1
|
Adav SS, Tan YWC, Low CT, Loo SW, Yusoff R, Gautam A, Yong YL, Yang CY, Lim CC, Ng KW. Exploring gunshot residue detection in fingerprints by functionalized particle-coupled matrix-assisted laser desorption/ionization mass spectrometry. Analyst 2024; 149:5704-5713. [PMID: 39508265 DOI: 10.1039/d4an01260g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
In firearm forensic investigations, detecting gunshot residue (GSR) is crucial for linking firearms to suspects and determining firing distance for forensic reconstruction. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) is emerging as a versatile and promising technological platform for fingerprint analysis. The capability of functionalized particles as an advanced dusting powder for visualizing latent fingerprints is widely recognized. This study aims to investigate the feasibility of employing functionalized magnetic fingerprint dusting powders for distinguishing regular and GSR fingerprints using MALDI-ToF-MS, thereby enhancing forensic evidentiary support. In this study, silica and carbon coated magnetic iron oxide particles were surface functionalized with phenyltriethoxy orthosilicate (PTEOS) or 3-aminopropyl triethoxysilane (APTES) to create hydrophobic and hydrophilic particles, respectively. Donor shooters' fingerprints, both GSR-containing and regular, were analyzed using these functionalized particles coupled with MALDI-ToF-MS. The results demonstrated effective fingerprint visualization and conclusive discrimination between GSR-containing and regular fingerprints through orthogonal partial least squares discriminant analysis. This technique provides enhanced sensitivity, speed, and adaptability compared to conventional methods, making it a promising choice for initial detection of GSR in latent fingerprints. Moreover, when subjected to thorough analysis using advanced instruments, it has the potential to significantly strengthen the probative value of fingerprint evidence in forensic investigations.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Yan Wen Crystal Tan
- Home Team Science & Technology Agency, 1 Stars Ave, #12-01, Singapore 138507
| | - Choon Teck Low
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Song Wei Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Ridhwan Yusoff
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Archana Gautam
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Yuk Lin Yong
- Home Team Science & Technology Agency, 1 Stars Ave, #12-01, Singapore 138507
| | - Chiew Yung Yang
- Home Team Science & Technology Agency, 1 Stars Ave, #12-01, Singapore 138507
| | - Chin Chin Lim
- Home Team Science & Technology Agency, 1 Stars Ave, #12-01, Singapore 138507
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| |
Collapse
|
2
|
Rees K, Darwish GH, Bernal-Escalante J, O'Connor KM, Cheong IT, Veinot JGC, Algar WR. Dextran-Encapsulated Nanoparticles and Super-Nanoparticle Assemblies: Preparation from Quantum Dots, Fluorescent Polymers, and Magnetic Nanoparticles for Application to Cellular Immunolabeling. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39546415 DOI: 10.1021/acsami.4c14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Nanoparticles (NPs) continue to be developed as labels for bioanalysis and imaging due to their small size and, in many cases, emergent properties such as photoluminescence (PL) and superparamagnetism. Some applications stand to benefit from amplification of the advantageous properties of a NP, but this amplification is not a simple matter of scaling for size-dependent properties. One promising approach to amplification is, therefore, to assemble many copies of a NP into a larger but still nanoscale and colloidal entity. Here, we use multiple types of hydrophobic nanocrystal to show that amphiphilic dextran is a versatile material for the preparation and surface functionalization of such super-NP assemblies: CdSe/CdS/ZnS quantum dots (QDs), InP/ZnS QDs, and Si QDs; iron oxide magnetic NPs (MNPs); composites of QDs and MNPs; and composites of QDs and MNPs with fluorene-based and phenylenevinylene-based conjugated polymers. The amphiphilic dextran was also useful for the preparation of conjugated polymer NPs (CPNs) without the inclusion of inorganic nanocrystals. The prepared super-NPs and CPNs were characterized, physically and photophysically, at both the ensemble and the single-particle levels. Per colloidal entity, the super-QDs were orders of magnitude brighter than the individual QDs. This enhancement enabled assemblies of nominally more benign InP/ZnS and Si QDs to be competitive alternative materials to CdSe/CdS/ZnS QDs, which are normally much brighter when compared as individual nanocrystals. The dextran functionalization imparted low nonspecific binding and enabled the use of tetrameric antibody complexes (TACs) for simple and selective immunolabeling of cells with all of the prepared super-NP, CPN, and composite materials. Labeling with the super-QDs provided significantly enhanced PL signals, the super-MNPs enabled magnetic pull-down of cells, and both capabilities were concurrently available with composite assemblies. Overall, this study demonstrates that the preparatory method and functional benefits of amphiphilic dextran extend to a range of hydrophobic materials and combinations thereof. There is strong potential for assembling a diverse set of property-amplified designer labels that are ready-made for in vitro applications in bioanalysis and imaging.
Collapse
Affiliation(s)
- Kelly Rees
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jasmine Bernal-Escalante
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kevin M O'Connor
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - I Teng Cheong
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Dana J, Ajayakumar MR, Efimov A, Weckman T, Honkala K, Tkachenko NV. Structure dependent activation of a Co molecular catalyst through photoinduced electron transfer from CdTe quantum dots. NANOSCALE 2024; 16:20725-20737. [PMID: 39436211 DOI: 10.1039/d4nr02521k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Complexes of quantum dots with molecular catalysts are promising building blocks for photo-catalytic applications. Herein, we report the formation of stable complexes between colloidal CdTe quantum dots (CQDs) and two synthesized structurally different cobalt porphyrin derivatives (CoPp and CoPm, with phenyl and mesityl groups attached at the meso positions, respectively) through a sulfur bridge. Using both spectroscopy and computational methods, we found that the porphyrin adopts a "flat" binding mode on the CQD surface. We observed the coordination of the Co center on the CQD surface. This coordination is stronger for CoPp than for CoPm, resulting in a larger red shift in the absorption band. In addition, we measured a four fold increase in the electron transfer (ET) rate from the CQD to CoPp compared to that with CoPm by a transient absorption study and the charge recombination extended to tens of nanoseconds or longer depending on the structure of the porphyrin periphery. A spectrum measured after the ET points to a loss of coordination between the Co and CQD in a CoP/CQD complex. The experimental results are in agreement with density functional theory calculation results on the CoP complexes on CdTe surfaces, pointing to the porphyrin preferring to align along the CQD surface in the ground state. The change of porphyrin alignment from flat alignment before the excitation to upright alignment after the ET is a likely cause for the extended lifetime of the charge-separated (CS) state, due to an increase in the CS distance. Furthermore, the spectrum of the CS state can be assigned to catalytically active CoIP, proposing the applicability of the complexes in CO2 reduction.
Collapse
Affiliation(s)
- Jayanta Dana
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland.
| | - M R Ajayakumar
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland.
| | - Alexander Efimov
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland.
| | - Timo Weckman
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Karoliina Honkala
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Nikolai V Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland.
| |
Collapse
|
4
|
Dong Y, Chen K, Wei S, Zhang L, Dong H, Bo C, Huo W. Surface Reconstruction and Layer-Dependent Semiconductor-to-Metal Transition of Zinc-Blende CdSe. ACS OMEGA 2024; 9:42488-42497. [PMID: 39431072 PMCID: PMC11483908 DOI: 10.1021/acsomega.4c06465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
In this work, CdSe was taken as the representation to systematically investigate the (111) and (110) surface reconstructions, the electronic properties transition related to the layer size, and the corresponding physical mechanism through the density functional theory (DFT) calculation. For the (111) surface slab structure, the bulk truncated relaxation (BTR) surface and the honeycomb (HC) surface were carefully examined. The HC surface configuration, ignored by previous studies, is an energetically preferred surface compared to both the as-truncated and BTR configurations. Based on the HC surface, the band structure of the (111) surface shows a semiconductor character below four layers (4L). Surprisingly, the (111) CdSe turns metallic in the 4L system. In a higher-layer (>4L) system, the two side surfaces and internal regions show metallic and semiconductivity features, respectively. Such an abundant electronic properties transition should be attributed to the electron transfer under the intrinsic polarization perpendicular to the asymmetrical (111) plane. Different from the (111) surface, drastic structural reconstructions were not observed in the (110) surface and the band gap gradually decreased with the increasing number of layers until it approached the value in the bulk. Our results not only revealed the additional possible surface structure but also clarified the underlying mechanism of semiconductor-to-metal (even the edge metallic) transition related to the number of layers. All these findings could be extended to other II-VI group MX compounds for further development of electronic devices.
