1
|
Semertzidis A, Mouskeftara T, Gika H, Pousinis P, Makedou K, Goulas A, Kountouras J, Polyzos SA. Effects of Combined Low-Dose Spironolactone Plus Vitamin E versus Vitamin E Monotherapy on Lipidomic Profile in Non-Alcoholic Fatty Liver Disease: A Post Hoc Analysis of a Randomized Controlled Trial. J Clin Med 2024; 13:3798. [PMID: 38999363 PMCID: PMC11242225 DOI: 10.3390/jcm13133798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Background/Objectives: Lipid dysmetabolism seems to contribute to the development and progression of nonalcoholic fatty liver disease (NAFLD). Our aim was to compare serum lipidomic profile between patients with NAFLD having received monotherapy with vitamin E (400 IU/d) and those having received combination therapy with vitamin E (400 IU/d) and low-dose spironolactone (25 mg/d) for 52 weeks. Methods: This was a post hoc study of a randomized controlled trial (NCT01147523). Serum lipidomic analysis was performed in vitamin E monotherapy group (n = 15) and spironolactone plus vitamin E combination therapy group (n = 12). We employed an untargeted liquid chromatography-mass spectrometry lipid profiling approach in positive and negative ionization mode. Results: Univariate analysis revealed 36 lipid molecules statistically different between groups in positive mode and seven molecules in negative mode. Multivariate analysis in negative mode identified six lipid molecules that remained robustly different between groups. After adjustment for potential confounders, including gender, omega-3 supplementation, leptin concentration and homeostasis model assessment-insulin resistance (HOMA-IR), four lipid molecules remained significant between groups: FA 20:5, SM 34:2;O2, SM 42:3;O2 and CE 22:6, all being higher in the combination treatment group. Conclusions: The combination of spironolactone with vitamin E led to higher circulating levels of four lipid molecules than vitamin E monotherapy, after adjustment for potential confounders. Owing to very limited relevant data, we could not support that these changes in lipid molecules may be beneficial or not for the progression of NAFLD. Thus, mechanistic studies are warranted to clarify the potential clinical significance of these findings.
Collapse
Affiliation(s)
- Anastasios Semertzidis
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- BIOMIC AUTh, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 570 01 Thessaloniki, Greece
| | - Petros Pousinis
- BIOMIC AUTh, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 570 01 Thessaloniki, Greece
| | - Kali Makedou
- Laboratory of Biochemistry, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Jannis Kountouras
- Second Medical Clinic, Ippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, 546 42 Thessaloniki, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
2
|
Padro T, Santisteban V, Huedo P, Puntes M, Aguiló M, Espadaler-Mazo J, Badimon L. Lactiplantibacillus plantarum strains KABP011, KABP012, and KABP013 modulate bile acids and cholesterol metabolism in humans. Cardiovasc Res 2024; 120:708-722. [PMID: 38525555 PMCID: PMC11135648 DOI: 10.1093/cvr/cvae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/02/2024] [Accepted: 02/05/2024] [Indexed: 03/26/2024] Open
Abstract
AIMS Probiotics with high bile salt hydrolase (BSH) activity have shown to promote cardiovascular health. However, their mechanism(s) of action remain poorly understood. Here, we performed a pilot exploratory study to investigate effects of a 4-week intervention with escalating doses of a BSH-active formula containing Lactiplantibacillus plantarum strains KABP011, KABP012, and KABP013 on bile acid (BA), lipid profile, and lipoprotein function. METHODS AND RESULTS Healthy overweight individuals were included in this study. The probiotic intake was associated with a progressive decrease of conjugated BAs in serum, due to the reduction of tauro- and glyco-conjugated forms. Plasma levels of fibroblast growth factor-19 were significantly reduced and correlated with BA changes. The probiotic induced significant changes in serum lipids, with reduction in non-HDL cholesterol (non-HDLc) and LDL cholesterol (LDLc) levels. The largest decrease was evidenced in the subgroup with higher baseline LDLc levels (LDLc > 130 mg/dL). Fasting levels of circulating apolipoprotein(Apo) B100 and ApoB48 were significantly reduced. Importantly, the decrease in non-HDLc levels was associated with a significant reduction in small LDL particles. Functional testing indicated that LDL particles had a significantly lower susceptibility to oxidation, while HDL particles gained antioxidant capacity after the probiotic intake. The microbiota profile in faeces collected at the end of the study was enriched with members of class Desulfovibrio, a taurine-consuming bacteria, likely because of the increase in free taurine in the gut due to the BSH activity of the probiotic. CONCLUSION The intervention with L. plantarum strains induces beneficial effects on BA signature and lipoprotein profile. It reduces ApoB and small LDL levels and LDL susceptibility to oxidation and increases HDL antioxidant capacity. These metabolic profile changes suggest increased protection against atherosclerotic disease.
Collapse
Affiliation(s)
- Teresa Padro
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Antoni Mª Claret 167, Barcelona 08025, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Victoria Santisteban
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Antoni Mª Claret 167, Barcelona 08025, Spain
- School of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Pol Huedo
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
- Basic Sciences Department, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Montserrat Puntes
- Medicament Research Center (CIM), Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Meritxell Aguiló
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
| | | | - Lina Badimon
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Antoni Mª Claret 167, Barcelona 08025, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
3
|
Azparren‐Angulo M, Mleczko J, Alboniga OE, Kruglik S, Guigner J, Gonzalez E, Garcia‐Vallicrosa C, Llop J, Simó C, Alonso C, Iruarrizaga M, Royo F, Falcon‐Perez JM. Lipidomics and biodistribution of extracellular vesicles-secreted by hepatocytes from Zucker lean and fatty rats. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e140. [PMID: 38939902 PMCID: PMC11080883 DOI: 10.1002/jex2.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) have been involved in metabolic syndrome, although their specific role in the development of the pathology is still unknown. To further study the role of EVs, we have analysed by Raman tweezers microspectroscopy and mass spectrometry-based lipidomics the small EVs population secreted by fatty (ZF) and lean (ZL) hepatocytes obtained from Zucker rats. We have also explored in vivo and ex vivo biodistribution of these EVs through fluorine-18-radiolabelling using a positron emission tomography imaging. Based on the proportion of proteins to lipids and the types of lipids, our results indicate that within the range of small EVs, primary hepatocytes secrete different subpopulations of particles. These differences were observed in the enrichment of triglyceride species in EVs secreted by ZF hepatocytes. Biodistribution experiments showed accumulation in the brain, heart, lungs, kidney and specially in bladder after intravenous administration. In summary, we show that EVs released by a fatty hepatocytes carry a different lipid signature compared to their lean counterpart. Biodistribution experiment has shown no difference in the distribution of EVs secreted by ZF and ZL hepatocytes but has given us a first view of possible target organs for these particles. Our results might open a door to both pathology studies and therapeutic interventions.
Collapse
Affiliation(s)
- Maria Azparren‐Angulo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
| | - Justyna Mleczko
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
| | - Oihane E. Alboniga
- Metabolomics Platform, CICbioGUNE‐BRTA, CIBERehdBizkaia Technology Park, DerioBizkaiaSpain
| | - Sergei Kruglik
- Laboratoire Jean PerrinSorbonne Université, CNRS UMR 8237, 4 place JussieuParisFrance
| | - Jean‐Michel Guigner
- L'Institut de Minéralogie, de Physique des Matériaux et de CosmochimieSorbonne Université, CNRS, IRD, MNHNParisFrance
| | - Esperanza Gonzalez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
| | - Clara Garcia‐Vallicrosa
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
| | - Jordi Llop
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA), Paseo Miramón 182, San SebastianGuipúzcoaSpain
| | - Cristina Simó
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA), Paseo Miramón 182, San SebastianGuipúzcoaSpain
| | | | | | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
- IKERBASQUEBasque Foundation for Science, BilbaoBizkaiaSpain
| |
Collapse
|
4
|
Cheng X, Xie H, Xiong Y, Sun P, Xue Y, Li K. Lipidomics profiles of human spermatozoa: insights into capacitation and acrosome reaction using UPLC-MS-based approach. Front Endocrinol (Lausanne) 2023; 14:1273878. [PMID: 38027124 PMCID: PMC10660817 DOI: 10.3389/fendo.2023.1273878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Lipidomics elucidates the roles of lipids in both physiological and pathological processes, intersecting with many diseases and cellular functions. The maintenance of lipid homeostasis, essential for cell health, significantly influences the survival, maturation, and functionality of sperm during fertilization. While capacitation and the acrosome reaction, key processes before fertilization, involve substantial lipidomic alterations, a comprehensive understanding of the changes in human spermatozoa's lipidomic profiles during these processes remains unknown. This study aims to explicate global lipidomic changes during capacitation and the acrosome reaction in human sperm, employing an untargeted lipidomic strategy using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Methods Twelve semen specimens, exceeding the WHO reference values for semen parameters, were collected. After discontinuous density gradient separation, sperm concentration was adjusted to 2 x 106 cells/ml and divided into three groups: uncapacitated, capacitated, and acrosome-reacted. UPLC-MS analysis was performed after lipid extraction from these groups. Spectral peak alignment and statistical analysis, using unsupervised principal component analysis (PCA), bidirectional orthogonal partial least squares discriminant analysis (O2PLS-DA) analysis, and supervised partial least-squares-latent structure discriminate analysis (PLS-DA), were employed to identify the most discriminative lipids. Results The 1176 lipid peaks overlapped across the twelve individuals in the uncapacitated, capacitated, and acrosome-reacted groups: 1180 peaks between the uncapacitated and capacitated groups, 1184 peaks between the uncapacitated and acrosome-reacted groups, and 1178 peaks between the capacitated and acrosome-reacted groups. The count of overlapping peaks varied among individuals, ranging from 739 to 963 across sperm samples. Moreover, 137 lipids had VIP values > 1.0 and twenty-two lipids had VIP > 1.5, based on the O2PLS-DA model. Furthermore, the identified twelve lipids encompassed increases in PI 44:10, LPS 20:4, LPA 20:5, and LPE 20:4, and decreases in 16-phenyl-tetranor-PGE2, PC 40:6, PS 35:4, PA 29:1, 20-carboxy-LTB4, and 2-oxo-4-methylthio-butanoic acid. Discussion This study has been the first time to investigate the lipidomics profiles associated with acrosome reaction and capacitation in human sperm, utilizing UPLC-MS in conjunction with multivariate data analysis. These findings corroborate earlier discoveries on lipids during the acrosome reaction and unveil new metabolites. Furthermore, this research highlights the effective utility of UPLC-MS-based lipidomics for exploring diverse physiological states in sperm. This study offers novel insights into lipidomic changes associated with capacitation and the acrosome reaction in human sperm, which are closely related to male reproduction.
Collapse
Affiliation(s)
- Xiaohong Cheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haifeng Xie
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yuping Xiong
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yamei Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Padro T, López-Yerena A, Pérez A, Vilahur G, Badimon L. Dietary ω3 Fatty Acids and Phytosterols in the Modulation of the HDL Lipidome: A Longitudinal Crossover Clinical Study. Nutrients 2023; 15:3637. [PMID: 37630826 PMCID: PMC10459912 DOI: 10.3390/nu15163637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
High-density lipoproteins (HDLs) are complex particles composed of a wide range of lipids, proteins, hormones and vitamins that confer to the HDL particles multiple cardiovascular protective properties, mainly against the development of atherosclerosis. Among other factors, the HDL lipidome is affected by diet. We hypothesized that diet supplementation with ω3 (docosahexaenoic acid: DHA and eicosapentaenoic acid: EPA) and phytosterols (PhyS) would improve the HDL lipid profile. Overweight subjects (n = 20) were enrolled in a two-arm longitudinal crossover study. Milk (250 mL/day), supplemented with either ω3 (EPA + DHA, 375 mg) or PhyS (1.6 g), was administered to the volunteers over two consecutive 28-day intervention periods, followed by HDL lipidomic analysis. The comprehensive lipid pattern revealed that the HDL lipidome is diet-dependent. ω3-milk supplementation produced more changes than PhyS, mainly in cholesteryl esters (CEs). After ω3-milk intake, levels of DHA and EPA within phosphatylcholines, triglycerides and CE lipids in HDLs increased (p < 0.05). The correlation between lipid species showed that lipid changes occur in a coordinated manner. Finally, our analysis revealed that the HDL lipidome is also sex-dependent. The HDL lipidome is affected by diet and sex, and the 4 weeks of ω3 supplementation induced HDL enrichment with EPA and DHA.
