1
|
Korenjak M, Temiz NA, Keita S, Chavanel B, Renard C, Sirand C, Cahais V, Mayel T, Vevang KR, Jacobs FC, Guo J, Smith WE, Oram MK, Tăbăran FA, Ahlat O, Cornax I, O'Sullivan MG, Das S, Nandi SP, Cheng Y, Alexandrov LB, Balbo S, Hecht SS, Senkin S, Virard F, Peterson LA, Zavadil J. Human cancer genomes harbor the mutational signature of tobacco-specific nitrosamines NNN and NNK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.600253. [PMID: 38979250 PMCID: PMC11230374 DOI: 10.1101/2024.06.28.600253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tobacco usage is linked to multiple cancer types and accounts for a quarter of all cancer-related deaths. Tobacco smoke contains various carcinogenic compounds, including polycyclic aromatic hydrocarbons (PAH), though the mutagenic potential of many tobacco-related chemicals remains largely unexplored. In particular, the highly carcinogenic tobacco-specific nitrosamines NNN and NNK form pre-mutagenic pyridyloxobutyl (POB) DNA adducts. In the study presented here, we identified genome-scale POB-induced mutational signatures in cell lines and rat tumors, while also investigating their role in human cancer. These signatures are characterized by T>N and C>T mutations forming from specific POB adducts damaging dT and dC residues. Analysis of 2,780 cancer genomes uncovered POB signatures in ∼180 tumors; from cancer types distinct from the ones linked to smoking-related signatures SBS4 and SBS92. This suggests that, unlike PAH compounds, the POB pathway may contribute uniquely to the mutational landscapes of certain hematological malignancies and cancers of the kidney, breast, prostate and pancreas.
Collapse
|
2
|
Guo J, Hecht SS. DNA damage in human oral cells induced by use of e-cigarettes. Drug Test Anal 2023; 15:1189-1197. [PMID: 36169810 PMCID: PMC10043052 DOI: 10.1002/dta.3375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022]
Abstract
The use of electronic cigarettes (e-cigarettes) has increased rapidly in the United States, especially among high school students. e-Cigarettes contain some recognized carcinogens and may induce DNA damage in oral cells. The aim of this review is to summarize studies reporting DNA adducts or other types of DNA damage in oral cells in vitro or in vivo upon exposure to e-cigarette vapor and to evaluate the possible connections between e-cigarette exposure and oral cancer. Three databases including PubMed, Scopus, and EMBASE and gray literature were searched for articles published up to April 24, 2022. After screening 321 articles, we extracted 27 for further investigation. Based on the inclusion criteria, 22 articles were eligible for this review. The in vitro studies demonstrate that e-cigarette liquid or vapor can induce DNA damage, oxidative stress, DNA double-stranded breaks, apoptosis, cytotoxicity, and genotoxicity in different types of oral cells. The clinical studies showed that e-cigarette users have significantly higher levels of N'-nitrosonornicotine, acrolein DNA adducts, metanuclear anomalies, gene regulation, and lactate dehydrogenase enzyme expression and significantly lower levels of apurinic/apyrimidinic sites than non-users. Comparison of micronuclei levels between e-cigarette users and non-users gave inconsistent results. e-Cigarettes are implicated in DNA damage to oral cells, but publications to date present limited evidence. Future studies with larger sample sizes are required to investigate the long-term consequences of e-cigarette use.
Collapse
Affiliation(s)
- Jiehong Guo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Fahrer J, Christmann M. DNA Alkylation Damage by Nitrosamines and Relevant DNA Repair Pathways. Int J Mol Sci 2023; 24:ijms24054684. [PMID: 36902118 PMCID: PMC10003415 DOI: 10.3390/ijms24054684] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Nitrosamines occur widespread in food, drinking water, cosmetics, as well as tobacco smoke and can arise endogenously. More recently, nitrosamines have been detected as impurities in various drugs. This is of particular concern as nitrosamines are alkylating agents that are genotoxic and carcinogenic. We first summarize the current knowledge on the different sources and chemical nature of alkylating agents with a focus on relevant nitrosamines. Subsequently, we present the major DNA alkylation adducts induced by nitrosamines upon their metabolic activation by CYP450 monooxygenases. We then describe the DNA repair pathways engaged by the various DNA alkylation adducts, which include base excision repair, direct damage reversal by MGMT and ALKBH, as well as nucleotide excision repair. Their roles in the protection against the genotoxic and carcinogenic effects of nitrosamines are highlighted. Finally, we address DNA translesion synthesis as a DNA damage tolerance mechanism relevant to DNA alkylation adducts.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| |
Collapse
|
4
|
Zhang J, Liu X, Shi B, Yang Z, Luo Y, Xu T, Liu D, Jiang C, Du G, Lu N, Zhang C, Ma Y, Bai R, Zhou J. Investigation of exposure biomarkers in human plasma following differing levels of tobacco-specific N-nitrosamines and nicotine in cigarette smoke. ENVIRONMENTAL RESEARCH 2022; 214:113811. [PMID: 35835167 DOI: 10.1016/j.envres.2022.113811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Tobacco-specific N-nitrosamines (TSNAs) are strong carcinogens widely found in tobacco products, environmental tobacco smoke, lake, and wastewater. The main objective of this study was to investigate the effects of cigarette smoke with different yields of TSNAs (NNK, NNN, NAT, NAB) and nicotine on the levels of biomarkers of exposure in smokers' plasma. Three hundred healthy volunteers were recruited comprising 60 smokers of each of 3 mg, 8 mg and 10 mg ISO tar yield cigarettes and 60 smokers who smoked 10 mg, 8 mg, and 3 mg for 14 days sequentially and 60 non-smokers. All study participants were male, aged from 21 to 45 years old, and were recruited from a same unit in Hebei, China. We measured the levels of NNAL, NAT, NNN, NAB and cotinine in plasma from 240 smokers and 60 non-smokers using a novel method established by online two-dimensional solid phase extraction-liquid chromatography-tandem mass spectrometry. The results showed that NNAL, NAT, NNN, NAB and cotinine in the plasma of smokers smoking cigarette with low TSNAs and nicotine were lower than that with high TSNAs and nicotine. When smokers switched from higher to lower TSNA yields of cigarettes, their plasma NNAL, NAT, NNN, NAB levels significantly decreased. The plasma concentrations of NNAL were significantly correlated with those of cotinine, NNN, NAT and NAB for smokers (p < 0.001). Similarly, the plasma concentrations of cotinine were significantly correlated with those of NNN, NAT and NAB for smokers (p < 0.001). The plasma NNAL, NAT, NNN, NAB and cotinine levels for smokers were significantly higher than those for non-smokers. These findings suggested that the total NNAL, NNN, NAT, NAB and cotinine in plasma were valid and reliable biomarkers for human exposure to TSNAs and nicotine.
Collapse
Affiliation(s)
- Jie Zhang
- Beijing Third Class Tobacco Super Vision Station, Beijing, 101121, China
| | - Xingyu Liu
- Beijing Third Class Tobacco Super Vision Station, Beijing, 101121, China
| | - Bing Shi
- Department of Cardiology, Beijing Military General Hospital, Beijing, China
| | - Zhendong Yang
- Beijing Third Class Tobacco Super Vision Station, Beijing, 101121, China
| | - Yanbo Luo
- China National Tobacco Quality Supervision & Test Centre, Zhengzhou, China
| | - Tongguang Xu
- Beijing Third Class Tobacco Super Vision Station, Beijing, 101121, China
| | - Deshui Liu
- Beijing Third Class Tobacco Super Vision Station, Beijing, 101121, China
| | - Chengyong Jiang
- Beijing Third Class Tobacco Super Vision Station, Beijing, 101121, China
| | - Guorong Du
- Beijing Third Class Tobacco Super Vision Station, Beijing, 101121, China
| | - Nan Lu
- Beijing Third Class Tobacco Super Vision Station, Beijing, 101121, China
| | - Chen Zhang
- Beijing Third Class Tobacco Super Vision Station, Beijing, 101121, China
| | - Yanjun Ma
- Beijing Third Class Tobacco Super Vision Station, Beijing, 101121, China
| | - Ruoshi Bai
- Beijing Third Class Tobacco Super Vision Station, Beijing, 101121, China
| | - Jun Zhou
- Beijing Third Class Tobacco Super Vision Station, Beijing, 101121, China.
| |
Collapse
|
5
|
Peterson LA, Seabloom D, Smith WE, Vevang KR, Seelig DM, Zhang L, Wiedmann TS. Acrolein Increases the Pulmonary Tumorigenic Activity of the Tobacco-Specific Nitrosamine 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Chem Res Toxicol 2022; 35:1831-1839. [PMID: 36149460 DOI: 10.1021/acs.chemrestox.2c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tobacco smoke is a complex mixture of more than 7000 chemicals, of which many are toxic and/or carcinogenic. Many hazard assessments of tobacco have focused on individual chemical exposures without consideration of how the chemicals may interact with one another. Two chemicals, the human carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) and a possible human carcinogen, acrolein, were hypothesized to interact with one another, possibly owing to the additive effects of DNA adduct formation or influence on the repair of mutagenic DNA adducts. To test our hypothesis that coexposure to NNK and acrolein is more carcinogenic than either chemical alone, A/J mice were exposed to NNK (i.p., 0, 2.5, or 7.5 μmol in saline) in the presence or absence of inhaled acrolein (15 ppmV). While the single 3 h exposure to acrolein alone did not induce lung adenomas, it significantly enhanced NNK's lung carcinogenicity. In addition, mice receiving both NNK and acrolein had more adenomas with dysplasia or progression than those receiving only NNK, suggesting that acrolein may also increase the severity of NNK-induced lung adenomas. To test the hypothesis that the interaction was due to effects on DNA adduct formation and repair, NNK- and acrolein pulmonary DNA adduct levels were assessed. There was no consistent effect of the coexposure on NNK-derived DNA adducts, and acrolein DNA adducts were not elevated above endogenous levels. This study supports the hypothesis that tobacco smoke chemicals combine to contribute to the carcinogenic potency of tobacco smoke, and the mechanism of interaction cannot be explained by alterations of DNA adduct levels.
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Donna Seabloom
- AeroCore Testing Service, Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William E Smith
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Karin R Vevang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Davis M Seelig
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, Minnesota 55108, United States.,College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Lin Zhang
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy S Wiedmann
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Li Y, Hecht SS. Metabolism and DNA Adduct Formation of Tobacco-Specific N-Nitrosamines. Int J Mol Sci 2022; 23:5109. [PMID: 35563500 PMCID: PMC9104174 DOI: 10.3390/ijms23095109] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 01/06/2023] Open
Abstract
The tobacco-specific N-nitrosamines 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) always occur together and exclusively in tobacco products or in environments contaminated by tobacco smoke. They have been classified as "carcinogenic to humans" by the International Agency for Research on Cancer. In 1998, we published a review of the biochemistry, biology and carcinogenicity of tobacco-specific nitrosamines. Over the past 20 years, considerable progress has been made in our understanding of the mechanisms of metabolism and DNA adduct formation by these two important carcinogens, along with progress on their carcinogenicity and mutagenicity. In this review, we aim to provide an update on the carcinogenicity and mechanisms of the metabolism and DNA interactions of NNK and NNN.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
7
|
Hu Q, Upadhyaya P, Hecht SS, Aly FZ, Huo Z, Xing C. Characterization of adductomic totality of NNK, (R)-NNAL and (S)-NNAL in A/J mice, and their correlations with distinct lung carcinogenicity. Carcinogenesis 2022; 43:170-181. [PMID: 34919675 PMCID: PMC8947227 DOI: 10.1093/carcin/bgab113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 11/15/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. While tobacco use is the main cause, only 10-20% of smokers eventually develop clinical lung cancer. Thus, the ability of lung cancer risk prediction among smokers could transform lung cancer management with early preventive interventions. Given that DNA damage by tobacco carcinogens is the potential root cause of lung carcinogenesis, we characterized the adductomic totality of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (a potent lung carcinogen in tobacco, commonly known as NNK) in the target lung tissues, the liver tissues and the peripheral serum samples in a single-dose NNK-induced lung carcinogenesis A/J mouse model. We also characterized these adductomic totalities from the two enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, the major in vivo metabolite of NNK) given their distinct carcinogenicity in A/J mice. With these adductomic data, we demonstrated that tissue protein adductomics have the highest abundance. We also identified that the adductomic levels at the 8 h time point after carcinogen exposure were among the highest. More importantly, the relationships among these adductomics were characterized with overall strong positive linear correlations, demonstrating the potential of using peripheral serum protein adductomics to reflect DNA adductomics in the target lung tissues. Lastly, we explored the relationships of these adductomics with lung tumor status in A/J mice, providing preliminary but promising evidence of the feasibility of lung cancer risk prediction using peripheral adductomic profiling.
