1
|
In Vitro Human Haematopoietic Stem Cell Expansion and Differentiation. Cells 2023; 12:cells12060896. [PMID: 36980237 PMCID: PMC10046976 DOI: 10.3390/cells12060896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The haematopoietic system plays an essential role in our health and survival. It is comprised of a range of mature blood and immune cell types, including oxygen-carrying erythrocytes, platelet-producing megakaryocytes and infection-fighting myeloid and lymphoid cells. Self-renewing multipotent haematopoietic stem cells (HSCs) and a range of intermediate haematopoietic progenitor cell types differentiate into these mature cell types to continuously support haematopoietic system homeostasis throughout life. This process of haematopoiesis is tightly regulated in vivo and primarily takes place in the bone marrow. Over the years, a range of in vitro culture systems have been developed, either to expand haematopoietic stem and progenitor cells or to differentiate them into the various haematopoietic lineages, based on the use of recombinant cytokines, co-culture systems and/or small molecules. These approaches provide important tractable models to study human haematopoiesis in vitro. Additionally, haematopoietic cell culture systems are being developed and clinical tested as a source of cell products for transplantation and transfusion medicine. This review discusses the in vitro culture protocols for human HSC expansion and differentiation, and summarises the key factors involved in these biological processes.
Collapse
|
2
|
Notch Signaling in Acute Inflammation and Sepsis. Int J Mol Sci 2023; 24:ijms24043458. [PMID: 36834869 PMCID: PMC9967996 DOI: 10.3390/ijms24043458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. Besides, this pathway is also directly involved in the transmission of immune signals. Notch signaling per se does not have a clear pro- or anti-inflammatory effect, but rather its impact is highly dependent on the immune cell type and the cellular environment, modulating several inflammatory conditions including sepsis, and therefore significantly impacts the course of disease. In this review, we will discuss the contribution of Notch signaling on the clinical picture of systemic inflammatory diseases, especially sepsis. Specifically, we will review its role during immune cell development and its contribution to the modulation of organ-specific immune responses. Finally, we will evaluate to what extent manipulation of the Notch signaling pathway could be a future therapeutic strategy.
Collapse
|
3
|
Michaels YS, Edgar JM, Major MC, Castle EL, Zimmerman C, Yin T, Hagner A, Lau C, Hsu HH, Ibañez-Rios MI, Durland LJ, Knapp DJHF, Zandstra PW. DLL4 and VCAM1 enhance the emergence of T cell-competent hematopoietic progenitors from human pluripotent stem cells. SCIENCE ADVANCES 2022; 8:eabn5522. [PMID: 36001668 PMCID: PMC9401626 DOI: 10.1126/sciadv.abn5522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/12/2022] [Indexed: 05/13/2023]
Abstract
T cells show tremendous efficacy as cellular therapeutics. However, obtaining primary T cells from human donors is expensive and variable. Pluripotent stem cells (PSCs) have the potential to provide a renewable source of T cells, but differentiating PSCs into hematopoietic progenitors with T cell potential remains an important challenge. Here, we report an efficient serum- and feeder-free system for differentiating human PSCs into hematopoietic progenitors and T cells. This fully defined approach allowed us to study the impact of individual proteins on blood emergence and differentiation. Providing DLL4 and VCAM1 during the endothelial-to-hematopoietic transition enhanced downstream progenitor T cell output by ~80-fold. These two proteins synergized to activate notch signaling in nascent hematopoietic stem and progenitor cells, and VCAM1 additionally promoted an inflammatory transcriptional program. We also established optimized medium formulations that enabled efficient and chemically defined maturation of functional CD8αβ+, CD4-, CD3+, TCRαβ+ T cells with a diverse TCR repertoire.
Collapse
Affiliation(s)
- Yale S. Michaels
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John M. Edgar
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Matthew C. Major
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Elizabeth L. Castle
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Carla Zimmerman
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ting Yin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Andrew Hagner
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Charles Lau
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Han Hsuan Hsu
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - M. Iliana Ibañez-Rios
- Institut de recherche en immunologie et en cancérologie and Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Lauren J. Durland
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - David J. H. F. Knapp
- Institut de recherche en immunologie et en cancérologie and Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Peter W. Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
4
|
Edwards A, Brennan K. Notch Signalling in Breast Development and Cancer. Front Cell Dev Biol 2021; 9:692173. [PMID: 34295896 PMCID: PMC8290365 DOI: 10.3389/fcell.2021.692173] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
The Notch signalling pathway is a highly conserved developmental signalling pathway, with vital roles in determining cell fate during embryonic development and tissue homeostasis. Aberrant Notch signalling has been implicated in many disease pathologies, including cancer. In this review, we will outline the mechanism and regulation of the Notch signalling pathway. We will also outline the role Notch signalling plays in normal mammary gland development and how Notch signalling is implicated in breast cancer tumorigenesis and progression. We will cover how Notch signalling controls several different hallmarks of cancer within epithelial cells with sections focussed on its roles in proliferation, apoptosis, invasion, and metastasis. We will provide evidence for Notch signalling in the breast cancer stem cell phenotype, which also has implications for therapy resistance and disease relapse in breast cancer patients. Finally, we will summarise the developments in therapeutic targeting of Notch signalling, and the pros and cons of this approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Abigail Edwards
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Keith Brennan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Orzechowska M, Anusewicz D, Bednarek AK. Functional Gene Expression Differentiation of the Notch Signaling Pathway in Female Reproductive Tract Tissues-A Comprehensive Review With Analysis. Front Cell Dev Biol 2021; 8:592616. [PMID: 33384996 PMCID: PMC7770115 DOI: 10.3389/fcell.2020.592616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The Notch pathway involves evolutionarily conserved signaling regulating the development of the female tract organs such as breast, ovary, cervix, and uterine endometrium. A great number of studies revealed Notch aberrancies in association with their carcinogenesis and disease progression, the management of which is still challenging. The present study is a comprehensive review of the available literature on Notch signaling during the normal development and carcinogenesis of the female tract organs. The review has been enriched with our analyses of the TCGA data including breast, cervical, ovarian, and endometrial carcinomas concerning the effects of Notch signaling at two levels: the core components and downstream effectors, hence filling the lack of global overview of Notch-driven carcinogenesis and disease progression. Phenotype heterogeneity regarding Notch signaling was projected in two uniform manifold approximation and projection algorithm dimensions, preceded by the principal component analysis step reducing the data burden. Additionally, overall and disease-free survival analyses were performed with the optimal cutpoint determination by Evaluate Cutpoints software to establish the character of particular Notch components in tumorigenesis. In addition to the review, we demonstrated separate models of the examined cancers of the Notch pathway and its targets, although expression profiles of all normal tissues were much more similar to each other than to its cancerous compartments. Such Notch-driven cancerous differentiation resulted in a case of opposite association with DFS and OS. As a consequence, target genes also show very distinct profiles including genes associated with cell proliferation and differentiation, energy metabolism, or the EMT. In conclusion, the observed Notch associations with the female tract malignancies resulted from differential expression of target genes. This may influence a future analysis to search for new therapeutic targets based on specific Notch pathway profiles.
Collapse
Affiliation(s)
| | - Dorota Anusewicz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Wang S, Hao Q, Li J, Chen Y, Lu H, Wu X, Zhou X. Ubiquitin ligase DTX3 empowers mutant p53 to promote ovarian cancer development. Genes Dis 2020; 9:705-716. [PMID: 35782979 PMCID: PMC9243342 DOI: 10.1016/j.gendis.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/01/2020] [Accepted: 11/13/2020] [Indexed: 01/21/2023] Open
Abstract
The deltex family protein DTX3 is believed to possess E3 ubiquitin ligase activity, as it contains a classic RING finger domain. However, its biological role and the underlying mechanism in cancer remain largely elusive. Here, we identified DTX3 as a novel mutant p53-interacting protein in ovarian carcinoma. Mechanistically, DTX3 mediated mutant p53 ubiquitination and stabilization by perturbing the MDM2-mutant p53 interaction, consequently leading to activation of diverse mutant p53 target genes. Importantly, a positive correlation between the expression of DTX3 and mutant p53 target genes was further validated in ovarian carcinomas. Ectopic DTX3 promoted, while depletion of DTX3 suppressed, ovarian cancer cell proliferation and invasion. Remarkably, the pro-tumorigenic effect of DTX3 is dependent on mutant p53, because ablation of mutant p53 significantly impaired DTX3-induced gene expression and ovarian cancer cell growth and propagation. Furthermore, DTX3 elevated the expression of mutant p53 target genes and boosted ovarian tumor growth in vivo. Finally, DTX3 was amplified and overexpressed in ovarian carcinomas, which is significantly associated with unfavorable prognosis. Altogether, our findings unveil the oncogenic role of DTX3 in ovarian cancer development by bolstering mutant p53 activity.
Collapse
Affiliation(s)
- Shanshan Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Jiajia Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
| | - Yajie Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
- Corresponding author. Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
- Corresponding author. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
miR-22-3p Negatively Affects Tumor Progression in T-Cell Acute Lymphoblastic Leukemia. Cells 2020; 9:cells9071726. [PMID: 32708470 PMCID: PMC7408026 DOI: 10.3390/cells9071726] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression. Using an established mouse model of T-ALL induced by NOTCH1 activation, we identified several microRNAs downstream of NOTCH1 activation. In particular, we found that NOTCH1 inhibition can induce miR-22-3p in NOTCH1-dependent tumors and that this regulation is also conserved in human samples. Importantly, miR-22-3p overexpression in T-ALL cells can inhibit colony formation in vitro and leukemia progression in vivo. In addition, miR-22-3p was found to be downregulated in T-ALL specimens, both T-ALL cell lines and primary samples, relative to immature T-cells. Our results suggest that miR-22-3p is a functionally relevant microRNA in T-ALL whose modulation can be exploited for therapeutic purposes to inhibit T-ALL progression.
