1
|
López-Guerrero V, Posadas Y, Sánchez-López C, Smart A, Miranda J, Singewald K, Bandala Y, Juaristi E, Den Auwer C, Perez-Cruz C, González-Mariscal L, Millhauser G, Segovia J, Quintanar L. A Copper-Binding Peptide with Therapeutic Potential against Alzheimer's Disease: From the Blood-Brain Barrier to Metal Competition. ACS Chem Neurosci 2025; 16:241-261. [PMID: 39723808 PMCID: PMC11741003 DOI: 10.1021/acschemneuro.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu2+ and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu2+-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu2+ binding to the cellular prion protein (PrPC). Therefore, in addition to metal selectivity and blood-brain barrier (BBB) permeability, an emerging challenge for copper chelators is to prevent the formation of neurotoxic Cu2+-Aβ species without perturbing the neuroprotective Cu2+-PrPC interaction. Previously, we reported the design of a tetrapeptide (TP) that withdraws Cu2+ from Aβ(1-16) and impacts the Cu2+-induced aggregation of Aβ(1-40). In this study, we improved the drug-like properties of TP in a BBB model, evaluated the metal selectivity of the optimized peptide (TP*), and tested its effect on Cu2+ coordination to PrPC and proteins involved in copper trafficking, such as copper transporter 1 and albumin. Our results show that changing the stereochemistry of the first residue prevents TP degradation in the BBB model and coadministration of TP with a peptide that increases BBB permeability allows its passage through the BBB model. TP* is highly selective toward Cu2+ in the presence of Zn2+ ions, transfers Cu2+ to copper-trafficking proteins, and forms a ternary TP*-Cu2+-PrP species that does not perturb the physiological conformation of PrP and displays only a minor impact in the neuroprotective Cu2+-dependent interaction of PrPC with the N-methyl-d-aspartate receptor. Overall, these results show that TP* displays desirable features for a copper chelator with therapeutic potential against AD. Moreover, this is the first study that explores the effect of a Cu2+ chelator with therapeutic potential for AD on Cu2+ coordination to PrPC (an emerging key player in AD pathology), integrating recent knowledge about metalloproteins involved in AD with the design of copper chelators against AD.
Collapse
Affiliation(s)
- Victor
E. López-Guerrero
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
| | - Yanahi Posadas
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
- Department
of Pharmacology, Center for Research and
Advanced Studies (Cinvestav), Mexico
City 07360, Mexico
| | - Carolina Sánchez-López
- Center
for Research in Aging, Center for Research
and Advanced Studies (Cinvestav), Mexico City 14330, Mexico
| | - Amanda Smart
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, 1156, Santa Cruz 95064, United States
| | - Jael Miranda
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Kevin Singewald
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, 1156, Santa Cruz 95064, United States
| | - Yamir Bandala
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
| | - Eusebio Juaristi
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
- El Colegio
Nacional, Mexico City 06020, Mexico
| | | | - Claudia Perez-Cruz
- Department
of Pharmacology, Center for Research and
Advanced Studies (Cinvestav), Mexico
City 07360, Mexico
| | - Lorenza González-Mariscal
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Glenn Millhauser
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, 1156, Santa Cruz 95064, United States
| | - Jose Segovia
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Liliana Quintanar
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
- Center
for Research in Aging, Center for Research
and Advanced Studies (Cinvestav), Mexico City 14330, Mexico
| |
Collapse
|
2
|
Żygowska J, Orlikowska M, Zhukov I, Bal W, Szymańska A. Copper interaction with cystatin C: effects on protein structure and oligomerization. FEBS J 2024; 291:1974-1991. [PMID: 38349797 DOI: 10.1111/febs.17092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Human cystatin C (hCC), a small secretory protein, has gained attention beyond its classical role as a cysteine protease inhibitor owing to its potential involvement in neurodegenerative disorders. This study investigates the interaction between copper(II) ions [Cu(II)] and hCC, specifically targeting histidine residues known to participate in metal binding. Through various analytical techniques, including mutagenesis, circular dichroism, fluorescence assays, gel filtration chromatography, and electron microscopy, we evaluated the impact of Cu(II) ions on the structure and oligomerization of hCC. The results show that Cu(II) does not influence the secondary and tertiary structure of the studied hCC variants but affects their stability. To explore the Cu(II)-binding site, nuclear magnetic resonance (NMR) and X-ray studies were conducted. NMR experiments revealed notable changes in signal intensities and linewidths within the region 86His-Asp-Gln-Pro-His90, suggesting its involvement in Cu(II) coordination. Both histidine residues from this fragment were found to serve as a primary anchor of Cu(II) in solution, depending on the structural context and the presence of other Cu(II)-binding agents. The presence of Cu(II) led to significant destabilization and altered thermal stability of the wild-type and H90A variant, confirming differentiation between His residues in Cu(II) binding. In conclusion, this study provides valuable insights into the interaction between Cu(II) and hCC, elucidating the impact of copper ions on protein stability and identifying potential Cu(II)-binding residues. Understanding these interactions enhances our knowledge of the role of copper in neurodegenerative disorders and may facilitate the development of therapeutic strategies targeting copper-mediated processes in protein aggregation and associated pathologies.
Collapse
Affiliation(s)
- Justyna Żygowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland
| | - Aneta Szymańska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland
| |
Collapse
|
3
|
do Amaral MJ, Mohapatra S, Passos AR, Lopes da Silva TS, Carvalho RS, da Silva Almeida M, Pinheiro AS, Wegmann S, Cordeiro Y. Copper drives prion protein phase separation and modulates aggregation. SCIENCE ADVANCES 2023; 9:eadi7347. [PMID: 37922348 PMCID: PMC10624353 DOI: 10.1126/sciadv.adi7347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Prion diseases are characterized by prion protein (PrP) transmissible aggregation and neurodegeneration, which has been linked to oxidative stress. The physiological function of PrP seems related to sequestering of redox-active Cu2+, and Cu2+ dyshomeostasis is observed in prion disease brain. It is unclear whether Cu2+ contributes to PrP aggregation, recently shown to be mediated by PrP condensation. This study indicates that Cu2+ promotes PrP condensation in live cells at the cell surface and in vitro through copartitioning. Molecularly, Cu2+ inhibited PrP β-structure and hydrophobic residues exposure. Oxidation, induced by H2O2, triggered liquid-to-solid transition of PrP:Cu2+ condensates and promoted amyloid-like PrP aggregation. In cells, overexpression of PrPC initially protected against Cu2+ cytotoxicity but led to PrPC aggregation upon extended copper exposure. Our data suggest that PrP condensates function as a buffer for copper that prevents copper toxicity but can transition into PrP aggregation at prolonged oxidative stress.
Collapse
Affiliation(s)
- Mariana Juliani do Amaral
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | | | - Aline Ribeiro Passos
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | | | | | - Marcius da Silva Almeida
- Plataforma Avançada de Biomoléculas, Centro Nacional de Biologia Estrutural e Bioimagem, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson Sá Pinheiro
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Hara H, Miyata H, Chida J, Sakaguchi S. Strain-dependent role of copper in prion disease through binding to histidine residues in the N-terminal domain of prion protein. J Neurochem 2023; 167:394-409. [PMID: 37777338 DOI: 10.1111/jnc.15971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
The cellular prion protein, PrPC , is a copper-binding protein abundantly expressed in the brain, particularly by neurons, and its conformational conversion into the amyloidogenic isoform, PrPSc , plays a key pathogenic role in prion diseases. However, the role of copper binding to PrPC in prion diseases remains unclear. Here, we fed mice with a low-copper or regular diet and intracerebrally inoculated them with two different mouse-adapted RML scrapie and BSE prions. Mice with a low-copper diet developed disease significantly but only slightly later than those with a regular diet after inoculation with BSE prions, but not with RML prions, suggesting that copper could play a minor role in BSE prion pathogenesis, but not in RML prion pathogenesis. We then generated two lines of transgenic mice expressing mouse PrP with copper-binding histidine (His) residues in the N-terminal domain replaced with alanine residues, termed TgPrP(5H > A)-7342/Prnp0/0 and TgPrP(5H > A)-7524/Prnp0/0 mice, and similarly inoculated RML and BSE prions into them. Due to 2-fold higher expression of PrP(5H > A) than PrPC in wild-type (WT) mice, TgPrP(5H > A)-7524/Prnp0/0 mice were highly susceptible to these prions, compared to WT mice. However, TgPrP(5H > A)-7342/Prnp0/0 mice, which express PrP(5H > A) 1.2-fold as high as PrPC in WT mice, succumbed to disease slightly, but not significantly, later than WT mice after inoculation with RML prions, but significantly so after inoculation with BSE prions. Subsequent secondary inoculation experiments revealed that amino acid sequence differences between PrP(5H > A) and WT PrPSc created no prion transmission barrier to BSE prions. These results suggest that copper-binding His residues in PrPC are dispensable for RML prion pathogenesis but have a minor effect on BSE prion pathogenesis. Taken together, our current results suggest that copper could have a minor effect on prion pathogenesis in a strain-dependent manner through binding to His residues in the N-terminal domain of PrPC .