Collapse
Affiliation(s)
- Yuexin Dong
- School
of Material Science and Engineering, Northeastern
University, Shenyang 110819, China
- Northwest
Institute for Nonferrous Metal Research, Xi’an 710016, China
| | - Kaiyun Chen
- Northwest
Institute for Nonferrous Metal Research, Xi’an 710016, China
| | - Songrui Wei
- College
of Physics and Optoelectronic Engineering, State Key Laboratory of
Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Le Zhang
- MOE
Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xian 710049, China
| | - Haoxi Dong
- MOE
Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xian 710049, China
| | - Cunle Bo
- MOE
Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xian 710049, China
| | - Wangtu Huo
- Northwest
Institute for Nonferrous Metal Research, Xi’an 710016, China
| |
Collapse
|
5
|
Anjali Devi JS, Madanan Anju S, Lekha GM, Aparna RS, George S. Luminescent carbon dots versus quantum dots and gold nanoclusters as sensors. NANOSCALE HORIZONS 2024. [PMID: 39037443 DOI: 10.1039/d4nh00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Ultra-small nanoparticles, including quantum dots, gold nanoclusters (AuNCs) and carbon dots (CDs), have emerged as a promising class of fluorescent material because of their molecular-like properties and widespread applications in sensing and imaging. However, the fluorescence properties of ultra-small gold nanoparticles (i.e., AuNCs) and CDs are more complicated and well distinguished from conventional quantum dots or organic dye molecules. At this frontier, we highlight recent developments in the fundamental understanding of the fluorescence emission mechanism of these ultra-small nanoparticles. Moreover, this review carefully analyses the underlying principles of ultra-small nanoparticle sensors. We expect that this information on ultra-small nanoparticles will fuel research aimed at achieving precise control over their fluorescence properties and the broadening of their applications.
Collapse
Affiliation(s)
- J S Anjali Devi
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P. O., Kottayam 686560, Kerala, India
- Department of Chemistry, Kannur University, Swami Anandatheertha Campus, Payyanur, Edat P. O. Kannur 670327, Kerala, India
| | - S Madanan Anju
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| | - G M Lekha
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| | - R S Aparna
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
6
|
Krause KD, Rees K, Darwish GH, Bernal-Escalante J, Algar WR. Bait and Cleave: Exosite-Binding Peptides on Quantum Dots Selectively Accelerate Protease Activity for Sensing with Enhanced Sensitivity. ACS NANO 2024; 18:17018-17030. [PMID: 38845136 DOI: 10.1021/acsnano.4c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The advantageous optical properties of quantum dots (QDs) motivate their use in a wide variety of applications related to imaging and bioanalysis, including the detection of proteases and their activity. Recent studies have shown that surface chemistry on QDs is able to modulate protease activity, but only nonspecifically. Here, we present a strategy to selectively accelerate the activity of a particular target protease by as much as two orders of magnitude. Exosite-binding "bait" peptides were derived from proteins that span a range of biological roles─substrate, receptor, and inhibitor─and were used to increase the affinity of the QD-peptide conjugates for either thrombin or factor Xa, resulting in increased rates of proteolysis for coconjugated substrates. Unlike effects from QD surface chemistry, the acceleration was specific to the target protease with negligible acceleration of other proteases. Benefits of this "bait and cleave" sensing approach included detection limits that improved by more than an order of magnitude, reenabled detection of target protease against an overwhelming background of nontarget proteolysis, and mitigation of the action of inhibitors. The cumulative results point to a generalizable strategy, where the mechanism of acceleration, considerations for the design of bait peptides and conjugates, and routes to expanding the scope of this approach are discussed. Overall, this research represents a major step forward in the rational design of nanoparticle-based enzyme sensors that enhance sensitivity and selectivity.
Collapse
Affiliation(s)
- Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Jasmine Bernal-Escalante
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| |
Collapse
|
7
|
Hu J, Yang Y, Shen Q, Wang S, Chen X, Luan C, Yu K. Room-Temperature Formation of CdTeSe Magic-Size Clusters from Oleate-Capped CdTe Precursor Compounds via CdSe Monomer Substitution. Inorg Chem 2024; 63:11487-11493. [PMID: 38833379 DOI: 10.1021/acs.inorgchem.4c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
We report the first room-temperature synthesis of ternary CdTeSe magic-size clusters (MSCs) that have mainly the surface ligand oleate (OA). The MSCs display sharp optical absorption peaking at ∼399 nm and are thus referred to as MSC-399. They are made from prenucleation-stage samples of binary CdTe and CdSe, which are prepared by two reactions in 1-octadecene (ODE) of cadmium oleate (Cd(OA)2) and tri-n-octylphosphine chalcogenide (ETOP, E = Te and Se) at 25 °C for 120 min and 80 °C for 15 min, respectively. When the two binary samples are mixed at room temperature and dispersed in a mixture of toluene (Tol) and octylamine (OTA), the CdTeSe MSC-399 develops. Also, when the CdSe sample is added to CdTe MSC-371 in a dispersion, the transformation from CdTe MSC-371 to CdTeSe MSC-399 is seen. We propose that the MSCs develop from their precursor compounds (PCs) that are relatively transparent in optical absorption, such as CdTeSe MSC-399 from CdTeSe PC-399 and CdTe MSC-371 from CdTe PC-371. The formation of CdTeSe PC-399 undergoes monomer substitution and not anion exchange, which is the reaction of CdTe PC-371 and the CdSe monomer to produce CdTeSe PC-399 and the CdTe monomer. Our study provides evidence of monomer substitution for the transformation from binary CdTe to ternary CdTeSe PCs.
Collapse
Affiliation(s)
- Jie Hu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Yusha Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Qiu Shen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Chaoran Luan
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
8
|
Othman DM, Weinstein J, Huang N, Ming W, Lyu Q, Hou B. Solution-processed colloidal quantum dots for internet of things. NANOSCALE 2024; 16:10947-10974. [PMID: 38804109 DOI: 10.1039/d4nr00203b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Colloidal quantum dots (CQDs) have been a hot research topic ever since they were successfully fabricated in 1993 via the hot injection method. The Nobel Prize in Chemistry 2023 was awarded to Moungi G. Bawendi, Louis E. Brus and Alexei I. Ekimov for the discovery and synthesis of quantum dots. The Internet of Things (IoT) has also attracted a lot of attention due to the technological advancements and digitalisation of the world. This review first aims to give the basics behind QD physics. After that, the history behind CQD synthesis and the different methods used to synthesize most widely researched CQD materials (CdSe, PbS and InP) are revisited. A brief introduction to what IoT is and how it works is also mentioned. Then, the most widely researched CQD devices that can be used for the main IoT components are reviewed, where the history, physics, the figures of merit (FoMs) and the state-of-the-art are discussed. Finally, the challenges and different methods for integrating CQDs into IoT devices are discussed, mentioning the future possibilities that await CQDs.
Collapse
Affiliation(s)
- Diyar Mousa Othman
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK.
| | - Julia Weinstein
- Department of Chemistry, The University of Sheffield, Sheffield, S3 7HF, UK
| | | | - Wenlong Ming
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Quan Lyu
- Cambridge Research Centre, Huawei Technologies Research & Development (UK) Ltd, Cambridge, CB4 0FY, UK.
| | - Bo Hou
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK.
| |
Collapse
|
9
|
Sun X, Wang S, Wang Z, Shen Q, Chen X, Chen Z, Luan C, Yu K. Lower-Temperature Nucleation and Growth of Colloidal CdTe Quantum Dots Enabled by Prenucleation Clusters with Cd-Te Bond Conservation. J Am Chem Soc 2024; 146:15587-15595. [PMID: 38783573 DOI: 10.1021/jacs.4c04593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The reason why heating is required remains elusive for the traditional synthesis of colloidal semiconductor quantum dots (QDs) of II-VI metal chalcogenide (ME). Using CdTe as a model system, we show that the formation of Cd-Te covalent bonds with individual Cd- and Te-containing compounds can be decoupled from the nucleation and growth of CdTe QDs. Prepared at an elevated temperature, a prenucleation-stage sample contains clusters that are the precursor compound (PC) of magic-size clusters (MSCs); the Cd-Te bond formation occurs at temperatures higher than 120 °C in the reaction. Afterward, the PC-to-QD transformation appears via monomers at lower temperatures in dispersion. Our findings suggest that the number of Cd-Te bonds broken in the PC reactant is similar to that of Cd-Te bonds formed in the QD product. For the traditional synthesis of ME QDs, heating is responsible for the M-E bond formation rather than for nucleation.
Collapse
Affiliation(s)
- Xilian Sun
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zhe Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Qiu Shen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zifei Chen
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Chaoran Luan
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
10
|
Salerno G, Palladino P, Marelli M, Polito L, Minunni M, Berti D, Scarano S, Biagiotti G, Richichi B. CdSe/ZnS Quantum Rods (QRs) and Phenyl Boronic Acid BODIPY as Efficient Förster Resonance Energy Transfer (FRET) Donor-Acceptor Pair. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:794. [PMID: 38727388 PMCID: PMC11085751 DOI: 10.3390/nano14090794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The reversibility of the covalent interaction between boronic acids and 1,2- or 1,3-diols has put the spotlight on this reaction for its potential in the development of sensors and for the fishing of bioactive glycoconjugates. In this work, we describe the investigation of this reaction for the reversible functionalization of the surface of CdSe/ZnS Quantum Rods (QRs). With this in mind, we have designed a turn-off Förster resonance energy transfer (FRET) system that ensures monitoring the extent of the reaction between the phenyl boronic residue at the meso position of a BODIPY probe and the solvent-exposed 1,2-diols on QRs' surface. The reversibility of the corresponding boronate ester under oxidant conditions has also been assessed, thus envisioning the potential sensing ability of this system.