Collapse
|
8
|
Kosciuk T, Lin H. N-Myristoyltransferase as a Glycine and Lysine Myristoyltransferase in Cancer, Immunity, and Infections. ACS Chem Biol 2020; 15:1747-1758. [PMID: 32453941 DOI: 10.1021/acschembio.0c00314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein myristoylation, the addition of a 14-carbon saturated acyl group, is an abundant modification implicated in biological events as diverse as development, immunity, oncogenesis, and infections. N-Myristoyltransferase (NMT) is the enzyme that catalyzes this modification. Many elegant studies have established the rules guiding the catalysis including substrate amino acid sequence requirements with the indispensable N-terminal glycine, and a co-translational mode of action. Recent advances in technology such as the development of fatty acid analogs, small molecule inhibitors, and new proteomic strategies, allowed a deeper insight into the NMT activity and function. Here we focus on discussing recent work demonstrating that NMT is also a lysine myristoyltransferase, the enzyme's regulation by a previously unnoticed solvent channel, and the mechanism of NMT regulation by protein-protein interactions. We also summarize recent findings on NMT's role in cancer, immunity, and infections and the advances in pharmacological targeting of myristoylation. Our analyses highlight opportunities for further understanding and discoveries.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 109:535-548. [PMID: 32557824 DOI: 10.1002/jlb.1ri0520-138r] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-to-cell signaling pathway that regulates cellular differentiation and function across multiple tissue types and developmental stages. In this review, we discuss our current understanding of Notch signaling in mammalian innate and adaptive immunity. The importance of Notch signaling is pervasive throughout the immune system, as it elicits lineage and context-dependent effects in a wide repertoire of cells. Although regulation of binary cell fate decisions encompasses many of the functions first ascribed to Notch in the immune system, recent advances in the field have refined and expanded our view of the Notch pathway beyond this initial concept. From establishing T cell identity in the thymus to regulating mature T cell function in the periphery, the Notch pathway is an essential, recurring signal for the T cell lineage. Among B cells, Notch signaling is required for the development and maintenance of marginal zone B cells in the spleen. Emerging roles for Notch signaling in innate and innate-like lineages such as classical dendritic cells and innate lymphoid cells are likewise coming into view. Lastly, we speculate on the molecular underpinnings that shape the activity and versatility of the Notch pathway.
Collapse
Affiliation(s)
- Ashley Vanderbeck
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Veterinary Medical Scientist Training Program, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Maillard
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Binatti A, Bresolin S, Bortoluzzi S, Coppe A. iWhale: a computational pipeline based on Docker and SCons for detection and annotation of somatic variants in cancer WES data. Brief Bioinform 2020; 22:5840042. [PMID: 32436933 PMCID: PMC8557746 DOI: 10.1093/bib/bbaa065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Whole exome sequencing (WES) is a powerful approach for discovering sequence variants in cancer cells but its time effectiveness is limited by the complexity and issues of WES data analysis. Here we present iWhale, a customizable pipeline based on Docker and SCons, reliably detecting somatic variants by three complementary callers (MuTect2, Strelka2 and VarScan2). The results are combined to obtain a single variant call format file for each sample and variants are annotated by integrating a wide range of information extracted from several reference databases, ultimately allowing variant and gene prioritization according to different criteria. iWhale allows users to conduct a complex series of WES analyses with a powerful yet customizable and easy-to-use tool, running on most operating systems (macOs, GNU/Linux and Windows). iWhale code is freely available at https://github.com/alexcoppe/iWhale and the docker image is downloadable from https://hub.docker.com/r/alexcoppe/iwhale.
Collapse
Affiliation(s)
| | | | - Stefania Bortoluzzi
- Corresponding authors: Stefania Bortoluzzi, Department of Molecular Medicine, University of Padova, Padova, Italy. E-mail: ; Alessandro Coppe, Department of Women's and Children's Health, Department of Biology, University of Padova and Department of Biology, Padova, Italy. Tel.: +39 049 8276502; E-mail:
| | - Alessandro Coppe
- Corresponding authors: Stefania Bortoluzzi, Department of Molecular Medicine, University of Padova, Padova, Italy. E-mail: ; Alessandro Coppe, Department of Women's and Children's Health, Department of Biology, University of Padova and Department of Biology, Padova, Italy. Tel.: +39 049 8276502; E-mail:
| |
Collapse
|
11
|
Grazioli P, Orlando A, Giordano N, Noce C, Peruzzi G, Scafetta G, Screpanti I, Campese AF. NF-κB1 Regulates Immune Environment and Outcome of Notch-Dependent T-Cell Acute Lymphoblastic Leukemia. Front Immunol 2020; 11:541. [PMID: 32346377 PMCID: PMC7169422 DOI: 10.3389/fimmu.2020.00541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive pediatric malignancy that arises from the transformation of immature T-cell progenitors and has no definitive cure. Notch signaling governs many steps of T cell development and its dysregulation represents the most common causative event in the pathogenesis of T-ALL. The activation of canonical NF-κB pathway has been described as a critical downstream mediator of Notch oncogenic functions, through the sustaining of tumor cell survival and growth. The potential role of Notch/NF-κB partnership is also emerging in the generation and function of regulatory T cells (Tregs) in the context of cancer. However, little is known about the effects of combined mutations of Notch and NF-κB in regulating immune-environment and progression of T-ALL. To shed light on the topics above we generated double-mutant mice, harboring conventional knock-out mutation of NF-κB1/p50 on the genetic background of a transgenic model of Notch-dependent T-ALL. The immunophenotyping of double-mutant mice demonstrates that NF-κB1 deletion inhibits the progression of T-ALL and strongly modifies immune-environment of the disease. Double-mutant mice display indeed a dramatic reduction of pre-leukemic CD4+CD8+ (DP) T cells and regulatory T cells (Tregs) and, concurrently, the rising of an aggressive myeloproliferative trait with a massive expansion of CD11b+Gr-1+ cells in the periphery, and an accumulation of the granulocyte/monocyte progenitors in the bone-marrow. Interestingly, double-mutant T cells are able to improve the growth of CD11b+Gr-1+ cells in vitro, and, more importantly, the in vivo depletion of T cells in double-mutant mice significantly reduces the expansion of myeloid compartment. Our results strongly suggest that the myeloproliferative trait observed in double-mutant mice may depend on non-cell-autonomous mechanism/s driven by T cells. Moreover, we demonstrate that the reduction of CD4+CD8+ (DP) T cells and Tregs in double-mutant mice relies on a significant enhancement of their apoptotic rate. In conclusion, double-mutant mice may represent a useful model to deepen the knowledge of the consequences on T-ALL immune-environment of modulating Notch/NF-κB relationships in tumor cells. More importantly, information derived from these studies may help in the refinement of multitarget therapies for the disease.
Collapse
Affiliation(s)
- Paola Grazioli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Andrea Orlando
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Nike Giordano
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Claudia Noce
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Gaia Scafetta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Rome, Italy
| | | | | |
Collapse
|
12
|
Tsaouli G, Barbarulo A, Vacca A, Screpanti I, Felli MP. Molecular Mechanisms of Notch Signaling in Lymphoid Cell Lineages Development: NF-κB and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:145-164. [PMID: 32072504 DOI: 10.1007/978-3-030-36422-9_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Notch is a ligand-receptor interaction-triggered signaling cascade highly conserved, that influences multiple lineage decisions within the hematopoietic and the immune system. It is a recognized model of intercellular communication that plays an essential role in embryonic as well as in adult immune cell development and homeostasis. Four members belong to the family of Notch receptors (Notch1-4), and each of them plays nonredundant functions at several developmental stages. Canonical and noncanonical pathways of Notch signaling are multifaceted drivers of immune cells biology. In fact, increasing evidence highlighted Notch as an important modulator of immune responses, also in cancer microenvironment. In these contexts, multiple transduction signals, including canonical and alternative NF-κB pathways, play a relevant role. In this chapter, we will first describe the critical role of Notch and NF-κB signals in lymphoid lineages developing in thymus: natural killer T cells, thymocytes, and thymic T regulatory cells. We will address also the role played by ligand expressing cells. Given the importance of Notch/NF-κB cross talk, its role in T-cell leukemia development and progression will be discussed.
