1
|
Kusch S, Frantzeskakis L, Lassen BD, Kümmel F, Pesch L, Barsoum M, Walden KD, Panstruga R. A fungal plant pathogen overcomes mlo-mediated broad-spectrum disease resistance by rapid gene loss. THE NEW PHYTOLOGIST 2024; 244:962-979. [PMID: 39155769 DOI: 10.1111/nph.20063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
Hosts and pathogens typically engage in a coevolutionary arms race. This also applies to phytopathogenic powdery mildew fungi, which can rapidly overcome plant resistance and perform host jumps. Using experimental evolution, we show that the powdery mildew pathogen Blumeria hordei is capable of breaking the agriculturally important broad-spectrum resistance conditioned by barley loss-of-function mlo mutants. Partial mlo virulence of evolved B. hordei isolates is correlated with a distinctive pattern of adaptive mutations, including small-sized (c. 8-40 kb) deletions, of which one is linked to the de novo insertion of a transposable element. Occurrence of the mutations is associated with a transcriptional induction of effector protein-encoding genes that is absent in mlo-avirulent isolates on mlo mutant plants. The detected mutational spectrum comprises the same loci in at least two independently isolated mlo-virulent isolates, indicating convergent multigenic evolution. The mutational events emerged in part early (within the first five asexual generations) during experimental evolution, likely generating a founder population in which incipient mlo virulence was later stabilized by additional events. This work highlights the rapid dynamic genome evolution of an obligate biotrophic plant pathogen with a transposon-enriched genome.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Lamprinos Frantzeskakis
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Birthe D Lassen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Florian Kümmel
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Lina Pesch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Mirna Barsoum
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Kim D Walden
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| |
Collapse
|
2
|
Cardoso-Sichieri R, Oliveira LS, Lopes-Caitar VS, Silva DCGD, Lopes IDON, Oliveira MFD, Arias CA, Abdelnoor RV, Marcelino-Guimarães FC. Genome-Wide Association Studies and QTL Mapping Reveal a New Locus Associated with Resistance to Bacterial Pustule Caused by Xanthomonas citri pv. glycines in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:2484. [PMID: 39273969 PMCID: PMC11397087 DOI: 10.3390/plants13172484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Bacterial pustule (BP), caused by Xanthomonas citri pv. glycines, is an important disease that, under favorable conditions, can drastically affect soybean production. We performed a genome-wide association study (GWAS) with a panel containing Brazilian and American cultivars, which were screened qualitatively and quantitatively against two Brazilian X. citri isolates (IBS 333 and IBS 327). The panel was genotyped using a genotyping by sequencing (GBS) approach, and we identified two main new regions in soybeans associated with X. citri resistance on chromosomes 6 (IBS 333) and 18 (IBS 327), different from the traditional rxp gene located on chromosome 17. The region on chromosome 6 was also detected by QTL mapping using a biparental cross between Williams 82 (R) and PI 416937 (S), showing that Williams 82 has another recessive resistance gene besides rxp, which was also detected in nine BP-resistant ancestors of the Brazilian cultivars (including CNS, S-100), based on haplotype analysis. Furthermore, we identified additional SNPs in strong LD (0.8) with peak SNPs by exploring variation available in WGS (whole genome sequencing) data among 31 soybean accessions. In these regions in strong LD, two candidate resistance genes were identified (Glyma.06g311000 and Glyma.18g025100) for chromosomes 6 and 18, respectively. Therefore, our results allowed the identification of new chromosomal regions in soybeans associated with BP disease, which could be useful for marker-assisted selection and will enable a reduction in time and cost for the development of resistant cultivars.
Collapse
Affiliation(s)
- Rafaella Cardoso-Sichieri
- Center for Biological Sciences, Londrina State University (UEL), Celso Garcia Cid Road, km 380, Londrina 86057-970, PR, Brazil
| | - Liliane Santana Oliveira
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Alberto Carazzai Avenue, 1640, Cornélio Procópio 86300-000, PR, Brazil
| | | | | | - Ivani de O N Lopes
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | - Marcelo Fernandes de Oliveira
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | - Carlos Arrabal Arias
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | - Ricardo Vilela Abdelnoor
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | | |
Collapse
|
3
|
Song H, Wang M, Shen J, Wang X, Qin C, Wei P, Niu Y, Ren J, Pan X, Liu A. Physiological and transcriptomic profiles reveal key regulatory pathways involved in cold resistance in sunflower seedlings. Genomics 2024; 116:110926. [PMID: 39178997 DOI: 10.1016/j.ygeno.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
During sunflower growth, cold waves often occur and impede plant growth. Therefore, it is crucial to study the underlying mechanism of cold resistance in sunflowers. In this study, physiological analysis revealed that as cold stress increased, the levels of ROS, malondialdehyde, ascorbic acid, and dehydroascorbic acid and the activities of antioxidant enzymes increased. Transcriptomics further identified 10,903 DEGs between any two treatments. Clustering analysis demonstrated that the expression of MYB44a, MYB44b, MYB12, bZIP2 and bZIP4 continuously upregulated under cold stress. Cold stress can induce ROS accumulation, which interacts with hormone signals to activate cold-responsive transcription factors regulating target genes involved in antioxidant defense, secondary metabolite biosynthesis, starch and sucrose metabolism enhancement for improved cold resistance in sunflowers. Additionally, the response of sunflowers to cold stress may be independent of the CBF pathway. These findings enhance our understanding of cold stress resistance in sunflowers and provide a foundation for genetic breeding.
Collapse
Affiliation(s)
- Huifang Song
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Mingyang Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jie Shen
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Xi Wang
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Cheng Qin
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Peipei Wei
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Yaojun Niu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| | - Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing 401329, China.
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| |
Collapse
|
4
|
Selma S. You don't win friends with bad salad! A gene editing approach to enhance the powdery mildew resistance in cucumber. PLANT PHYSIOLOGY 2024; 195:908-910. [PMID: 38482927 PMCID: PMC11142331 DOI: 10.1093/plphys/kiae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 06/02/2024]
Affiliation(s)
- Sara Selma
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| |
Collapse
|
5
|
Wang H, Chen Q, Feng W. The Emerging Role of 2OGDs as Candidate Targets for Engineering Crops with Broad-Spectrum Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1129. [PMID: 38674537 PMCID: PMC11054871 DOI: 10.3390/plants13081129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases caused by pathogens result in a marked decrease in crop yield and quality annually, greatly threatening food production and security worldwide. The creation and cultivation of disease-resistant cultivars is one of the most effective strategies to control plant diseases. Broad-spectrum resistance (BSR) is highly preferred by breeders because it confers plant resistance to diverse pathogen species or to multiple races or strains of one species. Recently, accumulating evidence has revealed the roles of 2-oxoglutarate (2OG)-dependent oxygenases (2OGDs) as essential regulators of plant disease resistance. Indeed, 2OGDs catalyze a large number of oxidative reactions, participating in the plant-specialized metabolism or biosynthesis of the major phytohormones and various secondary metabolites. Moreover, several 2OGD genes are characterized as negative regulators of plant defense responses, and the disruption of these genes via genome editing tools leads to enhanced BSR against pathogens in crops. Here, the recent advances in the isolation and identification of defense-related 2OGD genes in plants and their exploitation in crop improvement are comprehensively reviewed. Also, the strategies for the utilization of 2OGD genes as targets for engineering BSR crops are discussed.
Collapse
Affiliation(s)
- Han Wang
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qinghe Chen
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Wanzhen Feng
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| |
Collapse
|
6
|
Huebbers JW, Caldarescu GA, Kubátová Z, Sabol P, Levecque SCJ, Kuhn H, Kulich I, Reinstädler A, Büttgen K, Manga-Robles A, Mélida H, Pauly M, Panstruga R, Žárský V. Interplay of EXO70 and MLO proteins modulates trichome cell wall composition and susceptibility to powdery mildew. THE PLANT CELL 2024; 36:1007-1035. [PMID: 38124479 PMCID: PMC10980356 DOI: 10.1093/plcell/koad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Exocyst component of 70-kDa (EXO70) proteins are constituents of the exocyst complex implicated in vesicle tethering during exocytosis. MILDEW RESISTANCE LOCUS O (MLO) proteins are plant-specific calcium channels and some MLO isoforms enable fungal powdery mildew pathogenesis. We here detected an unexpected phenotypic overlap of Arabidopsis thaliana exo70H4 and mlo2 mlo6 mlo12 triple mutant plants regarding the biogenesis of leaf trichome secondary cell walls. Biochemical and Fourier transform infrared spectroscopic analyses corroborated deficiencies in the composition of trichome cell walls in these mutants. Transgenic lines expressing fluorophore-tagged EXO70H4 and MLO exhibited extensive colocalization of these proteins. Furthermore, mCherry-EXO70H4 mislocalized in trichomes of the mlo triple mutant and, vice versa, MLO6-GFP mislocalized in trichomes of the exo70H4 mutant. Expression of GFP-marked PMR4 callose synthase, a known cargo of EXO70H4-dependent exocytosis, revealed reduced cell wall delivery of GFP-PMR4 in trichomes of mlo triple mutant plants. In vivo protein-protein interaction assays in plant and yeast cells uncovered isoform-preferential interactions between EXO70.2 subfamily members and MLO proteins. Finally, exo70H4 and mlo6 mutants, when combined, showed synergistically enhanced resistance to powdery mildew attack. Taken together, our data point to an isoform-specific interplay of EXO70 and MLO proteins in the modulation of trichome cell wall biogenesis and powdery mildew susceptibility.
Collapse
Affiliation(s)
- Jan W Huebbers
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - George A Caldarescu
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Peter Sabol
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Sophie C J Levecque
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Kim Büttgen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Alba Manga-Robles
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Cell Biology, Rozvojová 263, 165 02 Prague 6 Lysolaje, Czech Republic
| |
Collapse
|
7
|
Huang X, Yang S, Zhang Y, Shi Y, Shen L, Zhang Q, Qiu A, Guan D, He S. Temperature-dependent action of pepper mildew resistance locus O 1 in inducing pathogen immunity and thermotolerance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2064-2083. [PMID: 38011680 DOI: 10.1093/jxb/erad479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/25/2023] [Indexed: 11/29/2023]
Abstract
Plant diseases tend to be more serious under conditions of high-temperature/high-humidity (HTHH) than under moderate conditions, and hence disease resistance under HTHH is an important determinant for plant survival. However, how plants cope with diseases under HTHH remains poorly understood. In this study, we used the pathosystem consisting of pepper (Capsicum annuum) and Ralstonia solanacearum (bacterial wilt) as a model to examine the functions of the protein mildew resistance locus O 1 (CaMLO1) and U-box domain-containing protein 21 (CaPUB21) under conditions of 80% humidity and either 28 °C or 37 °C. Expression profiling, loss- and gain-of-function assays involving virus-induced gene-silencing and overexpression in pepper plants, and protein-protein interaction assays were conducted, and the results showed that CaMLO1 acted negatively in pepper immunity against R. solanacearum at 28 °C but positively at 37 °C. In contrast, CaPUB21 acted positively in immunity at 28 °C but negatively at 37 °C. Importantly, CaPUB21 interacted with CaMLO1 under all of the tested conditions, but only the interaction in response to R. solanacearum at 37 °C or to exposure to 37 °C alone led to CaMLO1 degradation, thereby turning off defence responses against R. solanacearum at 37 °C and under high-temperature stress to conserve resources. Thus, we show that CaMLO1 and CaPUB21 interact with each other and function distinctly in pepper immunity against R. solanacearum in an environment-dependent manner.