Collapse
Affiliation(s)
- Gianluca Salerno
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
| | - Pasquale Palladino
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
| | - Marcello Marelli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” del Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Laura Polito
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” del Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Maria Minunni
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Debora Berti
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
| | - Simona Scarano
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
| | - Giacomo Biagiotti
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
11
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | | | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- TestLine Clinical Diagnostics, Křižíkova 188, Brno, 612 00, Czech Republic
| | - Karel Lacina
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
13
|
Dou H, Yuan C, Zhu R, Li L, Zhang J, Weng TC. Impact of Surface Trap States on Electron and Energy Transfer in CdSe Quantum Dots Studied by Femtosecond Transient Absorption Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:34. [PMID: 38202489 PMCID: PMC10780555 DOI: 10.3390/nano14010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
The presence of surface trap states (STSs) is one of the key factors to affect the electronic and optical properties of quantum dots (QDs), however, the exact mechanism of how STSs influence QDs remains unclear. Herein, we demonstrated the impact of STSs on electron transfer in CdSe QDs and triplet-triplet energy transfer (TTET) from CdSe to surface acceptor using femtosecond transient absorption spectroscopy. Three types of colloidal CdSe QDs, each containing various degrees of STSs as evidenced by photoluminescence and X-ray photoelectron spectroscopy, were employed. Time-resolved emission and transient absorption spectra revealed that STSs can suppress band-edge emission effectively, resulting in a remarkable decrease in the lifetime of photoelectrons in QDs from 17.1 ns to 4.9 ns. Moreover, the investigation of TTET process revealed that STSs can suppress the generation of triplet exciton and effectively inhibit band-edge emission, leading to a significant decrease in TTET from CdSe QDs to the surface acceptor. This work presented evidence for STSs influence in shaping the optoelectronic properties of QDs, making it a valuable point of reference for understanding and manipulating STSs in diverse QDs-based optoelectronic applications involving electron and energy transfer.
Collapse
Affiliation(s)
- Hongbin Dou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; (H.D.); (L.L.); (J.Z.)
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Chunze Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; (H.D.); (L.L.); (J.Z.)
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Ruixue Zhu
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Lin Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; (H.D.); (L.L.); (J.Z.)
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Jihao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; (H.D.); (L.L.); (J.Z.)
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; (H.D.); (L.L.); (J.Z.)
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
14
|
Darwish GH, Baker DV, Algar WR. Supra-Quantum Dot Assemblies to Maximize Color-Based Multiplexed Fluorescence Detection with a Smartphone Camera. ACS Sens 2023; 8:4686-4695. [PMID: 37983019 DOI: 10.1021/acssensors.3c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Photoluminescence (PL) imaging and bioanalysis with smartphone-based devices are of growing interest for point-of-care/point-of-need diagnostics. Strategies for maximizing sensitivity have been explored in this context, but color multiplexing has been very limited, with its maximum level unexplored. Here, we evaluated color multiplexing with smartphone-based PL imaging by using supra-nanoparticle assemblies of quantum dots (supra-QDs). These materials were prepared as composite colors that were tailored to the red-green-blue (RGB) color space of smartphone cameras by coassembling different ratios of R-, G-, and B-emitting QDs on a silica nanoparticle scaffold. The supra-QDs were characterized and used to label cell-sized objects that were measured under flow with a smartphone-based device. Each color followed an approximately linear trajectory in the RGB space, and training of support vector machine models enabled color classification with overall accuracies ≥87% for 10-color multiplexing and better accuracies for fewer colors. Most misclassification occurred at low signal levels, such that establishing a nonclassifiable zone near the origin of RGB color space improved the overall 10-color classification accuracy to ≥94%. Similar improvements in accuracy with greater retention of data were possible with a probabilistic rather than a radial threshold. Simulations that were parameterized by experimental data suggested that ≥14-color multiplexing with accuracies ≥90% should be possible with an optimized supra-QD color set. This study is an important foundation for advancing RGB color-based multiplexing for imaging and analyses with smartphone cameras and related charge-coupled device and CMOS color image sensor technologies.
Collapse
Affiliation(s)
- Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Daina V Baker
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| |
Collapse
|
15
|
Krause KD, Rees K, Algar WR. Assessing the Steric Impact of Surface Ligands on the Proteolytic Turnover of Quantum Dot-Peptide Conjugates. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38047551 DOI: 10.1021/acsami.3c12665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Proteases are important biomarkers and targets for the diagnosis and treatment of disease. The advantageous properties of semiconductor quantum dots (QDs) have made these nanoparticles useful as probes for protease activity; however, the effects of QD surface chemistry on protease activity are not yet fully understood. Here, we present a systematic study of the impact of sterics on the proteolysis of QD-peptide conjugates. The study utilized eight proteases (chymotrypsin, trypsin, endoproteinase Lys C, papain, endoproteinase Arg C, thrombin, factor Xa, and plasmin) and 41 distinct surface chemistries. The latter included three molecular weights of each of three macromolecular ligands derived from dextran and polyethylene glycol, as well as anionic and zwitterionic small-molecule ligands, and an array of mixed coatings of macromolecular and small-molecule ligands. These surface chemistries spanned a diversity of thicknesses, densities, and packing organization, as characterized by gel electrophoresis, capillary electrophoresis, dynamic light scattering, and infrared spectroscopy. The macromolecular ligands decreased the adsorption of proteases on the QDs and decelerated proteolysis of the QD-peptide conjugates via steric hindrance. The properties of the QD surface chemistry, rather than the protease properties, were the main factor in determining the magnitude of deceleration. The broad scope of this study provides insights into the many ways in which QD surface chemistry affects protease activity, and will inform the development of optimized nanoparticle-peptide conjugates for sensing of protease activity and resistance to unwanted proteolysis.
Collapse
Affiliation(s)
- Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
16
|
Yu K, Schanze KS. Commemorating The Nobel Prize in Chemistry 2023 for the Discovery and Synthesis of Quantum Dots. ACS CENTRAL SCIENCE 2023; 9:1989-1992. [PMID: 38033796 PMCID: PMC10683490 DOI: 10.1021/acscentsci.3c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
|
17
|
Wang C, Yang WZ, Feng ZM, Cheng ZJ, Jiang ZG, Zhan CH. Selective Passivation of Surface toward Bright Yellow Defective Emission of CdS Quantum Dots. Inorg Chem 2023; 62:16913-16918. [PMID: 37797212 DOI: 10.1021/acs.inorgchem.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
CdE (E = S, Se) quantum dots (QDs) with a broad and large Stokes shift PL emission have emerged as potential materials for white-light LEDs. However, this surface-related emission of nanocrystals is currently limited by low quantum efficiency. Herein, a convenient noninjected one-pot method at a relatively low temperature to prepare CdS QDs was readily achieved. The CdS-368 QD displays intense broad yellow emission in both solution and the solid state at room temperature. The coligation of organic and inorganic ligands passivates the electron trap states at the QD surface and suppresses nonradiative recombination, which is responsible for the high stability of colloids in organic solvents and the distinct fluorescence quantum yield.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Wen-Zhu Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zhi-Ming Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zhen-Jia Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zhan-Guo Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Cai-Hong Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
18
|
Zechel F, Hutár P, Vretenár V, Végsö K, Šiffalovič P, Sýkora M. Green Colloidal Synthesis of MoS 2 Nanoflakes. Inorg Chem 2023; 62:16554-16563. [PMID: 37751900 PMCID: PMC10565897 DOI: 10.1021/acs.inorgchem.3c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Indexed: 09/28/2023]
Abstract
Currently, two approaches dominate the large-scale production of MoS2: liquid-phase exfoliation, referred to as the top-down approach, and bottom-up colloidal synthesis from molecular precursors. Known colloidal synthesis approaches utilize toxic precursors. Here, an alternative green route for the bottom-up synthesis of MoS2 nanoflakes (NFs) is described. The NFs were synthesized by colloidal synthesis using [Mo(CH3COO)2]2 and a series of sulfur (S)-precursors including thioacetamide (TAA), 3-mercaptopropionic acid (3-MPA), l-cysteine (L-CYS), mercaptosuccinic acid (MSA), 11-mercaptoundecanoic acid (MUA), 1-dodecanethiol (DDTH), and di-tert-butyl disulfide (DTBD). While TAA, an S-precursor most commonly used for MoS2 NF preparation, is a known carcinogen, the other investigated S-precursors have low or no known toxicity. High-resolution scanning transmission electron microscopy (HR-STEM) and grazing incidence wide-angle X-ray scattering (GIWAXS) confirmed that in all cases, the syntheses yielded single-layer MoS2 NFs with lateral sizes smaller than 15 nm and a well-defined crystal structure. Electronic absorption and Raman spectra showed characteristic features associated with the MoS2 monolayers. The evolution of the absorption spectra of the growth solution during the syntheses reveals how the kinetics of the NF formation is affected by the S-precursor as well as the nature of the coordinating ligands.
