1
|
Esteban-Medina M, de la Oliva Roque VM, Herráiz-Gil S, Peña-Chilet M, Dopazo J, Loucera C. drexml: A command line tool and Python package for drug repurposing. Comput Struct Biotechnol J 2024; 23:1129-1143. [PMID: 38510973 PMCID: PMC10950807 DOI: 10.1016/j.csbj.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
We introduce drexml, a command line tool and Python package for rational data-driven drug repurposing. The package employs machine learning and mechanistic signal transduction modeling to identify drug targets capable of regulating a particular disease. In addition, it employs explainability tools to contextualize potential drug targets within the functional landscape of the disease. The methodology is validated in Fanconi Anemia and Familial Melanoma, two distinct rare diseases where there is a pressing need for solutions. In the Fanconi Anemia case, the model successfully predicts previously validated repurposed drugs, while in the Familial Melanoma case, it identifies a promising set of drugs for further investigation.
Collapse
Affiliation(s)
- Marina Esteban-Medina
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
| | - Víctor Manuel de la Oliva Roque
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
| | - Sara Herráiz-Gil
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U714, Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital (IIS-FJD), Madrid, Spain
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - María Peña-Chilet
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Platform of Big Data, AI and Biostatistics, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Joaquín Dopazo
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
- FPS/ELIXIR-es, Hospital Virgen del Rocío, Seville, Spain
| | - Carlos Loucera
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
| |
Collapse
|
2
|
Ashooriha M, Khoshneviszadeh M, Kabiri M, Dehshahri A, Hassani B, Ansari M, Emami S. Multi-functional tyrosinase inhibitors derived from kojic acid and hydroquinone-like diphenols for treatment of hyperpigmentation: Synthesis and in vitro biological evaluation. Arch Pharm (Weinheim) 2024:e2400380. [PMID: 39466938 DOI: 10.1002/ardp.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
A series of multi-functional tyrosinase inhibitors derived from kojic acid (KA) and hydroquinone-like diphenols were designed and synthesized using click chemistry. The in vitro enzymatic assay revealed that all compounds containing a free enolic structure showed excellent activity against tyrosinase (IC50 = 0.14-3.7 µM), being significantly more potent than KA. The most active compounds were catechol (6c) and α-naphthol (6i) analogs with 138- and 96-fold higher potency than KA. On the other hand, all free phenolic compounds (6a-c and 6g-j) derived from aromatic diols showed outstanding free radical scavenging activities superior to KA. Certainly, the α-naphthol derivative 6i with IC50 = 10.1 µM was the most active anti-oxidant, being as potent as quercetin. The SAR analysis indicated that the enolic head of the conjugate molecules mainly contributes to the anti-tyrosinase activity, and the free phenolic part of the molecules can offer anti-oxidant potency. The anti-melanogenic assay of the most promising derivative, 6i, against melanoma (B16F10) cells demonstrated that the prototype compound 6i can significantly reduce the melanin content, more effectively than KA. By using a conjugation strategy, we have improved the tyrosinase inhibitory and radical scavenging activity in the multi-functional agents such as 6i over the parent compound KA, being potentially useful in the treatment of hyperpigmentation and other skin disorders.
Collapse
Affiliation(s)
- Morteza Ashooriha
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kabiri
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, New York City, New York, USA
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Ansari
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Liu J, Xu T, Ding J, Wen H, Meng J, Liu Q, Liu X, Zhang W, Zhu GY, Jiang ZH, Gao J, Bai LP. Discovery of anti-melanogenic components in persimmon (Diospyros kaki) leaf using LC-MS/MS-MN, AlphaFold2-enabled virtual screening and biological validation. Food Chem 2024; 455:139814. [PMID: 38824735 DOI: 10.1016/j.foodchem.2024.139814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Persimmon (Diospyros kaki) leaf is widely used as a tea substitute in East Asia, offering potential health benefits. Although studies have highlighted their effects on hyperpigmentation disorders, the active components remain unidentified. This study introduces a novel approach combining LC-MS/MS-based molecular networking with AlphaFold2-enabled virtual screening to expedite the identification of bioactive components in persimmon leaf. A total of 105 compounds were identified by MS/MS analysis. Further, virtual screening identified five flavonoids with potential anti-melanogenic properties. Bioassays confirmed myricetin, quercetin, and kaempferol inhibited melanogenesis in human melanocytes in a dose-dependent manner. Biolayer interferometry assays revealed strong binding affinity between these flavonols and hsTYR, with KD values of 23.26 ± 11.77 for myricetin, 12.43 ± 0.37 for quercetin, and 14.99 ± 3.80 μM for kaempferol. Molecular dynamics simulations provided insights into the binding interactions of these flavonols with hsTYR, particularly highlighting the essential role of the 3-OH group on the C-ring. This study elucidates the bioactive components responsible for the anti-melanogenic effects of persimmon leaf, supporting their use in product development.
Collapse
Affiliation(s)
- Jiazheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Ting Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Ding
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haoyue Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Jieru Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Qing Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Xiaomei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China.
| | - Jin Gao
- Increasepharm (Hengqin) Institute Co., Ltd., Zhuhai, Guangdong, China.
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
4
|
Sakurai A, Kawaguchi K, Watanabe M, Okajima S, Furukawa S, Koga K, Oh-Hashi K, Hirata Y, Furuta K, Takemori H. Melanosomal localization is required for GIF-2115/2250 to inhibit melanogenesis in B16F10 melanoma cells. Int J Cosmet Sci 2024; 46:668-679. [PMID: 38327040 DOI: 10.1111/ics.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/02/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Tyrosinase inhibitors suppress melanogenesis in melanocytes. During a screening for tyrosinase inhibitors, however, we noticed some discrepancies in inhibitory efficacies between melanocytes and in vitro assays. The compound (S)-N-{3-[4-(dimethylamino)phenyl]propyl}-N-methyl-indan-1-amine (GIF-2115) exerts antioxidative stress activity upon accumulation in late endosomes and lysosomes. GIF-2115 was also identified as a potent antimelanogenic reagent in B16F10 mouse melanoma cells. GIF-2115 inhibited the activity of mushroom tyrosinase and the lysates of B16F10 cells. However, structure-activity relationship studies indicated that GIF-2238, which lacks the benzene ring in the aminoindan structure of GIF-2115, inhibited tyrosinase activity in vitro but did not inhibit melanogenesis in B16F10 cells. The aim of the present study is to show the importance of the intracellular distribution of tyrosinase inhibitors in exerting their antimelanogenic activity in melanocytes. METHODS The intracellular distribution of compounds was monitored by linking with the fluorescent group of 7-nitro-2,1,3-benzoxadiazole (NBD). To mislocalize GIF-2115 to mitochondria, the mitochondria-preferring fluoroprobe ATTO565 was used. RESULTS We reconfirmed the localization of GIF-2250 (GIF-2115-NBD) not only to matured but also to early-stage melanosomes. Although GIF-2286 (GIF-2238-NBD) maintained tyrosinase inhibitory activity, it did not show specific intracellular localization. Moreover, when GIF-2115 was linked with ATTO565, the resultant compound GIF-2265 did not inhibit melanogenesis in B16F10 cells, despite its strong tyrosinase inhibitory activity. CONCLUSION These results suggest that melanosomal localization is essential for the antimelanogenic activity of GIF-2115, and GIF-2115 derivatives may be new guides for drugs to endosomes and lysosomes as well as melanosomes.
Collapse
Affiliation(s)
- Ayumi Sakurai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Kyoka Kawaguchi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Miyu Watanabe
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Sayaka Okajima
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Saho Furukawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Kenichi Koga
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, Gifu, Japan
| | - Yoko Hirata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | | | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, Gifu, Japan
| |
Collapse
|
5
|
Crous C, Swart IA, Pretorius J, van der Kooy F, Petzer JP, Petzer A. Hematoxylin, an Alternative Substrate of Tyrosinase. PLANTA MEDICA 2024; 90:1015-1022. [PMID: 39159663 DOI: 10.1055/a-2381-5201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mushroom tyrosinase from Agaricus bisporus (abTYR) is often used during the development of tyrosinase inhibitors for medicinal and cosmetic purposes. In the search for novel tyrosinase inhibitors, this study identified hematoxylin as an alternative substrate for abTYR. The interaction of hematoxylin with abTYR was investigated through spectrophotometric and chromatographic analyses. The results showed that hematoxylin acted as an abTYR substrate and exhibited Michaelis-Menten kinetic behaviour at concentrations below 1.25 mM. The substrate properties of hematoxylin were similar to the natural tyrosinase substrate, L-3,4-dihydroxyphenylalanine (L-DOPA), with regards to Km, while Vmax was eightfold lower. The main oxidation product formed during the reaction of abTYR with hematoxylin was identified as hematein. This is the first report of the interaction of hematoxylin with abTYR.
Collapse
Affiliation(s)
- Chantalle Crous
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Ivanke A Swart
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - Frank van der Kooy
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Jacobs ME, Petzer JP, Pretorius J, Cloete SJ, Crous C, Petzer A. Synthesis and evaluation of 3-hydroxyquinolin-2(1H)-one derivatives as inhibitors of tyrosinase. Bioorg Med Chem Lett 2024; 109:129823. [PMID: 38823727 DOI: 10.1016/j.bmcl.2024.129823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The tyrosinase (TYR) enzyme catalyses sequential reactions in the melanogenesis pathway: l-tyrosine is oxidised to yield L-3,4-dihydroxyphenylalanine (l-dopa), which in turn is converted to dopaquinone. These two reactions are the first two steps of melanin biosynthesis and are rate limiting. The accumulation or overproduction of melanin may cause skin hyperpigmentation and inhibitors of TYR are thus of interest to the cosmeceutical industry. Several TYR inhibitors are used to treat skin hyperpigmentation, however, some are ineffective and possess questionable safety profiles. This emphasises the need to develop novel TYR inhibitors with better safety and efficacy profiles. The small molecule, 3-hydroxycoumarin, has been reported to be a good potency TYR inhibitor (IC50 = 2.49 µM), and based on this, a series of eight structurally related 3-hydroxyquinolin-2(1H)-one derivatives were synthesised with the aim to discover novel TYR inhibitors. The results showed that four of the derivatives inhibited TYR from the champignon mushroom Agaricus bisporus (abTYR) with IC50 < 6.11 µM. The most potent inhibitor displayed an IC50 value of 2.52 μM. Under the same conditions, the reference inhibitors, thiamidol and kojic acid, inhibited abTYR with IC50 values of 0.130 and 26.4 μM, respectively. Based on the small molecular structures of the active 3-hydroxyquinolin-2(1H)-one inhibitors which are amenable to structure optimisation, it may be concluded that this class of compounds are good leads for the design of TYR inhibitors for cosmeceutical applications.
Collapse
Affiliation(s)
- Maria E Jacobs
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa; Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa.
| | | | - Stephanus J Cloete
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| | - Chantalle Crous
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa; Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
7
|
Kabiri M, Hajizade MS, Zarei M, Eskandari S, Sakhteman A, Khoshneviszadeh M. A Repurposing Pipeline to Candidate-Suitable Inhibitors of Tyrosinase: Computational and Bioassay Studies. Chem Biodivers 2024:e202401035. [PMID: 39143024 DOI: 10.1002/cbdv.202401035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Tyrosinase, a metalloprotein enzyme, plays a crucial role in melanin synthesis by hydroxylating L-tyrosine to L-dopa. However, the accumulation of melanin can lead to hyperpigmented spots, raising aesthetic concerns. In this study, we developed a pipeline to repurpose FDA-approved drugs as potential tyrosinase inhibitors. A structure-based screening study was conducted using 1,650 drugs to identify probable inhibitors based on binding energies. From the cluster analysis of binding interaction profiles, 16 compounds were selected as candidates. Montelukast emerged as the final candidate due to its favorable ADME properties. Bioassay evaluation revealed an IC50 value of 14.79±0.87 μM for Montelukast, compared to kojic acid (IC50=31.02±2.01 μM). Molecular dynamics simulation and g_MMPBSA free energy calculation studies were performed for the Tyrosinase-Montelukast complex. These findings enhance our understanding of Tyrosinase-Montelukast interactions and underscore Montelukast's potential as a tyrosinase inhibitor. This could have implications in dermatological applications and beyond, suggesting Montelukast as a promising candidate for further development in this regard.