Collapse
Affiliation(s)
- Teresa Padro
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; (A.L.-Y.); (G.V.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anallely López-Yerena
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; (A.L.-Y.); (G.V.); (L.B.)
| | - Antonio Pérez
- Servicio de Endocrinología y Nutrición, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08041 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; (A.L.-Y.); (G.V.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; (A.L.-Y.); (G.V.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| |
Collapse
|
6
|
Musso G, Saba F, Cassader M, Gambino R. Lipidomics in pathogenesis, progression and treatment of nonalcoholic steatohepatitis (NASH): Recent advances. Prog Lipid Res 2023; 91:101238. [PMID: 37244504 DOI: 10.1016/j.plipres.2023.101238] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting up to 30% of the general adult population. NAFLD encompasses a histological spectrum ranging from pure steatosis to non-alcoholic steatohepatitis (NASH). NASH can progress to cirrhosis and is becoming the most common indication for liver transplantation, as a result of increasing disease prevalence and of the absence of approved treatments. Lipidomic readouts of liver blood and urine samples from experimental models and from NASH patients disclosed an abnormal lipid composition and metabolism. Collectively, these changes impair organelle function and promote cell damage, necro-inflammation and fibrosis, a condition termed lipotoxicity. We will discuss the lipid species and metabolic pathways leading to NASH development and progression to cirrhosis, as well as and those species that can contribute to inflammation resolution and fibrosis regression. We will also focus on emerging lipid-based therapeutic opportunities, including specialized proresolving lipid molecules and macrovesicles contributing to cell-to-cell communication and NASH pathophysiology.
Collapse
Affiliation(s)
- Giovanni Musso
- Dept of Emergency Medicine, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy.
| | - Francesca Saba
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Maurizio Cassader
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Lee WC, Wu TJ, Cheng CH, Wang YC, Hung HC, Lee JC, Wu TH, Chou HS, Lee CF, Chan KM. Elevation of Lipid Metabolites in Deceased Liver Donors Reflects Graft Suffering. Metabolites 2023; 13:metabo13010117. [PMID: 36677042 PMCID: PMC9866140 DOI: 10.3390/metabo13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
Liver transplantation can be performed with deceased or living donor allografts. Deceased liver grafts are donated from brain- or circulation-death patients, and they have usually suffered from a certain degree of damage. Post-transplant graft function and patient survival are closely related to liver allograft recovery. How to define the damage of liver grafts is unclear. A total of 47 liver donors, 23 deceased and 24 living, were enrolled in this study. All deceased donors had suffered from severe brain damage, and six of them had experienced cardio-pulmonary-cerebral resuscitation (CPR). The exploration of liver graft metabolomics was conducted by liquid chromatography coupled with mass spectrometry. Compared with living donor grafts, the deceased liver grafts expressed higher levels of various diacylglycerol, lysophosphatidylcholine, lysophosphatidylethanolamine, oleoylcarnitine and linoleylcarnitine; and lower levels of cardiolipin and phosphatidylcholine. The liver grafts from the donors with CPR had higher levels of cardiolipin, phosphatidic acid, phosphatidylcholine, phatidylethanolamine and amiodarone than the donors without CPR. When focusing on amino acids, the deceased livers had higher levels of histidine, taurine and tryptophan than the living donor livers. In conclusion, the deceased donors had suffered from cardio-circulation instability, and their lipid metabolites were increased. The elevation of lipid metabolites can be employed as an indicator of liver graft suffering.
Collapse
|
8
|
Groves RA, Chan CCY, Wildman SD, Gregson DB, Rydzak T, Lewis IA. Rapid LC-MS assay for targeted metabolite quantification by serial injection into isocratic gradients. Anal Bioanal Chem 2023; 415:269-276. [PMID: 36443449 PMCID: PMC9823034 DOI: 10.1007/s00216-022-04384-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
Abstract
Liquid chromatography mass spectrometry (LC-MS) has emerged as a mainstream strategy for metabolomics analyses. One advantage of LC-MS is that it can serve both as a biomarker discovery tool and as a platform for clinical diagnostics. Consequently, it offers an exciting opportunity to potentially transition research studies into real-world clinical tools. One important distinction between research versus diagnostics-based applications of LC-MS is throughput. Clinical LC-MS must enable quantitative analyses of target molecules in hundreds or thousands of samples each day. Currently, the throughput of these clinical applications is limited by the chromatographic gradient lengths, which-when analyzing complex metabolomics samples-are difficult to conduct in under ~ 3 min per sample without introducing serious quantitative analysis problems. To address this shortcoming, we developed sequential quantification using isotope dilution (SQUID), an analytical strategy that combines serial sample injections into a continuous isocratic mobile phase to maximize throughput. SQUID uses internal isotope-labelled standards to correct for changes in LC-MS response factors over time. We show that SQUID can detect microbial polyamines in human urine specimens (lower limit of quantification; LLOQ = 106 nM) with less than 0.019 normalized root mean square error. Moreover, we show that samples can be analyzed in as little as 57 s. We propose SQUID as a new, high-throughput LC-MS tool for quantifying small sets of target biomarkers across large cohorts.
Collapse
Affiliation(s)
- Ryan A Groves
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Carly C Y Chan
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Spencer D Wildman
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Daniel B Gregson
- Alberta Precision Laboratories, Calgary, AB, T2L 2K8, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Thomas Rydzak
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
9
|
Zhang J, Xie H, Yao J, Jin W, Pan H, Pan Z, Xie D, Xie D. TRIM59 promotes steatosis and ferroptosis in non-alcoholic fatty liver disease via enhancing GPX4 ubiquitination. Hum Cell 2023; 36:209-222. [PMID: 36417114 DOI: 10.1007/s13577-022-00820-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease around the world. However, no specific medicine has been approved for NAFLD treatment. Our study was conducted to explore the role and mechanism of TRIM59 in NAFLD, aiming to provide a novel target for NAFLD treatment. Here, the expression of TRIM family members was detected in 10 mild and severe NAFLD tissues as well as 10 normal tissues. TRIM59 expression was verified in 10 normal tissues and 25 mild and severe NAFLD tissues. Palmitic acid and high-fatty diet were used for the construction of NAFLD models. Oil Red O staining was used to detect the level of steatosis. The content of TNF-α, IL-6, and IL-8 was measured to reflect the level of inflammation. Lipid reactive oxygen species was estimated by flow cytometry. We found that TRIM59 was highly expressed in NAFLD tissues compared with normal liver tissues. The inhibition of TRIM59 could inhibit the steatosis and inflammation in NAFLD, whereas its overexpression exhibited reversed effects. The application of ferroptosis inhibitor, deferoxamine, could markedly ameliorate steatosis and inflammation, which was mediated by overexpressed TRIM59. Besides, TRIM59 was demonstrated to interact with GPX4 and promoted its ubiquitination. The overexpression of GPX4 could significantly reverse the pathogenic effects of TRIM59 in NAFLD. Additionally, the inhibition of TRIM59 appeared to be a promising strategy to ameliorate NAFLD in mice model. In summary, our study revealed that TRIM59 could promote steatosis and ferroptosis in NAFLD via enhancing GPX4 ubiquitination. TRIM59 could be a potential target for NAFLD treatment.
Collapse
Affiliation(s)
- Jingxian Zhang
- Department of Pharmacy, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Haina Xie
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Yao
- Department of Pharmacy, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Wenye Jin
- Department of Pharmacy, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Huijie Pan
- Department of Pharmacy, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Zhiqiang Pan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Dongyu Xie
- Department of Spleen-Stomach, Zhenjiang Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, China. .,Department of Spleen-Stomach, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang, China.
| | - Donghao Xie
- Department of Pharmacy, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China. .,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
Shao M, Lu Y, Xiang H, Wang J, Ji G, Wu T. Application of metabolomics in the diagnosis of non-alcoholic fatty liver disease and the treatment of traditional Chinese medicine. Front Pharmacol 2022; 13:971561. [PMID: 36091827 PMCID: PMC9453477 DOI: 10.3389/fphar.2022.971561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease around the world, and it often coexists with insulin resistance-related diseases including obesity, diabetes, hyperlipidemia, and hypertension, which seriously threatens human health. Better prevention and treatment strategies are required to improve the impact of NAFLD. Although needle biopsy is an effective tool for diagnosing NAFLD, this method is invasive and difficult to perform. Therefore, it is very important to develop more efficient approaches for the early diagnosis of NAFLD. Traditional Chinese medicine (TCM) can play a certain role in improving symptoms and protecting target organs, and its mechanism of action needs to be further studied. Metabolomics, the study of all metabolites that is thought to be most closely associated with the patients’ characters, can provide useful clinically biomarkers that can be applied to NAFLD and may open up new methods for diagnosis. Metabolomics technology is consistent with the overall concept of TCM, and it can also be used as a potential mechanism to explain the effects of TCM by measuring biomarkers by metabolomics. Based on PubMed/MEDLINE and other databases, this paper retrieved relevant literature NAFLD and TCM intervention in NAFLD using metabolomics technology in the past 5 years were searched, and the specific metabolites associated with the development of NAFLD and the potential mechanism of Chinese medicine on improving symptoms were summarized.
Collapse
Affiliation(s)
- Mingmei Shao
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guang Ji, , ; Tao Wu, ,
| |
Collapse
|
11
|
Ramírez-Vélez R, Oteiza J, de Tejerina JMCF, García-Alonso N, Legarra-Gorgoñon G, Oscoz-Ochandorena S, Arasanz H, García-Alonso Y, Correa-Rodríguez M, Izquierdo M. Resistance training and clinical status in patients with postdischarge symptoms after COVID-19: protocol for a randomized controlled crossover trial "The EXER-COVID Crossover Study". Trials 2022; 23:643. [PMID: 35945634 PMCID: PMC9361270 DOI: 10.1186/s13063-022-06608-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Physical exercise induces a coordinated response of multiple organ systems, including the immune system. In fact, it has been proposed that physical exercise may modulate the immune system. However, the potential effect of an exercise program on COVID-19 survivors has not been investigated. Thus, the aim of this study is to evaluate the modifications in immunological parameters, physical condition, inflammatory profile, and perceived persistent symptoms after 6 weeks of supervised resistance training (RT), in addition to the standard care on the clinical status of patients with persistent COVID-19 symptoms. The objective of this protocol is to describe the scientific rationale in detail and to provide information about the study procedures. METHODS/DESIGN A total of 100 patients with postdischarge symptoms after COVID-19 will be randomly allocated into either a group receiving standard care (control group) or a group performing a multicomponent exercise program two times a week over a period of 6 weeks. The main hypothesis is that a 6-week multicomponent exercise program (EXER-COVID Crossover Study) will improve the immunological and inflammatory profile, physical condition, and persistent perceived symptoms (fatigue/tiredness, musculoskeletal pain, and shortness of breath) in patients with postdischarge symptoms after COVID-19. DISCUSSION Our results will provide insights into the effects of a multicomponent exercise program on immunological parameters, physical condition, inflammatory profile, and persistent perceived symptoms in patients with postdischarge symptoms after COVID-19. Information obtained by this study will inform future guidelines on the exercise training rehabilitation of patients with postdischarge symptoms after COVID-19. TRIAL REGISTRATION NCT04797871 , Version 2. Registered on March 15, 2021.
Collapse
Affiliation(s)
- Robinson Ramírez-Vélez
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain. .,CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Julio Oteiza
- Servicio de Medicina Interna, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Juan Manuel Casas Fernández de Tejerina
- Servicio de Medicina Interna, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Nora García-Alonso
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gaizka Legarra-Gorgoñon
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Sergio Oscoz-Ochandorena
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Medical Oncology Department, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Yesenia García-Alonso
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María Correa-Rodríguez
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18016, Granada, Spain.,Biosanitary Research Institute (ibs.GRANADA), Granada, Spain
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Secor JD, Cho BS, Yu LJ, Pan A, Ko VH, Dao DT, Feigh M, Anez-Bustillos L, Fell GL, Fraser DA, Gura KM, Puder M. Structurally-engineered fatty acid 1024 (SEFA-1024) improves diet-induced obesity, insulin resistance, and fatty liver disease. Lipids 2022; 57:241-255. [PMID: 35778847 DOI: 10.1002/lipd.12351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/15/2022] [Accepted: 05/27/2022] [Indexed: 01/19/2023]
Abstract
Obesity is a global epidemic that drives morbidity and mortality through cardiovascular disease, diabetes, and non-alcoholic fatty liver disease (NAFLD). No definitive therapy has been approved to improve glycemic control and treat NAFLD in obese patients. Here, we investigated a semi-synthetic, long chain, structurally-engineered fatty acid-1024 (SEFA-1024), as a treatment for obesity-induced hyperglycemia, insulin-resistance, and fatty liver disease in rodent models. A single dose of SEFA-1024 was administered to evaluate glucose tolerance and active glucagon-like peptide 1 (GLP-1) in lean rats in the presence and absence of a DPP-4 inhibitor. The effects of SEFA-1024 on weight loss and glycemic control were assessed in genetic (ob/ob) and environmental (high-fat diet) murine models of obesity. Liver histology, serum liver enzymes, liver lipidomics, and hepatic gene expression were also assessed in the high-fat diet murine model. SEFA-1024 reversed obesity-associated insulin resistance and improved glycemic control. SEFA-1024 increased active GLP-1. In a long-term model of diet-induced obesity, SEFA-1024 reversed excessive weight gain, hepatic steatosis, elevated liver enzymes, hepatic lipotoxicity, and promoted fatty acid metabolism. SEFA-1024 is an enterohepatic-targeted, eicosapentaenoic acid derivative that reverses obesity-induced dysregulated glucose metabolism and hepatic lipotoxicity in genetic and dietary rodent models of obesity. The mechanism by which SEFA-1024 works may include increasing aGLP-1, promoting fatty acid oxidation, and inhibiting hepatic triglyceride formation. SEFA-1024 may serve as a potential treatment for obesity-related diabetes and NAFLD.