Collapse
Affiliation(s)
- Xueying Huang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yapeng Zhang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuanyuan Shi
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Shen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Qixiong Zhang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ailian Qiu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
8
|
Bennici S, Poles L, Di Guardo M, Percival-Alwyn L, Caccamo M, Licciardello C, Gentile A, Distefano G, La Malfa S. The origin and the genetic regulation of the self-compatibility mechanism in clementine ( Citrus clementina Hort. ex Tan.). FRONTIERS IN PLANT SCIENCE 2024; 15:1360087. [PMID: 38501136 PMCID: PMC10944956 DOI: 10.3389/fpls.2024.1360087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
Self-incompatibility (SI) is a genetic mechanism common in flowering plants to prevent self-fertilization. Among citrus species, several pummelo, mandarin, and mandarin-like accessions show SI behavior. In these species, SI is coupled with a variable degree of parthenocarpy ensuring the production of seedless fruits, a trait that is highly appreciated by consumers. In Citrus, recent evidences have shown the presence of a gametophytic SI system based on S-ribonucleases (S-RNases) ability to impair self-pollen tube growth in the upper/middle part of the style. In the present study, we combined PCR analysis and next-generation sequencing technologies, to define the presence of S7- and S11-Rnases in the S-genotype of the Citrus clementina (Hort. ex Tan.), the self-incompatible 'Comune' clementine and its self-compatible natural mutant 'Monreal'. The reference genome of 'Monreal' clementine is presented for the first time, providing more robust results on the genetic sequence of the newly discovered S7-RNase. SNP discovery analysis coupled with the annotation of the variants detected enabled the identification of 7,781 SNPs effecting 5,661 genes in 'Monreal' compared to the reference genome of C. clementina. Transcriptome analysis of unpollinated pistils at the mature stage from both clementine genotypes revealed the lack of expression of S7-RNase in 'Monreal' suggesting its involvement in the loss of the SI response. RNA-seq analysis followed by gene ontology studies enabled the identification of 2,680 differentially expressed genes (DEGs), a significant number of those is involved in oxidoreductase and transmembrane transport activity. Merging of DNA sequencing and RNA data led to the identification of 164 DEGs characterized by the presence of at least one SNP predicted to induce mutations with a high effect on their amino acid sequence. Among them, four candidate genes referring to two Agamous-like MADS-box proteins, to MYB111 and to MLO-like protein 12 were validated. Moreover, the transcription factor MYB111 appeared to contain a binding site for the 2.0-kb upstream sequences of the S7- and S11-RNase genes. These results provide useful information about the genetic bases of SI indicating that SNPs present in their sequence could be responsible for the differential expression and the regulation of S7-RNase and consequently of the SI mechanism.
Collapse
Affiliation(s)
- Stefania Bennici
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Lara Poles
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Mario Di Guardo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | | | - Mario Caccamo
- National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| | - Concetta Licciardello
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Alessandra Gentile
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Gaetano Distefano
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Stefano La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| |
Collapse
|
9
|
Sun J, Nie J, Xiao T, Guo C, Lv D, Zhang K, He HL, Pan J, Cai R, Wang G. CsPM5.2, a phosphate transporter protein-like gene, promotes powdery mildew resistance in cucumber. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1487-1502. [PMID: 38048475 DOI: 10.1111/tpj.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
Powdery mildew (PM) is one of the most serious fungal diseases affecting cucumbers (Cucumis sativus L.). The mechanism of PM resistance in cucumber is intricate and remains fragmentary as it is controlled by several genes. In this study, we detected the major-effect Quantitative Trait Locus (QTL), PM5.2, involved in PM resistance by QTL mapping. Through fine mapping, the dominant PM resistance gene, CsPM5.2, was cloned and its function was confirmed by transgenic complementation and natural variation identification. In cultivar 9930, a dysfunctional CsPM5.2 mutant resulted from a single nucleotide polymorphism in the coding region and endowed susceptibility to PM. CsPM5.2 encodes a phosphate transporter-like protein PHO1; H3. The expression of CsPM5.2 is ubiquitous and induced by the PM pathogen. In cucumber, both CsPM5.2 and Cspm5.1 (Csmlo1) are required for PM resistance. Transcriptome analysis suggested that the salicylic acid (SA) pathway may play an important role in CsPM5.2-mediated PM resistance. Our findings help parse the mechanisms of PM resistance and provide strategies for breeding PM-resistant cucumber cultivars.
Collapse
Affiliation(s)
- Jingxian Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Jingtao Nie
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Tingting Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Chunli Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Duo Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Keyan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Huan-Le He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| |
Collapse
|
10
|
Dong S, Liu X, Han J, Miao H, Beckles DM, Bai Y, Liu X, Guan J, Yang R, Gu X, Sun J, Yang X, Zhang S. CsMLO8/11 are required for full susceptibility of cucumber stem to powdery mildew and interact with CsCRK2 and CsRbohD. HORTICULTURE RESEARCH 2024; 11:uhad295. [PMID: 38404593 PMCID: PMC10894460 DOI: 10.1093/hr/uhad295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/20/2023] [Indexed: 02/27/2024]
Abstract
Powdery mildew (PM) is one of the most destructive diseases that threaten cucumber production globally. Efficient breeding of novel PM-resistant cultivars will require a robust understanding of the molecular mechanisms of cucumber resistance against PM. Using a genome-wide association study, we detected a locus significantly correlated with PM resistance in cucumber stem, pm-s5.1. A 1449-bp insertion in the CsMLO8 coding region at the pm-s5.1 locus resulted in enhanced stem PM resistance. Knockout mutants of CsMLO8 and CsMLO11 generated by CRISPR/Cas9 both showed improved PM resistance in the stem, hypocotyl, and leaves, and the double mutant mlo8mlo11 displayed even stronger resistance. We found that reactive oxygen species (ROS) accumulation was higher in the stem of these mutants. Protein interaction assays suggested that CsMLO8 and CsMLO11 could physically interact with CsRbohD and CsCRK2, respectively. Further, we showed that CsMLO8 and CsCRK2 competitively interact with the C-terminus of CsRbohD to affect CsCRK2-CsRbohD module-mediated ROS production during PM defense. These findings provide new insights into the understanding of CsMLO proteins during PM defense responses.
Collapse
Affiliation(s)
- Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Xin Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Jianan Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Han Miao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Diane M Beckles
- Department of Plant Sciences, University of California Davis, One Shield Avenue, Davis, CA 95616, USA
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Xiaoping Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Ruizhen Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xueyong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| |
Collapse
|
11
|
Zeng H, Zhu Q, Yuan P, Yan Y, Yi K, Du L. Calmodulin and calmodulin-like protein-mediated plant responses to biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:3680-3703. [PMID: 37575022 DOI: 10.1111/pce.14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Plants have evolved a set of finely regulated mechanisms to respond to various biotic stresses. Transient changes in intracellular calcium (Ca2+ ) concentration have been well documented to act as cellular signals in coupling environmental stimuli to appropriate physiological responses with astonishing accuracy and specificity in plants. Calmodulins (CaMs) and calmodulin-like proteins (CMLs) are extensively characterized as important classes of Ca2+ sensors. The spatial-temporal coordination between Ca2+ transients, CaMs/CMLs and their target proteins is critical for plant responses to environmental stresses. Ca2+ -loaded CaMs/CMLs interact with and regulate a broad spectrum of target proteins, such as ion transporters (including channels, pumps, and antiporters), transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biological functions. This review focuses on mechanisms underlying how CaMs/CMLs are involved in the regulation of plant responses to diverse biotic stresses including pathogen infections and herbivore attacks. Recent discoveries of crucial functions of CaMs/CMLs and their target proteins in biotic stress resistance revealed through physiological, molecular, biochemical, and genetic analyses have been described, and intriguing insights into the CaM/CML-mediated regulatory network are proposed. Perspectives for future directions in understanding CaM/CML-mediated signalling pathways in plant responses to biotic stresses are discussed. The application of accumulated knowledge of CaM/CML-mediated signalling in biotic stress responses into crop cultivation would improve crop resistance to various biotic stresses and safeguard our food production in the future.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Yan Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
12
|
Bui TP, Le H, Ta DT, Nguyen CX, Le NT, Tran TT, Van Nguyen P, Stacey G, Stacey MG, Pham NB, Chu HH, Do PT. Enhancing powdery mildew resistance in soybean by targeted mutation of MLO genes using the CRISPR/Cas9 system. BMC PLANT BIOLOGY 2023; 23:533. [PMID: 37919649 PMCID: PMC10623788 DOI: 10.1186/s12870-023-04549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Powdery mildew is a major disease that causes great losses in soybean yield and seed quality. Disease-resistant varieties, which are generated by reducing the impact of susceptibility genes through mutation in host plants, would be an effective approach to protect crops from this disease. The Mildew Locus O (MLO) genes are well-known susceptibility genes for powdery mildew in plant. In this study, we utilized the CRISPR/Cas9 system to induce targeted mutations in the soybean GmMLO genes to improve powdery mildew resistance. RESULTS A dual-sgRNA CRISPR/Cas9 construct was designed and successfully transferred into the Vietnamese soybean cultivar DT26 through Agrobacterium tumefaciens-mediated transformation. Various mutant forms of the GmMLO genes including biallelic, chimeric and homozygous were found at the T0 generation. The inheritance and segregation of CRISPR/Cas9-induced mutations were confirmed and validated at the T1 and T2 generations. Out of six GmMLO genes in the soybean genome, we obtained the Gmmlo02/Gmmlo19/Gmmlo23 triple and Gmmlo02/Gmmlo19/Gmmlo20/Gmmlo23 quadruple knockout mutants at the T2 generation. When challenged with Erysiphe diffusa, a fungus that causes soybean powdery mildew, all mutant plants showed enhanced resistance to the pathogen, especially the quadruple mutant. The powdery mildew severity in the mutant soybeans was reduced by up to 36.4% compared to wild-type plants. In addition, no pleiotropic effect on soybean growth and development under net-house conditions was observed in the CRISPR/Cas9 mutants. CONCLUSIONS Our results indicate the involvement of GmMLO02, GmMLO19, GmMLO20 and GmMLO23 genes in powdery mildew susceptibility in soybean. Further research should be conducted to investigate the roles of individual tested genes and the involvement of other GmMLO genes in this disease infection mechanism. Importantly, utilizing the CRISPR/Cas9 system successfully created the Gmmlo transgene-free homozygous mutant lines with enhanced resistance to powdery mildew, which could be potential materials for soybean breeding programs.
Collapse
Affiliation(s)
- Thao Phuong Bui
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Huy Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Present address: Department of Biology, Washington University in St. Louis, St. Louis, USA
| | - Dong Thi Ta
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Cuong Xuan Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Ngoc Thu Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Truong Thi Tran
- Legumes Research and Development Center, Vietnam Academy of Agriculture Science, Hanoi, Vietnam
| | - Phuong Van Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Gary Stacey
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Minviluz G Stacey
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Ngoc Bich Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha Hoang Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Phat Tien Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| |
Collapse
|
13
|
von Bongartz K, Sabelleck B, Baquero Forero A, Kuhn H, Leissing F, Panstruga R. Comprehensive comparative assessment of the Arabidopsis thaliana MLO2-CALMODULIN2 interaction by various in vitro and in vivo protein-protein interaction assays. Biochem J 2023; 480:1615-1638. [PMID: 37767715 PMCID: PMC10586775 DOI: 10.1042/bcj20230255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
Mildew resistance locus o (MLO) proteins are heptahelical integral membrane proteins of which some isoforms act as susceptibility factors for the powdery mildew pathogen. In many angiosperm plant species, loss-of-function mlo mutants confer durable broad-spectrum resistance against the fungal disease. Barley Mlo is known to interact via a cytosolic carboxyl-terminal domain with the intracellular calcium sensor calmodulin (CAM) in a calcium-dependent manner. Site-directed mutagenesis has revealed key amino acid residues in the barley Mlo calmodulin-binding domain (CAMBD) that, when mutated, affect the MLO-CAM association. We here tested the respective interaction between Arabidopsis thaliana MLO2 and CAM2 using seven different types of in vitro and in vivo protein-protein interaction assays. In each assay, we deployed a wild-type version of either the MLO2 carboxyl terminus (MLO2CT), harboring the CAMBD, or the MLO2 full-length protein and corresponding mutant variants in which two key residues within the CAMBD were substituted by non-functional amino acids. We focused in particular on the substitution of two hydrophobic amino acids (LW/RR mutant) and found in most protein-protein interaction experiments reduced binding of CAM2 to the corresponding MLO2/MLO2CT-LW/RR mutant variants in comparison with the respective wild-type versions. However, the Ura3-based yeast split-ubiquitin system and in planta bimolecular fluorescence complementation (BiFC) assays failed to indicate reduced CAM2 binding to the mutated CAMBD. Our data shed further light on the interaction of MLO and CAM proteins and provide a comprehensive comparative assessment of different types of protein-protein interaction assays with wild-type and mutant versions of an integral membrane protein.