Collapse
Affiliation(s)
- Maryam Kabiri
- College of Graduate Studies, Upstate Medical University, State University of New York, USA
| | - Mohammad Soroosh Hajizade
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Science, PO Box 71345-3388, Shiraz, Iran
| | - Mina Zarei
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Science, PO Box 71345-3388, Shiraz, Iran
| | - Simin Eskandari
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Science, PO Box 71345-3388, Shiraz, Iran
| | - Amirhossein Sakhteman
- Chair of Bioanalytics, TUM School of Life Sciences, Technische Universität München, Germany
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, PO Box 71345-3388, Shiraz, Iran
| |
Collapse
|
8
|
Beaumet M, Lazinski LM, Maresca M, Haudecoeur R. Tyrosinase Inhibition and Antimelanogenic Effects of Resorcinol-Containing Compounds. ChemMedChem 2024:e202400314. [PMID: 39105380 DOI: 10.1002/cmdc.202400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Tyrosinases (TYRs) are copper-containing metalloenzymes present in a large diversity of species. In human, hTYR is responsible for pivotal steps in melanogenesis, catalysing the oxidation of l-tyrosine to l-DOPA and further to dopaquinone. While numerous TYR inhibitors have been reported, polyphenolic compounds tend to dominate the literature. However, many of these compounds, particularly monophenols and catechols, have been identified as alternative substrates rather than true inhibitors, given their structural similarity to natural substrates. Resorcinol-containing compounds have emerged as promising candidates to address this challenge, as the meta-dihydroxy moiety in resorcinol demonstrates resistance to TYR-mediated oxidation, while retaining the favourable interactions with copper ions provided by the hydroxy groups. Although their precise mechanism of action remains debated, resorcinol derivatives have yielded some of the most active compounds against isolated mushroom and human TYRs, as well as clinically used dermocosmetic agents like rucinol and thiamidol, which exhibited very promising effects in patients with facial melasma. This review outlines the development of resorcinol-containing TYR inhibitors, categorized by scaffold type, ranging from simple alkyl analogues to intricate synthetic derivatives. Mechanistic insights about the resorcinol-TYR interaction are also presented and debated.
Collapse
Affiliation(s)
- Morane Beaumet
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | - Leticia M Lazinski
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013, Marseille, France
| | | |
Collapse
|
9
|
Gębalski J, Małkowska M, Wnorowska S, Gawenda-Kempczyńska D, Strzemski M, Wójciak M, Słomka A, Styczyński J, Załuski D. Ethyl Acetate Fraction from Eleutherococcus divaricatus Root Extract as a Promising Source of Compounds with Anti-Hyaluronidase, Anti-Tyrosinase, and Antioxidant Activity but Not Anti-Melanoma Activity. Molecules 2024; 29:3640. [PMID: 39125044 PMCID: PMC11313944 DOI: 10.3390/molecules29153640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Eleutherococcus divaricatus (Siebold and Zucc.) S. Y. Hu. has been used in Traditional Chinese Medicine (TCM) due to its anticancer, immunostimulant, and anti-inflammatory activities. However, its mechanism of action and chemical composition are still insufficiently understood and require more advanced research, especially for cases in which anti-inflammatory properties are beneficial. The aim of this study was to evaluate the impact of E. divaricatus root extracts and fractions on proinflammatory serum hyaluronidase and tyrosinase in children diagnosed with acute lymphoblastic leukemia. Antioxidant and anti-melanoma activities were also examined and correlated with metabolomic data. For the first time, we discovered that the ethyl acetate fraction significantly inhibits hyaluronidase activity, with mean group values of 55.82% and 63.8% for aescin used as a control. However, interestingly, the fraction showed no activity against human tyrosinase, and in A375 melanoma cells treated with a doxorubicin fraction, doxorubicin activity decreased. This fraction exhibited the most potent antioxidant activity, which can be attributed to high contents of polyphenols, especially caffeic acid (24 mg/g). The findings suggest an important role of the ethyl acetate fraction in hyaluronidase inhibition, which may additionally indicate its anti-inflammatory property. The results suggest that this fraction can be used in inflammatory-related diseases, although with precautions in cases of patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Jakub Gębalski
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland; (M.M.); (D.G.-K.); (D.Z.)
| | - Milena Małkowska
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland; (M.M.); (D.G.-K.); (D.Z.)
| | - Sylwia Wnorowska
- Department of Medical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Dorota Gawenda-Kempczyńska
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland; (M.M.); (D.G.-K.); (D.Z.)
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.)
| | - Artur Słomka
- Department of Pathophysiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland;
| | - Jan Styczyński
- Department of Pediatric Hematology and Oncology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland;
| | - Daniel Załuski
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland; (M.M.); (D.G.-K.); (D.Z.)
| |
Collapse
|
10
|
Park YJ, Jung HJ, Kang MK, Lee J, Yoon D, Park HS, Jin Kim H, Kim GY, Kang D, Park Y, Chung HY, Moon HR. Design, synthesis, and anti-melanogenic efficacy of 2-mercaptobenzoxazoles with nanomolar tyrosinase activity inhibition. Bioorg Med Chem 2024; 110:117832. [PMID: 39002182 DOI: 10.1016/j.bmc.2024.117832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Tyrosinase is a metalloenzyme that contains copper(II) ions. We designed and synthesized eight known low-molecular-weight 2-mercaptobenzoxazole (2-MBO) analogs as tyrosinase inhibitors. Our focus was on the mercapto functional group, which interacts with copper ions. Analogs 1-3 exhibited mushroom tyrosinase inhibitory activity at the nanomolar level and demonstrated strong potency with extremely low half-maximal inhibitory concentration (IC50) values of 80-90 nM for l-dopa and 100-240 nM for l-tyrosine. Analogs 2, 4, and 5 showed the most potent anti-melanogenic effects in B16F10 cells, and their mode of action was demonstrated by kinetic analysis. Their anti-melanogenic effects were similar to the tyrosinase inhibition results, suggesting that their anti-melanogenic effects could be attributed to their tyrosinase inhibitory ability. Experiments using copper-chelating activity assays and changes in tyrosinase inhibitory activity with and without CuSO4 demonstrated that 2-MBO analogs inhibit tyrosinase activity by chelating the copper ions of tyrosinase. In conclusion, the 2-MBO analogs show potential as anti-melanogenic agents with potent tyrosinase inhibitory activity.
Collapse
Affiliation(s)
- Yu Jung Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ga Young Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
11
|
Shu X, Dong X, Ma Y, Huo W, Li Z, Zou L, Tang Y, Li L, Wang X. The whitening efficacy of a compound formula examined using an ultraviolet-induced skin melanization model. J Cosmet Dermatol 2024; 23:2750-2756. [PMID: 38664985 DOI: 10.1111/jocd.16332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND In Eastern culture, a fair complexion is the standard of beauty, leading to appearance-related distress among women with darker skin or facial pigmentation. Women seek whitening cosmetics to enhance their skin tone or correct their pigmentation, but their safety and effectiveness are paramount factors to consider. In this study, we evaluated the safety and whitening effects of a compound formula denoted as TEST comprising astaxanthin, nicotinamide, arbutin, and tranexamic acid. METHODS Primary skin irritation and skin-whitening efficacy were examined. Three qualified melanization areas were treated with TEST, 7% ascorbic acid, or a blank. Skin color, the individual type angle (ITA°), and the melanin index (MI) were compared among treatment areas. RESULTS TEST did not induce a skin response and exhibited a significantly higher ITA° than the blank, while no significant difference was observed with that of 7% ascorbic acid. Furthermore, the MI of TEST was significantly reduced posttreatment. CONCLUSIONS TEST could be integrated into spot-fading and skin-whitening cosmeceuticals or functional cosmetics.
Collapse
Affiliation(s)
- Xiaohong Shu
- Center of Cosmetic Evaluation, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Dong
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhong Ma
- Xi'an Runyu Medical Technology Co., Ltd, Xi'an, Shaanxi, China
| | - Wei Huo
- Center of Cosmetic Evaluation, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaoxia Li
- Center of Cosmetic Evaluation, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Zou
- Center of Cosmetic Evaluation, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Tang
- Center of Cosmetic Evaluation, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Center of Cosmetic Evaluation, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Wang
- Center of Cosmetic Evaluation, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Peng X, Ma Y, Yan C, Wei X, Zhang L, Jiang H, Ma Y, Zhang S, Xing M, Gao Y. Mechanism, Formulation, and Efficacy Evaluation of Natural Products for Skin Pigmentation Treatment. Pharmaceutics 2024; 16:1022. [PMID: 39204367 PMCID: PMC11359997 DOI: 10.3390/pharmaceutics16081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Skin pigmentation typically arises from the excessive secretion and accumulation of melanin, resulting in a darker complexion compared to normal skin. Currently, the local application of chemical drugs is a first-line strategy for pigmentation disorders, but the safety and efficacy of drugs still cannot meet clinical treatment needs. For long-term and safe medication, researchers have paid attention to natural products with higher biocompatibility. This article begins by examining the pathogenesis and treatment approaches of skin pigmentation diseases and summarizes the research progress and mechanism of natural products with lightening or whitening effects that are clinically common or experimentally proven. Moreover, we outline the novel formulations of natural products in treating pigmentation disorders, including liposomes, nanoparticles, microemulsions, microneedles, and tocosomes. Finally, the pharmacodynamic evaluation methods in the study of pigmentation disorder were first systematically analyzed. In brief, this review aims to collect natural products for skin pigmentation treatment and investigate their formulation design and efficacy evaluation to provide insights for the development of new products for this complex skin disease.
Collapse
Affiliation(s)
- Xueli Peng
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Chenxin Yan
- Beijing CAS Microneedle Technology, Ltd., Beijing 102609, China;
| | - Xiaocen Wei
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Linlin Zhang
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Hehe Jiang
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Yuxia Ma
- Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China;
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Yunhua Gao
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
- Beijing CAS Microneedle Technology, Ltd., Beijing 102609, China;
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
13
|
Melfi F, Carradori S, Granese A, Osmanović A, Campestre C. Drug design of tyrosinase inhibitors. Enzymes 2024; 56:111-134. [PMID: 39304285 DOI: 10.1016/bs.enz.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
This copper-containing enzyme catalyzes the rate-limiting step for the melanin skin pigment bioproduction. Tyrosinase inhibitors can be exploited as skin whitening agents and food preservatives, opening new scenarios in food, cosmetics, agriculture and medicine. Despite the availability of natural inhibitors (hydroquinone, α-arbutin, kojic acid, retinoids, azelaic acid, resveratrol, caftaric acid, valonea tannin, chrysosplenetin and phenylethyl resorcinol), several synthetic compounds were proposed to overcome side effects and to improve the efficacy of natural agents. This chapter will gather the recent advances about synthetic tyrosinase inhibitors from the MedChem perspective, providing new suggestions for the scaffold-based design of innovative compounds.
Collapse
Affiliation(s)
- Francesco Melfi
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| | - Arianna Granese
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | - Amar Osmanović
- Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Cristina Campestre
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
14
|
Faure C, Min Ng Y, Belle C, Soler-Lopez M, Khettabi L, Saïdi M, Berthet N, Maresca M, Philouze C, Rachidi W, Réglier M, du Moulinet d'Hardemare A, Jamet H. Interactions of Phenylalanine Derivatives with Human Tyrosinase: Lessons from Experimental and Theoretical tudies. Chembiochem 2024; 25:e202400235. [PMID: 38642076 DOI: 10.1002/cbic.202400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/22/2024]
Abstract
The pigmentation of the skin, modulated by different actors in melanogenesis, is mainly due to the melanins (protective pigments). In humans, these pigments' precursors are synthetized by an enzyme known as tyrosinase (TyH). The regulation of the enzyme activity by specific modulators (inhibitors or activators) can offer a means to fight hypo- and hyper-pigmentations responsible for medical, psychological and societal handicaps. Herein, we report the investigation of phenylalanine derivatives as TyH modulators. Interacting with the binuclear copper active site of the enzyme, phenylalanine derivatives combine effects induced by combination with known resorcinol inhibitors and natural substrate/intermediate (amino acid part). Computational studies including docking, molecular dynamics and free energy calculations combined with biological activity assays on isolated TyH and in human melanoma MNT-1 cells, and X-ray crystallography analyses with the TyH analogue Tyrp1, provide conclusive evidence of the interactions of phenylalanine derivatives with human tyrosinase. In particular, our findings indicate that an analogue of L-DOPA, namely (S)-3-amino-tyrosine, stands out as an amino phenol derivative with inhibitory properties against TyH.