Collapse
Affiliation(s)
- Jordon D Secor
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Bennet S Cho
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lumeng J Yu
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Amy Pan
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Victoria H Ko
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Duy T Dao
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Lorenzo Anez-Bustillos
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Gillian L Fell
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Kathleen M Gura
- Department of Pharmacy, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Mark Puder
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Frontiñan-Rubio J, Llanos-González E, González VJ, Vázquez E, Durán-Prado M. Subchronic Graphene Exposure Reshapes Skin Cell Metabolism. J Proteome Res 2022; 21:1675-1685. [PMID: 35611947 PMCID: PMC9251767 DOI: 10.1021/acs.jproteome.2c00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
In recent years,
the toxicity of graphene-related materials (GRMs)
has been evaluated in diverse models to guarantee their safety. In
most applications, sublethal doses of GRMs contact human barriers
such as skin in a subchronic way. Herein, the subchronic effect (30
day exposure) of three GRMs (GO 1, GO 2, and FLG) with different oxidation
degrees and sizes was studied. The effects of these materials on human
skin cells, HaCaTs, were assayed through high-throughput metabolic-based
readout and other cell-based assays. A differential effect was found
between the different GRMs. GO 2 induced a metabolic remodeling in
epithelial cells, increasing the level of tricarboxylic acid components,
mirrored by increased cell proliferation and changes in cell phenotype.
The oxidation degree, size, and method of manufacture of GRMs dictated
harmful effects on cell metabolism and behavior generated by nontoxic
exposures. Therefore, a “safe by design” procedure is
necessary when working with these nanomaterials.
Collapse
Affiliation(s)
| | | | - Viviana Jehová González
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.,Faculty of Chemical Science and Technology, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.,Faculty of Chemical Science and Technology, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Mario Durán-Prado
- Faculty of Medicine, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
14
|
Guerra S, Mocciaro G, Gastaldelli A. Adipose tissue insulin resistance and lipidome alterations as the characterizing factors of non-alcoholic steatohepatitis. Eur J Clin Invest 2022; 52:e13695. [PMID: 34695228 DOI: 10.1111/eci.13695] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The prevalence of non-alcoholic fatty liver disease (NAFLD) is now 25% in the general population but increases to more than 55% in subjects with obesity and/or type 2 diabetes. Simple steatosis (NAFL) can develop into more severe forms, that is non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma leading to death. METHODS In this narrative review, we have discussed the current knowledge in the pathophysiology of fatty liver disease, including both metabolic and non-metabolic factors, insulin resistance, mitochondrial function, as well as the markers of liver damage, giving attention to the alterations in lipid metabolism and production of lipotoxic lipids. RESULTS Insulin resistance, particularly in the adipose tissue, is the main driver of NAFLD due to the excess release of fatty acids. Lipidome analyses have shown that several lipids, including DAGs and ceramides, and especially if they contain saturated lipids, act as bioactive compounds, toxic to the cells. Lipids can also affect mitochondrial function. Not only lipids, but also amino acid metabolism is impaired in NAFL/NASH, and some amino acids, as branched-chain and aromatic amino acids, glutamate, serine and glycine, have been linked to impaired metabolism, insulin resistance and severity of NAFLD and serine is a precursor of ceramides. CONCLUSIONS The measurement of lipotoxic species and adipose tissue dysfunction can help to identify individuals at risk of progression to NASH.
Collapse
Affiliation(s)
- Sara Guerra
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.,Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Gabriele Mocciaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.,Sant'Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
15
|
Aragón-Herrera A, Otero-Santiago M, Anido-Varela L, Moraña-Fernández S, Campos-Toimil M, García-Caballero T, Barral L, Tarazón E, Roselló-Lletí E, Portolés M, Gualillo O, Moscoso I, Lage R, González-Juanatey JR, Feijóo-Bandín S, Lago F. The Treatment With the SGLT2 Inhibitor Empagliflozin Modifies the Hepatic Metabolome of Male Zucker Diabetic Fatty Rats Towards a Protective Profile. Front Pharmacol 2022; 13:827033. [PMID: 35185578 PMCID: PMC8847595 DOI: 10.3389/fphar.2022.827033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in patients with Type 2 Diabetes Mellitus (T2DM)) trial evidenced the potential of sodium-glucose cotransporter 2 (SGLT2) inhibitors for the treatment of patients with diabetes and cardiovascular disease. Recent evidences have shown the benefits of the SGLT2 inhibitor empagliflozin on improving liver steatosis and fibrosis in patients with T2DM. Metabolomic studies have been shown to be very useful to improve the understanding of liver pathophysiology during the development and progression of metabolic hepatic diseases, and because the effects of empagliflozin and of other SGLT2 inhibitors on the complete metabolic profile of the liver has never been analysed before, we decided to study the impact on the liver of male Zucker diabetic fatty (ZDF) rats of a treatment for 6 weeks with empagliflozin using an untargeted metabolomics approach, with the purpose to help to clarify the benefits of the use of empagliflozin at hepatic level. We found that empagliflozin is able to change the hepatic lipidome towards a protective profile, through an increase of monounsaturated and polyunsaturated glycerides, phosphatidylcholines, phosphatidylethanolamines, lysophosphatidylinositols and lysophosphatidylcholines. Empagliflozin also induces a decrease in the levels of the markers of inflammation IL-6, chemerin and chemerin receptor in the liver. Our results provide new evidences regarding the molecular pathways through which empagliflozin could exert hepatoprotector beneficial effects in T2DM.
Collapse
Affiliation(s)
- Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Manuel Otero-Santiago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Laura Anido-Varela
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Sandra Moraña-Fernández
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Group of Pharmacology of Chronic Diseases (CD Pharma), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás García-Caballero
- Department of Morphological Sciences, University of Santiago de Compostela and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Luis Barral
- Group of Polymers, Department of Physics and Earth Sciences, University of La Coruña, La Coruña, Spain
| | - Estefanía Tarazón
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain.,Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain.,Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain.,Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Oreste Gualillo
- Laboratory of Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Isabel Moscoso
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ricardo Lage
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Flores YN, Amoon AT, Su B, Velazquez-Cruz R, Ramírez-Palacios P, Salmerón J, Rivera-Paredez B, Sinsheimer JS, Lusis AJ, Huertas-Vazquez A, Saab S, Glenn BA, May FP, Williams KJ, Bastani R, Bensinger SJ. Serum lipids are associated with nonalcoholic fatty liver disease: a pilot case-control study in Mexico. Lipids Health Dis 2021; 20:136. [PMID: 34629052 PMCID: PMC8504048 DOI: 10.1186/s12944-021-01526-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and cirrhosis. NAFLD is mediated by changes in lipid metabolism and known risk factors include obesity, metabolic syndrome, and diabetes. The aim of this study was to better understand differences in the lipid composition of individuals with NAFLD compared to controls, by performing direct infusion lipidomics on serum biospecimens from a cohort study of adults in Mexico. Methods A nested case-control study was conducted with a sample of 98 NAFLD cases and 100 healthy controls who are participating in an on-going, longitudinal study in Mexico. NAFLD cases were clinically confirmed using elevated liver enzyme tests and liver ultrasound or liver ultrasound elastography, after excluding alcohol abuse, and 100 controls were identified as having at least two consecutive normal alanine aminotransferase (ALT) and aspartate aminotransferase (AST) (< 40 U/L) results in a 6-month period, and a normal liver ultrasound elastography result in January 2018. Samples were analyzed on the Sciex Lipidyzer Platform and quantified with normalization to serum volume. As many as 1100 lipid species can be identified using the Lipidyzer targeted multiple-reaction monitoring list. The association between serum lipids and NAFLD was investigated using analysis of covariance, random forest analysis, and by generating receiver operator characteristic (ROC) curves. Results NAFLD cases had differences in total amounts of serum cholesterol esters, lysophosphatidylcholines, sphingomyelins, and triacylglycerols (TAGs), however, other lipid subclasses were similar to controls. Analysis of individual TAG species revealed increased incorporation of saturated fatty acyl tails in serum of NAFLD cases. After adjusting for age, sex, body mass index, and PNPLA3 genotype, a combined panel of ten lipids predicted case or control status better than an area under the ROC curve of 0.83. Conclusions These preliminary results indicate that the serum lipidome differs in patients with NAFLD, compared to healthy controls, and suggest that assessing the desaturation state of TAGs or a specific lipid panel may be useful clinical tools for the diagnosis of NAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01526-5.
Collapse
Affiliation(s)
- Yvonne N Flores
- Department of Health Policy and Management, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, CA, USA. .,UCLA Center for Cancer Prevention and Control and UCLA-Kaiser Permanente Center for Health Equity, Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA. .,Unidad de Investigación Epidemiológica y en Servicios de Salud, Morelos, Instituto Mexicano del Seguro Social, Cuernavaca, Morelos, Mexico.
| | - Aryana T Amoon
- UCLA Center for Cancer Prevention and Control and UCLA-Kaiser Permanente Center for Health Equity, Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Baolong Su
- UCLA Lipidomics Laboratory, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Rafael Velazquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Paula Ramírez-Palacios
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Morelos, Instituto Mexicano del Seguro Social, Cuernavaca, Morelos, Mexico
| | - Jorge Salmerón
- Centro de Investigación en Políticas, Población y Salud, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Berenice Rivera-Paredez
- Centro de Investigación en Políticas, Población y Salud, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Janet S Sinsheimer
- UCLA Department of Human Genetics and Computational Medicine, Los Angeles, CA, USA.,Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Aldons J Lusis
- UCLA Department of Medicine, Division of Cardiology, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Adriana Huertas-Vazquez
- UCLA Department of Medicine, Division of Cardiology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Sammy Saab
- UCLA Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA.,Pfleger Liver Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Beth A Glenn
- Department of Health Policy and Management, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,UCLA Center for Cancer Prevention and Control and UCLA-Kaiser Permanente Center for Health Equity, Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Folasade P May
- Department of Health Policy and Management, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,UCLA Center for Cancer Prevention and Control and UCLA-Kaiser Permanente Center for Health Equity, Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.,UCLA Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA.,Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Kevin J Williams
- UCLA Lipidomics Laboratory, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Roshan Bastani
- Department of Health Policy and Management, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,UCLA Center for Cancer Prevention and Control and UCLA-Kaiser Permanente Center for Health Equity, Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Steven J Bensinger
- UCLA Lipidomics Laboratory, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
17
|
Di Sessa A, Riccio S, Pirozzi E, Verde M, Passaro AP, Umano GR, Guarino S, Miraglia del Giudice E, Marzuillo P. Advances in paediatric nonalcoholic fatty liver disease: Role of lipidomics. World J Gastroenterol 2021; 27:3815-3824. [PMID: 34321846 PMCID: PMC8291022 DOI: 10.3748/wjg.v27.i25.3815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Due its close relationship with obesity, nonalcoholic fatty liver disease (NAFLD) has become a major worldwide health issue even in childhood. The most accepted pathophysiological hypothesis is represented by the “multiple hits” theory, in which both hepatic intracellular lipid accumulation and insulin resistance mainly contribute to liver injury through several factors. Among these, lipotoxicity has gained particular attention. In this view, the pathogenic role of different lipid classes in NAFLD (e.g., sphingolipids, fatty acids, ceramides, etc.) has been highlighted in recent lipidomics studies. Although there is some contrast between plasma and liver findings, lipidomic profile in the NAFLD context provides novel insights by expanding knowledge in the intricate field of NAFLD pathophysiology as well as by suggesting innovative therapeutic approaches in order to improve both NAFLD prevention and treatment strategies. Selective changes of distinct lipid species might be an attractive therapeutic target for treating NAFLD. Herein the most recent evidence in this attractive field has been summarized to provide a comprehensive overview of the lipidomic scenario in paediatric NAFLD.