Collapse
Affiliation(s)
- Kira von Bongartz
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Björn Sabelleck
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Anežka Baquero Forero
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
14
|
Zou S, Xu Y, Li Q, Wei Y, Zhang Y, Tang D. Wheat powdery mildew resistance: from gene identification to immunity deployment. FRONTIERS IN PLANT SCIENCE 2023; 14:1269498. [PMID: 37790783 PMCID: PMC10544919 DOI: 10.3389/fpls.2023.1269498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023]
Abstract
Powdery mildew is one of the most devastating diseases on wheat and is caused by the obligate biotrophic phytopathogen Blumeria graminis f. sp. tritici (Bgt). Due to the complexity of the large genome of wheat and its close relatives, the identification of powdery mildew resistance genes had been hampered for a long time until recent progress in large-scale sequencing, genomics, and rapid gene isolation techniques. Here, we describe and summarize the current advances in wheat powdery mildew resistance, emphasizing the most recent discoveries about the identification of genes conferring powdery mildew resistance and the similarity, diversity and molecular function of those genes. Multilayered resistance to powdery mildew in wheat could be used for counteracting Bgt, including durable, broad spectrum but partial resistance, as well as race-specific and mostly complete resistance mediated by nucleotide-binding and leucine rich repeat domain (NLR) proteins. In addition to the above mentioned layers, manipulation of susceptibility (S) and negative regulator genes may represent another layer that can be used for durable and broad-spectrum resistance in wheat. We propose that it is promising to develop effective and durable strategies to combat powdery mildew in wheat by simultaneous deployment of multilayered immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Banakar SN, Prasannakumar MK, Parivallal PB, Pramesh D, Mahesh HB, Sarangi AN, Puneeth ME, Patil SS. Rice- Magnaporthe transcriptomics reveals host defense activation induced by red seaweed-biostimulant in rice plants. Front Genet 2023; 14:1132561. [PMID: 37424731 PMCID: PMC10327602 DOI: 10.3389/fgene.2023.1132561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Red seaweed extracts have been shown to trigger the biotic stress tolerance in several crops. However, reports on transcriptional modifications in plants treated with seaweed biostimulant are limited. To understand the specific response of rice to blast disease in seaweed-biostimulant-primed and non-primed plants, transcriptomics of a susceptible rice cultivar IR-64 was carried out at zero and 48 h post inoculation with Magnaporthe oryzae (strain MG-01). A total of 3498 differentially expressed genes (DEGs) were identified; 1116 DEGs were explicitly regulated in pathogen-inoculated treatments. Functional analysis showed that most DEGs were involved in metabolism, transport, signaling, and defense. In a glass house, artificial inoculation of MG-01 on seaweed-primed plants resulted in the restricted spread of the pathogen leading to the confined blast disease lesions, primarily attributed to reactive oxygen species (ROS) accumulation. The DEGs in the primed plants were defense-related transcription factors, kinases, pathogenesis-related genes, peroxidases, and growth-related genes. The beta-D-xylosidase, a putative gene that helps in secondary cell wall reinforcement, was downregulated in non-primed plants, whereas it upregulated in the primed plants indicating its role in the host defense. Additionally, Phenylalanine ammonia-lyase, pathogenesis-related Bet-v-I family protein, chalcone synthase, chitinases, WRKY, AP2/ERF, and MYB families were upregulated in seaweed and challenge inoculated rice plants. Thus, our study shows that priming rice plants with seaweed bio-stimulants resulted in the induction of the defense in rice against blast disease. This phenomenon is contributed to early protection through ROS, protein kinase, accumulation of secondary metabolites, and cell wall strengthening.
Collapse
Affiliation(s)
- Sahana N. Banakar
- Plant PathoGenOmics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - M. K. Prasannakumar
- Plant PathoGenOmics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - P. Buela Parivallal
- Plant PathoGenOmics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - D. Pramesh
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, India
| | - H. B. Mahesh
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, India
| | | | - M. E. Puneeth
- Plant PathoGenOmics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - Swathi S. Patil
- Plant PathoGenOmics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
16
|
Yang J, Shen Z, Qu P, Yang R, Shao A, Li H, Zhao A, Cheng C. Influences of Jujube Witches' Broom (JWB) Phytoplasma Infection and Oxytetracycline Hydrochloride Treatment on the Gene Expression Profiling in Jujube. Int J Mol Sci 2023; 24:10313. [PMID: 37373459 DOI: 10.3390/ijms241210313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Jujube witches' broom disease (JWB), caused by Candidatus Phytoplasma ziziphi, is the most destructive phytoplasma disease threatening the jujube industry. Tetracycline derivatives treatments have been validated to be capable of recovering jujube trees from phytoplasma infection. In this study, we reported that oxytetracycline hydrochloride (OTC-HCl) trunk injection treatment could recover more than 86% of mild JWB-diseased trees. In order to explore the underlying molecular mechanism, comparative transcriptomic analysis of healthy control (C group), JWB-diseased (D group) and OTC-HCl treated JWB-diseased (T group) jujube leaves was performed. In total, 755 differentially expressed genes (DEGs), including 488 in 'C vs. D', 345 in 'D vs. T' and 94 in 'C vs. T', were identified. Gene enrichment analysis revealed that these DEGs were mainly involved in DNA and RNA metabolisms, signaling, photosynthesis, plant hormone metabolism and transduction, primary and secondary metabolisms, their transportations, etc. Notably, most of the DEGs identified in 'C vs. D' displayed adverse change patterns in 'D vs. T', suggesting that the expression of these genes was restored after OTC-HCl treatment. Our study revealed the influences of JWB phytoplasma infection and OTC-HCl treatment on gene expression profiling in jujube and would be helpful for understanding the chemotherapy effects of OTC-HCl on JWB-diseased jujube.
Collapse
Affiliation(s)
- Junqiang Yang
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Zhongmei Shen
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Pengyan Qu
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Rui Yang
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Anping Shao
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Hao Li
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Ailing Zhao
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Chunzhen Cheng
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
17
|
Moolhuijzen P, Ge C, Palmiero E, Ellwood SR. A unique resistance mechanism is associated with RBgh2 barley powdery mildew adult plant resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:145. [PMID: 37253878 DOI: 10.1007/s00122-023-04392-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
KEY MESSAGE Gene expression at the RBgh2 locus indicates involvement in cAMP/G-protein-coupled signalling and innate immunity in barley powdery mildew adult plant resistance. Barley powdery mildew is a globally significant disease, responsible for reduced grain yield and quality. A major effect adult plant resistance gene, RBgh2, was previously found in a landrace from Azerbaijan. The atypical phenotype suggested different underlying genetic factors compared to conventional resistance genes and to investigate this, genome-wide gene expression was compared between sets of heterogeneous doubled haploids. RBgh2 resistance is recessive and induces both temporary genome-wide gene expression changes during powdery mildew infection together with constitutive changes, principally at the RBgh2 locus. Defence-related genes significantly induced included homologues of genes associated with innate immunity and pathogen recognition. Intriguingly, RBgh2 resistance does not appear to be dependent on salicylic acid signalling, a key pathway in plant resistance to biotrophs. Constitutive co-expression of resistance gene homologues was evident at the 7HS RBgh2 locus, while no expression was evident for a 6-transmembrane gene, predicted in silico to contain both G-protein- and calmodulin-binding domains. The gene was disrupted at the 5' end, and G-protein-binding activity was suppressed. RBgh2 appears to operate through a unique mechanism that co-opts elements of innate immunity.
Collapse
Affiliation(s)
- Paula Moolhuijzen
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Cynthia Ge
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Elzette Palmiero
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Simon R Ellwood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
18
|
Wang J, Wu X, Wang Y, Wu X, Wang B, Lu Z, Li G. Genome-wide characterization and expression analysis of the MLO gene family sheds light on powdery mildew resistance in Lagenaria siceraria. Heliyon 2023; 9:e14624. [PMID: 37025859 PMCID: PMC10070393 DOI: 10.1016/j.heliyon.2023.e14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
MLO (mildew locus O) genes play a vital role in plant disease defense system, especially powdery mildew (PM). Lagenaria siceraria is a distinct Cucurbitaceae crop, and PM is one of the most serious diseases threatening crop production and quality. Although MLOs have been exploited in many Cucurbitaceae species, genome-wide mining of MLO gene family in bottle gourd has not been surveyed yet. Here we identified 16 MLO genes in our recently assembled L. siceraria genome. A total of 343 unique MLO protein sequences from 20 species were characterized and compared to deduce a generally high level of purifying selection and the occurrence of regions related to candidate susceptibility factors in the evolutional divergence. LsMLOs were clustered in six clades containing seven conserved transmembrane domains and 10 clade-specific motifs along with deletion and variation. Three genes (LsMLO3, LsMLO6, and LsMLO13) in clade V showed high sequence identity with orthologues involved in PM susceptibility. The expression pattern of LsMLOs was tissue-specific but not cultivar-specific. Furthermore, it was indicated by qRT-PCR and RNA-seq that LsMLO3 and LsMLO13 were highly upregulated in response to PM stress. Subsequent sequence analysis revealed the structural deletion of LsMLO13 and a single nonsynonymous substitution of LsMLO3 in the PM-resistant genotype. Taken all together, it is speculated that LsMLO13 is likely a major PM susceptibility factor. The results of this study provide new insights into MLO family genes in bottle gourd and find a potential candidate S gene for PM tolerance breeding.
Collapse
|
19
|
von Bongartz K, Sabelleck B, Forero AB, Kuhn H, Leissing F, Panstruga R. Comprehensive comparative assessment of the Arabidopsis thaliana MLO2-calmodulin interaction by various in vitro and in vivo protein-protein interaction assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525488. [PMID: 36747653 PMCID: PMC9900802 DOI: 10.1101/2023.01.25.525488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mildew resistance locus o (MLO) proteins are heptahelical integral membrane proteins of which some isoforms act as susceptibility factors for the fungal powdery mildew pathogen. In many angiosperm plant species, loss-of-function mlo mutants confer durable broad-spectrum resistance against the powdery mildew disease. Barley Mlo is known to interact via a cytosolic carboxyl-terminal domain with the intracellular calcium sensor calmodulin (CAM) in a calcium-dependent manner. Site-directed mutagenesis has revealed key amino acid residues in the barley Mlo calcium-binding domain (CAMBD) that, when mutated, affect the MLO-CAM association. We here tested the respective interaction between Arabidopsis thaliana MLO2 and CAM2 using seven different types of in vitro and in vivo protein-protein interaction assays. In each assay, we deployed a wild-type version of either the MLO2 carboxyl terminus (MLO2 CT ), harboring the CAMBD, or the MLO2 full-length protein and corresponding mutant variants in which two key residues within the CAMBD were substituted by non-functional amino acids. We focused in particular on the substitution of two hydrophobic amino acids (LW/RR mutant) and found in most protein-protein interaction experiments reduced binding of CAM2 to the corresponding MLO2/MLO2 CT LW/RR mutant variants in comparison to the respective wild-type versions. However, the Ura3-based yeast split-ubiquitin system and in planta bimolecular fluorescence complementation (BiFC) assays failed to indicate reduced CAM2 binding to the mutated CAMBD. Our data shed further light on the interaction of MLO and CAM proteins and provide a comprehensive comparative assessment of different types of protein-protein interaction assays with wild-type and mutant versions of an integral membrane protein.