Collapse
Affiliation(s)
- Clarisse Faure
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Yi Min Ng
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Catherine Belle
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Lyna Khettabi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Mélissa Saïdi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Nathalie Berthet
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France)
| | - Christian Philouze
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Walid Rachidi
- IRIG-BGE U1038, INSERM, Univ. Grenoble Alpes, Biomics, 38054, Grenoble, France
| | - Marius Réglier
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France)
| | | | - Hélène Jamet
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| |
Collapse
|
15
|
Alruhaimi RS, Mahmoud AM, Elbagory I, Ahmeda AF, El-Bassuony AA, Lamsabhi AM, Kamel EM. Unveiling the tyrosinase inhibitory potential of phenolics from Centaurium spicatum: Bridging in silico and in vitro perspectives. Bioorg Chem 2024; 147:107397. [PMID: 38691905 DOI: 10.1016/j.bioorg.2024.107397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Phenolics, abundant in plants, constitute a significant portion of phytoconstituents consumed in the human diet. The phytochemical screening of the aerial parts of Centaurium spicatum led to the isolation of five phenolics. The anti-tyrosinase activities of the isolated compounds were assessed through a combination of in vitro experiments and multiple in silico approaches. Docking and molecular dynamics (MD) simulation techniques were utilized to figure out the binding interactions of the isolated phytochemicals with tyrosinase. The findings from molecular docking analysis revealed that the isolated phenolics were able to bind effectively to tyrosinase and potentially inhibit substrate binding, consequently diminishing the catalytic activity of tyrosinase. Among isolated compounds, cichoric acid displayed the lowest binding energy and the highest extent of polar interactions with the target enzyme. Analysis of MD simulation trajectories indicated that equilibrium was reached within 30 ns for all complexes of tyrosinase with the isolated phenolics. Among the five ligands studied, cichoric acid exhibited the lowest interaction energies, rendering its complex with tyrosinase the most stable. Considering these collective findings, cichoric acid emerges as a promising candidate for the design and development of a potential tyrosinase inhibitor. Furthermore, the in vitro anti-tyrosinase activity assay unveiled significant variations among the isolated compounds. Notably, cichoric acid exhibited the most potent inhibitory effect, as evidenced by the lowest IC50 value (7.92 ± 1.32 µg/ml), followed by isorhamnetin and gentiopicrin. In contrast, sinapic acid demonstrated the least inhibitory activity against tyrosinase, with the highest IC50 value. Moreover, cichoric acid exhibited a mixed inhibition mode against the hydrolysis of l-DOPA catalyzed by tyrosinase, with Ki value of 1.64. Remarkably, these experimental findings align well with the outcomes of docking and MD simulations, underscoring the consistency and reliability of our computational predictions with the actual inhibitory potential observed in vitro.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ibrahim Elbagory
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 76321, Saudi Arabia
| | - Ahmad F Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ashraf A El-Bassuony
- Organic Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, Madrid 28049, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Emadeldin M Kamel
- Organic Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
16
|
Cai H, Chen W, Jiang J, Wen H, Luo X, Li J, Lu L, Zhao R, Ni X, Sun Y, Wang J, Li Z, Ju B, Jiang X, Bai R. Artificial Intelligence-Assisted Optimization of Antipigmentation Tyrosinase Inhibitors: De Novo Molecular Generation Based on a Low Activity Lead Compound. J Med Chem 2024. [PMID: 38651218 DOI: 10.1021/acs.jmedchem.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Artificial intelligence (AI) de novo molecular generation is a highly promising strategy in the drug discovery, with deep reinforcement learning (RL) models emerging as powerful tools. This study introduces a fragment-by-fragment growth RL forward molecular generation and optimization strategy based on a low activity lead compound. This process integrates fragment growth-based reaction templates, while target docking and drug-likeness prediction were simultaneously performed. This comprehensive approach considers molecular similarity, internal diversity, synthesizability, and effectiveness, thereby enhancing the quality and efficiency of molecular generation. Finally, a series of tyrosinase inhibitors were generated and synthesized. Most compounds exhibited more improved activity than lead, with an optimal candidate compound surpassing the effects of kojic acid and demonstrating significant antipigmentation activity in a zebrafish model. Furthermore, metabolic stability studies indicated susceptibility to hepatic metabolism. The proposed AI structural optimization strategies will play a promising role in accelerating the drug discovery and improving traditional efficiency.
Collapse
Affiliation(s)
- Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jing Jiang
- SanOmics AI Co. Ltd., Hangzhou 311103, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Liuxin Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xinhua Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yinyan Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jiahui Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhen Li
- SanOmics AI Co. Ltd., Hangzhou 311103, PR China
| | - Bin Ju
- SanOmics AI Co. Ltd., Hangzhou 311103, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| |
Collapse
|
17
|
Ahmad I, Parveen W, Noor S, Udin Z, Ali A, Ali I, Ullah R, Ali H. Design and synthesis of novel dihydropyridine- and benzylideneimine-based tyrosinase inhibitors. Front Pharmacol 2024; 15:1332184. [PMID: 38595924 PMCID: PMC11002185 DOI: 10.3389/fphar.2024.1332184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 04/11/2024] Open
Abstract
Tyrosinase (TYR) inhibitors are very significant as they inhibit enzyme tyrosinase activity, and its inhibition is vital for skin care, anticancer medication, and antibrowning of fruits and vegetables. This work presents a novel and economical route for the preparation of new synthetic tyrosinase inhibitors using amlodipine (4). The novel conjugates 6 (a-o) were designed, synthesized, and characterized by spectroscopic analyses, including Fourier transform infrared and low- and high-resolution mass spectroscopy. The purified compound 4 was refluxed with various aldehydes and ketones 5 (a-o) for 5-8 h in methanol at 60°C-90°C. This research modified the drug in a step-by-step manner to develop therapeutic properties as a tyrosinase inhibitor. The structures of synthesized ligands 6 (a-o) were established based on spectral and analytical data. The synthesized compounds 6 (a-o) were screened against tyrosinase enzyme. Kojic acid was taken as standard. All the prepared compounds 6 (a-o) have good inhibition potential against the enzyme tyrosinase. Compounds 6o, 6b, 6f, and 6k depicted excellent antityrosinase activity. Compound 6k, with an IC50 value of 5.34 ± 0.58 µM, is as potent as the standard kojic acid (IC50 6.04 ± 0.11 µM), standing out among all synthesized compounds 6 (a-o). The in silico studies of the conjugates 6 (a-o) were evaluated via PatchDock. Compound 6k showed a binding affinity score of 8,999 and an atomic contact energy (ACE) value of -219.66 kcal/mol. The structure-activity relationship illustrated that the presence of dihydropyridine nuclei and some activating groups at the ortho and para positions of the benzylideneimine moiety is the main factor for good tyrosinase activity. The compound 6k could be used as a lead compound for drug modification as a tyrosinase inhibitor for skin care, anticancer medication, and antibrowning for fruits and vegetables.
Collapse
Affiliation(s)
- Ifraz Ahmad
- Key Laboratory of Automobile Materials, Department of Material Sciences and Engineering, Jilin University, Changchun, China
| | - Warda Parveen
- Key Laboratory of Automobile Materials, Department of Material Sciences and Engineering, Jilin University, Changchun, China
| | - Shah Noor
- Key Laboratory of Automobile Materials, Department of Material Sciences and Engineering, Jilin University, Changchun, China
| | - Zahoor Udin
- Chemistry Department, Gomal University, Dera Ismail Khan, Pakistan
| | - Amjad Ali
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
18
|
Lazinski LM, Beaumet M, Roulier B, Gay R, Royal G, Maresca M, Haudecoeur R. Design and synthesis of 4-amino-2',4'-dihydroxyindanone derivatives as potent inhibitors of tyrosinase and melanin biosynthesis in human melanoma cells. Eur J Med Chem 2024; 266:116165. [PMID: 38262119 DOI: 10.1016/j.ejmech.2024.116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Melanogenesis inhibition constitutes a privileged therapeutic solution to treat skin hyperpigmentation, a major dermatological concern associated with the overproduction of melanin by human tyrosinase (hsTYR). Despite the existence of many well-known TYR (tyrosinase) inhibitors commercialized in skin formulations, their hsTYR-inhibition efficacy remains poor since most of them were investigated over mushroom tyrosinase (abTYR), a model with low homology relative to hsTYR. Considering the need for new potent hsTYR inhibitors, we designed and synthesized a series of indanones starting from 4-hydroxy compound 1a, one of the two most active derivatives reported to date against the human enzyme, together with marketed thiamidol. We observed that analogues featuring 4-amino and 4-amido-2',4'-dihydroxyindanone motifs showed two-to ten-fold increase in activity over human melanoma MNT-1 cell lysates, and a ten-fold improvement in a 4-days whole-cell experiment, compared to parent analogue 1a. Molecular docking investigation was performed for the most promising 4-amido derivatives and suggested a plausible interaction pattern with the second coordination sphere of hsTYR, notably through hydrogen bonding with Glu203, confirming their impact in the binding mode with hsTYR active site.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France; Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Morane Beaumet
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | - Brayan Roulier
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | - Rémy Gay
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | - Guy Royal
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013, Marseille, France
| | | |
Collapse
|
19
|
Xie D, Han K, Jiang Q, Xie S, Zhou J, Zhang Y, Xu J, He Y, Zhao P, Yang X. Design, synthesis, and inhibitory activity of hydroquinone ester derivatives against mushroom tyrosinase. RSC Adv 2024; 14:6085-6095. [PMID: 38370459 PMCID: PMC10870825 DOI: 10.1039/d4ra00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Tyrosinase is a widely distributed copper-containing enzyme found in various organisms, playing a crucial role in the process of melanin production. Inhibiting its activity can reduce skin pigmentation. Hydroquinone is an efficient inhibitor of tyrosinase, but its safety has been a subject of debate. In this research, a scaffold hybridization strategy was employed to synthesize a series of hydroquinone-benzoyl ester analogs (3a-3g). The synthesized compounds were evaluated for their inhibitory activity against mushroom tyrosinase (mTyr). The results revealed that these hydroquinone-benzoyl ester analogs exhibited inhibitory activity against mTyr, with compounds 3a-3e displaying higher activity, with compound 3b demonstrating the highest potency (IC50 = 0.18 ± 0.06 μM). Kinetic studies demonstrated that the inhibition of mTyr by compounds 3a-3e was reversible, although their inhibition mechanisms varied. Compounds 3a and 3c exhibited non-competitive inhibition, while 3b displayed mixed inhibition, and 3d and 3e showed competitive inhibition. UV spectroscopy analysis indicated that none of these compounds chelated with copper ions in the active center of the enzyme. Molecular docking simulations and molecular dynamics studies revealed that compounds 3a-3e could access the active pocket of mTyr and interact with amino acid residues in the active site. These interactions influenced the conformational flexibility of the receptor protein, subsequently affecting substrate-enzyme binding and reducing enzyme catalytic activity, in line with experimental findings. Furthermore, in vitro melanoma cytotoxicity assay of compound 3b demonstrated its higher toxicity to A375 cells, while displaying low toxicity to HaCaT cells, with a dose-dependent effect. These results provide a theoretical foundation and practical basis for the development of novel tyrosinase inhibitors.
