1
|
Palivan CG, Heuberger L, Gaitzsch J, Voit B, Appelhans D, Borges Fernandes B, Battaglia G, Du J, Abdelmohsen L, van Hest JCM, Hu J, Liu S, Zhong Z, Sun H, Mutschler A, Lecommandoux S. Advancing Artificial Cells with Functional Compartmentalized Polymeric Systems - In Honor of Wolfgang Meier. Biomacromolecules 2024; 25:5454-5467. [PMID: 39196319 DOI: 10.1021/acs.biomac.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The fundamental building block of living organisms is the cell, which is the universal biological base of all living entities. This micrometric mass of cytoplasm and the membrane border have fascinated scientists due to the highly complex and multicompartmentalized structure. This specific organization enables numerous metabolic reactions to occur simultaneously and in segregated spaces, without disturbing each other, but with a promotion of inter- and intracellular communication of biomolecules. At present, artificial nano- and microcompartments, whether as single components or self-organized in multicompartment architectures, hold significant value in the study of life development and advanced functional materials and in the fabrication of molecular devices for medical applications. These artificial compartments also possess the properties to encapsulate, protect, and control the release of bio(macro)molecules through selective transport processes, and they are capable of embedding or being connected with other types of compartments. The self-assembly mechanism of specific synthetic compartments and thus the fabrication of a simulated organelle membrane are some of the major aspects to gain insight. Considerable efforts have now been devoted to design various nano- and microcompartments and understand their functionality for precise control over properties. Of particular interest is the use of polymeric vesicles for communication in synthetic cells and colloidal systems to reinitiate chemical and biological communication and thus close the gap toward biological functions. Multicompartment systems can now be effectively created with a high level of hierarchical control. In this way, these structures can not only be explored to deepen our understanding of the functional organization of living cells, but also pave the way for many more exciting developments in the biomedical field.
Collapse
Affiliation(s)
- Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Barbara Borges Fernandes
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Loai Abdelmohsen
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, and International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Angela Mutschler
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
2
|
Wei J, Xu H, Sun Y, Liu Y, Yan R, Chen Y, Zhang Z. Magnetite Nanoparticle Assemblies and Their Biological Applications: A Review. Molecules 2024; 29:4160. [PMID: 39275008 PMCID: PMC11397167 DOI: 10.3390/molecules29174160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Magnetite nanoparticles (Fe3O4 NPs) have garnered significant attention over the past twenty years, primarily due to their superparamagnetic properties. These properties allow the NPs to respond to external magnetic fields, making them particularly useful in various technological applications. One of the most fascinating aspects of Fe3O4 NPs is their ability to self-assemble into complex structures. Research over this period has focused heavily on how these nanoparticles can be organized into a variety of superstructures, classified by their dimensionality-namely one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) configurations. Despite a wealth of studies, the literature lacks a systematic review that synthesizes these findings. This review aims to fill that gap by providing a thorough overview of the recent progress made in the fabrication and organization of Fe3O4 NP assemblies via a bottom-up self-assembly approach. This methodology enables the controlled construction of assemblies at the nanoscale, which can lead to distinctive functionalities compared to their individual counterparts. Furthermore, the review explores the diverse applications stemming from these nanoparticle assemblies, particularly emphasizing their contributions to important areas such as imaging, drug delivery, and the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Hong Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yating Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yingchun Liu
- Jinan Guoke Medical Technology Development Co., Ltd., Jinan 250000, China
| | - Ran Yan
- Jinan Petrochemical Design Institute, Jinan 250100, China
| | - Yuqin Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zhide Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
3
|
Sharma A, Zhu Y, Spangler EJ, Hoang TB, Laradji M. Highly Ordered Nanoassemblies of Janus Spherocylindrical Nanoparticles Adhering to Lipid Vesicles. ACS NANO 2024; 18:12957-12969. [PMID: 38720633 DOI: 10.1021/acsnano.4c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In recent years, there has been a heightened interest in the self-assembly of nanoparticles (NPs) that is mediated by their adsorption onto lipid membranes. The interplay between the adhesive energy of NPs on a lipid membrane and the membrane's curvature energy causes it to wrap around the NPs. This results in an interesting membrane curvature-mediated interaction, which can lead to the self-assembly of NPs on lipid membranes. Recent studies have demonstrated that Janus spherical NPs, which adhere to lipid vesicles, can self-assemble into well-ordered nanoclusters with various geometries, including a few Platonic solids. The present study explores the additional effect of geometric anisotropy on the self-assembly of Janus NPs on lipid vesicles. Specifically, the current study utilized extensive molecular dynamics simulations to investigate the arrangement of Janus spherocylindrical NPs on lipid vesicles. We found that the additional geometric anisotropy significantly expands the range of NPs' self-assemblies on lipid vesicles. The specific geometries of the resulting nanoclusters depend on several factors, including the number of Janus spherocylindrical NPs adhering to the vesicle and their aspect ratio. The lipid membrane-mediated self-assembly of NPs, demonstrated by this work, provides an alternative cost-effective route for fabricating highly engineered nanoclusters in three dimensions. Such structures, with the current wide range of material choices, have great potential for advanced applications, including biosensing, bioimaging, drug delivery, nanomechanics, and nanophotonics.
Collapse
Affiliation(s)
- Abash Sharma
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Yu Zhu
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eric J Spangler
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Thang B Hoang
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
4
|
Gao Y, Gao C, Fan Y, Sun H, Du J. Physically and Chemically Compartmentalized Polymersomes for Programmed Delivery and Biological Applications. Biomacromolecules 2023; 24:5511-5538. [PMID: 37933444 DOI: 10.1021/acs.biomac.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Multicompartment polymersomes (MCPs) refer to polymersomes that not only contain one single compartment, either in the membrane or in the internal cavity, but also mimic the compartmentalized structure of living cells, attracting much attention in programmed delivery and biological applications. The investigation of MCPs may promote the application of soft nanomaterials in biomedicine. This Review seeks to highlight the recent advances of the design principles, synthetic strategies, and biomedical applications of MCPs. The compartmentalization types including chemical, physical, and hybrid compartmentalization are discussed. Subsequently, the design and controlled synthesis of MCPs by the self-assembly of amphiphilic polymers, double emulsification, coprecipitation, microfluidics and particle assembly, etc. are summarized. Furthermore, the diverse applications of MCPs in programmed delivery of various cargoes and biological applications including cancer therapy, antimicrobials, and regulation of blood glucose levels are highlighted. Finally, future perspectives of MCPs from the aspects of controlled synthesis and applications are proposed.
Collapse
Affiliation(s)
- Yaning Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Chenchen Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yirong Fan
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200072, China
| |
Collapse
|
5
|
Sharma R, Shrivastava P, Gautam L, Agrawal U, Mohana Lakshmi S, Vyas SP. Rationally designed block copolymer-based nanoarchitectures: An emerging paradigm for effective drug delivery. Drug Discov Today 2023; 28:103786. [PMID: 37742910 DOI: 10.1016/j.drudis.2023.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Various polymeric materials have been investigated to produce unique modes of delivery for drug modules to achieve either temporal or spatial control of bioactives delivery. However, after intravenous administration, phagocytic cells quickly remove these nanostructures from the systemic circulation via the reticuloendothelial system (RES). To overcome these concerns, ecofriendly block copolymers are increasingly being investigated as innovative carriers for the delivery of bioactives. In this review, we discuss the design, fabrication techniques, and recent advances in the development of block copolymers and their applications as drug carrier systems to improve the physicochemical and pharmacological attributes of bioactives.