Collapse
Affiliation(s)
- Qi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - F Zahra Aly
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1345 Center Drive, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Murray KJ, Carlson ES, Stornetta A, Balskus EP, Villalta PW, Balbo S. Extension of Diagnostic Fragmentation Filtering for Automated Discovery in DNA Adductomics. Anal Chem 2021; 93:5754-5762. [PMID: 33797876 DOI: 10.1021/acs.analchem.0c04895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development of high-resolution/accurate mass liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) methodology enables the characterization of covalently modified DNA induced by interaction with genotoxic agents in complex biological samples. Constant neutral loss monitoring of 2'-deoxyribose or the nucleobases using data-dependent acquisition represents a powerful approach for the unbiased detection of DNA modifications (adducts). The lack of available bioinformatics tools necessitates manual processing of acquired spectral data and hampers high throughput application of these techniques. To address this limitation, we present an automated workflow for the detection and curation of putative DNA adducts by using diagnostic fragmentation filtering of LC-MS/MS experiments within the open-source software MZmine. The workflow utilizes a new feature detection algorithm, DFBuilder, which employs diagnostic fragmentation filtering using a user-defined list of fragmentation patterns to reproducibly generate feature lists for precursor ions of interest. The DFBuilder feature detection approach readily fits into a complete small-molecule discovery workflow and drastically reduces the processing time associated with analyzing DNA adductomics results. We validate our workflow using a mixture of authentic DNA adduct standards and demonstrate the effectiveness of our approach by reproducing and expanding the results of a previously published study of colibactin-induced DNA adducts. The reported workflow serves as a technique to assess the diagnostic potential of novel fragmentation pattern combinations for the unbiased detection of chemical classes of interest.
Collapse
Affiliation(s)
- Kevin J Murray
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, Minnesota 55455, United States
| | - Erik S Carlson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, Minnesota 55455, United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, Minnesota 55455, United States.,Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Peterson LA, Oram MK, Flavin M, Seabloom D, Smith WE, O’Sullivan MG, Vevang KR, Upadhyaya P, Stornetta A, Floeder AC, Ho YY, Zhang L, Hecht SS, Balbo S, Wiedmann TS. Coexposure to Inhaled Aldehydes or Carbon Dioxide Enhances the Carcinogenic Properties of the Tobacco-Specific Nitrosamine 4-Methylnitrosamino-1-(3-pyridyl)-1-butanone in the A/J Mouse Lung. Chem Res Toxicol 2021; 34:723-732. [PMID: 33629582 PMCID: PMC10901071 DOI: 10.1021/acs.chemrestox.0c00350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tobacco smoke is a complex mixture of chemicals, many of which are toxic and carcinogenic. Hazard assessments of tobacco smoke exposure have predominantly focused on either single chemical exposures or the more complex mixtures of tobacco smoke or its fractions. There are fewer studies exploring interactions between specific tobacco smoke chemicals. Aldehydes such as formaldehyde and acetaldehyde were hypothesized to enhance the carcinogenic properties of the human carcinogen, 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) through a variety of mechanisms. This hypothesis was tested in the established NNK-induced A/J mouse lung tumor model. A/J mice were exposed to NNK (intraperitoneal injection, 0, 2.5, or 7.5 μmol in saline) in the presence or absence of acetaldehyde (0 or 360 ppmv) or formaldehyde (0 or 17 ppmv) for 3 h in a nose-only inhalation chamber, and lung tumors were counted 16 weeks later. Neither aldehyde by itself induced lung tumors. However, mice receiving both NNK and acetaldehyde or formaldehyde had more adenomas with dysplasia or progression than those receiving only NNK, suggesting that aldehydes may increase the severity of NNK-induced lung adenomas. The aldehyde coexposure did not affect the levels of NNK-derived DNA adduct levels. Similar studies tested the ability of a 3 h nose-only carbon dioxide (0, 5, 10, or 15%) coexposure to influence lung adenoma formation by NNK. While carbon dioxide alone was not carcinogenic, it significantly increased the number of NNK-derived lung adenomas without affecting NNK-derived DNA damage. These studies indicate that the chemicals in tobacco smoke work together to form a potent lung carcinogenic mixture.
Collapse
Affiliation(s)
- Lisa A. Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Marissa K. Oram
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Monica Flavin
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Donna Seabloom
- AeroCore Testing Service, Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William E. Smith
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - M. Gerard O’Sullivan
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, Minnesota, USA
| | - Karin R. Vevang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Andrew C. Floeder
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Yen-Yi Ho
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lin Zhang
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Silvia Balbo
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Timothy S. Wiedmann
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
10
|
Guo J, Chen H, Upadhyaya P, Zhao Y, Turesky RJ, Hecht SS. Mass Spectrometric Quantitation of Apurinic/Apyrimidinic Sites in Tissue DNA of Rats Exposed to Tobacco-Specific Nitrosamines and in Lung and Leukocyte DNA of Cigarette Smokers and Nonsmokers. Chem Res Toxicol 2020; 33:2475-2486. [PMID: 32833447 PMCID: PMC7574376 DOI: 10.1021/acs.chemrestox.0c00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolic activation of the carcinogenic tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) results in formation of reactive electrophiles that modify DNA to produce a variety of products including methyl, 4-(3-pyridyl)-4-oxobutyl (POB)-, and 4-(3-pyridyl)-4-hydroxybutyl adducts. Among these are adducts such as 7-POB-deoxyguanosine (N7POBdG) which can lead to apurinic/apyrimidinic (AP) sites by facile hydrolysis of the base-deoxyribonucleoside bond. In this study, we used a recently developed highly sensitive mass spectrometric method to quantitate AP sites by derivatization with O-(pyridin-3-yl-methyl)hydroxylamine (PMOA) (detection limit, 2 AP sites per 108 nucleotides). AP sites were quantified in DNA isolated from tissues of rats treated with NNN and NNK and from human lung tissue and leukocytes of cigarette smokers and nonsmokers. Rats treated with 5 or 21 mg/kg bw NNK for 4 days by s.c. injection had 2-6 and 2-17 times more AP sites than controls in liver and lung DNA (p < 0.05). Increases in AP sites were also found in liver DNA of rats exposed for 10 and 30 weeks (p < 0.05) but not for 50 and 70 weeks to 5 ppm of NNK in their drinking water. Levels of N7POBG were significantly correlated with AP sites in rats treated with NNK. In rats treated with 14 ppm (S)-NNN in their drinking water for 10 weeks, increased AP site formation compared to controls was observed in oral and nasal respiratory mucosa DNA (p < 0.05). No significant increase in AP sites was found in human lung and leukocyte DNA of cigarette smokers compared to nonsmokers, although AP sites in leukocyte DNA were significantly correlated with urinary levels of the NNK metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). This is the first study to use mass spectrometry based methods to examine AP site formation by carcinogenic tobacco-specific nitrosamines in laboratory animals and to evaluate AP sites in DNA of smokers and nonsmokers.
Collapse
Affiliation(s)
- Jiehong Guo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Haoqing Chen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Hu Q, Corral P, Narayanapillai SC, Leitzman P, Upadhyaya P, O’Sullivan MG, Hecht SS, Lu J, Xing C. Oral Dosing of Dihydromethysticin Ahead of Tobacco Carcinogen NNK Effectively Prevents Lung Tumorigenesis in A/J Mice. Chem Res Toxicol 2020; 33:1980-1988. [PMID: 32476407 PMCID: PMC8178726 DOI: 10.1021/acs.chemrestox.0c00161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Our early studies demonstrated an impressive chemopreventive efficacy of dihydromethysticin (DHM), unique in kava, against tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice in which DHM was supplemented in the diet. The current work was carried out to validate the efficacy, optimize the dosing schedule, and further elucidate the mechanisms using oral bolus dosing of DHM. The results demonstrated a dose-dependent chemopreventive efficacy of DHM (orally administered 1 h before each of the two NNK intraperitoneal injections, 1 week apart) against NNK-induced lung adenoma formation. Temporally, DHM at 0.8 mg per dose (∼32 mg per kg body weight) exhibited 100% lung adenoma inhibition when given 3 and 8 h before each NNK injection and attained >93% inhibition when dosed at either 1 or 16 h before each NNK injection. The simultaneous treatment (0 h) or 40 h pretreatment (-40 h) decreased lung adenoma burden by 49.8% and 52.1%, respectively. However, post-NNK administration of DHM (1-8 h after each NNK injection) was ineffective against lung tumor formation. In short-term experiments for mechanistic exploration, DHM treatment reduced the formation of NNK-induced O6-methylguanine (O6-mG, a carcinogenic DNA adduct in A/J mice) in the target lung tissue and increased the urinary excretion of NNK detoxification metabolites as judged by the ratio of urinary NNAL-O-gluc to free NNAL, generally in synchrony with the tumor prevention efficacy outcomes in the dose scheduling time-course experiment. Overall, these results suggest DHM as a potential chemopreventive agent against lung tumorigenesis in smokers, with O6-mG and NNAL detoxification as possible surrogate biomarkers.
Collapse
Affiliation(s)
- Qi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610
| | - Pedro Corral
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610
| | - Sreekanth C. Narayanapillai
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Pablo Leitzman
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - M. Gerard O’Sullivan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Junxuan Lu
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
12
|
Zhuang Z, Li J, Sun G, Cui X, Zhang N, Zhao L, Chan PKS, Zhong R. Synergistic Effect between Human Papillomavirus 18 and 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone on Malignant Transformation of Immortalized SHEE Cells. Chem Res Toxicol 2019; 33:470-481. [PMID: 31874558 DOI: 10.1021/acs.chemrestox.9b00371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuochen Zhuang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Jintao Li
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Xin Cui
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Paul K. S. Chan
- Departments of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Tang Y, Zhang JL. Recent developments in DNA adduct analysis using liquid chromatography coupled with mass spectrometry. J Sep Sci 2019; 43:31-55. [PMID: 31573133 DOI: 10.1002/jssc.201900737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
The formation of DNA adducts by genotoxic agents is an early event in cancer development, and it may lead to gene mutations, thereby initiating tumor development. The measurement of DNA adducts can provide critical information about the genotoxic potential of a chemical and its mechanism of carcinogenesis. In recent decades, liquid chromatography coupled with mass spectrometry has become the most important technique for analyzing DNA adducts. The improvements in resolution achievable with new chromatographic separation techniques coupled with the high specificity and sensitivity and wide dynamic range of new mass spectrometry systems have been used for both qualitative and quantitative analyses of DNA adducts. This review discusses the challenges in qualitative and quantitative analyses of DNA adducts by liquid chromatography coupled with mass spectrometry and highlights recent developments towards overcoming the limitations of liquid chromatography coupled with mass spectrometry methods. The key steps and new solutions, such as sample preparation, mass spectrometry fragmentation, and method validation, are summarized. In addition, the fundamental principles and latest advances in DNA adductomic approaches are reviewed.