Collapse
Affiliation(s)
- Dong Xie
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming Yunnan 650224 PR China
| | - Kangjia Han
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming Yunnan 650224 PR China
| | - Qian Jiang
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming Yunnan 650224 PR China
| | - Sida Xie
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming Yunnan 650224 PR China
| | - Jielong Zhou
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming Yunnan 650224 PR China
| | - Yingjun Zhang
- Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming Yunnan 650204 PR China
| | - Junming Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Nanjing Jiangsu 210042 PR China
| | - Yuanping He
- Kunming Beiye Dai Medicine Research Institute Kunming Yunnan 650499 PR China
| | - Ping Zhao
- Key Laboratory of Ministry of Education for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University Kunming Yunnan 650224 PR China
| | - Xiaoqin Yang
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming Yunnan 650224 PR China
| |
Collapse
|
20
|
Xu M, Zhang Z, Zhang P, Wang Q, Xia Y, Lian C, Liu J, Liu J. Beyond traditional methods: Unveiling the skin whitening properties of Rhein-Embedded PROTACs. Bioorg Med Chem 2023; 96:117537. [PMID: 37992440 DOI: 10.1016/j.bmc.2023.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Proteolysis Targeting Chimeras (PROTAC) technology has emerged as a promising approach for targeted protein degradation. In this study, we focused on tyrosinase (TYR), a key enzyme involved in melanin synthesis and pigmentation. For this target, we designed and synthesized a series of PROTACs (D3-D9), employing Rhein as the target protein-ligand. Through some experimental tests, we made a significant discovery. Preliminary experimental results show that the most promising compound (D6) demonstrated the ability to degrade MITF and inhibit the expression and TYR in B16-F10 cells, effectively suppressing melanogenesis in zebrafish. Notably, at equivalent concentrations, the whitening effect of D6 surpassed that of its precursor Rhein and was even comparable to that of the well-established whitening agent, β-arbutin. Validating experiments further revealed that the action of D6 was reliant on the E3 ligand, indicating its capacity to degrade TYR and MITF through the ubiquitination pathway. Whether D6 acts directly on TYR or MITF needs to be further explored. These compelling results underscore the tremendous whitening potential of D6, suggesting its suitability as a valuable lead for whitening agents and its potential to expand the range of whitening cosmetic products.
Collapse
Affiliation(s)
- Meng Xu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, Quanzhou 362021, PR China
| | - Ziqing Zhang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, Quanzhou 362021, PR China
| | - Peixi Zhang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, Quanzhou 362021, PR China
| | - Qiaolai Wang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, Quanzhou 362021, PR China
| | - Yuanxi Xia
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, Quanzhou 362021, PR China
| | - Chenlei Lian
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, Quanzhou 362021, PR China
| | - Jia Liu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, Quanzhou 362021, PR China
| | - Jieqing Liu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, Quanzhou 362021, PR China.
| |
Collapse
|
21
|
Ricci F, Schira K, Khettabi L, Lombardo L, Mirabile S, Gitto R, Soler-Lopez M, Scheuermann J, Wolber G, De Luca L. Computational methods to analyze and predict the binding mode of inhibitors targeting both human and mushroom tyrosinase. Eur J Med Chem 2023; 260:115771. [PMID: 37657271 DOI: 10.1016/j.ejmech.2023.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Tyrosinase, a copper-containing enzyme critical in melanin biosynthesis, is a key drug target for hyperpigmentation and melanoma in humans. Testing the inhibitory effects of compounds using tyrosinase from Agaricus bisporus (AbTYR) has been a common practice to identify potential therapeutics from synthetic and natural sources. However, structural diversity among human tyrosinase (hTYR) and AbTYR presents a challenge in developing drugs that are therapeutically effective. In this study, we combined retrospective and computational analyses with experimental data to provide insights into the development of new inhibitors targeting both hTYR and AbTYR. We observed contrasting effects of Thiamidol™ and our 4-(4-hydroxyphenyl)piperazin-1-yl-derivative (6) on both enzymes; based on this finding, we aimed to investigate their binding modes in hTYR and AbTYR to identify residues that significantly improve affinity. All the information led to the discovery of compound [4-(4-hydroxyphenyl)piperazin-1-yl](2-methoxyphenyl)methanone (MehT-3, 7), which showed comparable activity on AbTYR (IC50 = 3.52 μM) and hTYR (IC50 = 5.4 μM). Based on these achievements we propose the exploitation of our computational results to provide relevant structural information for the development of newer dual-targeting molecules, which could be preliminarily tested on AbTYR as a rapid and inexpensive screening procedure before being tested on hTYR.
Collapse
Affiliation(s)
- Federico Ricci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy
| | - Kristina Schira
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Lyna Khettabi
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Lisa Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy
| | - Salvatore Mirabile
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Gerhard Wolber
- Molecular Design Lab, Institute of Pharmacy, Freie Universität Berlin, Königin-Luisestr. 2 + 4, 14195, Berlin, Germany
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy.
| |
Collapse
|
22
|
Lu L, Hu C, Min X, Liu Z, Xu X, Gan L. In Vitro and In Vivo Biological Evaluation of Indole-thiazolidine-2,4-dione Derivatives as Tyrosinase Inhibitors. Molecules 2023; 28:7470. [PMID: 38005192 PMCID: PMC10673563 DOI: 10.3390/molecules28227470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Tyrosinase is an important rate-limiting enzyme in melanin biosynthesis. To find potential tyrosinase inhibitors with anti-melanogenic activity, a series of indole-thiazolidine-2,4-dione derivatives 5a~5z were synthesized by incorporating indole with thiazolidine-2,4-dione into one compound and assayed for their biological activities. All compounds displayed tyrosinase inhibitory activities and 5w had the highest anti-tyrosinase inhibitory activity with an IC50 value of 11.2 μM. Inhibition kinetics revealed 5w as a mixed-type tyrosinase inhibitor. Fluorescence quenching results indicated that 5w quenched tyrosinase fluorescence in a static process. CD spectra and 3D fluorescence spectra results suggested that the binding of 5w with tyrosinase could change the conformation and microenvironment of tyrosinase. Molecular docking also represented the binding between 5w and tyrosinase. Moreover, 5w could inhibit tyrosinase activity and melanogenesis both in B16F10 cells and the zebrafish model. Therefore, compound 5w could serve as a tyrosinase inhibitor with anti-melanogenic activity.
Collapse
Affiliation(s)
- Li Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Chunmei Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Xiaofeng Min
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Zhong Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Xuetao Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Lishe Gan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| |
Collapse
|
23
|
Beaumet M, Lazinski LM, Maresca M, Haudecoeur R. Catechol-mimicking transition-state analogues as non-oxidizable inhibitors of tyrosinases. Eur J Med Chem 2023; 259:115672. [PMID: 37487307 DOI: 10.1016/j.ejmech.2023.115672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Tyrosinases are copper-containing metalloenzymes involved in several processes in both mammals, insects, bacteria, fungi and plants. Their phenol oxidation properties are especially responsible for human melanogenesis, potentially leading to abnormal pigmentation, and for postharvest vegetable tissue browning. Thus, targeting tyrosinases attracts interest for applications both in dermocosmetic and agrofood fields. However, a large part of the literature about tyrosinase inhibitors is dedicated to the report of copper-interacting phenolic compounds, that are more likely alternative substrates leading to undesirable toxic quinones production. To circumvent this issue, the use of catechol-mimicking copper-chelating groups that are analogues of the tyrosinase oxidation transition state appears as a valuable strategy. Relying on several non-oxidizable pyridinone, pyrone or tropolone moieties, innovative inhibitors were developed, especially within the past decade, and the best reported analogues reached IC50 values in the nanomolar range. Herein, we review the design, the activity against several tyrosinases, and the proposed binding modes of reported catechol-mimicking, non-oxidizable molecules, in light of recent structural data.
Collapse
Affiliation(s)
- Morane Beaumet
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | | | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013, Marseille, France
| | | |
Collapse
|
24
|
Kang MK, Yoon D, Jung HJ, Ullah S, Lee J, Park HS, Kim HJ, Kang D, Park Y, Chun P, Young Chung H, Moon HR. Identification and molecular mechanism of novel 5-alkenyl-2-benzylaminothiazol-4(5H)-one analogs as anti-melanogenic and antioxidant agents. Bioorg Chem 2023; 140:106763. [PMID: 37566943 DOI: 10.1016/j.bioorg.2023.106763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Mushroom tyrosinase is a tetramer, whereas mammalian tyrosinase is a monomeric glycoprotein. In addition, the amino acid sequence of mushroom tyrosinases differs from that of mammalian tyrosinases. MHY2081 exhibits potent inhibitory activity against both mushroom and mammalian tyrosinases. Accordingly, based on the MHY2081 structure, 5-alkenyl-2-benzylaminothiazol-4(5H)-one analogs were designed as a novel anti-tyrosinase agent and synthesized using 2-((3,4-dimethoxybenzyl)amino)thiazol-4(5H)-one (16), a key intermediate obtained via the rearrangement of a benzylamino group. Compounds 6 and 9 (IC50 = 1.5-4.6 µM) exhibited higher mushroom tyrosinase inhibitory activity than kojic acid (IC50 = 20-21 µM) in the presence of l-tyrosine and/or l-dopa. Based on kinetic analysis using Lineweaver-Burk plots, 6 was a mixed inhibitor, whereas 9 was a competitive inhibitor, and docking simulation results supported that these compounds could bind to the active site of mushroom tyrosinase. Using B16F10 mammalian cells, we demonstrated that these compounds inhibited melanogenesis more potently than kojic acid, and their anti-melanogenic effects could be attributed to tyrosinase inhibition. All synthesized compounds could scavenge reactive oxygen species (ROS), with five compounds exhibiting mild-to-strong ABTS+ and DPPH radical-scavenging abilities. Compounds 6 and 9 were potent tyrosinase inhibitors with strong antioxidant activities against ROS, ABTS+, and DPPH radicals. Moreover, the compounds significantly suppressed tyrosinase expression in a dose-dependent manner. Collectively, these results suggest that the novel 5-alkenyl-2-benzylaminothiazol-4(5H)-one analogs, especially 6 and 9, are potential anti-melanogenic agents with antioxidant activity.
Collapse
Affiliation(s)
- Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Sultan Ullah
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
25
|
Chi G, Shuai D, Li J, Chen X, Yang H, Zhao M, Jiang Z, Wang L, Chen B. Mechanism of melanogenesis inhibition by Keggin-type polyoxometalates. NANOSCALE 2023; 15:14543-14550. [PMID: 37609952 DOI: 10.1039/d3nr02303f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Abnormal melanin overproduction can result in hyperpigmentation syndrome in human skin diseases and enzymatic browning of fruits and vegetables. Recently, our group found that Keggin-type polyoxometalates (POMs) can efficiently inhibit tyrosinase activity. However, it remains unclear whether Keggin-type POMs exhibit optimal effects in vivo. Additionally, the inhibitory effect and mechanism of action of POMs on cellular tyrosinase activity and melanogenesis have been rarely reported. Here we demonstrate that our screened and synthesised PMo11Zn and GaMo12 show superior inhibitory effects on melanin formation as well as inhibition of cellular tyrosinase activity compared to other Keggin-type POMs. Intriguingly, we reveal that Keggin-type POMs competitively bind to tyrosinase mainly through more interactions with Cu2+ ions and the amino acid residue is capable of forming van der Waals, cation-π and hydrogen bonds, resulting in a reversible non-covalent complex formation. Our findings provide valuable insights into the design, synthesis and screening of polyoxometalates as multifunctional metallodrugs and food preservatives against hyperpigmentation.
Collapse
Affiliation(s)
- Guoxiang Chi
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Die Shuai
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Jiaxin Li
- School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Xiangsong Chen
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Han Yang
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Meijuan Zhao
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Zedong Jiang
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Li Wang
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Bingnian Chen
- Xiang'an Hospital of Xiamen University, Xiamen 361021, PR China.
| |
Collapse
|
26
|
Baber MA, Crist CM, Devolve NL, Patrone JD. Tyrosinase Inhibitors: A Perspective. Molecules 2023; 28:5762. [PMID: 37570734 PMCID: PMC10420840 DOI: 10.3390/molecules28155762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Due to its integral role in the biosynthesis of melanin in all kingdoms of life, tyrosinase has become an extremely important target for inhibition in several sectors of research including agricultural and cosmetic research. Inhibitors of tyrosinase have made it to the market in the cosmetics industry, but their use has been limited due to conflicting efficacy and potential toxicity, which has led to several small molecules being removed from the market. Undaunted, researchers have continued to pursue tyrosinase inhibitors with varying degrees of success. These pursuits have built an impressive and rich library of research. This review is intended to provide a perspective of the past twenty years (2003-2023) of research on tyrosinase inhibitors by highlighting exemplar molecules and developments.