Collapse
Affiliation(s)
- Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Simona Riccio
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Emilia Pirozzi
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Martina Verde
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Antonio Paride Passaro
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Giuseppina Rosaria Umano
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|
18
|
Muralidharan S, Shimobayashi M, Ji S, Burla B, Hall MN, Wenk MR, Torta F. A reference map of sphingolipids in murine tissues. Cell Rep 2021; 35:109250. [PMID: 34133933 DOI: 10.1016/j.celrep.2021.109250] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingolipids (SPs) have both a structural role in the cell membranes and a signaling function that regulates many cellular processes. The enormous structural diversity and low abundance of many SPs pose a challenge for their identification and quantification. Recent advances in lipidomics, in particular liquid chromatography (LC) coupled with mass spectrometry (MS), provide methods to detect and quantify many low-abundant SP species reliably. Here we use LC-MS to compile a "murine sphingolipid atlas," containing the qualitative and quantitative distribution of 114 SPs in 21 tissues of a widely utilized wild-type laboratory mouse strain (C57BL/6). We report tissue-specific SP fingerprints, as well as sex-specific differences in the same tissue. This is a comprehensive, quantitative sphingolipidomic map of mammalian tissues collected in a systematic fashion. It will complement other tissue compendia for interrogation into the role of SP in mammalian health and disease.
Collapse
Affiliation(s)
- Sneha Muralidharan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Mitsugu Shimobayashi
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Michael N Hall
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
19
|
Frohlich J, Mazza T, Sobolewski C, Foti M, Vinciguerra M. GDF11 rapidly increases lipid accumulation in liver cancer cells through ALK5-dependent signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158920. [PMID: 33684566 DOI: 10.1016/j.bbalip.2021.158920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the fastest-growing causes of cancer-related mortalities worldwide and this trend is mimicked by the surge of non-alcoholic fatty liver disease (NAFLD). Altered hepatic lipid metabolism promotes HCC development through inflammation and activation of oncogenes. GDF11 is a member of the TGF-β superfamily and recent data have implicated GDF11 as an anti-aging factor that can alleviate high-fat diet induced obesity, hyperglycemia, insulin resistance and NAFLD. However, its role in hepatic lipid metabolism is still not fully delineated. The aim of the present study was to characterize the role of GDF11 in hepatic and HCC cells lipid accumulation. To achieve this, we performed imaging, biochemical, lipidomic, and transcriptomic analyses in primary hepatocytes and in HCC cells treated with GDF11 to study the GDF11-activated signaling pathways. GDF11 treatment rapidly triggered ALK5-dependent SMAD2/3 nuclear translocation and elevated lipid droplets in HCC cells, but not in primary hepatocytes. In HCC cells, ALK5 inhibition hampered GDF11-mediated SMAD2/3 signaling and attenuated lipid accumulation. Using ultra-high-performance liquid chromatography/mass spectrometry, we detected increased accumulation of longer acyl-chain di/tri-acylglycerols and glycerophospholipids. Unbiased transcriptomic analysis identified TGF-β and PI3K-AKT signaling among the top pathways/cellular processes activated in GDF11 treated HCC cells. In summary, GDF11 supplementation promotes pro-lipogenic gene expression and lipid accumulation in HCC cells. Integration of our "omics" data pointed to a GDF11-induced upregulation of de novo lipogenesis through activation of ALK5/SMAD2/3/PI3K-AKT pathways. Thus, GDF11 could contribute to metabolic reprogramming and dysregulation of lipid metabolism in HCC cells, without effects on healthy hepatocytes.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Cyril Sobolewski
- Department of Cell Physiology & Metabolism and Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology & Metabolism and Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic; Department of Translational Stem Cell Biology, Medical University of Varna, Varna, Bulgaria; Institute of Liver and Digestive Health, Division of Medicine, University College London (UCL), London, United Kingdom.
| |
Collapse
|
20
|
Fernández-Irigoyen J, Cartas-Cejudo P, Iruarrizaga-Lejarreta M, Santamaría E. Alteration in the Cerebrospinal Fluid Lipidome in Parkinson's Disease: A Post-Mortem Pilot Study. Biomedicines 2021; 9:491. [PMID: 33946950 PMCID: PMC8146703 DOI: 10.3390/biomedicines9050491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid metabolism is clearly associated to Parkinson's disease (PD). Although lipid homeostasis has been widely studied in multiple animal and cellular models, as well as in blood derived from PD individuals, the cerebrospinal fluid (CSF) lipidomic profile in PD remains largely unexplored. In this study, we characterized the post-mortem CSF lipidomic imbalance between neurologically intact controls (n = 10) and PD subjects (n = 20). The combination of dual extraction with ultra-performance liquid chromatography-electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC-ESI-qToF-MS/MS) allowed for the monitoring of 257 lipid species across all samples. Complementary multivariate and univariate data analysis identified that glycerolipids (mono-, di-, and triacylglycerides), saturated and mono/polyunsaturated fatty acids, primary fatty amides, glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines), sphingolipids (ceramides, sphingomyelins), N-acylethanolamines and sterol lipids (cholesteryl esters, steroids) were significantly increased in the CSF of PD compared to the control group. Interestingly, CSF lipid dyshomeostasis differed depending on neuropathological staging and disease duration. These results, despite the limitation of being obtained in a small population, suggest extensive CSF lipid remodeling in PD, shedding new light on the deployment of CSF lipidomics as a promising tool to identify potential lipid markers as well as discriminatory lipid species between PD and other atypical parkinsonisms.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| | | | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| |
Collapse
|
21
|
Vega-Beyhart A, Iruarrizaga M, Pané A, García-Eguren G, Giró O, Boswell L, Aranda G, Flores V, Casals G, Alonso C, Mora M, Halperin I, Carmona F, Enseñat J, Vidal O, Hu T, Rojo G, Gomis R, Hanzu FA. Endogenous cortisol excess confers a unique lipid signature and metabolic network. J Mol Med (Berl) 2021; 99:1085-1099. [PMID: 33881561 DOI: 10.1007/s00109-021-02076-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022]
Abstract
Chronic cortisol excess induces several alterations on protein, lipid and carbohydrate metabolism resembling those found in the metabolic syndrome. However, patients exposed to prolonged high levels of cortisol in Cushing syndrome (CS) present exceeding cardiometabolic alterations not reflected by conventional biomarkers. Using 3 ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS) platforms, we aimed to characterise the serum metabolome of 25 patients with active endogenous CS and 25 control subjects matched by propensity score (sex, BMI, diabetes mellitus type 2 (T2D), high blood pressure (HBP) and dyslipidaemia) to search for potential disease-specific biomarkers and pathways associated to the clinical comorbidities. A total of 93 metabolites were significantly altered in patients with CS. Increased levels of sulfur amino acids (AA), triacylglycerols, glycerophospholipids, ceramides and cholesteryl esters were observed. Contrarily, concentrations of essential and non-essential AA, polyunsaturated fatty acids, conjugated bile acids and second messenger glycerolipids were decreased. Twenty-four-hour urinary free cortisol (24h-UFC) independently determined the concentration of 21 lipids and 4 AA. A metabolic signature composed by 10 AA and 10 lipid metabolites presented an AUC-ROC of 95% for the classification of CS patients. Through differential network analysis, 152 aberrant associations between metabolites involved in the Lands cycle and Kennedy pathway were identified. Our data indicates that chronic hypercortisolemia confers a unique lipidomic signature and several alterations in numerous AA even when compared to patients with similar metabolic comorbidities providing novel insights of the increased cardiometabolic burden of CS. KEY MESSAGES: • Cortisol excess induces metabolic alterations beyond conventional biomarkers. • The hypercortisolism extent determines the concentration of 21 lipids and 5 aa. • Cortisol excess confers a unique metabolic signature of 20 metabolites. • Kennedy and Lands cycle are profoundly disturbed by cortisol excess.
Collapse
Affiliation(s)
- Arturo Vega-Beyhart
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer Rosselló, 149, 08036, Barcelona, Spain.,Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
| | | | - Adriana Pané
- Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
| | - Guillermo García-Eguren
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer Rosselló, 149, 08036, Barcelona, Spain
| | - Oriol Giró
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer Rosselló, 149, 08036, Barcelona, Spain
| | - Laura Boswell
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer Rosselló, 149, 08036, Barcelona, Spain.,Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
| | - Gloria Aranda
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer Rosselló, 149, 08036, Barcelona, Spain
| | - Vanesa Flores
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer Rosselló, 149, 08036, Barcelona, Spain.,Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
| | - Gregori Casals
- Biomedical diagnostics Centre, Hospital Clínic, Barcelona, Spain
| | | | - Mireia Mora
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer Rosselló, 149, 08036, Barcelona, Spain.,Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
| | - Irene Halperin
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer Rosselló, 149, 08036, Barcelona, Spain.,Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
| | | | | | - Oscar Vidal
- Surgery Department, Hospital Clínic, Barcelona, Spain
| | - Ting Hu
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Gemma Rojo
- Endocrinology and Nutrition Clinical Management Unit. Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ramon Gomis
- Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Laboratory of Diabetes and Obesity, IDIBAPS, Barcelona, Spain.,Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Felicia A Hanzu
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer Rosselló, 149, 08036, Barcelona, Spain. .,Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. .,Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
22
|
Recent Advances of Microbiome-Associated Metabolomics Profiling in Liver Disease: Principles, Mechanisms, and Applications. Int J Mol Sci 2021; 22:ijms22031160. [PMID: 33503844 PMCID: PMC7865944 DOI: 10.3390/ijms22031160] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in high-throughput screening of metabolic stability in liver and gut microbiota are able to identify and quantify small-molecule metabolites (metabolome) in different cellular microenvironments that are closest to their phenotypes. Metagenomics and metabolomics are largely recognized to be the “-omics” disciplines for clinical therapeutic screening. Here, metabolomics activity screening in liver disease (LD) and gut microbiomes has significantly delivered the integration of metabolomics data (i.e., a set of endogenous metabolites) with metabolic pathways in cellular environments that can be tested for biological functions (i.e., phenotypes). A growing literature in LD and gut microbiomes reports the use of metabolites as therapeutic targets or biomarkers. Although growing evidence connects liver fibrosis, cirrhosis, and hepatocellular carcinoma, the genetic and metabolic factors are still mainly unknown. Herein, we reviewed proof-of-concept mechanisms for metabolomics-based LD and gut microbiotas’ role from several studies (nuclear magnetic resonance, gas/lipid chromatography, spectroscopy coupled with mass spectrometry, and capillary electrophoresis). A deeper understanding of these axes is a prerequisite for optimizing therapeutic strategies to improve liver health.
Collapse
|
23
|
Bannaga AS, Metzger J, Kyrou I, Voigtländer T, Book T, Melgarejo J, Latosinska A, Pejchinovski M, Staessen JA, Mischak H, Manns MP, Arasaradnam RP. Discovery, validation and sequencing of urinary peptides for diagnosis of liver fibrosis-A multicentre study. EBioMedicine 2020; 62:103083. [PMID: 33160210 PMCID: PMC7648178 DOI: 10.1016/j.ebiom.2020.103083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Background Liver fibrosis is a consequence of chronic inflammation and is associated with protein changes within the hepatocytes structure. In this study, we aimed to investigate if this is reflected by the urinary proteome and can be explored to diagnose liver fibrosis in patients with chronic liver disease. Methods In a multicentre combined cross-sectional and prospective diagnostic test validation study, 129 patients with varying degrees of liver fibrosis and 223 controls without liver fibrosis were recruited. Additionally, 41 patients with no liver, but kidney fibrosis were included to evaluate interference with expressions of kidney fibrosis. Urinary low molecular weight proteome was analysed by capillary electrophoresis coupled to mass spectrometry (CE-MS) and a support vector machine marker model was established by integration of peptide markers for liver fibrosis. Findings CE-MS enabled identification of 50 urinary peptides associated with liver fibrosis. When combined into a classifier, LivFib-50, it separated patients with liver fibrosis (N = 31) from non-liver disease controls (N = 123) in cross-sectional diagnostic phase II evaluation with an area under the curve (AUC) of 0.94 (95% confidence intervals (CI): 0.89–0.97, p<0.0001). When adjusted for age, LivFib-50 demonstrated an AUC of 0.94 (95% CI: 0.89–0.97, p<0.0001) in chronic liver disease patients with (N = 19) or without (N = 17) liver fibrosis progression. In this prospective diagnostic phase III validation set, age-adjusted LivFib-50 showed 84.2% sensitivity (95% CI: 60.4–96.6) and 82.4% specificity (95% CI: 56.6–96.2) for detection of liver fibrosis. The sequence-identified peptides are mainly fragments of collagen chains, uromodulin and Na/K-transporting ATPase subunit γ. We also identified ten putative proteolytic cleavage sites, eight were specific for matrix metallopeptidases and two for cathepsins. Interpretation In liver fibrosis, urinary peptides profiling offers potential diagnostic markers and leads to discovery of proteolytic sites that could be targets for developing anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ayman S Bannaga
- Department of Gastroenterology and Hepatology, University Hospital Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK.