Collapse
Affiliation(s)
- Yu Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P. R. China
| |
Collapse
|
14
|
Wang P, Leng J, Wang Y. DNA replication studies of N-nitroso compound-induced O6-alkyl-2'-deoxyguanosine lesions in Escherichia coli. J Biol Chem 2019; 294:3899-3908. [PMID: 30655287 PMCID: PMC6422096 DOI: 10.1074/jbc.ra118.007358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
N-Nitroso compounds (NOCs) are common DNA-alkylating agents, are abundantly present in food and tobacco, and can also be generated endogenously. Metabolic activation of some NOCs can give rise to carboxymethylation and pyridyloxobutylation/pyridylhydroxybutylation of DNA, which are known to be carcinogenic and can lead to gastrointestinal and lung cancer, respectively. Herein, using the competitive replication and adduct bypass (CRAB) assay, along with MS- and NMR-based approaches, we assessed the cytotoxic and mutagenic properties of three O6-alkyl-2'-deoxyguanosine (O6-alkyl-dG) adducts, i.e. O6-pyridyloxobutyl-dG (O6-POB-dG) and O6-pyridylhydroxybutyl-dG (O6-PHB-dG), derived from tobacco-specific nitrosamines, and O6-carboxymethyl-dG (O6-CM-dG), induced by endogenous N-nitroso compounds. We also investigated two neutral analogs of O6-CM-dG, i.e. O6-aminocarbonylmethyl-dG (O6-ACM-dG) and O6-hydroxyethyl-dG (O6-HOEt-dG). We found that, in Escherichia coli cells, these lesions mildly (O6-POB-dG), moderately (O6-PHB-dG), or strongly (O6-CM-dG, O6-ACM-dG, and O6-HOEt-dG) impede DNA replication. The strong blockage effects of the last three lesions were attributable to the presence of hydrogen-bonding donor(s) located on the alkyl functionality of these lesions. Except for O6-POB-dG, which also induced a low frequency of G → T transversions, all other lesions exclusively stimulated G → A transitions. SOS-induced DNA polymerases played redundant roles in bypassing all the O6-alkyl-dG lesions investigated. DNA polymerase IV (Pol IV) and Pol V, however, were uniquely required for inducing the G → A transition for O6-CM-dG exposure. Together, our study expands our knowledge about the recognition of important NOC-derived O6-alkyl-dG lesions by the E. coli DNA replication machinery.
Collapse
Affiliation(s)
- Pengcheng Wang
- From the Department of Chemistry, University of California, Riverside, California 92521-0403 and
- the Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, China
| | - Jiapeng Leng
- From the Department of Chemistry, University of California, Riverside, California 92521-0403 and
| | - Yinsheng Wang
- From the Department of Chemistry, University of California, Riverside, California 92521-0403 and
| |
Collapse
|
15
|
Guo S, Leng J, Tan Y, Price NE, Wang Y. Quantification of DNA Lesions Induced by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol in Mammalian Cells. Chem Res Toxicol 2019; 32:708-717. [PMID: 30714728 DOI: 10.1021/acs.chemrestox.8b00374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantitative measurement of DNA adducts in carcinogen-exposed cells provides the information about the frequency of formation and the rate of removal of DNA lesions in vivo, which yields insights into the initial events of mutagenesis. Metabolic activation of tobacco-specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its reduction product 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), leads to pyridyloxobutylation and pyridylhydroxybutylation of DNA. In this study, we employed a highly robust nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS) coupled with the isotope-dilution method for simultaneous quantification of O6-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-2'-deoxyguanosine ( O6-PHBdG) and O2- and O4-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-thymidine ( O2-PHBdT and O4-PHBdT). Cultured mammalian cells were exposed to a model pyridylhydroxybutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanol (NNALOAc), followed by DNA extraction, enzymatic digestion, and sample enrichment prior to nLC-nESI-MS/MS quantification. Our results demonstrate, for the first time, that O4-PHBdT is quantifiable in cellular DNA and naked DNA upon NNALOAc exposure. We also show that nucleotide excision repair (NER) machinery may counteract the formation of O2-PHBdT and O4-PHBdT, and O6-alkylguanine DNA alkyltransferase (AGT) may be responsible for the repair of O6-PHBdG and O4-PHBdT in mammalian cells. Together, our study provides new knowledge about the occurrence and repair of NNAL-induced DNA lesions in mammalian cells.
Collapse
|
16
|
Du H, Leng J, Wang P, Li L, Wang Y. Impact of tobacco-specific nitrosamine-derived DNA adducts on the efficiency and fidelity of DNA replication in human cells. J Biol Chem 2018; 293:11100-11108. [PMID: 29789427 PMCID: PMC6052226 DOI: 10.1074/jbc.ra118.003477] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/12/2018] [Indexed: 11/06/2022] Open
Abstract
The tobacco-derived nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are known human carcinogens. Following metabolic activation, NNK and NNN can induce a number of DNA lesions, including several 4-(3-pyridyl)-4-oxobut-1-yl (POB) adducts. However, it remains unclear to what extent these lesions affect the efficiency and accuracy of DNA replication and how their replicative bypass is influenced by translesion synthesis (TLS) DNA polymerases. In this study, we investigated the effects of three stable POB DNA adducts (O2-POB-dT, O4-POB-dT, and O6-POB-dG) on the efficiency and fidelity of DNA replication in HEK293T human cells. We found that, when situated in a double-stranded plasmid, O2-POB-dT and O4-POB-dT moderately blocked DNA replication and induced exclusively T→A (∼14.9%) and T→C (∼35.2%) mutations, respectively. On the other hand, O6-POB-dG slightly impeded DNA replication, and this lesion elicited primarily the G→A transition (∼75%) together with a low frequency of the G→T transversion (∼3%). By conducting replication studies in isogenic cells in which specific TLS DNA polymerases (Pols) were deleted by CRISPR-Cas9 genome editing, we observed that multiple TLS Pols, especially Pol η and Pol ζ, are involved in bypassing these lesions. Our findings reveal the cytotoxic and mutagenic properties of specific POB DNA adducts and unravel the roles of several TLS polymerases in the replicative bypass of these adducts in human cells. Together, these results provide important new knowledge about the biological consequences of POB adducts.
Collapse
Affiliation(s)
- Hua Du
- From the Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Jiapeng Leng
- From the Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Pengcheng Wang
- From the Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Lin Li
- From the Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- From the Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
17
|
Reed L, Arlt VM, Phillips DH. The role of cytochrome P450 enzymes in carcinogen activation and detoxication: an in vivo-in vitro paradox. Carcinogenesis 2018; 39:851-859. [PMID: 29726902 PMCID: PMC6124610 DOI: 10.1093/carcin/bgy058] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/11/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Many chemical carcinogens require metabolic activation via xenobiotic-metabolizing enzymes in order to exert their genotoxic effects. Evidence from numerous in-vitro studies, utilizing reconstituted systems, microsomal fractions and cultured cells, implicates cytochrome P450 enzymes as being the predominant enzymes responsible for the metabolic activation of many procarcinogens. With the development of targeted gene disruption methodologies, knockout mouse models have been generated that allow investigation of the in-vivo roles of P450 enzymes in the metabolic activation of carcinogens. This review covers studies in which five procarcinogens representing different chemical classes, benzo[a]pyrene, 4-aminobiphenyl (4-ABP), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-9H-pyrido[2,3-b]indole and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, have been administered to different P450 knockout mouse models. Paradoxically, while in-vitro studies using subcellular fractions enriched with P450 enzymes and their cofactors have been widely used to determine the pathways of activation of carcinogens, there is evidence from the in-vivo studies of cases where these same enzyme systems appear to have a more predominant role in carcinogen detoxication rather than activation.
Collapse
Affiliation(s)
- Lindsay Reed
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, Franklin-Wilkins Building, London, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, Franklin-Wilkins Building, London, UK
- NIHR Health Protection Unit in Health Impact of Environmental Health Hazards at King’s College London in Partnership with Public Health England, London, UK
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, Franklin-Wilkins Building, London, UK
- NIHR Health Protection Unit in Health Impact of Environmental Health Hazards at King’s College London in Partnership with Public Health England, London, UK
| |
Collapse
|
18
|
Carlson ES, Upadhyaya P, Villalta PW, Ma B, Hecht SS. Analysis and Identification of 2'-Deoxyadenosine-Derived Adducts in Lung and Liver DNA of F-344 Rats Treated with the Tobacco-Specific Carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and Enantiomers of its Metabolite 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol. Chem Res Toxicol 2018; 31:358-370. [PMID: 29651838 DOI: 10.1021/acs.chemrestox.8b00056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) are carcinogenic in animal models and are believed to play an important role in human lung carcinogenesis for cigarette smokers. Cytochrome P450-mediated metabolism of these tobacco-specific nitrosamines produces reactive species that alkylate DNA in the form of pyridyloxobutyl (POB)- or pyridylhydroxybutyl (PHB)-DNA adducts. Understanding the formation mechanism and overall levels of these adducts can potentially enhance cancer prevention methods through the identification of particularly susceptible smokers. Previous studies have identified and measured a panel of POB- and PHB-DNA base adducts of dGuo, dCyd, and Thd; however, dAdo adducts have yet to be determined. In this study, we complete this DNA adduct panel by identifying and quantifying levels of NNK- and NNAL-derived dAdo adducts in vitro and in vivo. To accomplish this, we synthesized standards for expected dAdo-derived DNA adducts and used isotope-dilution LC-ESI+-MS/MS to identify POB adducts formed in vitro from the reaction of 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc) with calf thymus DNA. Adduct levels were then quantified in lung and liver DNA of rats chronically treated with NNK or NNAL for 50 weeks using similar LC-MS detection methods. The in vitro studies identified N6-POB-dAdo and N1-POB-dIno as products of the reaction of NNKOAc with DNA, which supports our proposed mechanism of formation. Though both N6-dAdo and N1-dIno adducts were found in vitro, only N6-dAdo adducts were found in vivo, implying possible intervention by DNA repair mechanisms. Analogous to previous studies, levels of N6-POB-dAdo and N6-PHB-dAdo varied both with tissue and treatment type. Despite the adduct levels being relatively modest compared to most other POB- and PHB-DNA adducts, they may play a biological role and could be used in future studies as NNK- and NNAL-specific DNA damage biomarkers.