Collapse
Affiliation(s)
- Kira von Bongartz
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52074 Aachen, Germany
| | - Björn Sabelleck
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52074 Aachen, Germany
| | - Anežka Baquero Forero
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52074 Aachen, Germany
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52074 Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
20
|
Tek MI, Calis O, Fidan H, Shah MD, Celik S, Wani SH. CRISPR/Cas9 based mlo-mediated resistance against Podosphaera xanthii in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1081506. [PMID: 36600929 PMCID: PMC9806270 DOI: 10.3389/fpls.2022.1081506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Powdery mildews (PM) are common and severe pathogen groups that threaten plants, and PM resistance is complex and polygenic in cucumbers. Previously mlo-based resistance was reported in various plants, including cucumber, with generated loss-of CsaMLO function mutants. However, mlo-based resistance in cucumber is also complex and involves additional mechanisms such as hypersensitive response (HR) and papillae formation. For this reason, we focused on determining the mlo-based powdery mildew resistance mechanism in cucumber. CRISPR/Cas9 was used in the present study to generate loss-of-function mutants for CsaMLO1, CsaMLO8, and CsaMLO11 of PM susceptible ADR27 cucumber inbred lines and CsaMLO mutants were obtained and validated. Trypan Blue and DAB staining were performed to detect Podosphaera xanthii germination/penetration rates and accumulation of Reactive Oxygen Species (ROS). Our results indicate that PM-susceptibility associated CsaMLOs in cucumber are negative regulators in different defense mechanisms against powdery mildew at early and late stages of infection. Further, the experiment results indicated that CsaMLO8 mutation-based resistance was associated with the pre-invasive response, while CsaMLO1 and CsaMLO11 could be negative regulators in the post-invasive defense response in cucumber against P. xanthii. Although the loss-of CsaMLO8 function confers the highest penetration resistance, CsaMLO1 and CsaMLO11 double mutations could be potential candidates for HR-based resistance against PM pathogen in cucumber. These results highlighted the crucial role of CRISPR/Cas9 to develop PM resistant cucumber cultivars, possessing strong pre-invasive defense with CsaMLO8 or post-invasive with CsaMLO1/CsaMLO11 mutations.
Collapse
Affiliation(s)
- Mumin Ibrahim Tek
- Plant Protection Department, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| | - Ozer Calis
- Plant Protection Department, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| | - Hakan Fidan
- Plant Protection Department, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| | - Mehraj D. Shah
- Plant Virology and Molecular Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sefanur Celik
- Plant Protection Department, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| | - Shabir Hussain Wani
- Plant Protection Department, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
21
|
Acevedo-Garcia J, Walden K, Leissing F, Baumgarten K, Drwiega K, Kwaaitaal M, Reinstädler A, Freh M, Dong X, James GV, Baus LC, Mascher M, Stein N, Schneeberger K, Brocke-Ahmadinejad N, Kollmar M, Schulze-Lefert P, Panstruga R. Barley Ror1 encodes a class XI myosin required for mlo-based broad-spectrum resistance to the fungal powdery mildew pathogen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:84-103. [PMID: 35916711 DOI: 10.1111/tpj.15930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/17/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Loss-of-function alleles of plant MLO genes confer broad-spectrum resistance to powdery mildews in many eudicot and monocot species. Although barley (Hordeum vulgare) mlo mutants have been used in agriculture for more than 40 years, understanding of the molecular principles underlying this type of disease resistance remains fragmentary. Forward genetic screens in barley have revealed mutations in two Required for mlo resistance (Ror) genes that partially impair immunity conferred by mlo mutants. While Ror2 encodes a soluble N-ethylmaleimide-sensitive factor-attached protein receptor (SNARE), the identity of Ror1, located at the pericentromeric region of barley chromosome 1H, remained elusive. We report the identification of Ror1 based on combined barley genomic sequence information and transcriptomic data from ror1 mutant plants. Ror1 encodes the barley class XI myosin Myo11A (HORVU.MOREX.r3.1HG0046420). Single amino acid substitutions of this myosin, deduced from non-functional ror1 mutant alleles, map to the nucleotide-binding region and the interface between the relay-helix and the converter domain of the motor protein. Ror1 myosin accumulates transiently in the course of powdery mildew infection. Functional fluorophore-labeled Ror1 variants associate with mobile intracellular compartments that partially colocalize with peroxisomes. Single-cell expression of the Ror1 tail region causes a dominant-negative effect that phenocopies ror1 loss-of-function mutants. We define a myosin motor for the establishment of mlo-mediated resistance, suggesting that motor protein-driven intracellular transport processes are critical for extracellular immunity, possibly through the targeted transfer of antifungal and/or cell wall cargoes to pathogen contact sites.
Collapse
Affiliation(s)
- Johanna Acevedo-Garcia
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Kim Walden
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Kira Baumgarten
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Katarzyna Drwiega
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Mark Kwaaitaal
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Matthias Freh
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Xue Dong
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Geo Velikkakam James
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Lisa C Baus
- Faculty of Biology, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Seeland, Germany
- Center of integrated Breeding Research (CiBreed), Department of Crop Sciences, Georg-August-University Göttingen, Von Siebold Str. 8, 37075, Göttingen, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Faculty of Biology, LMU Munich, 82152, Planegg-Martinsried, Germany
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Nahal Brocke-Ahmadinejad
- INRES Crop Bioinformatics, University of Bonn, Katzenburgweg 2, 53115, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, D-53115, Bonn, Germany
| | - Martin Kollmar
- Department of NMR-based Structural Biology, Group Systems Biology of Motor Proteins, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
22
|
Fang X, Yan P, Luo F, Han S, Lin T, Li S, Li S, Zhu T. Functional Identification of Arthrinium phaeospermum Effectors Related to Bambusa pervariabilis × Dendrocalamopsis grandis Shoot Blight. Biomolecules 2022; 12:biom12091264. [PMID: 36139102 PMCID: PMC9496123 DOI: 10.3390/biom12091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
The shoot blight of Bambusa pervariabilis × Dendrocalamopsis grandis caused by Arthrinium phaeospermum made bamboo die in a large area, resulting in serious ecological and economic losses. Dual RNA-seq was used to sequence and analyze the transcriptome data of A. phaeospermum and B. pervariabilis × D. grandis in the four periods after the pathogen infected the host and to screen the candidate effectors of the pathogen related to the infection. After the identification of the effectors by the tobacco transient expression system, the functions of these effectors were verified by gene knockout. Fifty-three differentially expressed candidate effectors were obtained by differential gene expression analysis and effector prediction. Among them, the effectors ApCE12 and ApCE22 can cause programmed cell death in tobacco. The disease index of B. pervariabilis × D. grandis inoculated with mutant ΔApCE12 and mutant ΔApCE22 strains were 52.5% and 47.5%, respectively, which was significantly lower than that of the wild-type strains (80%), the ApCE12 complementary strain (77.5%), and the ApCE22 complementary strain (75%). The tolerance of the mutant ΔApCE12 and mutant ΔApCE22 strains to H2O2 and NaCl stress was significantly lower than that of the wild-type strain and the ApCE12 complementary and ApCE22 complementary strains, but there was no difference in their tolerance to Congo red. Therefore, this study shows that the effectors ApCE12 and ApCE22 play an important role in A. phaeospermum virulence and response to H2O2 and NaCl stress.
Collapse
Affiliation(s)
- Xinmei Fang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
- Faculty of Mathematics and Natural Sciences, University of Cologne, 50674 Köln, Germany
| | - Peng Yan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengying Luo
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China
- Correspondence: (S.L.); (T.Z.); Tel.: +86-17761264491 (T.Z.)
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (S.L.); (T.Z.); Tel.: +86-17761264491 (T.Z.)
| |
Collapse
|
23
|
A receptor-channel trio conducts Ca 2+ signalling for pollen tube reception. Nature 2022; 607:534-539. [PMID: 35794475 DOI: 10.1038/s41586-022-04923-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022]
Abstract
Precise signalling between pollen tubes and synergid cells in the ovule initiates fertilization in flowering plants1. Contact of the pollen tube with the ovule triggers calcium spiking in the synergids2,3 that induces pollen tube rupture and sperm release. This process, termed pollen tube reception, entails the action of three synergid-expressed proteins in Arabidopsis: FERONIA (FER), a receptor-like kinase; LORELEI (LRE), a glycosylphosphatidylinositol-anchored protein; and NORTIA (NTA), a transmembrane protein of unknown function4-6. Genetic analyses have placed these three proteins in the same pathway; however, it remains unknown how they work together to enable synergid-pollen tube communication. Here we identify two pollen-tube-derived small peptides7 that belong to the rapid alkalinization factor (RALF) family8 as ligands for the FER-LRE co-receptor, which in turn recruits NTA to the plasma membrane. NTA functions as a calmodulin-gated calcium channel required for calcium spiking in the synergid. We also reconstitute the biochemical pathway in which FER-LRE perceives pollen-tube-derived peptides to activate the NTA calcium channel and initiate calcium spiking, a second messenger for pollen tube reception. The FER-LRE-NTA trio therefore forms a previously unanticipated receptor-channel complex in the female cell to recognize male signals and trigger the fertilization process.
Collapse
|
24
|
MLO Proteins from Tomato (Solanum lycopersicum L.) and Related Species in the Broad Phylogenetic Context. PLANTS 2022; 11:plants11121588. [PMID: 35736740 PMCID: PMC9229925 DOI: 10.3390/plants11121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
MLO proteins are a family of transmembrane proteins in land plants that play an important role in plant immunity and host–pathogen interactions, as well as a wide range of development processes. Understanding the evolutionary history of MLO proteins is important for understanding plant physiology and health. In the present work, we conducted a phylogenetic analysis on a large set of MLO protein sequences from publicly available databases, specifically emphasising MLOs from the tomato plant and related species. As a result, 4886 protein sequences were identified and used to construct a phylogenetic tree. In comparison to previous findings, we identified nine phylogenetic clades, revealed the internal structure of clades I and II as additional clades and showed the presence of monocotyledon species in all MLO clades. We identified a set of 19 protein motifs that allowed for the identification of particular clades. Sixteen SlMLO proteins from tomato were located in the phylogenetic tree and identified in relation to homologous sequences from other Solanaceae species. The obtained results could be useful for further work on the use of MLO proteins in the study of mildew resistance in Solanaceae and other plant families.
Collapse
|
25
|
Foliar Silicon Spray before Summer Cutting Propagation Enhances Resistance to Powdery Mildew of Daughter Plants. Int J Mol Sci 2022; 23:ijms23073803. [PMID: 35409165 PMCID: PMC8998806 DOI: 10.3390/ijms23073803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Silicon (Si) has beneficial effects on not only plant growth but also against biotic and abiotic stresses. However, a few studies focus on how Si application helps strawberry (Fragaria × ananassa Duch.) resist powdery mildew. The aim of this work was to find out the optimal Si application method before cutting propagation to enhance the resistance to powdery mildew in strawberry “daughter” plants. Naturally infected “mother” plants of ‘Sulhyang’, ‘Maehyang’, and ‘Kuemsil’ strawberries were supplied with Si. Potassium silicate (K2SiO3) at a final concentration of 75 mg·L−1 Si was either added to the medium for drenching or sprayed to the leaves of the “mother” or “daughter” plant, or soluble Si fertilizer was used to dress the “mother” plant. The Si application significantly increased the shoot fresh weight of the “daughter” plants. Supplemental Si also increased the contents of phosphorus (P), potassium (K), and magnesium (Mg). In addition, the Si treatment decreased the damage of powdery mildew by increased level of proline content and suppressive reactive oxygen species. After applying Si, the length and density of hyphae on the leaf surface decreased. In addition, the infected area of “daughter” plant leaves covered with powdery mildew decreased. This study also demonstrated that Si increased the expression of resistance-gene and decreased the expression of susceptibility-gene of strawberry. Overall, Si application promoted the growth of the “daughter” plants regardless of the application method. Direct foliar Si spray to the “daughter” plants before cutting propagation is recommended to increase their resistance to powdery mildew.