Collapse
Affiliation(s)
- Filip Zechel
- Laboratory
for Advanced Materials, Faculty of Natural Sciences, Comenius University, Ilkovičova 8, 84104 Bratislava, Slovakia
| | - Peter Hutár
- Laboratory
for Advanced Materials, Faculty of Natural Sciences, Comenius University, Ilkovičova 8, 84104 Bratislava, Slovakia
- Institute
of Electrical Engineering, Slovak Academy
of Sciences, Dúbravská
cesta 9, 84104 Bratislava, Slovakia
| | - Viliam Vretenár
- Centre
for Nanodiagnostics of Materials, Faculty of Materials Science and
Technology, Slovak University of Technology, Vazovova 5, 81243 Bratislava, Slovakia
| | - Karol Végsö
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Peter Šiffalovič
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
- Centre
of Excellence for Advanced Materials Application, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Milan Sýkora
- Laboratory
for Advanced Materials, Faculty of Natural Sciences, Comenius University, Ilkovičova 8, 84104 Bratislava, Slovakia
| |
Collapse
|
19
|
Duan J, Wang J, Hou L, Ji P, Zhang W, Liu J, Zhu X, Sun Z, Ma Y, Ma L. Application of Scanning Tunneling Microscopy and Spectroscopy in the Studies of Colloidal Quantum Qots. CHEM REC 2023; 23:e202300120. [PMID: 37255365 DOI: 10.1002/tcr.202300120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Colloidal quantum dots display remarkable optical and electrical characteristics with the potential for extensive applications in contemporary nanotechnology. As an ideal instrument for examining surface topography and local density of states (LDOS) at an atomic scale, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) has become indispensable approaches to gain better understanding of their physical properties. This article presents a comprehensive review of the research advancements in measuring the electronic orbits and corresponding energy levels of colloidal quantum dots in various systems using STM and STS. The first three sections introduce the basic principles of colloidal quantum dots synthesis and the fundamental methodology of STM research on quantum dots. The fourth section explores the latest progress in the application of STM for colloidal quantum dot studies. Finally, a summary and prospective is presented.
Collapse
Affiliation(s)
- Jiaying Duan
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Jiapeng Wang
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Liangpeng Hou
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Peixuan Ji
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Wusheng Zhang
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Jin Liu
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Xiaodong Zhu
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Zhixiang Sun
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin, China, 300072
| | - Yanqing Ma
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Lei Ma
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| |
Collapse
|
20
|
Liu M, Shi X, Cao Q, Li B, Ni Z, Lu C, Pan D, Zou B. An Ultrafast and Room-Temperature Strategy for Kilogram-Scale Synthesis of Sub-5 nm Eu 3+ -doped CaMO 4 Nanocrystals with a Photoluminescence Quantum Yield Exceeding 85. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301680. [PMID: 37026654 DOI: 10.1002/smll.202301680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Rare earth-doped metal oxide nanocrystals have a high potential in display, lighting, and bio-imaging, owing to their excellent emission efficiency, superior chemical, and thermal stability. However, the photoluminescence quantum yields (PLQYs) of rare earth-doped metal oxide nanocrystals have been reported to be much lower than those of the corresponding bulk phosphors, group II-VI, and halide-based perovskite quantum dots because of their poor crystallinity and high-concentration surface defects. Here, an ultrafast and room-temperature strategy for the kilogram-scale synthesis of sub-5 nm Eu3+ -doped CaMoO4 nanocrystals is presented, and this reaction can be finished in 1 min under ambient conditions. The absolute PLQYs for sub-5 nm Eu3+ -doped CaMoO4 nanocrystals can reach over 85%, which are comparable to those of the corresponding bulk phosphors prepared by the high-temperature solid state reaction. Moreover, the as-produced nanocrystals exhibit a superior thermal stability and their emission intensity unexpectedly increases after sintering at 600 °C for 2 h in air. 1.9 kg of Eu3+ -doped CaMoO4 nanocrystals with a PLQY of 85.1% can be obtained in single reaction.
Collapse
Affiliation(s)
- Mengxin Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xinan Shi
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Qiulin Cao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Bo Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhan Ni
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Chengzeng Lu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Daocheng Pan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
21
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
22
|
Darwish GH, Massey M, Daudet G, Alde LG, Algar WR. Tetrameric Antibody Complexes and Affinity Tag Peptides for the Selective Immobilization and Imaging of Single Quantum Dots. Bioconjug Chem 2023. [PMID: 37243625 DOI: 10.1021/acs.bioconjchem.3c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Colloidal semiconductor quantum dots (QDs) are of widespread interest as fluorescent labels for bioanalysis and imaging applications. Single-particle measurements have proven to be a very powerful tool for better understanding the fundamental properties and behaviors of QDs and their bioconjugates; however, a recurring challenge is the immobilization of QDs in a solution-like environment that minimizes interactions with a bulk surface. Immobilization strategies for QD-peptide conjugates are particularly underdeveloped within this context. Here, we present a novel strategy for the selective immobilization of single QD-peptide conjugates using a combination of tetrameric antibody complexes (TACs) and affinity tag peptides. A glass substrate is modified with an adsorbed layer of concanavalin A (ConA) that binds a subsequent layer of dextran that minimizes nonspecific binding. A TAC with anti-dextran and anti-affinity tag antibodies binds to the dextran-coated glass surface and to the affinity tag sequence of QD-peptide conjugates. The result is spontaneous and sequence-selective immobilization of single QDs without any chemical activation or cross-linking. Controlled immobilization of multiple colors of QDs is possible using multiple affinity tag sequences. Experiments confirmed that this approach positions the QD away from the bulk surface. The method supports real-time imaging of binding and dissociation, measurements of Förster resonance energy transfer (FRET), tracking of dye photobleaching, and detection of proteolytic activity. We anticipate that this immobilization strategy will be useful for studies of QD-associated photophysics, biomolecular interactions and processes, and digital assays.
Collapse
Affiliation(s)
- Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Gabrielle Daudet
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Luis G Alde
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
23
|
Anil Kumar Y, Koyyada G, Ramachandran T, Kim JH, Hegazy HH, Singh S, Moniruzzaman M. Recent advancement in quantum dot-based materials for energy storage applications: a review. Dalton Trans 2023. [PMID: 37096427 DOI: 10.1039/d3dt00325f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The need for energy storage and conversion is growing as a result of the worsening consequences of climate change and the depletion of fossil fuels. Energy conversion and storage requirements are rising as a result of environmental problems including global warming and the depletion of fossil fuels. The key to resolving the energy crisis is anticipated to be the quick growth of sustainable energy sources including solar energy, wind energy, and hydrogen energy. In this review, we have focused on discussing various quantum dots (QDs) and polymers or nanocomposites used for SCs and have provided examples of each type's performance. Effective QD use has really led to increased performance efficiency in SCs. The use of quantum dots in energy storage devices, batteries, and various quantum dots synthesis have all been emphasized in a number of great literature articles. In this review, we have homed in on the electrode materials based on quantum dots and their composites for storage and quantum dot based flexible devices that have been published up to this point.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain-15551, United Arab Emirates.
| | - Ganesh Koyyada
- Department of Chemical Engineering, Yeungnam University, 214-1, Daehak-ro 280, Gyeongsan 712-749, Gyeongbuk-do, Republic of Korea.
| | - Tholkappiyan Ramachandran
- Department of Physics, College of Science, United Arab Emirates University, Al Ain-15551, United Arab Emirates.
| | - Jae Hong Kim
- Department of Chemical Engineering, Yeungnam University, 214-1, Daehak-ro 280, Gyeongsan 712-749, Gyeongbuk-do, Republic of Korea.