Collapse
Affiliation(s)
- Erik S Carlson
- Masonic Cancer Center , University of Minnesota , 2231 Sixth Street SE , 2-210 CCRB, Minneapolis , Minnesota 55455 , United States.,Department of Pharmacology , University of Minnesota Medical School , 321 Church Street SE , 6-120 Jackson Hall, Minneapolis , Minnesota 55455 , United States
| | - Pramod Upadhyaya
- Masonic Cancer Center , University of Minnesota , 2231 Sixth Street SE , 2-210 CCRB, Minneapolis , Minnesota 55455 , United States
| | - Peter W Villalta
- Masonic Cancer Center , University of Minnesota , 2231 Sixth Street SE , 2-210 CCRB, Minneapolis , Minnesota 55455 , United States
| | - Bin Ma
- Masonic Cancer Center , University of Minnesota , 2231 Sixth Street SE , 2-210 CCRB, Minneapolis , Minnesota 55455 , United States
| | - Stephen S Hecht
- Masonic Cancer Center , University of Minnesota , 2231 Sixth Street SE , 2-210 CCRB, Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
19
|
Ma B, Zarth AT, Carlson ES, Villalta PW, Upadhyaya P, Stepanov I, Hecht SS. Identification of more than 100 structurally unique DNA-phosphate adducts formed during rat lung carcinogenesis by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 2018; 39:232-241. [PMID: 29194532 PMCID: PMC5862267 DOI: 10.1093/carcin/bgx135] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/25/2017] [Accepted: 11/25/2017] [Indexed: 02/01/2023] Open
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a powerful lung carcinogen in animal models and is considered a causative factor for lung cancer in people who use tobacco products. NNK undergoes metabolic activation-a critical step in its mechanism of carcinogenesis-to an intermediate which reacts with DNA to form pyridyloxobutyl DNA base and phosphate adducts. Another important metabolic pathway of NNK is its conversion to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which similarly forms pyridylhydroxybutyl DNA base adducts that have been characterized previously. In this study, we investigated the potential formation of pyridylhydroxybutyl DNA phosphate adducts. We report the characterization and quantitation of 107 structurally unique pyridylhydroxybutyl DNA phosphate adducts in the lungs of rats treated chronically with a carcinogenic dose of 5 ppm of NNK in their drinking water for up to 70 weeks, by using a novel liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry method. Our findings demonstrate that pyridylhydroxybutyl phosphate adducts account for 38-55 and 34-40% of all the measured pyridine-containing DNA adducts in rat lung and liver, respectively, upon treatment with NNK. Some of the pyridylhydroxybutyl DNA phosphate adducts persisted in both tissues for over 70 weeks, suggesting that they could be potential biomarkers of chronic exposure to NNK and NNAL. This study provides comprehensive characterization and relative quantitation of a panel of NNK/NNAL-derived DNA phosphate adducts, thus identifying NNK as the source of the most structurally diverse set of DNA adducts identified to date from any carcinogen.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Adam T Zarth
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Erik S Carlson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Ma B, Zarth AT, Carlson ES, Villalta PW, Upadhyaya P, Stepanov I, Hecht SS. Methyl DNA Phosphate Adduct Formation in Rats Treated Chronically with 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and Enantiomers of Its Metabolite 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol. Chem Res Toxicol 2018; 31:48-57. [PMID: 29131934 PMCID: PMC5770887 DOI: 10.1021/acs.chemrestox.7b00281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 11/29/2022]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a powerful lung carcinogen in animal models and is considered a causative factor for lung cancer in tobacco users. NNK is stereoselectively and reversibly metabolized to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also a lung carcinogen. Both NNK and NNAL undergo metabolic activation by α-hydroxylation on their methyl groups to form pyridyloxobutyl and pyridylhydroxybutyl DNA base and phosphate adducts, respectively. α-Hydroxylation also occurs on the α-methylene carbons of NNK and NNAL to produce methane diazohydroxide, which reacts with DNA to form methyl DNA base adducts. DNA adducts of NNK and NNAL are important in their mechanisms of carcinogenesis. In this study, we characterized and quantified methyl DNA phosphate adducts in the lung of rats treated with 5 ppm of NNK, (S)-NNAL, or (R)-NNAL in drinking water for 10, 30, 50, and 70 weeks, by using a novel liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry method. A total of 23, 21, and 22 out of 32 possible methyl DNA phosphate adducts were detected in the lung tissues of rats treated with NNK, (S)-NNAL, and (R)-NNAL, respectively. Levels of the methyl DNA phosphate adducts were 2290-4510, 872-1120, and 763-1430 fmol/mg DNA, accounting for 15-38%, 8%, and 5-9% of the total measured DNA adducts in rats treated with NNK, (S)-NNAL, and (R)-NNAL, respectively. The methyl DNA phosphate adducts characterized in this study further enriched the diversity of DNA adducts formed by NNK and NNAL. These results provide important new data regarding NNK- and NNAL-derived DNA damage and new insights pertinent to future mechanistic and biomonitoring studies of NNK, NNAL, and other chemical methylating agents.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Adam T. Zarth
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Erik S. Carlson
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Ma B, Zarth AT, Carlson ES, Villalta PW, Stepanov I, Hecht SS. Pyridylhydroxybutyl and pyridyloxobutyl DNA phosphate adduct formation in rats treated chronically with enantiomers of the tobacco-specific nitrosamine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. Mutagenesis 2017; 32:561-570. [PMID: 29186507 PMCID: PMC5907908 DOI: 10.1093/mutage/gex031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/17/2017] [Indexed: 01/24/2023] Open
Abstract
The tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is metabolically converted to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in a reaction which is both stereoselective and reversible. NNAL is also a lung carcinogen, with both (R)-NNAL and (S)-NNAL inducing a high incidence of lung tumours in rats. Both NNAL and NNK undergo metabolic activation to intermediates which react with DNA to form pyridylhydroxybutyl and pyridyloxobutyl DNA adducts, respectively. DNA adduct formation by NNAL and NNK is an important step in their mechanisms of carcinogenesis. In this study, we quantified both pyridylhydroxybutyl and pyridyloxobutyl DNA phosphate adducts in the lung of rats treated with 5 ppm of (R)-NNAL or (S)-NNAL in drinking water for 10, 30, 50 and 70 weeks. In (R)-NNAL-treated rats, the pyridylhydroxybutyl and pyridyloxobutyl phosphate adducts were 4530-6920 fmol/mg DNA and 46-175 fmol/mg DNA, accounting for 45-51% and 0.3-1% of the total measured DNA phosphate and base adducts, respectively. In (S)-NNAL-treated rats, the two types of phosphate adducts were 3480-4180 fmol/mg DNA and 1180-4650 fmol/mg DNA, accounting for 30-36% and 11-38% of the total adducts, respectively. Distinct patterns of adduct formation were observed, with higher levels of NNAL-derived pyridylhydroxybutyl phosphate adducts and lower levels of NNK-derived pyridyloxobutyl phosphate adducts in the (R)-NNAL treatment group than the (S)-NNAL group. The persistence and increase over time of certain pyridylhydroxybutyl phosphate adducts over the course of the study suggest that these adducts could be useful biomarkers of chronic exposure to NNAL and NNK. The results of this study provide important new information regarding DNA damage by NNAL and NNK, and contribute to understanding mechanisms of tobacco-related carcinogenesis.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Adam T Zarth
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Erik S Carlson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
22
|
Guo J, Villalta PW, Turesky RJ. Data-Independent Mass Spectrometry Approach for Screening and Identification of DNA Adducts. Anal Chem 2017; 89:11728-11736. [PMID: 28977750 PMCID: PMC5727898 DOI: 10.1021/acs.analchem.7b03208] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long-term exposures to environmental toxicants and endogenous electrophiles are causative factors for human diseases including cancer. DNA adducts reflect the internal exposure to genotoxicants and can serve as biomarkers for risk assessment. Liquid chromatography-multistage mass spectrometry (LC-MSn) is the most common method for biomonitoring DNA adducts, generally targeting single exposures and measuring up to several adducts. However, the data often provide limited evidence for a role of a chemical in the etiology of cancer. An "untargeted" method is required that captures global exposures to chemicals, by simultaneously detecting their DNA adducts in the genome; some of which may induce cancer-causing mutations. We established a wide selected ion monitoring tandem mass spectrometry (wide-SIM/MS2) screening method utilizing ultraperformance-LC nanoelectrospray ionization Orbitrap MSn with online trapping to enrich bulky, nonpolar adducts. Wide-SIM scan events are followed by MS2 scans to screen for modified nucleosides by coeluting peaks containing precursor and fragment ions differing by -116.0473 Da, attributed to the neutral loss of deoxyribose. Wide-SIM/MS2 was shown to be superior in sensitivity, specificity, and breadth of adduct coverage to other tested adductomic methods with detection possible at adduct levels as low as 4 per 109 nucleotides. Wide-SIM/MS2 data can be analyzed in a "targeted" fashion by generation of extracted ion chromatograms or in an "untargeted" fashion where a chromatographic peak-picking algorithm can be used to detect putative DNA adducts. Wide-SIM/MS2 successfully detected DNA adducts, derived from chemicals in the diet and traditional medicines and from lipid peroxidation products, in human prostate and renal specimens.
Collapse
Affiliation(s)
- Jingshu Guo
- Masonic Cancer Center, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
- Department of Medicinal Chemistry, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| | - Peter W. Villalta
- Masonic Cancer Center, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| | - Robert J. Turesky
- Masonic Cancer Center, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
- Department of Medicinal Chemistry, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| |
Collapse
|
23
|
Leng J, Wang Y. Liquid Chromatography-Tandem Mass Spectrometry for the Quantification of Tobacco-Specific Nitrosamine-Induced DNA Adducts in Mammalian Cells. Anal Chem 2017; 89:9124-9130. [PMID: 28749651 PMCID: PMC5620023 DOI: 10.1021/acs.analchem.7b01857] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quantification of DNA lesions constitutes one of the main tasks in toxicology and in assessing health risks accompanied by exposure to carcinogens. Tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) can undergo metabolic transformation to give a reactive intermediate that pyridyloxobutylates nucleobases and phosphate backbone of DNA. Here, we reported a highly sensitive method, relying on the use of nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS), for the simultaneous quantifications of O6-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O6-POBdG) as well as O2- and O4-[4-(3-pyridyl)-4-oxobut-1-yl]-thymidine (O2-POBdT and O4-POBdT). By using this method, we measured the levels of the three DNA adducts with the use of 10 μg of DNA isolated from cultured mammalian cells exposed to a model pyridyloxobutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc). Our results demonstrated, for the first time, the formation of O4-POBdT in naked DNA and in genomic DNA of cultured mammalian cells exposed with NNKOAc. We also revealed that the levels of the three lesions increased with the dose of NNKOAc and that O2-POBdT and O4-POBdT could be subjected to repair by the nucleotide excision repair (NER) pathway. The method reported here will be useful for investigations about the involvement of other DNA repair pathways in the removal of these lesions and for human toxicological studies in the future.
Collapse
Affiliation(s)
- Jiapeng Leng
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Corresponding Author. Tel.: (951) 827-2700. Fax: (951) 827-4713.
| |
Collapse
|
24
|
Michel AK, Zarth AT, Upadhyaya P, Hecht SS. Identification of 4-(3-Pyridyl)-4-oxobutyl-2'-deoxycytidine Adducts Formed in the Reaction of DNA with 4-(Acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone: A Chemically Activated Form of Tobacco-Specific Carcinogens. ACS OMEGA 2017; 2:1180-1190. [PMID: 28393135 PMCID: PMC5377278 DOI: 10.1021/acsomega.7b00072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Metabolic activation of the carcinogenic tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 1) and N'-nitrosonornicotine (NNN, 2) results in the formation of 4-(3-pyridyl)-4-oxobutyl (POB)-DNA adducts, several of which have been previously identified both in vitro and in tissues of laboratory animals treated with NNK or NNN. However, 2'-deoxycytidine adducts formed in this process have been incompletely examined in previous studies. Therefore, in this study we prepared characterized standards for the identification of previously unknown 2'-deoxycytidine and 2'-deoxyuridine adducts that could be produced in these reactions. The formation of these products in reactions of 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc, 3), a model 4-(3-pyridyl)-4-oxobutylating agent, with DNA was investigated. The major 2'-deoxycytidine adduct, identified as its stable cytosine analogue O2-[4-(3-pyridyl)-4-oxobut-1-yl]-cytosine (12), was O2-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxycytidine (13), whereas lesser amounts of 3-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxycytidine (14) and N4-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxycytidine (15) were also observed. The potential conversion of relatively unstable 2'-deoxycytidine adducts to stable 2'-deoxyuridine adducts by treatment of the adducted DNA with bisulfite was also investigated, but the harsh conditions associated with this approach prevented quantitation. The results of this study provide new validated standards for the study of 4-(3-pyridyl)-4-oxobutylation of DNA, a critical reaction in the carcinogenesis by 1 and 2, and demonstrate the presence of previously unidentified 2'-deoxycytidine adducts in this DNA.
