1
|
Wang H, Yang F, Ye J, Dai X, Liao H, Xing C, Jiang Z, Peng C, Gao F, Cao H. Ginkgo biloba extract alleviates deltamethrin-induced testicular injury by upregulating SKP2 and inhibiting Beclin1-independent autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156245. [PMID: 39550920 DOI: 10.1016/j.phymed.2024.156245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Male infertility is a worldwide concern that is associated with a decline in sperm quality. Environmental pollutants such as deltamethrin (DM) have harmful effects on male reproductive organs. By maintaining intracellular redox homeostasis, ginkgo biloba extract (GBE) can alleviate male reproductive dysfunction. However, research on the mechanisms by which GBE alleviates reproductive toxicity induced by DM is limited. PURPOSE In this study, we investigated whether GBE can alleviate DM-induced testicular and Sertoli cell reproductive toxicity by modulating SKP2 and Beclin1, thus providing a theoretical basis for the development of novel therapeutic approaches. STUDY DESIGN We explored the role of GBE in mitigating DM-induced testicular damage, with a specific focus on the intricate involvement of ubiquitination and autophagy. METHODS An experimental model was constructed using ICR male mice and the TM4 cell line. Tissue, cellular, and sperm morphological changes were observed through methods such as Hematoxylin and Eosin (H&E) staining, Periodate-Schiff (PAS) staining, ultrastructural observation, immunohistochemistry, and immunofluorescence. Enzyme and hormone levels were measured, and gene and protein levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting techniques. RESULTS In vivo experiments showed that DM exposure led to decreased sex hormone levels, increased seminiferous tubule diameter and impaired spermatogenesis. Meanwhile, DM exposure was found to decrease ubiquitination levels, leading to mitochondrial damage and further escalation of mitochondrial autophagy. Furthermore, in the DM-induced cell model, the upregulation of Beclin1 expression was associated with the inhibition of the ubiquitin‒proteasome system (UPS) and SKP2, thereby exacerbating autophagy. However, GBE has demonstrated notable efficacy in alleviating the reproductive toxicity induced by DM. CONCLUSION Our findings highlighted that SKP2 is a key regulator of Beclin1-independent autophagy and that GBE exerts therapeutic effects by upregulating SKP2 and inhibiting Beclin1 activation, which ameliorates autophagy and reduces DM-induced testicular damage.
Collapse
Affiliation(s)
- Huating Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Junhua Ye
- Nanchang Institute of Technology Medical College, No. 901, Hero Avenue, Nanchang Economic Development Zone, Nanchang 330044, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huan Liao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhou Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chengcheng Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Feiyan Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
2
|
Grondin M, Chabrol C, Averill-Bates DA. Mild heat shock at 40 °C increases levels of autophagy: Role of Nrf2. Cell Stress Chaperones 2024; 29:567-588. [PMID: 38880164 PMCID: PMC11268186 DOI: 10.1016/j.cstres.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
The exposure to low doses of stress induces an adaptive survival response that involves the upregulation of cellular defense systems such as heat shock proteins (Hsps), anti-apoptosis proteins, and antioxidants. Exposure of cells to elevated, non-lethal temperatures (39-41 °C) is an adaptive survival response known as thermotolerance, which protects cells against subsequent lethal stress such as heat shock (>41.5 °C). However, the initiating factors in this adaptive survival response are not understood. This study aims to determine whether autophagy can be activated by heat shock at 40 °C and if this response is mediated by the transcription factor Nrf2. Thermotolerant cells, which were developed during 3 h at 40 °C, were resistant to caspase activation at 42 °C. Autophagy was activated when cells were heated from 5 to 60 min at 40 °C. Levels of acidic vesicular organelles (AVOs) and autophagy proteins Beclin-1, LC3-II/LC3-I, Atg7, Atg5, Atg12-Atg5, and p62 were increased. When Nrf2 was overexpressed or depleted in cells, levels of AVOs and autophagy proteins were higher in unstressed cells, compared to the wild type. Stress induced by mild heat shock at 40 °C further increased levels of most autophagy proteins in cells with overexpression or depletion of Nrf2. Colocalization of p62 and Keap1 occurred. When Nrf2 levels are low, activation of autophagy would likely compensate as a defense mechanism to protect cells against stress. An improved understanding of autophagy in the context of cellular responses to physiological heat shock could be useful for cancer treatment by hyperthermia and the protective role of adaptive responses against environmental stresses.
Collapse
Affiliation(s)
- Mélanie Grondin
- Département des Sciences Biologiques, Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Claire Chabrol
- Département des Sciences Biologiques, Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Diana A Averill-Bates
- Département des Sciences Biologiques, Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada.
| |
Collapse
|
3
|
Yi J, Wang HL, Lu G, Zhang H, Wang L, Li ZY, Wang L, Wu Y, Xia D, Fang EF, Shen HM. Spautin-1 promotes PINK1-PRKN-dependent mitophagy and improves associative learning capability in an alzheimer disease animal model. Autophagy 2024:1-22. [PMID: 39051473 DOI: 10.1080/15548627.2024.2383145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Spautin-1 is a well-known macroautophagy/autophagy inhibitor via suppressing the deubiquitinases USP10 and USP13 and promoting the degradation of the PIK3C3/VPS34-BECN1 complex, while its effect on selective autophagy remains poorly understood. Mitophagy is a selective form of autophagy for removal of damaged and superfluous mitochondria via the autophagy-lysosome pathway. Here, we report a surprising discovery that, while spautin-1 remains as an effective autophagy inhibitor, it promotes PINK1-PRKN-dependent mitophagy induced by mitochondrial damage agents. Mechanistically, spautin-1 facilitates the stabilization and activation of the full-length PINK1 at the outer mitochondrial membrane (OMM) via binding to components of the TOMM complex (TOMM70 and TOMM20), leading to the disruption of the mitochondrial import of PINK1 and prevention of PARL-mediated PINK1 cleavage. Moreover, spautin-1 induces neuronal mitophagy in Caenorhabditis elegans (C. elegans) in a PINK-1-PDR-1-dependent manner. Functionally, spautin-1 is capable of improving associative learning capability in an Alzheimer disease (AD) C. elegans model. In summary, we report a novel function of spautin-1 in promoting mitophagy via the PINK1-PRKN pathway. As deficiency of mitophagy is closely implicated in the pathogenesis of neurodegenerative disorders, the pro-mitophagy function of spautin-1 might suggest its therapeutic potential in neurodegenerative disorders such as AD.Abbreviations: AD, Alzheimer disease; ATG, autophagy related; BafA1, bafilomycin A1; CALCOCO2/NDP52, calcium binding and coiled-coil domain 2; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; COX4/COX IV, cytochrome c oxidase subunit 4; EBSS, Earle's balanced salt; ECAR, extracellular acidification rate; GFP, green fluorescent protein; IA, isoamyl alcohol; IMM, inner mitochondrial membrane; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MMP, mitochondrial membrane potential; mtDNA, mitochondrial DNA; nDNA, nuclear DNA; O/A, oligomycin-antimycin; OCR, oxygen consumption rate; OMM, outer mitochondrial membrane; OPTN, optineurin; PARL, presenilin associated rhomboid like; PINK1, PTEN induced kinase 1; PRKN, parkin RBR E3 ubiquitin protein ligase; p-Ser65-Ub, phosphorylation of Ub at Ser65; TIMM23, translocase of inner mitochondrial membrane 23; TOMM, translocase of outer mitochondrial membrane; USP10, ubiquitin specific peptidase 10; USP13, ubiquitin specific peptidase 13; VAL, valinomycin; YFP, yellow fluorescent protein.
Collapse
Affiliation(s)
- Juan Yi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hailong Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Lina Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhen-Yu Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yihua Wu
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Dajing Xia
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
4
|
Hu M, Ladowski JM, Xu H. The Role of Autophagy in Vascular Endothelial Cell Health and Physiology. Cells 2024; 13:825. [PMID: 38786047 PMCID: PMC11120581 DOI: 10.3390/cells13100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy is a highly conserved cellular recycling process which enables eukaryotes to maintain both cellular and overall homeostasis through the catabolic breakdown of intracellular components or the selective degradation of damaged organelles. In recent years, the importance of autophagy in vascular endothelial cells (ECs) has been increasingly recognized, and numerous studies have linked the dysregulation of autophagy to the development of endothelial dysfunction and vascular disease. Here, we provide an overview of the molecular mechanisms underlying autophagy in ECs and our current understanding of the roles of autophagy in vascular biology and review the implications of dysregulated autophagy for vascular disease. Finally, we summarize the current state of the research on compounds to modulate autophagy in ECs and identify challenges for their translation into clinical use.
Collapse
Affiliation(s)
| | - Joseph M. Ladowski
- Transplant and Immunobiology Research, Department of Surgery, Duke University, Durham, NC 27710, USA;
| | - He Xu
- Transplant and Immunobiology Research, Department of Surgery, Duke University, Durham, NC 27710, USA;
| |
Collapse
|
5
|
Meyer C, Brockmueller A, Buhrmann C, Shakibaei M. Prevention and Co-Management of Breast Cancer-Related Osteoporosis Using Resveratrol. Nutrients 2024; 16:708. [PMID: 38474838 DOI: 10.3390/nu16050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer (BC) is currently one of the most common cancers in women worldwide with a rising tendency. Epigenetics, generally inherited variations in gene expression that occur independently of changes in DNA sequence, and their disruption could be one of the main causes of BC due to inflammatory processes often associated with different lifestyle habits. In particular, hormone therapies are often indicated for hormone-positive BC, which accounts for more than 50-80% of all BC subtypes. Although the cure rate in the early stage is more than 70%, serious negative side effects such as secondary osteoporosis (OP) due to induced estrogen deficiency and chemotherapy are increasingly reported. Approaches to the management of secondary OP in BC patients comprise adjunctive therapy with bisphosphonates, non-steroidal anti-inflammatory drugs (NSAIDs), and cortisone, which partially reduce bone resorption and musculoskeletal pain but which are not capable of stimulating the necessary intrinsic bone regeneration. Therefore, there is a great therapeutic need for novel multitarget treatment strategies for BC which hold back the risk of secondary OP. In this review, resveratrol, a multitargeting polyphenol that has been discussed as a phytoestrogen with anti-inflammatory and anti-tumor effects at the epigenetic level, is presented as a potential adjunct to both support BC therapy and prevent osteoporotic risks by positively promoting intrinsic regeneration. In this context, resveratrol is also known for its unique role as an epigenetic modifier in the regulation of essential signaling processes-both due to its catabolic effect on BC and its anabolic effect on bone tissue.
Collapse
Affiliation(s)
- Christine Meyer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Constanze Buhrmann
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| |
Collapse
|
6
|
Pavlova JA, Guseva EA, Dontsova OA, Sergiev PV. Natural Activators of Autophagy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1-26. [PMID: 38467543 DOI: 10.1134/s0006297924010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024]
Abstract
Autophagy is the process by which cell contents, such as aggregated proteins, dysfunctional organelles, and cell structures are sequestered by autophagosome and delivered to lysosomes for degradation. As a process that allows the cell to get rid of non-functional components that tend to accumulate with age, autophagy has been associated with many human diseases. In this regard, the search for autophagy activators and the study of their mechanism of action is an important task for treatment of many diseases, as well as for increasing healthy life expectancy. Plants are rich sources of autophagy activators, containing large amounts of polyphenolic compounds in their composition, which can be autophagy activators in their original form, or can be metabolized by the intestinal microbiota to active compounds. This review is devoted to the plant-based autophagy activators with emphasis on the sources of their production, mechanism of action, and application in various diseases. The review also describes companies commercializing natural autophagy activators.