Collapse
|
26
|
Zhao F, Cheng W, Wang Y, Gao X, Huang D, Kong J, Antwi-Boasiako A, Zheng L, Yan W, Chang F, Kong K, Liao YY, Huerta AI, Liu W, Zhang M, Zhao T. Identification of Novel Genomic Regions for Bacterial Leaf Pustule (BLP) Resistance in Soybean ( Glycine max L.) via Integrating Linkage Mapping and Association Analysis. Int J Mol Sci 2022; 23:2113. [PMID: 35216225 PMCID: PMC8876204 DOI: 10.3390/ijms23042113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/20/2023] Open
Abstract
Bacterial leaf pustule (BLP), caused by Xanthornonas axonopodis pv. glycines (Xag), is a worldwide disease of soybean, particularly in warm and humid regions. To date, little is known about the underlying molecular mechanisms of BLP resistance. The only single recessive resistance gene rxp has not been functionally identified yet, even though the genotypes carrying the gene have been widely used for BLP resistance breeding. Using a linkage mapping in a recombinant inbred line (RIL) population against the Xag strain Chinese C5, we identified that quantitative trait locus (QTL) qrxp-17-2 accounted for 74.33% of the total phenotypic variations. We also identified two minor QTLs, qrxp-05-1 and qrxp-17-1, that accounted for 7.26% and 22.26% of the total phenotypic variations, respectively, for the first time. Using a genome-wide association study (GWAS) in 476 cultivars of a soybean breeding germplasm population, we identified a total of 38 quantitative trait nucleotides (QTNs) on chromosomes (Chr) 5, 7, 8, 9,15, 17, 19, and 20 under artificial infection with C5, and 34 QTNs on Chr 4, 5, 6, 9, 13, 16, 17, 18, and 20 under natural morbidity condition. Taken together, three QTLs and 11 stable QTNs were detected in both linkage mapping and GWAS analysis, and located in three genomic regions with the major genomic region containing qrxp_17_2. Real-time RT-PCR analysis of the relative expression levels of five potential candidate genes in the resistant soybean cultivar W82 following Xag treatment showed that of Glyma.17G086300, which is located in qrxp-17-2, significantly increased in W82 at 24 and 72 h post-inoculation (hpi) when compared to that in the susceptible cultivar Jack. These results indicate that Glyma.17G086300 is a potential candidate gene for rxp and the QTLs and QTNs identified in this study will be useful for marker development for the breeding of Xag-resistant soybean cultivars.
Collapse
Affiliation(s)
- Fangzhou Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Wei Cheng
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Yanan Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Debao Huang
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA; (D.H.); (W.L.)
| | - Jiejie Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Augustine Antwi-Boasiako
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
- CSIR-Crops Research Institute, Kumasi AK420, Ghana
| | - Lingyi Zheng
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Wenliang Yan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Fangguo Chang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Ying-Yu Liao
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27607, USA; (Y.-Y.L.); (A.I.H.)
| | - Alejandra I. Huerta
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27607, USA; (Y.-Y.L.); (A.I.H.)
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA; (D.H.); (W.L.)
| | - Mengchen Zhang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Laboratory of Crop Genetics and Breeding of Hebei, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050000, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| |
Collapse
|
27
|
Li S, Lin D, Zhang Y, Deng M, Chen Y, Lv B, Li B, Lei Y, Wang Y, Zhao L, Liang Y, Liu J, Chen K, Liu Z, Xiao J, Qiu JL, Gao C. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 2022; 602:455-460. [PMID: 35140403 DOI: 10.1038/s41586-022-04395-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Disruption of susceptibility (S) genes in crops is an attractive breeding strategy for conferring disease resistance1,2. However, S genes are implicated in many essential biological functions and deletion of these genes typically results in undesired pleiotropic effects1. Loss-of-function mutations in one such S gene, Mildew resistance locus O (MLO), confers durable and broad-spectrum resistance to powdery mildew in various plant species2,3. However, mlo-associated resistance is also accompanied by growth penalties and yield losses3,4, thereby limiting its widespread use in agriculture. Here we describe Tamlo-R32, a mutant with a 304-kilobase pair targeted deletion in the MLO-B1 locus of wheat that retains crop growth and yields while conferring robust powdery mildew resistance. We show that this deletion results in an altered local chromatin landscape, leading to the ectopic activation of Tonoplast monosaccharide transporter 3 (TaTMT3B), and that this activation alleviates growth and yield penalties associated with MLO disruption. Notably, the function of TMT3 is conserved in other plant species such as Arabidopsis thaliana. Moreover, precision genome editing facilitates the rapid introduction of this mlo resistance allele (Tamlo-R32) into elite wheat varieties. This work demonstrates the ability to stack genetic changes to rescue growth defects caused by recessive alleles, which is critical for developing high-yielding crop varieties with robust and durable disease resistance.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dexing Lin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yunwei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Deng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bin Lv
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Lei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Long Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yueting Liang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jinxing Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China. .,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Leissing F, Reinstädler A, Thieron H, Panstruga R. Gene Gun-Mediated Transient Gene Expression for Functional Studies in Plant Immunity. Methods Mol Biol 2022; 2523:63-77. [PMID: 35759191 DOI: 10.1007/978-1-0716-2449-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One major threat to plant cultivation are fungal pathogens, which can cause substantial yield losses in agriculture. As an example, cereal powdery mildew fungi such as the barley (Hordeum vulgare) pathogen, Blumeria graminis f. sp. hordei (Bgh), are among the ten most relevant fungal plant pathogens in molecular plant pathology and can lead to yield losses of up to 30%. Plant Mildew resistance Locus O (MLO) genes are required for successful colonization of plants by powdery mildew fungi. Accordingly, loss-of-function mlo mutants confer durable resistance against powdery mildew fungi in many plant species. In the case of barley, mlo-based resistance has been used for more than 40 years in agriculture without powdery mildew fungi effectively overcoming this kind of immunity. However, the molecular basis of mlo resistance and function(s) of the transmembrane Mlo protein(s) are still incompletely understood. The generation of transgenic barley plants to study the plant immune response and the involvement of Mlo therein is time-consuming and challenging. Therefore, transient gene expression via gene gun-mediated particle bombardment became a popular, easy, and efficient tool to investigate different aspects of plant defense responses in barley. Since Bgh fails to penetrate leaf epidermal cells of mlo mutants, single-cell complementation upon biolistic transformation resulting in (over-)expression of Mlo can be used to characterize the Mlo protein functionally in vivo. In this chapter, we describe in detail the gene gun-mediated transient expression of Mlo in barley leaf epidermal cells followed by powdery mildew inoculation and the subsequent microscopic evaluation. However, gene gun-mediated transient gene expression may be also used to address other research questions or to transform the epidermal tissues of other plant organs and/or species.
Collapse
Affiliation(s)
- Franz Leissing
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Anja Reinstädler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Hannah Thieron
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany.
| |
Collapse
|
29
|
Identification of Susceptibility Genes for Fusarium oxysporum in Cucumber via Comparative Proteomic Analysis. Genes (Basel) 2021; 12:genes12111781. [PMID: 34828387 PMCID: PMC8623666 DOI: 10.3390/genes12111781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Fusarium wilt (FW) in cucumber (Cucumis sativus L.), caused by Fusarium oxysporum f. sp. cucumerinum (Foc), poses a major threat to cucumber growth and productivity. However, lack of available natural resistance resources for FW restricts the breeding of resistant cultivars via conventional approaches. Susceptibility (S) genes in susceptible host plants facilitate infection by the pathogen and contribute to susceptibility. Loss of function of these S genes might provide broad-spectrum and durable disease resistance. Here, we screened S genes via comparative proteomic analysis between cucumber cultivars Rijiecheng and Superina, which exhibited resistance and high -susceptibility to FW, respectively. We identified 210 and 243 differentially regulated proteins (DRPs) in the Rijiecheng and Superina, respectively, and further found that 32 DRPs were predominantly expressed in Superina and significantly up-regulated after Foc inoculation. Expression verification found that TMEM115 (CsaV3_5G025750), encoding a transmembrane protein, TET8 (CsaV3_2G007840), encoding function as a tetraspanin, TPS10 (CsaV3_2G017980) encoding a terpene synthase, and MGT2 (CsaV3_7G006660), encoding a glycosyltransferase, were significantly induced in both cultivars after Foc infection but were induced to a higher expression level in Superina. These candidate genes might act as negative regulators of FW resistance in cucumber and provide effective FW-susceptibility gene resources for improving cucumber FW resistance through breeding programs.
Collapse
|
30
|
Gao M, He Y, Yin X, Zhong X, Yan B, Wu Y, Chen J, Li X, Zhai K, Huang Y, Gong X, Chang H, Xie S, Liu J, Yue J, Xu J, Zhang G, Deng Y, Wang E, Tharreau D, Wang GL, Yang W, He Z. Ca 2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell 2021; 184:5391-5404.e17. [PMID: 34597584 DOI: 10.1016/j.cell.2021.09.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/23/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Plant immunity is activated upon pathogen perception and often affects growth and yield when it is constitutively active. How plants fine-tune immune homeostasis in their natural habitats remains elusive. Here, we discover a conserved immune suppression network in cereals that orchestrates immune homeostasis, centering on a Ca2+-sensor, RESISTANCE OF RICE TO DISEASES1 (ROD1). ROD1 promotes reactive oxygen species (ROS) scavenging by stimulating catalase activity, and its protein stability is regulated by ubiquitination. ROD1 disruption confers resistance to multiple pathogens, whereas a natural ROD1 allele prevalent in indica rice with agroecology-specific distribution enhances resistance without yield penalty. The fungal effector AvrPiz-t structurally mimics ROD1 and activates the same ROS-scavenging cascade to suppress host immunity and promote virulence. We thus reveal a molecular framework adopted by both host and pathogen that integrates Ca2+ sensing and ROS homeostasis to suppress plant immunity, suggesting a principle for breeding disease-resistant, high-yield crops.
Collapse
Affiliation(s)
- Mingjun Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbin Zhong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Bingxiao Yan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yue Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jin Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyuan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Keran Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yifeng Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiangyu Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huizhong Chang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shenghan Xie
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiaxing Yue
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jianlong Xu
- Insititute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guiquan Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Didier Tharreau
- PHIM, CIRAD, INRAE, IRD, Montpellier SupAgro, MUSE, Montpellier Cedex 05, France
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, OH 43210, USA
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS-JIC Center of Excellence for Plant and Microbial Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
31
|
Ntui VO, Uyoh EA, Ita EE, Markson AA, Tripathi JN, Okon NI, Akpan MO, Phillip JO, Brisibe EA, Ene‐Obong EE, Tripathi L. Strategies to combat the problem of yam anthracnose disease: Status and prospects. MOLECULAR PLANT PATHOLOGY 2021; 22:1302-1314. [PMID: 34275185 PMCID: PMC8435233 DOI: 10.1111/mpp.13107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 05/05/2023]
Abstract
Yam (Dioscorea spp.) anthracnose, caused by Colletotrichum alatae, is the most devastating fungal disease of yam in West Africa, leading to 50%-90% of tuber yield losses in severe cases. In some instances, plants die without producing any tubers or each shoot may produce several small tubers before it dies if the disease strikes early. C. alatae affects all parts of the yam plant at all stages of development, including leaves, stems, tubers, and seeds of yams, and it is highly prevalent in the yam belt region and other yam-producing countries in the world. Traditional methods adopted by farmers to control the disease have not been very successful. Fungicides have also failed to provide long-lasting control. Although conventional breeding and genomics-assisted breeding have been used to develop some level of resistance to anthracnose in Dioscorea alata, the appearance of new and more virulent strains makes the development of improved varieties with broad-spectrum and durable resistance critical. These shortcomings, coupled with interspecific incompatibility, dioecy, polyploidy, poor flowering, and the long breeding cycle of the crop, have prompted researchers to explore biotechnological techniques to complement conventional breeding to speed up crop improvement. Modern biotechnological tools have the potential of producing fungus-resistant cultivars, thereby bypassing the natural bottlenecks of traditional breeding. This article reviews the existing biotechnological strategies and proposes several approaches that could be adopted to develop anthracnose-resistant yam varieties for improved food security in West Africa.
Collapse
Affiliation(s)
- Valentine Otang Ntui
- Department of Genetics and BiotechnologyUniversity of CalabarCalabarNigeria
- International Institute of Tropical AgricultureNairobiKenya
| | - Edak Aniedi Uyoh
- Department of Genetics and BiotechnologyUniversity of CalabarCalabarNigeria
| | - Effiom Eyo Ita
- Department of Genetics and BiotechnologyUniversity of CalabarCalabarNigeria
| | | | | | - Nkese Ime Okon
- Department of Genetics and BiotechnologyUniversity of CalabarCalabarNigeria
| | - Mfon Okon Akpan
- Department of Genetics and BiotechnologyUniversity of CalabarCalabarNigeria
| | | | | | | | - Leena Tripathi
- International Institute of Tropical AgricultureNairobiKenya
| |
Collapse
|
32
|
Jacott CN, Ridout CJ, Murray JD. Unmasking Mildew Resistance Locus O. TRENDS IN PLANT SCIENCE 2021; 26:1006-1013. [PMID: 34175219 DOI: 10.1016/j.tplants.2021.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Loss of Mildew Resistance Locus O (MLO) in barley confers durable resistance to powdery mildew fungi, which has led to its wide deployment in agriculture. Although MLO is a susceptibility factor, it has become nearly synonymous with powdery mildew resistance. However, MLO has been recently implicated in colonization by arbuscular mycorrhizal fungi and a fungal endophyte, confirming its importance for biotrophic interactions and in promoting symbiosis. Other MLO proteins are involved in essential sensory processes, particularly fertilization and thigmotropism. We propose external stimulus perception as a common theme in these interactions and consider a unified biochemical role, potentially relating to reactive oxygen species (ROS) and calcium regulation, for MLOs across tissues and processes.