Collapse
Affiliation(s)
- G Tsaouli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - A Barbarulo
- Department of Immunology, Institute of Immunity and Transplantation, Royal Free Hospital, London, UK
| | - A Vacca
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - I Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| | - M P Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
13
|
Krishna BM, Jana S, Singhal J, Horne D, Awasthi S, Salgia R, Singhal SS. Notch signaling in breast cancer: From pathway analysis to therapy. Cancer Lett 2019; 461:123-131. [PMID: 31326555 DOI: 10.1016/j.canlet.2019.07.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/15/2023]
Abstract
The Notch signaling pathway, which is highly conserved from sea urchins to humans, plays an important role in cell-differentiation, survival, proliferation, stem-cell renewal, and determining cell fate during development and morphogenesis. It is well established that signaling pathways are dysregulated in a wide-range of diseases, including human malignancies. Studies suggest that the dysregulation of the Notch pathway contributes to carcinogenesis, cancer stem cell renewal, angiogenesis, and chemo-resistance. Elevated levels of Notch receptors and ligands have been associated with cancer-progression and poor survival. Furthermore, the Notch signaling pathway regulates the transcriptional activity of key target genes through crosstalk with several other signaling pathways. Indeed, increasing evidence suggests that the Notch signaling pathway may serve as a therapeutic target for the treatment of several cancers, including breast cancer. Researchers have demonstrated the anti-tumor properties of Notch inhibitors in various cancer types. Currently, Notch inhibitors are being evaluated for anticancer efficacy in a number of clinical-trials. However, because there are multiple Notch receptors that can exhibit either oncogenic or tumor-suppressing roles in various cells, it is important that the Notch inhibitors are specific to particular receptors that are tumorigenic in nature. This review critically evaluates existing Notch inhibitory drugs and strategies and summarizes the previous discoveries, current understandings, and recent developments in support of Notch receptors as therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- B Madhu Krishna
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Samir Jana
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
14
|
Matana A, Popović M, Boutin T, Torlak V, Brdar D, Gunjača I, Kolčić I, Boraska Perica V, Punda A, Polašek O, Hayward C, Barbalić M, Zemunik T. Genome-wide meta-analysis identifies novel gender specific loci associated with thyroid antibodies level in Croatians. Genomics 2019; 111:737-743. [DOI: 10.1016/j.ygeno.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/28/2018] [Accepted: 04/16/2018] [Indexed: 11/16/2022]
|
15
|
The multifaceted role of Notch signal in regulating T cell fate. Immunol Lett 2019; 206:59-64. [PMID: 30629981 DOI: 10.1016/j.imlet.2019.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 11/22/2022]
Abstract
Notch signaling pathway facilitates important cellular functions of the host. Notch signal is essential for the development of T cells, and the role of Notch in fine tuning of αβ versus γδ T cell lineage commitment is fundamentally different in mice and human. The Notch family of cell surface receptor likewise plays a critical role in regulating T cell activation, and influences T cell response both intrinsically and through the local environment. In this review, we take an overview of Notch signaling pathway and also emphasize the role of Notch signal in T cell lineage differentiation and activating effector function of peripheral T cells.
Collapse
|
16
|
Notch Signaling is Required for Dendritic Cell Maturation and T Cell Expansion in Paracoccidioidomycosis. Mycopathologia 2018; 183:739-749. [PMID: 29911286 DOI: 10.1007/s11046-018-0276-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
The Notch signaling pathway participates in several cellular functional aspects. This signaling has an important role in targeting both DC maturation and DC-mediated T cell responses. Thus, it is essential to investigate the influence of this signaling pathway in the role played by DCs in the pathogenesis of experimental paracoccidioidomycosis. This disease is a granulomatous and systemic mycosis that mainly affects lung tissue and can spread to any other organ and system. In this study, we demonstrated that bone marrow-derived DCs infected with yeasts from Paracoccidioides brasiliensis strain 18 performed efficiently their maturation after the activation of Notch signaling, with an increase in CD80, CD86, CCR7, and CD40 expression and the release of cytokines such as IL-6 and TNF-α. We observed that the inhibition of the γ-secretase DAPT impaired the proliferation of T cells induced by DC stimulation. In conclusion, our data suggest that Notch signaling contributes effectively to the maturation of DCs and the DC-mediated activation of the T cell response in P. brasiliensis infections.
Collapse
|
17
|
García-Peydró M, Fuentes P, Mosquera M, García-León MJ, Alcain J, Rodríguez A, García de Miguel P, Menéndez P, Weijer K, Spits H, Scadden DT, Cuesta-Mateos C, Muñoz-Calleja C, Sánchez-Madrid F, Toribio ML. The NOTCH1/CD44 axis drives pathogenesis in a T cell acute lymphoblastic leukemia model. J Clin Invest 2018; 128:2802-2818. [PMID: 29781813 DOI: 10.1172/jci92981] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
NOTCH1 is a prevalent signaling pathway in T cell acute lymphoblastic leukemia (T-ALL), but crucial NOTCH1 downstream signals and target genes contributing to T-ALL pathogenesis cannot be retrospectively analyzed in patients and thus remain ill defined. This information is clinically relevant, as initiating lesions that lead to cell transformation and leukemia-initiating cell (LIC) activity are promising therapeutic targets against the major hurdle of T-ALL relapse. Here, we describe the generation in vivo of a human T cell leukemia that recapitulates T-ALL in patients, which arises de novo in immunodeficient mice reconstituted with human hematopoietic progenitors ectopically expressing active NOTCH1. This T-ALL model allowed us to identify CD44 as a direct NOTCH1 transcriptional target and to recognize CD44 overexpression as an early hallmark of preleukemic cells that engraft the BM and finally develop a clonal transplantable T-ALL that infiltrates lymphoid organs and brain. Notably, CD44 is shown to support crucial BM niche interactions necessary for LIC activity of human T-ALL xenografts and disease progression, highlighting the importance of the NOTCH1/CD44 axis in T-ALL pathogenesis. The observed therapeutic benefit of anti-CD44 antibody administration in xenotransplanted mice holds great promise for therapeutic purposes against T-ALL relapse.
Collapse
Affiliation(s)
- Marina García-Peydró
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - Patricia Fuentes
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - Marta Mosquera
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - María J García-León
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - Juan Alcain
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - Antonio Rodríguez
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), Barcelona, ISCIII, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Kees Weijer
- Department of Cell Biology and Histology, Academic Medical Center, and
| | - Hergen Spits
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute and Harvard University Department of Stem Cell and Regenerative Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Cuesta-Mateos
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain.,Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| | - María L Toribio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| |
Collapse
|
18
|
Abstract
Notch is commonly activated in lymphoid malignancies through ligand-independent and ligand-dependent mechanisms. In T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), ligand-independent activation predominates. Negative Regulatory Region (NRR) mutations trigger supraphysiological Notch1 activation by exposing the S2 site to proteolytic cleavage in the absence of ligand. Subsequently, cleavage at the S3 site generates the activated form of Notch, intracellular Notch (ICN). In contrast to T-ALL, in mature lymphoid neoplasms such as chronic lymphocytic leukemia (CLL), the S2 cleavage site is exposed through ligand-receptor interactions. Thus, agents that disrupt ligand-receptor interactions might be useful for treating these malignancies. Notch activation can be enhanced by mutations that delete the C-terminal proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) domain. These mutations do not activate the Notch pathway per se, but rather impair degradation of ICN. In this chapter, we review the mechanisms of Notch activation and the importance of Notch for the genesis and maintenance of lymphoid malignancies. Unfortunately, targeting the Notch pathway with pan-Notch inhibitors in clinical trials has proven challenging. These clinical trials have encountered dose-limiting on-target toxicities and primary resistance. Strategies to overcome these challenges have emerged from the identification and improved understanding of direct oncogenic Notch target genes. Other strategies have arisen from new insights into the "nuclear context" that selectively directs Notch functions in lymphoid cancers. This nuclear context is created by factors that co-bind ICN at cell-type specific transcriptional regulatory elements. Disrupting the functions of these proteins or inhibiting downstream oncogenic pathways might combat cancer without the intolerable side effects of pan-Notch inhibition.
Collapse
|
19
|
Udenwobele DI, Su RC, Good SV, Ball TB, Varma Shrivastav S, Shrivastav A. Myristoylation: An Important Protein Modification in the Immune Response. Front Immunol 2017; 8:751. [PMID: 28713376 PMCID: PMC5492501 DOI: 10.3389/fimmu.2017.00751] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/13/2017] [Indexed: 01/24/2023] Open
Abstract
Protein N-myristoylation is a cotranslational lipidic modification specific to the alpha-amino group of an N-terminal glycine residue of many eukaryotic and viral proteins. The ubiquitous eukaryotic enzyme, N-myristoyltransferase, catalyzes the myristoylation process. Precisely, attachment of a myristoyl group increases specific protein–protein interactions leading to subcellular localization of myristoylated proteins with its signaling partners. The birth of the field of myristoylation, a little over three decades ago, has led to the understanding of the significance of protein myristoylation in regulating cellular signaling pathways in several biological processes especially in carcinogenesis and more recently immune function. This review discusses myristoylation as a prerequisite step in initiating many immune cell signaling cascades. In particular, we discuss the hitherto unappreciated implication of myristoylation during myelopoiesis, innate immune response, lymphopoiesis for T cells, and the formation of the immunological synapse. Furthermore, we discuss the role of myristoylation in inducing the virological synapse during human immunodeficiency virus infection as well as its clinical implication. This review aims to summarize existing knowledge in the field and to highlight gaps in our understanding of the role of myristoylation in immune function so as to further investigate into the dynamics of myristoylation-dependent immune regulation.