Collapse
Affiliation(s)
- Julia A Pavlova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina A Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Tan T, Song Z, Li W, Wang R, Zhu M, Liang Z, Bai Y, Wang Q, Wu H, Hu X, Xing Y. Modelling porcine NAFLD by deletion of leptin and defining the role of AMPK in hepatic fibrosis. Cell Biosci 2023; 13:169. [PMID: 37705071 PMCID: PMC10498639 DOI: 10.1186/s13578-023-01124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most prevalent cause of chronic hepatic disease and results in non-alcoholic steatohepatitis (NASH), which progresses to fibrosis and cirrhosis. Although the Leptin deficient rodent models are widely used in study of metabolic syndrome and obesity, they fail to develop liver injuries as in patients. METHODS Due to the high similarity with humans, we generated Leptin-deficient (Leptin-/-) pigs to investigate the mechanisms and clinical trials of obesity and NAFLD caused by Leptin. RESULTS The Leptin-/- pigs showed increased body fat and significant insulin resistance at the age of 12 months. Moreover, Leptin-/- pig developed fatty liver, non-alcoholic steatohepatitis and hepatic fibrosis with age. Absence of Leptin in pig reduced the phosphorylation of JAK2-STAT3 and AMPK. The inactivation of JAK2-STAT3 and AMPK enhanced fatty acid β-oxidation and leaded to mitochondrial autophagy respectively, and both contributed to increased oxidative stress in liver cells. In contrast with Leptin-/- pig, although Leptin deletion in rat liver inhibited JAK2-STAT3 phosphorylation, the activation of AMPK pathway might prevent liver injury. Therefore, β-oxidation, mitochondrial autophagy and hepatic fibrosis did not occurred in Leptin-/- rat livers. CONCLUSIONS The Leptin-deficient pigs presents an ideal model to illustrate the full spectrum of human NAFLD. The activity of AMPK signaling pathway suggests a potential target to develop new strategy for the diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Tan Tan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Zhiyuan Song
- State Key Laboratory of Animal Biotech Breeding, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Wenya Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Runming Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Mingli Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Zuoxiang Liang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Yilina Bai
- State Key Laboratory of Animal Biotech Breeding, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Hanyu Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Xiaoxiang Hu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Yiming Xing
- State Key Laboratory of Animal Biotech Breeding, College of Biological Science, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
9
|
Bankov K, Schulze F, Gretser S, Reis H, Abedin N, Finkelmeier F, Trojan J, Zeuzem S, Schnitzbauer AA, Walter D, Wild PJ, Kinzler MN. Active Autophagy Is Associated with Favorable Outcome in Patients with Surgically Resected Cholangiocarcinoma. Cancers (Basel) 2023; 15:4322. [PMID: 37686598 PMCID: PMC10486413 DOI: 10.3390/cancers15174322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Data on the impact of autophagy in primary cholangiocarcinoma (CCA) remain scarce. Here, we therefore investigated the role of active autophagy and its impact on survival in CCA patients. All CCA patients who underwent surgical resection with curative intent between 08/2005 and 12/2021 at University Hospital Frankfurt were evaluated. Autophagic key proteins were studied by immunohistochemistry. iCCA processed for gene expression profiling of immune-exhaustion gene sets was used for an autophagy approach in silico. Active autophagy was present in 23.3% of the 172 CCA patients. Kaplan-Meier curves revealed median OS of 68.4 months (95% CI = 46.9-89.9 months) and 32.7 months (95% CI = 23.6-41.8 months) for active and non-active autophagy, respectively (p ≤ 0.001). In multivariate analysis, absence of active autophagy (HR = 2, 95% CI = 1.1-3.5, p = 0.015) was an independent risk factor for OS. Differential-expression profiling revealed significantly upregulated histone deacetylases (HDAC) mRNA in patients showing non-active autophagy. In line with this, pan-acetylated lysine was significantly more prominent in CCA patients with ongoing autophagy (p = 0.005). Our findings strengthen the role of active autophagy as a prognostically relevant marker and a potential therapeutic target.
Collapse
Affiliation(s)
- Katrin Bankov
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Falko Schulze
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Steffen Gretser
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Nada Abedin
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Fabian Finkelmeier
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Jörg Trojan
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas A. Schnitzbauer
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dirk Walter
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Peter J. Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), 60438 Frankfurt am Main, Germany
| | - Maximilian N. Kinzler
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Dolman NJ, Kilgore JA. A Review of Reagents for Fluorescence Microscopy of Cellular Compartments and Structures, Part I: BacMam Labeling and Reagents for Vesicular Structures. Curr Protoc 2023; 3:e751. [PMID: 37311031 DOI: 10.1002/cpz1.751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescent labeling of vesicular structures in cultured cells, particularly for live cells, can be challenging for a number of reasons. The first challenge is to identify a reagent that will be specific enough where some structures have a number of potential reagents and others very few options. The emergence of BacMam constructs has provided more easy-to-use choices. Presented here is a discussion of BacMam constructs as well as a review of commercially available reagents for labeling vesicular structures in cells, including endosomes, peroxisomes, lysosomes, and autophagosomes, complete with a featured reagent, recommended protocol, troubleshooting guide, and example image for each structure. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Delivering targeted fluorescent proteins using pre-made, high-titer BacMam constructs Alternate Protocol 1: Non-pseudo-typed BacMam viruses in standard cell types and pseudo-typed BacMam viruses in hard-to-transduce cell types Basic Protocol 2: Labeling endosomes: pHrodo™-10k-dextran Basic Protocol 3: Labeling peroxisomes: BacMam 2.0 CellLight™ Peroxisome-GFP Alternate Protocol 2: Labeling peroxisomes using antibodies Basic Protocol 4: Labeling autophagosomes: Transduction of cells with Premo™ Autophagy Sensor GFP-LC3B Alternate Protocol 3: Labeling autophagosomes using antibodies Basic Protocol 5: Labeling lysosomes: LysoTracker Red DND-99.
Collapse
|
11
|
Alim Al-Bari A, Ito Y, Thomes PG, Menon MB, García-Macia M, Fadel R, Stadlin A, Peake N, Faris ME, Eid N, Klionsky DJ. Emerging mechanistic insights of selective autophagy in hepatic diseases. Front Pharmacol 2023; 14:1149809. [PMID: 37007026 PMCID: PMC10060854 DOI: 10.3389/fphar.2023.1149809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Macroautophagy (hereafter referred to as autophagy), a highly conserved metabolic process, regulates cellular homeostasis by degrading dysfunctional cytosolic constituents and invading pathogens via the lysosomal system. In addition, autophagy selectively recycles specific organelles such as damaged mitochondria (via mitophagy), and lipid droplets (LDs; via lipophagy) or eliminates specialized intracellular pathogenic microorganisms such as hepatitis B virus (HBV) and coronaviruses (via virophagy). Selective autophagy, particularly mitophagy, plays a key role in the preservation of healthy liver physiology, and its dysfunction is connected to the pathogenesis of a wide variety of liver diseases. For example, lipophagy has emerged as a defensive mechanism against chronic liver diseases. There is a prominent role for mitophagy and lipophagy in hepatic pathologies including non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and drug-induced liver injury. Moreover, these selective autophagy pathways including virophagy are being investigated in the context of viral hepatitis and, more recently, the coronavirus disease 2019 (COVID-19)-associated hepatic pathologies. The interplay between diverse types of selective autophagy and its impact on liver diseases is briefly addressed. Thus, modulating selective autophagy (e.g., mitophagy) would seem to be effective in improving liver diseases. Considering the prominence of selective autophagy in liver physiology, this review summarizes the current understanding of the molecular mechanisms and functions of selective autophagy (mainly mitophagy and lipophagy) in liver physiology and pathophysiology. This may help in finding therapeutic interventions targeting hepatic diseases via manipulation of selective autophagy.
Collapse
Affiliation(s)
- Abdul Alim Al-Bari
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Paul G. Thomes
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Manoj B. Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Marina García-Macia
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca-CSIC, Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Raouf Fadel
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Al Manama, Bahrain
| | - Alfreda Stadlin
- Basic Medical Sciences Department, College of Medicine, Ajman university, Ajman, United Arab Emirates
| | - Nicholas Peake
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - MoezAlIslam Ezzat Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Nabil Eid,
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of MI, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Jianpi-Qingchang decoction alleviates ulcerative colitis by modulating endoplasmic reticulum stress-related autophagy in intestinal epithelial cells. Biomed Pharmacother 2023; 158:114133. [PMID: 36521243 DOI: 10.1016/j.biopha.2022.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Endoplasmic reticulum stress (ERS)-related autophagy is involved in the occurrence and development of ulcerative colitis (UC). Therefore, regulating ERS-related autophagy is a potential therapeutic target for the treatment of UC. Jianpi-Qingchang (JPQC) decoction, consisting of nine Chinese herbal medicines, is used to treat patients with UC. However, its mechanism of action has not been completely elucidated. Here, we aimed to reveal the therapeutic effects and mechanisms of JPQC in UC. We established a colitis model using dextran sulfate sodium (DSS) and an ERS model using thapsigargin (Tg) and administered JPQC. We systematically examined ERS-related autophagy associated protein expression, inflammatory cytokines, apoptotic cells, and autophagic flux. Moreover, the cellular ultrastructure was observed via transmission electron microscopy (TEM). We found that JPQC reduced disease activity index (DAI) scores, counteracted colonic tissue damage, decreased the number of autophagosomes, inhibited proinflammatory cytokines, enhanced anti-inflammatory cytokines, and dampened ERS-related autophagy associated protein gene expression.
Collapse
|
13
|
Quiles JM, Najor RH, Gonzalez E, Jeung M, Liang W, Burbach SM, Zumaya EA, Diao RY, Lampert MA, Gustafsson ÅB. Deciphering functional roles and interplay between Beclin1 and Beclin2 in autophagosome formation and mitophagy. Sci Signal 2023; 16:eabo4457. [PMID: 36719945 PMCID: PMC10019900 DOI: 10.1126/scisignal.abo4457] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
The degradation of macromolecules and organelles by the process of autophagy is critical for cellular homeostasis and is often compromised during aging and disease. Beclin1 and Beclin2 are implicated in autophagy induction, and these homologs share a high degree of amino acid sequence similarity but have divergent N-terminal regions. Here, we investigated the functions of the Beclin homologs in regulating autophagy and mitophagy, a specialized form of autophagy that targets mitochondria. Both Beclin homologs contributed to autophagosome formation, but a mechanism of autophagosome formation independent of either Beclin homolog occurred in response to starvation or mitochondrial damage. Mitophagy was compromised only in Beclin1-deficient HeLa cells and mouse embryonic fibroblasts because of defective autophagosomal engulfment of mitochondria, and the function of Beclin1 in mitophagy required the phosphorylation of the conserved Ser15 residue by the kinase Ulk1. Mitochondria-ER-associated membranes (MAMs) are important sites of autophagosome formation during mitophagy, and Beclin1, but not Beclin2 or a Beclin1 mutant that could not be phosphorylated at Ser15, localized to MAMs during mitophagy. Our findings establish a regulatory role for Beclin1 in selective mitophagy by initiating autophagosome formation adjacent to mitochondria, a function facilitated by Ulk1-mediated phosphorylation of Ser15 in its distinct N-terminal region.