Collapse
Affiliation(s)
- Catherine N Jacott
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Christopher J Ridout
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, CAS-araJIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Centre for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
33
|
Pépin N, Hebert FO, Joly DL. Genome-Wide Characterization of the MLO Gene Family in Cannabis sativa Reveals Two Genes as Strong Candidates for Powdery Mildew Susceptibility. FRONTIERS IN PLANT SCIENCE 2021; 12:729261. [PMID: 34589104 PMCID: PMC8475652 DOI: 10.3389/fpls.2021.729261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Cannabis sativa is increasingly being grown around the world for medicinal, industrial, and recreational purposes. As in all cultivated plants, cannabis is exposed to a wide range of pathogens, including powdery mildew (PM). This fungal disease stresses cannabis plants and reduces flower bud quality, resulting in significant economic losses for licensed producers. The Mildew Locus O (MLO) gene family encodes plant-specific proteins distributed among conserved clades, of which clades IV and V are known to be involved in susceptibility to PM in monocots and dicots, respectively. In several studies, the inactivation of those genes resulted in durable resistance to the disease. In this study, we identified and characterized the MLO gene family members in five different cannabis genomes. Fifteen Cannabis sativa MLO (CsMLO) genes were manually curated in cannabis, with numbers varying between 14, 17, 19, 18, and 18 for CBDRx, Jamaican Lion female, Jamaican Lion male, Purple Kush, and Finola, respectively (when considering paralogs and incomplete genes). Further analysis of the CsMLO genes and their deduced protein sequences revealed that many characteristics of the gene family, such as the presence of seven transmembrane domains, the MLO functional domain, and particular amino acid positions, were present and well conserved. Phylogenetic analysis of the MLO protein sequences from all five cannabis genomes and other plant species indicated seven distinct clades (I through VII), as reported in other crops. Expression analysis revealed that the CsMLOs from clade V, CsMLO1 and CsMLO4, were significantly upregulated following Golovinomyces ambrosiae infection, providing preliminary evidence that they could be involved in PM susceptibility. Finally, the examination of variation within CsMLO1 and CsMLO4 in 32 cannabis cultivars revealed several amino acid changes, which could affect their function. Altogether, cannabis MLO genes were identified and characterized, among which candidates potentially involved in PM susceptibility were noted. The results of this study will lay the foundation for further investigations, such as the functional characterization of clade V MLOs as well as the potential impact of the amino acid changes reported. Those will be useful for breeding purposes in order to develop resistant cultivars.
Collapse
Affiliation(s)
- Noémi Pépin
- Centre d’Innovation et de Recherche sur le Cannabis, Université de Moncton, Département de biologie, Moncton, NB, Canada
| | - Francois Olivier Hebert
- Centre d’Innovation et de Recherche sur le Cannabis, Université de Moncton, Département de biologie, Moncton, NB, Canada
- Institut National des Cannabinoïdes, Montréal, QC, Canada
| | - David L. Joly
- Centre d’Innovation et de Recherche sur le Cannabis, Université de Moncton, Département de biologie, Moncton, NB, Canada
| |
Collapse
|
34
|
Nie J, Wang H, Zhang W, Teng X, Yu C, Cai R, Wu G. Characterization of lncRNAs and mRNAs Involved in Powdery Mildew Resistance in Cucumber. PHYTOPATHOLOGY 2021; 111:1613-1624. [PMID: 33522835 DOI: 10.1094/phyto-11-20-0521-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Powdery mildew (PM) is a severe fungal disease of cucumber worldwide. Identification of genetic factors resistant to PM is of great importance for marker-assisted breeding to ensure cucumber production. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to play important roles in plant development and immunity; however, whether they have a role in PM response in cucurbit crops remains unknown. We performed strand-specific RNA sequencing and miRNA sequencing using RNA from cucumber leaves of two near-isogenic lines (NILs), S1003 and NIL (Pm5.1) infected with PM, and systematically characterized the profiles of cucumber lncRNAs and messenger RNA (mRNAs) responsive to PM. In total, we identified 12,903 lncRNAs and 25,598 mRNAs responsive to PM. Differential expression (DE) analysis showed that 119 lncRNAs and 136 mRNAs correlated with PM resistance. Functional analysis of these DE lncRNAs and DE mRNAs revealed that they are significantly associated with phenylpropanoid biosynthesis, phenylalanine metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and endocytosis. Particularly, two lncRNAs, LNC_006805 and LNC_012667, might play important roles in PM resistance. In addition, we also predicted mature miRNAs and competing endogenous RNA (ceRNA) networks of lncRNA-miRNA-mRNA involved in PM resistance. A total of 49 DE lncRNAs could potentially act as target mimics for 106 miRNAs. Taken together, our results provide an abundant resource for further exploration of cucumber lncRNAs, mRNAs, miRNAs, and ceRNAs in PM resistance, and will facilitate the molecular breeding for PM-resistant varieties to control this severe disease in cucumber.
Collapse
Affiliation(s)
- Jingtao Nie
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Huasen Wang
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wanlu Zhang
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xue Teng
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chao Yu
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Wu
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
35
|
Li X, Li S, Liu Y, He Q, Liu W, Lin C, Miao W. HbLFG1, a Rubber Tree ( Hevea brasiliensis) Lifeguard Protein, Can Facilitate Powdery Mildew Infection by Suppressing Plant Immunity. PHYTOPATHOLOGY 2021; 111:1648-1659. [PMID: 34047620 DOI: 10.1094/phyto-08-20-0362-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Powdery mildew causes substantial losses in crop and economic plant yields worldwide. Although powdery mildew infection of rubber trees (Hevea brasiliensis), caused by the biotrophic fungus Erysiphe quercicola, severely threatens natural rubber production, little is known about the mechanism by which E. quercicola adapts to H. brasiliensis to invade the host plant. In barley and Arabidopsis thaliana, lifeguard (LFG) proteins, which have topological similarity to BAX INHIBITOR-1, are involved in host plant susceptibility to powdery mildew infection. In this study, we characterized an H. brasiliensis LFG protein (HbLFG1) with a focus on its function in regulating defense against powdery mildew. HbLFG1 gene expression was found to be upregulated during E. quercicola infection. HbLFG1 showed conserved functions in cell death inhibition and membrane localization. Expression of HbLFG1 in Nicotiana benthamiana leaves and A. thaliana Col-0 was demonstrated to significantly suppress callose deposition induced by conserved pathogen-associated molecular patterns chitin and flg22. Furthermore, we found that overexpression of HbLFG1 in H. brasiliensis mesophyll protoplasts significantly suppressed the chitin-induced burst of reactive oxygen species. Although A. thaliana Col-0 and E. quercicola displayed an incompatible interaction, Col-0 transformants overexpressing HbLFG1 were shown to be susceptible to E. quercicola. Collectively, the findings of this study provide evidence that HbLFG1 acts as a negative regulator of plant immunity that facilitates E. quercicola infection in H. brasiliensis.
Collapse
Affiliation(s)
- Xiao Li
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Sipeng Li
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Yuhan Liu
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Qiguang He
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Wenbo Liu
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Chunhua Lin
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Weiguo Miao
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| |
Collapse
|
36
|
Yaeno T, Wahara M, Nagano M, Wanezaki H, Toda H, Inoue H, Eishima A, Nishiguchi M, Hisano H, Kobayashi K, Sato K, Yamaoka N. RACE1, a Japanese Blumeria graminis f. sp. hordei isolate, is capable of overcoming partially mlo-mediated penetration resistance in barley in an allele-specific manner. PLoS One 2021; 16:e0256574. [PMID: 34424930 PMCID: PMC8382181 DOI: 10.1371/journal.pone.0256574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022] Open
Abstract
Loss-of-function mutation of the MILDEW RESISTANCE LOCUS O (Mlo) gene confers durable and broad-spectrum resistance to powdery mildew fungi in various plants, including barley. In combination with the intracellular nucleotide-binding domain and leucine-rich repeat receptor (NLR) genes, which confer the race-specific resistance, the mlo alleles have long been used in barley breeding as genetic resources that confer robust non-race-specific resistance. However, a Japanese Blumeria graminis f. sp. hordei isolate, RACE1, has been reported to have the potential to overcome partially the mlo-mediated penetration resistance, although this is yet uncertain because the putative effects of NLR genes in the tested accessions have not been ruled out. In this study, we examined the reproducibility of the earlier report and found that the infectious ability of RACE1, which partially overcomes the mlo-mediated resistance, is only exerted in the absence of NLR genes recognizing RACE1. Furthermore, using the transient-induced gene silencing technique, we demonstrated that RACE1 can partially overcome the resistance in the host cells with suppressed MLO expression but not in plants possessing the null mutant allele mlo-5.
Collapse
Affiliation(s)
- Takashi Yaeno
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
- Research Unit for Citromics, Ehime University, Tarumi, Matsuyama, Ehime, Japan
| | - Miki Wahara
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| | - Mai Nagano
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| | - Hikaru Wanezaki
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| | - Hirotaka Toda
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| | - Hiroshi Inoue
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| | - Ayaka Eishima
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| | | | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Chuo, Kurashiki, Okayama, Japan
| | - Kappei Kobayashi
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
- Research Unit for Citromics, Ehime University, Tarumi, Matsuyama, Ehime, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Chuo, Kurashiki, Okayama, Japan
| | - Naoto Yamaoka
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| |
Collapse
|
37
|
Zhu L, Zhang XQ, Ye D, Chen LQ. The Mildew Resistance Locus O 4 Interacts with CaM/CML and Is Involved in Root Gravity Response. Int J Mol Sci 2021; 22:ijms22115962. [PMID: 34073116 PMCID: PMC8198571 DOI: 10.3390/ijms22115962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
The plant-specific mildew resistance locus O (MLO) proteins, which contain seven transmembrane domains and a conserved calmodulin-binding domain, play important roles in many plant developmental processes. However, their mechanisms that regulate plant development remain unclear. Here, we report the functional characterization of the MLO4 protein in Arabidopsis roots. The MLO4 was identified as interacting with CML12 in a screening for the interaction between the proteins from Arabidopsis MLO and calmodulin/calmodulin-like (CaM/CML) families using yeast two hybrid (Y2H) assays. Then, the interaction between MLO4 and CML12 was further verified by Luciferase Complementation Imaging (LCI) and Bimolecular Fluorescence Complementation (BiFC) assays. Genetic analysis showed that the mlo4, cml12, and mlo4 cml12 mutants displayed similar defects in root gravity response. These results imply that the MLO4 might play an important role in root gravity response through interaction with CML12. Moreover, our results also demonstrated that the interaction between the MLO and CaM/CML families might be conservative.
Collapse
Affiliation(s)
- Lei Zhu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.-Q.Z.); (D.Y.)
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Correspondence: (L.Z.); (L.-Q.C.)
| | - Xue-Qin Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.-Q.Z.); (D.Y.)
| | - De Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.-Q.Z.); (D.Y.)
| | - Li-Qun Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.-Q.Z.); (D.Y.)