Collapse
Affiliation(s)
- Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Hironori Miyata
- Animal Research Center, School of Medicine, University of Occupational and Environmental Health, Yahatanishi, Kitakyushu, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| |
Collapse
|
5
|
Han J. Copper trafficking systems in cells: insights into coordination chemistry and toxicity. Dalton Trans 2023; 52:15277-15296. [PMID: 37702384 DOI: 10.1039/d3dt02166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Transition metal ions, such as copper, are indispensable components in the biological system. Copper ions which primarily exist in two major oxidation states Cu(I) and Cu(II) play crucial roles in various cellular processes including antioxidant defense, biosynthesis of neurotransmitters, and energy metabolism, owing to their inherent redox activity. The disturbance in copper homeostasis can contribute to the development of copper metabolism disorders, cancer, and neurodegenerative diseases, highlighting the significance of understanding the copper trafficking system in cellular environments. This review aims to offer a comprehensive overview of copper homeostatic machinery, with an emphasis on the coordination chemistry of copper transporters and trafficking proteins. While copper chaperones and the corresponding metalloenzymes are thoroughly discussed, we also explore the potential existence of low-molecular-mass metal complexes within cellular systems. Furthermore, we summarize the toxicity mechanisms originating from copper deficiency or accumulation, which include the dysregulation of oxidative stress, signaling pathways, signal transduction, and amyloidosis. This perspective review delves into the current knowledge regarding the intricate aspects of the copper trafficking system, providing valuable insights into potential treatment strategies from the standpoint of bioinorganic chemistry.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
6
|
Gielnik M, Szymańska A, Dong X, Jarvet J, Svedružić ŽM, Gräslund A, Kozak M, Wärmländer SKTS. Prion Protein Octarepeat Domain Forms Transient β-Sheet Structures upon Residue-Specific Binding to Cu(II) and Zn(II) Ions. Biochemistry 2023. [PMID: 37163663 DOI: 10.1021/acs.biochem.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Misfolding of the cellular prion protein (PrPC) is associated with the development of fatal neurodegenerative diseases called transmissible spongiform encephalopathies (TSEs). Metal ions appear to play a crucial role in PrPC misfolding. PrPC is a combined Cu(II) and Zn(II) metal-binding protein, where the main metal-binding site is located in the octarepeat (OR) region. Thus, the biological function of PrPC may involve the transport of divalent metal ions across membranes or buffering concentrations of divalent metal ions in the synaptic cleft. Recent studies have shown that an excess of Cu(II) ions can result in PrPC instability, oligomerization, and/or neuroinflammation. Here, we have used biophysical methods to characterize Cu(II) and Zn(II) binding to the isolated OR region of PrPC. Circular dichroism (CD) spectroscopy data suggest that the OR domain binds up to four Cu(II) ions or two Zn(II) ions. Binding of the first metal ion results in a structural transition from the polyproline II helix to the β-turn structure, while the binding of additional metal ions induces the formation of β-sheet structures. Fluorescence spectroscopy data indicate that the OR region can bind both Cu(II) and Zn(II) ions at neutral pH, but under acidic conditions, it binds only Cu(II) ions. Molecular dynamics simulations suggest that binding of either metal ion to the OR region results in the formation of β-hairpin structures. As the formation of β-sheet structures can be a first step toward amyloid formation, we propose that high concentrations of either Cu(II) or Zn(II) ions may have a pro-amyloid effect in TSE diseases.
Collapse
Affiliation(s)
- Maciej Gielnik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, PL 61-614 Poznań, Poland
| | - Aneta Szymańska
- Department of Biomedical Chemistry, Faculty of Chemistry, Gdańsk University, PL 80-308 Gdańsk, Poland
| | - Xiaolin Dong
- Chemistry Section, Stockholm University, 10691 Stockholm, Sweden
| | - Jüri Jarvet
- Chemistry Section, Stockholm University, 10691 Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Željko M Svedružić
- Department of Biotechnology, University of Rijeka, HR 51000 Rijeka, Croatia
| | - Astrid Gräslund
- Chemistry Section, Stockholm University, 10691 Stockholm, Sweden
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, PL 61-614 Poznań, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, PL 30-392 Kraków, Poland
| | | |
Collapse
|
7
|
Suh JM, Kim M, Yoo J, Han J, Paulina C, Lim MH. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Shim KH, Sharma N, An SSA. Prion therapeutics: Lessons from the past. Prion 2022; 16:265-294. [PMID: 36515657 PMCID: PMC9754114 DOI: 10.1080/19336896.2022.2153551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of incurable zoonotic neurodegenerative diseases (NDDs) in humans and other animals caused by the prion proteins. The abnormal folding and aggregation of the soluble cellular prion proteins (PrPC) into scrapie isoform (PrPSc) in the Central nervous system (CNS) resulted in brain damage and other neurological symptoms. Different therapeutic approaches, including stalling PrPC to PrPSc conversion, increasing PrPSc removal, and PrPC stabilization, for which a spectrum of compounds, ranging from organic compounds to antibodies, have been explored. Additionally, a non-PrP targeted drug strategy using serpin inhibitors has been discussed. Despite numerous scaffolds being screened for anti-prion activity in vitro, only a few were effective in vivo and unfortunately, almost none of them proved effective in the clinical studies, most likely due to toxicity and lack of permeability. Recently, encouraging results from a prion-protein monoclonal antibody, PRN100, were presented in the first human trial on CJD patients, which gives a hope for better future for the discovery of other new molecules to treat prion diseases. In this comprehensive review, we have re-visited the history and discussed various classes of anti-prion agents, their structure, mode of action, and toxicity. Understanding pathogenesis would be vital for developing future treatments for prion diseases. Based on the outcomes of existing therapies, new anti-prion agents could be identified/synthesized/designed with reduced toxicity and increased bioavailability, which could probably be effective in treating prion diseases.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Niti Sharma
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
9
|
Oranges M, Wort JL, Fukushima M, Fusco E, Ackermann K, Bode BE. Pulse Dipolar Electron Paramagnetic Resonance Spectroscopy Reveals Buffer-Modulated Cooperativity of Metal-Templated Protein Dimerization. J Phys Chem Lett 2022; 13:7847-7852. [PMID: 35976741 PMCID: PMC9421889 DOI: 10.1021/acs.jpclett.2c01719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/10/2022] [Indexed: 05/26/2023]
Abstract
Self-assembly of protein monomers directed by metal ion coordination constitutes a promising strategy for designing supramolecular architectures complicated by the noncovalent interaction between monomers. Herein, two pulse dipolar electron paramagnetic resonance spectroscopy (PDS) techniques, pulse electron-electron double resonance and relaxation-induced dipolar modulation enhancement, were simultaneously employed to study the CuII-templated dimerization behavior of a model protein (Streptococcus sp. group G, protein G B1 domain) in both phosphate and Tris-HCl buffers. A cooperative binding model could simultaneously fit all data and demonstrate that the cooperativity of protein dimerization across α-helical double-histidine motifs in the presence of CuII is strongly modulated by the buffer, representing a platform for highly tunable buffer-switchable templated dimerization. Hence, PDS enriches the family of techniques for monitoring binding processes, supporting the development of novel strategies for bioengineering structures and stable architectures assembled by an initial metal-templated dimerization.