Collapse
Affiliation(s)
- Justin M. Quiles
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Rita H. Najor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Eileen Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Monica Jeung
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Wenjing Liang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Sarah M. Burbach
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Erika A. Zumaya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Rachel Y. Diao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Mark A. Lampert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Åsa B. Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| |
Collapse
|
14
|
Fu Z, Zhao PY, Yang XP, Li H, Hu SD, Xu YX, Du XH. Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Front Pharmacol 2023; 14:1094020. [PMID: 36755953 PMCID: PMC9899821 DOI: 10.3389/fphar.2023.1094020] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Cannabidiol (CBD) is a terpenoid naturally found in plants. The purified compound is used in the treatment of mental disorders because of its antidepressive, anxiolytic, and antiepileptic effects. CBD can affect the regulation of several pathophysiologic processes, including autophagy, cytokine secretion, apoptosis, and innate and adaptive immune responses. However, several authors have reported contradictory findings concerning the magnitude and direction of CBD-mediated effects. For example, CBD treatment can increase, decrease, or have no significant effect on autophagy and apoptosis. These variable results can be attributed to the differences in the biological models, cell types, and CBD concentration used in these studies. This review focuses on the mechanism of regulation of autophagy and apoptosis in inflammatory response and cancer by CBD. Further, we broadly elaborated on the prospects of using CBD as an anti-inflammatory agent and in cancer therapy in the future.
Collapse
Affiliation(s)
- Ze Fu
- Medical School of Chinese PLA, Beijing, China
| | | | | | - Hao Li
- Medical School of Chinese PLA, Beijing, China
| | - Shi-Dong Hu
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying-Xin Xu
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Xiao-Hui Du,
| |
Collapse
|
15
|
Hasan KMM, Haque MA. Autophagy and Its Lineage-Specific Roles in the Hematopoietic System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8257217. [PMID: 37180758 PMCID: PMC10171987 DOI: 10.1155/2023/8257217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Autophagy is a dynamic process that regulates the selective and nonselective degradation of cytoplasmic components, such as damaged organelles and protein aggregates inside lysosomes to maintain tissue homeostasis. Different types of autophagy including macroautophagy, microautophagy, and chaperon-mediated autophagy (CMA) have been implicated in a variety of pathological conditions, such as cancer, aging, neurodegeneration, and developmental disorders. Furthermore, the molecular mechanism and biological functions of autophagy have been extensively studied in vertebrate hematopoiesis and human blood malignancies. In recent years, the hematopoietic lineage-specific roles of different autophagy-related (ATG) genes have gained more attention. The evolution of gene-editing technology and the easy access nature of hematopoietic stem cells (HSCs), hematopoietic progenitors, and precursor cells have facilitated the autophagy research to better understand how ATG genes function in the hematopoietic system. Taking advantage of the gene-editing platform, this review has summarized the roles of different ATGs at the hematopoietic cell level, their dysregulation, and pathological consequences throughout hematopoiesis.
Collapse
Affiliation(s)
- Kazi Md Mahmudul Hasan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
- Department of Neurology, David Geffen School of Medicine, The University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Md Anwarul Haque
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| |
Collapse
|
16
|
Appiah CO, Singh M, May L, Bakshi I, Vaidyanathan A, Dent P, Ginder G, Grant S, Bear H, Landry J. The epigenetic regulation of cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Adv Cancer Res 2023; 158:337-385. [PMID: 36990536 DOI: 10.1016/bs.acr.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of cancer therapy is the elimination of disease from patients. Most directly, this occurs through therapy-induced cell death. Therapy-induced growth arrest can also be a desirable outcome, if prolonged. Unfortunately, therapy-induced growth arrest is rarely durable and the recovering cell population can contribute to cancer recurrence. Consequently, therapeutic strategies that eliminate residual cancer cells reduce opportunities for recurrence. Recovery can occur through diverse mechanisms including quiescence or diapause, exit from senescence, suppression of apoptosis, cytoprotective autophagy, and reductive divisions resulting from polyploidy. Epigenetic regulation of the genome represents a fundamental regulatory mechanism integral to cancer-specific biology, including the recovery from therapy. Epigenetic pathways are particularly attractive therapeutic targets because they are reversible, without changes in DNA, and are catalyzed by druggable enzymes. Previous use of epigenetic-targeting therapies in combination with cancer therapeutics has not been widely successful because of either unacceptable toxicity or limited efficacy. The use of epigenetic-targeting therapies after a significant interval following initial cancer therapy could potentially reduce the toxicity of combination strategies, and possibly exploit essential epigenetic states following therapy exposure. This review examines the feasibility of targeting epigenetic mechanisms using a sequential approach to eliminate residual therapy-arrested populations, that might possibly prevent recovery and disease recurrence.
Collapse
Affiliation(s)
- Christiana O Appiah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Manjulata Singh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ishita Bakshi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ashish Vaidyanathan
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Gordon Ginder
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven Grant
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Harry Bear
- Department of Surgery, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
17
|
Martelli A, Omrani M, Zarghooni M, Citi V, Brogi S, Calderone V, Sureda A, Lorzadeh S, da Silva Rosa SC, Grabarek BO, Staszkiewicz R, Los MJ, Nabavi SF, Nabavi SM, Mehrbod P, Klionsky DJ, Ghavami S. New Visions on Natural Products and Cancer Therapy: Autophagy and Related Regulatory Pathways. Cancers (Basel) 2022; 14:5839. [PMID: 36497321 PMCID: PMC9738256 DOI: 10.3390/cancers14235839] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Macroautophagy (autophagy) has been a highly conserved process throughout evolution and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to preserve cellular homeostasis and health. Changes in autophagy are indeed correlated with several pathological disorders such as neurodegenerative and cardiovascular diseases, infections, cancer and inflammatory diseases. Conversely, autophagy controls both apoptosis and the unfolded protein response (UPR) in the cells. Therefore, any changes in the autophagy pathway will affect both the UPR and apoptosis. Recent evidence has shown that several natural products can modulate (induce or inhibit) the autophagy pathway. Natural products may target different regulatory components of the autophagy pathway, including specific kinases or phosphatases. In this review, we evaluated ~100 natural compounds and plant species and their impact on different types of cancers via the autophagy pathway. We also discuss the impact of these compounds on the UPR and apoptosis via the autophagy pathway. A multitude of preclinical findings have shown the function of botanicals in regulating cell autophagy and its potential impact on cancer therapy; however, the number of related clinical trials to date remains low. In this regard, further pre-clinical and clinical studies are warranted to better clarify the utility of natural compounds and their modulatory effects on autophagy, as fine-tuning of autophagy could be translated into therapeutic applications for several cancers.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marzieh Omrani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Maryam Zarghooni
- Department of Laboratory Medicine & Pathobiology, University of Toronto Alumna, Toronto, ON M5S 3J3, Canada
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition, Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C. da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Beniamin Oscar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
| | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Krakow, Poland
| | - Marek J. Los
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyed Fazel Nabavi
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite 62760-000, Brazil
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030 San Salvatore Telesino, Italy
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
18
|
Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action. Cell Mol Life Sci 2022; 79:539. [PMID: 36194371 DOI: 10.1007/s00018-022-04551-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022]
Abstract
Breast cancer (BC) is one of the most common cancers in females and is responsible for the highest cancer-related deaths following lung cancer. The complex tumor microenvironment and the aggressive behavior, heterogenous nature, high proliferation rate, and ability to resist treatment are the most well-known features of BC. Accordingly, it is critical to find an effective therapeutic agent to overcome these deleterious features of BC. Resveratrol (RES) is a polyphenol and can be found in common foods, such as pistachios, peanuts, bilberries, blueberries, and grapes. It has been used as a therapeutic agent for various diseases, such as diabetes, cardiovascular diseases, inflammation, and cancer. The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis. In addition, the synergistic effects of RES in combination with other chemotherapeutic agents, such as docetaxel, paclitaxel, cisplatin, and/or doxorubicin may contribute to enhancing the anticancer properties of RES on BC cells. Although, it demonstrates promising therapeutic features, the low water solubility of RES limits its use, suggesting the use of delivery systems to improve its bioavailability. Several types of nano drug delivery systems have therefore been introduced as good candidates for RES delivery. Due to RES's promising potential as a chemopreventive and chemotherapeutic agent for BC, this review aims to explore the anticancer mechanisms of RES using the most up to date research and addresses the effects of using nanomaterials as delivery systems to improve the anticancer properties of RES.
Collapse
|
19
|
Ailia MJ, Yoo SY. In Vivo Oncolytic Virotherapy in Murine Models of Hepatocellular Carcinoma: A Systematic Review. Vaccines (Basel) 2022; 10:vaccines10091541. [PMID: 36146619 PMCID: PMC9505175 DOI: 10.3390/vaccines10091541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Current therapies often provide marginal survival benefits at the expense of undesirable side effects. Oncolytic viruses represent a novel strategy for the treatment of HCC due to their inherent ability to cause direct tumor cell lysis while sparing normal tissue and their capacity to stimulate potent immune responses directed against uninfected tumor cells and distant metastases. Oncolytic virotherapy (OVT) is a promising cancer treatment, but before it can become a standard option in practice, several challenges-systemic viral delivery optimization/enhancement, inter-tumoral virus dispersion, anti-cancer immunity cross-priming, and lack of artificial model systems-need to be addressed. Addressing these will require an in vivo model that accurately mimics the tumor microenvironment and allows the scientific community to design a more precise and accurate OVT. Due to their close physiologic resemblance to humans, murine cancer models are the likely preferred candidates. To provide an accurate assessment of the current state of in vivo OVT in HCC, we have reviewed a comprehensively searched body of work using murine in vivo HCC models for OVT.
Collapse
|
20
|
Li WS, Lee KTD, Chen LY, You BJ, Lee HZ. Identification of Key Pathways Involved in White Strain of Hypsizygus marmoreus Extracts-Induced Cell Death of Human Hepatoma Hep3B Cells by Next Generation Sequencing. Front Pharmacol 2022; 13:888863. [PMID: 35784738 PMCID: PMC9243229 DOI: 10.3389/fphar.2022.888863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
White strain of Hypsizygus marmoreus is named as white genius mushroom (WGM) and is a popular food in Taiwan. We have confirmed the cytotoxicity of WGM extracts on human Hep3B liver cancer cells. A total of 8711 significantly differential genes were identified through large-scale transcriptome sequencing. According to the KEGG pathway enrichment analysis, autophagy, mitophagy and apoptosis pathways were identified as significant in WGM extracts-treated cells. WGM extracts induced a dose-dependent generation of reactive oxygen species (ROS) and membrane-enclosed vacuoles in Hep3B cells. The inhibition of ROS by the ROS scavengers blocked the induction of cell death and vacuoles formation. We suggested that the cell death and membrane-enclosed vacuoles induced by WGM extracts are dependent on ROS production in Hep3B cells. (2E,6E)-3,7,11,15,19,23,27,31,35-Nonamethylhexatriaconta-2,6,34-triene-1,11,15,19,23,27,31-heptol and (18:2) lysophosphatidylcholine were identified in WGM extracts. In addition to being a very popular edible mushrooms, WGM may be developed into a dietary supplement or dietary chemopreventive agent for the cancer treatment.