Collapse
Affiliation(s)
- Daniel Ikenna Udenwobele
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sara V Good
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Terry Blake Ball
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shailly Varma Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,VastCon Inc., Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
20
|
Oliveira ML, Akkapeddi P, Alcobia I, Almeida AR, Cardoso BA, Fragoso R, Serafim TL, Barata JT. From the outside, from within: Biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia. Cell Signal 2017. [PMID: 28645565 DOI: 10.1016/j.cellsig.2017.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from clonal expansion of transformed T-cell precursors. In this review we summarize the current knowledge on the external stimuli and cell-intrinsic lesions that drive aberrant activation of pivotal, pro-tumoral intracellular signaling pathways in T-cell precursors, driving transformation, leukemia expansion, spread or resistance to therapy. In addition to their pathophysiological relevance, receptors and kinases involved in signal transduction are often attractive candidates for targeted drug development. As such, we discuss also the potential of T-ALL signaling players as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Isabel Alcobia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Afonso R Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno A Cardoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Teresa L Serafim
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
21
|
Nishana M, Nilavar NM, Kumari R, Pandey M, Raghavan SC. HIV integrase inhibitor, Elvitegravir, impairs RAG functions and inhibits V(D)J recombination. Cell Death Dis 2017; 8:e2852. [PMID: 28569776 PMCID: PMC5520896 DOI: 10.1038/cddis.2017.237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022]
Abstract
Integrase inhibitors are a class of antiretroviral drugs used for the treatment of AIDS that target HIV integrase, an enzyme responsible for integration of viral cDNA into host genome. RAG1, a critical enzyme involved in V(D)J recombination exhibits structural similarity to HIV integrase. We find that two integrase inhibitors, Raltegravir and Elvitegravir, interfered with the physiological functions of RAGs such as binding, cleavage and hairpin formation at the recombination signal sequence (RSS), though the effect of Raltegravir was limited. Circular dichroism studies demonstrated a distinct change in the secondary structure of RAG1 central domain (RAG1 shares DDE motif amino acids with integrases), and when incubated with Elvitegravir, an equilibrium dissociation constant (Kd) of 32.53±2.9 μM was determined by Biolayer interferometry, leading to inhibition of its binding to DNA. Besides, using extrachromosomal assays, we show that Elvitegravir inhibited both coding and signal joint formation in pre-B cells. Importantly, treatment with Elvitegravir resulted in significant reduction of mature B lymphocytes in 70% of mice studied. Thus, our study suggests a potential risk associated with the use of Elvitegravir as an antiretroviral drug, considering the evolutionary and structural similarities between HIV integrase and RAGs.
Collapse
Affiliation(s)
| | - Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Monica Pandey
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
22
|
García-Alegría E, Lafita-Navarro MC, Aguado R, García-Gutiérrez L, Sarnataro K, Ruiz-Herguido C, Martín F, Bigas A, Canelles M, León J. NUMB inactivation confers resistance to imatinib in chronic myeloid leukemia cells. Cancer Lett 2016; 375:92-99. [PMID: 26944313 DOI: 10.1016/j.canlet.2016.02.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 01/21/2023]
Abstract
Chronic myeloid leukemia (CML) progresses from a chronic to a blastic phase, where the leukemic cells are proliferative and undifferentiated. The CML is nowadays successfully treated with BCR-ABL kinase inhibitors as imatinib and its derivatives. NUMB is an evolutionary well-conserved protein initially described as a functional antagonist of NOTCH function. NUMB is an endocytic protein associated with receptor internalization, involved in multiple cellular functions. It has been reported that MSI2 protein, a NUMB inhibitor, is upregulated in CML blast crisis, whereas NUMB itself is downregulated. This suggest that NUMB plays a role in the malignant progression of CML. Here we have generated K562 cells (derived from CML in blast crisis) constitutively expressing a dominant negative form of NUMB (dnNUMB). We show that dnNUMB expression confers a high proliferative phenotype to the cells. Importantly, dnNUMB triggers a partial resistance to imatinib in these cells, antagonizing the apoptosis mediated by the drug. Interestingly, imatinib resistance is not linked to p53 status or NOTCH signaling, as K562 lack p53 and imatinib resistance is reproduced in the presence of NOTCH inhibitors. Taken together, our data support the hypothesis that NUMB activation could be a new therapeutic target in CML.
Collapse
Affiliation(s)
- Eva García-Alegría
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - M Carmen Lafita-Navarro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Rocío Aguado
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, Granada, Spain
| | - Lucia García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Kyle Sarnataro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | | | - Anna Bigas
- Stem Cells and Cancer Group. IMIM, Barcelona, Spain
| | - Matilde Canelles
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, Granada, Spain.
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
23
|
Thounaojam MC, Dudimah DF, Pellom ST, Uzhachenko RV, Carbone DP, Dikov MM, Shanker A. Bortezomib enhances expression of effector molecules in anti-tumor CD8+ T lymphocytes by promoting Notch-nuclear factor-κB crosstalk. Oncotarget 2015; 6:32439-55. [PMID: 26431276 PMCID: PMC4741704 DOI: 10.18632/oncotarget.5857] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/09/2015] [Indexed: 01/08/2023] Open
Abstract
The immunosuppressive tumor microenvironment usurps host antitumor immunity by multiple mechanisms including interference with the Notch system, which is important for various metazoan cell fate decisions and hematopoietic cell differentiation and function. We observed that treatment with the proteasome inhibitor bortezomib in mice bearing various solid tumors resulted in an upregulated expression of various Notch signaling components in lymphoid tissues, thereby increasing CD8+T-lymphocyte IFNγ secretion and expression of effector molecules, perforin and granzyme B, as well as the T-box transcription factor eomesodermin. Bortezomib also neutralized TGFβ-mediated suppression of IFNγ and granzyme B expression in activated CD8+T-cells. Of note, bortezomib reversed tumor-induced downregulation of Notch receptors, Notch1 and Notch2, as well as increased the levels of cleaved Notch intracellular domain (NICD) and downstream targets Hes1 and Hey1 in tumor-draining CD8+T-cells. Moreover, bortezomib promoted CD8+T-cell nuclear factor-κB (NFκB) activity by increasing the total and phosphorylated levels of the IκB kinase and IκBα as well as the cytoplasmic and nuclear levels of phosphorylated p65. Even when we blocked NFκB activity by Bay-11-7082, or NICD cleavage by γ-secretase inhibitor, bortezomib significantly increased expression of Notch Hes1 and Hey1 genes as well as perforin, granzyme B and eomesodermin in activated CD8+T-cells. Data suggest that bortezomib can rescue tumor-induced dysfunction of CD8+T-cells by its intrinsic stimulatory effects promoting NICD-NFκB crosstalk. These findings provide novel insights on using bortezomib not only as an agent to sensitize tumors to cell death but also to provide lymphocyte-stimulatory effects, thereby overcoming immunosuppressive actions of tumor on anti-tumor T-cell functions.
Collapse
Affiliation(s)
- Menaka C. Thounaojam
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Duafalia F. Dudimah
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Samuel T. Pellom
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Roman V. Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - David P. Carbone
- Department of Medicine, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mikhail M. Dikov
- Department of Medicine, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
24
|
Ungerbäck J, Åhsberg J, Strid T, Somasundaram R, Sigvardsson M. Combined heterozygous loss of Ebf1 and Pax5 allows for T-lineage conversion of B cell progenitors. ACTA ACUST UNITED AC 2015; 212:1109-23. [PMID: 26056231 PMCID: PMC4493409 DOI: 10.1084/jem.20132100] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 05/11/2015] [Indexed: 01/07/2023]
Abstract
Ungerbäck et al. show that transcription factors Ebf1 and Pax5 act in a coordinated, dose-dependent manner to preserve B-lineage cell fate. Combined heterozygous loss of both transcription factors results in increased T cell lineage skewing in B cell progenitors. To investigate how transcription factor levels impact B-lymphocyte development, we generated mice carrying transheterozygous mutations in the Pax5 and Ebf1 genes. Whereas combined reduction of Pax5 and Ebf1 had minimal impact on the development of the earliest CD19+ progenitors, these cells displayed an increased T cell potential in vivo and in vitro. The alteration in lineage fate depended on a Notch1-mediated conversion process, whereas no signs of de-differentiation could be detected. The differences in functional response to Notch signaling in Wt and Pax5+/−Ebf1+/− pro–B cells were reflected in the transcriptional response. Both genotypes responded by the generation of intracellular Notch1 and activation of a set of target genes, but only the Pax5+/−Ebf1+/− pro–B cells down-regulated genes central for the preservation of stable B cell identity. This report stresses the importance of the levels of transcription factor expression during lymphocyte development, and suggests that Pax5 and Ebf1 collaborate to modulate the transcriptional response to Notch signaling. This provides an insight on how transcription factors like Ebf1 and Pax5 preserve cellular identity during differentiation.
Collapse
Affiliation(s)
- Jonas Ungerbäck
- Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Josefine Åhsberg
- Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Tobias Strid
- Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Rajesh Somasundaram
- Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Mikael Sigvardsson
- Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
25
|
Placing ion channels into a signaling network of T cells: from maturing thymocytes to healthy T lymphocytes or leukemic T lymphoblasts. BIOMED RESEARCH INTERNATIONAL 2015; 2015:750203. [PMID: 25866806 PMCID: PMC4383400 DOI: 10.1155/2015/750203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022]
Abstract
T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting "leukemogenic" signaling network appears, composed by three types of participants which are encoded by (1) genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2) genes which normally do not participate in T cell development but are upregulated, and (3) nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility.