Collapse
|
10
|
Quantification and Improvement of the Dynamics of Human Serum Albumin and Glycated Human Serum Albumin with Astaxanthin/Astaxanthin-Metal Ion Complexes: Physico-Chemical and Computational Approaches. Int J Mol Sci 2022; 23:ijms23094771. [PMID: 35563162 PMCID: PMC9104927 DOI: 10.3390/ijms23094771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Glycated human serum albumin (gHSA) undergoes conformational changes and unfolding events caused by free radicals. The glycation process results in a reduced ability of albumin to act as an endogenous scavenger and transporter protein in diabetes mellitus type 2 (T2DM) patients. Astaxanthin (ASX) in native form and complexed with metal ions (Cu2+ and Zn2+) has been shown to prevent gHSA from experiencing unfolding events. Furthermore, it improves protein stability of gHSA and human serum albumin (HSA) as it is shown through molecular dynamics studies. In this study, the ASX/ASX-metal ion complexes were reacted with both HSA/gHSA and analyzed with electronic paramagnetic resonance (EPR) spectroscopy, rheology and zeta sizer (particle size and zeta potential) analysis, circular dichroism (CD) spectroscopy and UV-Vis spectrophotometer measurements, as well as molecular electrostatic potential (MEP) and molecular docking calculations. The addition of metal ions to ASX improves its ability to act as an antioxidant and both ASX or ASX-metal ion complexes maintain HSA and gHSA stability while performing their functions.
Collapse
|
11
|
Nochebuena J, Quintanar L, Vela A, Cisneros GA. Structural and electronic analysis of the octarepeat region of prion protein with four Cu 2+ by polarizable MD and QM/MM simulations. Phys Chem Chem Phys 2021; 23:21568-21578. [PMID: 34550129 PMCID: PMC8497436 DOI: 10.1039/d1cp03187b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prions have been linked to neurodegenerative diseases that affect various species of mammals including humans. The prion protein, located mainly in neurons, is believed to play the role of metal ion transporter. High levels of copper ions have been related to structural changes. A 32-residue region of the N-terminal domain, known as octarepeat, can bind up to four copper ions. Different coordination modes have been observed and are strongly dependent on Cu2+ concentration. Many theoretical studies carried out so far have focused on studying the coordination modes of a single copper ion. In this work we investigate the octarepeat region coordinated with four copper ions. Molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations using the polarizable AMOEBA force field have been carried out. The polarizable MD simulations starting from a fully extended conformation indicate that the tetra-Cu2+/octarepeat complex forms a globular structure. The globular form is stabilized by interactions between Cu2+ and tryptophan residues resulting in some coordination sites observed to be in close proximity, in agreement with experimental results. Subsequent QM/MM simulations on several snapshots suggests the system is in a high-spin quintet state, with all Cu2+ bearing one single electron, and all unpaired electrons are ferromagnetically coupled. NMR simulations on selected structures provides insights on the chemical shifts of the first shell ligands around the metals with respect to inter-metal distances.
Collapse
Affiliation(s)
- Jorge Nochebuena
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| | - Liliana Quintanar
- Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, 07360, Mexico
| | - Alberto Vela
- Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, 07360, Mexico
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| |
Collapse
|
12
|
Parkinson's Disease: A Prionopathy? Int J Mol Sci 2021; 22:ijms22158022. [PMID: 34360787 PMCID: PMC8347681 DOI: 10.3390/ijms22158022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
The principal pathogenic event in Parkinson's disease is characterized by the conformational change of α-synuclein, which form pathological aggregates of misfolded proteins, and then accumulate in intraneuronal inclusions causing dopaminergic neuronal loss in specific brain regions. Over the last few years, a revolutionary theory has correlated Parkinson's disease and other neurological disorders with a shared mechanism, which determines α-synuclein aggregates and progresses in the host in a prion-like manner. In this review, the main characteristics shared between α-synuclein and prion protein are compared and the cofactors that influence the remodeling of native protein structures and pathogenetic mechanisms underlying neurodegeneration are discussed.
Collapse
|
13
|
Posadas Y, Parra-Ojeda L, Perez-Cruz C, Quintanar L. Amyloid β Perturbs Cu(II) Binding to the Prion Protein in a Site-Specific Manner: Insights into Its Potential Neurotoxic Mechanisms. Inorg Chem 2021; 60:8958-8972. [PMID: 34043332 DOI: 10.1021/acs.inorgchem.1c00846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyloid β (Aβ) is a Cu-binding peptide that plays a key role in the pathology of Alzheimer's disease. A recent report demonstrated that Aβ disrupts the Cu-dependent interaction between cellular prion protein (PrPC) and N-methyl-d-aspartate receptor (NMDAR), inducing overactivation of NMDAR and neurotoxicity. In this context, it has been proposed that Aβ competes for Cu with PrPC; however, there is no spectroscopic evidence to support this hypothesis. Prion protein (PrP) can bind up to six Cu(II) ions: from one to four at the octarepeat (OR) region, producing low- and high-occupancy modes, and two at the His96 and His111 sites. Additionally, PrPC is cleaved by α-secretases at Lys110/His111, yielding a new Cu(II)-binding site at the α-cleaved His111. In this study, the competition for Cu(II) between Aβ(1-16) and peptide models for each Cu-binding site of PrP was evaluated using circular dichroism and electron paramagnetic resonance. Our results show that the impact of Aβ(1-16) on Cu(II) coordination to PrP is highly site-specific: Aβ(1-16) cannot effectively compete with the low-occupancy mode at the OR region, whereas it partially removes the metal ion from the high-occupancy modes and forms a ternary OR-Cu(II)-Aβ(1-16) complex. In contrast, Aβ(1-16) removes all Cu(II) ions from the His96 and His111 sites without formation of ternary species. Finally, at the α-cleaved His111 site, Aβ(1-16) yields at least two different ternary complexes depending on the ratio of PrP/Cu(II)/Aβ. Altogether, our spectroscopic results indicate that only the low-occupancy mode at the OR region resists the effect of Aβ, while Cu(II) coordination to the high-occupancy modes and all other tested sites of PrP is perturbed, by either removal of the metal ion or formation of ternary complexes. These results provide important insights into the intricate effect of Aβ on Cu(II) binding to PrP and the potential neurotoxic mechanisms through which Aβ might affect Cu-dependent functions of PrPC, such as NMDAR modulation.