- Correspondence: (L.Z.); (L.-Q.C.)
| |
Collapse
|
38
|
Yan Z, Appiano M, van Tuinen A, Meijer-Dekens F, Schipper D, Gao D, Huibers R, Visser RGF, Bai Y, Wolters AMA. Discovery and Characterization of a Novel Tomato mlo Mutant from an EMS Mutagenized Micro-Tom Population. Genes (Basel) 2021; 12:genes12050719. [PMID: 34064921 PMCID: PMC8150974 DOI: 10.3390/genes12050719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
In tomato (Solanum lycopersicum), there are at least three SlMLO (Mildew resistance Locus O) genes acting as susceptibility genes for the powdery mildew disease caused by Oidium neolycopersici, namely SlMLO1, SlMLO5 and SlMLO8. Of the three homologs, the SlMLO1 gene plays a major role since a natural mutant allele called ol-2 can almost completely prevent fungal penetration by formation of papillae. The ol-2 allele contains a 19-bp deletion in the coding sequence of the SlMLO1 gene, resulting in a premature stop codon within the second cytoplasmic loop of the predicted protein. In this study, we have developed a new genetic resource (M200) in the tomato cv. Micro-Tom genetic background by means of ethyl methane sulfonate (EMS) mutagenesis. The mutant M200 containing a novel allele (the m200 allele) of the tomato SlMLO1 gene showed profound resistance against powdery mildew with no fungal sporulation. Compared to the coding sequence of the SlMLO1 gene, the m200 allele carries a point mutation at T65A. The SNP results in a premature stop codon L22* located in the first transmembrane domain of the complete SlMLO1 protein. The length of the predicted protein is 21 amino acids, while the SlMLO1 full-length protein is 513 amino acids. A high-resolution melting (HRM) marker was developed to distinguish the mutated m200 allele from the SlMLO1 allele in backcross populations. The mutant allele conferred recessive resistance that was associated with papillae formation at fungal penetration sites of plant epidermal cells. A comprehensive list of known mlo mutations found in natural and artificial mutants is presented, which serves as a particularly valuable resource for powdery mildew resistance breeding.
Collapse
|
39
|
Xin J, Liu Y, Li H, Chen S, Jiang J, Song A, Fang W, Chen F. CmMLO17 and its partner CmKIC potentially support Alternaria alternata growth in Chrysanthemum morifolium. HORTICULTURE RESEARCH 2021; 8:101. [PMID: 33931614 PMCID: PMC8087703 DOI: 10.1038/s41438-021-00534-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 05/16/2023]
Abstract
The Mildew Resistance Locus O (MLO) gene family has been investigated in many species. However, there are few studies on chrysanthemum MLO genes. We report in this study that CmMLO17 in Chrysanthemum morifolium was upregulated after Alternaria alternata infection. Silencing of CmMLO17 by artificial microRNA resulted in reduced susceptibility of chrysanthemum to A. alternata infection. Genes in the abscisic acid (ABA) and Ca2+ signaling pathways were upregulated in the CmMLO17-silenced line R20 compared to the wild-type plants. We speculated that CmMLO17-silenced plants had a faster and stronger defense response that was mediated by the ABA and Ca2+ signaling pathways, resulting in reduced susceptibility of chrysanthemum to A. alternata infection. In addition, a candidate gene, CmKIC, that may interact with CmMLO17 was discovered by the yeast two-hybrid assay. The interaction between CmMLO17 and CmKIC was confirmed using the yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) analysis. CmMLO17 and CmKIC were both located on the plasma membrane, and CmKIC was also located on the nucleus. CmKIC overexpression increased the susceptibility of chrysanthemum to A. alternata, whereas CmKIC silencing resulted in reduced susceptibility. Therefore, CmMLO17 and CmKIC may work together in C. morifolium to support the growth of A. alternata. The results of this study will provide insight into the potential function of MLO and improve the understanding of plant defense responses to necrotrophic pathogens.
Collapse
Affiliation(s)
- Jingjing Xin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huiyun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
40
|
Ratu STN, Teulet A, Miwa H, Masuda S, Nguyen HP, Yasuda M, Sato S, Kaneko T, Hayashi M, Giraud E, Okazaki S. Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signalling. Sci Rep 2021; 11:2034. [PMID: 33479414 PMCID: PMC7820406 DOI: 10.1038/s41598-021-81598-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/06/2021] [Indexed: 01/29/2023] Open
Abstract
Legume plants form a root-nodule symbiosis with rhizobia. This symbiosis establishment generally relies on rhizobium-produced Nod factors (NFs) and their perception by leguminous receptors (NFRs) that trigger nodulation. However, certain rhizobia hijack leguminous nodulation signalling via their type III secretion system, which functions in pathogenic bacteria to deliver effector proteins into host cells. Here, we report that rhizobia use pathogenic-like effectors to hijack legume nodulation signalling. The rhizobial effector Bel2-5 resembles the XopD effector of the plant pathogen Xanthomonas campestris and could induce nitrogen-fixing nodules on soybean nfr mutant. The soybean root transcriptome revealed that Bel2-5 induces expression of cytokinin-related genes, which are important for nodule organogenesis and represses ethylene- and defense-related genes that are deleterious to nodulation. Remarkably, Bel2-5 introduction into a strain unable to nodulate soybean mutant affected in NF perception conferred nodulation ability. Our findings show that rhizobia employ and have customized pathogenic effectors to promote leguminous nodulation signalling.
Collapse
Affiliation(s)
- Safirah Tasa Nerves Ratu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Albin Teulet
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Hiroki Miwa
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Sachiko Masuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Michiko Yasuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, 603-8555, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Eric Giraud
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
41
|
Saur IML, Hückelhoven R. Recognition and defence of plant-infecting fungal pathogens. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153324. [PMID: 33249386 DOI: 10.1016/j.jplph.2020.153324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Attempted infections of plants with fungi result in diverse outcomes ranging from symptom-less resistance to severe disease and even death of infected plants. The deleterious effect on crop yield have led to intense focus on the cellular and molecular mechanisms that explain the difference between resistance and susceptibility. This research has uncovered plant resistance or susceptibility genes that explain either dominant or recessive inheritance of plant resistance with many of them coding for receptors that recognize pathogen invasion. Approaches based on cell biology and phytochemistry have contributed to identifying factors that halt an invading fungal pathogen from further invasion into or between plant cells. Plant chemical defence compounds, antifungal proteins and structural reinforcement of cell walls appear to slow down fungal growth or even prevent fungal penetration in resistant plants. Additionally, the hypersensitive response, in which a few cells undergo a strong local immune reaction, including programmed cell death at the site of infection, stops in particular biotrophic fungi from spreading into surrounding tissue. In this review, we give a general overview of plant recognition and defence of fungal parasites tracing back to the early 20th century with a special focus on Triticeae and on the progress that was made in the last 30 years.
Collapse
Affiliation(s)
- Isabel M L Saur
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Ramann-Straße 2, 85354 Freising, Germany.
| |
Collapse
|
42
|
Bhat MA, Bhat MA, Kumar V, Wani IA, Bashir H, Shah AA, Rahman S, Jan AT. The era of editing plant genomes using CRISPR/Cas: A critical appraisal. J Biotechnol 2020; 324:34-60. [DOI: 10.1016/j.jbiotec.2020.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
|
43
|
Bhattarai K, Conesa A, Xiao S, Peres NA, Clark DG, Parajuli S, Deng Z. Sequencing and analysis of gerbera daisy leaf transcriptomes reveal disease resistance and susceptibility genes differentially expressed and associated with powdery mildew resistance. BMC PLANT BIOLOGY 2020; 20:539. [PMID: 33256589 PMCID: PMC7706040 DOI: 10.1186/s12870-020-02742-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/16/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND RNA sequencing has been widely used to profile genome-wide gene expression and identify candidate genes controlling disease resistance and other important traits in plants. Gerbera daisy is one of the most important flowers in the global floricultural trade, and powdery mildew (PM) is the most important disease of gerbera. Genetic improvement of gerbera PM resistance has become a crucial goal in gerbera breeding. A better understanding of the genetic control of gerbera resistance to PM can expedite the development of PM-resistant cultivars. RESULTS The objectives of this study were to identify gerbera genotypes with contrasting phenotypes in PM resistance and sequence and analyze their leaf transcriptomes to identify disease resistance and susceptibility genes differentially expressed and associated with PM resistance. An additional objective was to identify SNPs and SSRs for use in future genetic studies. We identified two gerbera genotypes, UFGE 4033 and 06-245-03, that were resistant and susceptible to PM, respectively. De novo assembly of their leaf transcriptomes using four complementary pipelines resulted in 145,348 transcripts with a N50 of 1124 bp, of which 67,312 transcripts contained open reading frames and 48,268 were expressed in both genotypes. A total of 494 transcripts were likely involved in disease resistance, and 17 and 24 transcripts were up- and down-regulated, respectively, in UFGE 4033 compared to 06-245-03. These gerbera disease resistance transcripts were most similar to the NBS-LRR class of plant resistance genes conferring resistance to various pathogens in plants. Four disease susceptibility transcripts (MLO-like) were expressed only or highly expressed in 06-245-03, offering excellent candidate targets for gene editing for PM resistance in gerbera. A total of 449,897 SNPs and 19,393 SSRs were revealed in the gerbera transcriptomes, which can be a valuable resource for developing new molecular markers. CONCLUSION This study represents the first transcriptomic analysis of gerbera PM resistance, a highly important yet complex trait in a globally important floral crop. The differentially expressed disease resistance and susceptibility transcripts identified provide excellent targets for development of molecular markers and genetic maps, cloning of disease resistance genes, or targeted mutagenesis of disease susceptibility genes for PM resistance in gerbera.
Collapse
Affiliation(s)
- Krishna Bhattarai
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - Ana Conesa
- Department of Microbiology and Cell Science, University of Florida, IFAS, Gainesville, FL, 32611, USA
- University of Florida, Genetics Institute, Gainesville, FL, 32611, USA
| | - Shunyuan Xiao
- University of Maryland, College of Agriculture and Natural Resources, 4291 Fieldhouse Drive, Rockville, MD, 20850, USA
| | - Natalia A Peres
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - David G Clark
- Department of Environmental Horticulture, University of Florida, IFAS, Gainesville, FL, 32611, USA
| | - Saroj Parajuli
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA.
| |
Collapse
|
44
|
Yang Y, Wang X, Chen P, Zhou K, Xue W, Abid K, Chen S. Redox Status, JA and ET Signaling Pathway Regulating Responses to Botrytis cinerea Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant. FRONTIERS IN PLANT SCIENCE 2020; 11:559070. [PMID: 33101327 PMCID: PMC7546314 DOI: 10.3389/fpls.2020.559070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/04/2020] [Indexed: 05/28/2023]
Abstract
Botrytis cinerea is an important necrotrophic fungal pathogen with a broad host range and the ability to causing great economic losses in cucumber. However, the resistance mechanism against this pathogen in cucumber was not well understood. In this study, the microscopic observation of the spore growth, redox status measurements and transcriptome analysis were carried out after Botrytis cinerea infection in the resistant genotype No.26 and its susceptible mutant 26M. Results revealed shorter hypha, lower rate of spore germination, less acceleration of H2O2, O2 -, and lower total glutathione content (GSH+GSSG) in No.26 than that in 26M, which were identified by the staining result of DAB and NBT. Transcriptome data showed that after pathogen infection, a total of 3901 and 789 different expression genes (DEGs) were identified in No.26 and 26M respectively. These DEGs were highly enriched in redox regulation pathway, hormone signaling pathway and plant-pathogen interaction pathway. The glutathione S-transferase genes, putative peroxidase gene, and NADPH oxidase were up-regulated in No.26 whereas these genes changed little in 26M after Botrytis cinerea infection. Jasmonic acid and ethylene biosynthesis and signaling pathways were distinctively activated in No.26 comparing with 26M upon infection. Much more plant defense related genes including mitogen-activated protein kinases, calmodulin, calmodulin-like protein, calcium-dependent protein kinase, and WRKY transcription factor were induced in No.26 than 26M after pathogen infection. Finally, a model was established which elucidated the resistance difference between resistant cucumber genotype and susceptible mutant after B. cinerea infection.