Collapse
Affiliation(s)
- Wei-Sung Li
- Plant Pathology Division, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Kun-Tsung Denzel Lee
- Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Yun Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Bang-Jau You
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Hong-Zin Lee
- School of Pharmacy, China Medical University, Taichung, Taiwan
- *Correspondence: Hong-Zin Lee,
| |
Collapse
|
21
|
Yang H, Guo Q, Wu J, Zhong L, Sun L, Liu W, Wang J, Lin L. Deciphering the Effects and Mechanisms of Yi-Fei-San-Jie-pill on Non-Small Cell Lung Cancer With Integrating Network Target Analysis and Experimental Validation. Front Pharmacol 2022; 13:851554. [PMID: 35645820 PMCID: PMC9130494 DOI: 10.3389/fphar.2022.851554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), which accounts for 85% of lung cancer cases, calls for better therapy. Yi-Fei-San-Jie-pill (YFSJ), a well-applicated traditional Chinese medicine formula, was reported to be effective in the treatment of NSCLC. However, its anti-tumor mechanism still needs to be fully elucidated. Herein, a reliable preclinical orthotopic but not subcutaneous model of NSCLC in mice was established to evaluate the anti-cancer properties and further validate the mechanisms of YFSJ. A bioinformatic analysis was executed to identify the potential targets and key pathways of YFSJ on NSCLC. In detail, the anti-tumor effect of YFSJ and the autophagy inhibitor 3-MA was evaluated according to the tumor fluorescence value and comparison of different groups' survival times. As a result, YFSJ markedly decreased tumor size and prolonged survival time in contrast with those in the orthotopic model group (p < 0.05), and it also significantly regulated the protein expression levels of apoptosis- and autophagy-related proteins. In conclusion, this study provides convincing evidence that YFSJ could inhibit the growth of tumors and prolong the survival time of tumor-bearing mice based on the NSCLC orthotopic model, and its anti-tumor effect was closely associated with the promotion of apoptosis and interference of autophagy coupled with regulation of immune infiltration.
Collapse
Affiliation(s)
- Hongxing Yang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianbin Wu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixia Zhong
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jigang Wang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lizhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Aguilera MO, Robledo E, Melani M, Wappner P, Colombo MI. FKBP8 is a novel molecule that participates in the regulation of the autophagic pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119212. [PMID: 35090967 DOI: 10.1016/j.bbamcr.2022.119212] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Autophagy is a homeostatic process by which misfolded proteins, organelles and cytoplasmic material are engulfed in autophagosomal vesicles and degraded through a lisosomal pathway. FKBP8 is a member of the FK506-binding proteins family (FKBP) usually found in mitochondria and the endoplasmic reticulum. This protein plays a critical role in cell functions such as protein trafficking and folding. In the present report we demonstrate that the depletion of FKBP8 abrogated autophagy activation induced by starvation, whereas the overexpression of this protein triggered the autophagy cascade. We found that FKBP8 co-localizes with ATG14L and BECN1, both members of the VPS34 lipid kinase complex, which regulates the initial steps in the autophagosome formation process. We have also demonstrated that FKBP8 is necessary for VPS34 activity. Our findings indicate that the regulatory function of FKBP8 in the autophagy process depends of its transmembrane domain. Surprisingly, this protein was not found in autophagosomal vesicles, which reinforces the notion that the FKBP8 only participates in the initial steps of the autophagosome formation process. Taken together, our data provide evidence that FKBP8 modulates the early steps of the autophagosome formation event by interacting with the VPS34 lipid kinase complex. SUMMARY: In this article, the protein FKBP38 is reported to be a novel modulator of the initial steps of the autophagic pathway, specifically in starvation-induced autophagy. FKBP38 interacts with the VPS34 lipid kinase complex, with the transmembrane domain of FKBP38 being critical for its biological function.
Collapse
Affiliation(s)
- Milton Osmar Aguilera
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia, Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina; Microbiología, Parasitología e Inmunología, Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Esteban Robledo
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia, Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Mariana Melani
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; Instituto Leloir, Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Wappner
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; Instituto Leloir, Buenos Aires, Argentina
| | - María Isabel Colombo
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia, Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina.
| |
Collapse
|
23
|
Resveratrol sensitizes breast cancer to PARP inhibitor, talazoparib through dual inhibition of AKT and autophagy flux. Biochem Pharmacol 2022; 199:115024. [PMID: 35367197 DOI: 10.1016/j.bcp.2022.115024] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022]
Abstract
The efficacy of poly (ADP-ribose) polymerase inhibitors (PARPi) is largely limited to the homologous recombination (HR) deficient cancers. Therefore, there is a necessity to explore novel drug combinations with PARPi to enhance its anti-cancer activity in HR-proficient cancers. By analysing the patient data in cBioPortal, we found copy number amplification of PARP1 in ∼ 22.8% of breast cancers. PARP1 upregulation has been correlated with unfavourable outcome with PARPi treatment. To overcome this adversity, we explored the effect of resveratrol, a natural molecule chemosensitizer, in enhancing the effects of the third generation PARPi, talazoparib (BMN673), against breast adenocarcinoma. Our results show that resveratrol effectively sensitized talazoparib induced cell death in HR proficient and BRCA wild-type breast cancer cells in vitro. Mechanistically, resveratrol caused dysregulation of cell cycle and enhanced talazoparib-induced double strand breaks (DSBs), leading to abnormal mitotic progression culminating in mitotic catastrophe. Intriguingly, our results showed potential of resveratrol in dual-inhibition of AKT-signalling and autophagy flux to impair HR-mediated DSB-repair in breast cancer cells. By using EGFP-LC3 and tf-LC3 (mRFP-EGFP-LC3) expressing breast cancer cells, we found that resveratrol attenuates fusion of autophagosome and lysosome though induction of lysosomal-membrane-permeabilization (LMP). The combination of resveratrol and talazoparib effectively reduced cell proliferation in the high-density cell proliferation assay and also led to tumour volume reduction in vivo pre-clinical SCID-mice model. The combination caused no or minimal cytotoxicity in three different normal cell lines in vitro. Taken together, our work proposes the usage of resveratrol as a chemosensitizer along with talazoparib for targeting HR-proficient breast cancers in clinical settings.
Collapse
|
24
|
Hazafa A, Iqbal MO, Javaid U, Tareen MBK, Amna D, Ramzan A, Piracha S, Naeem M. Inhibitory effect of polyphenols (phenolic acids, lignans, and stilbenes) on cancer by regulating signal transduction pathways: a review. Clin Transl Oncol 2022; 24:432-445. [PMID: 34609675 DOI: 10.1007/s12094-021-02709-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023]
Abstract
Natural products, especially polyphenols (phenolic acids, lignans, and stilbenes) are suggested to be more potent anticancer drugs because of their no or less adverse effects, excess availability, high accuracy, and secure mode of action. In the present review, potential anticancer mechanisms of action of some polyphenols including phenolic acids, lignans, and stilbenes are discussed based on clinical, epidemiological, in vivo, and in vitro studies. The emerging evidence revealed that phenolic acids, lignans, and stilbenes induced apoptosis in the treatment of breast (MCF-7), colon (Caco-2), lung (SKLU-1), prostate (DU-145 and LNCaP), hepatocellular (hepG-2), and cervical (A-431) cancer cells, cell cycle arrest (S/G2/M/G1-phases) in gastric (MKN-45 and MKN-74), colorectal (HCT-116), bladder (T-24 and 5637), oral (H-400), leukemic (HL-60 and MOLT-4) and colon (Caco-2) cancer cells, and inhibit cell proliferation against the prostate (PC-3), liver (LI-90), breast (T47D and MDA-MB-231), colon (HT-29 and Caco-2), cervical (HTB-35), and MIC-1 cancer cells through caspase-3, MAPK, AMPK, Akt, NF-κB, Wnt, CD95, and SIRT1 pathways. Based on accumulated data, we suggested that polyphenols could be considered as a viable therapeutic option in the treatment of cancer cells in the near future.
Collapse
Affiliation(s)
- A Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - M O Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - U Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - M B K Tareen
- College of Food Science & Technology, Huazhong Agricultural University, Huazhong, China
| | - D Amna
- Institute of Food Science & Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - A Ramzan
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - S Piracha
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - M Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
25
|
Yang X, Wang M, Zhou Q, Bai Y, Liu J, Yang J, Li L, Li G, Luo L. Macamide B Pretreatment Attenuates Neonatal Hypoxic-Ischemic Brain Damage of Mice Induced Apoptosis and Regulates Autophagy via the PI3K/AKT Signaling Pathway. Mol Neurobiol 2022; 59:2776-2798. [PMID: 35190953 DOI: 10.1007/s12035-022-02751-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/16/2022] [Indexed: 01/19/2023]
Abstract
Lepidium meyenii (maca) is an annual or biennial herb from South America that is a member of the genus Lepidium L. in the family Cruciferae. This herb possesses antioxidant and antiapoptotic activities, enhances autophagy functions, prevents cell death, and protects neurons from ischemic damage. Macamide B, an effective active ingredient of maca, exerts a neuroprotective effect on neonatal hypoxic-ischemic brain damage (HIBD), but the mechanism underlying its neuroprotective effect is not yet known. The purpose of this study was to explore the effect of macamide B on HIBD-induced autophagy and apoptosis and its potential neuroprotective mechanism. The modified Rice-Vannucci method was used to induce HIBD in 7-day-old (P7) macamide B- and vehicle-pretreated pups. TTC staining was performed to evaluate the cerebral infarct volume in pups, the brain water content was measured to evaluate the neurological function of pups, neurobehavioural testing was conducted to assess functional recovery after HIBD, TUNEL and FJC staining was performed to detect cellular autophagy and apoptosis, and Western blot analysis was used to detect the levels of proteins in the pro-survival phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway and autophagy and apoptosis-related proteins. Macamide B pretreatment significantly decreases brain damage and improves the recovery of neural function after HIBD. At the same time, macamide B pretreatment activates the PI3K/AKT signaling pathway after HIBD, enhances autophagy, and reduces hypoxic-ischemic (HI)-induced apoptosis. In addition, 3-methyladenine (3-MA), an inhibitor of the PI3K/AKT signaling pathway, significantly inhibits the increase in autophagy levels, aggravates HI-induced apoptosis, and reverses the neuroprotective effect of macamide B on HIBD. Our data indicate that a macamide B pretreatment might regulate autophagy through the PI3K/AKT signaling pathway, thereby reducing HIBD-induced apoptosis and exerting neuroprotective effects on neonatal HIBD. Macamide B may become a new drug for the prevention and treatment of HIBD.
Collapse
Affiliation(s)
- Xiaoxia Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, People's Republic of China
| | - Qian Zhou
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yanxian Bai
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jing Liu
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Junhua Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Lixia Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Guoying Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China. .,Guangdong Medical Association, Guangzhou, 510180, Guangdong, People's Republic of China.
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China. .,Guangdong Medical Association, Guangzhou, 510180, Guangdong, People's Republic of China.
| |
Collapse
|
26
|
Research Progress and Prospects of Autophagy in the Mechanism of Multidrug Resistance in Tumors. JOURNAL OF ONCOLOGY 2022; 2022:7032614. [PMID: 35136409 PMCID: PMC8818414 DOI: 10.1155/2022/7032614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Although the treatment of cancer has made great strides in clinical practice, its high morbidity and fatality rates remain a major threat to human health. Multidrug resistance (MDR) often appears in the process of tumor treatment, leading to tumor refractory and aggravating the risk of tumor recurrence. Therefore, antitumor MDR plays a key role in tumor chemotherapy. Autophagy is an important process for the turnover of intracellular materials, which is commonly seen in the treatment of sensitive and multidrug-resistant tumors, and it can play different roles in various types of MDR tumor cells and tissues. Autophagy plays a dual regulatory role in MDR tumors. On the one hand, autophagy can promote the formation of MDR in tumor cells, weaken the killing effect of chemotherapy drugs on tumor cells, and play a protective role in tumor survival. On the other hand, autophagy production in the cellular environment can kill MDR tumor cells, reverse tumor resistance and enhance the efficiency of chemotherapy drugs. Therefore, the regulation of autophagy to overcome MDR has become increasingly significant in tumor chemotherapy. In this article, we discussed and summarized the research progress of autophagy in MDR tumors, mainly involving the different characteristics of autophagy in MDR cancer cells.