Collapse
|
26
|
Zhao H, Gonzalezgugel E, Cheng L, Richbourgh B, Nie L, Liu C. The roles of interferon-inducible p200 family members IFI16 and p204 in innate immune responses, cell differentiation and proliferation. Genes Dis 2015; 2:46-56. [PMID: 25815367 PMCID: PMC4372153 DOI: 10.1016/j.gendis.2014.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
p204 is a member of the interferon-inducible p200 family proteins in mice. The p200 family has been reported to be multifunctional regulators of cell proliferation, differentiation, apoptosis and senescence. Interferon-inducible protein 16 (IFI16) is regarded as the human ortholog of p204 in several studies. This is possibly due to the similarity of their structures. However the consistency of their functions is still elusive. Currently, an emerging focus has been placed upon the role of the p200 proteins as sensors for microbial DNA in innate immune responses and provides new insights into infections as well as autoimmune diseases. This review specially focuses on IFI16 and p204, the member of p200 family in human and murine respectively, and their pathophysiological roles in innate immune responses, cell differentiation and proliferation.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States ; Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Elena Gonzalezgugel
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Lei Cheng
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Brendon Richbourgh
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Lin Nie
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States ; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| |
Collapse
|
27
|
Yan B, Liu L, Zhao Y, Xiu LJ, Sun DZ, Liu X, Lu Y, Shi J, Zhang YC, Li YJ, Wang XW, Zhou YQ, Feng SH, Lv C, Wei PK, Qin ZF. Xiaotan Sanjie decoction attenuates tumor angiogenesis by manipulating Notch-1-regulated proliferation of gastric cancer stem-like cells. World J Gastroenterol 2014; 20:13105-13118. [PMID: 25278704 PMCID: PMC4177489 DOI: 10.3748/wjg.v20.i36.13105] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/10/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the underlying mechanisms of action and influence of Xiaotan Sanjie (XTSJ) decoction on gastric cancer stem-like cells (GCSCs).
METHODS: The gastric cancer cell line MKN-45 line was selected and sorted by FACS using the cancer stem cell marker CD44; the stemness of these cells was checked in our previous study. In an in vitro study, the expression of Notch-1, Hes1, Vascular endothelial growth factor (VEGF), and Ki-67 in both CD44-positive gastric cancer stem-like cells (GCSCs) and CD44-negative cells was measured by Western blot. The effect of XTSJ serum on cell viability and on the above markers was measured by MTT assay and Western blot, respectively. In an in vivo study, the ability to induce angiogenesis and maintenance of GCSCs in CD44-positive-MKN-45- and CD44-negative-engrafted mice were detected by immunohistochemical staining using markers for CD34 and CD44, respectively. The role of XTSJ decoction in regulating the expression of Notch-1, Hes1, VEGF and Ki-67 was measured by Western blot and real-time polymerase chain reaction.
RESULTS: CD44+ GCSCs showed more cell proliferation and VEGF secretion than CD44-negative cells in vitro, which were accompanied by the high expression of Notch-1 and Hes1 and positively associated with tumor growth (GCSCs vs CD44-negative cells, 2.72 ± 0.25 vs 1.46 ± 0.16, P < 0.05) and microvessel density (MVD) (GCSCs vs CD44-negative cells, 8.15 ± 0.42 vs 3.83 ± 0.49, P < 0.001) in vivo. XTSJ decoction inhibited the viability of both cell types in a dose-dependent manner in vitro. Specifically, a significant difference in the medium- (82.87% ± 6.53%) and high-dose XTSJ groups (77.43% ± 7.34%) was detected at 24 h in the CD44+ GCSCs group compared with the saline group (95.42% ± 5.76%) and the low-dose XTSJ group (90.74% ± 6.57%) (P < 0.05). However, the efficacy of XTSJ decoction was reduced in the CD44- groups; significant differences were only detected in the high-dose XTSJ group at 48 h (78.57% ± 6.94%) and 72 h (72.12% ± 7.68%) when compared with the other CD44- groups (P < 0.05). Notably, these differences were highly consistent with the Notch-1, Hes1, VEGF and Ki-67 expression in these cells. Similarly, in vivo, XTSJ decoction inhibited tumor growth in a dose-dependent manner. A significant difference was observed in the medium- (1.76 ± 0.15) and high-dose XTSJ (1.33 ± 0.081) groups compared with the GCSCs control group (2.72 ± 0.25) and the low-dose XTSJ group (2.51 ± 0.25) (P < 0.05). We also detected a remarkable decrease of MVD in the medium- (7.10 ± 0.60) and high-dose XTSJ (5.99 ± 0.47) groups compared with the GCSC control group (8.15 ± 0.42) and the low-dose XTSJ group (8.14 ± 0.46) (P < 0.05). Additionally, CD44 expression was decreased in these groups [medium- (4.43 ± 0.45) and high-dose XTSJ groups (3.56 ± 0.31) vs the GCSC control (5.96 ± 0.46) and low dose XTSJ groups (5.91 ± 0.38)] (P < 0.05). The significant differences in Notch-1, Hes1, VEGF and Ki-67 expression highly mirrored the results of XTSJ decoction in inhibiting tumor growth, MVD and CD44 expression.
CONCLUSION: Notch-1 may play an important role in regulating the proliferation of GCSCs; XTSJ decoction could attenuate tumor angiogenesis, at least partially, by inhibiting Notch-1.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/pharmacology
- Gene Expression Regulation, Neoplastic
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Hyaluronan Receptors/genetics
- Hyaluronan Receptors/metabolism
- Ki-67 Antigen/genetics
- Ki-67 Antigen/metabolism
- Male
- Mice, Nude
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic
- Rats, Sprague-Dawley
- Receptor, Notch1/antagonists & inhibitors
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/drug effects
- Stomach Neoplasms/blood supply
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Time Factors
- Transcription Factor HES-1
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
|
28
|
Role of different aberrant cell signalling pathways prevalent in acute lymphoblastic leukemia. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0428-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Ma L, Mao R, Shen K, Zheng Y, Li Y, Liu J, Ni L. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits. Biochem Biophys Res Commun 2014; 450:353-9. [PMID: 24944018 DOI: 10.1016/j.bbrc.2014.05.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 01/06/2023]
Abstract
Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led to the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Rurong Mao
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Ke Shen
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Yuanhong Zheng
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Yueqi Li
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China.
| | - Lei Ni
- Department of Respiration, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai 200025, PR China.
| |
Collapse
|
30
|
Kumar L, Chou J, Yee CSK, Borzutzky A, Vollmann EH, von Andrian UH, Park SY, Hollander G, Manis JP, Poliani PL, Geha RS. Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function. ACTA ACUST UNITED AC 2014; 211:929-42. [PMID: 24752297 PMCID: PMC4010910 DOI: 10.1084/jem.20131379] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Lrrc8a is a ubiquitously expressed gene that encodes a leucine-rich repeat (LRR)-containing protein detected at higher levels on the surface of thymocytes than on other immune cells. We generated Lrrc8a(-/-) mice to investigate the role of LRRC8A in lymphocyte development and function. Lrrc8a(-/-) mice had increased prenatal and postnatal mortality, growth retardation, and multiple tissue abnormalities. Lrrc8a(-/-) mice displayed a modest block in B cell development but intact intrinsic B cell function. In contrast, both Lrrc8a(-/-) mice and Lrrc8a(-/-)→Rag2(-/-) bone marrow chimeras exhibited a severe cell-intrinsic block in early thymic development, with decreased proliferation and increased apoptosis of thymocytes, and impaired peripheral T cell function. Thymic epithelial cells expressed an LRRC8A ligand that was critical for double-negative to double-positive thymocyte differentiation and survival in vitro. LRRC8A constitutively associated with the GRB2-GAB2 complex and lymphocyte-specific protein tyrosine kinase (LCK) in thymocytes. LRRC8A ligation activated AKT via the LCK-ZAP-70-GAB2-PI3K pathway, and AKT phosphorylation was markedly reduced in the thymus of Lrrc8a(-/-) mice. These findings reveal an essential role for LRRC8A in T cell development, survival, and function.
Collapse
Affiliation(s)
- Lalit Kumar
- Division of Immunology and 2 Joint Program in Transfusion Medicine, Division of Laboratory Medicine, Boston Children's Hospital; and 3 Department of Pediatrics, 4 Department of Microbiology and Immunobiology, and 5 Department of Pathology, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation. Toxicol Appl Pharmacol 2014; 277:172-82. [PMID: 24709672 DOI: 10.1016/j.taap.2014.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/17/2014] [Accepted: 03/22/2014] [Indexed: 12/14/2022]
Abstract
The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life.
Collapse
|
32
|
Pontin is required for pre-TCR signaling at the β-selection checkpoint in T cell development. Biochem Biophys Res Commun 2014; 447:44-50. [PMID: 24680824 DOI: 10.1016/j.bbrc.2014.03.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 11/24/2022]
Abstract
Pontin is a chromatin remodeling factor that possesses both ATPase and DNA helicase activities. Based on high expression in lymphoid tissues, we examined whether Pontin has a T cell-specific function. We generated Pontin(f/f);Lck-Cre mice, in which Pontin can be conditionally deleted in T cells and then explored T cell-specific function of Pontin in vivo. Here, we show that specific abrogation of Pontin expression in T cells almost completely blocked development of αβ T cells at the β-selection checkpoint by inducing cell apoptosis indicating that Pontin is essential for early T cell development. Pontin-deficient thymocytes show a comparable expression level of T cell receptor (TCR)β chain, but have enhanced activation of p53 and Notch signaling compared to wild-type thymocytes. Intriguingly, the developmental block of αβ T cells can be partially rescued by loss of p53. Together, our data demonstrate a novel role of Pontin as a crucial regulator in pre-TCR signaling during T cell development.