Collapse
Affiliation(s)
- Anna K. Michel
- Masonic
Cancer Center, University of Minnesota, 2231 6th Street SE, Room 2-148 CCRB, Minneapolis, Minnesota 55455, United States
| | - Adam T. Zarth
- Masonic
Cancer Center, University of Minnesota, 2231 6th Street SE, Room 2-148 CCRB, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic
Cancer Center, University of Minnesota, 2231 6th Street SE, Room 2-148 CCRB, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic
Cancer Center, University of Minnesota, 2231 6th Street SE, Room 2-148 CCRB, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Stornetta A, Villalta PW, Gossner F, Wilson WR, Balbo S, Sturla SJ. DNA Adduct Profiles Predict in Vitro Cell Viability after Treatment with the Experimental Anticancer Prodrug PR104A. Chem Res Toxicol 2017; 30:830-839. [PMID: 28140568 PMCID: PMC5362746 DOI: 10.1021/acs.chemrestox.6b00412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PR104A is an experimental DNA-alkylating hypoxia-activated prodrug that can also be activated in an oxygen-independent manner by the two-electron aldo-keto reductase 1C3. Nitroreduction leads to the formation of cytotoxic hydroxylamine (PR104H) and amine (PR104M) metabolites, which induce DNA mono and cross-linked adducts in cells. PR104A-derived DNA adducts can be utilized as drug-specific biomarkers of efficacy and as a mechanistic tool to elucidate the cellular and molecular effects of PR104A. Toward this goal, a mass spectrometric bioanalysis approach based on a stable isotope-labeled adduct mixture (SILAM) and selected reaction monitoring (SRM) data acquisition for relative quantitation of PR104A-derived DNA adducts in cells was developed. Use of this SILAM-based approach supported simultaneous relative quantitation of 33 PR104A-derived DNA adducts in the same sample, which allowed testing of the hypothesis that the enhanced cytotoxicity, observed by preconditioning cells with the transcription-activating isothiocyanate sulforaphane, is induced by an increased level of DNA adducts induced by PR104H and PR104M, but not PR104A. By applying the new SILAM-SRM approach, we found a 2.4-fold increase in the level of DNA adducts induced by PR104H and PR104M in HT-29 cells preconditioned with sulforaphane and a corresponding 2.6-fold increase in cytotoxicity. These results suggest that DNA adduct levels correlate with drug potency and underly the possibility of monitoring PR104A-derived DNA adducts as biomarkers of efficacy.
Collapse
Affiliation(s)
- Alessia Stornetta
- Department of Health Sciences and Technology, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota , 2231 Sixth Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Frederike Gossner
- Department of Health Sciences and Technology, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - William R Wilson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland , Auckland 92019, New Zealand
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota , 2231 Sixth Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
26
|
Peterson LA. Context Matters: Contribution of Specific DNA Adducts to the Genotoxic Properties of the Tobacco-Specific Nitrosamine NNK. Chem Res Toxicol 2017; 30:420-433. [PMID: 28092943 PMCID: PMC5473167 DOI: 10.1021/acs.chemrestox.6b00386] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen in laboratory animals. It is classified as a Group 1 human carcinogen by the International Agency for Cancer Research. NNK is bioactivated upon cytochrome P450 catalyzed hydroxylation of the carbon atoms adjacent to the nitrosamino group to both methylating and pyridyloxobutylating agents. Both pathways generate a spectrum of DNA damage that contributes to the overall mutagenic and toxic properties of this compound. NNK is also reduced to form 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also carcinogenic. Like NNK, NNAL requires metabolic activation to DNA alkylating agents. Methyl hydroxylation of NNAL generates pyridylhydroxybutyl DNA adducts, and methylene hydroxylation leads to DNA methyl adducts. The consequence of this complex metabolism is that NNK generates a vast spectrum of DNA damage, any form of which can contribute to the overall carcinogenic properties of this potent pulmonary carcinogen. This Perspective reviews the chemistry and genotoxic properties of the collection of DNA adducts formed from NNK. In addition, it provides evidence that multiple adducts contribute to the overall carcinogenic properties of this chemical. The adduct that contributes to the genotoxic effects of NNK depends on the context, such as the relative amounts of each DNA alkylating pathway occurring in the model system, the levels and genetic variants of key repair enzymes, and the gene targeted for mutation.
Collapse
Affiliation(s)
- Lisa A Peterson
- Masonic Cancer Center and Division of Environmental Health Sciences, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen in laboratory animals. It is classified as a Group 1 human carcinogen by the International Agency for Cancer Research. NNK is bioactivated upon cytochrome P450 catalyzed hydroxylation of the carbon atoms adjacent to the nitrosamino group to both methylating and pyridyloxobutylating agents. Both pathways generate a spectrum of DNA damage that contributes to the overall mutagenic and toxic properties of this compound. NNK is also reduced to form 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also carcinogenic. Like NNK, NNAL requires metabolic activation to DNA alkylating agents. Methyl hydroxylation of NNAL generates pyridylhydroxybutyl DNA adducts, and methylene hydroxylation leads to DNA methyl adducts. The consequence of this complex metabolism is that NNK generates a vast spectrum of DNA damage, any form of which can contribute to the overall carcinogenic properties of this potent pulmonary carcinogen. This Perspective reviews the chemistry and genotoxic properties of the collection of DNA adducts formed from NNK. In addition, it provides evidence that multiple adducts contribute to the overall carcinogenic properties of this chemical. The adduct that contributes to the genotoxic effects of NNK depends on the context, such as the relative amounts of each DNA alkylating pathway occurring in the model system, the levels and genetic variants of key repair enzymes, and the gene targeted for mutation.
Collapse
Affiliation(s)
- Lisa A Peterson
- Masonic Cancer Center and Division of Environmental Health Sciences, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
Guo J, Yun BH, Upadhyaya P, Yao L, Krishnamachari S, Rosenquist TA, Grollman AP, Turesky RJ. Multiclass Carcinogenic DNA Adduct Quantification in Formalin-Fixed Paraffin-Embedded Tissues by Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2016; 88:4780-7. [PMID: 27043225 PMCID: PMC4854775 DOI: 10.1021/acs.analchem.6b00124] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA adducts are a measure of internal exposure to genotoxicants and an important biomarker for human risk assessment. However, the employment of DNA adducts as biomarkers in human studies is often restricted because fresh-frozen tissues are not available. In contrast, formalin-fixed paraffin-embedded (FFPE) tissues with clinical diagnosis are readily accessible. Recently, our laboratory reported that DNA adducts of aristolochic acid, a carcinogenic component of Aristolochia herbs used in traditional Chinese medicines worldwide, can be recovered quantitatively from FFPE tissues. In this study, we have evaluated the efficacy of our method for retrieval of DNA adducts from archived tissue by measuring DNA adducts derived from four other classes of human carcinogens: polycyclic aromatic hydrocarbons (PAHs), aromatic amines, heterocyclic aromatic amines (HAAs), and N-nitroso compounds (NOCs). Deoxyguanosine (dG) adducts of the PAH benzo[a]pyrene (B[a]P), 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (dG-N(2)-B[a]PDE); the aromatic amine 4-aminobiphenyl (4-ABP), N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP); the HAA 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP); and the dG adducts of the NOC 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), O(6)-methyl-dG (O(6)-Me-dG) and O(6)-pyridyloxobutyl-dG (O(6)-POB-dG), formed in liver, lung, bladder, pancreas, or colon were recovered in comparable yields from fresh-frozen and FFPE preserved tissues of rodents treated with the procarcinogens. Quantification was achieved by ultraperformance liquid chromatography coupled with electrospray ionization ion-trap multistage mass spectrometry (UPLC/ESI-IT-MS(3)). These advancements in the technology of DNA adduct retrieval from FFPE tissue clear the way for use of archived pathology samples in molecular epidemiology studies designed to assess the causal role of exposure to hazardous chemicals with cancer risk.
Collapse
Affiliation(s)
- Jingshu Guo
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| | - Byeong Hwa Yun
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| | - Lihua Yao
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| | - Sesha Krishnamachari
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| | - Thomas A. Rosenquist
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
| | - Arthur P. Grollman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| |
Collapse
|
29
|
Gowda ASP, Spratt TE. DNA Polymerases η and ζ Combine to Bypass O(2)-[4-(3-Pyridyl)-4-oxobutyl]thymine, a DNA Adduct Formed from Tobacco Carcinogens. Chem Res Toxicol 2016; 29:303-16. [PMID: 26868090 PMCID: PMC5081176 DOI: 10.1021/acs.chemrestox.5b00468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are important human carcinogens in tobacco products. They are metabolized to produce a variety 4-(3-pyridyl)-4-oxobutyl (POB) DNA adducts including O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dT), the most abundant POB adduct in NNK- and NNN-treated rodents. To evaluate the mutagenic properties of O(2)-POB-dT, we measured the rate of insertion of dNTPs opposite and extension past O(2)-POB-dT and O(2)-Me-dT by purified human DNA polymerases η, κ, ι, and yeast polymerase ζ in vitro. Under conditions of polymerase in excess, polymerase η was most effective at the insertion of dNTPs opposite O(2)-alkyl-dTs. The time courses were biphasic suggesting the formation of inactive DNA-polymerase complexes. The kpol parameter was reduced approximately 100-fold in the presence of the adduct for pol η, κ, and ι. Pol η was the most reactive polymerase for the adducts due to a higher burst amplitude. For all three polymerases, the nucleotide preference was dATP > dTTP ≫ dGTP and dCTP. Yeast pol ζ was most effective in bypassing the adducts; the kcat/Km values were reduced only 3-fold in the presence of the adducts. The identity of the nucleotide opposite the O(2)-alkyl-dT did not significantly affect the ability of pol ζ to bypass the adducts. The data support a model in which pol η inserts ATP or dTTP opposite O(2)-POB-dT, and then, pol ζ extends past the adduct.
Collapse
Affiliation(s)
- A. S. Prakasha Gowda
- Department of Biochemistry and Molecular Biology Penn State Hershey Cancer Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Thomas E. Spratt
- Department of Biochemistry and Molecular Biology Penn State Hershey Cancer Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
30
|
Yang J, Villalta PW, Upadhyaya P, Hecht SS. Analysis of O(6)-[4-(3-Pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine and Other DNA Adducts in Rats Treated with Enantiomeric or Racemic N'-Nitrosonornicotine. Chem Res Toxicol 2016; 29:87-95. [PMID: 26633576 PMCID: PMC5168933 DOI: 10.1021/acs.chemrestox.5b00425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(S)-N'-Nitrosonornicotine [(S)-NNN] and racemic NNN are powerful oral and esophageal carcinogens in the F344 rat, whereas (R)-NNN has only weak activity. Tumor formation in these tissues of rats treated with racemic NNN was far greater than the sum of the activities of the individual enantiomers. We hypothesized that metabolites of (R)-NNN enhanced levels of DNA adducts produced by (S)-NNN. A test of that hypothesis necessitated the development of a novel liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry method for the analysis of O(6)-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O(6)-POB-dGuo), a highly mutagenic DNA adduct not previously quantified in rats treated with NNN. The new method, with a limit of detection of 6.5 amol for diluted standard and 100 amol for DNA samples, was applied in this study. Groups of nine F344 rats were treated with doses as follows: 7 ppm (R)-NNN, 7 ppm (S)-NNN, and 14 ppm racemic NNN; 14 ppm (R)-NNN, 14 ppm (S)-NNN, and 28 ppm racemic NNN; or 28 ppm (R)-NNN, 28 ppm (S)-NNN, and 56 ppm racemic NNN for 5 weeks, and tissues were analyzed for DNA adducts. We found statistically significant, but modest, synergistic enhancement of levels of O(6)-POB-dGuo in the esophagus but not the oral cavity of rats treated with racemic NNN (low and median doses only) compared to the sum of the amounts formed in these tissues of rats treated with (S)-NNN or (R)-NNN. There was no synergy in the formation of other POB-DNA adducts of NNN in oral cavity and esophagus, nor was there any evidence for synergy in nasal respiratory and olfactory epithelium, lung, or liver. Our results provide the first quantitation of O(6)-POB-dGuo in DNA from tissues of rats treated with NNN and evidence for synergy in DNA adduct formation as one possible mechanism by which (R)-NNN enhances the carcinogenicity of (S)-NNN in rats.