| | | | - Ioannis Kyrou
- Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK; Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK; Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospital Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Torsten Voigtländer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Thorsten Book
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jesus Melgarejo
- Department of Cardiovascular Sciences, Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven, University of Leuven, Leuven, Belgium; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | | | - Jan A Staessen
- Department of Cardiovascular Sciences, Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven, University of Leuven, Leuven, Belgium; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ramesh P Arasaradnam
- Department of Gastroenterology and Hepatology, University Hospital Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK; Faculty of Health and Life Sciences, Coventry University, Priory St, Coventry CV1 5FB, UK; School of Biological Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
24
|
Jung Y, Lee MK, Puri P, Koo BK, Joo SK, Jang SY, Lee DH, Jung YJ, Kim BG, Lee KL, Park TS, Kang KT, Ryu DH, Kang SW, Kim D, Oh S, Kim W, Hwang GS. Circulating lipidomic alterations in obese and non-obese subjects with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2020; 52:1603-1614. [PMID: 32892365 DOI: 10.1111/apt.16066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/18/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) affects obese and non-obese individuals. However, mechanisms underlying non-obese non-alcoholic steatohepatitis (NASH) remain unclear. AIMS To attempt to identify metabolic perturbations associated with non-obese and obese NAFLD using a lipidomics approach. METHODS A cross-sectional analysis of 361 subjects with biopsy-proven NAFLD (157 NAFL and 138 NASH) and healthy controls (n = 66) was performed. Individuals were categorised as obese or non-obese based on the Asian cut-off for body mass index. Circulating lipidomic profiling of sera was performed based on the histological severity of NAFLD. Circulating lipidomic alterations were validated with an independent validation set (154 NAFLD subjects [93 NAFL and 61 NASH] and 21 healthy controls). RESULTS Saturated sphingomyelin (SM) species were significantly associated with visceral adiposity in non-obese NAFLD (SM d38:0; P < 0.001) but not in obese NAFLD. Additionally, SM levels were significantly associated with systemic and adipose tissue insulin resistance (SM d38:0; P = 0.002 and <0.001, respectively). Five potential lipid metabolites for non-obese subjects and seven potential lipids for obese subjects were selected to predict NAFLD and NASH. These lipid combinations showed good diagnostic performance for non-obese (area under the curve [AUC] for NAFLD/NASH = 0.916/0.813) and obese (AUC for NAFLD/NASH = 0.967/0.812) subjects. Moreover, distinctly altered patterns of diacylglycerol (DAG), triacylglycerol (TAG) and SM levels were confirmed in the validation set depending on the histological severity of NAFLD. CONCLUSION Non-obese and obese NAFLD subjects exhibit unique circulating lipidomic signatures, including DAGs, TAGs and SMs. These lipid combinations may be useful biomarkers for non-obese and obese NAFLD patients.
Collapse
|
25
|
Robinson AE, Binek A, Venkatraman V, Searle BC, Holewinski RJ, Rosenberger G, Parker SJ, Basisty N, Xie X, Lund PJ, Saxena G, Mato JM, Garcia BA, Schilling B, Lu SC, Van Eyk JE. Lysine and Arginine Protein Post-translational Modifications by Enhanced DIA Libraries: Quantification in Murine Liver Disease. J Proteome Res 2020; 19:4163-4178. [PMID: 32966080 DOI: 10.1021/acs.jproteome.0c00685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proteoforms containing post-translational modifications (PTMs) represent a degree of functional diversity only harnessed through analytically precise simultaneous quantification of multiple PTMs. Here we present a method to accurately differentiate an unmodified peptide from its PTM-containing counterpart through data-independent acquisition-mass spectrometry, leveraging small precursor mass windows to physically separate modified peptidoforms from each other during MS2 acquisition. We utilize a lysine and arginine PTM-enriched peptide assay library and site localization algorithm to simultaneously localize and quantify seven PTMs including mono-, di-, and trimethylation, acetylation, and succinylation in addition to total protein quantification in a single MS run without the need to enrich experimental samples. To evaluate biological relevance, this method was applied to liver lysate from differentially methylated nonalcoholic steatohepatitis (NASH) mouse models. We report that altered methylation and acetylation together with total protein changes drive the novel hypothesis of a regulatory function of PTMs in protein synthesis and mRNA stability in NASH.
Collapse
Affiliation(s)
- Aaron E Robinson
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Aleksandra Binek
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Brian C Searle
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Ronald J Holewinski
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - George Rosenberger
- Department of Systems Biology, Columbia University, New York, New York 10027, United States
| | - Sarah J Parker
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Xueshu Xie
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Peder J Lund
- Department of Biochemistry and Biophysics, Epigenetics Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | | | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
26
|
Ortega MA, Saez MA, Sainz F, Fraile-Martínez O, García-Gallego S, Pekarek L, Bravo C, Coca S, Mon MÁ, Buján J, García-Honduvilla N, Asúnsolo Á. Lipidomic profiling of chorionic villi in the placentas of women with chronic venous disease. Int J Med Sci 2020; 17:2790-2798. [PMID: 33162806 PMCID: PMC7645335 DOI: 10.7150/ijms.49236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background: Chronic venous disease (CVD) is a prevalent lower limb venous pathology that especially affects women, who also show an increased risk of this disease during pregnancy. Studies have shown significant structural changes in the placentas of women with CVD and several markers of tissue damage have been also described. Patients and Methods: To try to understand the different placental pathologies, research efforts have focused on examining metabolomic profiles as indicators of the repercussions of these vascular disorders. This study examines changes produced in the metabolomic profiles of chorionic villi in the placentas of women with CVD. In a study population of 12 pregnant women, 6 with and 6 without CVD, we compared through mass spectroscopy coupled to ultra-high performance liquid chromatography (UHPLC-MS), 240 metabolites in chorionic villus samples. Results: This study is the first to detect in the placental villi of pregnant women with CVD, modifications in lysophosphatidylcholines and amino acids along with diminished levels of other lipids such as triglycerides, sphingomyelins, and non-esterified omega 9 fatty acids, suggesting a role of these abnormalities in the pathogenesis of CVD. Conclusions: Our findings are a starting point for future studies designed to examine the impacts of CVD on maternal and fetal well-being.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, Spain
| | - Felipe Sainz
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Angiology and Vascular Surgery Service, Central University Hospital of Defence-UAH Madrid, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Sandra García-Gallego
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28805 Madrid, Spain
| | - Leonel Pekarek
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Coral Bravo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Service of Gynecology and Obstetrics, Section of Fetal Maternal Medicine, Central University Hospital of Defence-UAH Madrid, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez- Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Internal Medicine and Oncology Service Service, University Hospital Príncipe de Asturias, CIBEREHD, Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Department of Epidemiology & Biostatistics, Graduate School of Public Health and Health Policy, University of New York, New York, NY, United States
| |
Collapse
|
27
|
Kartsoli S, Kostara CE, Tsimihodimos V, Bairaktari ET, Christodoulou DK. Lipidomics in non-alcoholic fatty liver disease. World J Hepatol 2020; 12:436-450. [PMID: 32952872 PMCID: PMC7475773 DOI: 10.4254/wjh.v12.i8.436] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/03/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disorder in Western countries, comprises steatosis to nonalcoholic steatohepatitis (NASH), with the latter having the potential to progress to cirrhosis. The transition from isolated steatosis to NASH is still poorly understood, but lipidomics approach revealed that the hepatic lipidome is extensively altered in the setting of steatosis and steatohepatitis and these alterations correlate with disease progression. Recent data suggest that both quantity and quality of the accumulated lipids are involved in pathogenesis of NAFLD. Changes in glycerophospholipid, sphingolipid, and fatty acid composition have been described in both liver biopsies and plasma of patients with NAFLD, implicating that specific lipid species are involved in oxidative stress, inflammation, and cell death. In this article, we summarize the findings of main human lipidomics studies in NAFLD and delineate the currently available information on the pathogenetic role of each lipid class in lipotoxicity and disease progression.
Collapse
Affiliation(s)
- Sofia Kartsoli
- Department of Gastroenterology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Christina E Kostara
- Laboratory of Clinical Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Eleni T Bairaktari
- Laboratory of Clinical Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios K Christodoulou
- Department of Gastroenterology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
28
|
Sundararaman N, Go J, Robinson AE, Mato JM, Lu SC, Van Eyk JE, Venkatraman V. PINE: An Automation Tool to Extract and Visualize Protein-Centric Functional Networks. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1410-1421. [PMID: 32463229 PMCID: PMC10362945 DOI: 10.1021/jasms.0c00032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent surges in mass spectrometry-based proteomics studies demand a concurrent rise in speedy and optimized data processing tools and pipelines. Although several stand-alone bioinformatics tools exist that provide protein-protein interaction (PPI) data, we developed Protein Interaction Network Extractor (PINE) as a fully automated, user-friendly, graphical user interface application for visualization and exploration of global proteome and post-translational modification (PTM) based networks. PINE also supports overlaying differential expression, statistical significance thresholds, and PTM sites on functionally enriched visualization networks to gain insights into proteome-wide regulatory mechanisms and PTM-mediated networks. To illustrate the relevance of the tool, we explore the total proteome and its PTM-associated relationships in two different nonalcoholic steatohepatitis (NASH) mouse models to demonstrate different context-specific case studies. The strength of this tool relies in its ability to (1) perform accurate protein identifier mapping to resolve ambiguity, (2) retrieve interaction data from multiple publicly available PPI databases, and (3) assimilate these complex networks into functionally enriched pathways, ontology categories, and terms. Ultimately, PINE can be used as an extremely powerful tool for novel hypothesis generation to understand underlying disease mechanisms.
Collapse
Affiliation(s)
- Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - James Go
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Aaron E Robinson
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
29
|
Meena NK, Ralston E, Raben N, Puertollano R. Enzyme Replacement Therapy Can Reverse Pathogenic Cascade in Pompe Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:199-214. [PMID: 32671132 PMCID: PMC7334420 DOI: 10.1016/j.omtm.2020.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Pompe disease, a deficiency of glycogen-degrading lysosomal acid alpha-glucosidase (GAA), is a disabling multisystemic illness that invariably affects skeletal muscle in all patients. The patients still carry a heavy burden of the disease, despite the currently available enzyme replacement therapy. We have previously shown that progressive entrapment of glycogen in the lysosome in muscle sets in motion a whole series of “extra-lysosomal” events including defective autophagy and disruption of a variety of signaling pathways. Here, we report that metabolic abnormalities and energy deficit also contribute to the complexity of the pathogenic cascade. A decrease in the metabolites of the glycolytic pathway and a shift to lipids as the energy source are observed in the diseased muscle. We now demonstrate in a pre-clinical study that a recently developed replacement enzyme (recombinant human GAA; AT-GAA; Amicus Therapeutics) with much improved lysosome-targeting properties reversed or significantly improved all aspects of the disease pathogenesis, an outcome not observed with the current standard of care. The therapy was initiated in GAA-deficient mice with fully developed muscle pathology but without obvious clinical symptoms; this point deserves consideration.
Collapse
Affiliation(s)
- Naresh Kumar Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Evelyn Ralston
- Light Imaging Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
- Corresponding author Nina Raben, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
- Corresponding author Rosa Puertollano, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
30
|
A Pilot Study of Serum Sphingomyelin Dynamics in Subjects with Severe Obesity and Non-alcoholic Steatohepatitis after Sleeve Gastrectomy. Obes Surg 2020; 29:983-989. [PMID: 30488259 DOI: 10.1007/s11695-018-3612-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is present in a high percentage of obese patients undergoing bariatric surgery. A significant proportion of patients still present NASH even after considerable weight loss and metabolic improvements after surgery. OBJECTIVE To determine whether the changes in the serum lipidome after sleeve gastrectomy could be used to discriminate obese patients with NASH patients to those with non-alcoholic fatty liver (NAFL). METHODS This study involved 24 patients with grade 3 obesity diagnosed with either NAFL (n = 8) or NASH (n = 16) using the non-invasive OWLiver assay. All patients suffering from NASH were re-evaluated 6 months after bariatric surgery using the OWLiver test to confirm NASH resolution. Serum lipid extracts were assessed at baseline and 6 months post surgery and were analyzed in an ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-TOF-MS)-based platform. RESULTS Lipidomic analysis revealed a differential sphingomyelin profile in patients with NASH resolution after sleeve gastrectomy. Certain serum sphingomyelin species were significantly higher at baseline in NASH patients in comparison to those with NAFL. Sphingomyelin profile of subjects with NASH resolution was similar to that for obese subjects with NAFL before bariatric surgery. CONCLUSION Our study indicates that the serum sphingomyelin levels could be related to the status of non-alcoholic fatty liver disease and that certain sphingomyelin species may be used for the follow-up of obese patients with NASH after sleeve gastrectomy.
Collapse
|
31
|
Beyoğlu D, Idle JR. Metabolomic and Lipidomic Biomarkers for Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020; 10:E50. [PMID: 32012846 PMCID: PMC7074571 DOI: 10.3390/metabo10020050] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a plethora of attempts to discover biomarkers that are more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma (HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA, exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD), cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis (NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid, phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published metabolomic observations in various liver diseases in adults, adolescents, and children, together with animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant liver disease may help reduce the incidence of HCC.