Collapse
Affiliation(s)
- Yuting Yang
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Xuewei Wang
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Panpan Chen
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Keke Zhou
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Wanyu Xue
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Kan Abid
- Department of Horticulture, The University of Haripur, Haripur, Pakistan
| | - Shuxia Chen
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| |
Collapse
|
45
|
Yundaeng C, Somta P, Chen J, Yuan X, Chankaew S, Srinives P, Chen X. Candidate gene mapping reveals VrMLO12 (MLO Clade II) is associated with powdery mildew resistance in mungbean (Vigna radiata [L.] Wilczek). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110594. [PMID: 32771151 DOI: 10.1016/j.plantsci.2020.110594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 05/12/2023]
Abstract
Loss/reduction of function of Mildew Locus O (MLO) genes clade V and MLO clade IV has been shown to be responsible for powdery mildew (PM) resistance in several plant species. Mungbean (Vigna radiata) genome possesses 18 MLO genes, VrMLO1 - VrMLO18. A previous study using mungbean F2 and BC1F1 populations derived from a cross between "CN60″ (susceptible) and "RUM5″ (resistance) demonstrated that QTL qPMRUM5-3 is a major QTL for PM resistance caused by Erysiphe polygoni and is the same with major QTL qPMV4718-3 that confers PM resistance in "V4718″ (resistance). In this study, bioinformatics analysis revealed VrMLO12 locates in the qPMRUM5-3 region. Fine mapping in the F2 and BC1F1 populations using newly developed DNA markers including gene-specific markers demonstrated association between VrMLO12 and the PM resistance. Sequence analyses of VrMLO12 revealed that compared to susceptible mungbeans, RUM5 and V4718 possess SNPs in exon 10 and exon 13. The SNPs caused amino acid changes of VrMLO12, A387S and A476 G, respectively. The change occurred in transmembrane 6 domain and calmodulin binding domain (CaMBD) of the VrMLO12 protein, respectively. qRT-PCR showed that transcript expression level of VrMLO12 in RUM5 challenged with and without by E. polygoni was significantly higher than that in CN60. Phylogenetic analysis revealed that in contrast to previous findings that MLO proteins associated with PM resistance belong to MLO clade V and MLO clade IV, VrMLO12 belongs to MLO clade II. The result suggested that VrMLO12 may function differently from the other MLOs that associated with PM susceptibility. Our findings provide insight into the PM resistance in mungbean and tools for mungbean breeding.
Collapse
Affiliation(s)
- Chutintorn Yundaeng
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand.
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Sompong Chankaew
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Peerasak Srinives
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand; Royal Society of Thailand, Dusit, Bangkok, 10300, Thailand.
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| |
Collapse
|
46
|
Zhang Q, Hou C, Tian Y, Tang M, Feng C, Ren Z, Song J, Wang X, Li T, Li M, Tian W, Qiu J, Liu L, Li L. Interaction Between AtCML9 and AtMLO10 Regulates Pollen Tube Development and Seed Setting. FRONTIERS IN PLANT SCIENCE 2020; 11:1119. [PMID: 32793269 PMCID: PMC7394235 DOI: 10.3389/fpls.2020.01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
In higher-plant reproduction, the compatibility of pollen tube germination in the pistil is essential for successful double fertilization. It has been reported that Mildew Locus O (MLO) family gene NTA (MLO7), expressing in synergid cells, can correctly guide pollen tubes. However, the molecular mechanism underlying the interacting partners to MLOs in the fertilization is still unknown. In our study, we identified the direct protein interaction between CML9 and MLO10 within a non-canonical CaMBD. In GUS reporter assays, CML9 expresses in a high level in pollens, whereas MLO10 can be specifically detected in stigma which reaches up to a peaking level before fertilization. Therefore, the spatio-temporal expression patterns of MLO10 and CML9 are required for the time-window of pollination. When we observed the pollen germination in vitro, two cml9 mutant alleles dramatically reduced germination rate by 15% compared to wild-type. Consistently, the elongation rate of pollen tubes in planta was obviously slow while manually pollinating cml9-1 pollens to mlo10-1 stigmas. Additionally, cml9-1 mlo10-1 double mutant alleles had relatively lower rate of seed setting. Taken together, protein interaction between MLO10 and CML9 is supposed to affect pollen tube elongation and further affect seed development.
Collapse
Affiliation(s)
- Qian Zhang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Congcong Hou
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Yudan Tian
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Mitianguo Tang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Changxin Feng
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Zhijie Ren
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Jiali Song
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Xiaohan Wang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Tiange Li
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Mengou Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wang Tian
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Jinlong Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liangyu Liu
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| |
Collapse
|
47
|
Jacott CN, Charpentier M, Murray JD, Ridout CJ. Mildew Locus O facilitates colonization by arbuscular mycorrhizal fungi in angiosperms. THE NEW PHYTOLOGIST 2020; 227:343-351. [PMID: 32012282 PMCID: PMC7317859 DOI: 10.1111/nph.16465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/27/2020] [Indexed: 05/03/2023]
Abstract
Loss of barley Mildew Resistance Locus O (MLO) is known to confer durable and robust resistance to powdery mildew (Blumeria graminis), a biotrophic fungal leaf pathogen. Based on the increased expression of MLO in mycorrhizal roots and its presence in a clade of the MLO family that is specific to mycorrhizal-host species, we investigated the potential role of MLO in arbuscular mycorrhizal interactions. Using mutants from barley (Hordeum vulgare), wheat (Triticum aestivum), and Medicago truncatula, we demonstrate a role for MLO in colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Early mycorrhizal colonization was reduced in mlo mutants of barley, wheat, and M. truncatula, and this was accompanied by a pronounced decrease in the expression of many of the key genes required for intracellular accommodation of arbuscular mycorrhizal fungi. These findings show that clade IV MLOs are involved in the establishment of symbiotic associations with beneficial fungi, a role that has been appropriated by powdery mildew.
Collapse
Affiliation(s)
- Catherine N. Jacott
- Crop Genetics DepartmentJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Myriam Charpentier
- Cell and Developmental Biology DepartmentJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Jeremy D. Murray
- Cell and Developmental Biology DepartmentJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- National Key Laboratory of Plant Molecular GeneticsCAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)CAS Centre for Excellence in Molecular and Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | | |
Collapse
|
48
|
Yang S, Shi Y, Zou L, Huang J, Shen L, Wang Y, Guan D, He S. Pepper CaMLO6 Negatively Regulates Ralstonia solanacearum Resistance and Positively Regulates High Temperature and High Humidity Responses. PLANT & CELL PHYSIOLOGY 2020; 61:1223-1238. [PMID: 32343804 DOI: 10.1093/pcp/pcaa052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Plant mildew-resistance locus O (MLO) proteins influence susceptibility to powdery mildew. However, their roles in plant responses to other pathogens and heat stress remain unclear. Here, we showed that CaMLO6, a pepper (Capsicum annuum) member of MLO clade V, is a protein targeted to plasma membrane and probably endoplasmic reticulum. The transcript expression level of CaMLO6 was upregulated in the roots and leaves of pepper plants challenged with high temperature and high humidity (HTHH) and was upregulated in leaves but downregulated in roots of plants infected with the bacterial pathogen Ralstonia solanacearum. CaMLO6 was also directly upregulated by CaWRKY40 upon HTHH but downregulated by CaWRKY40 upon R. solanacearum infection. Virus-induced gene silencing of CaMLO6 significantly decreased pepper HTHH tolerance and R. solanacearum susceptibility. Moreover, CaMLO6 overexpression enhanced the susceptibility of Nicotiana benthamiana and pepper plants to R. solanacearum and their tolerance to HTHH, effects that were associated with the expression of immunity- and thermotolerance-associated marker genes, respectively. These results suggest that CaMLO6 acts as a positive regulator in response to HTHH but a negative regulator in response to R. solanacearum. Moreover, CaMLO6 is transcriptionally affected by R. solanacearum and HTHH; these transcriptional responses are at least partially regulated by CaWRKY40.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuanyuan Shi
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Longyun Zou
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jinfeng Huang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Shen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuzhu Wang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
49
|
Correr FH, Hosaka GK, Gómez SGP, Cia MC, Vitorello CBM, Camargo LEA, Massola NS, Carneiro MS, Margarido GRA. Time-series expression profiling of sugarcane leaves infected with Puccinia kuehnii reveals an ineffective defense system leading to susceptibility. PLANT CELL REPORTS 2020; 39:873-889. [PMID: 32314046 DOI: 10.1007/s00299-020-02536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 05/02/2023]
Abstract
Successful orange rust development on sugarcane can potentially be explained as suppression of the plant immune system by the pathogen or delayed plant signaling to trigger defense responses. Puccinia kuehnii is an obligate biotrophic fungus that infects sugarcane leaves causing a disease called orange rust. It spread out to other countries resulting in reduction of crop yield since its first outbreak. One of the knowledge gaps of that pathosystem is to understand the molecular mechanisms altered in susceptible plants by this biotic stress. Here, we investigated the changes in temporal expression of transcripts in pathways associated with the immune system. To achieve this purpose, we used RNA-Seq to analyze infected leaf samples collected at five time points after inoculation. Differential expression analyses of adjacent time points revealed substantial changes at 12, 48 h after inoculation and 12 days after inoculation, coinciding with the events of spore germination, haustoria post-penetration and post-sporulation, respectively. During the first 24 h, a lack of transcripts involved with resistance mechanisms was revealed by underrepresentation of hypersensitive and defense response related genes. However, two days after inoculation, upregulation of genes involved with immune response regulation provided evidence of some potential defense response. Events related to biotic stress responses were predominantly downregulated in the initial time points, but expression was later restored to basal levels. Genes involved in carbohydrate metabolism showed evidence of repression followed by upregulation, possibly to ensure the pathogen nutritional requirements were met. Our results support the hypothesis that P. kuehnii initially suppressed sugarcane genes involved in plant defense systems. Late overexpression of specific regulatory pathways also suggests the possibility of an inefficient recognition system by a susceptible sugarcane genotype.
Collapse
Affiliation(s)
- Fernando Henrique Correr
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Guilherme Kenichi Hosaka
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Sergio Gregorio Pérez Gómez
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Mariana Cicarelli Cia
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Claudia Barros Monteiro Vitorello
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Luis Eduardo Aranha Camargo
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Nelson Sidnei Massola
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Universidade Federal de São Carlos, Centro de Ciências Agrárias, Araras, São Paulo, Brazil
| | - Gabriel Rodrigues Alves Margarido
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil.
| |
Collapse
|
50
|
Wei Y, Jiang C, Han R, Xie Y, Liu L, Yu Y. Plasma membrane proteomic analysis by TMT-PRM provides insight into mechanisms of aluminum resistance in tamba black soybean roots tips. PeerJ 2020; 8:e9312. [PMID: 32566407 PMCID: PMC7293186 DOI: 10.7717/peerj.9312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/17/2020] [Indexed: 11/20/2022] Open
Abstract
Aluminum (Al) toxicity in acid soil is a worldwide agricultural problem that inhibits crop growth and productivity. However, the signal pathways associated with Al tolerance in plants remain largely unclear. In this study, tandem mass tag (TMT)-based quantitative proteomic methods were used to identify the differentially expressed plasma membrane (PM) proteins in Tamba black soybean (TBS) root tips under Al stress. Data are available via ProteomeXchange with identifier PXD017160. In addition, parallel reaction monitoring (PRM) was used to verify the protein quantitative data. The results showed that 907 PM proteins were identified in Al-treated plants. Among them, compared to untreated plants, 90 proteins were differentially expressed (DEPs) with 46 up-regulated and 44 down-regulated (fold change > 1.3 or < 0.77, p < 0.05). Functional enrichment based on GO, KEGG and protein domain revealed that the DEPs were associated with membrane trafficking and transporters, modifying cell wall composition, defense response and signal transduction. In conclusion, our results highlight the involvement of GmMATE13, GmMATE75, GmMATE87 and H+-ATPase in Al-induced citrate secretion in PM of TBS roots, and ABC transporters and Ca2+ have been implicated in internal detoxification and signaling of Al, respectively. Importantly, our data provides six receptor-like protein kinases (RLKs) as candidate proteins for further investigating Al signal transmembrane mechanisms.
Collapse
Affiliation(s)
- Yunmin Wei
- Southwest University, College of Animal Science and Technology, Chongqing, China
| | - Caode Jiang
- Southwest University, College of Animal Science and Technology, Chongqing, China
| | - Rongrong Han
- Southwest University, College of Animal Science and Technology, Chongqing, China
| | - Yonghong Xie
- Southwest University, College of Animal Science and Technology, Chongqing, China
| | - Lusheng Liu
- Southwest University, College of Animal Science and Technology, Chongqing, China
| | - Yongxiong Yu
- Southwest University, College of Animal Science and Technology, Chongqing, China
| |
Collapse
|