1
|
Chandrasekhar S, Lin S, Jurkute N, Oprych K, Estramiana Elorrieta L, Schiff E, Malka S, Wright G, Michaelides M, Mahroo OA, Webster AR, Arno G. Investigating Splice Defects in USH2A Using Targeted Long-Read Sequencing. Cells 2024; 13:1261. [PMID: 39120292 PMCID: PMC11311777 DOI: 10.3390/cells13151261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Biallelic variants in USH2A are associated with retinitis pigmentosa (RP) and Type 2 Usher Syndrome (USH2), leading to impaired vision and, additionally, hearing loss in the latter. Although the introduction of next-generation sequencing into clinical diagnostics has led to a significant uplift in molecular diagnostic rates, many patients remain molecularly unsolved. It is thought that non-coding variants or variants of uncertain significance contribute significantly to this diagnostic gap. This study aims to demonstrate the clinical utility of the reverse transcription-polymerase chain reaction (RT-PCR)-Oxford Nanopore Technology (ONT) sequencing of USH2A mRNA transcripts from nasal epithelial cells to determine the splice-altering effect of candidate variants. Five affected individuals with USH2 or non-syndromic RP who had undergone whole genome sequencing were recruited for further investigation. All individuals had uncertain genotypes in USH2A, including deep intronic rare variants, c.8682-654C>G, c.9055+389G>A, and c.9959-2971C>T; a synonymous variant of uncertain significance, c.2139C>T; p.(Gly713=); and a predicted loss of function duplication spanning an intron/exon boundary, c.3812-3_3837dup p.(Met1280Ter). In silico assessment using SpliceAI provided splice-altering predictions for all candidate variants which were investigated using ONT sequencing. All predictions were found to be accurate; however, in the case of c.3812-3_3837dup, the outcome was a complex cryptic splicing pattern with predominant in-frame exon 18 skipping and a low level of exon 18 inclusion leading to the predicted stop gain. This study detected and functionally characterised simple and complex mis-splicing patterns in USH2A arising from previously unknown deep intronic variants and previously reported variants of uncertain significance, confirming the pathogenicity of the variants.
Collapse
Affiliation(s)
| | - Siying Lin
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Neringa Jurkute
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Neuro-Ophthalmology, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Kathryn Oprych
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Clinical Genetics, St George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Leire Estramiana Elorrieta
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London W2 1NY, UK
| | - Elena Schiff
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Samantha Malka
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Genevieve Wright
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Omar A. Mahroo
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | - Andrew R. Webster
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| |
Collapse
|
2
|
de Guimaraes TAC, Georgiou M, Robson AG, Fujinami K, Vincent A, Nasser F, Khateb S, Mahroo OA, Pontikos N, Vargas ME, Thiadens AAHJ, Carvalho ERD, Nguyen XTA, Arno G, Fujinami-Yokokawa Y, Liu X, Tsunoda K, Hayashi T, Jiménez-Rolando B, Martin-Merida MI, Avila-Fernandez A, Salas EC, Garcia-Sandoval B, Ayuso C, Sharon D, Kohl S, Huckfeldt RM, Banin E, Pennesi ME, Khan AO, Wissinger B, Webster AR, Heon E, Boon CJF, Zrenner E, Michaelides M. KCNV2-associated retinopathy: genotype-phenotype correlations - KCNV2 study group report 3. Br J Ophthalmol 2024; 108:1137-1144. [PMID: 37852740 PMCID: PMC11287651 DOI: 10.1136/bjo-2023-323640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND/AIMS To investigate genotype-phenotype associations in patients with KCNV2 retinopathy. METHODS Review of clinical notes, best-corrected visual acuity (BCVA), molecular variants, electroretinography (ERG) and retinal imaging. Subjects were grouped according to the combination of KCNV2 variants-two loss-of-function (TLOF), two missense (TM) or one of each (MLOF)-and parameters were compared. RESULTS Ninety-two patients were included. The mean age of onset (mean±SD) in TLOF (n=55), TM (n=23) and MLOF (n=14) groups was 3.51±0.58, 4.07±2.76 and 5.54±3.38 years, respectively. The mean LogMAR BCVA (±SD) at baseline in TLOF, TM and MLOF groups was 0.89±0.25, 0.67±0.38 and 0.81±0.35 for right, and 0.88±0.26, 0.69±0.33 and 0.78±0.33 for left eyes, respectively. The difference in BCVA between groups at baseline was significant in right (p=0.03) and left eyes (p=0.035). Mean outer nuclear layer thickness (±SD) at baseline in TLOF, MLOF and TM groups was 37.07±15.20 µm, 40.67±12.53 and 40.38±18.67, respectively, which was not significantly different (p=0.85). The mean ellipsoid zone width (EZW) loss (±SD) was 2051 µm (±1318) for patients in the TLOF, and 1314 µm (±965) for MLOF. Only one patient in the TM group had EZW loss at presentation. There was considerable overlap in ERG findings, although the largest DA 10 ERG b-waves were associated with TLOF and the smallest with TM variants. CONCLUSIONS Patients with missense alterations had better BCVA and greater structural integrity. This is important for patient prognostication and counselling, as well as stratification for future gene therapy trials.