Collapse
Affiliation(s)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Division of Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA;
| |
Collapse
|
32
|
Lo Re O, Mazza T, Giallongo S, Sanna P, Rappa F, Vinh Luong T, Li Volti G, Drovakova A, Roskams T, Van Haele M, Tsochatzis E, Vinciguerra M. Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4 +CD25 +FoxP3 + regulatory T cells activation. Am J Cancer Res 2020; 10:910-924. [PMID: 31903159 PMCID: PMC6929991 DOI: 10.7150/thno.35045] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/06/2019] [Indexed: 12/11/2022] Open
Abstract
Rationale: Loss of histone macroH2A1 induces appearance of cancer stem cells (CSCs)-like cells in hepatocellular carcinoma (HCC). How CSCs interact with the tumor microenvironment and the adaptive immune system is unclear. Methods: We screened aggressive human HCC for macroH2A1 and CD44 CSC marker expression. We also knocked down (KD) macroH2A1 in HCC cells, and performed integrated transcriptomic and secretomic analyses. Results: Human HCC showed low macroH2A1 and high CD44 expression compared to control tissues. MacroH2A1 KD CSC-like cells transferred paracrinally their chemoresistant properties to parental HCC cells. MacroH2A1 KD conditioned media transcriptionally reprogrammed parental HCC cells activated regulatory CD4+/CD25+/FoxP3+ T cells (Tregs). Conclusions: Loss of macroH2A1 in HCC cells drives cancer stem-cell propagation and evasion from immune surveillance.
Collapse
|
33
|
Satriano L, Lewinska M, Rodrigues PM, Banales JM, Andersen JB. Metabolic rearrangements in primary liver cancers: cause and consequences. Nat Rev Gastroenterol Hepatol 2019; 16:748-766. [PMID: 31666728 DOI: 10.1038/s41575-019-0217-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
Primary liver cancer (PLC) is the fourth most frequent cause of cancer-related death. The high mortality rates arise from late diagnosis and the limited accuracy of diagnostic and prognostic biomarkers. The liver is a major regulator, orchestrating the clearance of toxins, balancing glucose, lipid and amino acid uptake, managing whole-body metabolism and maintaining metabolic homeostasis. Tumour onset and progression is frequently accompanied by rearrangements of metabolic pathways, leading to dysregulation of metabolism. The limitation of current therapies targeting PLCs, such as hepatocellular carcinoma and cholangiocarcinoma, points towards the importance of deciphering this metabolic complexity. In this Review, we discuss the role of metabolic liver disruptions and the implications of these processes in PLCs, emphasizing their clinical relevance and value in early diagnosis and prognosis and as putative therapeutic targets. We also describe system biology approaches able to reconstruct the metabolic complexity of liver diseases. We also discuss whether metabolic rearrangements are a cause or consequence of PLCs, emphasizing the opportunity to clinically exploit the rewired metabolism. In line with this idea, we discuss circulating metabolites as promising biomarkers for PLCs.
Collapse
Affiliation(s)
- Letizia Satriano
- Biotech Research and Innovation Centre (BRIC) Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Monika Lewinska
- Biotech Research and Innovation Centre (BRIC) Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pedro M Rodrigues
- Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Jesus M Banales
- Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC) Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
34
|
Simoes IC, Janikiewicz J, Bauer J, Karkucinska-Wieckowska A, Kalinowski P, Dobrzyń A, Wolski A, Pronicki M, Zieniewicz K, Dobrzyń P, Krawczyk M, Zischka H, Wieckowski MR, Potes Y. Fat and Sugar-A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients 2019; 11:E2871. [PMID: 31771244 PMCID: PMC6950566 DOI: 10.3390/nu11122871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disease in Western society and ranges from steatosis to steatohepatitis to end-stage liver disease such as cirrhosis and hepatocellular carcinoma. The molecular mechanisms that are involved in the progression of steatosis to more severe liver damage in patients are not fully understood. A deeper investigation of NAFLD pathogenesis is possible due to the many different animal models developed recently. In this review, we present a comparative overview of the most common dietary NAFLD rodent models with respect to their metabolic phenotype and morphological manifestation. Moreover, we describe similarities and controversies concerning the effect of NAFLD-inducing diets on mitochondria as well as mitochondria-derived oxidative stress in the progression of NAFLD.
Collapse
Affiliation(s)
- Ines C.M. Simoes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Justyna Janikiewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Judith Bauer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
| | | | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Andrzej Wolski
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Maciej Pronicki
- Department of Pathology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (A.K.-W.); (M.P.)
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Paweł Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mariusz R. Wieckowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Yaiza Potes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| |
Collapse
|
35
|
Svegliati-Baroni G, Pierantonelli I, Torquato P, Marinelli R, Ferreri C, Chatgilialoglu C, Bartolini D, Galli F. Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease. Free Radic Biol Med 2019; 144:293-309. [PMID: 31152791 DOI: 10.1016/j.freeradbiomed.2019.05.029] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/13/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease worldwide (about 25% of the general population) and 3-5% of patients develop non-alcoholic steatohepatitis (NASH), characterized by hepatocytes damage, inflammation and fibrosis, which increase the risk of developing liver failure, cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD, particularly the mechanisms whereby a minority of patients develop a more severe phenotype, is still incompletely understood. In this review we examine the available literature on initial mechanisms of hepatocellular damage and inflammation, deriving from toxic effects of excess lipids. Accumulating data indicate that the total amount of triglycerides stored in the liver cells is not the main determinant of lipotoxicity and that specific lipid classes act as damaging agents. These lipotoxic species affect the cell behavior via multiple mechanisms, including activation of death receptors, endoplasmic reticulum stress, modification of mitochondrial function and oxidative stress. The gut microbiota, which provides signals through the intestine to the liver, is also reported to play a key role in lipotoxicity. Finally, we summarize the most recent lipidomic strategies utilized to explore the liver lipidome and its modifications in the course of NALFD. These include measures of lipid profiles in blood plasma and erythrocyte membranes that can surrogate to some extent lipid investigation in the liver.
Collapse
Affiliation(s)
- Gianluca Svegliati-Baroni
- Department of Gastroenterology, Università Politecnica Delle Marche, Ancona, Italy; Obesity Center, Università Politecnica Delle Marche, Ancona, Italy.
| | - Irene Pierantonelli
- Department of Gastroenterology, Università Politecnica Delle Marche, Ancona, Italy; Department of Gastroenterology, Senigallia Hospital, Senigallia, Italy
| | | | - Rita Marinelli
- Department of Pharmaceutical Sciences, University of Perugia, Italy
| | - Carla Ferreri
- ISOF, Consiglio Nazionale Delle Ricerche, Via P. Gobetti 101, 40129, Bologna, Italy
| | | | | | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Italy
| |
Collapse
|
36
|
Brewer MK, Uittenbogaard A, Austin GL, Segvich DM, DePaoli-Roach A, Roach PJ, McCarthy JJ, Simmons ZR, Brandon JA, Zhou Z, Zeller J, Young LEA, Sun RC, Pauly JR, Aziz NM, Hodges BL, McKnight TR, Armstrong DD, Gentry MS. Targeting Pathogenic Lafora Bodies in Lafora Disease Using an Antibody-Enzyme Fusion. Cell Metab 2019; 30:689-705.e6. [PMID: 31353261 PMCID: PMC6774808 DOI: 10.1016/j.cmet.2019.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB loads in vivo in Epm2a-/- mice. Using metabolomics and multivariate analysis, we demonstrate that VAL-0417 treatment of Epm2a-/- mice reverses the metabolic phenotype to a wild-type profile. VAL-0417 is a promising drug for the treatment of LD and a putative precision therapy platform for intractable epilepsy.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Annette Uittenbogaard
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - John J McCarthy
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zoe R Simmons
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jason A Brandon
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jill Zeller
- Northern Biomedical Research, Spring Lake, MI 49456, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Ramon C Sun
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA; University of Kentucky Epilepsy & Brain Metabolism Alliance, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
37
|
Khusial RD, Cioffi CE, Caltharp SA, Krasinskas AM, Alazraki A, Knight-Scott J, Cleeton R, Castillo-Leon E, Jones DP, Pierpont B, Caprio S, Santoro N, Akil A, Vos MB. Development of a Plasma Screening Panel for Pediatric Nonalcoholic Fatty Liver Disease Using Metabolomics. Hepatol Commun 2019; 3:1311-1321. [PMID: 31592078 PMCID: PMC6771165 DOI: 10.1002/hep4.1417] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children, but diagnosis is challenging due to limited availability of noninvasive biomarkers. Machine learning applied to high-resolution metabolomics and clinical phenotype data offers a novel framework for developing a NAFLD screening panel in youth. Here, untargeted metabolomics by liquid chromatography-mass spectrometry was performed on plasma samples from a combined cross-sectional sample of children and adolescents ages 2-25 years old with NAFLD (n = 222) and without NAFLD (n = 337), confirmed by liver biopsy or magnetic resonance imaging. Anthropometrics, blood lipids, liver enzymes, and glucose and insulin metabolism were also assessed. A machine learning approach was applied to the metabolomics and clinical phenotype data sets, which were split into training and test sets, and included dimension reduction, feature selection, and classification model development. The selected metabolite features were the amino acids serine, leucine/isoleucine, and tryptophan; three putatively annotated compounds (dihydrothymine and two phospholipids); and two unknowns. The selected clinical phenotype variables were waist circumference, whole-body insulin sensitivity index (WBISI) based on the oral glucose tolerance test, and blood triglycerides. The highest performing classification model was random forest, which had an area under the receiver operating characteristic curve (AUROC) of 0.94, sensitivity of 73%, and specificity of 97% for detecting NAFLD cases. A second classification model was developed using the homeostasis model assessment of insulin resistance substituted for the WBISI. Similarly, the highest performing classification model was random forest, which had an AUROC of 0.92, sensitivity of 73%, and specificity of 94%. Conclusion: The identified screening panel consisting of both metabolomics and clinical features has promising potential for screening for NAFLD in youth. Further development of this panel and independent validation testing in other cohorts are warranted.
Collapse
Affiliation(s)
- Richard D Khusial
- Department of Pharmaceutical Sciences, College of Pharmacy Mercer University Atlanta GA
| | - Catherine E Cioffi
- Nutrition and Health Sciences, Laney Graduate School Emory University Atlanta GA
| | - Shelley A Caltharp
- Children's Healthcare of Atlanta Atlanta GA.,Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta GA
| | - Alyssa M Krasinskas
- Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta GA
| | - Adina Alazraki
- Children's Healthcare of Atlanta Atlanta GA.,Department of Radiology Emory University School of Medicine Atlanta GA
| | | | - Rebecca Cleeton
- Department of Pediatrics Emory University School of Medicine Atlanta GA
| | | | - Dean P Jones
- Department of Medicine Emory University School of Medicine Atlanta GA
| | | | - Sonia Caprio
- Department of Pediatrics Yale School of Medicine New Haven CT
| | - Nicola Santoro
- Department of Pediatrics Yale School of Medicine New Haven CT
| | - Ayman Akil
- Department of Pharmaceutical Sciences, College of Pharmacy Mercer University Atlanta GA
| | - Miriam B Vos
- Nutrition and Health Sciences, Laney Graduate School Emory University Atlanta GA.,Children's Healthcare of Atlanta Atlanta GA.,Department of Pediatrics Emory University School of Medicine Atlanta GA
| |
Collapse
|
38
|
Banales JM, Iñarrairaegui M, Arbelaiz A, Milkiewicz P, Muntané J, Muñoz‐Bellvis L, La Casta A, Gonzalez LM, Arretxe E, Alonso C, Martínez‐Arranz I, Lapitz A, Santos‐Laso A, Avila MA, Martínez‐Chantar ML, Bujanda L, Marin JJ, Sangro B, Macias RI. Serum Metabolites as Diagnostic Biomarkers for Cholangiocarcinoma, Hepatocellular Carcinoma, and Primary Sclerosing Cholangitis. Hepatology 2019; 70:547-562. [PMID: 30325540 PMCID: PMC6767196 DOI: 10.1002/hep.30319] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022]
Abstract
Early and differential diagnosis of intrahepatic cholangiocarcinoma (iCCA) and hepatocellular carcinoma (HCC) by noninvasive methods represents a current clinical challenge. The analysis of low-molecular-weight metabolites by new high-throughput techniques is a strategy for identifying biomarkers. Here, we have investigated whether serum metabolome can provide useful biomarkers in the diagnosis of iCCA and HCC and could discriminate iCCA from HCC. Because primary sclerosing cholangitis (PSC) is a risk factor for CCA, serum metabolic profiles of PSC and CCA have also been compared. The analysis of the levels of lipids and amino acids in the serum of patients with iCCA, HCC, and PSC and healthy individuals (n = 20/group) showed differential profiles. Several metabolites presented high diagnostic value for iCCA versus control, HCC versus control, and PSC versus control, with areas under the receiver operating characteristic curve (AUC) greater than those found in serum for the nonspecific tumor markers carbohydrate antigen 19-9 (CA 19-9) and alpha-fetoprotein (AFP), commonly used to help in the diagnosis of iCCA and HCC, respectively. The development of an algorithm combining glycine, aspartic acid, SM(42:3), and SM(43:2) permitted to accurately differentiate in the diagnosis of both types of tumors (biopsy-proven). The proposed model yielded 0.890 AUC, 75% sensitivity, and 90% specificity. Another algorithm by combination of PC(34:3) and histidine accurately permitted to differentiate PSC from iCCA, with an AUC of 0.990, 100% sensitivity, and 70% specificity. These results were validated in independent cohorts of 14-15 patients per group and compared with profiles found in patients with nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Conclusion: Specific changes in serum concentrations of certain metabolites are useful to differentiate iCCA from HCC or PSC, and could help in the early diagnosis of these diseases.