Collapse
|
27
|
Shen X, Tang Z, Bai Y, Wan M, Yu M, Chen J, Li G, Zhang R, Ge M. Astragalus Polysaccharide Protects Against Cadmium-Induced Autophagy Injury Through Reactive Oxygen Species (ROS) Pathway in Chicken Embryo Fibroblast. Biol Trace Elem Res 2022; 200:318-329. [PMID: 33704669 DOI: 10.1007/s12011-021-02628-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 01/05/2023]
Abstract
Cadmium (Cd) is a harmful heavy metal pollutant, which can cause oxidative stress in the body and induce cell damage. Reactive oxygen species (ROS) is a general term for substances that contain oxygen and are active in the body. However, excessive ROS can damage the body. Cadmium poisoning can cause a large amount of ROS in cells and autophagy. Astragalus polysaccharide (APS) is a plant polysaccharide with biological functions, such as antioxidant and anti-stress activities. In this study, chicken embryo fibroblasts (CEF) were used to determine the relationship between ROS and autophagy damage of Cd-infected cells and the mechanism of APS on cadmium-induced autophagy damage. The results showed that a 10-μL dose of 10 μmol/L cadmium chloride (CdCl2) can induce CEF autophagy and damage when CEF was added for 36 h. Cadmium induced CEF autophagy damage by increasing ROS production. APS could significantly reduce ROS production and LC3-II and Beclin-1 protein expression, increase the expression of mTOR and the level of antioxidation, and restore the viability and morphological damage of CEF exposed to Cd. Our study suggests that APS can alleviate Cd-induced CEF autophagy damage by reducing the production of ROS.
Collapse
Affiliation(s)
- Xudong Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Zequn Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Bai
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Meishuo Wan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Jingyi Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
28
|
Cao L, Zhao J, Ma L, Chen J, Xu J, Rahman SU, Feng S, Li Y, Wu J, Wang X. Lycopene attenuates zearalenone-induced oxidative damage of piglet sertoli cells through the nuclear factor erythroid-2 related factor 2 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112737. [PMID: 34482067 DOI: 10.1016/j.ecoenv.2021.112737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) has an estrogenic effect and often causes reproductive damage. Pigs are particularly sensitive to it. Lycopene (LYC) is a type of fat-soluble natural carotenoid that has antioxidant, anti-inflammatory, anti-cancer, anti-cardiovascular and detoxifying effects. In this study, piglet sertoli cells (SCs) were used as research objects to investigate the mechanism of ZEA induced damage to piglet SCs and to evaluate the protective effect of LYC on ZEA induced toxic damage to piglet SCs. The results showed that ZEA damaged the cell structure and inhibited the expression of nuclear factor erythroid-2 related factor 2 (Nrf2) in the nucleus, which down-regulated the relative mRNA expression of heme oxygenase 1 (HO-1) and glutathione peroxidase 1 (GPX1) and decreased the activity of HO-1, glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD), resulting in an increase in malondialdehyde (MDA) and reactive oxygen species (ROS) content. ZEA downregulated the relative mRNA and protein expression of bcl-2 in piglet SCs, promoted cell apoptosis, and upregulated the relative mRNA and protein expression of LC3, beclin-1, and bax. After 3 h LYC-pretreatment, ZEA was added for mixed culture. The results of pretreatment with LYC showed that LYC could alleviate the cytotoxicity of ZEA to porlets SCs. Compared with ZEA group, improved the cell survival rate, promoted the expression of Nrf2 in the nucleus, upregulated the relative mRNA expression of HO-1 and GPX1, increased the activity of antioxidant enzymes, and reduced the levels of MDA and ROS. Moreover, after pretreatment with LYC, the mRNA expression of bcl-2 was upregulated, the apoptosis rate was decreased, the relative mRNA and protein expressions of LC3, beclin-1 and bax were downregulated, and autophagy was alleviated. In conclusion, LYC alleviated the oxidative damage of SCs caused by ZEA by promoting the expression of Nrf2 pathway and decreased autophagy and apoptosis.
Collapse
Affiliation(s)
- Li Cao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jie Zhao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Li Ma
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jiawen Chen
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jingru Xu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| |
Collapse
|
29
|
Memou A, Dimitrakopoulos L, Kedariti M, Kentros M, Lamprou A, Petropoulou-Vathi L, Valkimadi PE, Rideout HJ. Defining (and blocking) neuronal death in Parkinson's disease: Does it matter what we call it? Brain Res 2021; 1771:147639. [PMID: 34492263 DOI: 10.1016/j.brainres.2021.147639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, comprised of both familial and idiopathic forms, behind only Alzheimer's disease (AD). The disease is characterized, regardless of the pathogenesis, primarily by a loss of DA neurons in the ventral midbrain as well as noradrenergic neurons of the locus coeruleus; however, by the time symptoms manifest, considerable neuronal loss in both areas has occurred. Neuroprotective strategies thus have to be paired with more sensitive and specific biomarker assays that can identify early at-risk patients in order to initiate disease-modifying therapies at an earlier stage in the disease. Complicating this is the fact that multiple forms of cell death mediate the neuronal loss; however, with a common underlying element that the cell death is considered a "regulated" form of cell death, in contrast to an un-controlled necrotic cell death process. In this review we focus our discussion on several categories of regulated cell death in the context of PD: apoptosis, necroptosis, pyroptosis, and autophagic cell death. In clinical studies as well as experimental in vivo models of PD, there is evidence for a role of each of these forms of cell death in the loss of midbrain DA neurons, and specific therapeutic strategies have been proposed and tested. What remains unclear however is the relative contributions of these distinct forms of cell death to the overall loss of DA neurons, whether they occur at different stages of the disease, or whether specific sub-regions within the midbrain are more susceptible to specific death triggers and pathways.
Collapse
Affiliation(s)
- Anna Memou
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Lampros Dimitrakopoulos
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Kedariti
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Michalis Kentros
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Andriana Lamprou
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Lilian Petropoulou-Vathi
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Polytimi-Eleni Valkimadi
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Hardy J Rideout
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
30
|
Shen JL, Fortier TM, Wang R, Baehrecke EH. Vps13D functions in a Pink1-dependent and Parkin-independent mitophagy pathway. J Cell Biol 2021; 220:212607. [PMID: 34459871 PMCID: PMC8406608 DOI: 10.1083/jcb.202104073] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/27/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Defects in autophagy cause problems in metabolism, development, and disease. The autophagic clearance of mitochondria, mitophagy, is impaired by the loss of Vps13D. Here, we discover that Vps13D regulates mitophagy in a pathway that depends on the core autophagy machinery by regulating Atg8a and ubiquitin localization. This process is Pink1 dependent, with loss of pink1 having similar autophagy and mitochondrial defects as loss of vps13d. The role of Pink1 has largely been studied in tandem with Park/Parkin, an E3 ubiquitin ligase that is widely considered to be crucial in Pink1-dependent mitophagy. Surprisingly, we find that loss of park does not exhibit the same autophagy and mitochondrial deficiencies as vps13d and pink1 mutant cells and contributes to mitochondrial clearance through a pathway that is parallel to vps13d. These findings provide a Park-independent pathway for Pink1-regulated mitophagy and help to explain how Vps13D regulates autophagy and mitochondrial morphology and contributes to neurodegenerative diseases.
Collapse
Affiliation(s)
- James L Shen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Tina M Fortier
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Ruoxi Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
31
|
Won M, Choi S, Cheon S, Kim EM, Kwon TK, Kim J, Kim YE, Sohn KC, Hur GM, Kim KK. Octyl syringate is preferentially cytotoxic to cancer cells via lysosomal membrane permeabilization and autophagic flux inhibition. Cell Biol Toxicol 2021; 39:183-199. [PMID: 34523043 DOI: 10.1007/s10565-021-09653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
The autophagy-mediated lysosomal pathway plays an important role in conferring stress tolerance to tumor cells during cellular stress such as increased metabolic demands. Thus, targeted disruption of this function and inducing lysosomal cell death have been proved to be a useful cancer therapeutic approach. In this study, we reported that octyl syringate (OS), a novel phenolic derivate, was preferentially cytotoxic to various cancer cells but was significantly less cytotoxic to non-transformed cells. Treatment with OS resulted in non-apoptotic cell death in a caspase-independent manner. Notably, OS not only enhanced accumulation of autophagic substrates, including lapidated LC3 and sequestosome-1, but also inhibited their degradation via an autophagic flux. In addition, OS destabilized the lysosomal function, followed by the intracellular accumulation of the non-digestive autophagic substrates such as bovine serum albumin and stress granules. Furthermore, OS triggered the release of lysosomal enzymes into the cytoplasm that contributed to OS-induced non-apoptotic cell death. Finally, we demonstrated that OS was well tolerated and reduced tumor growth in mouse xenograft models. Taken together, our study identifies OS as a novel anticancer agent that induces lysosomal destabilization and subsequently inhibits autophagic flux and further supports development of OS as a lysosome-targeting compound in cancer therapy. • Octyl syringate, a phenolic derivate, is preferentially cytotoxic to various cancer cells. • Octyl syringate destabilizes the lysosomal function. • Octyl syringate blocks the autophagic flux. • Octyl syringate is a potential candidate compound for cancer therapy.
Collapse
Affiliation(s)
- Minho Won
- Department of Pharmacology, College of Medicine, Chungnam National University, 35015, Daejeon, Republic of Korea.,Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seonghye Cheon
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, College of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jaewhan Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yong-Eun Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Pharmacology, College of Medicine, Chungnam National University, 35015, Daejeon, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, 35015, Daejeon, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
32
|
Teng NMY, Price CA, McKee AM, Hall LJ, Robinson SD. Exploring the impact of gut microbiota and diet on breast cancer risk and progression. Int J Cancer 2021; 149:494-504. [PMID: 33521932 PMCID: PMC8650995 DOI: 10.1002/ijc.33496] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
There is emerging evidence that resident microbiota communities, that is, the microbiota, play a key role in cancer outcomes and anticancer responses. Although this has been relatively well studied in colorectal cancer and melanoma, other cancers, such as breast cancer (BrCa), have been largely overlooked to date. Importantly, many of the environmental factors associated with BrCa incidence and progression are also known to impact the microbiota, for example, diet and antibiotics. Here, we explore BrCa risk factors from large epidemiology studies and microbiota associations, and more recent studies that have directly profiled BrCa patients' gut microbiotas. We also discuss how in vivo studies have begun to unravel the immune mechanisms whereby the microbiota may influence BrCa responses, and finally we examine how diet and specific nutrients are also linked to BrCa outcomes. We also consider future research avenues and important considerations with respect to study design and implementation, and we highlight some of the important unresolved questions, which currently limit our overall understanding of the mechanisms underpinning microbiota-BrCa responses.