Collapse
Affiliation(s)
- Jing Yang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
31
|
Ma B, Villalta PW, Zarth AT, Kotandeniya D, Upadhyaya P, Stepanov I, Hecht SS. Comprehensive High-Resolution Mass Spectrometric Analysis of DNA Phosphate Adducts Formed by the Tobacco-Specific Lung Carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone. Chem Res Toxicol 2015; 28:2151-9. [PMID: 26398225 PMCID: PMC4652278 DOI: 10.1021/acs.chemrestox.5b00318] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 11/28/2022]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 1) is a potent lung carcinogen in laboratory animals and is believed to play a key role in the development of lung cancer in smokers. Metabolic activation of NNK leads to the formation of pyridyloxobutyl DNA adducts, a critical step in its mechanism of carcinogenesis. In addition to DNA nucleobase adducts, DNA phosphate adducts can be formed by pyridyloxobutylation of the oxygen atoms of the internucleotidic phosphodiester linkages. We report the use of a liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry technique to characterize 30 novel pyridyloxobutyl DNA phosphate adducts in calf thymus DNA (CT-DNA) treated with 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc, 2), a regiochemically activated form of NNK. A (15)N3-labeled internal standard was synthesized for one of the most abundant phosphate adducts, dCp[4-oxo-4-(3-pyridyl)butyl]dC (CpopC), and this standard was used to quantify CpopC and to estimate the levels of other adducts in the NNKOAc-treated CT-DNA. Formation of DNA phosphate adducts by NNK in vivo was further investigated in rats treated with NNK acutely (0.1 mmol/kg once daily for 4 days by subcutaneous injection) and chronically (5 ppm in drinking water for 10, 30, 50, and 70 weeks). This study provides the first comprehensive structural identification and quantitation of a panel of DNA phosphate adducts of a structurally complex carcinogen and chemical support for future mechanistic studies of tobacco carcinogenesis in humans.
Collapse
Affiliation(s)
- Bin Ma
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| | - Adam T. Zarth
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| | - Delshanee Kotandeniya
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| | - Irina Stepanov
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Liu S, Wang Y. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts. Chem Soc Rev 2015; 44:7829-54. [PMID: 26204249 PMCID: PMC4787602 DOI: 10.1039/c5cs00316d] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exogenous and endogenous sources of chemical species can react, directly or after metabolic activation, with DNA to yield DNA adducts. If not repaired, DNA adducts may compromise cellular functions by blocking DNA replication and/or inducing mutations. Unambiguous identification of the structures and accurate measurements of the levels of DNA adducts in cellular and tissue DNA constitute the first and important step towards understanding the biological consequences of these adducts. The advances in mass spectrometry (MS) instrumentation in the past 2-3 decades have rendered MS an important tool for structure elucidation, quantification, and revelation of the biological consequences of DNA adducts. In this review, we summarized the development of MS techniques on these fronts for DNA adduct analysis. We placed our emphasis of discussion on sample preparation, the combination of MS with gas chromatography- or liquid chromatography (LC)-based separation techniques for the quantitative measurement of DNA adducts, and the use of LC-MS along with molecular biology tools for understanding the human health consequences of DNA adducts. The applications of mass spectrometry-based DNA adduct analysis for predicting the therapeutic outcome of anti-cancer agents, for monitoring the human exposure to endogenous and environmental genotoxic agents, and for DNA repair studies were also discussed.
Collapse
Affiliation(s)
- Shuo Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA and Department of Chemistry, University of California, Riverside, CA 92521-0403, USA.
| |
Collapse
|
33
|
Zabala V, Tong M, Yu R, Ramirez T, Yalcin EB, Balbo S, Silbermann E, Deochand C, Nunez K, Hecht S, de la Monte SM. Potential contributions of the tobacco nicotine-derived nitrosamine ketone (NNK) in the pathogenesis of steatohepatitis in a chronic plus binge rat model of alcoholic liver disease. Alcohol Alcohol 2015; 50:118-31. [PMID: 25618784 DOI: 10.1093/alcalc/agu083] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS Alcoholic liver disease (ALD) is linked to binge drinking and cigarette smoking. Heavy chronic ± binge alcohol, or low-level exposures to dietary nitrosamines cause steatohepatitis with insulin resistance and oxidative stress in animal models. This study examines hepatotoxic effects of sub-mutagenic exposures to tobacco-specific nitrosamine (NNK) in relation to ALD. METHODS Long Evans rats were fed liquid diets containing 0 or 26% (caloric) ethanol (EtOH) for 8 weeks. In Weeks 3 through 8, rats were treated with NNK (2 mg/kg) or saline by i.p. injection, 3×/week, and in Weeks 7 and 8, EtOH-fed rats were binge-administered 2 g/kg EtOH 3×/week; controls were given saline. RESULTS EtOH ± NNK caused steatohepatitis with necrosis, disruption of the hepatic cord architecture, ballooning degeneration, early fibrosis, mitochondrial cytopathy and ER disruption. Severity of lesions was highest in the EtOH+NNK group. EtOH and NNK inhibited insulin/IGF signaling through Akt and activated pro-inflammatory cytokines, while EtOH promoted lipid peroxidation, and NNK increased apoptosis. O(6)-methyl-Guanine adducts were only detected in NNK-exposed livers. CONCLUSION Both alcohol and NNK exposures contribute to ALD pathogenesis, including insulin/IGF resistance and inflammation. The differential effects of EtOH and NNK on adduct formation are critical to ALD progression among alcoholics who smoke.
Collapse
Affiliation(s)
- Valerie Zabala
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Department of Molecular Pharmacology and Physiology, Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rosa Yu
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Teresa Ramirez
- Department of Molecular Pharmacology and Physiology, Brown University, Providence, RI, USA
| | - Emine B Yalcin
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | - Chetram Deochand
- Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Kavin Nunez
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Stephen Hecht
- Masonic Cancer Center, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Suzanne M de la Monte
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA Departments of Pathology and Neurology, and the Division of Neuropathology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
34
|
Song JM, Kirtane AR, Upadhyaya P, Qian X, Balbo S, Teferi F, Panyam J, Kassie F. Intranasal delivery of liposomal indole-3-carbinol improves its pulmonary bioavailability. Int J Pharm 2014; 477:96-101. [PMID: 25311179 DOI: 10.1016/j.ijpharm.2014.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/15/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Indole-3-carbinol (I3C), a constituent of commonly consumed Brassica vegetables, has been shown to have anticancer effects in a variety of preclinical models of lung cancer. However, it has shown only limited efficacy in clinical trials, likely due to its poor oral bioavailability. Intranasal administration of I3C has the potential to enhance the pulmonary accumulation of the drug, thereby improving its availability at the target site of action. In this study, we developed a liposomal formulation of I3C and evaluated its lung delivery and chemopreventive potential in tobacco smoke carcinogen [4-(methylnitro-samino)-1-(3-pyridyl)-1-butanone (NNK)]-treated mice. Intranasal administration of I3C liposomes led to a ∼100-fold higher lung exposure of I3C than the oral route of administration. Further, intranasal delivery of liposomal I3C led to a significant reduction (37%; p<0.05) in the levels of the DNA adduct formation induced by NNK treatment. Liposomal I3C also significantly increased (by 10-fold) the expression of CYP1A1, a cytochrome P450 enzyme known to increase the detoxification of chemical carcinogens by enhancing their metabolism. Overall, our findings demonstrate that intranasal administration of liposomal I3C has the potential to significantly improve the efficacy of I3C for lung cancer chemoprevention.
Collapse
Affiliation(s)
- Jung Min Song
- Masonic Cancer Center, University of Minnesota, MN, USA
| | - Ameya R Kirtane
- Department of Pharmaceutics, University of Minnesota, MN, USA
| | | | - Xuemin Qian
- Masonic Cancer Center, University of Minnesota, MN, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, MN, USA
| | - Fitsum Teferi
- Masonic Cancer Center, University of Minnesota, MN, USA
| | - Jayanth Panyam
- Masonic Cancer Center, University of Minnesota, MN, USA; Department of Pharmaceutics, University of Minnesota, MN, USA
| | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, MN, USA; College of Veterinary Medicine, University of Minnesota, MN, USA.
| |
Collapse
|
35
|
Narayanapillai SC, Balbo S, Leitzman P, Grill AE, Upadhyaya P, Shaik AA, Zhou B, O'Sullivan MG, Peterson LA, Lu J, Hecht SS, Xing C. Dihydromethysticin from kava blocks tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis and differentially reduces DNA damage in A/J mice. Carcinogenesis 2014; 35:2365-72. [PMID: 25053626 PMCID: PMC4178470 DOI: 10.1093/carcin/bgu149] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/28/2014] [Accepted: 07/09/2014] [Indexed: 11/14/2022] Open
Abstract
We have previously shown that kava and its flavokavain-free Fraction B completely blocked 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice with a preferential reduction in NNK-induced O (6)-methylguanine (O (6)-mG). In this study, we first identified natural (+)-dihydromethysticin (DHM) as a lead compound through evaluating the in vivo efficacy of five major compounds in Fraction B on reducing O (6)-mG in lung tissues. (+)-DHM demonstrated outstanding chemopreventive activity against NNK-induced lung tumorigenesis in A/J mice with 97% reduction of adenoma multiplicity at a dose of 0.05mg/g of diet (50 ppm). Synthetic (±)-DHM was equally effective as the natural (+)-DHM in these bioassays while a structurally similar analog, (+)-dihydrokavain (DHK), was completely inactive, revealing a sharp in vivo structure-activity relationship. Analyses of an expanded panel of NNK-induced DNA adducts revealed that DHM reduced a subset of DNA adducts in lung tissues derived from 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, the active metabolite of NNK). Preliminary 17-week safety studies of DHM in A/J mice at a dose of 0.5mg/g of diet (at least 10× its minimum effective dose) revealed no adverse effects, suggesting that DHM is likely free of kava's hepatotoxic risk. These results demonstrate the outstanding efficacy and promising safety margin of DHM in preventing NNK-induced lung tumorigenesis in A/J mice, with a unique mechanism of action and high target specificity.