Collapse
|
14
|
Mohammadi B, Linsenmeier L, Shafiq M, Puig B, Galliciotti G, Giudici C, Willem M, Eden T, Koch-Nolte F, Lin YH, Tatzelt J, Glatzel M, Altmeppen HC. Transgenic Overexpression of the Disordered Prion Protein N1 Fragment in Mice Does Not Protect Against Neurodegenerative Diseases Due to Impaired ER Translocation. Mol Neurobiol 2020; 57:2812-2829. [PMID: 32367491 PMCID: PMC7253391 DOI: 10.1007/s12035-020-01917-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
The structurally disordered N-terminal half of the prion protein (PrPC) is constitutively released into the extracellular space by an endogenous proteolytic cleavage event. Once liberated, this N1 fragment acts neuroprotective in ischemic conditions and interferes with toxic peptides associated with neurodegenerative diseases, such as amyloid-beta (Aβ) in Alzheimer’s disease. Since analog protective effects of N1 in prion diseases, such as Creutzfeldt-Jakob disease, have not been studied, and given that the protease releasing N1 has not been identified to date, we have generated and characterized transgenic mice overexpressing N1 (TgN1). Upon intracerebral inoculation of TgN1 mice with prions, no protective effects were observed at the levels of survival, clinical course, neuropathological, or molecular assessment. Likewise, primary neurons of these mice did not show protection against Aβ toxicity. Our biochemical and morphological analyses revealed that this lack of protective effects is seemingly due to an impaired ER translocation of the disordered N1 resulting in its cytosolic retention with an uncleaved signal peptide. Thus, TgN1 mice represent the first animal model to prove the inefficient ER translocation of intrinsically disordered domains (IDD). In contrast to earlier studies, our data challenge roles of cytoplasmic N1 as a cell penetrating peptide or as a potent “anti-prion” agent. Lastly, our study highlights both the importance of structured domains in the nascent chain for proteins to be translocated and aspects to be considered when devising novel N1-based therapeutic approaches against neurodegenerative diseases.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Camilla Giudici
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Eden
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Yu-Hsuan Lin
- Institute of Biochemistry and Pathobiochemistry, Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Institute of Biochemistry and Pathobiochemistry, Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, Bochum, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
15
|
Salzano G, Brennich M, Mancini G, Tran TH, Legname G, D'Angelo P, Giachin G. Deciphering Copper Coordination in the Mammalian Prion Protein Amyloidogenic Domain. Biophys J 2020; 118:676-687. [PMID: 31952810 DOI: 10.1016/j.bpj.2019.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Prions are pathological isoforms of the cellular prion protein that is responsible for transmissible spongiform encephalopathies (TSE). Cellular prion protein interacts with copper, Cu(II), through octarepeat and nonoctarepeat (non-OR) binding sites. The molecular details of Cu(II) coordination within the non-OR region are not well characterized yet. By the means of small angle x-ray scattering and x-ray absorption spectroscopic methods, we have investigated the effect of Cu(II) on prion protein folding and its coordination geometries when bound to the non-OR region of recombinant prion proteins (recPrP) from mammalian species considered resistant or susceptible to TSE. As the prion resistant model, we used ovine recPrP (OvPrP) carrying the protective polymorphism at residues A136, R154, and R171, whereas as TSE-susceptible models, we employed OvPrP with V136, R154, and Q171 polymorphism and bank vole recPrP. Our analysis reveals that Cu(II) affects the structural plasticity of the non-OR region, leading to a more compacted conformation. We then identified two Cu(II) coordination geometries: in the type 1 coordination observed in OvPrP at residues A136, R154, and R171, the metal is coordinated by four residues; conversely, the type 2 coordination is present in OvPrP with V136, R154, and Q171 and bank vole recPrP, where Cu(II) is coordinated by three residues and by one water molecule, making the non-OR region more exposed to the solvent. These changes in copper coordination affect the recPrP amyloid aggregation. This study may provide new insights into the molecular mechanisms governing the resistance or susceptibility of certain species to TSE.
Collapse
Affiliation(s)
- Giulia Salzano
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Martha Brennich
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, Grenoble, France
| | - Giordano Mancini
- Scuola Normale Superiore, Pisa, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Pisa, Italy
| | - Thanh Hoa Tran
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy; ELETTRA-Sincrotrone Trieste S.C.p.A, Trieste, Italy
| | - Paola D'Angelo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.
| | - Gabriele Giachin
- European Synchrotron Radiation Facility (ESRF), Grenoble, France.
| |
Collapse
|
16
|
Quantitative prediction of electronic absorption spectra of copper(II)-bioligand systems: Validation and applications. J Inorg Biochem 2019; 204:110953. [PMID: 31816442 DOI: 10.1016/j.jinorgbio.2019.110953] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The visible region of the electronic absorption spectra of Cu(II) complexes was studied by time-dependent density functional theory (TD-DFT). The performance of twelve functionals in the prediction of absorption maxima (λmax) was tested on eleven compounds with different geometry, donors and charge. The ranking of the functionals for λmax was determined in terms of mean absolute percent deviation (MAPD) and standard deviation (SD) and it is as follows: BHandHLYP > M06 ≫ CAM-B3LYP ≫ MPW1PW91 ~ B1LYP ~ BLYP > HSE06 ~ B3LYP > B3P86 ~ ω-B97x-D ≫ TPSSh ≫ M06-2X (MAPD) and BHandHLYP > M06 ~ HSE06 > ω-B97x-D ~ CAM-B3LYP ~ MPW1PW91 > B1LYP ~ B3LYP > B3P86 > BLYP ≫ TPSSh ≫ M06-2X (SD). With BHandHLYP functional the MAPD is 3.1% and SD is 2.3%, while with M06 the MAPD is 3.7% and SD is 3.7%. The protocol validated in the first step of the study was applied to: i) calculate the number of transitions in the spectra and relate them to the geometry of Cu(II) species; ii) determine the coordination of axial water(s); iii) predict the electronic spectra of the systems where Cu(II) is bound to human serum albumin (HSA) and to the regions 94-97 and 108-112 of prion protein (PrP). The results indicate that the proposed computational protocol allows a successful prediction of the electronic spectra of Cu(II) species and to relate an experimental spectrum to a specific structure.
Collapse
|
17
|
Hackl S, Becker CFW. Prion protein-Semisynthetic prion protein (PrP) variants with posttranslational modifications. J Pept Sci 2019; 25:e3216. [PMID: 31713950 PMCID: PMC6899880 DOI: 10.1002/psc.3216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC ) into scrapie prion protein (PrPSc ) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site-selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.
Collapse
Affiliation(s)
- Stefanie Hackl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| |
Collapse
|
18
|
Structural Consequences of Copper Binding to the Prion Protein. Cells 2019; 8:cells8080770. [PMID: 31349611 PMCID: PMC6721516 DOI: 10.3390/cells8080770] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Prion, or PrPSc, is the pathological isoform of the cellular prion protein (PrPC) and it is the etiological agent of transmissible spongiform encephalopathies (TSE) affecting humans and animal species. The most relevant function of PrPC is its ability to bind copper ions through its flexible N-terminal moiety. This review includes an overview of the structure and function of PrPC with a focus on its ability to bind copper ions. The state-of-the-art of the role of copper in both PrPC physiology and in prion pathogenesis is also discussed. Finally, we describe the structural consequences of copper binding to the PrPC structure.
Collapse
|
19
|
Effects of Cu2+ on conformational change and aggregation of hPrP180-192 with a V180I mutation of the prion protein. Biochem Biophys Res Commun 2019; 514:798-802. [DOI: 10.1016/j.bbrc.2019.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 01/04/2023]
|
20
|
McDonald AJ, Leon DR, Markham KA, Wu B, Heckendorf CF, Schilling K, Showalter HD, Andrews PC, McComb ME, Pushie MJ, Costello CE, Millhauser GL, Harris DA. Altered Domain Structure of the Prion Protein Caused by Cu 2+ Binding and Functionally Relevant Mutations: Analysis by Cross-Linking, MS/MS, and NMR. Structure 2019; 27:907-922.e5. [PMID: 30956132 DOI: 10.1016/j.str.2019.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/17/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
The cellular isoform of the prion protein (PrPC) serves as precursor to the infectious isoform (PrPSc), and as a cell-surface receptor, which binds misfolded protein oligomers as well as physiological ligands such as Cu2+ ions. PrPC consists of two domains: a flexible N-terminal domain and a structured C-terminal domain. Both the physiological and pathological functions of PrP depend on intramolecular interactions between these two domains, but the specific amino acid residues involved have proven challenging to define. Here, we employ a combination of chemical cross-linking, mass spectrometry, NMR, molecular dynamics simulations, and functional assays to identify residue-level contacts between the N- and C-terminal domains of PrPC. We also determine how these interdomain contacts are altered by binding of Cu2+ ions and by functionally relevant mutations. Our results provide a structural basis for interpreting both the normal and toxic activities of PrP.