Collapse
Affiliation(s)
- Mason A. Baber
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48209, USA;
| | - Cole M. Crist
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
| | - Noah L. Devolve
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| | - James D. Patrone
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| |
Collapse
|
27
|
Bayrakçeken Güven Z, Saracoglu I, Nagatsu A, Yilmaz MA, Basaran AA. Anti-tyrosinase and antimelanogenic effect of cinnamic acid derivatives from Prunus mahaleb L.: Phenolic composition, isolation, identification and inhibitory activity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116378. [PMID: 36924865 DOI: 10.1016/j.jep.2023.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional use of Prunus species against skin diseases and especially for skin lightning cosmeceutical purposes is widespread in many cultures. Prunus mahaleb L. is a well known food plant and used in the baking industry for flavoring. The fruit kernels (endocarp) are used in India for hyperpigmentation. AIM OF THE STUDY To investigate the chemical composition with the antimelanogenesis effect of P. mahaleb seed and kernel extracts and isolated compounds. MATERIALS AND METHODS Isolation studies performed from the methanol extracts obtained from kernels and structures were determined using NMR and MS analysis. Antimelanogenesis effect was determined by mushroom tyrosinase assay, cellular tyrosinase assay and melanin content assay using B16F10 murine melanoma cells. RESULTS Five cinnamic acid derivatives were isolated and their structures (2-O-β-glucopyranosyloxy-4-methoxy-hydrocinnamic acid (1), cis-melilotoside (2), dihydromelilotoside (3), trans-melilotoside (4), 2-O-β-glucosyloxy-4-methoxy trans-cinnamic acid (5)) were elucidated using advanced spectroscopic methods. Mushroom tyrosinase enzyme inhibition of extracts, fractions and pure compounds obtained from P. mahaleb kernels were investigated and structure-activity relationship revealed. According to a detailed, comprehensive and validated LC-MS/MS technique analysis, vanilic acid (41.407 mg/g), protocatechuic acid (8.992 mg/g) and ferulic acid (4.962 mg/g) in the kernel ethylacetate fraction; quinic acid (14.183 mg/g), fumaric acid (8.349 mg/g) and aconitic acid (5.574 mg/g) were found as major phenolic compounds in the water fraction. The correlation of trace element copper content in extracts and fractions with mushroom enzyme activity was determined. By examining the enzyme kinetics of the compounds with effective cinnamic acid derivatives, inhibition types and enzyme binding constants Ki were calculated. Compounds 1,3 and 5 exhibited high noncompetitive tyrosinase inhibitory activity against L-tyrosine substrates, with IC50 values of 0.22, 0.31 and 0.37 mM respectively. In addition compounds 1, 3 and 5 showed dose-dependent inhibitory effects on intracellular tyrosinase and melanin levels in α-melanocyte-stimulating hormone (α-MSH)-induced B16F10 melanoma cells. CONCLUSIONS Potent tyrosinase inhibitory compounds and extracts of P. mahaleb kernels suggest that it could be a new, non-toxic and inexpensive resource for the cosmeceutical industry and in skin diseases associated with hyperpigmentation.
Collapse
Affiliation(s)
- Zühal Bayrakçeken Güven
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara, Turkey; Erzincan Binali Yıldırım University, Faculty of Pharmacy, Department of Pharmacognosy, Erzincan, Turkey.
| | - Iclal Saracoglu
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara, Turkey
| | - Akito Nagatsu
- Kinjo Gakuin University, College of Pharmacy, Department of Pharmacognosy, Nagoya, Japan
| | - Mustafa Abdullah Yilmaz
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, Diyarbakir, Turkey
| | - A Ahmet Basaran
- Baskent University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara, Turkey
| |
Collapse
|
28
|
Vittorio S, Dank C, Ielo L. Heterocyclic Compounds as Synthetic Tyrosinase Inhibitors: Recent Advances. Int J Mol Sci 2023; 24:ijms24109097. [PMID: 37240442 DOI: 10.3390/ijms24109097] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Tyrosinase is a copper-containing enzyme which is widely distributed in nature (e.g., bacteria, mammals, fungi) and involved in two consecutive steps of melanin biosynthesis. In humans, an excessive production of melanin can determine hyperpigmentation disorders as well as neurodegenerative processes in Parkinson's disease. The development of molecules able to inhibit the high activity of the enzyme remain a current topic in medicinal chemistry, because the inhibitors reported so far present several side effects. Heterocycle-bearing molecules are largely diffuse in this sense. Due to their importance as biologically active compounds, we decided to report a comprehensive review of synthetic tyrosinase inhibitors possessing heterocyclic moieties reported within the last five years. For the reader's convenience, we classified them as inhibitors of mushroom tyrosinase (Agaricus bisporus) and human tyrosinase.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milano, Italy
| | - Christian Dank
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Laura Ielo
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
29
|
Al-Rooqi M, Sadiq A, Obaid RJ, Ashraf Z, Nazir Y, Jassas RS, Naeem N, Alsharif MA, Shah SWA, Moussa Z, Mughal EU, Farghaly AR, Ahmed SA. Evaluation of 2,3-Dihydro-1,5-benzothiazepine Derivatives as Potential Tyrosinase Inhibitors: In Vitro and In Silico Studies. ACS OMEGA 2023; 8:17195-17208. [PMID: 37214694 PMCID: PMC10193543 DOI: 10.1021/acsomega.3c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Benzothiazepines are pharmacologically active compounds, frequently utilized as a precursor for acquiring versatile molecules with several bioactivities including anti-inflammatory, anti-human immunodeficiency virus (anti-HIV), analgesic, antitumor, antimicrobial, and antitubercular. In this study, the 2,4-diphenyl-2,3-dihydro-1,5-benzothiazepine scaffold was selected for their in vitro, docking, and druglikeness studies to evaluate their inhibitory potential against mushroom tyrosinase. All synthesized analogues, 1-14, exhibited moderate to good IC50 values ranging from 1.21 to 70.65 μM. The synthesized benzothiazepine derivatives were potent tyrosinase inhibitors, which outperformed the reference kojic acid (IC50 = 16.69 μM). The kinetic analysis revealed that compound 2 (2-(3,4-dimethoxyphenyl)-4-(p-tolyl)-2,3-dihydrobenzo[b][1,4]thiazepine) was a mixed-type tyrosinase inhibitor with a Ki value of 1.01 μM. Molecular modeling studies against tyrosinase protein (PDB ID: 2Y9X) were conducted to recognize the binding modes of these analogues. The utilization of molecular dynamic (MD) simulations enabled the assessment of the protein-ligand complex's dynamic behavior, stability, and binding affinity for the compounds. These simulations ultimately led to the identification of compound 2 as a potential inhibitor of tyrosinase. Additionally, a druglikeness study was conducted, which supported the promising potential of the new analogues as novel antityrosinase agents. The in silico studies were consistent with the in vitro results, showing that these ligands had good binding scores against tyrosinase and interacted with the core residues of the target protein. Gaussian 09 was used for the geometry optimization of all complexes.
Collapse
Affiliation(s)
- Munirah
M. Al-Rooqi
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Amina Sadiq
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| | - Rami J. Obaid
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Zaman Ashraf
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Yasir Nazir
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
- Department
of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Rabab S. Jassas
- Department
of Chemistry, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nafeesa Naeem
- Department
of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Meshari A. Alsharif
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Syed Wadud Ali Shah
- Department
of Pharmacy, University of Malakand, Chakdara Dir 18000, Khyber Pakhtunkhwa, Pakistan
| | - Ziad Moussa
- Department
of Chemistry, College of Science, United
Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | | | - Abdel-Rahman Farghaly
- Department
of Chemistry, College of Science, Jazan
University, Jazan 114, Saudi Arabia
| | - Saleh A. Ahmed
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
30
|
Mirabile S, Ielo L, Lombardo L, Ricci F, Gitto R, Germanò MP, Pace V, De Luca L. Leveraging the 3-Chloro-4-fluorophenyl Motif to Identify Inhibitors of Tyrosinase from Agaricus bisporus. Int J Mol Sci 2023; 24:ijms24097944. [PMID: 37175649 PMCID: PMC10177926 DOI: 10.3390/ijms24097944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Tyrosinase (EC 1.14.18.1) is implicated in melanin production in various organisms. There is a growing body of evidence suggesting that the overproduction of melanin might be related to several skin pigmentation disorders as well as neurodegenerative processes in Parkinson's disease. Based on this consideration, the development of tyrosinase inhibitors represents a new challenge to identify new agents in pharmaceutical and cosmetic applications. With the goal of identifying tyrosinase inhibitors from a synthetic source, we employed a cheap and facile preliminary assay using tyrosinase from Agaricus bisporus (AbTYR). We have previously demonstrated that the 4-fluorobenzyl moiety might be effective in interactions with the catalytic site of AbTYR; moreover, the additional chlorine atom exerted beneficial effects in enhancing inhibitory activity. Therefore, we planned the synthesis of new small compounds in which we incorporated the 3-chloro-4-fluorophenyl fragment into distinct chemotypes that revealed the ability to establish profitable contact with the AbTYR catalytic site. Our results confirmed that the presence of this fragment is an important structural feature to improve the AbTYR inhibition in these new chemotypes as well. Furthermore, docking analysis supported the best activity of the selected studied compounds, possessing higher potency when compared with reference compounds.
Collapse
Affiliation(s)
- Salvatore Mirabile
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy
- Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, I-98122 Messina, Italy
| | - Laura Ielo
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Lisa Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy
| | - Federico Ricci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy
| | - Vittorio Pace
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy
| |
Collapse
|
31
|
Wang W, Yang L, Wang W, Zhang J, Engelhardt UH, Jiang H. Inhibitory Activities of Samples on Tyrosinases Were Affected by Enzyme Species and Sample Addition Methods. Int J Mol Sci 2023; 24:ijms24076013. [PMID: 37046986 PMCID: PMC10093845 DOI: 10.3390/ijms24076013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
The inhibition of tyrosinase (TYR) activity is an effective measure to inhibit melanin synthesis. At present, there are many methods with discrepant details that study the TYR inhibitory activity of samples. Under the same experimental conditions, this paper systematically studies whether enzyme species and sample addition methods are the key factors that determine the TYR inhibitory activity of samples. TYRs extracted from B16F10 cells, apple and mushroom, called BTYR, ATYR and MTYR, respectively, were selected to implement this study. Results showed that TYR inhibitory activities of samples were obviously affected by the above two factors. It was necessary to select the appropriate enzyme according to the problems to be explained. It was speculated that indirectly inhibitory activity reflected the comprehensive effects of samples on TYR catalytic activity and intracellular TYR synthesis pathway, while directly inhibitory activity reflected the effects of samples on TYR catalytic activity. Additionally, kojic acid could be used as a positive control for both B16F10 cells and MTYR models. The TYR inhibitory activity of β-arbutin was complicated and fickle, while that of epigallocatechin gallate (EGCG) was universal and stable, which is to say, EGCG always inhibited TYR activity in a dose-dependent manner. In conclusion, the TYR inhibitory activities of samples were affected by enzyme species and sample addition methods. Compared with the unstable β-arbutin, EGCG was more valuable for clinical research.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijuan Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Weiwei Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Jianyong Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Ulrich H Engelhardt
- Institute of Food Chemistry, Technischen Universität Braunschweig, Schleinitzstr. 20, 38106 Braunschweig, Germany
| | - Heyuan Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| |
Collapse
|
32
|
Liang H, Yao J, Miao Y, Sun Y, Gao Y, Sun C, Li R, Xiao H, Feng Q, Qin G, Lu X, Liu Z, Zhang G, Li F, Shao M. Pharmacological activities and effective substances of the component-based Chinese medicine of Ginkgo biloba leaves based on serum pharmacochemistry, metabonomics and network pharmacology. Front Pharmacol 2023; 14:1151447. [PMID: 36969838 PMCID: PMC10036596 DOI: 10.3389/fphar.2023.1151447] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
As a potential drug candidate for the treatment of hypertension and complications, it is speculated that the component-based Chinese medicine of Ginkgo biloba leaves (GBCCM) which mainly composed of flavonoid aglycones (FAs) and terpene lactones (TLs) may have different pharmacological effects at different doses or ratios. Taking the normal mice as the study object, metabonomics was conducted by giving different doses of GBCCM. Based on the components of GBCCM absorbed into the blood, the network pharmacological prediction was carried out. By integrating the results of metabonomics and network pharmacology, predict the possible pharmacological effects of GBCCM and conduct experimental verification. It was found that eight of the 19 compounds in GBCCM could be absorbed into the blood. GBCCM mainly affected the signal pathways of unsaturated fatty acid, pyruvate, bile acid, melanin and stem cells. It was speculated that GBCCM might have activities such as lowering blood pressure, regulating stem cell proliferation and melanogenesis. By establishing the models of mushroom tyrosinase, rat bone marrow mesenchymal stem cells (BMSCs) and spontaneously hypertensive rats (SHRs), we found that FAs and TLs showed synergistic effect in hypertension and tyrosinase models, and the optimal ratio was 3:2 (4.4 mg/kg) and 1:1 (0.4 mg/ml), respectively. As effective substances, FAs significantly promoted the proliferation of rat BMSCs on the third and fifth days at the concentration of 0.2 μg/ml (p < 0.05). GBCCM showed a variety of pharmacological effects at different doses and ratios, which provided an important reference for the druggability of GBCCM.