Collapse
Affiliation(s)
- Nancy M. Y. Teng
- Gut Microbes & HealthQuadram Institute Bioscience, Norwich Research ParkNorwichUK
| | - Christopher A. Price
- Gut Microbes & HealthQuadram Institute Bioscience, Norwich Research ParkNorwichUK
| | - Alastair M. McKee
- Gut Microbes & HealthQuadram Institute Bioscience, Norwich Research ParkNorwichUK
| | - Lindsay J. Hall
- Gut Microbes & HealthQuadram Institute Bioscience, Norwich Research ParkNorwichUK
- Norwich Medical SchoolUniversity of East Anglia, Norwich Research ParkNorwichUK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL‐Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Stephen D. Robinson
- Gut Microbes & HealthQuadram Institute Bioscience, Norwich Research ParkNorwichUK
- School of Biological SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| |
Collapse
|
33
|
Lendvai G, Szekerczés T, Illyés I, Csengeri M, Schlachter K, Szabó E, Lotz G, Kiss A, Borka K, Schaff Z. Autophagy activity in cholangiocarcinoma is associated with anatomical localization of the tumor. PLoS One 2021; 16:e0253065. [PMID: 34129628 PMCID: PMC8205141 DOI: 10.1371/journal.pone.0253065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
The presence of autophagy has been indicated in cholangiocarcinoma (CC), which disease has poor prognosis and limited treatment options. Recently, CC has been classified by anatomical localization as intrahepatic (iCC), perihilar (pCC) and distal (dCC), showing different clinical and molecular characteristics. Thus, our aim was to compare autophagy activity in CC samples resected from different anatomical locations. Further, we investigated whether autophagy could be modulated in cell lines originated from iCC and extrahepatic CC (eCC) following the treatments with autophagy inhibitory and inducing agents. Tissue microarrays were prepared from 70 CC (28 iCC, 19 pCC and 23 dCC), 31 adjacent non-tumorous and 9 hepatocellular carcinoma (HCC) samples. Autophagy markers LC3, p62 and Beclin1 as well as proliferation marker Ki-67 were monitored by immunohistochemistry and were associated with patients' survival. Modulation of autophagy was investigated in cell lines originated from iCC (HuH-28), eCC (TFK-1) and HCC (HepG2) by treating the cells with chloroquine (CQ) for inhibition and with Rapamycin, 5-Fluorouracil (5-FU) and Sorafenib for induction of autophagy. Our results indicated an inhibited autophagy in iCC and pCC tumor tissues, whereas active autophagy seemed to occur in dCC, especially in samples displaying low Ki-67 index. Additionally, low level of Beclin1 and high level of Ki-67 were associated with poor overall survival in dCC, suggesting the prognostic role of these proteins in dCC. Beside a baseline autophagy detected in each cell line, Rapamycin and 5-FU induced autophagy in iCC and HepG2 cell lines, Sorafenib in iCC cells. A chemotherapy agent in combination with CQ decreased IC50 effectively in the cell lines where basal and/or induced autophagy were present. In conclusion, we revealed differences in the autophagy activities of CC tissues and cell lines originated from different anatomical locations, which might influence patients' treatment. Our results also suggest a prognostic role of Beclin1 and Ki-67 in dCC.
Collapse
Affiliation(s)
- Gábor Lendvai
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Tímea Szekerczés
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Ildikó Illyés
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Milán Csengeri
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Krisztina Schlachter
- Department of Surgical and Molecular Pathology, Center of Tumor Pathology, National Institute of Oncology, Budpest, Hungary
| | - Erzsébet Szabó
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Gábor Lotz
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - András Kiss
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Katalin Borka
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Karabiyik C, Vicinanza M, Son SM, Rubinsztein DC. Glucose starvation induces autophagy via ULK1-mediated activation of PIKfyve in an AMPK-dependent manner. Dev Cell 2021; 56:1961-1975.e5. [PMID: 34107300 DOI: 10.1016/j.devcel.2021.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022]
Abstract
Autophagy is an essential catabolic process induced to provide cellular energy sources in response to nutrient limitation through the activation of kinases, like AMP-activated protein kinase (AMPK) and ULK1. Although glucose starvation induces autophagy, the exact mechanism underlying this signaling has yet to be elucidated. Here, we reveal a role for ULK1 in non-canonical autophagy signaling using diverse cell lines. ULK1 activated by AMPK during glucose starvation phosphorylates the lipid kinase PIKfyve on S1548, thereby increasing its activity and the synthesis of the phospholipid PI(5)P without changing the levels of PI(3,5)P2. ULK1-mediated activation of PIKfyve enhances the formation of PI(5)P-containing autophagosomes upon glucose starvation, resulting in an increase in autophagy flux. Phospho-mimic PIKfyve S1548D drives autophagy upregulation and lowers autophagy substrate levels. Our study has identified how ULK1 upregulates autophagy upon glucose starvation and induces the formation of PI(5)P-containing autophagosomes by activating PIKfyve.
Collapse
Affiliation(s)
- Cansu Karabiyik
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge, UK
| | - Mariella Vicinanza
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge, UK
| | - Sung Min Son
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge, UK.
| |
Collapse
|
35
|
Patra S, Nayak R, Patro S, Pradhan B, Sahu B, Behera C, Bhutia SK, Jena M. Chemical diversity of dietary phytochemicals and their mode of chemoprevention. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00633. [PMID: 34094892 PMCID: PMC8167155 DOI: 10.1016/j.btre.2021.e00633] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
Despite the advancement in prognosis, diagnosis and treatment, cancer has emerged as the second leading cause of disease-associated death across the globe. With the remarkable application of synthetic drugs in cancer therapy and the onset of therapy-associated adverse effects, dietary phytochemicals have been materialized as potent anti-cancer drugs owing to their antioxidant, apoptosis and autophagy modulating activities. With dynamic regulation of apoptosis and autophagy in association with cell cycle regulation, inhibition in cellular proliferation, invasion and migration, dietary phytochemicals have emerged as potent anti-cancer pharmacophores. Dietary phytochemicals or their synthetic analogous as individual drug candidates or in combination with FDA approved chemotherapeutic drugs have exhibited potent anti-cancer efficacy. With the advancement in cancer therapeutics, dietary phytochemicals hold high prevalence for their use as precision and personalized medicine to replace conventional chemotherapeutic drugs. Hence, keeping these perspectives in mind, this review focuses on the diversity of dietary phytochemicals and their molecular mechanism of action in several cancer subtypes and tumor entities. Understanding the possible molecular key players involved, the use of dietary phytochemicals will thrive a new horizon in cancer therapy.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, India
| | - Rabindra Nayak
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, 760007, India
| | - Suryamani Patro
- Department of Home Science, S.B.R. Govt. Women’s College, Berhampur, 760001, India
| | - Biswajita Pradhan
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, 760007, India
| | | | - Chhandashree Behera
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, 760007, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, India
| | - Mrutyunjay Jena
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, 760007, India
| |
Collapse
|
36
|
Huang Z, Wang Q, Zhang T, Fu Y, Wang W. Hyper-activated platelet lysates prevent glucocorticoid-associated femoral head necrosis by regulating autophagy. Biomed Pharmacother 2021; 139:111711. [PMID: 34243617 DOI: 10.1016/j.biopha.2021.111711] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022] Open
Abstract
Platelet Rich Plasma (PRP) can activate angiogenic and osteogenic pathways, making it a highly promising therapeutic agent for bone growth. Super active platelet lysate (sPL) is derived from platelet-rich plasma (PRP) through ultra-low temperature freeze-thawing. The aim of this study was to evaluate the potential therapeutic effect of sPL on glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH). sPL increased the proliferation of GC-treated osteoblasts and endothelial cells, and inhibited apoptosis in vitro. Furthermore, sPL promoted healing of necrotic bone tissues in a rat ONFH model by restraining GC-induced apoptosis and increase autophagy of the osteoblasts. Overall, the results of this study provide a theoretical basis for the clinical application of sPL in ONFH.
Collapse
Affiliation(s)
- Zhipeng Huang
- The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, China
| | - Qinglong Wang
- The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, China
| | - Tao Zhang
- The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, China
| | - Yinsheng Fu
- Tianqing Stem Cell Co., Ltd., Jubao Second Road, Science and Technology Innovation City, Songbei District, Harbin 150000, China
| | - Wenbo Wang
- The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, China.
| |
Collapse
|
37
|
Li D, Vogel P, Li-Harms X, Wang B, Kundu M. ATG14 and RB1CC1 play essential roles in maintaining muscle homeostasis. Autophagy 2021; 17:2576-2585. [PMID: 33794726 DOI: 10.1080/15548627.2021.1911549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Defects in macroautophagy/autophagy are implicated in the pathogenesis of neuromuscular and heart diseases. To precisely define the roles of autophagy-related genes in skeletal and cardiac muscles, we generated muscle-specific rb1cc1- and atg14-conditional knockout (cKO) mice by using Ckm/Ckmm2-Cre and compared their phenotypes to those of ulk1 ulk2-conditional double-knockout (cDKO) mice. atg14-cKO mice developed hypertrophic cardiomyopathy, which was associated with abnormal accumulation of autophagic cargoes in the heart and early mortality. Skeletal muscles of both atg14-cKO and rb1cc1-cKO mice showed features of autophagic vacuolar myopathy with ubiquitin+ SQSTM1+ deposits, but only those of rb1cc1-cKO mice showed TARDBP/TDP-43+ pathology and other features of the inclusion body myopathy-like disease we previously described in ulk1 ulk2-cDKO mice. Herein, we highlight tissue-specific differences between skeletal and cardiac muscles in their reliance on core autophagy proteins and unique roles for ULK1-ULK2 and RB1CC1 among these proteins in the development of TARDBP+ pathology.ABBREVIATIONS:AVM: autophagic vacuolar myopathy; cDKO: conditional double knockout; cKO: conditional knockout; H&E: hematoxylin and eosin; IBM: inclusion body myopathy; mtDNA: mitochondrial DNA; PFA: paraformaldehyde; RNP: ribonucleoprotein; TBST: Tris-buffered saline with 0.2% Triton X-100.
Collapse
Affiliation(s)
- Dongfang Li
- Departments of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Departments of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiujie Li-Harms
- Departments of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bo Wang
- Departments of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, Fujian Province, China
| | - Mondira Kundu
- Departments of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
38
|
Targeting autophagy reverses de novo resistance in homologous recombination repair proficient breast cancers to PARP inhibition. Br J Cancer 2021; 124:1260-1274. [PMID: 33473172 PMCID: PMC8007595 DOI: 10.1038/s41416-020-01238-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 11/21/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase inhibitors (PARPi) target tumours defective in homologous recombination (HR). Most BRCA-wild-type (WT) HR-proficient breast cancers are intrinsically resistant to PARP inhibitors, e.g., talazoparib. We evaluated the role of autophagy in this de novo resistance and determined the underlying mechanism to overcome this. METHODS Autophagosome formation and autophagic flux were assessed by evaluating endogenous LC3-II levels and ectopic expression of EGFP-LC3 and mRFP-EGFP-LC3 in breast cancer cells. Autophagy-defective cells were generated by genetic depletion of BECN1, ATG5, p62/SQSTM1 and LAMP1 by using CRISPR-Cas9 double nickase system. The response of PARPi was evaluated in autophagy-proficient and -defective breast cancer cells and in xenograft SCID-mice model. RESULTS Pro-survival autophagy was significantly enhanced upon talazoparib treatment in BRCA-WT breast cancer cell lines. Autophagy-deficient cells were hypersensitive to talazoparib. Targeting autophagy synergistically enhanced the therapeutic efficacy of talazoparib in BRCA1-WT breast cancer cells in vitro and in vivo xenograft tumour mouse model. Mechanistically, autophagy inhibition by chloroquine promoted deleterious NHEJ mediated DSB-repair, leading to extensive genomic instability and mitotic catastrophe. CONCLUSIONS Autophagy confers de novo resistance to PARP inhibitor, talazoparib. Autophagy inhibition improves the therapeutic outcome of PARPi treatment in preclinical mice model, bearing HR-proficient breast tumours, warranting its usage in the clinical settings.