Collapse
Affiliation(s)
- Jesus M. Banales
- Department of Liver and Gastrointestinal DiseasesBiodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU)San SebastianSpain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain,IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Mercedes Iñarrairaegui
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain,Liver UnitClínica Universidad de Navarra‐IDISNAPamplonaSpain
| | - Ander Arbelaiz
- Department of Liver and Gastrointestinal DiseasesBiodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU)San SebastianSpain
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Jordi Muntané
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain,Department of General Surgery “Virgen del Rocío” University Hospital/IBiS/CSIC/University of SevilleSevilleSpain
| | - Luis Muñoz‐Bellvis
- Service of General and Gastrointestinal SurgeryUniversity Hospital of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), CIBERONCSalamancaSpain
| | - Adelaida La Casta
- Department of Liver and Gastrointestinal DiseasesBiodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU)San SebastianSpain
| | - Luis M. Gonzalez
- Service of General and Gastrointestinal SurgeryUniversity Hospital of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), CIBERONCSalamancaSpain
| | | | | | | | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal DiseasesBiodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU)San SebastianSpain
| | - Alvaro Santos‐Laso
- Department of Liver and Gastrointestinal DiseasesBiodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU)San SebastianSpain
| | - Matias A. Avila
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain,Program of Hepatology, Center for Applied Medical Research (CIMA)University of Navarra‐IDISNAPamplonaSpain
| | - Maria L. Martínez‐Chantar
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain,CIC bioGUNEBizkaia Technology ParkDerioSpain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal DiseasesBiodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU)San SebastianSpain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain
| | - Jose J.G. Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain,Experimental Hepatology and Drug Targeting (HEVEFARM)University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL)SalamancaSpain
| | - Bruno Sangro
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain,Liver UnitClínica Universidad de Navarra‐IDISNAPamplonaSpain
| | - Rocio I.R. Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain,Experimental Hepatology and Drug Targeting (HEVEFARM)University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL)SalamancaSpain
| |
Collapse
|
39
|
Research Progress on the Animal Models of Drug-Induced Liver Injury: Current Status and Further Perspectives. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1283824. [PMID: 31119149 PMCID: PMC6500714 DOI: 10.1155/2019/1283824] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is a major concern in clinical studies as well as in postmarketing surveillance. It is necessary to establish an animal model of DILI for thorough investigation of mechanisms of DILI and searching for protective medications. This article reviews the current status and future perspective on establishment of DILI models based on different hepatotoxic drugs, as well as the underlying mechanisms of liver function damage induced by specific medicine. Therefore, information from this article can help researchers make a suitable selection of animal models for further study.
Collapse
|
40
|
Mika A, Sledzinski T, Stepnowski P. Current Progress of Lipid Analysis in Metabolic Diseases by Mass Spectrometry Methods. Curr Med Chem 2019; 26:60-103. [PMID: 28971757 DOI: 10.2174/0929867324666171003121127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obesity, insulin resistance, diabetes, and metabolic syndrome are associated with lipid alterations, and they affect the risk of long-term cardiovascular disease. A reliable analytical instrument to detect changes in the composition or structures of lipids and the tools allowing to connect changes in a specific group of lipids with a specific disease and its progress, is constantly lacking. Lipidomics is a new field of medicine based on the research and identification of lipids and lipid metabolites present in human organism. The primary aim of lipidomics is to search for new biomarkers of different diseases, mainly civilization diseases. OBJECTIVE We aimed to review studies reporting the application of mass spectrometry for lipid analysis in metabolic diseases. METHOD Following an extensive search of peer-reviewed articles on the mass spectrometry analysis of lipids the literature has been discussed in this review article. RESULTS The lipid group contains around 1.7 million species; they are totally different, in terms of the length of aliphatic chain, amount of rings, additional functional groups. Some of them are so complex that their complex analyses are a challenge for analysts. Their qualitative and quantitative analysis of is based mainly on mass spectrometry. CONCLUSION Mass spectrometry techniques are excellent tools for lipid profiling in complex biological samples and the combination with multivariate statistical analysis enables the identification of potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland.,Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland
| |
Collapse
|
41
|
Reverter E, Lozano JJ, Alonso C, Berzigotti A, Seijo S, Turon F, Baiges A, Martínez-Chantar ML, Mato JM, Martínez-Arranz I, La Mura V, Hernández-Gea V, Bosch J, García-Pagán JC. Metabolomics discloses potential biomarkers to predict the acute HVPG response to propranolol in patients with cirrhosis. Liver Int 2019; 39:705-713. [PMID: 30637923 DOI: 10.1111/liv.14042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/12/2018] [Accepted: 01/10/2019] [Indexed: 02/13/2023]
Abstract
BACKGROUND In cirrhosis, a decrease in hepatic venous pressure gradient (HVPG) > 10% after acute iv propranolol (HVPG response) is associated with a lower risk of decompensation and death. Only a part of patients are HVPG responders and there are no accurate non-invasive markers to identify them. We aimed at discovering metabolomic biomarkers of HVPG responders to propranolol. METHODS Sixty-six patients with cirrhosis and HVPG ≥ 10 mm Hg in whom the acute HVPG response to propranolol was assessed, were prospectively included. A targeted metabolomic serum analysis using ultrahigh-performance liquid chromatography coupled to mass spectrometry was performed. Different combinations of 2-3 metabolites identifying HVPG responders (HVPG reduction > 10%) were obtained by stepwise logistic regression. The best of these model (AUROC, Akaike criterion) underwent internal cross-validation and cut-offs to classify responders/non-responders was proposed. RESULTS A total of 41/66 (62%) patients were HVPG responders. Three hundred and eighty-nine metabolites were detected and 177 were finally eligible. Eighteen metabolites were associated to the HVPG response at univariate analysis; at multivariable analysis, a model including a phosphatidylcholine (PC(P-16:0/22:6)) and a free fatty acid (20:2(n-6), eicosadienoic acid) performed well for HVPG response, with an AUROC of 0.801 (0.761 at internal validation). The cut-off 0.629 was the most efficient for overall classification (49/66 patients correctly classified). Two cut-off values allowed identifying responders (0.688, PPV 84%) and non-responders (0.384, NPV 82%) with undetermined values for 17/66 patients. Clinical variables did not add to the model. CONCLUSIONS The combination of two metabolites helps at identifying HVPG responders to acute propranolol. It could be a useful non-invasive test to classify the HVPG response to propranolol.
Collapse
Affiliation(s)
- Enric Reverter
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Juan J Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Cristina Alonso
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Bizkaia, Spain
| | - Annalisa Berzigotti
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Susana Seijo
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Fanny Turon
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Anna Baiges
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Mari L Martínez-Chantar
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,CIC bioGUNE, Parque Tecnológico de Bizkaia, Bizkaia, Spain
| | - José M Mato
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,CIC bioGUNE, Parque Tecnológico de Bizkaia, Bizkaia, Spain
| | | | - Vincenzo La Mura
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Virginia Hernández-Gea
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Jaume Bosch
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Juan C García-Pagán
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
42
|
Abstract
Lipidomics aims at characterizing lipid profiles and their biological role with respect to protein expression involved in lipid metabolism. Specifically, cerebrospinal fluid (CSF) lipidomics is offering a new perspective in the search for surrogate biomarkers to facilitate early diagnosis of psychiatric and neurodegenerative diseases. In this chapter, we describe a nontargeted approach to profile lipid molecular species present in human CSF using ultrahigh-performance liquid chromatography-electrospray ionization-time-of-flight mass spectrometry (UPLC-ESI-ToF-MS). This workflow complements the toolbox useful for the exploration and monitoring neurodegenerative mechanisms associated with a dysregulation in lipid metabolism.
Collapse
|
43
|
Ramos-Molina B, Castellano-Castillo D, Alcaide-Torres J, Pastor Ó, de Luna Díaz R, Salas-Salvadó J, López-Moreno J, Fernández-García JC, Macías-González M, Cardona F, Tinahones FJ. Differential effects of restrictive and malabsorptive bariatric surgery procedures on the serum lipidome in obese subjects. J Clin Lipidol 2018; 12:1502-1512. [PMID: 30143432 DOI: 10.1016/j.jacl.2018.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/17/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022]
|
44
|
Lo Re O, Douet J, Buschbeck M, Fusilli C, Pazienza V, Panebianco C, Castracani CC, Mazza T, Li Volti G, Vinciguerra M. Histone variant macroH2A1 rewires carbohydrate and lipid metabolism of hepatocellular carcinoma cells towards cancer stem cells. Epigenetics 2018; 13:829-845. [PMID: 30165787 DOI: 10.1080/15592294.2018.1514239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinomas (HCCs) contain a sub-population of cancer stem cells (CSCs) that are responsible for tumor relapse, metastasis, and chemoresistance. We recently showed that loss of macroH2A1, a variant of the histone H2A and an epigenetic regulator of stem-cell function, in HCC leads to CSC-like features such as resistance to chemotherapeutic agents and growth of large and relatively undifferentiated tumors in xenograft models. These HCC cells silenced for macroH2A1 also exhibited stem-like metabolic changes consistent with enhanced glycolysis. However, there is no consensus as to the metabolic characteristics of CSCs that render them adaptable to microenvironmental changes by conveniently shifting energy production source or by acquiring intermediate metabolic phenotypes. Here, we assessed long-term proliferation, energy metabolism, and central carbon metabolism in human hepatoma HepG2 cells depleted in macroH2A1. MacroH2A1-depleted HepG2 cells were insensitive to serum exhaustion and showed two distinct, but interdependent changes in glucose and lipid metabolism in CSCs: (1) massive upregulation of acetyl-coA that is transformed into enhanced lipid content and (2) increased activation of the pentose phosphate pathway, diverting glycolytic intermediates to provide precursors for nucleotide synthesis. Integration of metabolomic analyses with RNA-Seq data revealed a critical role for the Liver X Receptor pathway, whose inhibition resulted in attenuated CSCs-like features. These findings shed light on the metabolic phenotype of epigenetically modified CSC-like hepatic cells, and highlight a potential approach for selective therapeutic targeting.
Collapse
Affiliation(s)
- Oriana Lo Re
- a Center for Translational Medicine, International Clinical Research Center , St'Anne University Hospital , Brno , Czech Republic.,b Department of Biology, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| | - Julien Douet
- d Josep Carreras Leukemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol , Universitat Autònoma de Barcelona , Badalona , Spain.,e Programme of Predictive and Personalized Medicine of Cancer , Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Badalona , Spain
| | - Marcus Buschbeck
- d Josep Carreras Leukemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol , Universitat Autònoma de Barcelona , Badalona , Spain.,e Programme of Predictive and Personalized Medicine of Cancer , Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Badalona , Spain
| | - Caterina Fusilli
- c IRCCS Casa Sollievo della Sofferenza , UO of Bioinformatics , San Giovanni Rotondo , Italy
| | - Valerio Pazienza
- f Gastroenterology unit , IRCCS Casa Sollievo della Sofferenza , San Giovanni Rotondo , Italy
| | - Concetta Panebianco
- f Gastroenterology unit , IRCCS Casa Sollievo della Sofferenza , San Giovanni Rotondo , Italy
| | | | - Tommaso Mazza
- c IRCCS Casa Sollievo della Sofferenza , UO of Bioinformatics , San Giovanni Rotondo , Italy
| | - Giovanni Li Volti
- g Department of Biomedical and Biotechnological Sciences , University of Catania , Catania , Italy
| | - Manlio Vinciguerra
- a Center for Translational Medicine, International Clinical Research Center , St'Anne University Hospital , Brno , Czech Republic.,h Institute for Liver and Digestive Health, Division of Medicine , University College London (UCL) , London , UK
| |
Collapse
|
45
|
Beier JI, Banales JM. Pyroptosis: An inflammatory link between NAFLD and NASH with potential therapeutic implications. J Hepatol 2018; 68:643-645. [PMID: 29408544 PMCID: PMC6185810 DOI: 10.1016/j.jhep.2018.01.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Juliane I. Beier
- Department of Pharmacology and Toxicology, Hepatobiology and Toxicology Program, University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY 40292, USA;,Corresponding authors. Addresses: Department of Pharmacology & Toxicology, University of Louisville, 505 S. Hancock St, Louisville, KY 40292, USA. Tel.: +1 502 852 5157; fax: +1 502 852 3422 (J.I. Beier), or Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Paseo del Dr. Begiristain s/n, E-20014 San Sebastian, Spain. Tel.: +34 943006067. (J. Banales). (J.I. Beier), (J.M. Banales)
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital – University of the Basque Country (UPV/EHU), Ikerbasque, CIBERehd, San Sebastian, Spain,Corresponding authors. Addresses: Department of Pharmacology & Toxicology, University of Louisville, 505 S. Hancock St, Louisville, KY 40292, USA. Tel.: +1 502 852 5157; fax: +1 502 852 3422 (J.I. Beier), or Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Paseo del Dr. Begiristain s/n, E-20014 San Sebastian, Spain. Tel.: +34 943006067. (J. Banales). (J.I. Beier), (J.M. Banales)
| |
Collapse
|
46
|
Gitto S, Schepis F, Andreone P, Villa E. Study of the Serum Metabolomic Profile in Nonalcoholic Fatty Liver Disease: Research and Clinical Perspectives. Metabolites 2018; 8:metabo8010017. [PMID: 29495258 PMCID: PMC5876006 DOI: 10.3390/metabo8010017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, metabolomics has attracted great scientific attention. The metabolomics methodology might permit a view into transitional phases between healthy liver and nonalcoholic steatohepatitis. Metabolomics can help to analyze the metabolic alterations that play a main role in the progression of nonalcoholic steatohepatitis. Lipid, glucose, amino acid, and bile acid metabolism should be widely studied to understand the complex pathogenesis of nonalcoholic steatohepatitis. The discovery of new biomarkers would be important for diagnosis and staging of liver disease as well as for the assessment of efficacy of new drugs. Here, we review the metabolomics data regarding nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. We analyzed the main studies regarding the application of metabolomics methodology in the complex context of nonalcoholic steatohepatitis, trying to create a bridge from the basic to the clinical aspects.