Collapse
Affiliation(s)
- Hongbao Liang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Center for Drug Safety Evaluation, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jingchun Yao
- Center for Drug Safety Evaluation, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yu Miao
- Center for Drug Safety Evaluation, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Ying Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Center for Drug Safety Evaluation, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yanbing Gao
- Center for Drug Safety Evaluation, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
| | - Chenghong Sun
- Center for Drug Safety Evaluation, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Rui Li
- Center for Drug Safety Evaluation, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - He Xiao
- Center for Drug Safety Evaluation, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Qun Feng
- Center for Drug Safety Evaluation, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Guofei Qin
- Center for Drug Safety Evaluation, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Xiaoyan Lu
- Center for Drug Safety Evaluation, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Zhong Liu
- Center for Drug Safety Evaluation, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Guimin Zhang
- Center for Drug Safety Evaluation, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Feng Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Feng Li, ; Mingguo Shao,
| | - Mingguo Shao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
- *Correspondence: Feng Li, ; Mingguo Shao,
| |
Collapse
|
33
|
Lee J, Jeong Y, Jin Jung H, Ullah S, Ko J, Young Kim G, Yoon D, Hong S, Kang D, Park Y, Chun P, Young Chung H, Ryong Moon H. Anti-tyrosinase flavone derivatives and their anti-melanogenic activities: Importance of the β-phenyl-α,β-unsaturated carbonyl scaffold. Bioorg Chem 2023; 135:106504. [PMID: 37015153 DOI: 10.1016/j.bioorg.2023.106504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Flavone derivatives were designed and synthesized based on the hypothesis that flavones containing the β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold have potential anti-tyrosinase activity. Flavones 1a and 1e inhibited mushroom tyrosinase more potently than kojic acid, and 1e inhibited monophenolase and diphenolase 61- and 28-fold more than kojic acid, respectively. Kinetic studies on mushroom tyrosinase indicated that 1a and 1e competitively inhibit monophenolase and diphenolase, and docking results supported these results. In an in vitro assay using B16F10 murine cells, 1a and 1e inhibited melanin production more potently than kojic acid, and this was attributed to the inhibition of tyrosinase. Furthermore, 1a and 1e strongly scavenged DPPH and ABTS radicals and ROS, which suggested that their antioxidant properties were at least partly responsible for their anti-melanogenic effects. Moreover, flavone 1a also inhibited the gene expressions of the melanogenesis-related genes tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Our findings that flavone derivatives (i) directly inhibit tyrosinase, (ii) act as antioxidants, and (iii) inhibit the expressions of melanogenesis-related genes suggest their potential use as natural melanogenesis inhibitors. Furthermore, the study confirms that the PUSC scaffold confers anti-tyrosinase activity.
Collapse
|
34
|
Irfan A, Faisal S, Ahmad S, Al-Hussain SA, Javed S, Zahoor AF, Parveen B, Zaki MEA. Structure-Based Virtual Screening of Furan-1,3,4-Oxadiazole Tethered N-phenylacetamide Derivatives as Novel Class of hTYR and hTYRP1 Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16030344. [PMID: 36986444 PMCID: PMC10059052 DOI: 10.3390/ph16030344] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 03/30/2023] Open
Abstract
Human tyrosinase (hTYR) is a key and rate-limiting enzyme along with human tyrosinase-related protein-1 (hTYRP1), which are among the most prominent targets of inhibiting hyper pigmentation and melanoma skin cancer. In the current in-silico computer-aided drug design (CADD) study, the structure-based screening of sixteen furan-1,3,4-oxadiazole tethered N-phenylacetamide structural motifs BF1-BF16 was carried out to assess their potential as hTYR and hTYRP1 inhibitors. The results revealed that the structural motifs BF1-BF16 showed higher binding affinities towards hTYR and hTYRP1 than the standard inhibitor kojic acid. The most bioactive lead furan-1,3,4-oxadiazoles BF4 and BF5 displayed stronger binding in affinities (-11.50 kcal/mol and -13.30 kcal/mol) than the standard drug kojic acid against hTYRP1 and hTYR enzymes, respectively. These were further confirmed by MM-GBSA and MM-PBSA binding energy computations. The stability studies involving the molecular dynamics simulations also provided stability insights into the binding of these compounds with the target enzymes, wherein it was found that they remain stable in the active sites during the 100 ns virtual simulation time. Moreover, the ADMET, as well as the medicinal properties of these novel furan-1,3,4-oxadiazole tethered N-phenylacetamide structural hybrids, also showed a good prospect. The excellent in-silico profiling of furan-1,3,4--oxadiazole structural motifs BF4 and BF5 provide a hypothetical gateway to use these compounds as potential hTYRP1 and hTYR inhibitors against melanogenesis.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sadia Javed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
35
|
Miranda de Souza Duarte-Filho LA, Ortega de Oliveira PC, Yanaguibashi Leal CE, de Moraes MC, Picot L. Ligand fishing as a tool to screen natural products with anticancer potential. J Sep Sci 2023:e2200964. [PMID: 36808885 DOI: 10.1002/jssc.202200964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Cancer is the second leading cause of death in the world and its incidence is expected to increase with the aging of the world's population and globalization of risk factors. Natural products and their derivatives have provided a significant number of approved anticancer drugs and the development of robust and selective screening assays for the identification of lead anticancer natural products are essential in the challenge of developing personalized targeted therapies tailored to the genetic and molecular characteristics of tumors. To this end, a ligand fishing assay is a remarkable tool to rapidly and rigorously screen complex matrices, such as plant extracts, for the isolation and identification of specific ligands that bind to relevant pharmacological targets. In this paper, we review the application of ligand fishing with cancer-related targets to screen natural product extracts for the isolation and identification of selective ligands. We provide critical analysis of the system configurations, targets, and key phytochemical classes related to the field of anticancer research. Based on the data collected, ligand fishing emerges as a robust and powerful screening system for the rapid discovery of new anticancer drugs from natural resources. It is currently an underexplored strategy according to its considerable potential.
Collapse
Affiliation(s)
| | | | - Cíntia Emi Yanaguibashi Leal
- Departamento de Ciências Farmacêuticas, Pós-Graduação em Biociências (PGB) Universidade Federal do Vale do São Francisco, Petrolina, Brazil
| | - Marcela Cristina de Moraes
- Departamento de Química Orgânica, Laboratório BIOCROM, Instituto de Química, Universidade Federal Fluminense, Niterói, Brazil
| | - Laurent Picot
- UMR CNRS 7266 LIENSs, Département de Biotechnologie, La Rochelle Université, La Rochelle, France
| |
Collapse
|
36
|
Buitrago E, Faure C, Carotti M, Bergantino E, Hardré R, Maresca M, Philouze C, Vanthuyne N, Boumendjel A, Bubacco L, du Moulinet d'Hardemare A, Jamet H, Réglier M, Belle C. Exploiting HOPNO-dicopper center interaction to development of inhibitors for human tyrosinase. Eur J Med Chem 2023; 248:115090. [PMID: 36634457 DOI: 10.1016/j.ejmech.2023.115090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
In human, Tyrosinase enzyme (TyH) is involved in the key steps of protective pigments biosynthesis (in skin, eyes and hair). The use of molecules targeting its binuclear copper active site represents a relevant strategy to regulate TyH activities. In this work, we targeted 2-Hydroxypyridine-N-oxide analogs (HOPNO, an established chelating group for the tyrosinase dicopper active site) with the aim to combine effects induced by combination with a reference inhibitor (kojic acid) or natural substrate (tyrosine). The HOPNO-MeOH (3) and the racemic amino acid HOPNO-AA compounds (11) were tested on purified tyrosinases from different sources (fungal, bacterial and human) for comparison purposes. Both compounds have more potent inhibitory activities than the parent HOPNO moiety and display strictly competitive inhibition constant, in particular with human tyrosinase. Furthermore, 11 appears to be the most active on the B16-F1 mammal melanoma cells. The investigations were completed by stereospecificity analysis. Racemic mixture of the fully protected amino acid 10 was separated by chiral HPLC into the corresponding enantiomers. Assignment of the absolute configuration of the deprotected compounds was completed, based on X-ray crystallography. The inhibition activities on melanin production were tested on lysates and whole human melanoma MNT-1 cells. Results showed significant enhancement of the inhibitory effects for the (S) enantiomer compared to the (R) enantiomer. Computational studies led to an explanation of this difference of activity based for both enantiomers on the respective position of the amino acid group versus the HOPNO plane.
Collapse
Affiliation(s)
- Elina Buitrago
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France; University of Grenoble Alpes, CNRS-UGA UMR 5063, DPM CS 40700, 38058, Grenoble, Cedex 9, France
| | - Clarisse Faure
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Marcello Carotti
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | - Elisabetta Bergantino
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | - Renaud Hardré
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Marc Maresca
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Christian Philouze
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Ahcène Boumendjel
- University of Grenoble Alpes, CNRS-UGA UMR 5063, DPM CS 40700, 38058, Grenoble, Cedex 9, France
| | - Luigi Bubacco
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | | | - Hélène Jamet
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Marius Réglier
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Catherine Belle
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France.
| |
Collapse
|
37
|
Carcelli M, Compari C, Fisicaro E, Incerti M, Miglioli F, Peracchia E, Pertinhez TA, Rogolino D, Ronda N, Gentili S, Tegoni M. A potentiometric and spectrofluorimetric approach to unravel inhibitory effects of semi- and thiosemicarbazones on mushroom tyrosinase activity. J Biol Inorg Chem 2023; 28:17-27. [PMID: 36459222 DOI: 10.1007/s00775-022-01976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
The inhibitory effects on mushrooms tyrosinase activity of some semi- and thiosemicarbazones were investigated. While the semicarbazones are inactive, the thiosemicarbazones are, in general, more active than the reference (kojic acid, IC50 = 70 μM), with maximum activity obtained with benzaldehyde thiosemicarbazone (IC50 = 7 μM). These inhibitors probably act by coordination of the copper(II) metal ions in the active site of tyrosinase: effectively, potentiometric studies conducted in water solutions confirm that the most active thiosemicarbazone is a good ligand for copper(II) ions. The tyrosinase CD spectra do not show any significant difference by addition of an inhibitor or an inactive compound. On the contrary, interesting results were obtained by spectrofluorimetric titrations of mushrooms tyrosinase aqueous solutions with some of the investigated compounds, giving helpful information about possible mechanism of action. The thiosemicarbazones here reported are not cytotoxic on human fibroblasts and do not activate cells in a pro-inflammatory way.