| | - H H Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P. O. Box 9004, Abha, Saudi Arabia
- Researcher Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Sangeeta Singh
- Microelectronics and VLSI Design Lab, National Institute of Technology Patna, India
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
24
|
Sobhanan J, Rival JV, Anas A, Sidharth Shibu E, Takano Y, Biju V. Luminescent Quantum Dots: Synthesis, Optical Properties, Bioimaging and Toxicity. Adv Drug Deliv Rev 2023; 197:114830. [PMID: 37086917 DOI: 10.1016/j.addr.2023.114830] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Luminescent nanomaterials such as semiconductor nanocrystals (NCs) and quantum dots (QDs) attract much attention to optical detectors, LEDs, photovoltaics, displays, biosensing, and bioimaging. These materials include metal chalcogenide QDs and metal halide perovskite NCs. Since the introduction of cadmium chalcogenide QDs to biolabeling and bioimaging, various metal nanoparticles (NPs), atomically precise metal nanoclusters, carbon QDs, graphene QDs, silicon QDs, and other chalcogenide QDs have been infiltrating the nano-bio interface as imaging and therapeutic agents. Nanobioconjugates prepared from luminescent QDs form a new class of imaging probes for cellular and in vivo imaging with single-molecule, super-resolution, and 3D resolutions. Surface modified and bioconjugated core-only and core-shell QDs of metal chalcogenides (MX; M = Cd/Pb/Hg/Ag, and X = S/Se/Te,), binary metal chalcogenides (MInX2; M = Cu/Ag, and X = S/Se/Te), indium compounds (InAs and InP), metal NPs (Ag, Au, and Pt), pure or mixed precision nanoclusters (Ag, Au, Pt), carbon nanomaterials (graphene QDs, graphene nanosheets, carbon NPs, and nanodiamond), silica NPs, silicon QDs, etc. have become prevalent in biosensing, bioimaging, and phototherapy. While heavy metal-based QDs are limited to in vitro bioanalysis or clinical testing due to their potential metal ion-induced toxicity, carbon (nanodiamond and graphene) and silicon QDs, gold and silica nanoparticles, and metal nanoclusters continue their in vivo voyage towards clinical imaging and therapeutic applications. This review summarizes the synthesis, chemical modifications, optical properties, and bioimaging applications of semiconductor QDs with particular references to metal chalcogenide QDs and bimetallic chalcogenide QDs. Also, this review highlights the toxicity and pharmacokinetics of QD bioconjugates.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Center for Adapting Flaws into Features, Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology, University of Calicut, Kerala, India
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala 682 018, India.
| | | | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan.
| |
Collapse
|
25
|
Rees K, Darwish GH, Algar WR. Dextran-Functionalized Super-nanoparticle Assemblies of Quantum Dots for Enhanced Cellular Immunolabeling and Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18672-18684. [PMID: 37018127 DOI: 10.1021/acsami.3c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Colloidal semiconductor quantum dots (QDs) are a popular material for applications in bioanalysis and imaging. Although individual QDs are bright, some applications benefit from the use of even brighter materials. One approach to achieve higher brightness is to form super-nanoparticle (super-NP) assemblies of many QDs. Here, we present the preparation, characterization, and utility of dextran-functionalized super-NP assemblies of QDs. Amphiphilic dextran was synthesized and used to encapsulate many hydrophobic QDs via a simple emulsion-based method. The resulting super-NP assemblies or "super-QDs" had hydrodynamic diameters of ca. 90-160 nm, were characterized at the ensemble and single-particle levels, had orders-of-magnitude superior brightness compared to individual QDs, and were non-blinking. Additionally, binary mixtures of red, green, and blue (RGB) colors of QDs were used to prepare super-QDs, including colors difficult to obtain from individual QDs (e.g., magenta). Tetrameric antibody complexes (TACs) enabled simple antibody conjugation for selective cellular immunolabeling and imaging with both an epifluorescence microscope and a smartphone-based platform. The technical limitations of the latter platform were overcome by the increased per-particle brightness of the super-QDs, and the super-QDs outperformed individual QDs in both cases. Overall, the super-QDs are a very promising material for bioanalysis and imaging applications where brightness is paramount.
Collapse
Affiliation(s)
- Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
26
|
Das K, Meena R, Gaharwar US, Priyadarshini E, Rawat K, Paulraj R, Mohanta YK, Saravanan M, Bohidar HB. Bioaccumulation of CdSe Quantum Dots Show Biochemical and Oxidative Damage in Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7707452. [PMID: 37064800 PMCID: PMC10101743 DOI: 10.1155/2023/7707452] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/24/2022] [Accepted: 01/19/2023] [Indexed: 04/09/2023]
Abstract
Cadmium selenium quantum dots (CdSe QDs) with modified surfaces exhibit superior dispersion stability and high fluorescence yield, making them desirable biological probes. The knowledge of cellular and biochemical toxicity has been lacking, and there is little information on the correlation between in vitro and in vivo data. The current study was carried out to assess the toxicity of CdSe QDs after intravenous injection in Wistar male rats (230 g). The rats were given a single dose of QDs of 10, 20, 40, and 80 mg/kg and were kept for 30 days. Following that, various biochemical assays, hematological parameters, and bioaccumulation studies were carried out. Functional as well as clinically significant changes were observed. There was a significant increase in WBC while the RBC decreased. This suggested that CdSe quantum dots had inflammatory effects on the treated rats. The various biochemical assays clearly showed that high dose induced hepatic injury. At a dose of 80 mg/kg, bioaccumulation studies revealed that the spleen (120 g/g), liver (78 g/g), and lungs (38 g/g) accumulated the most. In treated Wistar rats, the bioretention profile of QDs was in the following order: the spleen, liver, kidney, lungs, heart, brain, and testis. The accumulation of these QDs induced the generation of intracellular reactive oxygen species, resulting in an alteration in antioxidant activity. It is concluded that these QDs caused oxidative stress, which harmed cellular functions and, under certain conditions, caused partial brain, kidney, spleen, and liver dysfunction. This is one of the most comprehensive in vivo studies on the nanotoxicity of CdSe quantum dots.
Collapse
Affiliation(s)
- Kishan Das
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramovatar Meena
- School of Environment Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Usha Singh Gaharwar
- School of Environment Sciences, Jawaharlal Nehru University, New Delhi, India
- Swami Shraddhanand College, University of Delhi, Delhi, India
| | | | - Kamla Rawat
- Department of Chemistry, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi, India
| | - R. Paulraj
- School of Environment Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Baridua-793101, Ri-Bhoi Dist., Meghalaya, India
| | - Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Sciences, Mekelle University, Tigray, Ethiopia
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077 Chennai, India
| | - Himadri B. Bohidar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
27
|
Xu Q, Xiao F, Xu H. Fluorescent detection of emerging virus based on nanoparticles: From synthesis to application. Trends Analyt Chem 2023; 161:116999. [PMID: 36852170 PMCID: PMC9946731 DOI: 10.1016/j.trac.2023.116999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The spread of COVID-19 has caused huge economic losses and irreversible social impact. Therefore, to successfully prevent the spread of the virus and solve public health problems, it is urgent to develop detection methods with high sensitivity and accuracy. However, existing detection methods are time-consuming, rely on instruments, and require skilled operators, making rapid detection challenging to implement. Biosensors based on fluorescent nanoparticles have attracted interest in the field of detection because of their advantages, such as high sensitivity, low detection limit, and simple result readout. In this review, we systematically describe the synthesis, intrinsic advantages, and applications of organic dye-doped fluorescent nanoparticles, metal nanoclusters, up-conversion particles, quantum dots, carbon dots, and others for virus detection. Furthermore, future research initiatives are highlighted, including green production of fluorescent nanoparticles with high quantum yield, speedy signal reading by integrating with intelligent information, and error reduction by coupling with numerous fluorescent nanoparticles.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|
28
|
Yu YQ, Chen WQ, Li XH, Liu M, He XH, Liu Y, Jiang FL. Quantum Dots Meet Enzymes: Hydrophobicity of Surface Ligands and Size Do Matter. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3967-3978. [PMID: 36877959 DOI: 10.1021/acs.langmuir.2c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Colloidal quantum dots (QDs) are a class of representative fluorescent nanomaterials with tunable, bright, and sharp fluorescent emission, with promising biomedical applications. However, their effects on biological systems are not fully elucidated. In this work, we investigated the interactions between QDs with different surface ligands and different particle sizes and α-chymotrypsin (ChT) from the thermodynamic and kinetic perspectives. Enzymatic activity experiments demonstrated that the catalytic activity of ChT was strongly inhibited by QDs coated with dihydrolipoic acid (DHLA-QDs) with noncompetitive inhibitions, whereas the QDs coated with glutathione (GSH-QDs) had weak effects. Furthermore, kinetics studies showed that different particle sizes of DHLA-QDs all had high suppressive effects on the catalytic activity of ChT. It was found that DHLA-QDs with larger particle sizes had stronger inhibition effects because more ChT molecules were bound onto the surface of QDs. This work highlights the importance of hydrophobic ligands and particle sizes of QDs, which should be considered as the primary influencing factors in the assessment of biosafety. Meanwhile, the results herein can also inspire the design of nano inhibitors.
Collapse
Affiliation(s)
- Ying-Qi Yu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Wen-Qi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Han Li
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Meng Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Hang He
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
29
|
Shulenberger KE, Jilek MR, Sherman SJ, Hohman BT, Dukovic G. Electronic Structure and Excited State Dynamics of Cadmium Chalcogenide Nanorods. Chem Rev 2023; 123:3852-3903. [PMID: 36881852 DOI: 10.1021/acs.chemrev.2c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The cylindrical quasi-one-dimensional shape of colloidal semiconductor nanorods (NRs) gives them unique electronic structure and optical properties. In addition to the band gap tunability common to nanocrystals, NRs have polarized light absorption and emission and high molar absorptivities. NR-shaped heterostructures feature control of electron and hole locations as well as light emission energy and efficiency. We comprehensively review the electronic structure and optical properties of Cd-chalcogenide NRs and NR heterostructures (e.g., CdSe/CdS dot-in-rods, CdSe/ZnS rod-in-rods), which have been widely investigated over the last two decades due in part to promising optoelectronic applications. We start by describing methods for synthesizing these colloidal NRs. We then detail the electronic structure of single-component and heterostructure NRs and follow with a discussion of light absorption and emission in these materials. Next, we describe the excited state dynamics of these NRs, including carrier cooling, carrier and exciton migration, radiative and nonradiative recombination, multiexciton generation and dynamics, and processes that involve trapped carriers. Finally, we describe charge transfer from photoexcited NRs and connect the dynamics of these processes with light-driven chemistry. We end with an outlook that highlights some of the outstanding questions about the excited state properties of Cd-chalcogenide NRs.