Collapse
|
33
|
Geimer Le Lay AS, Oravecz A, Mastio J, Jung C, Marchal P, Ebel C, Dembélé D, Jost B, Le Gras S, Thibault C, Borggrefe T, Kastner P, Chan S. The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells. Sci Signal 2014; 7:ra28. [PMID: 24643801 DOI: 10.1126/scisignal.2004545] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Notch signaling pathway is activated in many cell types, but its effects are cell type- and stage-specific. In the immune system, Notch activity is required for the differentiation of T cell progenitors, but it is reduced in more mature thymocytes, in which Notch is oncogenic. Studies based on single-gene models have suggested that the tumor suppressor protein Ikaros plays an important role in repressing the transcription of Notch target genes. We used genome-wide analyses, including chromatin immunoprecipitation sequencing, to identify genes controlled by Notch and Ikaros in gain- and loss-of-function experiments. We found that Ikaros bound to and directly repressed the expression of most genes that are activated by Notch. Specific deletion of Ikaros in thymocytes led to the persistent expression of Notch target genes that are essential for T cell maturation, as well as the rapid development of T cell leukemias in mice. Expression of Notch target genes that are normally silent in T cells, but are activated by Notch in other cell types, occurred in T cells of mice genetically deficient in Ikaros. We propose that Ikaros shapes the timing and repertoire of the Notch transcriptional response in T cells through widespread targeting of elements adjacent to Notch regulatory sequences. These results provide a molecular framework for understanding the regulation of tissue-specific and tumor-related Notch responses.
Collapse
Affiliation(s)
- Anne-Solen Geimer Le Lay
- 1Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dongre A, Surampudi L, Lawlor RG, Fauq AH, Miele L, Golde TE, Minter LM, Osborne BA. Non-Canonical Notch Signaling Drives Activation and Differentiation of Peripheral CD4(+) T Cells. Front Immunol 2014; 5:54. [PMID: 24611064 PMCID: PMC3921607 DOI: 10.3389/fimmu.2014.00054] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/30/2014] [Indexed: 12/14/2022] Open
Abstract
Cleavage of the Notch receptor via a γ-secretase, results in the release of the active intra-cellular domain of Notch that migrates to the nucleus and interacts with RBP-Jκ, resulting in the activation of downstream target genes. This canonical Notch signaling pathway has been documented to influence T cell development and function. However, the mechanistic details underlying this process remain obscure. In addition to RBP-Jκ, the intra-cellular domain of Notch also interacts with other proteins in the cytoplasm and nucleus, giving rise to the possibility of an alternate, RBP-Jκ independent Notch pathway. However, the contribution of such RBP-Jκ independent, "non-canonical" Notch signaling in regulating peripheral T cell responses is unknown. In this report, we specifically demonstrate the requirement of Notch1 for regulating signal strength and signaling events distal to the T cell receptor in peripheral CD4(+) T cells. By using mice with a conditional deletion in Notch1 or RBP-Jκ, we show that Notch1 regulates activation and proliferation of CD4(+) T cells independently of RBP-Jκ. Furthermore, differentiation to TH1 and iTreg lineages although Notch dependent, is RBP-Jκ independent. Our striking observations demonstrate that many of the cell-intrinsic functions of Notch occur independently of RBP-Jκ. Such non-canonical regulation of these processes likely occurs through NF-κ B. This reveals a previously unknown, novel role of non-canonical Notch signaling in regulating peripheral T cell responses.
Collapse
Affiliation(s)
- Anushka Dongre
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst , Amherst, MA , USA ; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA
| | - Lalitha Surampudi
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA
| | - Rebecca G Lawlor
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA
| | - Abdul H Fauq
- PAR, Chemical Synthesis Core Facility, Mayo Clinic Florida , Jacksonville, FL , USA
| | - Lucio Miele
- Cancer Institute, University of Mississippi Medical Center , Jackson, MS , USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida , Gainesville, FL , USA
| | - Lisa M Minter
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst , Amherst, MA , USA ; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA
| | - Barbara A Osborne
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst , Amherst, MA , USA ; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA
| |
Collapse
|
35
|
Gogoi D, Dar AA, Chiplunkar SV. Involvement of Notch in activation and effector functions of γδ T cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:2054-62. [PMID: 24489102 DOI: 10.4049/jimmunol.1300369] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Notch signaling plays a pivotal role in cell fate decision and lineage commitment of lymphocytes. Although the role of Notch in CD4(+) and CD8(+) αβ T cells is well documented, there are no reports on how Notch signaling regulates effector functions of γδ T cells. γδ T cells are a minor fraction in the peripheral blood but are known to play a major role in defense against pathogens and tumors. In this study, we show that Notch receptors (mRNA and protein) are expressed in peripheral γδ T cells. Inhibition of Notch signaling by γ-secretase inhibitor inhibited the proliferation and IFN-γ secretion of γδ T cells in response to stimulation with phosphoantigens and anti-CD3 mAb. In the presence of γ-secretase inhibitor, the antitumor cytolytic ability of γδ T cells was inhibited with a decreased CD107a expression. Knockdown of Notch1 and Notch2 genes in γδ T cells using small interfering RNA inhibited their antitumor cytotoxic potential. Our study describes for the first time, to our knowledge, the role of Notch as an additional signal contributing to Ag-specific effector functions of γδ T cells.
Collapse
Affiliation(s)
- Dimpu Gogoi
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | | | | |
Collapse
|
36
|
Hales EC, Taub JW, Matherly LH. New insights into Notch1 regulation of the PI3K–AKT–mTOR1 signaling axis: Targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal 2014; 26:149-61. [DOI: 10.1016/j.cellsig.2013.09.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 02/01/2023]
|
37
|
Abstract
Animal models have been invaluable in the efforts to better understand and ultimately treat patients suffering from leukemia. While important insights have been gleaned from these models, limitations must be acknowledged. In this review, we will highlight the various animal models of leukemia and describe their contributions to the improved understanding and treatment of these cancers.
Collapse
|
38
|
Arruga F, Gizdic B, Serra S, Vaisitti T, Ciardullo C, Coscia M, Laurenti L, D'Arena G, Jaksic O, Inghirami G, Rossi D, Gaidano G, Deaglio S. Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia. Leukemia 2013; 28:1060-70. [PMID: 24170027 DOI: 10.1038/leu.2013.319] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to compare the expression and function of NOTCH1 in chronic lymphocytic leukemia (CLL) patients harboring a wild-type (WT) or mutated NOTCH1 gene. NOTCH1 mRNA and surface protein expression levels were independent of the NOTCH1 gene mutational status, consistent with the requirement for NOTCH1 signaling in this leukemia. However, compared with NOTCH1-WT CLL, mutated cases displayed biochemical and transcriptional evidence of an intense activation of the NOTCH1 pathway. In vivo, expression and activation of NOTCH1 was highest in CLL cells from the lymph nodes as confirmed by immunohistochemistry. In vitro, the NOTCH1 pathway was rapidly downregulated, suggesting that signaling relies upon micro-environmental interactions even in NOTCH1-mutated cases. Accordingly, co-culture of Jagged1(+) (the NOTCH1 ligand) nurse-like cells with autologous CLL cells sustained NOTCH1 activity over time and mediated CLL survival and resistance against pro-apoptotic stimuli, both abrogated when NOTCH1 signaling was pharmacologically switched off. Together, these results show that NOTCH1 mutations have stabilizing effects on the NOTCH1 pathway in CLL. Furthermore, micro-environmental interactions appear critical in activating the NOTCH1 pathway both in WT and mutated patients. Finally, NOTCH1 signals may create conditions that favor drug resistance, thus making NOTCH1 a potential molecular target in CLL.
Collapse
Affiliation(s)
- F Arruga
- Department of Medical Sciences, University of Turin, School of Medicine, Turin, Italy
| | - B Gizdic
- 1] Department of Medical Sciences, University of Turin, School of Medicine, Turin, Italy [2] Department of Hematology, Dubrava University Hospital, Zagreb, Croatia
| | - S Serra
- 1] Department of Medical Sciences, University of Turin, School of Medicine, Turin, Italy [2] Human Genetics Foundation (HuGeF), Turin, Italy
| | - T Vaisitti
- Department of Medical Sciences, University of Turin, School of Medicine, Turin, Italy
| | - C Ciardullo
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - M Coscia
- Division of Hematology, Laboratory of Hematology Oncology, Center of Experimental Research and Medical Studies, Cittá della Salute e della Scienza University Hospital, Turin, Italy
| | - L Laurenti
- Institute of Hematology, Catholic University of the Sacred Heart, Rome, Italy
| | - G D'Arena
- Department of Onco-Hematology, IRCCS Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - O Jaksic
- Department of Hematology, Dubrava University Hospital, Zagreb, Croatia
| | - G Inghirami
- Department of Molecular Biotechnology and Health Sciences, Center of Experimental Research and Medical Studies, University of Turin, Turin, Italy
| | - D Rossi
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - G Gaidano
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - S Deaglio
- 1] Department of Medical Sciences, University of Turin, School of Medicine, Turin, Italy [2] Human Genetics Foundation (HuGeF), Turin, Italy
| |
Collapse
|
39
|
Dervovic DD, Liang HCY, Cannons JL, Elford AR, Mohtashami M, Ohashi PS, Schwartzberg PL, Zúñiga-Pflücker JC. Cellular and molecular requirements for the selection of in vitro-generated CD8 T cells reveal a role for Notch. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1704-15. [PMID: 23851691 PMCID: PMC3801448 DOI: 10.4049/jimmunol.1300417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Differentiation of CD8 single-positive (SP) T cells is predicated by the ability of lymphocyte progenitors to integrate multiple signaling cues provided by the thymic microenvironment. In the thymus and the OP9-DL1 system for T cell development, Notch signals are required for progenitors to commit to the T cell lineage and necessary for their progression to the CD4(+)CD8(+) double-positive (DP) stage of T cell development. However, it remains unclear whether Notch is a prerequisite for the differentiation of DP cells to the CD8 SP stage of development. In this study, we demonstrate that Notch receptor-ligand interactions allow for efficient differentiation and selection of conventional CD8 T cells from bone marrow-derived hematopoietic stem cells. However, bone marrow-derived hematopoietic stem cells isolated from Itk(-/-)Rlk(-/-) mice gave rise to T cells with decreased IFN-γ production, but gained the ability to produce IL-17. We further reveal that positive and negative selection in vitro are constrained by peptide-MHC class I expressed on OP9 cells. Finally, using an MHC class I-restricted TCR-transgenic model, we show that the commitment of DP precursors to the CD8 T cell lineage is dependent on Notch signaling. Our findings further establish the requirement for Notch receptor-ligand interactions throughout T cell differentiation, including the final step of CD8 SP selection.