Collapse
Affiliation(s)
- Alex J McDonald
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Deborah R Leon
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kathleen A Markham
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Christian F Heckendorf
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kevin Schilling
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hollis D Showalter
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Philip C Andrews
- Department of Biological Chemistry, Department of Chemistry, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark E McComb
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | - M Jake Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Catherine E Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
21
|
Le NTT, Wu B, Harris DA. Prion neurotoxicity. Brain Pathol 2019; 29:263-277. [PMID: 30588688 DOI: 10.1111/bpa.12694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/28/2018] [Indexed: 01/04/2023] Open
Abstract
Although the mechanisms underlying prion propagation and infectivity are now well established, the processes accounting for prion toxicity and pathogenesis have remained mysterious. These processes are of enormous clinical relevance as they hold the key to identification of new molecular targets for therapeutic intervention. In this review, we will discuss two broad areas of investigation relevant to understanding prion neurotoxicity. The first is the use of in vitro experimental systems that model key events in prion pathogenesis. In this context, we will describe a hippocampal neuronal culture system we developed that reproduces the earliest pathological alterations in synaptic morphology and function in response to PrPSc . This system has allowed us to define a core synaptotoxic signaling pathway involving the activation of NMDA and AMPA receptors, stimulation of p38 MAPK phosphorylation and collapse of the actin cytoskeleton in dendritic spines. The second area concerns a striking and unexpected phenomenon in which certain structural manipulations of the PrPC molecule itself, including introduction of N-terminal deletion mutations or binding of antibodies to C-terminal epitopes, unleash powerful toxic effects in cultured cells and transgenic mice. We will describe our studies of this phenomenon, which led to the recognition that it is related to the induction of large, abnormal ionic currents by the structurally altered PrP molecules. Our results suggest a model in which the flexible N-terminal domain of PrPC serves as a toxic effector which is regulated by intramolecular interactions with the globular C-terminal domain. Taken together, these two areas of study have provided important clues to underlying cellular and molecular mechanisms of prion neurotoxicity. Nevertheless, much remains to be done on this next frontier of prion science.
Collapse
Affiliation(s)
- Nhat T T Le
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
22
|
Structural Determinants of the Prion Protein N-Terminus and Its Adducts with Copper Ions. Int J Mol Sci 2018; 20:ijms20010018. [PMID: 30577569 PMCID: PMC6337743 DOI: 10.3390/ijms20010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
The N-terminus of the prion protein is a large intrinsically disordered region encompassing approximately 125 amino acids. In this paper, we review its structural and functional properties, with a particular emphasis on its binding to copper ions. The latter is exploited by the region’s conformational flexibility to yield a variety of biological functions. Disease-linked mutations and proteolytic processing of the protein can impact its copper-binding properties, with important structural and functional implications, both in health and disease progression.
Collapse
|
23
|
DFT Protocol for EPR Prediction of Paramagnetic Cu(II) Complexes and Application to Protein Binding Sites. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4040055] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With the aim to provide a general protocol to interpret electron paramagnetic resonance (EPR) spectra of paramagnetic copper(II) coordination compounds, density functional theory (DFT) calculations of spin Hamiltonian parameters g and A for fourteen Cu(II) complexes with different charges, donor sets, and geometry were carried out using ORCA software. The performance of eleven functionals was tested, and on the basis of the mean absolute percent deviation (MAPD) and standard deviation (SD), the ranking of the functionals for Az is: B3LYP > B3PW91 ~ B3P86 > PBE0 > CAM-B3LYP > TPSSh > BH and HLYP > B2PLYP > MPW1PW91 > ω-B97x-D >> M06; and for gz is: PBE0 > BH and HLYP > B2PLYP > ω-B97x-D > B3PW91~B3LYP~B3P86 > CAM-B3LYP > TPSSh~MPW1PW91 >> M06. With B3LYP the MAPD with respect to A z exp t l is 8.6% with a SD of 4.2%, while with PBE0 the MAPD with respect to g z exp t l is 2.9% with a SD of 1.1%. The results of the validation confirm the fundamental role of the second order spin-orbit contribution to Az. The computational procedure was applied to predict the values of gz and Az of the adducts formed by Cu(II) with albumin and two fragments of prion protein, 106–126 and 180–193.
Collapse
|
24
|
Copper- and Zinc-Promoted Interdomain Structure in the Prion Protein: A Mechanism for Autoinhibition of the Neurotoxic N-Terminus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:35-56. [PMID: 28838668 DOI: 10.1016/bs.pmbts.2017.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The function of the cellular prion protein (PrPC), while still poorly understood, is increasingly linked to its ability to bind physiological metal ions at the cell surface. PrPC binds divalent forms of both copper and zinc through its unstructured N-terminal domain, modulating interactions between PrPC and various receptors at the cell surface and ultimately tuning downstream cellular processes. In this chapter, we briefly discuss the molecular features of copper and zinc uptake by PrPC and summarize evidence implicating these metal ions in PrP-mediated physiology. We then focus our review on recent biophysical evidence revealing a physical interaction between the flexible N-terminal and globular C-terminal domains of PrPC. This interdomain cis interaction is electrostatic in nature and is promoted by the binding of Cu2+ and Zn2+ to the N-terminal octarepeat domain. These findings, along with recent cellular studies, suggest a mechanism whereby NC interactions serve to regulate the activity and/or toxicity of the PrPC N-terminus. We discuss this potential mechanism in relation to familial prion disease mutations, lethal deletions of the PrPC central region, and neurotoxicity induced by certain globular domain ligands, including bona fide prions and toxic amyloid-β oligomers.
Collapse
|
25
|
Wu B, McDonald AJ, Markham K, Rich CB, McHugh KP, Tatzelt J, Colby DW, Millhauser GL, Harris DA. The N-terminus of the prion protein is a toxic effector regulated by the C-terminus. eLife 2017; 6:e23473. [PMID: 28527237 PMCID: PMC5469617 DOI: 10.7554/elife.23473] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/17/2017] [Indexed: 12/23/2022] Open
Abstract
PrPC, the cellular isoform of the prion protein, serves to transduce the neurotoxic effects of PrPSc, the infectious isoform, but how this occurs is mysterious. Here, using a combination of electrophysiological, cellular, and biophysical techniques, we show that the flexible, N-terminal domain of PrPC functions as a powerful toxicity-transducing effector whose activity is tightly regulated in cis by the globular C-terminal domain. Ligands binding to the N-terminal domain abolish the spontaneous ionic currents associated with neurotoxic mutants of PrP, and the isolated N-terminal domain induces currents when expressed in the absence of the C-terminal domain. Anti-PrP antibodies targeting epitopes in the C-terminal domain induce currents, and cause degeneration of dendrites on murine hippocampal neurons, effects that entirely dependent on the effector function of the N-terminus. NMR experiments demonstrate intramolecular docking between N- and C-terminal domains of PrPC, revealing a novel auto-inhibitory mechanism that regulates the functional activity of PrPC.
Collapse
Affiliation(s)
- Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Alex J McDonald
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Kathleen Markham
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States
| | - Celeste B Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Kyle P McHugh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, United States
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - David W Colby
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, United States
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| |
Collapse
|
26
|
Evans EGB, Pushie MJ, Markham KA, Lee HW, Millhauser GL. Interaction between Prion Protein's Copper-Bound Octarepeat Domain and a Charged C-Terminal Pocket Suggests a Mechanism for N-Terminal Regulation. Structure 2016; 24:1057-67. [PMID: 27265848 DOI: 10.1016/j.str.2016.04.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/29/2022]
Abstract
Copper plays a critical role in prion protein (PrP) physiology. Cu(2+) binds with high affinity to the PrP N-terminal octarepeat (OR) domain, and intracellular copper promotes PrP expression. The molecular details of copper coordination within the OR are now well characterized. Here we examine how Cu(2+) influences the interaction between the PrP N-terminal domain and the C-terminal globular domain. Using nuclear magnetic resonance and copper-nitroxide pulsed double electron-electron resonance, with molecular dynamics refinement, we localize the position of Cu(2+) in its high-affinity OR-bound state. Our results reveal an interdomain cis interaction that is stabilized by a conserved, negatively charged pocket of the globular domain. Interestingly, this interaction surface overlaps an epitope recognized by the POM1 antibody, the binding of which drives rapid cerebellar degeneration mediated by the PrP N terminus. The resulting structure suggests that the globular domain regulates the N-terminal domain by binding the Cu(2+)-occupied OR within a complementary pocket.