Collapse
Affiliation(s)
| | - Madison R Jilek
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Skylar J Sherman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin T Hohman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States.,Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
30
|
Penk DN, Endres EJ, Nuriye AY, Macdonald JE. Dependence of Transition-Metal Telluride Phases on Metal Precursor Reactivity and Mechanistic Implications. Inorg Chem 2023; 62:3947-3956. [PMID: 36802520 DOI: 10.1021/acs.inorgchem.2c04342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Modern bottom-up synthesis to nanocrystalline solid-state materials often lacks the reasoned product control that molecular chemistry boasts from having over a century of research and development. In this study, six transition metals including iron, cobalt, nickel, ruthenium, palladium, and platinum were reacted with the mild reagent didodecyl ditelluride in their acetylacetonate, chloride, bromide, iodide, and triflate salts. This systematic analysis demonstrates how rationally matching the reactivity of metal salts to the telluride precursor is necessary for the successful production of metal tellurides. The trends in reactivity suggest that radical stability is the better predictor of metal salt reactivity than hard-soft acid-base theory. Of the six transition-metal tellurides, the first colloidal syntheses of iron and ruthenium tellurides (FeTe2 and RuTe2) are reported.
Collapse
Affiliation(s)
| | | | - Ahmed Y Nuriye
- Department of Chemistry, The Pennsylvania State University, Abington, Pennsylvania 19001, United States
| | | |
Collapse
|
31
|
Thiel F, Palencia C, Weller H. Kinetic Analysis of the Cation Exchange in Nanorods from Cu 2-xS to CuInS 2: Influence of Djurleite's Phase Transition Temperature on the Mechanism. ACS NANO 2023; 17:3676-3685. [PMID: 36749683 DOI: 10.1021/acsnano.2c10693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the syntheses of ternary I-III-VI2 compounds, such as CuInS2, it is often difficult to balance three precursor reactivities to achieve the desired size, shape, and atomic composition of nanocrystals. Cation exchange reactions offer an attractive two-step alternative, by producing a binary compound with the desired morphology and incorporating another atomic species postsynthetically. However, the kinetics of such cation exchange reactions, especially for anisotropic nanocrystals, are still not fully understood. Here, we present the cation exchange reaction from Cu-deficient djurleite Cu2-xS nanorods to wurtzite CuInS2, with size and shape retention. With reaction parameters in a broad temperature range between 40 °C and 160 °C, we were able to obtain various intermediates. Djurleite has a bulk phase transition temperature at 93 °C, which influences the cation exchange considerably. Below the phase transition temperature, indium is only incorporated into the surface of the nanorods, while, at temperatures above the phase transition temperature, we observe a Janus-type exchange mechanism and the formation of CuInS2 bands in the djurleite nanorods. The findings suggest that the diffusion above the phase transition temperature is strongly favored along the copper planes of the copper sulfide nanorods over the diffusion through the sulfur planes. This results in a difference of 37 kJ mol-1 in the activation energy of the cation exchange below and above the phase transition temperature.
Collapse
Affiliation(s)
- Felix Thiel
- Department of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Cristina Palencia
- Department of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Horst Weller
- Department of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Fraunhofer-CAN, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
32
|
An Off-Off fluorescence sensor based on ZnS quantum dots for detection of glutathione. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
van Embden J, Gross S, Kittilstved KR, Della Gaspera E. Colloidal Approaches to Zinc Oxide Nanocrystals. Chem Rev 2023; 123:271-326. [PMID: 36563316 DOI: 10.1021/acs.chemrev.2c00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc oxide is an extensively studied semiconductor with a wide band gap in the near-UV. Its many interesting properties have found use in optics, electronics, catalysis, sensing, as well as biomedicine and microbiology. In the nanoscale regime the functional properties of ZnO can be precisely tuned by manipulating its size, shape, chemical composition (doping), and surface states. In this review, we focus on the colloidal synthesis of ZnO nanocrystals (NCs) and provide a critical analysis of the synthetic methods currently available for preparing ZnO colloids. First, we outline key thermodynamic considerations for the nucleation and growth of colloidal nanoparticles, including an analysis of different reaction methodologies and of the role of dopant ions on nanoparticle formation. We then comprehensively review and discuss the literature on ZnO NC systems, including reactions in polar solvents that traditionally occur at low temperatures upon addition of a base, and high temperature reactions in organic, nonpolar solvents. A specific section is dedicated to doped NCs, highlighting both synthetic aspects and structure-property relationships. The versatility of these methods to achieve morphological and compositional control in ZnO is explicated. We then showcase some of the key applications of ZnO NCs, both as suspended colloids and as deposited coatings on supporting substrates. Finally, a critical analysis of the current state of the art for ZnO colloidal NCs is presented along with existing challenges and future directions for the field.
Collapse
Affiliation(s)
- Joel van Embden
- School of Science, RMIT University, MelbourneVictoria, 3001, Australia
| | - Silvia Gross
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131Padova, Italy.,Karlsruher Institut für Technologie (KIT), Institut für Technische Chemie und Polymerchemie (ITCP), Engesserstrasse 20, 76131Karlsruhe, Germany
| | - Kevin R Kittilstved
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | | |
Collapse
|
34
|
Ali A, Shin YH. Strain and thickness effects on the electronic structures of low-energy two-dimensional Cd xTe y phases. Phys Chem Chem Phys 2022; 24:29772-29780. [PMID: 36458904 DOI: 10.1039/d2cp04123e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cadmium telluride (CdTe) has prime importance in photovoltaics due to its direct band gap of 1.45 eV. However, its two-dimensional counterparts have not been fully explored due to polymorphism. We investigated the energy phase diagram of 2D CdxTey (x + y ≤ 8) using state-of-art computational methods and found the phases of CdTe and CdTe2 on and near the energy convex-hull, respectively. Further screening of phonon and ab initio molecular dynamics simulations confirms their experimental viability. These structures reveal promising electronic properties. 2D CdTe has a robust direct band gap unaffected by thickness, monolayer to trilayer and bulk, and strain as high as ±7%. Such robust semiconductors are crucial for device applications because of challenges in the growth of wafer-scale uniform monolayers. In contrast, the direct band gap of 2D transition metal dichalcogenides is highly sensitive to thickness and strain, limiting their usage in devices. The 2D CdTe2 has an indirect band gap whose magnitude is tunable by strain. The robust direct band gap of 2D CdTe and the tunable indirect band gap of CdTe2 make them potential candidates for optoelectronic devices.
Collapse
Affiliation(s)
- Asad Ali
- Multiscale Materials Modeling Laboratory, Department of Physics, University of Ulsan, Ulsan 44610, Republic of Korea.
| | - Young-Han Shin
- Multiscale Materials Modeling Laboratory, Department of Physics, University of Ulsan, Ulsan 44610, Republic of Korea.
| |
Collapse
|
35
|
He L, Luan C, Liu S, Chen M, Rowell N, Wang Z, Li Y, Zhang C, Lu J, Zhang M, Liang B, Yu K. Transformations of Magic-Size Clusters via Precursor Compound Cation Exchange at Room Temperature. J Am Chem Soc 2022; 144:19060-19069. [PMID: 36215103 DOI: 10.1021/jacs.2c07972] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transformation of colloidal semiconductor magic-size clusters (MSCs) from zinc to cadmium chalcogenide (ZnE to CdE) at low temperatures has received scant attention. Here, we report the first room-temperature evolution of CdE MSCs from ZnE samples and our interpretation of the transformation pathway. We show that when prenucleation stage samples of ZnE are mixed with cadmium oleate (Cd(OA)2), CdE MSCs evolve; without this mixing, ZnE MSCs develop. When ZnE MSCs and Cd(OA)2 are mixed, CdE MSCs also form. We propose that Cd(OA)2 reacts with the precursor compounds (PCs) of the ZnE MSCs but not directly with the ZnE MSCs. The cation exchange reaction transforms the ZnE PCs into CdE PCs, from which CdE MSCs develop. Our findings suggest that in reactions that lead to the production of binary ME quantum dots, the E precursor dominates the formation of binary ME PCs (M = Zn or Cd) to have similar stoichiometry. The present study provides a much more profound view of the formation and transformation mechanisms of the ME PCs.