Collapse
Affiliation(s)
- Stefano Gitto
- Department of Medical and Surgical Sciences, University of Bologna and Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola-Malpighi, 40138 Bologna, Italy.
- Research Centre for the Study of Hepatitis, University of Bologna, 40138 Bologna, Italy.
| | - Filippo Schepis
- Department of Gastroenterology, Azienda Ospedaliero-Universitaria and University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Pietro Andreone
- Department of Medical and Surgical Sciences, University of Bologna and Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola-Malpighi, 40138 Bologna, Italy.
- Research Centre for the Study of Hepatitis, University of Bologna, 40138 Bologna, Italy.
| | - Erica Villa
- Department of Gastroenterology, Azienda Ospedaliero-Universitaria and University of Modena and Reggio Emilia, 41124 Modena, Italy.
| |
Collapse
|
47
|
Zheng P, Li J, Kros JM. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med Res Rev 2018; 38:325-376. [PMID: 28862319 PMCID: PMC5763363 DOI: 10.1002/med.21463] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022]
Abstract
To date, five cancer treatment modalities have been defined. The three traditional modalities of cancer treatment are surgery, radiotherapy, and conventional chemotherapy, and the two modern modalities include molecularly targeted therapy (the fourth modality) and immunotherapy (the fifth modality). The cardiotoxicity associated with conventional chemotherapy and radiotherapy is well known. Similar adverse cardiac events are resurging with the fourth modality. Aside from the conventional and newer targeted agents, even the most newly developed, immune-based therapeutic modalities of anticancer treatment (the fifth modality), e.g., immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy, have unfortunately led to potentially lethal cardiotoxicity in patients. Cardiac complications represent unresolved and potentially life-threatening conditions in cancer survivors, while effective clinical management remains quite challenging. As a consequence, morbidity and mortality related to cardiac complications now threaten to offset some favorable benefits of modern cancer treatments in cancer-related survival, regardless of the oncologic prognosis. This review focuses on identifying critical research-practice gaps, addressing real-world challenges and pinpointing real-time insights in general terms under the context of clinical cardiotoxicity induced by the fourth and fifth modalities of cancer treatment. The information ranges from basic science to clinical management in the field of cardio-oncology and crosses the interface between oncology and onco-pharmacology. The complexity of the ongoing clinical problem is addressed at different levels. A better understanding of these research-practice gaps may advance research initiatives on the development of mechanism-based diagnoses and treatments for the effective clinical management of cardiotoxicity.
Collapse
Affiliation(s)
- Ping‐Pin Zheng
- Cardio‐Oncology Research GroupErasmus Medical CenterRotterdamthe Netherlands
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Jin Li
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Johan M Kros
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
48
|
Nicolle R, Blum Y, Marisa L, Loncle C, Gayet O, Moutardier V, Turrini O, Giovannini M, Bian B, Bigonnet M, Rubis M, Elarouci N, Armenoult L, Ayadi M, Duconseil P, Gasmi M, Ouaissi M, Maignan A, Lomberk G, Boher JM, Ewald J, Bories E, Garnier J, Goncalves A, Poizat F, Raoul JL, Secq V, Garcia S, Grandval P, Barraud-Blanc M, Norguet E, Gilabert M, Delpero JR, Roques J, Calvo E, Guillaumond F, Vasseur S, Urrutia R, de Reyniès A, Dusetti N, Iovanna J. Pancreatic Adenocarcinoma Therapeutic Targets Revealed by Tumor-Stroma Cross-Talk Analyses in Patient-Derived Xenografts. Cell Rep 2017; 21:2458-2470. [PMID: 29186684 PMCID: PMC6082139 DOI: 10.1016/j.celrep.2017.11.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/12/2017] [Accepted: 10/31/2017] [Indexed: 01/06/2023] Open
Abstract
Preclinical models based on patient-derived xenografts have remarkable specificity in distinguishing transformed human tumor cells from non-transformed murine stromal cells computationally. We obtained 29 pancreatic ductal adenocarcinoma (PDAC) xenografts from either resectable or non-resectable patients (surgery and endoscopic ultrasound-guided fine-needle aspirate, respectively). Extensive multiomic profiling revealed two subtypes with distinct clinical outcomes. These subtypes uncovered specific alterations in DNA methylation and transcription as well as in signaling pathways involved in tumor-stromal cross-talk. The analysis of these pathways indicates therapeutic opportunities for targeting both compartments and their interactions. In particular, we show that inhibiting NPC1L1 with Ezetimibe, a clinically available drug, might be an efficient approach for treating pancreatic cancers. These findings uncover the complex and diverse interplay between PDAC tumors and the stroma and demonstrate the pivotal role of xenografts for drug discovery and relevance to PDAC.
Collapse
Affiliation(s)
- Rémy Nicolle
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris, France.
| | - Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris, France
| | - Laetitia Marisa
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris, France
| | - Celine Loncle
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Odile Gayet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Vincent Moutardier
- Hôpital Nord, Marseille, France; Aix Marseille Université, Marseille, France
| | - Olivier Turrini
- Aix Marseille Université, Marseille, France; Institut Paoli-Calmettes, Marseille, France
| | | | - Benjamin Bian
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Martin Bigonnet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Marion Rubis
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Nabila Elarouci
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris, France
| | - Lucile Armenoult
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris, France
| | - Mira Ayadi
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris, France
| | - Pauline Duconseil
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | | | | | - Aurélie Maignan
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Gwen Lomberk
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | - Jonathan Garnier
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Anthony Goncalves
- Aix Marseille Université, Marseille, France; Institut Paoli-Calmettes, Marseille, France
| | | | - Jean-Luc Raoul
- Aix Marseille Université, Marseille, France; Institut Paoli-Calmettes, Marseille, France
| | | | - Stephane Garcia
- Hôpital Nord, Marseille, France; Aix Marseille Université, Marseille, France
| | - Philippe Grandval
- Aix Marseille Université, Marseille, France; Hôpital de la Timone, Marseille, France
| | | | | | | | - Jean-Robert Delpero
- Aix Marseille Université, Marseille, France; Institut Paoli-Calmettes, Marseille, France
| | - Julie Roques
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Ezequiel Calvo
- Centre Génomique du Centre de Recherche du CHUL Research Center, Ville de Québec, QC, Canada
| | - Fabienne Guillaumond
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Sophie Vasseur
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Raul Urrutia
- Division of Research, Department of Surgery, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris, France
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France.
| |
Collapse
|
49
|
Cano A, Mariño Z, Millet O, Martínez-Arranz I, Navasa M, Falcón-Pérez JM, Pérez-Cormenzana M, Caballería J, Embade N, Forns X, Bosch J, Castro A, Mato JM. A Metabolomics Signature Linked To Liver Fibrosis In The Serum Of Transplanted Hepatitis C Patients. Sci Rep 2017; 7:10497. [PMID: 28874799 PMCID: PMC5585246 DOI: 10.1038/s41598-017-10807-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis must be evaluated in patients with hepatitis C virus (HCV) after liver transplantation because its severity affects their prognosis and the recurrence of HCV. Since invasive biopsy is still the gold standard to identify patients at risk of graft loss from rapid fibrosis progression, it becomes crucial the development of new accurate, non-invasive methods that allow repetitive examination of the patients. Therefore, we have developed a non-invasive, accurate model to distinguish those patients with different liver fibrosis stages. Two hundred and three patients with HCV were histologically classified (METAVIR) into five categories of fibrosis one year after liver transplantation. In this cross-sectional study, patients at fibrosis stages F0-F1 (n = 134) were categorised as “slow fibrosers” and F2-F4 (n = 69) as “rapid fibrosers”. Chloroform/methanol serum extracts were analysed by reverse ultra-high performance liquid chromatography coupled to mass spectrometry. A diagnostic model was built through linear discriminant analyses. An algorithm consisting of two sphingomyelins and two phosphatidylcholines accurately classifies rapid and slow fibrosers after transplantation. The proposed model yielded an AUROC of 0.92, 71% sensitivity, 85% specificity, and 84% accuracy. Moreover, specific bile acids and sphingomyelins increased notably along with liver fibrosis severity, differentiating between rapid and slow fibrosers.
Collapse
Affiliation(s)
- Ainara Cano
- OWL, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain.
| | - Zoe Mariño
- Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Oscar Millet
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, 48160, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | | | - Miquel Navasa
- Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Manuel Falcón-Pérez
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, 48160, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | | | - Joan Caballería
- Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Nieves Embade
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, 48160, Spain
| | - Xavier Forns
- Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Jaume Bosch
- Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Azucena Castro
- OWL, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain
| | - José María Mato
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, 48160, Spain
| |
Collapse
|
50
|
Feng R, Luo C, Li C, Du S, Okekunle AP, Li Y, Chen Y, Zi T, Niu Y. Free fatty acids profile among lean, overweight and obese non-alcoholic fatty liver disease patients: a case - control study. Lipids Health Dis 2017; 16:165. [PMID: 28870233 PMCID: PMC5584533 DOI: 10.1186/s12944-017-0551-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/15/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) given its association with obesity and diabetes may perhaps exert distinct free fatty acids (FFA) pattern, but the understanding of this phenomenon is limited. To this effect, we evaluated FFA profiles among healthy subjects and NAFLD patients stratified by body weight, to identify FFA valuable for early diagnosis of NAFLD. METHODS Serum FFA profiles of healthy and NAFLD (lean, overweight and obese) subjects was determined using gas chromatography-mass spectrometry (GC-MS) and distinctions in FFA patterns were evaluated using one-way ANOVA while Receiver operating characteristics (ROC) and logistic regression models were used to explore FFA significant for diagnosing NAFLD. RESULTS NAFLD patients presented significantly higher (P < 0.05) serum FFA profiles compared to healthy controls (HC). While total FFA profiles were insignificantly different between lean (2093.33 ± 558.11 μg/ml) and overweight (2420.81 ± 555.18 μg/ml) NAFLD patients, obese NAFLD (2739.01 ± 810.35 μg/ml) presented most significantly elevated (P < 0.05) total FFA profiles compared with HC. Of the four FFA; myristic acid (14:0), palmitoleic acid (16:1), γ-linolenic acid (γ-18:3) and cis-7,10,13,16,19-docosapentaenoic acid (22:5), selected in ROC analysis given their high Youden's index and AUC, only 14:0; 5.58(1.37, 22.76) and 16:1; 4.36(1.34, 14.13) had statistical significant odd ratios. CONCLUSION Our findings suggest 14:0 and 16:1 are promising for early diagnosis of NAFLD.
Collapse
Affiliation(s)
- Rennan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, Heilongjiang Province, 150081, China.
| | - Chao Luo
- STD & AIDS Center, Harbin Center for Disease Control and Prevention, Harbin, Heilongjiang Province, 150056, China
| | - Chunlong Li
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Shanshan Du
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Akinkunmi Paul Okekunle
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Yanchuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Yang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Tianqi Zi
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, Heilongjiang Province, 150081, China
| |
Collapse
|