Collapse
Affiliation(s)
- Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| | - Priya Shrivastava
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - Laxmikant Gautam
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India; Babulal Tarabai Institute of Pharmaceutical Science, Sagar, M.P., 470228
| | - Udita Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - S Mohana Lakshmi
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| | - Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|
6
|
Pileni MP. Superstructures of water-dispersive hydrophobic nanocrystals: specific properties. MATERIALS HORIZONS 2023; 10:4746-4756. [PMID: 37740284 DOI: 10.1039/d3mh00949a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Here, we describe water-soluble superstructures of hydrophobic nanocrystals that have been developed in recent years. We will also report on some of their properties which are still in their infancy. One of these structures, called "cluster structures", consists of hydrophobic 3D superlattices of Co or Au nanocrystals, covered with organic molecules acting like parachutes. The magnetic properties of Co "cluster structures" a retained when the superstructures is dispersed in aqueous solution. With Au "cluster structures", the longer wavelength optical scattered spectra are very broad and red-shifted, while at shorter wavelengths the localized surface plasmonic resonance of the scattered nanocrystals is retained. Moreover, the maximum of the long-wavelength signal spectra is linearly dependent on the increase in assembly size. The second superstructure was based on liquid-liquid instabilities favoring the formation of Fe3O4 nanocrystal shells (colloidosomes) filled or unfilled with Au 3D superlattices and also spherical solid crystal structures are called supraballs. Colloidosomes and supraballs in contact with cancer cells increase the density of nanocrystals in lysosomes and near the lysosomal membrane. Importantly, the structure of their organization is maintained in lysosomes for up to 8 days after internalization, while the initially dispersed hydrophilic nanocrystals are randomly aggregated. These two structures act as nanoheaters. Indeed, due to the dilution of the metallic phase, the penetration depth of visible light is much greater than that of homogeneous metallic nanoparticles of similar size. This allows for a high average heat load overall. Thus, the organic matrix acts as an internal reservoir for efficient energy accumulation within a few hundred picoseconds. A similar behavior was observed with colloidosomes, supraballs and "egg" structures, making these superstructures universal nanoheaters, and the same behavior is not observed when they are not dispersed in water (dried and deposited on a substrate). Note that colloidosomes and supraballs trigger local photothermal damage inaccessible to isolated nanocrystals and not predicted by global temperature measurements.
Collapse
Affiliation(s)
- M P Pileni
- Sorbonne Université département de chimie, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
7
|
Wong CK, Lai RY, Stenzel MH. Dynamic metastable polymersomes enable continuous flow manufacturing. Nat Commun 2023; 14:6237. [PMID: 37802997 PMCID: PMC10558441 DOI: 10.1038/s41467-023-41883-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
Polymersomes are polymeric analogues of liposomes with exceptional physical and chemical properties. Despite being dubbed as next-generation vesicles since their inception nearly three decades ago, polymersomes have yet to experience translation into the clinical or industrial settings. This is due to a lack of reliable methods to upscale production without compromising control over polymersome properties. Herein we report a continuous flow methodology capable of producing near-monodisperse polymersomes at scale (≥3 g/h) with the possibility of performing downstream polymersome manipulation. Unlike conventional polymersomes, our polymersomes exhibit metastability under ambient conditions, persisting for a lifetime of ca. 7 days, during which polymersome growth occurs until a dynamic equilibrium state is reached. We demonstrate how this metastable state is key to the implementation of downstream processes to manipulate polymersome size and/or shape in the same continuous stream. The methodology operates in a plug-and-play fashion and is applicable to various block copolymers.
Collapse
Affiliation(s)
- Chin Ken Wong
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia.
| | - Rebecca Y Lai
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia.
| |
Collapse
|
8
|
Kim GH, Kim M, Hyun JK, Park SJ. Directional Self-Assembly of Nanoparticles Coated with Thermoresponsive Block Copolymers and Charged Small Molecules. ACS Macro Lett 2023:986-992. [PMID: 37399507 DOI: 10.1021/acsmacrolett.3c00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Herein, we report the directional stimuli-responsive self-assembly of gold nanoparticles (AuNPs) coated with a thermoresponsive block copolymer (BCP), poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and charged small molecules. AuNPs modified with PEG-b-PNIPAM possessing a AuNP/PNIPAM/PEG core/active/shell structure undergo temperature-induced self-assembly into one-dimensional (1D) or two-dimensional (2D) structures in salt solutions, with the morphology varying with the ionic strength of the medium. Salt-free self-assembly is also realized by modulating the surface charge by the codeposition of positively charged small molecules; 1D or 2D assemblies are formed depending on the ratio between the small molecule and PEG-b-PNIPAM, consistent with the trend observed with the bulk salt concentration. A series of charge-controlled self-assembly at various conditions revealed that the temperature-induced BCP-mediated self-assembly reported here provides an effective means for on-demand directional self-assembly of nanoparticles (NPs) with controlled morphology, interparticle distance, and optical properties, and the fixation of high-temperature structures.
Collapse
Affiliation(s)
- Ga-Hyun Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Minji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jerome K Hyun
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
9
|
Zhang Z, Chen H, Wang Y, Zhang N, Trépout S, Tang BZ, Gasser G, Li MH. Polymersomes with Red/Near-Infrared Emission and Reactive Oxygen Species Generation. Macromol Rapid Commun 2023; 44:e2200716. [PMID: 36254854 DOI: 10.1002/marc.202200716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Indexed: 11/09/2022]
Abstract
In photodynamic therapy (PDT), the uses of nanoparticles bearing photosensitizers (PSs) can overcome some of the drawbacks of using a PS alone (e.g., poor water solubility and low tumor selectivity). However, numerous nano-formulations are developed by physical encapsulation of PSs through Van der Waals interactions, which have not only a limited load efficiency but also some in vivo biodistribution problems caused by leakage or burst release. Herein, polymersomes made from an amphiphilic block copolymer, in which a PS with aggregation-induced emission (AIE-PS) is covalently attached to its hydrophobic poly(amino acid) block, are reported. These AIE-PS polymersomes dispersed in aqueous solution have a high AIE-PS load efficiency (up to 46% as a mass fraction), a hydrodynamic diameter of 86 nm that is suitable for in vivo applications, and an excellent colloidal stability for at least 1 month. They exhibit a red/near-infrared photoluminescence and ability to generate reactive oxygen species (ROS) under visible light. They are non-cytotoxic in the dark as tested on Hela cells up to concentration of 100 µm. Benefiting from colloidal stability, AIE property and ROS generation capability, such a family of polymersomes can be great candidates for image-guided PDT.
Collapse
Affiliation(s)
- Zhihua Zhang
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Hui Chen
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Youchao Wang
- Chimie ParisTech, PSL Université Paris, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Nian Zhang
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Sylvain Trépout
- Institut Curie, Université Paris-Saclay, Inserm US43, CNRS UMS2016, Centre Universitaire, Bât. 101B-110-111-112, Rue Henri Becquerel, CS 90030, Orsay, Cedex, 91401, France
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Gilles Gasser
- Chimie ParisTech, PSL Université Paris, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Min-Hui Li
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| |
Collapse
|
10
|
Dong W, Yang Z, He J, Kong C, Nie Z. Vesicular self-assembly of copolymer-grafted nanoparticles with anisotropic shapes. SOFT MATTER 2023; 19:634-639. [PMID: 36562393 DOI: 10.1039/d2sm01401g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plasmonic nanovesicles show broad applications in areas such as cancer theranostics and drug delivery, but the preparation of nanovesicles from shaped nanoparticles remains challenging. This article describes the vesicular self-assembly of shaped nanoparticles, such as gold nanocubes grafted with amphiphilic block copolymers, in selective solvents. The nanocubes assembled within the vesicular membranes exhibit two distinctive packing modes, namely square-like and hexagonal packing, depending on the relative dimensions of the copolymer ligands and nanocubes. The corresponding optical properties of the plasmonic nanovesicles can be tuned by varying the length of the grafted copolymers and the size of the nanocubes. This work provides guidance for the fabrication of functional plasmonic vesicles for applications in catalysis, nanomedicines and optical devices.