Collapse
Affiliation(s)
- Li He
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Chaoran Luan
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Shangpu Liu
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Meng Chen
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Nelson Rowell
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Ze Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Yang Li
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Jiao Lu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Bin Liang
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China.,Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
36
|
Zhang Q, Zhang X, Ma F, Zhang CY. Advances in quantum dot-based biosensors for DNA-modifying enzymes assay. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Simple model of the electrophoretic migration of spherical and rod-shaped Au nanoparticles in gels with varied mesh sizes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Estrada AC, Daniel-da-Silva AL, Leal C, Monteiro C, Lopes CB, Nogueira HIS, Lopes I, Martins MJ, Martins NCT, Gonçalves NPF, Fateixa S, Trindade T. Colloidal nanomaterials for water quality improvement and monitoring. Front Chem 2022; 10:1011186. [PMID: 36238095 PMCID: PMC9551176 DOI: 10.3389/fchem.2022.1011186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
Water is the most important resource for all kind forms of live. It is a vital resource distributed unequally across different regions of the globe, with populations already living with water scarcity, a situation that is spreading due to the impact of climate change. The reversal of this tendency and the mitigation of its disastrous consequences is a global challenge posed to Humanity, with the scientific community assuming a major obligation for providing solutions based on scientific knowledge. This article reviews literature concerning the development of nanomaterials for water purification technologies, including collaborative scientific research carried out in our laboratory (nanoLAB@UA) framed by the general activities carried out at the CICECO-Aveiro Institute of Materials. Our research carried out in this specific context has been mainly focused on the synthesis and surface chemical modification of nanomaterials, typically of a colloidal nature, as well as on the evaluation of the relevant properties that arise from the envisaged applications of the materials. As such, the research reviewed here has been guided along three thematic lines: 1) magnetic nanosorbents for water treatment technologies, namely by using biocomposites and graphite-like nanoplatelets; 2) nanocomposites for photocatalysis (e.g., TiO2/Fe3O4 and POM supported graphene oxide photocatalysts; photoactive membranes) and 3) nanostructured substrates for contaminant detection using surface enhanced Raman scattering (SERS), namely polymers loaded with Ag/Au colloids and magneto-plasmonic nanostructures. This research is motivated by the firm believe that these nanomaterials have potential for contributing to the solution of environmental problems and, conversely, will not be part of the problem. Therefore, assessment of the impact of nanoengineered materials on eco-systems is important and research in this area has also been developed by collaborative projects involving experts in nanotoxicity. The above topics are reviewed here by presenting a brief conceptual framework together with illustrative case studies, in some cases with original research results, mainly focusing on the chemistry of the nanomaterials investigated for target applications. Finally, near-future developments in this research area are put in perspective, forecasting realistic solutions for the application of colloidal nanoparticles in water cleaning technologies.
Collapse
Affiliation(s)
- Ana C. Estrada
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Ana L. Daniel-da-Silva
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Cátia Leal
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Cátia Monteiro
- Department of Biology and CESAM-Centre of Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Cláudia B. Lopes
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Helena I. S. Nogueira
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology and CESAM-Centre of Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Maria J. Martins
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Natércia C. T. Martins
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Nuno P. F. Gonçalves
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Sara Fateixa
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- *Correspondence: Tito Trindade,
| |
Collapse
|
39
|
Lv L, Liu S, Li J, Lei H, Qin H, Peng X. Synthesis of Weakly Confined, Cube-Shaped, and Monodisperse Cadmium Chalcogenide Nanocrystals with Unexpected Photophysical Properties. J Am Chem Soc 2022; 144:16872-16882. [PMID: 36067446 DOI: 10.1021/jacs.2c05151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zinc-blende CdSe, CdS, and CdSe/CdS core/shell nanocrystals with a structure-matched shape (cube-shaped, edge length ≤30 nm) are synthesized via a universal scheme. With the edge length up to five times larger than exciton diameter of the bulk semiconductors, the nanocrystals exhibit novel properties in the weakly confined size regime, such as near-unity single exciton and biexciton photoluminescence (PL) quantum yields, single-nanocrystal PL nonblinking, mixed PL decay dynamics of exciton and free carriers with sub-microsecond monoexponential decay lifetime, and stable yet extremely narrow PL full width at half maximum (FWHM < 0.1 meV) at 1.8 K. Their monodisperse edge length, shape, and facet structure enable demonstration of unexpected yet size-dependent PL properties at room temperature, including unusually broad and abnormally size-dependent PL FWHM (∼100 meV), nonmonotonic size dependence of PL peak energy, and dual-peak single-exciton PL. Calculations suggest that these unusual properties should be originated from the band-edge electron/hole states of the dynamic-exciton, whose exciton binding energy is too small to hold the photogenerated electron-hole pair as a bonded Wannier exciton in a weakly confined nanocrystal.
Collapse
Affiliation(s)
- Liulin Lv
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shaojie Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiongzhao Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haixin Lei
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haiyan Qin
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
40
|
Li J, Zheng H, Zheng Z, Rong H, Zeng Z, Zeng H. Synthesis of CdSe and CdSe/ZnS Quantum Dots with Tunable Crystal Structure and Photoluminescent Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2969. [PMID: 36080006 PMCID: PMC9457710 DOI: 10.3390/nano12172969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/06/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Mastery over the structure of nanocrystals is a powerful tool for the control of their fluorescence properties and to broaden the range of their applications. In this work, the crystalline structure of CdSe can be tuned by the precursor concentration and the dosage of tributyl phosphine, which is verified by XRD, photoluminescence and UV-vis spectra, TEM observations, and time-correlated single photon counting (TCSPC) technology. Using a TBP-assisted thermal-cycling technique coupled with the single precursor method, core-shell QDs with different shell thicknesses were then prepared. The addition of TBP improves the isotropic growth of the shell, resulting in a high QY value, up to 91.4%, and a single-channel decay characteristic of CdSe/ZnS quantum dots. This work not only provides a facile synthesis route to precisely control the core-shell structures and fluorescence properties of CdSe nanocrystals but also builds a link between ligand chemistry and crystal growth theory.
Collapse
Affiliation(s)
- Jingling Li
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Haixin Zheng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Ziming Zheng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Haibo Rong
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
- School of Light Industry and Materials, Guangdong Polytechnic, Foshan 528041, China
| | - Zhidong Zeng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Hui Zeng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| |
Collapse
|
41
|
Liu HY, Su WY, Chang CJ, Lin SY, Huang CY. Van der Waals Epitaxy of Thin Gold Films on 2D Material Surfaces for Transparent Electrodes: All-Solution-Processed Quantum Dot Light-Emitting Diodes on Flexible Substrates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36855-36863. [PMID: 35917235 DOI: 10.1021/acsami.2c09645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the assistance of van der Waals (vdW) epitaxy, nanometer-thick and highly conductive gold films are deposited onto MoS2 surfaces for use as transparent anode electrodes in quantum dot light-emitting diodes (QLEDs) on poly(ethylene terephthalate) (PET) substrates. After transferring wafer-scale and monolayer MoS2 to PET substrates, 10 nm thick gold (Au) films are deposited onto the two-dimensional (2D) material surfaces as anode electrodes. Bounded only by weak vdW forces on 2D material surfaces, the diffusive Au adatoms tend to facilitate lateral growth and lead to the formation of continuous and highly conductive thin metal films in the nanometer regime. The Au film exhibits excellent tensile bending stability for its sheet resistance, which is superior to that of rigid indium-tin oxide (ITO) films on PET substrates. Thermally stable CdSe@CdZnS/ZnS QLEDs are fabricated on the PET substrate. Compared with devices fabricated on sapphire substrates, the phenomenon of sub-bandgap turn-on is observed for the flexible device. Based on our demonstrations, the high conductivity and robust durability toward substrate bending make the nanometer-thick Au film grown on 2D material surfaces a promising candidate to replace current ITO anode electrodes for flexible device applications.
Collapse
Affiliation(s)
- Hsiang-Yen Liu
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan
| | - Wei-Ya Su
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan
| | - Che-Jia Chang
- Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei City 11529, Taiwan
| | - Shih-Yen Lin
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan
- Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei City 11529, Taiwan
| | - Chun-Yuan Huang
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan
| |
Collapse
|
42
|
Imran M, Ashraf W, Hafiz AK, Khanuja M. Synthesis and Performance Analysis of Photocatalytic Activity of ZnIn 2S 4 Microspheres Synthesized Using a Low-Temperature Method. ACS OMEGA 2022; 7:22987-22996. [PMID: 35847261 PMCID: PMC9280934 DOI: 10.1021/acsomega.2c00945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this paper, we report the synthesis of zinc indium sulfide (ZnIn2S4) microspheres synthesized via a low-temperature route, and the as-synthesized material was used for photocatalytic degradation of malachite green (MG), methyl orange (MO), and Direct Red 80 (DR-80) dyes. The as-synthesized material was characterized by powder X-ray diffraction and field-emission scanning electron microscopy for studying the crystal structure and surface morphology, respectively. Fourier transform infrared spectroscopy was performed to determine the functional groups attached. UV-Visible absorption spectrometry was done for light absorbance and band gap analysis, and Mott-Schottky analysis was performed to determine the nature and flat band potential of the material. A scavenger study was performed to analyze the active species taking part in the degradation process. The reusability of the material was tested up to four cycles to check the reduction in efficiency after each cycle. A time-correlated single-photon counting study was performed to observe the average lifetime of generated excitons during photocatalysis. It was found that the as-synthesized porous sample is more efficient in degrading the cationic dye than anionic dyes, which is further explained in the article.