Collapse
|
39
|
Chen X, Wang Y, Tian J, Shao Y, Zhu B, Wang J, Hua Z. Quantitative Chemical Proteomics Reveals Resveratrol Inhibition of A549 Cell Migration Through Binding Multiple Targets to Regulate Cytoskeletal Remodeling and Suppress EMT. Front Pharmacol 2021; 12:636213. [PMID: 33867987 PMCID: PMC8044895 DOI: 10.3389/fphar.2021.636213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/03/2022] Open
Abstract
Resveratrol (RSV), a health-promoting natural product, has been shown to affect various cellular processes in tumor cells. However, the specific protein targets of RSV and the mechanism of action (MOA) of its anticancer effect remain elusive. In this study, the pharmacological activity of RSV was first evaluated in A549 cells, and the results showed that RSV significantly inhibited A549 cell migration but did not affect cell viability. To elucidate the underlying mechanism, a quantitative chemical proteomics approach was employed to identify the protein targets of RSV. A total of 38 target proteins were identified, and proteomic analysis showed that the targets were mainly involved in cytoskeletal remodeling and EMT, which were verified by subsequent in vitro and in vivo assays. In conclusion, RSV inhibits A549 cell migration by binding to multiple targets to regulate cytoskeletal remodeling and suppress EMT.
Collapse
Affiliation(s)
- Xiao Chen
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Yutong Wang
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Tian
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yurou Shao
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Zhu
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zichun Hua
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
40
|
Patra S, Pradhan B, Nayak R, Behera C, Panda KC, Das S, Jena M, Bhutia SK. Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: Current evidences and future perspectives. Phytother Res 2021; 35:4194-4214. [DOI: 10.1002/ptr.7082] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science National Institute of Technology Rourkela Rourkela Odisha India
| | - Biswajita Pradhan
- Post Graduate Department of Botany Berhampur University Berhampur Odisha India
| | - Rabindra Nayak
- Post Graduate Department of Botany Berhampur University Berhampur Odisha India
| | - Chhandashree Behera
- Post Graduate Department of Botany Berhampur University Berhampur Odisha India
| | - Krishna Chandra Panda
- Department of Pharmaceutical Chemistry Roland Institute of Pharmaceutical Sciences Berhampur Odisha India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science National Institute of Technology Rourkela Rourkela Odisha India
| | - Mrutyunjay Jena
- Post Graduate Department of Botany Berhampur University Berhampur Odisha India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science National Institute of Technology Rourkela Rourkela Odisha India
| |
Collapse
|
41
|
Liu X, Yang J, Fu J, Xu PL, Xie TG, Bai LP, Jiang ZH, Zhu GY. Monoterpene-flavonoid conjugates from Sarcandra glabra and their autophagy modulating activities. Bioorg Chem 2021; 112:104830. [PMID: 33819736 DOI: 10.1016/j.bioorg.2021.104830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/24/2022]
Abstract
Fourteen new monoterpene-flavonoid conjugates including four monoterpene-conjugated chalcones (glabratins A-D, 1-4), seven monoterpene-conjugated dihydrochalcones (glabratins E-K, 5-11), and three monoterpene-conjugated flavanones (glabratins L-N, 12-14), together with four known analogues (15-18) were isolated from the aerial parts of Sarcandra glabra. The structures and the absolute configurations of these compounds were elucidated by the spectroscopic data, single-crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations. Compounds 1, 4-6, 9-14, and 18 showed obvious cell autophagy-inducing activities at 25 μM in HEK293 cells. Furthermore, the bioassay results also showed that 18 induced cell autophagy in a dose dependent manner. Our findings revealed a rare class of monoterpene-flavonoid conjugates in nature and firstly reported their autophagy-inducing activities.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, People's Republic of China
| | - Ji Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Jing Fu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Pei-Lin Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Tang-Gui Xie
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi 530023, People's Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau.
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau.
| |
Collapse
|
42
|
Zhang J, Fan J, Zeng X, Nie M, Chen W, Wang Y, Luan J, Zhu Z, Chang X, Ju D, Feng L, Yin K. Targeting the autophagy promoted antitumor effect of T-DM1 on HER2-positive gastric cancer. Cell Death Dis 2021; 12:288. [PMID: 33731670 PMCID: PMC7969610 DOI: 10.1038/s41419-020-03349-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Trastuzumab emtansine (T-DM1), an antibody-drug conjugate consisted of the HER2-targeted monoclonal antibody trastuzumab and the tubulin inhibitor emtansine, has shown potent therapeutic value in HER2-positive breast cancer (BC). However, a clinical trial indicated that T-DM1 exerts a limited effect on HER2-positive gastric cancer (GC), but the underlying mechanism is inconclusive. Our research attempted to reveal the probable mechanism and role of autophagy in T-DM1-treated HER2-positive GC. In this study, our results showed that T-DM1 induced apoptosis and exhibited potent therapeutic efficacy in HER2-positive GC cells. In addition, autophagosomes were observed by transmission electron microscopy. Autophagy was markedly activated and exhibited the three characterized gradations of autophagic flux, consisting of the formation of autophagosomes, the fusion of autophagosomes with lysosomes, and the deterioration of autophagosomes in autolysosomes. More importantly, autophagic inhibition by the suppressors 3-methyladenine (3-MA) and LY294002 significantly potentiated cytotoxicity and apoptosis in HER2-positive GC cells in vitro, while the combined use of LY294002 and T-DM1 elicited potent anti-GC efficacy in vivo. In mechanistic experiments, immunoblot analysis indicated the downregulated levels of Akt, mTOR, and P70S6K and confocal microscopy analysis clearly showed that autophagic inhibition promoted the fusion of T-DM1 molecules with lysosomes in GC cells. In conclusion, our research demonstrated that T-DM1 induced apoptosis as well as cytoprotective autophagy, and autophagic inhibition could potentiate the antitumor effect of T-DM1 on HER2-positive GC. Furthermore, autophagic inhibition might increase the fusion of T-DM1 with lysosomes, which might accelerate the release of the cytotoxic molecule emtansine from the T-DM1 conjugate. These findings highlight a promising therapeutic strategy that combines T-DM1 with an autophagy inhibitor to treat HER-positive GC more efficiently.
Collapse
Affiliation(s)
- Jinghui Zhang
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, P. R. China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, P. R. China
| | - Mingming Nie
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Wei Chen
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, P. R. China
| | - Yichen Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, P. R. China
| | - Jingyun Luan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, P. R. China
| | - Zeguo Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, P. R. China
| | - Xusheng Chang
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, P. R. China.
- Department of Endoscopy Center, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, P. R. China.
| | - Li Feng
- Department of Endoscopy Center, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, P. R. China.
| | - Kai Yin
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P. R. China.
| |
Collapse
|
43
|
AlMuzaini AAAY, Boesze-Battaglia K, Alawi F, Akintoye SO. Hypoxia enhances basal autophagy of epithelial-derived ameloblastoma cells. Oral Dis 2021; 28:2175-2184. [PMID: 33721362 DOI: 10.1111/odi.13848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/11/2021] [Accepted: 02/28/2021] [Indexed: 11/28/2022]
Abstract
Ameloblastoma is a locally aggressive odontogenic tumor. Etiopathogenesis and locally aggressive growth properties of ameloblastoma can be attributed to a hypoxic microenvironment conducive to tumor cell survival. Epithelial-derived follicular ameloblastoma cells (EP-AMCs) display enhanced basal autophagy, but the interplay of hypoxia and autophagy in EP-AMCs survival and ameloblastoma recurrence is unclear. We evaluated differential expression of autophagic markers in primary and recurrent ameloblastomas and hypothesized that hypoxia-induced autophagy supports EP-AMC survival. Primary and recurrent ameloblastomas were comparatively assessed for expression levels of pan-cytokeratin, Vimentin, and autophagic markers SQSTM1/p62, LC3, and pS6. EP-AMCs compared with human odontoma-derived cells (HODCs) were subjected to severe hypoxia to determine the interplay of hypoxia and autophagic process in posthypoxia survival. Pan-cytokeratin and SQSTM1/p62 were expressed by both primary and recurrent ameloblastoma epithelial cells while the ameloblastoma connective tissues displayed weak reactivity to vimentin. Under hypoxia, EP-AMC expression levels of hypoxia-inducible factor (HIF)-1α, p62, and LC3 were increased while pS6 was decreased posthypoxia. The combined decrease in pS6 and enhanced LC3 in EP-AMCs under hypoxia indicate that EP-AMCs re-establish basal autophagy under hypoxia. Taken together, these suggest a possible role of LC3-associated phagocytosis (LAP) in ameloblastoma cell survival.
Collapse
Affiliation(s)
- Anwar A A Y AlMuzaini
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Faizan Alawi
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunday O Akintoye
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Zhang J, Hu C, Li X, Liang L, Zhang M, Chen B, Liu X, Yang D. Protective Effect of Dihydrokaempferol on Acetaminophen-Induced Liver Injury by Activating the SIRT1 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:705-718. [PMID: 33657990 DOI: 10.1142/s0192415x21500324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF) in the Western world, with limited treatment opportunities. 3,5,7,4[Formula: see text]-Tetrahydroxyflavanone (Dihydrokaempferol, DHK, Aromadendrin) is a flavonoid isolated from Chinese herbs and displays high anti-oxidant and anti-inflammatory capacities. In this study, we investigated the protective effect by DHK against APAP-induced liver injury in vitro and in vivo and the potential mechanism of action. Cell viability assays were used to determine the effects of DHK against APAP-induced liver injury. The levels of reactive oxygen species (ROS), serum alanine/aspartate aminotransferases (ALT/AST), liver myeloperoxidase (MPO), and malondialdehyde (MDA) were measured and analyzed to evaluate the effects of DHK on APAP-induced liver injury. Western blotting, immunofluorescence staining, RT-PCR, and Transmission Electron Microscope were carried out to detect the signaling pathways affected by DHK. Here, we found that DHK owned a protective effect on APAP-induced liver injury with a dose-dependent manner. Meanwhile, Western blotting showed that DHK promoted SIRT1 expression and autophagy, activated the NRF2 pathway, and inhibited the translocation of nuclear p65 (NF-[Formula: see text]B) in the presence of APAP. Furthermore, SIRT1 inhibitor EX-527 aggravated APAP-induced hepatotoxicity when treating with DHK. Molecular docking results suggested potential interaction between DHK and SIRT1. Taken together, our study demonstrates that DHK protects against APAP-induced liver injury by activating the SIRT1 pathway, thereby promoting autophagy, reducing oxidative stress injury, and inhibiting inflammatory responses.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.,Shanghai TCM-Integrated Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional, Chinese Medicine, Shanghai 200082, P. R. China
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xiulong Li
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Li Liang
- Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P. R. China
| | - Mingcai Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional, Chinese Medicine, Shanghai 201203, P. R. China
| | - Bo Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional, Chinese Medicine, Shanghai 201203, P. R. China
| | - Xinhua Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Dicheng Yang
- Department of Cardiovascular Surgery, Shanghai General Hospital Shanghai, Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| |
Collapse
|
45
|
Wang C, Li Q, Xiao B, Fang H, Huang B, Huang F, Wang Y. Luteolin enhances the antitumor efficacy of oncolytic vaccinia virus that harbors IL-24 gene in liver cancer cells. J Clin Lab Anal 2021; 35:e23677. [PMID: 33274495 PMCID: PMC7957971 DOI: 10.1002/jcla.23677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Interleukin 24 (IL-24) is an IL-10 family member and a secreted cytokine characterized by cancer-targeted toxicity and can activate apoptosis by sensitizing cancer cells to chemotherapy. Cytotoxic effects of luteolin on different types of cancer cells suppress their growth by acting on the components of the apoptosis signaling cascade. Therefore, our study aimed to prove whether oncolytic vaccinia virus (VV) that harbors IL-24 (VV-IL-24) combine with luteolin exerts a synergistic inhibitory effect in liver cancer cells. METHODS Impacts on cell viability of VV-IL-24 and luteolin were assessed by MTT in various liver cancer cell lines. Then, liver cancer cell apoptosis was analyzed via flow cytometry and Western blotting. Besides, the MHCC97-H xenograft mouse model was employed as a means of assessing in vivo antitumor efficacy. RESULTS MTT assay confirmed that the combination treatment decreased liver cancer cells viability to a greater degree than treatment with VV-IL-24 or luteolin alone. Flow cytometry and Western blot assay proved that VV-IL-24 plus luteolin induced more liver cancer cells apoptosis than single treatment. Furthermore, in the MHCC97-H xenograft model, 15 days of treatment with VV-IL-24 plus luteolin inhibited tumor growth significantly more than single treatment. CONCLUSION These data confirm that the synergistic mechanism of VV-IL-24 and luteolin elicits a stronger tumor growth inhibition than any single therapy. Thus, the combination of VV-IL-24 and luteolin could provide the basis for preclinical research in the treatment of liver cancer.