Collapse
Affiliation(s)
- M Carcelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| | - C Compari
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - E Fisicaro
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - M Incerti
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - F Miglioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - E Peracchia
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - T A Pertinhez
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - D Rogolino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - N Ronda
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - S Gentili
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - M Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
38
|
Roulier B, Rush I, Lazinski LM, Pérès B, Olleik H, Royal G, Fishman A, Maresca M, Haudecoeur R. Resorcinol-based hemiindigoid derivatives as human tyrosinase inhibitors and melanogenesis suppressors in human melanoma cells. Eur J Med Chem 2023; 246:114972. [PMID: 36462443 DOI: 10.1016/j.ejmech.2022.114972] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Human tyrosinase (hsTYR) catalyzes the key steps of melanogenesis, making it a privileged target for reducing melanin production in vivo. However, very few hsTYR inhibitors have been reported so far in the literature, whereas thousands of mushroom tyrosinase (abTYR) inhibitors are known. Yet, as these enzymes are actually very different, including at their active sites, there is an urgent need for new true hsTYR inhibitors in order to enable human-directed pharmacological and dermocosmetic applications without encountering the inefficiency and toxicity issues currently triggered by kojic acid or hydroquinone. Starting from the two most active compounds reported to date, i.e. a 2-hydroxypyridine-embedded aurone and thiamidol, we combined herein key structural elements and developed new nanomolar hsTYR inhibitors with cell-based activity. From a complete series of thirty-eight synthesized derivatives, excellent inhibition values were obtained for two compounds in both human melanoma cell lysates and purified hsTYR assays, and a promising improvement was observed in whole cell experiments.
Collapse
Affiliation(s)
- Brayan Roulier
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | - Inbal Rush
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Leticia M Lazinski
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France; Univ. Grenoble Alpes, CNRS 5250, DCM, 38000, Grenoble, France
| | - Basile Pérès
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | - Hamza Olleik
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| | - Guy Royal
- Univ. Grenoble Alpes, CNRS 5250, DCM, 38000, Grenoble, France
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| | | |
Collapse
|
39
|
Lee J, Park YJ, Jung HJ, Ullah S, Yoon D, Jeong Y, Kim GY, Kang MK, Kang D, Park Y, Chun P, Chung HY, Moon HR. Design and Synthesis of ( Z)-2-(Benzylamino)-5-benzylidenethiazol-4(5 H)-one Derivatives as Tyrosinase Inhibitors and Their Anti-Melanogenic and Antioxidant Effects. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020848. [PMID: 36677908 PMCID: PMC9865752 DOI: 10.3390/molecules28020848] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
In this study, (Z)-2-(benzylamino)-5-benzylidenethiazol-4(5H)-one (BABT) derivatives were designed as tyrosinase inhibitors based on the structure of MHY2081, using a simplified approach. Of the 14 BABT derivatives synthesized, two derivatives ((Z)-2-(benzylamino)-5-(3-hydroxy-4-methoxybenzylidene)thiazol-4(5H)-one [7] and (Z)-2-(benzylamino)-5-(2,4-dihydroxybenzylidene)thiazol-4(5H)-one [8]) showed more potent mushroom tyrosinase inhibitory activities than kojic acid, regardless of the substrate used; in particular, compound 8 was 106-fold more potent than kojic acid when l-tyrosine was used as the substrate. Analysis of Lineweaver-Burk plots for 7 and 8 indicated that they were competitive inhibitors, which was confirmed via in silico docking. In experiments using B16F10 cells, 8 exerted a greater ability to inhibit melanin production than kojic acid, and it inhibited cellular tyrosinase activity in a concentration-dependent manner, indicating that the anti-melanogenic effect of 8 is attributable to its ability to inhibit tyrosinase. In addition, 8 exhibited strong antioxidant activity to scavenge 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals and peroxynitrite and inhibited the expression of melanogenesis-associated proteins (tyrosinase and microphthalmia-associated transcription factor). These results suggest that BABT derivative 8 is a promising candidate for the treatment of hyperpigmentation-related diseases, owing to its inhibition of melanogenesis-associated protein expression, direct tyrosinase inhibition, and antioxidant activity.
Collapse
Affiliation(s)
- Jieun Lee
- Laboratory of Medicinal Chemistry, Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yu Jung Park
- Laboratory of Medicinal Chemistry, Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sultan Ullah
- Department of Molecular Medicine, UF Scripps Biomedical Research, West Palm Beach, FL 33458, USA
| | - Dahye Yoon
- Laboratory of Medicinal Chemistry, Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yeongmu Jeong
- Laboratory of Medicinal Chemistry, Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Ga Young Kim
- Laboratory of Medicinal Chemistry, Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min Kyung Kang
- Laboratory of Medicinal Chemistry, Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Gyeongnam, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Laboratory of Medicinal Chemistry, Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: ; Tel.: +82-51-510-2815; Fax: +82-51-513-6754
| |
Collapse
|
40
|
Hassan M, Shahzadi S, Kloczkowski A. Tyrosinase Inhibitors Naturally Present in Plants and Synthetic Modifications of These Natural Products as Anti-Melanogenic Agents: A Review. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010378. [PMID: 36615571 PMCID: PMC9822343 DOI: 10.3390/molecules28010378] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Tyrosinase is a key enzyme target to design new chemical ligands against melanogenesis. In the current review, different chemical derivatives are explored which have been used as anti-melanogenic compounds. These are different chemical compounds naturally present in plants and semi-synthetic and synthetic compounds inspired by these natural products, such as kojic acid produced by several species of fungi; arbutin-a glycosylated hydroquinone extracted from the bearberry plant; vanillin-a phenolic aldehyde extracted from the vanilla bean, etc. After enzyme inhibition screening, various chemical compounds showed different therapeutic effects as tyrosinase inhibitors with different values of the inhibition constant and IC50. We show how appropriately designed scaffolds inspired by the structures of natural compounds are used to develop novel synthetic inhibitors. We review the results of numerous studies, which could lead to the development of effective anti-tyrosinase agents with increased efficiency and safety in the near future, with many applications in the food, pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Correspondence: or (M.H.); (A.K.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Correspondence: or (M.H.); (A.K.)
| |
Collapse
|
41
|
Cao S, Wang D, Cheng R, Shi W, Zhang Q, Zeng H, Chen J. Modulation of the lipophilicity and molecular size of thiosemicarbazone inhibitors to regulate tyrosinase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121590. [PMID: 35850043 DOI: 10.1016/j.saa.2022.121590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
A group of 5-methylsalicylaldehyde thiosemicarbazone derivatives (HMTs) bearing different lipophilic and steric substituents attached at the 3-position of cresol ring were synthesized and investigated as mushroom tyrosinase (TYR) inhibitors. The ability of HMTs to inhibit the diphenolase activity of TYR was evaluated with L-DOPA as substrate by determining IC50 values in relation to their structure modifications. HMTs displayed distinct inhibitory competencies towards TYR activity with IC50 values in the range of 1.02-143.56 μM. A close correlation between their inhibition potency and both lipophilicity and molecular size was observed. The inhibitory effect of the hydroxyethyl-containing derivatives was much higher than the hydroxyethyl-free ones overall. Among them, HMT-NBO exhibited the most potent effect with IC50 of 5.85 μM, which was nearly 25-fold and 3.8-fold lower than its parent HMT-NBE and the control kojic acid, respectively. The hydroxyethyl clearly benefited the improvement of the inhibitory competences and acted as a regulating group of lipophilicity of the inhibitors. The kinetic analyses showed that HMTs were reversible and mixed type inhibitors against mushroom TYR. The inhibition mechanism was studied by means of fluorescence spectroscopy, FT-IR, ESI-MS and molecular docking analysis. The results indicated that the observed inhibitory effect of HMTs was accomplished by acting on the amino acid residues rather than by chelating the centre copper ions of TYR. Each of HMTs can insert the hydrophobic pocket and interact with the residues of TYR through Van der Waals forces and hydrogen bonds, with additional electrostatic interactions for HMT-NEE and HMT-NEO further strengthening the affinity. Meanwhile, the inhibitors were observed to bind with L-DOPA or/and L-DOPAquinone forming 1:1 stoichiometric complexes, probably exerting indirect inhibition against TYR activity.
Collapse
Affiliation(s)
- Shuhong Cao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China
| | - Dandan Wang
- Industrial Technology Research Academy, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China
| | - Run Cheng
- Industrial Technology Research Academy, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China
| | - Wenyan Shi
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China
| | - Qinfang Zhang
- Industrial Technology Research Academy, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China.
| | - Huajin Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Jingwen Chen
- Industrial Technology Research Academy, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China; School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China.
| |
Collapse
|
42
|
Mirabile S, Germanò MP, Fais A, Lombardo L, Ricci F, Floris S, Cacciola A, Rapisarda A, Gitto R, De Luca L. Design, Synthesis, and in Vitro Evaluation of 4-(4-Hydroxyphenyl)piperazine-Based Compounds Targeting Tyrosinase. ChemMedChem 2022; 17:e202200305. [PMID: 36093940 PMCID: PMC9828493 DOI: 10.1002/cmdc.202200305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/06/2022] [Indexed: 01/12/2023]
Abstract
Melanin biosynthesis is enzymatically regulated by tyrosinase (TYR, EC 1.14.18.1), which is efficiently inhibited by natural and synthetic phenols, demonstrating potential therapeutic application for the treatment of several human diseases. Herein we report the inhibitory effects of a series of (4-(4-hydroxyphenyl)piperazin-1-yl)arylmethanone derivatives, that were designed, synthesised and assayed against TYR from Agaricus bisporus (AbTYR). The best inhibitory activity was predominantly found for compounds bearing selected hydrophobic ortho-substituents on the aroyl moiety (IC50 values in the range of 1.5-4.6 μM). They proved to be more potent than the reference compound kojic acid (IC50 =17.8 μM) and displayed competitive mechanism of inhibition of diphenolase activity of AbTYR. Docking simulation predicted their binding mode into the catalytic cavities of AbTYR and the modelled human TYR. In addition, these compounds displayed antioxidant activity combined with no cytotoxicity in MTT tests. Notably, the best inhibitor affected tyrosinase activity in α-MSH-stimulated B16F10 cells, thus demonstrating anti-melanogenic activity.
Collapse
Affiliation(s)
- Salvatore Mirabile
- Department of Chemical, Biological, Pharmaceutical, and Environmental SciencesUniversity of MessinaViale Stagno D'Alcontres 31, Pole Papardo98166MessinaItaly
- Foundation Prof. Antonio ImbesiUniversity of MessinaPiazza Pugliatti 198122MessinaItaly
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical, and Environmental SciencesUniversity of MessinaViale Stagno D'Alcontres 31, Pole Papardo98166MessinaItaly
| | - Antonella Fais
- Department of Life and Environment SciencesUniversity of Cagliari09042MonserratoCagliariItaly
| | - Lisa Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental SciencesUniversity of MessinaViale Stagno D'Alcontres 31, Pole Papardo98166MessinaItaly
| | - Federico Ricci
- Department of Chemical, Biological, Pharmaceutical, and Environmental SciencesUniversity of MessinaViale Stagno D'Alcontres 31, Pole Papardo98166MessinaItaly
| | - Sonia Floris
- Department of Life and Environment SciencesUniversity of Cagliari09042MonserratoCagliariItaly
| | - Anna Cacciola
- Department of Chemical, Biological, Pharmaceutical, and Environmental SciencesUniversity of MessinaViale Stagno D'Alcontres 31, Pole Papardo98166MessinaItaly
- Foundation Prof. Antonio ImbesiUniversity of MessinaPiazza Pugliatti 198122MessinaItaly
| | - Antonio Rapisarda
- Department of Chemical, Biological, Pharmaceutical, and Environmental SciencesUniversity of MessinaViale Stagno D'Alcontres 31, Pole Papardo98166MessinaItaly
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical, and Environmental SciencesUniversity of MessinaViale Stagno D'Alcontres 31, Pole Papardo98166MessinaItaly
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical, and Environmental SciencesUniversity of MessinaViale Stagno D'Alcontres 31, Pole Papardo98166MessinaItaly
| |
Collapse
|
43
|
Nishimaki-Mogami T, Ito S, Cui H, Akiyama T, Tamehiro N, Adachi R, Wakamatsu K, Ikarashi Y, Kondo K. A cell-based evaluation of human tyrosinase-mediated metabolic activation of leukoderma-inducing phenolic compounds. J Dermatol Sci 2022; 108:77-86. [PMID: 36567223 DOI: 10.1016/j.jdermsci.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/04/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chemical leukoderma is a skin depigmentation disorder induced through contact with certain chemicals, most of which have a p-substituted phenol structure similar to the melanin precursor tyrosine. The tyrosinase-catalyzed oxidation of phenols to highly reactive o-quinone metabolites is a critical step in inducing leukoderma through the production of melanocyte-specific damage and immunological responses. OBJECTIVE Our aim was to find an effective method to evaluate the formation of o-quinone by human tyrosinase and subsequent cellular reactions. METHODS Human tyrosinase-expressing 293T cells were exposed to various phenolic compounds, after which the reactive o-quinones generated were identified as adducts of cellular thiols. We further examined whether the o-quinone formation induces reductions in cellular GSH or viability. RESULTS Among the chemicals tested, all 7 leukoderma-inducing phenols/catechol (rhododendrol, raspberry ketone, monobenzone, 4-tert-butylphenol, 4-tert-butylcatechol, 4-S-cysteaminylphenol and p-cresol) were oxidized to o-quinone metabolites and were detected as adducts of cellular glutathione and cysteine, leading to cellular glutathione reduction, whereas 2-S-cysteaminylphenol and 4-n-butylresorcinol were not. In vitro analysis using a soluble variant of human tyrosinase revealed a similar substrate-specificity. Some leukoderma-inducing phenols exhibited tyrosinase-dependent cytotoxicity in this cell model and in B16BL6 melanoma cells where tyrosinase expression was effectively modulated by siRNA knockdown. CONCLUSION We developed a cell-based metabolite analytical method to detect human tyrosinase-catalyzed formation of o-quinone from phenolic compounds by analyzing their thiol-adducts. The detailed analysis of each metabolite was superior in sensitivity and specificity compared to cytotoxicity assays for detecting known leukoderma-inducing phenols, providing an effective strategy for safety evaluation of chemicals.