Collapse
Affiliation(s)
- Eric G B Evans
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - M Jake Pushie
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Kate A Markham
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
27
|
Affiliation(s)
- A. Subha Mahadevi
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| | - G. Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| |
Collapse
|
28
|
The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion. Sci Rep 2015; 5:15253. [PMID: 26482532 PMCID: PMC4651146 DOI: 10.1038/srep15253] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
The conversion of the prion protein (PrPC) into prions plays a key
role in transmissible spongiform encephalopathies. Despite the importance for
pathogenesis, the mechanism of prion formation has escaped detailed characterization
due to the insoluble nature of prions. PrPC interacts with copper
through octarepeat and non-octarepeat binding sites. Copper coordination to the
non-octarepeat region has garnered interest due to the possibility that this
interaction may impact prion conversion. We used X-ray absorption spectroscopy to
study copper coordination at pH 5.5 and 7.0 in human PrPC constructs,
either wild-type (WT) or carrying pathological mutations. We show that mutations and
pH cause modifications of copper coordination in the non-octarepeat region. In the
WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is
coordinated by His111. Pathological point mutations alter the copper coordination at
acidic conditions where the metal is anchored to His111. By using in vitro
approaches, cell-based and computational techniques, we propose a model whereby
PrPC coordinating copper with one His in the non-octarepeat
region converts to prions at acidic condition. Thus, the non-octarepeat region may
act as the long-sought-after prion switch, critical for disease onset and
propagation.
Collapse
|
29
|
Di Natale G, Turi I, Pappalardo G, Sóvágó I, Rizzarelli E. Cross-Talk Between the Octarepeat Domain and the Fifth Binding Site of Prion Protein Driven by the Interaction of Copper(II) with the N-terminus. Chemistry 2015; 21:4071-84. [DOI: 10.1002/chem.201405502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 12/21/2022]
|
30
|
Gogineni DP, Spuches AM, Burns CS. Calorimetric investigation of copper binding in the N-terminal region of the prion protein at low copper loading: evidence for an entropically favorable first binding event. Inorg Chem 2014; 54:441-7. [PMID: 25541747 PMCID: PMC4303328 DOI: 10.1021/ic502014x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Although
the Cu2+-binding sites of the prion protein have been well
studied when the protein is fully saturated by Cu2+, the
Cu2+-loading mechanism is just beginning to come into view.
Because the Cu2+-binding modes at low and intermediate
Cu2+ occupancy necessarily represent the highest-affinity
binding modes, these are very likely populated under physiological
conditions, and it is thus essential to characterize them in order
to understand better the biological function of copper–prion
interactions. Besides binding-affinity data, almost no other thermodynamic
parameters (e.g., ΔH and ΔS) have been measured, thus leaving undetermined the enthalpic and
entropic factors that govern the free energy of Cu2+ binding
to the prion protein. In this study, isothermal titration calorimetry
(ITC) was used to quantify the thermodynamic parameters (K, ΔG, ΔH, and TΔS) of Cu2+ binding to
a peptide, PrP(23–28, 57–98), that encompasses the majority
of the residues implicated in Cu2+ binding by full-length
PrP. Use of the buffer N-(2-acetomido)-aminoethanesulfonic
acid (ACES), which is also a well-characterized Cu2+ chelator,
allowed for the isolation of the two highest affinity binding events.
Circular dichroism spectroscopy was used to characterize the different
binding modes as a function of added Cu2+. The Kd values determined by ITC, 7 and 380 nM, are
well in line with those reported by others. The first binding event
benefits significantly from a positive entropy, whereas the second
binding event is enthalpically driven. The thermodynamic values associated
with Cu2+ binding by the Aβ peptide, which is implicated
in Alzheimer’s disease, bear striking parallels to those found
here for the prion protein. The thermodynamics
(K, ΔG, ΔH, and TΔS) of the two highest
affinity Cu2+-binding events of the prion protein were
investigated using isothermal titration calorimetry. Peptide PrP(23−28,
57−98) was used as a model system for the metal-binding region.
The first binding event had a Kd of 7
nM and was entropically driven (+ΔS), whereas
the second binding event had a Kd of 380
nm and was enthalpically driven (−ΔH).
Collapse
Affiliation(s)
- Devi Praneetha Gogineni
- Department of Chemistry, East Carolina University , East 5th Street, Greenville, North Carolina 27858, United States
| | | | | |
Collapse
|
31
|
Stanyon HF, Patel K, Begum N, Viles JH. Copper(II) sequentially loads onto the N-terminal amino group of the cellular prion protein before the individual octarepeats. Biochemistry 2014; 53:3934-99. [PMID: 24878028 DOI: 10.1021/bi500643b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cellular prion protein (PrPC) binds to Cu2+ ions in vivo, and a misfolded form of PrPC is responsible for a range of transmissible spongiform encephalopathies. Recently, disruption of Cu2+ homeostasis in mice has been shown to impart resistance to scrapie infection. Using full-length PrPC and model peptide fragments, we monitor the sequential loading of Cu2+ ions onto PrPC using visible circular dichroism. We show the N-terminal amino group of PrPC is not the principal binding site for Cu2+; however, surprisingly, it has an affinity for Cu2+ tighter than that of the individual octarepeat binding sites present within PrPC. We re-evaluate what is understood about the sequential loading of Cu2+ onto the full-length protein and show for the first time that Cu2+ loads onto the N-terminal amino group before the single octarepeat binding sites.
Collapse
|
32
|
Pushie MJ, Nienaber KH, McDonald A, Millhauser GL, George GN. Combined EXAFS and DFT structure calculations provide structural insights into the 1:1 multi-histidine complexes of Cu(II) , Cu(I) , and Zn(II) with the tandem octarepeats of the mammalian prion protein. Chemistry 2014; 20:9770-83. [PMID: 25042361 DOI: 10.1002/chem.201304201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/06/2014] [Indexed: 02/01/2023]
Abstract
The metal-coordinating properties of the prion protein (PrP) have been the subject of intense focus and debate since the first reports of its interaction with copper just before the turn of the century. The picture of metal coordination to PrP has been improved and refined over the past decade, but structural details of the various metal coordination modes have not been fully elucidated in some cases. In the present study, we have employed X-ray absorption near-edge spectroscopy as well as extended X-ray absorption fine structure (EXAFS) spectroscopy to structurally characterize the dominant 1:1 coordination modes for Cu(II) , Cu(I) , and Zn(II) with an N-terminal fragment of PrP. The PrP fragment corresponds to four tandem repeats representative of the mammalian octarepeat domain, designated as OR4 , which is also the most studied PrP fragment for metal interactions, making our findings applicable to a large body of previous work. Density functional theory (DFT) calculations have provided additional structural and thermodynamic data, and candidate structures have been used to inform EXAFS data analysis. The optimized geometries from DFT calculations have been used to identify potential coordination complexes for multi-histidine coordination of Cu(II) , Cu(I) , and Zn(II) in an aqueous medium, modelled using 4-methylimidazole to represent the histidine side chain. Through a combination of in silico coordination chemistry as well as rigorous EXAFS curve-fitting, using full multiple scattering on candidate structures derived from DFT calculations, we have characterized the predominant coordination modes for the 1:1 complexes of Cu(II) , Cu(I) , and Zn(II) with the OR4 peptide at pH 7.4 at atomic resolution, which are best represented as square-planar [Cu(II) (His)4 ](2+) , digonal [Cu(I) (His)2 ](+) , and tetrahedral [Zn(II) (His)3 (OH2 )](2+) , respectively.