Collapse
MESH Headings
- Actins/immunology
- Animals
- Antigens, Viral/immunology
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- CD8-Positive T-Lymphocytes/immunology
- Calcium-Binding Proteins
- Cell Lineage
- Cells, Cultured
- Cellular Microenvironment
- Clonal Selection, Antigen-Mediated
- Coculture Techniques
- Crosses, Genetic
- H-2 Antigens/immunology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Histocompatibility Antigen H-2D/immunology
- Intercellular Signaling Peptides and Proteins/immunology
- Lymphopoiesis/immunology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/immunology
- Receptors, Notch/physiology
- Signal Transduction/immunology
- Specific Pathogen-Free Organisms
- Stromal Cells/cytology
- Stromal Cells/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Dzana D. Dervovic
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Haydn C-Y. Liang
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Jennifer L. Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Alisha R. Elford
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Mahmood Mohtashami
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Pamela S. Ohashi
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
40
|
Hales EC, Orr SM, Larson Gedman A, Taub JW, Matherly LH. Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells. J Biol Chem 2013; 288:22836-48. [PMID: 23788636 PMCID: PMC3829367 DOI: 10.1074/jbc.m113.451625] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/18/2013] [Indexed: 01/22/2023] Open
Abstract
Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with γ-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in T-ALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr(308) phosphorylation and signaling in PTEN-deficient, GSI-resistant T-ALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr(308) phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr(308) phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr(308) by PP2A in the latter. Phosphorylations of AMP-activated protein kinaseα (AMPKα)-Thr(172) and p70S6K-Thr(389), both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPKα, and p70S6K.
Collapse
Affiliation(s)
| | | | | | - Jeffrey W. Taub
- Pediatrics, Wayne State University School of Medicine, Detroit, Michigan 48201
- the Children's Hospital of Michigan, Detroit, Michigan 48201
| | - Larry H. Matherly
- From the Departments of Oncology
- Pharmacology, and
- the Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, and
| |
Collapse
|
41
|
Roderick JE, Gonzalez-Perez G, Kuksin CA, Dongre A, Roberts ER, Srinivasan J, Andrzejewski C, Fauq AH, Golde TE, Miele L, Minter LM. Therapeutic targeting of NOTCH signaling ameliorates immune-mediated bone marrow failure of aplastic anemia. ACTA ACUST UNITED AC 2013; 210:1311-29. [PMID: 23733784 PMCID: PMC3698520 DOI: 10.1084/jem.20112615] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Notch1 signaling sustains the proinflammatory behavior of Th1 cells, implicated in the development of aplastic anemia in humans and mice. Severe aplastic anemia (AA) is a bone marrow (BM) failure (BMF) disease frequently caused by aberrant immune destruction of blood progenitors. Although a Th1-mediated pathology is well described for AA, molecular mechanisms driving disease progression remain ill defined. The NOTCH signaling pathway mediates Th1 cell differentiation in the presence of polarizing cytokines, an action requiring enzymatic processing of NOTCH receptors by γ-secretase. Using a mouse model of AA, we demonstrate that expression of both intracellular NOTCH1IC and T-BET, a key transcription factor regulating Th1 cell differentiation, was increased in spleen and BM-infiltrating T cells during active disease. Conditionally deleting Notch1 or administering γ-secretase inhibitors (GSIs) in vivo attenuated disease and rescued mice from lethal BMF. In peripheral T cells from patients with untreated AA, NOTCH1IC was significantly elevated and bound to the TBX21 promoter, showing NOTCH1 directly regulates the gene encoding T-BET. Treating patient cells with GSIs in vitro lowered NOTCH1IC levels, decreased NOTCH1 detectable at the TBX21 promoter, and decreased T-BET expression, indicating that NOTCH1 signaling is responsive to GSIs during active disease. Collectively, these results identify NOTCH signaling as a primary driver of Th1-mediated pathogenesis in AA and may represent a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Justine E Roderick
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, MA 01003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mingueneau M, Kreslavsky T, Gray D, Heng T, Cruse R, Ericson J, Bendall S, Spitzer MH, Nolan GP, Kobayashi K, von Boehmer H, Mathis D, Benoist C, Best AJ, Knell J, Goldrath A, Joic V, Koller D, Shay T, Regev A, Cohen N, Brennan P, Brenner M, Kim F, Nageswara Rao T, Wagers A, Heng T, Ericson J, Rothamel K, Ortiz-Lopez A, Mathis D, Benoist C, Bezman NA, Sun JC, Min-Oo G, Kim CC, Lanier LL, Miller J, Brown B, Merad M, Gautier EL, Jakubzick C, Randolph GJ, Monach P, Blair DA, Dustin ML, Shinton SA, Hardy RR, Laidlaw D, Collins J, Gazit R, Rossi DJ, Malhotra N, Sylvia K, Kang J, Kreslavsky T, Fletcher A, Elpek K, Bellemare-Pelletier A, Malhotra D, Turley S. The transcriptional landscape of αβ T cell differentiation. Nat Immunol 2013; 14:619-32. [PMID: 23644507 PMCID: PMC3660436 DOI: 10.1038/ni.2590] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/19/2013] [Indexed: 12/11/2022]
Abstract
αβT cell differentiation from thymic precursors is a complex process, explored here with the breadth of ImmGen expression datasets, analyzing how differentiation of thymic precursors gives rise to transcriptomes. After surprisingly gradual changes though early T commitment, transit through the CD4+CD8+ stage involves a shutdown or rare breadth, and correlating tightly with MYC. MHC-driven selection promotes a large-scale transcriptional reactivation. We identify distinct signatures that mark cells destined for positive selection versus apoptotic deletion. Differential expression of surprisingly few genes accompany CD4 or CD8 commitment, a similarity that carries through to peripheral T cells and their activation, revealed by mass cytometry phosphoproteomics. The novel transcripts identified as candidate mediators of key transitions help define the “known unknown” of thymocyte differentiation.
Collapse
Affiliation(s)
- Michael Mingueneau
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
β -Elemene-Attenuated Tumor Angiogenesis by Targeting Notch-1 in Gastric Cancer Stem-Like Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:268468. [PMID: 23710217 PMCID: PMC3655606 DOI: 10.1155/2013/268468] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/15/2013] [Accepted: 03/23/2013] [Indexed: 12/22/2022]
Abstract
Emerging evidence suggests that cancer stem cells are involved in tumor angiogenesis. The Notch signaling pathway is one of the most important regulators of these processes. β-Elemene, a naturally occurring compound extracted from Curcumae Radix, has been used as an antitumor drug for various cancers in China. However, its underlying mechanism in the treatment of gastric cancer remains largely unknown. Here, we report that CD44+ gastric cancer stem-like cells (GCSCs) showed enhanced proliferation capacity compared to their CD44− counterparts, and this proliferation was accompanied by the high expression of Notch-1 (in vitro). These cells were also more superior in spheroid colony formation (in vitro) and tumorigenicity (in vivo) and positively associated with microvessel density (in vivo). β-Elemene was demonstrated to effectively inhibit the viability of GCSCs in a dose-dependent manner, most likely by suppressing Notch-1 (in vitro). β-Elemene also contributed to growth suppression and attenuated the angiogenesis capacity of these cells (in vivo) most likely by interfering with the expression of Notch-1 but not with Dll4. Our findings indicated that GCSCs play an important role in tumor angiogenesis, and Notch-1 is one of the most likely mediators involved in these processes. β-Elemene was effective at attenuating angiogenesis by targeting the GCSCs, which could be regarded as a potential mechanism for its efficacy in gastric cancer management in the future.