Collapse
Affiliation(s)
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Aichi, Japan.
| | - Hongyan Cui
- National Institute of Health Sciences, Kanagawa, Japan
| | | | | | - Reiko Adachi
- National Institute of Health Sciences, Kanagawa, Japan
| | | | | | | |
Collapse
|
44
|
Lazinski LM, Royal G, Robin M, Maresca M, Haudecoeur R. Bioactive Aurones, Indanones, and Other Hemiindigoid Scaffolds: Medicinal Chemistry and Photopharmacology Perspectives. J Med Chem 2022; 65:12594-12625. [PMID: 36126323 DOI: 10.1021/acs.jmedchem.2c01150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemiindigoids comprise a range of natural and synthetic scaffolds that share the same aromatic hydrocarbon backbone as well as promising biological and optical properties. The encouraging therapeutic potential of these scaffolds has been unraveled by many studies over the past years and uncovered representants with inspiring pharmacophoric features such as the acetylcholinesterase inhibitor donezepil and the tubulin polymerization inhibitor indanocine. In this review, we summarize the last advances in the medicinal potential of hemiindigoids, with a special attention to molecular design, structure-activity relationship, ligand-target interactions, and mechanistic explanations covering their effects. As their strong fluorogenic potential and photoswitch behavior recently started to be highlighted and explored in biology, giving rise to the development of novel fluorescent probes and photopharmacological agents, we also discuss these properties in a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Université Grenoble Alpes, CNRS 5063, DPM, 38000 Grenoble, France.,Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Guy Royal
- Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | | |
Collapse
|
45
|
Zhou BB, Liu D, Qian JC, Tan RX. Vegetable-derived indole enhances the melanoma-treating efficacy of chemotherapeutics. Phytother Res 2022; 36:4278-4292. [PMID: 35883268 DOI: 10.1002/ptr.7565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022]
Abstract
Food-drug interaction is an important but overlooked issue. For example, little is known concerning whether or not the chemotherapy of cancers is affected by the well-defined dietary chemicals such as 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1) derived from daily consumed cruciferous vegetables. This work, inspired by the described melanogenesis reduction by certain indoles, presents that LTr1 mitigates the melanogenesis and thus potentiates the in vitro and in vivo anti-melanoma effectiveness of different chemotherapeutic agents including dacarbazine, vemurafenib, and sorafenib. In B16 melanoma cells, LTr1 was shown to inhibit the melanogenesis by acting towards the regulatory (R) subunit of protein kinase A (PRKAR1a) associated with the phosphorylation of cAMP-response element binding protein (CREB). This allows LTr1 to reduce the expression of melanogenesis-related enzymes such as tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2). Furthermore, LTr1 was addressed to bind to the aryl hydrocarbon receptor (AhR) and up-regulate the expression of CYP1A1 encoding cytochrome P450 1A1, leading to the escalation of reactive oxygen species (ROS) level. The increased ROS generation promotes the cysteine-to-cystine transformation to inhibit the pheomelanogenesis in melanomas. Collectively, the work identifies LTr1 as a new melanogenesis inhibitor that modulates the PKA/CREB/MITF and AhR/CYP1A1/ROS pathways, thereby providing a new option for (re)sensitizing melanomas to chemotherapeutics.
Collapse
Affiliation(s)
- Bei Bei Zhou
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan Liu
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Cheng Qian
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| |
Collapse
|
46
|
A Novel Class of Potent Anti-Tyrosinase Compounds with Antioxidant Activity, 2-(Substituted phenyl)-5-(trifluoromethyl)benzo[ d]thiazoles: In Vitro and In Silico Insights. Antioxidants (Basel) 2022; 11:antiox11071375. [PMID: 35883866 PMCID: PMC9311798 DOI: 10.3390/antiox11071375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Sixteen compounds bearing a benzothiazole moiety were synthesized as potential tyrosinase inhibitors and evaluated for mushroom tyrosinase inhibitory activity. The compound 4-(5-(trifluoromethyl)benzo[d]thiazol-2-yl)benzene-1,3-diol (compound 1b) exhibited the highest tyrosinase activity inhibition, with an IC50 value of 0.2 ± 0.01 μM (a potency 55-fold greater than kojic acid). In silico results using mushroom tyrosinase and human tyrosinase showed that the 2,4-hydroxyl substituents on the phenyl ring of 1b played an important role in the inhibition of both tyrosinases. Kinetic studies on mushroom tyrosinase indicated that 1b is a competitive inhibitor of monophenolase and diphenolase, and this was supported by docking results. In B16F10 murine melanoma cells, 1a and 1b dose-dependently and significantly inhibited melanin production intracellularly, and melanin release into medium more strongly than kojic acid, and these effects were attributed to the inhibition of cellular tyrosinase. Furthermore, the inhibition of melanin production by 1b was found to be partially due to the inhibition of tyrosinase glycosylation and the suppression of melanogenesis-associated genes. Compound 1c, which has a catechol group, exhibited potent antioxidant activities against ROS, DPPH, and ABTS, and 1b also had strong ROS and ABTS radical scavenging activities. These results suggest that 5-(trifluoromethyl)benzothiazole derivatives are promising anti-tyrosinase lead compounds with potent antioxidant effects.
Collapse
|
47
|
Ghani U. Azole inhibitors of mushroom and human tyrosinases: Current advances and prospects of drug development for melanogenic dermatological disorders. Eur J Med Chem 2022; 239:114525. [PMID: 35717871 DOI: 10.1016/j.ejmech.2022.114525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Azoles are a famous and promising class of drugs for treatment of a range of ailments especially fungal infections. A wide variety of azole derivatives are also known to exhibit tyrosinase inhibition, some of which possess promising activity with potential for treatment of dermatological disorders such as post-inflammatory hyperpigmentation, nevus, flecks, melasma, and melanoma. Recently, thiazolyl-resorcinol derivatives have demonstrated potent human tyrosinase inhibition with a safe and effective therapeutic profile for treatment of skin hyperpigmentation in humans, which are currently under clinical trials. If approved these derivatives would be the first azole drugs to be used for treatment of skin hyperpigmentation. Although the scientific literature has been witnessing general reviews on tyrosinase inhibitors to date, there is none that specifically and comprehensively discusses azole inhibitors of tyrosinase. Appreciating such potential of azoles, this focused review highlights a wide range of their derivatives with promising mushroom and human tyrosinase inhibitory activities and clinical potential for treatment of melanogenic dermatological disorders. Presently, these disorders have been treated with kojic acid, hydroquinone and other drugs, the design and development of which are based on their ability to inhibit mushroom tyrosinase. The active sites of mushroom and human tyrosinases carry structural differences which affect substrate or inhibitor binding. For this reason, kojic acid and other drugs pose efficacy and safety issues since they were originally developed using mushroom tyrosinase and have been clinically used on human tyrosinase. Design and development of tyrosinase inhibitors should be based on human tyrosinase, however, there are challenges in obtaining the human enzyme and understanding its structure and function. The review discusses these challenges that encompass structural and functional differences between mushroom and human tyrosinases and the manner in which they are inhibited. The review also gauges promising azole derivatives with potential for development of drugs against skin hyperpigmentation by analyzing and comparing their tyrosinase inhibitory activities against mushroom and human tyrosinases, computational data, and clinical profile where available. It aims to lay groundwork for development of new azole drugs for treatment of skin hyperpigmentation, melanoma, and related dermatological disorders.
Collapse
Affiliation(s)
- Usman Ghani
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, 12372, Saudi Arabia.
| |
Collapse
|
48
|
Wang L, Yang L, Yang S, Jia Z, Cai J, Rong L, Wu X, Fan L, Gong Y, Li S. Identification of genes associated with feather color in Liancheng white duck using F ST analysis. Anim Genet 2022; 53:518-521. [PMID: 35670225 DOI: 10.1111/age.13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Liancheng white duck has two phenotypic traits: white feather and black beak-black foot, but the genes controlling these phenotypic traits are unknown. The objective of this study is to identify various candidate genes related to the plumage of Liancheng white duck. This study used F2 population construction generated between white Kaiya duck and Liancheng white duck and FST analysis between the dominant and recessive loci associated with the Liancheng white duck white feather in order to identify specific gene regions. As per the feather color statistics of the F2 population, it is estimated that there are about three or four genes controlling the white feather of Liancheng white ducks, and the FST results showed that four significant signals were found on chromosomes 4, 12, 13, and 21. Further annotation of these regions led to the identification of five genes involved in the melanin pathway, namely, KIT, CLOCK, MITF, CEBPA, and DOK5. Among them, CEBPA and DOK5 might be affecting the white feather traits of Liancheng white duck by regulating the melanin production and its transfer to the feather. The results provide insightful understanding into the genetic mechanisms of white feather in Liancheng white duck.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liubin Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sendong Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zijia Jia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinping Cai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Rong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueying Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lingzhi Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanchang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - ShiJun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
49
|
Solis CM, Salazar MO, Ramallo IA, García P, Furlan RL. Cyclocondensation Versus Cyclocondensation Plus Dehydroxylation During the Reaction of Flavones and Hydrazine. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carlos M. Solis
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Orgánica ARGENTINA
| | - Mario O. Salazar
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Orgánica ARGENTINA
| | - I. Ayelen Ramallo
- Consejo Nacional de Investigaciones Científicas y Técnicas: Consejo Nacional de Investigaciones Cientificas y Tecnicas Química Orgánica ARGENTINA
| | - Paula García
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Planta Piloto de Producción de Medicamentos ARGENTINA
| | - Ricardo L.E. Furlan
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Orgánica Suipacha 531 S2002LRK Rosario ARGENTINA
| |
Collapse
|
50
|
Krzemińska A, Kwiatos N, Arenhart Soares F, Steinbüchel A. Theoretical Studies of Cyanophycin Dipeptides as Inhibitors of Tyrosinases. Int J Mol Sci 2022; 23:ijms23063335. [PMID: 35328756 PMCID: PMC8950311 DOI: 10.3390/ijms23063335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The three-dimensional structure of tyrosinase has been crystallized from many species but not from Homo sapiens. Tyrosinase is a key enzyme in melanin biosynthesis, being an important target for melanoma and skin-whitening cosmetics. Several studies employed the structure of tyrosinase from Agaricus bisporus as a model enzyme. Recently, 98% of human genome proteins were elucidated by AlphaFold. Herein, the AlphaFold structure of human tyrosinase and the previous model were compared. Moreover, tyrosinase-related proteins 1 and 2 were included, along with inhibition studies employing kojic and cinnamic acids. Peptides are widely studied for their inhibitory activity of skin-related enzymes. Cyanophycin is an amino acid polymer produced by cyanobacteria and is built of aspartic acid and arginine; arginine can be also replaced by other amino acids. A new set of cyanophycin-derived dipeptides was evaluated as potential inhibitors. Aspartate–glutamate showed the strongest interaction and was chosen as a leading compound for future studies.
Collapse
|