Collapse
Affiliation(s)
- M Jake Pushie
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK, S7N 5E2 (Canada), Fax: (+1) 306-966-8593.
| | | | | | | | | |
Collapse
|
33
|
Evolutionary implications of metal binding features in different species' prion protein: an inorganic point of view. Biomolecules 2014; 4:546-65. [PMID: 24970230 PMCID: PMC4101497 DOI: 10.3390/biom4020546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022] Open
Abstract
Prion disorders are a group of fatal neurodegenerative conditions of mammals. The key molecular event in the pathogenesis of such diseases is the conformational conversion of prion protein, PrPC, into a misfolded form rich in β-sheet structure, PrPSc, but the detailed mechanistic aspects of prion protein conversion remain enigmatic. There is uncertainty on the precise physiological function of PrPC in healthy individuals. Several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ mainly through a domain composed by four to five repeats of eight amino acids. In addition to mammals, PrP homologues have also been identified in birds, reptiles, amphibians and fish. The globular domain of protein is retained in the different species, suggesting that the protein carries out an essential common function. However, the comparison of amino acid sequences indicates that prion protein has evolved differently in each vertebrate class. The primary sequences are strongly conserved in each group, but these exhibit a low similarity with those of mammals. The N-terminal domain of different prions shows tandem amino acid repeats with an increasing amount of histidine residues going from amphibians to mammals. The difference in the sequence affects the number of copper binding sites, the affinity and the coordination environment of metal ions, suggesting that the involvement of prion in metal homeostasis may be a specific characteristic of mammalian prion protein. In this review, we describe the similarities and the differences in the metal binding of different species' prion protein, as revealed by studies carried out on the entire protein and related peptide fragments.
Collapse
|
34
|
Kojima A, Konishi M, Akizawa T. Prion fragment peptides are digested with membrane type matrix metalloproteinases and acquire enzyme resistance through Cu²⁺-binding. Biomolecules 2014; 4:510-26. [PMID: 24970228 PMCID: PMC4101495 DOI: 10.3390/biom4020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 11/16/2022] Open
Abstract
Prions are the cause of neurodegenerative disease in humans and other mammals. The structural conversion of the prion protein (PrP) from a normal cellular protein (PrPC) to a protease-resistant isoform (PrPSc) is thought to relate to Cu2+ binding to histidine residues. In this study, we focused on the membrane-type matrix metalloproteinases (MT-MMPs) such as MT1-MMP and MT3-MMP, which are expressed in the brain as PrPC-degrading proteases. We synthesized 21 prion fragment peptides. Each purified peptide was individually incubated with recombinant MT1-MMP or MT3-MMP in the presence or absence of Cu2+ and the cleavage sites determined by LC-ESI-MS analysis. Recombinant MMP-7 and human serum (HS) were also tested as control. hPrP61-90, from the octapeptide-repeat region, was cleaved by HS but not by the MMPs tested here. On the other hand, hPrP92-168 from the central region was cleaved by MT1-MMP and MT3-MMP at various sites. These cleavages were inhibited by treatment with Cu2+. The C-terminal peptides had higher resistance than the central region. The data obtained from this study suggest that MT-MMPs expressed in the brain might possess PrPC-degrading activity.
Collapse
Affiliation(s)
- Aya Kojima
- Analytical Chemistry, Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Motomi Konishi
- Analytical Chemistry, Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Toshifumi Akizawa
- Analytical Chemistry, Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| |
Collapse
|
35
|
Copper-induced structural propensities of the amyloidogenic region of human prion protein. J Biol Inorg Chem 2014; 19:635-45. [DOI: 10.1007/s00775-014-1132-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 04/02/2014] [Indexed: 12/15/2022]
|
36
|
McDonald AJ, Millhauser GL. PrP overdrive: does inhibition of α-cleavage contribute to PrP(C) toxicity and prion disease? Prion 2014; 8:28796. [PMID: 24721836 DOI: 10.4161/pri.28796] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Knockout of the cellular prion protein (PrP(C)) in mice is tolerated, as is complete elimination of the protein's N-terminal domain. However, deletion of select short segments between the N- and C-terminal domains is lethal. How can one reconcile this apparent paradox? Research over the last few years demonstrates that PrP(C) undergoes α-cleavage in the vicinity of residue 109 (mouse sequence) to release the bioactive N1 and C1 fragments. In biophysical studies, we recently characterized the action of relevant members of the ADAM (A Disintegrin And Metalloproteinase) enzyme family (ADAM8, 10, and 17) and found that they all produce α-cleavage, but at 3 distinct cleavage sites, with proteolytic efficiency modulated by the physiologic metals copper and zinc. Remarkably, the shortest lethal deletion segment in PrP(C) fully encompasses the 3 α-cleavage sites. Analysis of all reported PrP(C) deletion mutants suggests that elimination of α-cleavage, coupled with retention of the protein's N-terminal residues, segments 23-31 and longer, confers the lethal phenotype. Interestingly, these N-terminal residues are implicated in the activation of several membrane proteins, including synaptic glutamate receptors. We propose that α-cleavage is a general mechanism essential for downregulating PrP(C)'s intrinsic activity, and that blockage of proteolysis leads to constitutively active PrP(C) and consequent dyshomeostasis.
Collapse
Affiliation(s)
- Alex J McDonald
- Department of Biochemistry; Boston University School of Medicine; Boston, MA USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry; University of California; Santa Cruz, CA USA
| |
Collapse
|
37
|
Mot AI, Wedd AG, Sinclair L, Brown DR, Collins SJ, Brazier MW. Metal attenuating therapies in neurodegenerative disease. Expert Rev Neurother 2014; 11:1717-45. [DOI: 10.1586/ern.11.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Masullo T, Puccio R, Di Pierro M, Tagliavia M, Censi P, Vetri V, Militello V, Cuttitta A, Colombo P. Development of a Biosensor for Copper Detection in Aqueous Solutions Using an Anemonia sulcata Recombinant GFP. Appl Biochem Biotechnol 2013; 172:2175-87. [DOI: 10.1007/s12010-013-0669-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
|
39
|
McDonald AJ, Dibble JP, Evans EGB, Millhauser GL. A new paradigm for enzymatic control of α-cleavage and β-cleavage of the prion protein. J Biol Chem 2013; 289:803-13. [PMID: 24247244 DOI: 10.1074/jbc.m113.502351] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular form of the prion protein (PrP(C)) is found in both full-length and several different cleaved forms in vivo. Although the precise functions of the PrP(C) proteolytic products are not known, cleavage between the unstructured N-terminal domain and the structured C-terminal domain at Lys-109↓His-110 (mouse sequence), termed α-cleavage, has been shown to produce the anti-apoptotic N1 and the scrapie-resistant C1 peptide fragments. β-Cleavage, residing adjacent to the octarepeat domain and N-terminal to the α-cleavage site, is thought to arise from the action of reactive oxygen species produced from redox cycling of coordinated copper. We sought to elucidate the role of key members of the ADAM (a disintegrin and metalloproteinase) enzyme family, as well as Cu(2+) redox cycling, in recombinant mouse PrP (MoPrP) cleavage through LC/MS analysis. Our findings show that although Cu(2+) redox-generated reactive oxygen species do produce fragmentation corresponding to β-cleavage, ADAM8 also cleaves MoPrP in the octarepeat domain in a Cu(2+)- and Zn(2+)-dependent manner. Additional cleavage by ADAM8 was observed at the previously proposed location of α-cleavage, Lys-109↓His-110 (MoPrP sequencing); however, upon addition of Cu(2+), the location of α-cleavage shifted by several amino acids toward the C terminus. ADAM10 and ADAM17 have also been implicated in α-cleavage at Lys-109↓His-110; however, we observed that they instead cleaved MoPrP at a novel location, Ala-119↓Val-120, with additional cleavage by ADAM10 at Gly-227↓Arg-228 near the C terminus. Together, our results show that MoPrP cleavage is far more complex than previously thought and suggest a mechanism by which PrP(C) fragmentation responds to Cu(2+) and Zn(2+).