Collapse
Affiliation(s)
- Wenhao Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China.
| | - Zhimao Yang
- Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
| | - Jie He
- Department of Chemistry and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Chuncai Kong
- Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China.
| |
Collapse
|
11
|
Wang P, Moreno S, Janke A, Boye S, Wang D, Schwarz S, Voit B, Appelhans D. Probing Crowdedness of Artificial Organelles by Clustering Polymersomes for Spatially Controlled and pH-Triggered Enzymatic Reactions. Biomacromolecules 2022; 23:3648-3662. [PMID: 35981858 DOI: 10.1021/acs.biomac.2c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most sophisticated biological functions and features of cells are based on self-organization, and the coordination and connection between their cell organelles determines their key functions. Therefore, spatially ordered and controllable self-assembly of polymersomes to construct clusters to simulate complex intracellular biological functions has attracted widespread attention. Here, we present a simple one-step copper-free click strategy to cross-link nanoscale pH-responsive and photo-cross-linked polymersomes (less than 100 nm) to micron-level clusters (more than 90% in 0.5-2 μm range). Various influencing factors in the clustering process and subsequent purification methods were studied to obtain optimal clustered polymeric vesicles. Even when polymeric vesicles separately loaded with different enzymes (glucose oxidase and myoglobin) are coclustered, the overall permeability of the clusters can still be regulated through tuning the pH values on demand. Compared with simple blending of those enzyme-loaded polymersomes, the rate of enzymatic cascade reaction increased significantly due to the interconnected complex microstructure established. The connection of catalytic nanocompartments into clusters confining different enzymes of a cascade reaction provides an excellent platform for the development of artificial systems mimicking natural organelles or cells.
Collapse
Affiliation(s)
- Peng Wang
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Silvia Moreno
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Andreas Janke
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Susanne Boye
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Dishi Wang
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Simona Schwarz
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| |
Collapse
|
12
|
Tabedzki C, Krook NM, Murray CB, Composto RJ, Riggleman RA. Effect of Graft Length and Matrix Molecular Weight on String Assembly of Aligned Nanoplates in a Lamellar Diblock Copolymer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Tabedzki
- Department of Chemical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nadia M. Krook
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher B. Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert A. Riggleman
- Department of Chemical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
13
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
14
|
Hilaire T, Xu Y, Mei W, Riggleman RA, Hickey RJ. Lewis Adduct-Induced Phase Transitions in Polymer/Solvent Mixtures. ACS POLYMERS AU 2021; 2:35-41. [PMID: 36855742 PMCID: PMC9954274 DOI: 10.1021/acspolymersau.1c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalization-induced phase transitions in polymer systems in which a postpolymerization reaction drives polymers to organize into colloidal aggregates are a versatile method to create nanoscale structures with applications related to biomedicine and nanoreactors. Current functionalization methods to stimulate polymer self-assembly are based on covalent bond formation. Therefore, there is a need to explore alternative reactions that result in noncovalent bond formation. Here, we demonstrate that when the Lewis acid, tris(pentafluorophenyl) borane (BCF), is added to a solution containing poly(4-diphenylphosphino styrene) (PDPPS), the system will either macrophase-separate or form micelles if PDPPS is a homopolymer or a block in a copolymer, respectively. The Lewis adduct-induced phase transition is hypothesized to result from the favorable interaction between the PDPPS and BCF, which results in a negative interaction parameter (χ). A modified Flory-Huggins model was used to determine the predicted phase behavior for a ternary system composed of a polymer, a solvent, and a small molecule. The model indicates that there is a demixing region (i.e., macrophase separation) when the polymer and small molecule have favorable interactions (e.g., χ < 0) and that the phase separation region coincides well with the experimentally determined two-phase region for mixtures containing PDPPS, BCF, and toluene. The work presented here highlights that Lewis adduct-induced phase separation is a new approach to functionalization-induced self-assembly (FISA) and that ternary mixtures will undergo phase separation if two of the components exhibit a sufficiently negative χ.
Collapse
Affiliation(s)
- Tylene Hilaire
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Yifan Xu
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Wenwen Mei
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Robert A. Riggleman
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert J. Hickey
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16801, United States,Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16801, United States,
| |
Collapse
|
15
|
Lee S, Sim K, Moon SY, Choi J, Jeon Y, Nam JM, Park SJ. Controlled Assembly of Plasmonic Nanoparticles: From Static to Dynamic Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007668. [PMID: 34021638 DOI: 10.1002/adma.202007668] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/30/2020] [Indexed: 05/20/2023]
Abstract
The spatial arrangement of plasmonic nanoparticles can dramatically affect their interaction with electromagnetic waves, which offers an effective approach to systematically control their optical properties and manifest new phenomena. To this end, significant efforts were made to develop methodologies by which the assembly structure of metal nanoparticles can be controlled with high precision. Herein, recent advances in bottom-up chemical strategies toward the well-controlled assembly of plasmonic nanoparticles, including multicomponent and multifunctional systems are reviewed. Further, it is discussed how the progress in this area has paved the way toward the construction of smart dynamic nanostructures capable of on-demand, reversible structural changes that alter their properties in a predictable and reproducible manner. Finally, this review provides insight into the challenges, future directions, and perspectives in the field of controlled plasmonic assemblies.
Collapse
Affiliation(s)
- Sunghee Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Kyunjong Sim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - So Yoon Moon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jisu Choi
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Yoojung Jeon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
16
|
LaNasa JA, Neuman A, Riggleman RA, Hickey RJ. Investigating Nanoparticle Organization in Polymer Matrices during Reaction-Induced Phase Transitions and Material Processing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42104-42113. [PMID: 34432429 DOI: 10.1021/acsami.1c14830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling nanoparticle organization in polymer matrices has been and is still a long-standing issue and directly impacts the performance of the materials. In the majority of instances, simply mixing nanoparticles and polymers leads to macroscale aggregation, resulting in deleterious effects. An alternative method to physically blending independent components such as nanoparticle and polymers is to conduct polymerizations in one-phase monomer/nanoparticle mixtures. Here, we report on the mechanism of nanoparticle aggregation in hybrid materials in which gold nanoparticles are initially homogeneously dispersed in a monomer mixture and then undergo a two-step aggregation process during polymerization and material processing. Specifically, oleylamine-functionalized gold nanoparticles (AuNP) are first synthesized in a methyl methacrylate (MMA) solution and then subsequently polymerized by using a free radical polymerization initiated with azobis(isobutyronitrile) (AIBN) to create hybrid AuNP and poly(methyl methacrylate) (PMMA) materials. The resulting products are easily pressed to obtain bulk films with nanoparticle organization defined as either well-dispersed or aggregated. Polymerizations are performed at various temperatures (T) and MMA volume fractions (ΦMMA) to systematically influence the final nanoparticle dispersion state. During the polymerization of MMA and subsequent material processing, the initially homogeneous AuNP/MMA mixture undergoes macrophase separation between PMMA and oleylamine during the polymerization, yet the AuNP are dispersed in the oleylamine phase. The nanoparticles then aggregate within the oleylamine phase when the materials are processed via vacuum drying and pressing. Nanoparticle organization is tracked throughout the polymerization and processing steps by using a combination of transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). The resulting dispersion state of AuNPs in PMMA bulk films is ultimately dictated by the thermodynamics of mixing between the PMMA and oleylamine phases, but the mechanism of nanoparticle aggregation occurs in two steps that correspond to the polymerization and processing of the materials. Flory-Huggins mixing theory is used to support the PMMA and oleylamine phase separation. The reported results highlight how the integration of nonequilibrium processing and mean-field approximations reveal nanoparticle aggregation in hybrid materials synthesized by using reaction-induced phase transitions.
Collapse
Affiliation(s)
| | - Anastasia Neuman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert A Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
17
|
Wei J, Huang X, Zhang L, Chen Y, Niikura K, Mitomo H, Ijiro K, Zhang Z. Vesicle Formation by the Self-Assembly of Gold Nanoparticles Covered with Fluorinated Oligo(ethylene glycol)-Terminated Ligands and Its Stability in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9694-9700. [PMID: 34369779 DOI: 10.1021/acs.langmuir.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water-stable gold nanoparticle vesicles (GNVs) with hollow interiors have attracted attention due to their great potential for biological applications; however, their preparation through the self-assembly approaches has been restricted due to the limited understanding of their critical mechanistic issues. In this paper, we demonstrate that a fluorinated tetra (ethylene glycol) (FTEG)-terminated tetra (ethylene glycol) (EG4), namely, FTEG-EG4, ligand can self-assemble with gold nanoparticles (5 and 10 nm) into GNVs with a hollow structure in THF due to the solvophobic feature of the ligand. Time-dependent studies showed that the GNVs with a closely packed surface derived from the incomplete and irregular GNVs, but not through the fusion of the GNV precursors. After dialysis in water, the assemblies retained vesicular structures in water, even though GNVs aggregated together, which was initiated by the hydrophobic interactions between the FTEG heads of the surface ligands on GNVs. This study provides a new insight into the design of novel small surface ligands to produce water-stable GNVs for biological applications.