Collapse
Affiliation(s)
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pablo Leitzman
- Department of Medicinal Chemistry, College of Pharmacy and
| | - Alex E Grill
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ahmad Ali Shaik
- Department of Medicinal Chemistry, College of Pharmacy and Present address: Department of Chemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Bo Zhou
- Department of Medicinal Chemistry, College of Pharmacy and
| | - M Gerard O'Sullivan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, USA
| | - Lisa A Peterson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, Division of Environmental Health Sciences, University of Minnesota, MN 55455, USA and
| | - Junxuan Lu
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy and
| |
Collapse
|
36
|
Leitzman P, Narayanapillai SC, Balbo S, Zhou B, Upadhyaya P, Shaik AA, O'Sullivan MG, Hecht SS, Lu J, Xing C. Kava blocks 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in association with reducing O6-methylguanine DNA adduct in A/J mice. Cancer Prev Res (Phila) 2014; 7:86-96. [PMID: 24403291 DOI: 10.1158/1940-6207.capr-13-0301] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We previously reported the chemopreventive potential of kava against 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)- and benzo(a)pyrene (BaP)-induced lung tumorigenesis in A/J mice during the initiation and postinitiation stages. In this study, we investigated the tumorigenesis-stage specificity of kava, the potential active compounds, and the underlying mechanisms in NNK-induced lung tumorigenesis in A/J mice. In the first experiment, NNK-treated mice were given diets containing kava at a dose of 5 mg/g of diet during different periods. Kava treatments covering the initiation stage reduced the multiplicity of lung adenomas by approximately 99%. A minimum effective dose is yet to be defined because kava at two lower dosages (2.5 and 1.25 mg/g of diet) were equally effective as 5 mg/g of diet in completely inhibiting lung adenoma formation. Daily gavage of kava (one before, during, and after NNK treatment) completely blocked lung adenoma formation as well. Kavalactone-enriched fraction B fully recapitulated kava's chemopreventive efficacy, whereas kavalactone-free fractions A and C were much less effective. Mechanistically, kava and fraction B reduced NNK-induced DNA damage in lung tissues with a unique and preferential reduction in O(6)-methylguanine (O(6)-mG), the highly tumorigenic DNA damage by NNK, correlating and predictive of efficacy on blocking lung adenoma formation. Taken together, these results demonstrate the outstanding efficacy of kava in preventing NNK-induced lung tumorigenesis in A/J mice with high selectivity for the initiation stage in association with the reduction of O(6)-mG adduct in DNA. They also establish the knowledge basis for the identification of the active compound(s) in kava.
Collapse
Affiliation(s)
- Pablo Leitzman
- University of Minnesota, Department of Medicinal Chemistry, College of Pharmacy, 8-101 WDH, 308 Harvard Street SE, Minneapolis, MN 55455.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ahmadi F, Ghanbari K. Proposed model for binding of permethrin and deltamethrin insecticides with ct-DNA, a structural comparative study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:136-145. [PMID: 24836888 DOI: 10.1016/j.ecoenv.2014.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
In this work, the interaction of two synthetic pyrethroid insecticides, permethrin (PER) and deltamethrin (DEL), with ct-DNA has been studied by cyclic voltammetry (CV), circular dichroism (CD), competitive fluorescence, atomic force microscopy (AFM), UV-vis spectroscopy, thermodynamic measurements, Fourier-transform infra-red (FT-IR), high performance liquid chromatography (HPLC) and two-layered ONIOM (our N-layered integrated molecular orbital+molecular mechanics) (DFT B3LYP, 6-31++G(d, p):UFF) molecular modeling methods. The last four methods were also utilized to study the binding of DEL with DNA. The results revealed that the PER may interact through partial intercalation and groove binding process while the PER only interacts through groove binding. Finally, the insecticides structure effect on interaction is discussed.
Collapse
Affiliation(s)
- F Ahmadi
- Novel Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Islamic Republic of Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Islamic Republic of Iran
| | - K Ghanbari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Azad University of Tehran, Islamic Republic of Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Islamic Republic of Iran.
| |
Collapse
|
38
|
Balbo S, Hecht S, Upadhyaya P, Villalta P. Application of a high-resolution mass-spectrometry-based DNA adductomics approach for identification of DNA adducts in complex mixtures. Anal Chem 2014; 86:1744-52. [PMID: 24410521 PMCID: PMC3982966 DOI: 10.1021/ac403565m] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/10/2014] [Indexed: 02/07/2023]
Abstract
Liquid chromatography coupled with mass spectrometry (LC-MS) is the method of choice for analysis of covalent modification of DNA. DNA adductomics is an extension of this approach allowing for the screening for both known and unknown DNA adducts. In the research reported here, a new high-resolution/accurate mass MS(n) methodology has been developed representing an important advance for the investigation of in vivo biological samples and for the assessment of DNA damage from various human exposures. The methodology was tested and optimized using a mixture of 18 DNA adducts representing a range of biologically relevant modifications on all four bases and using DNA from liver tissue of mice exposed to the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In the latter experiment, previously characterized adducts, both expected and unexpected, were observed.
Collapse
Affiliation(s)
- Silvia Balbo
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455
| | - Stephen
S. Hecht
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455
| | - Peter
W. Villalta
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455
| |
Collapse
|
39
|
Zhao L, Balbo S, Wang M, Upadhyaya P, Khariwala SS, Villalta PW, Hecht SS. Quantitation of pyridyloxobutyl-DNA adducts in tissues of rats treated chronically with (R)- or (S)-N'-nitrosonornicotine (NNN) in a carcinogenicity study. Chem Res Toxicol 2013; 26:1526-35. [PMID: 24001146 PMCID: PMC3848204 DOI: 10.1021/tx400235x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We quantified DNA adducts resulting from 2'-hydroxylation of enantiomers of the tobacco-specific nitrosamine N'-nitrosonornicotine (NNN) in tissues of male F-344 rats after 10, 30, 50, and 70 weeks of treatment with 14 ppm in the drinking water. These rats were in subgroups of a carcinogenicity study in which (S)-NNN was highly tumorigenic in the oral cavity and esophagus, while (R)-NNN was relatively weakly active. DNA adducts were quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry in six tissues: oral mucosa, esophageal mucosa, nasal respiratory mucosa, nasal olfactory mucosa, liver, and lung. O²-[4-(3-Pyridyl)-4-oxobut-1-yl]thymidine (O²-POB-dThd, 7) and 7-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (7-POB-dGuo, 8), the latter as 7-[4-(3-pyridyl)-4-oxobut-1-yl]guanine (7-POB-Gua, 11), were detected at each time point in each tissue. In the target tissues for carcinogenicity, oral mucosa and esophageal mucosa, levels of 7-POB-Gua (11) and O²-POB-dThd (7) were similar, or 11 predominated, while in all other tissues at all time points for both enantiomers, 7 was clearly present in greater amounts than 11. Total measured DNA adduct levels in esophageal mucosa and oral mucosa were higher in rats treated with (S)-NNN than (R)-NNN. The highest adduct levels were found in the nasal respiratory mucosa. DNA adducts generally persisted in all tissues without any sign of substantial decreases throughout the 70 week time course. The results of this study suggest that inefficient repair of 7-POB-dGuo (8) in the rat oral cavity and esophagus may be important in carcinogenesis by NNN and support the development of these DNA adducts as potential biomarkers of NNN metabolic activation in people who use tobacco products.
Collapse
Affiliation(s)
- Lijiao Zhao
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing 100124, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Peterson LA, Urban AM, Vu CC, Cummings ME, Brown LC, Warmka JK, Li L, Wattenberg EV, Patel Y, Stram DO, Pegg AE. Role of aldehydes in the toxic and mutagenic effects of nitrosamines. Chem Res Toxicol 2013; 26:1464-73. [PMID: 24066836 DOI: 10.1021/tx400196j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
α-Hydroxynitrosamine metabolites of nitrosamines decompose to a reactive diazohydroxide and an aldehyde. To test the hypothesis that the aldehydes contribute to the harmful effects of nitrosamines, the toxic and mutagenic activities of three model methylating agents were compared in Chinese hamster ovary cells expressing or not expressing human O⁶-alkylguanine DNA alkyltransferase (AGT). N-Nitrosomethylurethane (NMUr), acetoxymethylmethylnitrosamine (AMMN), and 4-(methylnitrosamino)-4-acetoxy-1-(3-pyridyl)-1-butanone (NNK-4-OAc) are all activated by ester hydrolysis to methanediazohydroxide. NMUr does not form an aldehyde, whereas AMMN generates formaldehyde, and NNK-4-OAc produces 4-oxo-1-(3-pyridyl)-1-butanone (OPB). Since these compounds were likely to alkylate DNA to different extents, the toxic and mutagenic activities of these compounds were normalized to the levels of the most cytotoxic and mutagenic DNA adduct, O⁶-mG, to assess if the aldehydes contributed to the toxicological properties of these methylating agents. Levels of 7-mG indicated that the differences in cytotoxic and mutagenic effects of these compounds resulted from differences in their ability to methylate DNA. When normalized against the levels of O⁶-mG, there was no difference between these three compounds in cells that lacked AGT. However, AMMN and NNK-4-OAc were more toxic than NMUr in cells expressing AGT when normalized against O⁶-mG levels. In addition, AMMN was more mutagenic than NNK-4-OAc and MNUr in these cells. These findings demonstrate that the aldehyde decomposition products of nitrosamines can contribute to the cytotoxic and/or mutagenic activity of methylating nitrosamines.
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences and Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Balbo S, Upadhyaya P, Villalta PW, Qian X, Kassie F. DNA adducts in aldehyde dehydrogenase-positive lung stem cells of A/J mice treated with the tobacco specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Chem Res Toxicol 2013; 26:511-3. [PMID: 23477619 DOI: 10.1021/tx400054s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lung cancer is the leading cause of cancer death in the world. Evidence suggests that lung cancer could originate from mutations accumulating in a subpopulation of self-renewing cells, lung stem cells. Aldehyde dehydrogenase (ALDH) is a marker of stem cells. To investigate the presence of DNA modifications in these cells, we isolated ALDH-positive lung cells from A/J mice exposed to the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Using LC-NSI-HRMS/MS-PRM, O(6)-methyl-G, 7-POB-G, and O(2)-POB-dT were positively identified in ALDH-positive cell DNA. This is the first example of detection of carcinogen-DNA adducts in lung stem cells, supporting the hypothesis of their role in lung carcinogenesis.
Collapse
Affiliation(s)
- Silvia Balbo
- The Masonic Cancer Center, University of Minnesota , MMC 806, 420 Delaware Street Southeast, Minneapolis, Minnesota 55455, United States
| | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
43
|
Stepanov I, Muzic J, Le CT, Sebero E, Villalta P, Ma B, Jensen J, Hatsukami D, Hecht SS. Analysis of 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB)-releasing DNA adducts in human exfoliated oral mucosa cells by liquid chromatography-electrospray ionization-tandem mass spectrometry. Chem Res Toxicol 2013; 26:37-45. [PMID: 23252610 PMCID: PMC3631465 DOI: 10.1021/tx300282k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Quantitation of DNA adducts could provide critical information on the relationship between exposure to tobacco smoke and cancer risk in smokers. In this study, we developed a robust and sensitive liquid chromatography-tandem mass spectrometry method for the analysis of 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB)-releasing DNA adducts in human oral cells, a noninvasive source of DNA for biomarker studies. Isolated DNA undergoes acid hydrolysis, after which samples are purified by solid-phase extraction and analyzed by LC-ESI-MS/MS. The developed method was applied to the analysis of samples obtained via collection with a commercial mouthwash from 30 smokers and 15 nonsmokers. In smokers, the levels of HPB-releasing DNA adducts averaged 12.0 pmol HPB/mg DNA (detected in 20 out of 28 samples with quantifiable DNA yield), and in nonsmokers, the levels of adducts averaged 0.23 pmol/mg DNA (detected in 3 out of 15 samples). For the 30 smoking subjects, matching buccal brushings were also analyzed, and HPB-releasing DNA adducts were detected in 24 out of 27 samples with quantifiable DNA yield, averaging 44.7 pmol HPB/mg DNA. The levels of adducts in buccal brushings correlated with those in mouthwash samples of smokers (R = 0.73, p < 0.0001). Potentially, the method can be applied in studies of individual susceptibility to tobacco-induced cancers in humans.