Collapse
|
44
|
Shah DK, Mohtashami M, Zúñiga-Pflücker JC. Role of recycling, Mindbomb1 association, and exclusion from lipid rafts of δ-like 4 for effective Notch signaling to drive T cell development. THE JOURNAL OF IMMUNOLOGY 2012; 189:5797-808. [PMID: 23162128 DOI: 10.4049/jimmunol.1202469] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intrathymic T cell development is predicated on the Notch1 ligand Delta-like (Dll) 4. However, both Dll4 and Dll1 can support T cell development in vitro. Endocytosis of Dll1 is important for Notch activation, whereas currently there is no evidence for the role of Dll4 endocytosis in T cell development. To elucidate this, we generated Dll4 constructs that modify or inhibit endocytosis. Our results show that targeting the intracellular domain affects Dll4's ability to induce Notch target gene expression, support efficient T cell development, and inhibit B cell development. Dll4 function relies on a combination of factors, which include strong Mindbomb1 (Mib1) association, ubiquitination, and internalization and recycling back to the cell surface, to engage Notch1 effectively. Distinct membrane localization and the Delta/Serrate/Lag2 (DSL) domain were important for Dll4 function. These features are consistent with a "recycling" model, but not in opposition to a "mechano-transduction" model, whereby Dll4 is able to engage Notch and create a pulling force required to activate signaling, leading to the induction of T-lineage development. Taken together, in contrast to Dll1, Dll4 does not localize to lipid rafts and shows stronger association with Mib1 and increased Notch1 uptake, which likely account for its superior ability to induce T cell development.
Collapse
Affiliation(s)
- Divya K Shah
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | | | | |
Collapse
|
45
|
Bagley BN, Keane TM, Maklakova VI, Marshall JG, Lester RA, Cancel MM, Paulsen AR, Bendzick LE, Been RA, Kogan SC, Cormier RT, Kendziorski C, Adams DJ, Collier LS. A dominantly acting murine allele of Mcm4 causes chromosomal abnormalities and promotes tumorigenesis. PLoS Genet 2012; 8:e1003034. [PMID: 23133403 PMCID: PMC3486839 DOI: 10.1371/journal.pgen.1003034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 08/29/2012] [Indexed: 12/22/2022] Open
Abstract
Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4D573H). MCM4 is part of the heterohexameric complex of MCM2–7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4D573H to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities. Our study investigated a spontaneous mouse model for dominantly inherited T-cell leukemia/lymphoma. Using genetic methods, we identified a mutant allele of Mcm4 (Mcm4D573H) in this model. Interestingly, this Mcm4 allele promotes the accumulation of focal chromosomal gains and losses, including aberrations at the Notch1 locus that drive the formation of T-cell leukemia/lymphoma. Previous studies of hypomorphic Mcm alleles have demonstrated that a decrease in MCM levels can cause tumorigenesis. However, total and chromatin bound MCM levels were similar to wild-type in our model, indicating that Mcm alleles that do not drastically impact MCM levels can cause genomic aberrations that drive tumor formation.
Collapse
Affiliation(s)
- Bruce N. Bagley
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Thomas M. Keane
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Vilena I. Maklakova
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Jonathon G. Marshall
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Rachael A. Lester
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Michelle M. Cancel
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Alex R. Paulsen
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Laura E. Bendzick
- Department of Genetics, Cell Biology, and Development, Masonic Cancer Center, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| | - Raha A. Been
- Department of Genetics, Cell Biology, and Development, Masonic Cancer Center, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| | - Scott C. Kogan
- Department of Laboratory Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Robert T. Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota, United States of America
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Lara S. Collier
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
46
|
Li J, Cai H, Jin J, Wang Q, Miao D. X-ray irradiation selectively kills thymocytes of different stages and impairs the maturation of donor-derived CD4(+)CD8(+) thymocytes in recipient thymus. J Biomed Res 2012; 26:355-64. [PMID: 23554771 PMCID: PMC3613732 DOI: 10.7555/jbr.26.20120003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/03/2012] [Accepted: 02/25/2012] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to determine whether the sensitivity of thymocytes to X-ray radiation depends on their proliferative states and whether radiation impairs the maturation of donor-derived thymocytes in recipient thymus. We assigned 8-week-old C57BL/6J mice into three treatment groups: 1) untreated; 2) X-ray radiation; 3) X-ray radiation plus bone marrow transplantation with donor bone marrow cells from transgenic mice expressing enhanced green fluorescent protein (GFP) on a universal promoter. After 4 weeks, the size of the thymus, the number and proliferation of thymocytes and ratios of different stage thymocytes were analyzed by immunohistochemistry and flow cytometry. The results showed that: 1) CD4+CD8+ thymocytes were more sensitive to X-ray radiation-induced cell death than other thymocytes; 2) the proliferative capacity of CD4+CD8+ thymocytes was higher than that of other thymocytes; 3) the size of the thymus, the number of thymocytes and ratios of thymocytes of different stages in irradiated mice recovered to the normal level of untreated mice by bone marrow transplantation; 4) the ratio of GFP-positive CD4+CD8+ thymocytes increased significantly, whereas the ratio of GFP-positive CD4+ or CD8+ thymocytes decreased significantly. These results indicate that the degree of sensitivity of thymocytes to X-ray radiation depends on their proliferative states and radiation impairs the maturation of donor-derived CD4+CD8+ thymocytes in recipient thymus.
Collapse
Affiliation(s)
- Jinbo Li
- The Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | |
Collapse
|
47
|
Notch Signaling during Oogenesis in Drosophila melanogaster. GENETICS RESEARCH INTERNATIONAL 2012; 2012:648207. [PMID: 22720165 PMCID: PMC3376496 DOI: 10.1155/2012/648207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/19/2012] [Indexed: 01/06/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved intercellular signaling mechanism that is required for embryonic development, cell fate specification, and stem cell maintenance. Discovered and studied initially in Drosophila melanogaster, the Notch pathway is conserved and functionally active throughout the animal kingdom. In this paper, we summarize the biochemical mechanisms of Notch signaling and describe its role in regulating one particular developmental pathway, oogenesis in Drosophila.
Collapse
|
48
|
Berquam-Vrieze KE, Swing DA, Tessarollo L, Dupuy AJ. Characterization of transgenic mice expressing cancer-associated variants of human NOTCH1. Genesis 2012; 50:112-8. [PMID: 21898766 DOI: 10.1002/dvg.20798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/10/2022]
Abstract
The Notch1 receptor plays a critical role in cell fate decisions during development. Activation of Notch signaling has been implicated in several types of cancer, particularly T-cell acute lymphoblastic leukemia (T-ALL). Consequently, several transgenic mouse strains have been made to study the role of Notch1 in T-ALL. However, the existing Notch1 transgenic lines mimic a translocation event found in only ∼1% of T-ALL cases. Here we describe three novel NOTCH1 transgenic mouse strains that have Cre-inducible expression of the entire human NOTCH1 locus, each possessing a common mutation found in T-ALL. Unlike existing Notch1 transgenic strains, these NOTCH1 transgenic strains express full-length receptors from an endogenous human promoter that should be susceptible to a number of Notch antagonists that have recently been developed. These strains will allow researchers to modulate Notch signaling to study both normal development and cancer biology.
Collapse
Affiliation(s)
- Katherine E Berquam-Vrieze
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
49
|
Targeting Notch signaling for cancer therapeutic intervention. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 65:191-234. [PMID: 22959027 DOI: 10.1016/b978-0-12-397927-8.00007-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Notch signaling pathway is an evolutionarily conserved, intercellular signaling cascade. The Notch proteins are single-pass receptors that are activated upon interaction with the Delta (or Delta-like) and Jagged/Serrate families of membrane-bound ligands. Association of ligand-receptor leads to proteolytic cleavages that liberate the Notch intracellular domain (NICD) from the plasma membrane. The NICD translocates to the nucleus, where it forms a complex with the DNA-binding protein CSL, displacing a histone deacetylase (HDAc)-corepressor (CoR) complex from CSL. Components of a transcriptional complex, such as MAML1 and histone acetyltransferases (HATs), are recruited to the NICD-CSL complex, leading to the transcriptional activation of Notch target genes. The Notch signaling pathway plays a critical role in cell fate decision, tissue patterning, morphogenesis, and is hence regarded as a developmental pathway. However, if this pathway goes awry, it contributes to cellular transformation and tumorigenesis. There is mounting evidence that this pathway is dysregulated in a variety of malignancies, and can behave as either an oncogene or a tumor suppressor depending upon cell context. This chapter highlights the current evidence for aberration of the Notch signaling pathway in a wide range of tumors from hematological cancers, such as leukemia and lymphoma, through to lung, skin, breast, pancreas, colon, prostate, ovarian, brain, and liver tumors. It proposes that the Notch signaling pathway may represent novel target for cancer therapeutic intervention.
Collapse
|
50
|
Sandy AR, Jones M, Maillard I. Notch signaling and development of the hematopoietic system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:71-88. [PMID: 22399340 DOI: 10.1007/978-1-4614-0899-4_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Notch signaling exerts multiple important functions in the hematopoietic system. Notch1-mediated signals are essential to induce the onset of definitive hematopoiesis within specialized domains of hemogenic endothelium in the fetal dorsal aorta. In contrast, Notch is dispensable for the subsequent maintenance of hematopoietic stem cells in the adult bone marrow. Notch is a key regulator of early T-cell development in the thymus. An expanding number of hematopoietic and lymphoid cell types have been reported to receive context-dependent inputs from the Notch pathway that regulate their differentiation and function. Progress in the field will continue to bring fundamental information about hematopoiesis and practical insights into the potential to modulate Notch signaling for therapeutic purposes.
Collapse
|