Collapse
Affiliation(s)
- Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P.R. China
| | - Xiaoying Huang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P.R. China
| | - Liang Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Yuqin Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P.R. China
| | - Kenichi Niikura
- Department of Applied Chemistry, and Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology, Miyashiro, Saitama 345-8501, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo 001-0021, Japan
| | - Zhide Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|
18
|
Han S, Zal T, Sokolov KV. Fate of Antibody-Targeted Ultrasmall Gold Nanoparticles in Cancer Cells after Receptor-Mediated Uptake. ACS NANO 2021; 15:9495-9508. [PMID: 34011152 PMCID: PMC8223898 DOI: 10.1021/acsnano.0c08128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Nanoparticles with ultrasmall sizes (less than 10 nm) offer many advantages in biomedical applications compared to their bigger counterparts, including better intratumoral distribution, improved pharmacokinetics (PK), and efficient body clearance. When functionalized with a biocompatible coating and a target-specific antibody, ultrasmall nanoparticles represent an attractive clinical translation platform. Although there is a tremendous body of work dedicated to PK and the biological effects of various nanoparticles, little is known about the fate of different components of functionalized nanoparticles in a biological environment such as in live cells. Here, we used luminescence properties of 5 nm gold nanoparticles (AuNPs) to study the intracellular trafficking and fate of the AuNPs functionalized with an organic layer consisting of a polyethylene glycol (PEG) coating and epidermal growth factor receptor (EGFR)-targeting antibody. We showed that intracellular uptake of the targeted 5 nm AuNPs results in a strong two-photon luminescence (TPL) that is characterized by broad emission and very short lifetimes compared to the fluorescence of the nanoparticle-conjugated fluorophore-tagged antibody, thereby allowing selective imaging of these components using TPL and two-photon excited fluorescence lifetime microscopy (2P-FLIM). Our results indicate that the nanoparticle's coating is detached from the particle's surface inside cells, leading to formation of nanoparticle clusters with a strong TPL. Furthermore, we observed an optically resolved spatial separation of the gold core and the antibody coating of the particles inside cells. We used data from two-photon microscopy, 2P-FLIM, electron microscopy, and in vitro assays to propose a model of interactions of functionalized 5 nm AuNPs with live cells.
Collapse
Affiliation(s)
- Sangheon Han
- Department of Bioengineering, Rice
University, 6100 Main Street, Houston, Texas 77005, United
States
- Department of Imaging Physics, The
University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard,
Houston, Texas 77030, United States
| | - Tomasz Zal
- Department of Leukemia, The University of
Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas
77030, United States
| | - Konstantin V. Sokolov
- Department of Bioengineering, Rice
University, 6100 Main Street, Houston, Texas 77005, United
States
- Department of Imaging Physics, The
University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard,
Houston, Texas 77030, United States
| |
Collapse
|
19
|
Abstract
In this review, we summarized recent advances in the development and biological applications of polymeric nanoparticles embedded with superparamagnetic iron oxide nanoparticles (SPIONs). Superparamagnetic polymeric nanoparticles include core-shell nanoparticles, superparamagnetic polymeric micelles and superparamagnetic polymersomes. They have potential for various biomedical applications, including magnetic resonance imaging (MRI) contrast agents, drug delivery, detection of bacteria, viruses and proteins, etc. Finally, the challenges in the design and preparation of superparamagnetic nanoparticles towards clinical applications are explored and the prospects in this field are proposed.
Collapse
Affiliation(s)
- Yufen Xiao
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | | |
Collapse
|
20
|
LaNasa JA, Hickey RJ. Surface-Initiated Ring-Opening Metathesis Polymerization: A Method for Synthesizing Polymer-Functionalized Nanoparticles Exhibiting Semicrystalline Properties and Diverse Macromolecular Architectures. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jacob A. LaNasa
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Robert J. Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| |
Collapse
|
21
|
Liu D, Sun H, Xiao Y, Chen S, Cornel EJ, Zhu Y, Du J. Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes. J Control Release 2020; 326:365-386. [DOI: 10.1016/j.jconrel.2020.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
|
22
|
Kang S, Ryu DY, Ringe E, Hickey RJ, Park SJ. Nanoparticle-Induced Self-Assembly of Block Copolymers into Nanoporous Films at the Air-Water Interface. ACS NANO 2020; 14:12203-12209. [PMID: 32924436 DOI: 10.1021/acsnano.0c05908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we report the cooperative self-assembly of nanoparticles and block copolymers at the air-water interface, which can generate highly uniform and readily transferable composite films with tunable nanoscale architecture and functionalities. Interestingly, the incorporation of nanoparticles significantly affects the self-assembly of block copolymers at the interface. The nanoparticle-induced morphology change occurs through distinct mechanisms depending on the volume fraction of the hydrophobic block. For block copolymers with a relatively small hydrophobic volume fraction, the morphology transition occurs through the nanoparticle-induced swelling of a selective block. When the hydrophobic volume fraction is large enough, added nanoparticles promote the breath figure assembly, which generates uniform honeycomb-like porous structures with unusual nanoscale periodicity. This approach is generally applicable to various types of nanoparticles, constituting a simple one-step method to porous thin films with various functionalities.
Collapse
Affiliation(s)
- Seulki Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, Department of Earth Science, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
| | - Robert J Hickey
- Department of Material Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
23
|
Hannecart A, Stanicki D, Vander Elst L, Muller RN, Brûlet A, Sandre O, Schatz C, Lecommandoux S, Laurent S. Embedding of superparamagnetic iron oxide nanoparticles into membranes of well-defined poly(ethylene oxide)-block-poly(ε-caprolactone) nanoscale magnetovesicles as ultrasensitive MRI probes of membrane bio-degradation. J Mater Chem B 2020; 7:4692-4705. [PMID: 31364686 DOI: 10.1039/c9tb00909d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study reports the preparation of poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) polymer vesicles via a nanoprecipitation method and the loading of two different size hydrophobically coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (a magnetic core size of 4.2 nm and 7.6 nm) into the membrane of these nanovesicles, whose thickness was measured precisely by small angle neutron scattering (SANS). Spherical nano-assemblies with a high USPIO payload and a diameter close to 150 nm were obtained as confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM) and cryo-TEM. The vesicular structure of these hybrid nano-assemblies was confirmed by multi-angle light scattering (MALS) measurements. Their magnetic properties were evaluated by T1 and T2 measurements (20 and 60 MHz) and by nuclear magnetic relaxation dispersion (NMRD) profiles. The size of USPIO entrapped in the membranes of PEO-b-PCL vesicles has a strong impact on their magnetic properties. It affects both their longitudinal and their transverse relaxivities and thus their magnetic resonance imaging (MRI) sensitivity. Acid-catalyzed hydrolysis of the PCL membrane also influences their relaxivities as shown by measurements carried out at pH 7 vs. pH 5. This property was used to monitor the membrane hydrolytic degradation in vitro, as a proof of concept of potential monitoring of drug delivery by nanomedicines in vivo and non-invasively, by MRI.
Collapse
Affiliation(s)
- Adeline Hannecart
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau B-7000 Mons, Belgium.
| | - Dimitri Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau B-7000 Mons, Belgium.