Collapse
Affiliation(s)
- Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455
- Division of Environmental Health Sciences, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455
| | - John Muzic
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455
| | - Chap T. Le
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455
| | - Erin Sebero
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455
| | - Peter Villalta
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455
| | - Bin Ma
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455
| | - Joni Jensen
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455
| | - Dorothy Hatsukami
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455
| |
Collapse
|
44
|
Optimized enzymatic hydrolysis of DNA for LC-MS/MS analyses of adducts of 1-methoxy-3-indolylmethyl glucosinolate and methyleugenol. Anal Biochem 2012; 434:4-11. [PMID: 23142629 DOI: 10.1016/j.ab.2012.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 01/30/2023]
Abstract
Mass spectrometric analyses of DNA adducts usually require enzymatic digestion of the DNA to nucleosides. The digestive enzymes used in our laboratory included a calf spleen phosphodiesterase, whose marketing was stopped recently. Using DNA adducted with bioactivated methyleugenol and 1-methoxy-3-indolylmethyl glucosinolate-each forming dA and dG adducts-we demonstrate that replacement of calf spleen phosphodiesterase (Merck) with bovine spleen phosphodiesterase (Sigma-Aldrich) leads to unchanged results. Enzyme levels used for DNA digestion are extremely variable in different studies. Therefore, we sequentially varied the level of each of the three enzymes used. All dose (enzyme)-response (adduct level) curves involved a long plateau starting below the enzyme levels employed previously. Thus, we could reduce the amounts of micrococcal nuclease, phosphodiesterase, and alkaline phosphatase for quantitative DNA digestion by factors of 4, 2, and 333, respectively, compared to our previous protocols. Moreover, we observed significant phosphatase activity of both phosphodiesterase preparations used, which may affect the recovery of adducts with methods requiring digestion to 2'-deoxynucleoside-3'-monophosphates (e.g., (32)P-postlabeling). In addition, the phosphodiesterase from Sigma-Aldrich, but not that from Merck, deaminated dA. This was irrelevant for the dA adducts studied, involving bonding at N(6), but might complicate the analysis of other dA adducts.
Collapse
|
45
|
Urban AM, Upadhyaya P, Cao Q, Peterson LA. Formation and repair of pyridyloxobutyl DNA adducts and their relationship to tumor yield in A/J mice. Chem Res Toxicol 2012; 25:2167-78. [PMID: 22928598 DOI: 10.1021/tx300245w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a known human carcinogen. It generates methyl and pyridyloxobutyl DNA adducts. The role of the methyl DNA adducts has been well-established in the tumorigenic properties of NNK. However, the role of the pyridyloxobutyl DNA adducts is unclear. Four pyridyloxobutyl DNA adducts have been characterized: 7-[4-3-(pyridyl)-4-oxobut-1-yl]guanine (7-pobG), O²-[4-3-(pyridyl)-4-oxobut-1-yl]-cytodine (O²-pobC), O²-[4-3-(pyridyl)-4-oxobut-1yl]thymidine (O²-pobdT), and O⁶-[4-3-(pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O⁶-pobdG). Mutagenic O⁶-pobdG is thought to contribute to the tumorigenic properties of the pyridyloxobutylation pathway. It is repaired by O⁶-alkylguanine-DNA alkyltransferase (AGT). To explore the role of O⁶-pobdG formation and repair in the tumorigenic properties of NNK, A/J mice were given single or multiple doses of the model pyridyloxobutylating agent 4-(acetoxymethyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc) in the presence or absence of the AGT depletor, O⁶-benzylguanine. Levels of the four pyridyloxobutyl DNA adducts were measured in the lung at 8, 48, or 96 h following treatment and compared to the lung tumorigenic activity of these treatments. AGT depletion had only a modest effect on the levels of O⁶-pobdG and did not increase tumor formation. Three pyridyloxobutyl DNA adducts, 7-pobG, O²-pobdT, and O⁶-pobdG, persisted in lung DNA at significant levels for up to 96 h post-treatment, suggesting that all three adducts may contribute to the tumorigenic properties of NNK.
Collapse
Affiliation(s)
- Anna M Urban
- Division of Environmental Health Sciences and ‡Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
46
|
Tretyakova N, Goggin M, Sangaraju D, Janis G. Quantitation of DNA adducts by stable isotope dilution mass spectrometry. Chem Res Toxicol 2012; 25:2007-35. [PMID: 22827593 DOI: 10.1021/tx3002548] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations and potentially contributing to the development of cancer. Because of their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples, including immunoassay, HPLC, and ³²P-postlabeling, isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adduct concentrations in biological samples are between 0.01-10 adducts per 10⁸ normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry, especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS, have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke.
Collapse
Affiliation(s)
- Natalia Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
47
|
Christmann M, Kaina B. O(6)-methylguanine-DNA methyltransferase (MGMT): impact on cancer risk in response to tobacco smoke. Mutat Res 2012; 736:64-74. [PMID: 21708177 DOI: 10.1016/j.mrfmmm.2011.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/23/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
Tobacco, smoked, snuffed and chewed, contains powerful mutagens and carcinogens. At least three of them, N-dimethylnitrosamine, N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, attack DNA at the O(6)-position of guanine. The resulting O(6)-alkylguanine adducts are repaired by the suicide enzyme O(6)-methylguanine-DNA methyltransferase (MGMT), which is known to protect against the mutagenic, genotoxic and carcinogenic effects of monofunctional alkylating agents. While in rat liver MGMT was shown to be subject to regulation by genotoxic stress leading to adaptive changes in its activity, in humans evidence of adaptive modulation of MGMT levels is still lacking. Several polymorphisms are known, which are suspected to impact on the risk of developing cancer. In this review we focus on three questions: (a) Has tobacco consumption by smoking or chewing an impact on MGMT expression and MGMT promoter methylation in normal and tumor tissue? (b) Is there an association between MGMT polymorphisms and cancer risk and is this risk related to smoking? (c) Does MGMT protect against tobacco-associated cancer? There are several lines of evidence for an increase of MGMT activity in the normal tissue of smokers compared to non-smokers. Furthermore, in tumors developed in smokers a tendency towards an increase of MGMT expression was found. The data points to the possibility that agents in tobacco smoke are able to trigger upregulation of MGMT in normal and tumor tissue. For MGMT promoter methylation data is conflicting. There is some evidence for an association between MGMT polymorphisms and smoking-induced cancer risk. The key question whether or not MGMT protects against tobacco smoke-induced cancer is difficult to answer since prospective studies on smokers versus non-smokers are lacking and appropriate animal studies with MGMT transgenic mice exposed to the complex mixture of tobacco smoke have not been performed, which indicates the need for further explorations.
Collapse
Affiliation(s)
- Markus Christmann
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany.
| | | |
Collapse
|
48
|
The application of hepatic P450 reductase null gpt delta mice in studying the role of hepatic P450 in genotoxic carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced mutagenesis. Arch Toxicol 2012; 86:1753-61. [PMID: 22710403 DOI: 10.1007/s00204-012-0891-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
The cytochrome P450 (P450 or CYP) is involved in both detoxification and metabolic activation of many carcinogens. In order to identify the role of hepatic P450 in the mutagenesis of genotoxic carcinogens, we generated a novel hepatic P450 reductase null (HRN) gpt delta mouse model, which lacks functional hepatic P450 on a gpt delta mouse background. In this study, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was used to treat HRN gpt delta mice and control littermates. Gene mutations in the liver and lungs were detected, and mutation spectra were analyzed. Pharmacokinetic analyses were performed, and tissue levels of NNK and metabolite were determined. NNK-induced mutant frequencies (MFs) were equivalent to spontaneous MFs in the liver, but increased more than 3 times in the lungs of HRN gpt delta mice compared to control mice. NNK-induced mutation spectra showed no difference between HRN gpt delta mice and control littermates. Toxicokinetic studies revealed reduced clearance of NNK with elevated tissue concentrations in HRN gpt delta mice. To our knowledge, these are the first data demonstrating that NNK cannot induce mutagenesis in the liver without P450 metabolic activation, but can induce mutagenesis in lungs by a hepatic P450-independent mechanism. Moreover, our data show that hepatic P450 plays a major role in the systemic clearance of NNK, thereby protecting the lungs against NNK-induced mutagenesis. Our model will be useful in establishing the role of hepatic versus extrahepatic P450-mediated mutagenesis, and the relative contributions of P450 compared to other biotransformation enzymes in the genotoxic carcinogens' activation.
Collapse
|
49
|
Gowda ASP, Krishnegowda G, Suo Z, Amin S, Spratt TE. Low fidelity bypass of O(2)-(3-pyridyl)-4-oxobutylthymine, the most persistent bulky adduct produced by the tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by model DNA polymerases. Chem Res Toxicol 2012; 25:1195-202. [PMID: 22533615 DOI: 10.1021/tx200483g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the most important human carcinogens. It is metabolized to produce a variety of methyl and 4-(3-pyridyl)-4-oxo-butyl (POB) DNA adducts. A potentially important POB adduct is O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dT) because it is the most abundant POB adduct in NNK-treated rodents. To evaluate the mutagenic properties of O(2)-POB-dT, we measured the rate of insertion of dNTPs opposite and extension past both O(2)-POB-dT and O(2)-methylthymidine (O(2)-Me-dT) by two model polymerases, E. coli DNA polymerase I (Klenow fragment) with the proofreading exonuclease activity inactivated (Kf) and Sulfolobus solfataricus DNA polymerase IV (Dpo4). We found that the size of the alkyl chain only marginally affected the reactivity and that the specificity of adduct bypass was very low. The k(cat)/K(m) for the Kf catalyzed incorporation opposite and extension past the adducts was reduced ∼10(6)-fold when compared to undamaged DNA. Dpo4 catalyzed the incorporation opposite and extension past the adducts approximately 10(3)-fold more slowly than undamaged DNA. The dNTP specificity was less for Dpo4 than for Kf. In general, dA was the preferred base pair partner for O(2)-Me-dT and dT the preferred base pair partner for O(2)-POB-dT. With enzyme in excess over DNA, the time courses of the reactions showed a biphasic kinetics that indicates the formation inactive binary and ternary complexes.
Collapse
Affiliation(s)
- A S Prakasha Gowda
- Department of Biochemistry and Molecular Biology, Penn State Hershey Cancer Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
50
|
Peterson LA. Formation, repair, and genotoxic properties of bulky DNA adducts formed from tobacco-specific nitrosamines. J Nucleic Acids 2010; 2010. [PMID: 20871819 PMCID: PMC2943119 DOI: 10.4061/2010/284935] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/08/2010] [Indexed: 12/24/2022] Open
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N′-nitrosonornicotine (NNN) are tobacco-specific nitrosamines present in tobacco products and smoke. Both compounds are carcinogenic in laboratory animals, generating tumors at sites comparable to those observed in smokers. These Group 1 human carcinogens are metabolized to reactive intermediates that alkylate DNA. This paper focuses on the DNA pyridyloxobutylation pathway which is common to both compounds. This DNA route generates 7-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxyguanosine, O2-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxycytosine, O2-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxythymidine, and O6-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxyguanosine as well as unstable adducts which dealkylate to release 4-hydroxy-1-{3-pyridyl)-1-butanone or depyriminidate/depurinate to generate abasic sites. There are multiple repair pathways responsible for protecting against the genotoxic effects of these adducts, including adduct reversal as well as base and nucleotide excision repair pathways. Data indicate that several DNA adducts contribute to the overall mutagenic properties of pyridyloxobutylating agents. Which adducts contribute to the carcinogenic properties of this pathway are likely to depend on the biochemistry of the target tissue.
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences, Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware St SE, Minneapolis, MN 55455, USA
| |
Collapse
|