Collapse
Affiliation(s)
- Alex J McDonald
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | | | | | | |
Collapse
|
40
|
McDonald A, Pushie MJ, Millhauser GL, George GN. New insights into metal interactions with the prion protein: EXAFS analysis and structure calculations of copper binding to a single octarepeat from the prion protein. J Phys Chem B 2013; 117:13822-41. [PMID: 24102071 PMCID: PMC3890359 DOI: 10.1021/jp408239h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper coordination to the prion protein (PrP) has garnered considerable interest for almost 20 years, due in part to the possibility that this interaction may be part of the normal function of PrP. The most characterized form of copper binding to PrP has been Cu(2+) interaction with the conserved tandem repeats in the N-terminal domain of PrP, termed the octarepeats, with many studies focusing on single and multiple repeats of PHGGGWGQ. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used in several previous instances to characterize the solution structure of Cu(2+) binding into the peptide backbone in the HGGG portion of the octarepeats. All previous EXAFS studies, however, have benefitted from crystallographic structure information for [Cu(II) (Ac-HGGGW-NH2)(-2H)] but have not conclusively demonstrated that the complex EXAFS spectrum represents the same coordination environment for Cu(2+) bound to the peptide backbone. Density functional structure calculations as well as full multiple scattering EXAFS curve fitting analysis are brought to bear on the predominant coordination mode for Cu(2+) with the Ac-PHGGGWGQ-NH2 peptide at physiological pH, under high Cu(2+) occupancy conditions. In addition to the structure calculations, which provide a thermodynamic link to structural information, methods are also presented for extensive deconvolution of the EXAFS spectrum. We demonstrate how the EXAFS data can be analyzed to extract the maximum structural information and arrive at a structural model that is significantly improved over previous EXAFS characterizations. The EXAFS spectrum for the chemically reduced form of copper binding to the Ac-PHGGGWGQ-NH2 peptide is presented, which is best modeled as a linear two-coordinate species with a single His imidazole ligand and a water molecule. The extent of in situ photoreduction of the copper center during standard data collection is also presented, and EXAFS curve fitting of the photoreduced species reveals an intermediate structure that is similar to the Cu(2+) form with reduced coordination number.
Collapse
Affiliation(s)
- Alex McDonald
- Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada
| | | | | | | |
Collapse
|
41
|
Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:255-268. [PMID: 23436479 DOI: 10.1002/mrc.3936] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrP(C)) and a disease-associated isoform (PrP(Sc)). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrP(C) into PrP(Sc). The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
42
|
Kenche VB, Zawisza I, Masters CL, Bal W, Barnham KJ, Drew SC. Mixed Ligand Cu2+ Complexes of a Model Therapeutic with Alzheimer’s Amyloid-β Peptide and Monoamine Neurotransmitters. Inorg Chem 2013; 52:4303-18. [DOI: 10.1021/ic302289r] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vijaya B. Kenche
- Mental Health
Research Institute, The University of Melbourne, Victoria 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Izabela Zawisza
- Institute of Biochemistry and
Biophysics, Polish Academy of Sciences,
Warsaw, Poland
| | - Colin L. Masters
- Mental Health
Research Institute, The University of Melbourne, Victoria 3010, Australia
| | - Wojciech Bal
- Institute of Biochemistry and
Biophysics, Polish Academy of Sciences,
Warsaw, Poland
| | - Kevin J. Barnham
- Mental Health
Research Institute, The University of Melbourne, Victoria 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
- Department
of Pharmacology, The University of Melbourne, Victoria 3010, Australia
| | - Simon C. Drew
- Mental Health
Research Institute, The University of Melbourne, Victoria 3010, Australia
- School of Physics, Monash University,
Victoria 3800, Australia
| |
Collapse
|
43
|
Dudzik CG, Walter ED, Abrams BS, Jurica MS, Millhauser GL. Coordination of copper to the membrane-bound form of α-synuclein. Biochemistry 2012; 52:53-60. [PMID: 23252394 DOI: 10.1021/bi301475q] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aggregation of the 140-amino acid protein α-synuclein (α-syn) is linked to the development of Parkinson's disease (PD). α-Syn is a copper binding protein with potential function as a regulator of metal-dependent redox activity. Epidemiological studies suggest that human exposure to excess copper increases the incidence of PD. α-Syn exists in both solution and membrane-bound forms. Previous work evaluated the Cu(2+) uptake for α-syn in solution and identified Met1-Asp2 and His50 as primary contributors to the coordination shell, with a dissociation constant of approximately 0.1 nM. When bound to the membrane bilayer, α-syn takes on a predominantly helical conformation, which spatially separates His50 from the N-terminus of the protein and is therefore incompatible with the copper coordination geometry of the solution state. Here we use circular dichroism and electron paramagnetic resonance (continuous wave and pulsed) to evaluate the coordination of copper to the membrane-bound form of α-syn. In this molecular environment, Cu(2+) binds exclusively to the N-terminus of the protein (Met1-Asp2) with no participation from His50. Copper does not alter the membrane-bound α-syn conformation or enhance the release of the protein from the bilayer. The Cu(2+) affinity is similar to that identified for solution α-syn, suggesting that copper coordination is retained in the membrane. Consideration of these results demonstrates that copper exerts its greatest conformational effect on the solution form of α-syn.
Collapse
Affiliation(s)
- Christopher G Dudzik
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
44
|
Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.05.003] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
|
46
|
Zawisza I, Rózga M, Bal W. Affinity of copper and zinc ions to proteins and peptides related to neurodegenerative conditions (Aβ, APP, α-synuclein, PrP). Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Arena G, La Mendola D, Pappalardo G, Sóvágó I, Rizzarelli E. Interactions of Cu2+ with prion family peptide fragments: Considerations on affinity, speciation and coordination. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, DK 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
49
|
McHugh PC, Wright JA, Williams RJ, Brown DR. Prion protein expression alters APP cleavage without interaction with BACE-1. Neurochem Int 2012; 61:672-80. [PMID: 22796214 DOI: 10.1016/j.neuint.2012.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/13/2012] [Accepted: 07/03/2012] [Indexed: 11/19/2022]
Abstract
The prion protein (PrP) and the beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE-1) are both copper binding proteins, but are associated with two separate neurodegenerative diseases. The role of BACE-1 in the formation of beta-amyloid has made it a major target in attempts to reduce the formation of beta-amyloid in Alzheimer's diseases. However, the suggestion that PrP, normally associated with prion diseases, binds to BACE-1 and reduces its activity has led to the suggestion that the study of this interaction could be of considerable importance to Alzheimer's disease. We therefore undertook to investigate the possible interaction of these two proteins physically and at the level of transcription, translation and APP cleavage. Our findings suggest that mature PrP and BACE-1 do not physically interact, but that altered PrP expression results in altered BACE-1 protein expression and promoter activity. Additionally, overexpression of PrP results in increased cleavage of APP in contrast to previous datas suggesting a reduction. Our findings suggest that any relation between PrP and BACE-1 is indirect. Altered expression of PrP causes changes in the expression of many other proteins which may be as a result of altered copper metabolism.
Collapse
Affiliation(s)
- Patrick C McHugh
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | |
Collapse
|
50
|
Jószai V, Turi I, Kállay C, Pappalardo G, Di Natale G, Rizzarelli E, Sóvágó I. Mixed metal copper(II)-nickel(II) and copper(II)-zinc(II) complexes of multihistidine peptide fragments of human prion protein. J Inorg Biochem 2012; 112:17-24. [DOI: 10.1016/j.jinorgbio.2012.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/16/2011] [Accepted: 02/20/2012] [Indexed: 12/23/2022]
|