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau B-7000 Mons, Belgium.
| | - Robert N Muller
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau B-7000 Mons, Belgium. and Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland, B-6041 Charleroi, Belgium
| | - Annie Brûlet
- Laboratoire Léon Brillouin, CNRS, CEA, Univ. Paris-Saclay, UMR12, F-91191 Gif sur Yvette, France
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33607 Pessac, France
| | - Christophe Schatz
- Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33607 Pessac, France
| | - Sébastien Lecommandoux
- Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33607 Pessac, France
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau B-7000 Mons, Belgium. and Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland, B-6041 Charleroi, Belgium
| |
Collapse
|
24
|
Rijpkema S, Langens SGHA, van der Kolk MR, Gavriel K, Toebes BJ, Wilson DA. Modular Approach to the Functionalization of Polymersomes. Biomacromolecules 2020; 21:1853-1864. [PMID: 32032491 PMCID: PMC7218747 DOI: 10.1021/acs.biomac.9b01734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/06/2020] [Indexed: 01/17/2023]
Abstract
Functionalizing polymersomes remains a challenge due to the limitation in reaction conditions applicable to the chemistry on the surface, hindering their application for selective targeting. In order to overcome this limitation, functionalization can be introduced right before the self-assembly. Here, we have synthesized a library (32 examples) of PEG-b-PS and PEG-b-PDLLA with various functional groups derived from the amine-functionalized polymers, leading to functionally active polymersomes. We show that polymersome formation is possible via the general method with all functionalized groups and that these handles are present on the surface and are able to undergo reactions. Additionally, this methodology provides a general synthetic tool to tailor the functional group of the polymersome right before self-assembly, without limitation on the reaction conditions.
Collapse
Affiliation(s)
- Sjoerd
J. Rijpkema
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sabine G. H. A. Langens
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Marnix R. van der Kolk
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Katerina Gavriel
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - B. Jelle Toebes
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
25
|
Yildirim T, Pervez M, Li B, O’Reilly RK. Size-controlled clustering of iron oxide nanoparticles within fluorescent nanogels using LCST-driven self-assembly. J Mater Chem B 2020; 8:5330-5335. [DOI: 10.1039/c9tb02868d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Size-controlled clustering of iron oxide nanoparticles (IONPs) within the fluorescent polymer nanogels was achieved using the lower critical solution temperature (LCST) driven self-assembly and cross-linking of grafted polymer on the IONPs.
Collapse
Affiliation(s)
| | - Maria Pervez
- School of Chemistry
- University of Birmingham
- Birmingham
- UK
| | - Bo Li
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|
26
|
Lang C, Kumar M, Hickey RJ. Influence of block sequence on the colloidal self-assembly of poly(norbornene)-block-poly(ethylene oxide) amphiphilic block polymers using rapid injection processing. Polym Chem 2020. [DOI: 10.1039/c9py00954j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A facile self-assembly method, rapid injection, was used to study the self-assembly difference between AB diblock and ABA triblock copolymers.
Collapse
Affiliation(s)
- Chao Lang
- Department of Materials Science & Engineering
- The Pennsylvania State University
- University Park
- 16802 USA
- Department of Chemical Engineering
| | - Manish Kumar
- Department of Chemical Engineering
- The Pennsylvania State University
- University Park
- 16802 USA
- Materials Research Institute
| | - Robert J. Hickey
- Department of Materials Science & Engineering
- The Pennsylvania State University
- University Park
- 16802 USA
- Materials Research Institute
| |
Collapse
|
27
|
Lartigue L, Coupeau M, Lesault M. Luminophore and Magnetic Multicore Nanoassemblies for Dual-Mode MRI and Fluorescence Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E28. [PMID: 31861876 PMCID: PMC7023187 DOI: 10.3390/nano10010028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Nanoassemblies encompass a large variety of systems (organic, crystalline, amorphous and porous). The nanometric size enables these systems to interact with biological entities and cellular organelles of similar dimensions (proteins, cells, …). Over the past 20 years, the exploitation of their singular properties as contrast agents has led to the improvement of medical imaging. The use of nanoprobes also allows the combination of several active units within the same nanostructure, paving the way to multi-imaging. Thus, the nano-object provides various additional information which helps simplify the number of clinical procedures required. In this review, we are interested in the combination between fluorescent units and magnetic nanoparticles to perform dual-mode magnetic resonance imaging (MRI) and fluorescent imaging. The effect of magnetic interaction in multicore iron oxide nanoparticles on the MRI contrast agent properties is highlighted.
Collapse
Affiliation(s)
- Lénaïc Lartigue
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France; (M.C.); (M.L.)
| | | | | |
Collapse
|
28
|
Yi C, Yang Y, Liu B, He J, Nie Z. Polymer-guided assembly of inorganic nanoparticles. Chem Soc Rev 2019; 49:465-508. [PMID: 31845685 DOI: 10.1039/c9cs00725c] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The self-assembly of inorganic nanoparticles is of great importance in realizing their enormous potentials for broad applications due to the advanced collective properties of nanoparticle ensembles. Various molecular ligands (e.g., small molecules, DNAs, proteins, and polymers) have been used to assist the organization of inorganic nanoparticles into functional structures at different hierarchical levels. Among others, polymers are particularly attractive for use in nanoparticle assembly, because of the complex architectures and rich functionalities of assembled structures enabled by polymers. Polymer-guided assembly of nanoparticles has emerged as a powerful route to fabricate functional materials with desired mechanical, optical, electronic or magnetic properties for a broad range of applications such as sensing, nanomedicine, catalysis, energy storage/conversion, data storage, electronics and photonics. In this review article, we summarize recent advances in the polymer-guided self-assembly of inorganic nanoparticles in both bulk thin films and solution, with an emphasis on the role of polymers in the assembly process and functions of resulting nanostructures. Precise control over the location/arrangement, interparticle interaction, and packing of inorganic nanoparticles at various scales are highlighted.
Collapse
Affiliation(s)
- Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Yiqun Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China and Department of Chemistry and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06268, USA.
| | - Jie He
- Department of Chemistry and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06268, USA.
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| |
Collapse
|
29
|
Ryzhkov A, Raikher Y. Size-Dependent Properties of Magnetosensitive Polymersomes: Computer Modelling. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5266. [PMID: 31795475 PMCID: PMC6929134 DOI: 10.3390/s19235266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022]
Abstract
Magnetosensitive polymersomes, which are amphiphilic polymer capsules whose membranes are filled with magnetic nanoparticles, are prospective objects for drug delivery and manipulations with single cells. A molecular dynamics simulation model that is able to render a detailed account on the structure and shape response of a polymersome to an external magnetic field is used to study a dimensional effect: the dependence of the field-induced deformation on the size of this nanoscale object. It is shown that in the material parameter range that resembles realistic conditions, the strain response of smaller polymersomes, against a priori expectations, exceeds that of larger ones. A qualitative explanation for this behavior is proposed.
Collapse
Affiliation(s)
- Aleksandr Ryzhkov
- Laboratory of Mechanics of Functional Materials, Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences, 614068 Perm, Russia
| | - Yuriy Raikher
- Laboratory of Physics and Mechanics of Soft Matter, Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences, 614068 Perm, Russia;
| |
Collapse
|
30
|
Krook NM, Tabedzki C, Elbert KC, Yager KG, Murray CB, Riggleman RA, Composto RJ. Experiments and Simulations Probing Local Domain Bulge and String Assembly of Aligned Nanoplates in a Lamellar Diblock Copolymer. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Kevin G. Yager
- Center for Functional Nanomaterials, Brookhaven National Lab, Upton, New York 11973, United States
| | | | | | | |
Collapse
|
31
|
Li Y, Wang N, Huang X, Li F, Davis TP, Qiao R, Ling D. Polymer-Assisted Magnetic Nanoparticle Assemblies for Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 3:121-142. [DOI: 10.1021/acsabm.9b00896] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Xumin Huang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
32
|
Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101149] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Xue Z, Wang P, Peng A, Wang T. Architectural Design of Self-Assembled Hollow Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801441. [PMID: 30256464 DOI: 10.1002/adma.201801441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Colloidal nanoparticle assemblies are widely designed and fabricated via various building blocks to enhance their intrinsic properties and potential applications. Self-assembled hollow superstructures have been a focal point in nanotechnology for several decades and are likely to remain so for the foreseeable future. The novel properties of self-assembled hollow superstructures stem from their effective spatial utilization. As such, a comprehensive appreciation of the interactive forces at play among individual building blocks is a prerequisite for designing and managing the self-assembly process, toward the fabrication of optimal hollow nanoproducts. Herein, the emerging approaches to the fabrication of self-assembled hollow superstructures, including hard-templated, soft-templated, self-templated, and template-free methods, are classified and discussed. The corresponding reinforcement mechanisms, such as strong ligand interaction strategies and extra-capping strategies, are discussed in detail. Finally, possible future directions for the construction of multifunctional hollow superstructures with highly efficient catalytic reaction systems and an integration platform for bioapplications are discussed.
