking of molecules within cells. Other experiments then revealed that the trafficking of molecules back along the nerve fiber was altered in mutant neurons in which the Meis1 gene had been inactivated. Furthermore, Meis1 mutant mice had problems with their heart rate, especially during exercise, and an increased risk of dying from a sudden cardiac arrest. These findings reveal a transcription factor that helps to establish a connection between a neuron and its target, and that activates a pattern of gene expression that works alongside the neurotrophin-based signals. Since all neurons undergo similar processes during development, future work could ask if comparable patterns of gene expression exist in other types of neurons, and if problems with such processes contribute to some neurodegenerative diseases. DOI:http://dx.doi.org/10.7554/eLife.11627.002
Collapse
Affiliation(s)
- Fabrice Bouilloux
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Jérôme Thireau
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Charlotte Farah
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Sarah Karam
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Yves Dauvilliers
- Sleep Unit, Department of Neurology, Gui-de-Chauliac hospital, Montpellier, France
| | - Jean Valmier
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Neal G Copeland
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, United States
| | - Nancy A Jenkins
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, United States
| | - Sylvain Richard
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Frédéric Marmigère
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| |
Collapse
|
44
|
The Importance of Particle Geometry in Design of Therapeutic and Imaging Nanovectors. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1007/978-1-4939-3634-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Liu S, Xiong X, Thomas SV, Xu Y, Cheng X, Zhao X, Yang X, Wang H. Analysis for Carom complex, signaling and function by database mining. Front Biosci (Landmark Ed) 2016; 21:856-72. [PMID: 26709809 DOI: 10.2741/4424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carom is a novel protein that regulates membrane curvature and transmits pathophysiological signaling. The tissue expression of Carom is unclear and its functional role and signaling are unknown. We employed a group of combined database mining strategies and established a working model of Carom signaling. We identified 26 Carom partners and established their expression profiles in human and mouse tissues. We classified three tiers of tissues for Carom/partner expression and found lymph node was the tier 1 tissue expressing Carom and most of its partners. Using GEO database, we discovered that four conditions (hypoxia, endometriosis, PPARgamma deletion and iPSC reprogramming) altered Carom/partner expression in endothelial cells. We identified 26 Carom partner signalings by Ingenuity pathway analysis. Ten of the 26 pathways and three genes (ITSN1, UBC and HSPA5) were reported to be regulated in the above four conditions. Paired induction of Carom/ITSN1 elevation was associated with pathological angiogenesis. Whereas, paired reduction of Carom/HSPA5 or UBC was associated with iPSC generation. These results provide an insight on identifying Carom complex model and predicting its functional implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Wang
- Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center,
| |
Collapse
|
46
|
Cancer cell surface induced peptide folding allows intracellular translocation of drug. J Control Release 2015; 209:317-26. [PMID: 25979324 DOI: 10.1016/j.jconrel.2015.05.267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022]
Abstract
Many lead molecules identified in drug discovery campaigns are eliminated from consideration due to poor solubility and low cell permeability. These orphaned molecules could have clinical value if solubilized and delivered properly. SVS-1 is a de novo designed peptide that preferentially folds at the surface of tumor cells, adopting a β-hairpin conformation that rapidly translocates into the cytoplasm, and ultimately nucleus, of cells. SVS-1 is stable in serum and small molecules attached to the peptide are effectively delivered to cancer cells via mechanisms involving physical translocation and, to a lesser extent, clathrin-dependent endocytosis. For example, ligating the model hydrophobic drug Paclitaxel (PTX) to SVS-1 improved its aqueous solubility by ~1000-fold and successfully delivered and released PTX to cancer cells in vitro and tumors in vivo without toxic adjuvants. These results suggest that SVS-1 can serve as a simple, effective delivery platform for molecules with poor solubility and permeability.