Collapse
Affiliation(s)
- Chunming Wang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Qiang Li
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Boduan Xiao
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Huiling Fang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Biao Huang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Fang Huang
- Department of PathologyZhejiang Provincial People's HospitalPeople's Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Yigang Wang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| |
Collapse
|
46
|
Abstract
Besides the ubiquitin-proteasome system, autophagy is a major degradation pathway within cells. It delivers invading pathogens, damaged organelles, aggregated proteins, and other macromolecules from the cytosol to the lysosome for bulk degradation. This so-called canonical autophagy activity contributes to the maintenance of organelle, protein, and metabolite homeostasis as well as innate immunity. Over the past years, numerous studies rapidly deepened our knowledge on the autophagy machinery and its regulation, driven by the fact that impairment of autophagy is associated with several human pathologies, including cancer, immune diseases, and neurodegenerative disorders. Unexpectedly, components of the autophagic machinery were also found to participate in various processes that do not involve lysosomal delivery of cytosolic constituents. These functions are defined as noncanonical autophagy. Regarding neurodegenerative diseases, most research was performed in neurons, while for a long time, microglia received considerably less attention. Concomitant with the notion that microglia greatly contribute to brain health, the understanding of the role of autophagy in microglia expanded. To facilitate an overview of the current knowledge, here we present the fundamentals as well as the recent advances of canonical and noncanonical autophagy functions in microglia.
Collapse
|
47
|
Hu X, Liu X, Bai X, Yang L, Ding J, Jin X, Li C, Zhang Y, Li Y, Yang Y, Liu M. Effects of Trichinella spiralis and its excretory/secretory products on autophagy of host muscle cells in vivo and in vitro. PLoS Negl Trop Dis 2021; 15:e0009040. [PMID: 33600403 PMCID: PMC7891764 DOI: 10.1371/journal.pntd.0009040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Trichinella spiralis (T. spiralis) is a widely distributed pathogenic microorganism that causes trichinellosis, a disease that has the potential of causing severe harm to their host. Numerous studies have demonstrated that autophagy can be triggered by microbial infection, such as bacteria, viruses, protozoa, and parasitic helminths. However, it’s still unknown whether autophagy can facilitate host resistance to T. spiralis infection. The present study examined the role of autophagy in striated muscle cell transformation following infection with T. spiralis in BALB/c mice. Transmission electron microscopy (TEM) was used to detect the production of the host diaphragm autophagosome after T. spiralis infection, and changes in the protein and transcriptional levels of autophagic marker proteins were also detected. The significance of autophagy in T. spiralis infection, namely inhibition of T. spiralis growth, was preliminarily evaluated by conducting in vivo experiments using autophagy inhibitors. Besides, we studied the effect of excretory-secretory products (ES) of T. spiralis on autophagy of C2C12 myoblasts. The changes in protein and gene expression levels in autophagy-related pathways in vitro and in vivo were measured as further evidence. The results showed that T. spiralis infection induced autophagy in the host muscle cells. Meanwhile, ES inhibited autophagy of myoblasts in vitro, but this did not affect the cell viability. The upregulation and downregulation of autophagy-related factors in skeletal muscle cells may indicate an adaptive mechanism providing a comfortable niche for the parasite. Autophagy, a intracellular degradation system, is a kind of unique phenomenon in eukaryotic cells. The commonly referred autophagy is the process of forming autophagosomes by wrapping the cytoplasmic components with double-membrane structure, and then fusing with lysosomes to degrade the internal substances of the cell. Autophagy can be induced by various pathogens including parasites. When the body is infected with intracellular parasites, the host cell can remove the parasites by autophagy. However, parasites have also evolved defence mechanisms that use autophagy in host cells to promote growth. These can be seen in some intracellular parasitic infections such as Toxoplasma gondii and Plasmodium. Although the role of autophagy in other parasitic infections has been revealed, it remains unclear whether autophagy is involved in the invasion process by Trichinella. We investigated the role of Trichinella infection on host muscle cells autophagy and the effect of autophagosome formation on the survival of T. spiralis. Understanding the role of autophagy in the interaction between parasitic infection and host cell is of great significance for the prevention and treatment of Trichinella infection and the development of anti-parasite drugs.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuemin Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chen Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yulu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanfeng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (YY); (ML)
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (YY); (ML)
| |
Collapse
|
48
|
Abstract
Objectives
This study aims to explore the mechanism by which osteoblast autophagy participated in glucocorticoid-induced femoral head necrosis (FHN). Materials and methods
Thirty male specific-pathogen-free C57 mice (age, one month; weighing 20-25 g) were randomly divided into blank control, dexamethasone and rapamycin-dexamethasone groups (n=10). After six weeks of intervention, right femoral head was obtained to observe morphology and to calculate percentage of empty lacunae. MC3T3-E1 cells were randomly divided into normal, dexamethasone, rapamycin and dexamethasone-rapamycin groups, and cultured for 24 h. Microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, mammalian target of rapamycin (mTOR) and Beclin-1 protein expressions were detected by Western blot. Results
In rapamycin-dexamethasone group, some bone trabeculae in medullary cavity ruptured and atrophied, and subchondral bone underwent local necrosis. The total apoptosis rates of dexamethasone and rapamycin-dexamethasone groups surpassed that of blank control group, and the former two groups had significantly different rates (p<0.001). LC3-II/LC3-I of dexamethasone group was lower than those of rapamycin and dexamethasone-rapamycin groups (p<0.001), and the ratio of rapamycin group surpassed that of dexamethasone-rapamycin group (p<0.001). Dexamethasone group had higher mTOR protein expression than those of rapamycin and dexamethasone- rapamycin groups (p<0.001), and the expression of rapamycin group was lower than that of dexamethasone-rapamycin group (p<0.001). The Beclin-1 protein expression of dexamethasone group was lower than those of rapamycin and dexamethasone- rapamycin groups (p<0.001), and the expression of rapamycin group exceeded that of dexamethasone-rapamycin group (p<0.05). Conclusion Osteoblast autophagy may play a crucial protective role in dexamethasone-induced FHN. The attenuation of autophagy may be related to the affected expressions of key autophagy regulators mTOR and Beclin-1.
Collapse
|
49
|
Musial C, Siedlecka-Kroplewska K, Kmiec Z, Gorska-Ponikowska M. Modulation of Autophagy in Cancer Cells by Dietary Polyphenols. Antioxidants (Basel) 2021; 10:123. [PMID: 33467015 PMCID: PMC7830598 DOI: 10.3390/antiox10010123] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
The role of autophagy is to degrade damaged or unnecessary cellular structures. Both in vivo and in vitro studies suggest a dual role of autophagy in cancer-it may promote the development of neoplasms, but it may also play a tumor protective function. The mechanism of autophagy depends on the genetic context, tumor stage and type, tumor microenvironment, or clinical therapy used. Autophagy also plays an important role in cell death as well as in the induction of chemoresistance of cancer cells. The following review describes the extensive autophagic cell death in relation to dietary polyphenols and cancer disease. The review documents increasing use of polyphenolic compounds in cancer prevention, or as agents supporting oncological treatment. Polyphenols are organic chemicals that exhibit antioxidant, anti-inflammatory, anti-angiogenic, and immunomodulating properties, and can also initiate the process of apoptosis. In addition, polyphenols reduce oxidative stress and protect against reactive oxygen species. This review presents in vitro and in vivo studies in animal models with the use of polyphenolic compounds such as epigallocatechin-3-gallate (EGCG), oleuropein, punicalgin, apigenin, resveratrol, pterostilbene, or curcumin and their importance in the modulation of autophagy-induced death of cancer cells.
Collapse
Affiliation(s)
- Claudia Musial
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | | | - Zbigniew Kmiec
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland; (K.S.-K.); (Z.K.)
| | | |
Collapse
|
50
|
Feng X, Huang E, Gao Y, Zhang Y, Zhou Y. The effects of NONRATT008453.2 on autophagy in genital tubercle fibroblasts of rats with hypospadias induced by dibutyl phthalate. Birth Defects Res 2021; 113:399-408. [PMID: 33452730 PMCID: PMC7986160 DOI: 10.1002/bdr2.1863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 11/26/2020] [Accepted: 12/20/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hypospadias is a common birth defect that might be caused by inadequate fusion of the urethral folds in the process of male external genital development. We intended to discover the crucial long noncoding RNAs (lncRNAs) regulating autophagy from the gene expression profile of the genital tubercle (GT) of dibutyl phthalate (DBP) induced hypospadiac rats. METHODS Whole transcriptome resequencing was used to determine the expression of the total RNA in GTs and cultured fibroblasts obtained from GTs of DBP-induced hypospadiac male rat fetuses. Autophagosomes and autolysosomes were examined under a transmission electron microscope after overexpression of lncRNA NONRATT008453.2 in the fibroblasts by adenovirus transfection. Finally, the protein expression levels of Atg5, Beclin-1, Atg7, and the LC3A/B-II:LC3A/B-I ratio were detected in the fibroblasts by western blotting. RESULTS NONRATT008453.2 suppressed autophagy by promoting the expression of Atg7, but inhibited the expressions of Atg5, Beclin-1, and the LC3A/B-II:LC3A/B-I ratio in the GT fibroblasts. CONCLUSIONS NONRATT008453.2 may have an influence on autophagy in the fibroblasts of the GT in DBP-induced hypospadiac rats.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Clinical laboratory, Children's Hospital of Soochow University, Suzhou, P. R. China
| | - Enfu Huang
- Section of Pediatric Urology, Children's Hospital of Soochow University, Suzhou, P. R. China
| | - Yuanyuan Gao
- Department of Clinical laboratory, Children's Hospital of Soochow University, Suzhou, P. R. China
| | - Ya Zhang
- Central Laboratory of Pediatric Research Institute, Children's Hospital of Soochow University, Suzhou, P. R. China
| | - Yun Zhou
- Section of Pediatric Urology, Children's Hospital of Soochow University, Suzhou, P. R. China
| |
Collapse
|