Collapse
Affiliation(s)
- Zhenjie Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peilong Wang
- Institute of Quality Standards & Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing, 100081, P. R. China
| | - Aidong Peng
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
34
|
Lang C, LaNasa JA, Utomo N, Xu Y, Nelson MJ, Song W, Hickner MA, Colby RH, Kumar M, Hickey RJ. Solvent-non-solvent rapid-injection for preparing nanostructured materials from micelles to hydrogels. Nat Commun 2019; 10:3855. [PMID: 31451686 PMCID: PMC6710291 DOI: 10.1038/s41467-019-11804-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/01/2019] [Indexed: 11/09/2022] Open
Abstract
Due to their distinctive molecular architecture, ABA triblock copolymers will undergo specific self-assembly processes into various nanostructures upon introduction into a B-block selective solvent. Although much of the focus in ABA triblock copolymer self-assembly has been on equilibrium nanostructures, little attention has been paid to the guiding principles of nanostructure formation during non-equilibrium processing conditions. Here we report a universal and quantitative method for fabricating and controlling ABA triblock copolymer hierarchical structures using solvent-non-solvent rapid-injection processing. Plasmonic nanocomposite hydrogels containing gold nanoparticles and hierarchically-ordered hydrogels exhibiting structural color can be assembled within one minute using this rapid-injection technique. Surprisingly, the rapid-injection hydrogels display superior mechanical properties compared with those of conventional ABA hydrogels. This work will allow for translation into technologically relevant areas such as drug delivery, tissue engineering, regenerative medicine, and soft robotics, in which structure and mechanical property precision are essential.
Collapse
Affiliation(s)
- Chao Lang
- Department of Materials Science & Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jacob A LaNasa
- Department of Materials Science & Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nyalaliska Utomo
- Department of Materials Science & Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yifan Xu
- Department of Materials Science & Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Melissa J Nelson
- Department of Materials Science & Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Woochul Song
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michael A Hickner
- Department of Materials Science & Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ralph H Colby
- Department of Materials Science & Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Manish Kumar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Robert J Hickey
- Department of Materials Science & Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
35
|
Oh S, Yang M, Kang S, Chung SH, Bouffard J, Hong S, Park SJ. Binary Self-Assembly of Conjugated Block Copolymers and Quantum Dots at the Air-Liquid Interface into Ordered Functional Nanoarrays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28538-28545. [PMID: 31290318 DOI: 10.1021/acsami.9b08892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controlling the nanoscale morphology of conducting polymer/nanoparticle hybrid films is a highly desired but challenging task. Here, we report that such functional hybrid films with unprecedented structural order can be formed through the self-assembly of conjugated block copolymers and CdSe quantum dots at the air-water interface. The one-step assembly of quantum dots and block copolymers composed of polythiophene and polyethylene glycol (P3HT-b-PEG) at the fluidic interface generated a highly ordered assembly structure of P3HT nanowires and one-dimensional quantum dot arrays. Structure analyses revealed a unique self-assembly behavior and size dependency, which are distinct from the conventional self-assembly of coil-type polymers on solid substrates. Interestingly, hydrophobic quantum dots reside at the interface between P3HT and PEG domains without disrupting the P3HT packing structure, which is advantageous for the optoelectronic properties. Furthermore, large particles bridge the P3HT nanowires at both ends, while small particles decorate each P3HT/PEG interfaces, thus forming tight p-n junctions for a broad size range of nanoparticles. The nanoparticle-incorporated hybrid films showed more than an order of magnitude higher photocurrent and light sensitivity compared to polymer-only films, consistent with the assembly structure with close contact between the organic and inorganic semiconductors.
Collapse
Affiliation(s)
- Saejin Oh
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu , Seoul 03760 , Korea
| | - Myungjae Yang
- Department of Physics and Astronomy and Institute of Applied Physics , Seoul National University , Seoul 151-747 , Korea
| | - Seulki Kang
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu , Seoul 03760 , Korea
| | - Sung-Hee Chung
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu , Seoul 03760 , Korea
| | - Jean Bouffard
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu , Seoul 03760 , Korea
| | - Seunghun Hong
- Department of Physics and Astronomy and Institute of Applied Physics , Seoul National University , Seoul 151-747 , Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu , Seoul 03760 , Korea
| |
Collapse
|
36
|
Albert SK, Hu X, Park SJ. Dynamic Nanostructures from DNA-Coupled Molecules, Polymers, and Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900504. [PMID: 30985085 DOI: 10.1002/smll.201900504] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Indexed: 05/20/2023]
Abstract
Dynamic and reconfigurable systems that can sense and react to physical and chemical signals are ubiquitous in nature and are of great interest in diverse areas of science and technology. DNA is a powerful tool for fabricating such smart materials and devices due to its programmable and responsive molecular recognition properties. For the past couple of decades, DNA-based self-assembly is actively explored to fabricate various DNA-organic and DNA-inorganic hybrid nanostructures with high-precision structural control. Building upon past development, researchers have recently begun to design and assemble dynamic nanostructures that can undergo an on-demand transformation in the structure, properties, and motion in response to various external stimuli. In this Review, recent advances in dynamic DNA nanostructures, focusing on hybrid structures fabricated from DNA-conjugated molecules, polymers, and nanoparticles, are introduced, and their potential applications and future perspectives are discussed.
Collapse
Affiliation(s)
- Shine K Albert
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Xiaole Hu
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
37
|
Wong CK, Chen F, Walther A, Stenzel MH. Bioactive Patchy Nanoparticles with Compartmentalized Cargoes for Simultaneous and Trackable Delivery. Angew Chem Int Ed Engl 2019; 58:7335-7340. [PMID: 30866152 DOI: 10.1002/anie.201901880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Indexed: 12/11/2022]
Abstract
Recent years have seen an increased interest in the use of ABC triblock terpolymers to bottom-up assemble multicompartment patchy nanoparticles. Despite these experimental and theoretical efforts, the applications of polymer-based patchy nanoparticles remain rather limited. One of the major challenges that eclipses their potential is the lack of knowledge to selectively encapsulate cargoes within different compartments that are separated in the nanometer length scale. Here, strategies are reported to segregate two chemically distinct molecules in either the patches or core compartment of patchy nanoparticles that bear a (bioactive) sugar corona. The potential use of these bioactive patchy nanoparticles containing compartmentalized cargoes for simultaneous drug delivery with real-time release monitoring capabilities is further demonstrated.