Collapse
|
47
|
Chuang CK, Yang TH, Chen TH, Yang CF, Chen WJ. Heat shock cognate protein 70 isoform D is required for clathrin-dependent endocytosis of Japanese encephalitis virus in C6/36 cells. J Gen Virol 2014; 96:793-803. [PMID: 25502019 DOI: 10.1099/jgv.0.000015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Japanese encephalitis virus (JEV), one of encephalitic flaviviruses, is naturally transmitted by mosquitoes. During infection, JEV generally enters host cells via receptor-mediated clathrin-dependent endocytosis that requires the 70 kDa heat-shock protein (Hsp70). Heat-shock cognate protein 70 (Hsc70) is one member of the Hsp70 family and is constitutively expressed; thus, it may be expressed under physiological conditions. In C6/36 cells, Hsc70 is upregulated in response to JEV infection. Since Hsc70 shows no relationship with viruses attaching to the cell surface, it probably does not serve as the receptor according to our results in the present study. In contrast, Hsc70 is evidently associated with virus penetration into the cell and resultant acidification of intracellular vesicles. It suggests that Hsc70 is highly involved in clathrin-mediated endocytosis, particularly at the late stage of viral entry into host cells. Furthermore, we found that Hsc70 is composed of at least three isoforms, including B, C and D; of these, isoform D helps JEV to penetrate C6/36 cells via clathrin-mediated endocytosis. This study provides relevant evidence that sheds light on the regulatory mechanisms of JEV infection in host cells, especially on the process of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Ching-Kai Chuang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Tsong-Han Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Tien-Huang Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Chao-Fu Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Wei-June Chen
- Department of Public Health and Parasitology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| |
Collapse
|
48
|
Li YY, Chen XN, Fan XX, Zhang YJ, Gu J, Fu XW, Wang ZH, Wang XF, Xiao Z. Upregulated dynamin 1 in an acute seizure model and in epileptic patients. Synapse 2014; 69:67-77. [PMID: 25318457 DOI: 10.1002/syn.21788] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/24/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Ying-Ying Li
- Department of Neurology; the First Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Neurology; Chongqing China
| | - Xiao-Ni Chen
- Department of Neurology; the First Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Neurology; Chongqing China
| | - Xin-Xin Fan
- Department of Neurology; the First Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Neurology; Chongqing China
| | - Yu-Jiao Zhang
- Department of Neurology; the First Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Neurology; Chongqing China
| | - Juan Gu
- Department of Neurology; the First Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Neurology; Chongqing China
| | - Xin-Wei Fu
- Department of Neurology; the First Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Neurology; Chongqing China
| | - Zhi-Hua Wang
- Department of Neurology; the First Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Neurology; Chongqing China
| | - Xue-Feng Wang
- Department of Neurology; the First Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Neurology; Chongqing China
| | - Zheng Xiao
- Department of Neurology; the First Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Neurology; Chongqing China
| |
Collapse
|
49
|
Zhao B, Chen YG. Regulation of TGF-β Signal Transduction. SCIENTIFICA 2014; 2014:874065. [PMID: 25332839 PMCID: PMC4190275 DOI: 10.1155/2014/874065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/02/2014] [Indexed: 05/30/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling regulates diverse cellular processes, including cell proliferation, differentiation, apoptosis, cell plasticity, and migration. TGF-β signaling can be mediated by Smad proteins or other signaling proteins such as MAP kinases and Akt. TGF-β signaling is tightly regulated at different levels along the pathways to ensure its proper physiological functions in different cells and tissues. Deregulation of TGF-β signaling has been associated with various kinds of diseases, such as cancer and tissue fibrosis. This paper focuses on our recent work on regulation of TGF-β signaling.
Collapse
Affiliation(s)
- Bing Zhao
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Abstract
Guanidinium-rich scaffolds facilitate cellular translocation and delivery of bioactive cargos through biological barriers. Although impressive uptake has been demonstrated for nonoligomeric and nonpept(o)idic guanidinylated scaffolds in cell cultures and animal models, the fundamental understanding of these processes is lacking. Charge pairing and hydrogen bonding with cell surface counterparts have been proposed, but their exact role remains putative. The impact of the number and spatial relationships of the guanidinium groups on delivery and organelle/organ localization is yet to be established.
Collapse
Affiliation(s)
- Ezequiel Wexselblatt
- Department of Chemistry and Biochemistry and Department of Cellular and Molecular
Medicine, University of California, San Diego 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Jeffrey
D. Esko
- Department of Chemistry and Biochemistry and Department of Cellular and Molecular
Medicine, University of California, San Diego 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry and Department of Cellular and Molecular
Medicine, University of California, San Diego 9500 Gilman Dr., La Jolla, California 92093, United States
| |
Collapse
|