Collapse
|
43
|
Luan C, Shen Q, Rowell N, Zhang M, Chen X, Huang W, Yu K. A Real‐Time In‐situ Demonstration of Direct and Indirect Transformation Pathways in CdTe Magic‐size Clusters at Room Temperature. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chaoran Luan
- Sichuan University Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital CHINA
| | - Qiu Shen
- Sichuan University National Engineering Research Center for Biomaterials, College of Biomedical Engineering CHINA
| | - Nelson Rowell
- National Research Council Canada Metrology Research Centre CANADA
| | - Meng Zhang
- Sichuan University Institute of Atomic and Molecular Physics CHINA
| | - Xiaoqin Chen
- Sichuan University National Engineering Research Center for Biomaterials, College of Biomedical Engineering CHINA
| | - Wen Huang
- Sichuan University Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital CHINA
| | - Kui Yu
- Sichuan University National Engineering Research Center for Biomaterials No. 24, South Section, First Ring Road, Chengdu 610065 Chengdu CHINA
| |
Collapse
|
44
|
Luan C, Shen Q, Rowell N, Zhang M, Chen X, Huang W, Yu K. A Real-Time In Situ Demonstration of Direct and Indirect Transformation Pathways in CdTe Magic-Size Clusters at Room Temperature. Angew Chem Int Ed Engl 2022; 61:e202205784. [PMID: 35794715 DOI: 10.1002/anie.202205784] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 02/05/2023]
Abstract
The transformations of colloidal semiconductor magic-size clusters (MSCs) are expected to occur with only discrete, step-wise redshifts in optical absorption. Here, we challenge this assumption presenting a novel, conceptually different transformation, for which the redshift is continuous. In the room-temperature transformation from CdTe MSC-448 to MSC-488 (designated by the peak wavelengths in nanometer), the redshift of absorption monitored in situ displays distinctly continuous and/or step-wise behavior. Based on conclusive evidence provided by real-time experiments, the former transformation is apparently direct and intra-cluster with a relatively large energy barrier. The latter transformation is indirect and assisted by MSC precursor compounds (PCs). The former transformation follows the latter often, being predominant at a relatively high temperature. The present findings encourage a reconsideration of the absorption redshift reported previously for transformations of binary II-VI MSCs, together with the pathway associated without the increase of cluster mass.
Collapse
Affiliation(s)
- Chaoran Luan
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Qiu Shen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Nelson Rowell
- Metrology Research Centre, National Research Council Canada, Ontario, K1A 0R6, Canada
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Xiaoqin Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Wen Huang
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Kui Yu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
45
|
Chen Z, Wang Q, Tong Y, Liu X, Zhao J, Peng B, Zeng R, Pan S, Zou B, Xiang W. Tunable Green Light-Emitting CsPbBr 3 Based Perovskite-Nanocrystals-in-Glass Flexible Film Enables Production of Stable Backlight Display. J Phys Chem Lett 2022; 13:4701-4709. [PMID: 35608371 DOI: 10.1021/acs.jpclett.2c00076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite recent advances in producing perovskite-nanocrystals-in-glass (PNG) for display application, it remains challenging to achieve ultrapure and large-area CsPbBr3 PNG-based flexible films with tunable green emission. Herein, we report a facile strategy to produce flexible film containing CsPbBr3 PNG. Specifically, the achievement of CsPbBr3 PNG with tunable green emissions (517-528 nm) is realized by elaborate regulation of the glass precursor concentration and thermal treatment temperature by an in situ growth method. With the integration of red-light-emitting CsPbBrxI3-x PNG powder, the color gamut of as-prepared white-light-emitting sources can cover up to 126.27% of the NTSC 1953 standard and 93.9% of the Rec. 2020 standard. Notably, flexible and large-area white-light-emitting films can be readily obtained by sandwiching and gluing mixed PNG powders between two layers of hydrophobic and transparent PET films. Intriguingly, as-prepared PNG films exhibit excellent hydrothermal, photostability, and long-term operation stability, making them promising for practical ultrahigh-definition displays.
Collapse
Affiliation(s)
- Zhaoping Chen
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Qin Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yao Tong
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaoting Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jialong Zhao
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Biaolin Peng
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Ruosheng Zeng
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Shuang Pan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bingsuo Zou
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Weidong Xiang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
46
|
Zhang Y, Cao Z, Zhang H, Luan C, Chen X, Li Y, Yang Y, Li Y, Zeng J, Yu K. Room-Temperature Evolution of Ternary CdTeS Magic-Size Clusters Exhibiting Sharp Absorption Peaking at 381 nm. JOURNAL OF PHYSICAL CHEMISTRY LETTERS 2022; 13:4941-4948. [PMID: 35635487 DOI: 10.1021/acs.jpclett.2c00884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yi Zhang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Zhaopeng Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Hai Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Chaoran Luan
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Yang Li
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Yusha Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Yan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| |
Collapse
|
47
|
Dhaene E, Pokratath R, Aalling-Frederiksen O, Jensen KMØ, Smet PF, De Buysser K, De Roo J. Monoalkyl Phosphinic Acids as Ligands in Nanocrystal Synthesis. ACS NANO 2022; 16:7361-7372. [PMID: 35476907 DOI: 10.1021/acsnano.1c08966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ligands play a crucial role in the synthesis of colloidal nanocrystals. Nevertheless, only a handful molecules are currently used, oleic acid being the most typical example. Here, we show that monoalkyl phosphinic acids are another interesting ligand class, forming metal complexes with a reactivity that is intermediate between the traditional carboxylates and phosphonates. We first present the synthesis of n-hexyl, 2-ethylhexyl, n-tetradecyl, n-octadecyl, and oleylphosphinic acid. These compounds are suitable ligands for high-temperature nanocrystal synthesis (240-300 °C) since, in contrast to phosphonic acids, they do not form anhydride oligomers. Consequently, CdSe quantum dots synthesized with octadecylphosphinic acid are conveniently purified, and their UV-vis spectrum is free from background scattering. The CdSe nanocrystals have a low polydispersity and a photoluminescence quantum yield up to 18% (without shell). Furthermore, we could synthesize CdSe and CdS nanorods using phosphinic acid ligands with high shape purity. We conclude that the reactivity toward TOP-S and TOP-Se precursors decreases in the following series: cadmium carboxylate > cadmium phosphinate > cadmium phosphonate. By introducing a third and intermediate class of surfactants, we enhance the versatility of surfactant-assisted syntheses.
Collapse
Affiliation(s)
- Evert Dhaene
- Department of Chemistry, Ghent University, Gent B-9000, Belgium
| | - Rohan Pokratath
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | | | - Kirsten M Ø Jensen
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Philippe F Smet
- Department of Solid State Sciences, Ghent University, Gent B-9000, Belgium
| | | | - Jonathan De Roo
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| |
Collapse
|
48
|
Asadov SM, Anisimov MA, Kel’baliev KI, Lukichev VF. Modeling of Colloidal Crystallization of Cadmium Selenide. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Han M, Karatum O, Nizamoglu S. Optoelectronic Neural Interfaces Based on Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20468-20490. [PMID: 35482955 PMCID: PMC9100496 DOI: 10.1021/acsami.1c25009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/15/2022] [Indexed: 05/26/2023]
Abstract
Optoelectronic modulation of neural activity is an emerging field for the investigation of neural circuits and the development of neural therapeutics. Among a wide variety of nanomaterials, colloidal quantum dots provide unique optoelectronic features for neural interfaces such as sensitive tuning of electron and hole energy levels via the quantum confinement effect, controlling the carrier localization via band alignment, and engineering the surface by shell growth and ligand engineering. Even though colloidal quantum dots have been frontier nanomaterials for solar energy harvesting and lighting, their application to optoelectronic neural interfaces has remained below their significant potential. However, this potential has recently gained attention with the rise of bioelectronic medicine. In this review, we unravel the fundamentals of quantum-dot-based optoelectronic biointerfaces and discuss their neuromodulation mechanisms starting from the quantum dot level up to electrode-electrolyte interactions and stimulation of neurons with their physiological pathways. We conclude the review by proposing new strategies and possible perspectives toward nanodevices for the optoelectronic stimulation of neural tissue by utilizing the exceptional nanoscale properties of colloidal quantum dots.
Collapse
Affiliation(s)
- Mertcan Han
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Onuralp Karatum
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
- Graduate
School of Biomedical Science and Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
50
|
Wang L, Bai J, Zhang T, Huang X, Hou T, Xu B, Li D, Li Q, Jin X, Wang Y, Zhang X, Song Y. Controlling the emission linewidths of alloy quantum dots with asymmetric strain. J Colloid Interface Sci 2022; 624:287-295. [DOI: 10.1016/j.jcis.2022.05.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
|