Collapse
Affiliation(s)
- Chin Ken Wong
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andreas Walther
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Strasse 31, 79104, Freiburg, Germany
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
38
|
Wong CK, Chen F, Walther A, Stenzel MH. Bioactive Patchy Nanoparticles with Compartmentalized Cargoes for Simultaneous and Trackable Delivery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chin Ken Wong
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Andreas Walther
- Institute for Macromolecular Chemistry Albert-Ludwigs-University Freiburg Stefan-Meier-Strasse 31 79104 Freiburg Germany
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
39
|
Moorcroft SCT, Jayne DG, Evans SD, Ong ZY. Stimuli‐Responsive Release of Antimicrobials Using Hybrid Inorganic Nanoparticle‐Associated Drug‐Delivery Systems. Macromol Biosci 2018; 18:e1800207. [DOI: 10.1002/mabi.201800207] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Stephen D. Evans
- School of Physics and AstronomyUniversity of Leeds Leeds LS2 9JT UK
| | - Zhan Yuin Ong
- School of Physics and AstronomyUniversity of Leeds Leeds LS2 9JT UK
- School of MedicineUniversity of Leeds Leeds LS2 9JT UK
| |
Collapse
|
40
|
Leong J, Teo JY, Aakalu VK, Yang YY, Kong H. Engineering Polymersomes for Diagnostics and Therapy. Adv Healthc Mater 2018; 7:e1701276. [PMID: 29334183 PMCID: PMC6377267 DOI: 10.1002/adhm.201701276] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/30/2017] [Indexed: 12/20/2022]
Abstract
Engineered polymer vesicles, termed as polymersomes, confer a flexibility to control their structure, properties, and functionality. Self-assembly of amphiphilic copolymers leads to vesicles consisting of a hydrophobic bilayer membrane and hydrophilic core, each of which is loaded with a wide array of small and large molecules of interests. As such, polymersomes are increasingly being studied as carriers of imaging probes and therapeutic drugs. Effective delivery of polymersomes necessitates careful design of polymersomes. Therefore, this review article discusses the design strategies of polymersomes developed for enhanced transport and efficacy of imaging probes and therapeutic drugs. In particular, the article focuses on overviewing technologies to regulate the size, structure, shape, surface activity, and stimuli- responsiveness of polymersomes and discussing the extent to which these properties and structure of polymersomes influence the efficacy of cargo molecules. Taken together with future considerations, this article will serve to improve the controllability of polymersome functions and accelerate the use of polymersomes in biomedical applications.
Collapse
Affiliation(s)
- Jiayu Leong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Jye Yng Teo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Vinay K. Aakalu
- Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, IL 60612, USA
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,
| |
Collapse
|
41
|
De Martino MT, Abdelmohsen LKEA, Rutjes FPJT, van Hest JCM. Nanoreactors for green catalysis. Beilstein J Org Chem 2018; 14:716-733. [PMID: 29719570 PMCID: PMC5905268 DOI: 10.3762/bjoc.14.61] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Sustainable and environmentally benign production are key drivers for developments in the chemical industrial sector, as protecting our planet has become a significant element that should be considered for every industrial breakthrough or technological advancement. As a result, the concept of green chemistry has been recently defined to guide chemists towards minimizing any harmful outcome of chemical processes in either industry or research. Towards greener reactions, scientists have developed various approaches in order to decrease environmental risks while attaining chemical sustainability and elegancy. Utilizing catalytic nanoreactors for greener reactions, for facilitating multistep synthetic pathways in one-pot procedures, is imperative with far-reaching implications in the field. This review is focused on the applications of some of the most used nanoreactors in catalysis, namely: (polymer) vesicles, micelles, dendrimers and nanogels. The ability and efficiency of catalytic nanoreactors to carry out organic reactions in water, to perform cascade reaction and their ability to be recycled will be discussed.
Collapse
Affiliation(s)
- M Teresa De Martino
- Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Floris P J T Rutjes
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jan C M van Hest
- Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
42
|
Schantz AB, Ren T, Pachalla A, Shen Y, Hickey RJ, Kumar M. Porous Vesicles with Extrusion‐Tunable Permeability and Pore Size from Mixed Solutions of PEO–PPO–PEO Triblock Copolymers. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- A. Benjamin Schantz
- Department of Chemical Engineering The Pennsylvania State University 125 Greenberg Complex University Park PA 16802 USA
| | - Tingwei Ren
- Department of Chemical Engineering The Pennsylvania State University 125 Greenberg Complex University Park PA 16802 USA
| | - Abhishek Pachalla
- Department of Chemical Engineering The Pennsylvania State University 125 Greenberg Complex University Park PA 16802 USA
| | - Yuexiao Shen
- Department of Chemical Engineering The Pennsylvania State University 125 Greenberg Complex University Park PA 16802 USA
| | - Robert J. Hickey
- Department of Materials Science and Engineering The Pennsylvania State University 403 Steidle Building University Park PA 16802 USA
| | - Manish Kumar
- Department of Chemical Engineering The Pennsylvania State University 125 Greenberg Complex University Park PA 16802 USA
| |
Collapse
|
43
|
Watt J, Collins AM, Vreeland EC, Montano GA, Huber DL. Magnetic Nanocomposites and Their Incorporation into Higher Order Biosynthetic Functional Architectures. ACS OMEGA 2018; 3:503-508. [PMID: 31457908 PMCID: PMC6641278 DOI: 10.1021/acsomega.7b02031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 06/10/2023]
Abstract
A magnetically active Fe3O4/poly(ethylene oxide)-block-poly(butadiene) (PEO-b-PBD) nanocomposite is formed by the encapsulation of magnetite nanoparticles with a short-chain amphiphilic block copolymer. This material is then incorporated into the self-assembly of higher order polymer architectures, along with an organic pigment, to yield biosynthetic, bifunctional optical and magnetically active Fe3O4/bacteriochlorophyll c/PEO-b-PBD polymeric chlorosomes.
Collapse
Affiliation(s)
- John Watt
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| | - Aaron M. Collins
- Department
of Chemistry, Southern New Hampshire University, 2500 North River Road, Hooksett, New Hampshire 03106, United States
| | - Erika C. Vreeland
- Imagion
Biosystems, 800 Bradbury
Drive SE, Albuquerque, New
Mexico 87106, United
States
| | - Gabriel A. Montano
- Department
of Chemistry & Biochemistry, Northern
Arizona University, South
San Francisco Street, Flagstaff, Arizona 86011, United
States
| | - Dale L. Huber
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
44
|
Fu Z, Wang H, Zhao X, Horiuchi S, Li Y. Immiscible polymer blends compatibilized with reactive hybrid nanoparticles: Morphologies and properties. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Bixner O, Gal N, Zaba C, Scheberl A, Reimhult E. Fluorescent Magnetopolymersomes: A Theranostic Platform to Track Intracellular Delivery. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1303. [PMID: 29137172 PMCID: PMC5706250 DOI: 10.3390/ma10111303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022]
Abstract
We present a potential theranostic delivery platform based on the amphiphilic diblock copolymer polybutadiene-block-poly (ethylene oxide) combining covalent fluorescent labeling and membrane incorporation of superparamagnetic iron oxide nanoparticles for multimodal imaging. A simple self-assembly and labeling approach to create the fluorescent and magnetic vesicles is described. Cell uptake of the densely PEGylated polymer vesicles could be altered by surface modifications that vary surface charge and accessibility of the membrane active species. Cell uptake and cytotoxicity were evaluated by confocal microscopy, transmission electron microscopy, iron content and metabolic assays, utilizing multimodal tracking of membrane fluorophores and nanoparticles. Cationic functionalization of vesicles promoted endocytotic uptake. In particular, incorporation of cationic lipids in the polymersome membrane yielded tremendously increased uptake of polymersomes and magnetopolymersomes without increase in cytotoxicity. Ultrastructure investigations showed that cationic magnetopolymersomes disintegrated upon hydrolysis, including the dissolution of incorporated iron oxide nanoparticles. The presented platform could find future use in theranostic multimodal imaging in vivo and magnetically triggered delivery by incorporation of thermorepsonsive amphiphiles that can break the membrane integrity upon magnetic heating via the embedded superparamagnetic nanoparticles.
Collapse
Affiliation(s)
- Oliver Bixner
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
| | - Noga Gal
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
| | - Christoph Zaba
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
| | - Andrea Scheberl
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
| | - Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
46
|
Wong CK, Mason AF, Stenzel MH, Thordarson P. Formation of non-spherical polymersomes driven by hydrophobic directional aromatic perylene interactions. Nat Commun 2017; 8:1240. [PMID: 29093442 PMCID: PMC5665895 DOI: 10.1038/s41467-017-01372-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
Polymersomes, made up of amphiphilic block copolymers, are emerging as a powerful tool in drug delivery and synthetic biology due to their high stability, chemical versatility, and surface modifiability. The full potential of polymersomes, however, has been hindered by a lack of versatile methods for shape control. Here we show that a range of non-spherical polymersome morphologies with anisotropic membranes can be obtained by exploiting hydrophobic directional aromatic interactions between perylene polymer units within the membrane structure. By controlling the extent of solvation/desolvation of the aromatic side chains through changes in solvent quality, we demonstrate facile access to polymersomes that are either ellipsoidal or tubular-shaped. Our results indicate that perylene aromatic interactions have a great potential in the design of non-spherical polymersomes and other structurally complex self-assembled polymer structures.
Collapse
Affiliation(s)
- Chin Ken Wong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.,Centre for Advanced Macromolecular Design (CAMD), University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander F Mason
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Centre for Advanced Macromolecular Design (CAMD), University of New South Wales, Sydney, NSW 2052, Australia.
| | - Pall Thordarson
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
47
|
Yang N, Deeb C, Pelouard JL, Felidj N, Pileni MP. Water-Dispersed Hydrophobic Au Nanocrystal Assemblies with a Plasmon Fingerprint. ACS NANO 2017; 11:7797-7806. [PMID: 28745866 DOI: 10.1021/acsnano.7b01605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydrophobic Au nanocrystal assemblies (both ordered and amorphous) were dispersed in aqueous solution via the assistance of lipid vesicles. The intertwine between vesicles and Au assemblies was made possible through a careful selection of the length of alkyl chains on Au nanocrystals. Extinction spectra of Au assemblies showed two peaks that were assigned to a scattering mode that red-shifted with increasing the assembly size and an absorption mode associated with localized surface plasmon that was independent of their size. This plasmon fingerprint could be used as a probe for investigating the optical properties of such assemblies. Our water-soluble assemblies enable exploring a variety of potential applications including solar energy and biomedicine.
Collapse
Affiliation(s)
- Nailiang Yang
- Sorbonne Universités , UPMC Univ Paris 06, UMR 8233, MONARIS, F-75005 Paris, France
- CNRS , UMR 8233, MONARIS, F-75005 Paris, France
| | - Claire Deeb
- MiNaO-Center for Nanoscience and Nanotechnology C2N, CNRS, University Paris-Sud, Université Paris-Saclay , 91460 Marcoussis, France
| | - Jean-Luc Pelouard
- MiNaO-Center for Nanoscience and Nanotechnology C2N, CNRS, University Paris-Sud, Université Paris-Saclay , 91460 Marcoussis, France
| | - Nordin Felidj
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7086 , 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | | |
Collapse
|
48
|
Zhu D, Wu S, Hu C, Chen Z, Wang H, Fan F, Qin Y, Wang C, Sun H, Leng X, Kong D, Zhang L. Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma. Acta Biomater 2017. [PMID: 28627436 DOI: 10.1016/j.actbio.2017.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Combination chemotherapy is a promising method of improving cancer treatment, but the distinct pharmacokinetics of combined drugs and non-specific drug distribution slow down the development in the clinic. In this study, folate (FA) receptor-targeted polymersomes with apparent bilayered lamellar structure were successfully developed to co-encapsulate a hydrophobic-hydrophilic chemotherapeutic drug pair (PTX and DOX) in a single vesicle for enhancing the combination chemotherapeutic effect. Hydrophobic PTX was loaded into the thick hydrophobic lamellar membrane by the self-assembly of triblock copolymer PCL8000-PEG8000-PCL8000, while hydrophilic DOX was encapsulated into the hydrophilic reservoir using a trans-membrane ammonium sulfate gradient method. In vitro release study indicated that the drugs were released from the polymersomes in a controlled and sustained manner. Cellular uptake study indicated that FA-targeted Co-PS had higher internalization efficiency in FA receptor-overexpressing BEL-7404 cells than non-targeted Co-PS. In vitro cytotoxicity assay demonstrated that FA-targeted Co-PS exhibited less cytotoxic effect than free drug cocktail, but suppressed the growth of tumor cells more efficiently than non-targeted Co-PS. Ex vivo imaging biodistribution studies revealed that FA-targeted Co-PS led to highly efficient targeting and accumulation in the BEL-7404 xenograft tumor. Furthermore, the in vivo antitumor study showed that the combination chemotherapy of polymersomes to BEL-7404 tumor via intravenous injection was superior to free drug cocktail treatment, and the FA-targeted Co-PS exhibited significantly higher tumor growth inhibition than non-targeted Co-PS group. Therefore, the newly developed FA-targeted co-delivery polymersomes hold great promise for simultaneous delivery of multiple chemotherapeutics and would have great potential in tumor-targeting and combination chemotherapy. STATEMENT OF SIGNIFICANCE Combination chemotherapy is a promising method of improving cancer treatment, but the distinct pharmacokinetics of combined drugs and non-specific drug distribution slow down the development in the clinic. In our study, novel folate-targeted co-delivery polymersomes (Co-PS) were successfully developed to encapsulate a hydrophobic-hydrophilic chemotherapeutic drug pair (paclitaxel and doxorubicin) into the different compartments of the vesicle. In vivo studies revealed that the combination chemotherapy of polymersomes to BEL-7404 xenograft tumor via intravenous injection was superior to free drug cocktail treatment, and the FA-targeted Co-PS exhibited significantly higher tumor growth inhibition than non-targeted Co-PS group. Therefore, the newly developed FA-targeted co-delivery polymersomes hold great promise for simultaneous delivery of multiple chemotherapeutics and would have great potential in tumor-targeting and combination chemotherapy.
Collapse
Affiliation(s)
- Dunwan Zhu
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Shengjie Wu
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Chunyan Hu
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Zhuo Chen
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Hai Wang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Fan Fan
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Yu Qin
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, 7-116 Hasselmo Hall, 312 Church Street S.E, Minneapolis, MN 55455, USA
| | - Hongfan Sun
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Linhua Zhang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
49
|
Kriete B, Bondarenko AS, Jumde VR, Franken LE, Minnaard AJ, Jansen TLC, Knoester J, Pshenichnikov MS. Steering Self-Assembly of Amphiphilic Molecular Nanostructures via Halogen Exchange. J Phys Chem Lett 2017; 8:2895-2901. [PMID: 28594561 PMCID: PMC5502413 DOI: 10.1021/acs.jpclett.7b00967] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/08/2017] [Indexed: 05/31/2023]
Abstract
In the field of self-assembly, the quest for gaining control over the supramolecular architecture without affecting the functionality of the individual molecular building blocks is intrinsically challenging. By using a combination of synthetic chemistry, cryogenic transmission electron microscopy, optical absorption measurements, and exciton theory, we demonstrate that halogen exchange in carbocyanine dye molecules allows for fine-tuning the diameter of the self-assembled nanotubes formed by these molecules, while hardly affecting the molecular packing determined by hydrophobic/hydrophilic interactions. Our findings open a unique way to study size effects on the optical properties and exciton dynamics of self-assembled systems under well-controlled conditions.
Collapse
Affiliation(s)
- Björn Kriete
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Anna S. Bondarenko
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Varsha R. Jumde
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Linda E. Franken
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Jasper Knoester
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Maxim S. Pshenichnikov
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
50
|
Magnetic nanoformulations for prostate cancer. Drug Discov Today 2017; 22:1233-1241. [PMID: 28526660 DOI: 10.1016/j.drudis.2017.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Magnetic nanoparticles (MNPs) play a vital role for improved imaging applications. Recently, a number of studies demonstrate MNPs can be applied for targeted delivery, sustained release of therapeutics, and hyperthermia. Based on stable particle size and shape, biocompatibility, and inherent contrast enhancement characteristics, MNPs have been encouraged for pre-clinical studies and human use. As a theranostic platform development, MNPs need to balance both delivery and imaging aspects. Thus, this review provides significant insight and advances in the theranostic role of MNPs through the documentation of unique magnetic nanoparticles used in prostate cancer, their interaction with prostate cancer cells, in vivo fate, targeting, and biodistribution. Specific and custom-made applications of various novel nanoformulations in prostate cancer are discussed.
Collapse
|