Collapse
Affiliation(s)
- Thales A C de Guimaraes
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Michalis Georgiou
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony G Robson
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Kaoru Fujinami
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fadi Nasser
- Centre for Ophthalmology, University Hospital Tubingen Institute for Ophthalmic Research, Tubingen, Germany
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel
| | - Omar A Mahroo
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Nikolas Pontikos
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Alberta A H J Thiadens
- Department of Opthalmology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Emanuel R de Carvalho
- Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Xuan-Than-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gavin Arno
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Yu Fujinami-Yokokawa
- Institute of Ophthalmology, University College London, London, UK
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, Tokyo, Japan
- Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan
| | - Xiao Liu
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, Tokyo, Japan
| | - Kazushige Tsunoda
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Maria Inmaculada Martin-Merida
- Instituto de Investigacion Sanitaria de la Fundacion Jimenez Diaz, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Almudena Avila-Fernandez
- Instituto de Investigacion Sanitaria de la Fundacion Jimenez Diaz, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Ester Carreño Salas
- Instituto de Investigacion Sanitaria de la Fundacion Jimenez Diaz, Madrid, Spain
| | | | - Carmen Ayuso
- Instituto de Investigacion Sanitaria de la Fundacion Jimenez Diaz, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel
| | - Susanne Kohl
- Centre for Ophthalmology, University Hospital Tubingen Institute for Ophthalmic Research, Tubingen, Germany
| | - Rachel M Huckfeldt
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard, Massachusetts, USA
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel
| | - Mark E Pennesi
- Department of Ophthalmology, Oregon Health & Science University - Casey Eye Institute, Portland, Oregon, USA
| | - Arif O Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Bernd Wissinger
- Centre for Ophthalmology, University Hospital Tubingen Institute for Ophthalmic Research, Tubingen, Germany
| | - Andrew R Webster
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eberhard Zrenner
- Centre for Ophthalmology, University Hospital Tubingen Institute for Ophthalmic Research, Tubingen, Germany
| | - Michel Michaelides
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Blue EE, Moore KJ, North KE, Desrosiers TA, Carmichael SL, White JJ, Chong JX, Bamshad MJ, Jenkins MM, Almli LM, Brody LC, Freedman SF, Reefhuis J, Romitti PA, Shaw GM, Werler M, Kay DM, Browne ML, Feldkamp ML, Finnell RH, Nembhard WN, Pangilinan F, Olshan AF. Exome sequencing identifies novel genes underlying primary congenital glaucoma in the National Birth Defects Prevention Study. Birth Defects Res 2024; 116:e2384. [PMID: 38990107 PMCID: PMC11245170 DOI: 10.1002/bdr2.2384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Primary congenital glaucoma (PCG) affects approximately 1 in 10,000 live born infants in the United States (U.S.). PCG has a autosomal recessive inheritance pattern, and variable expressivity and reduced penetrance have been reported. Likely causal variants in the most commonly mutated gene, CYP1B1, are less prevalent in the U.S., suggesting that alternative genes may contribute to the condition. This study utilized exome sequencing to investigate the genetic architecture of PCG in the U.S. and to identify novel genes and variants. METHODS We studied 37 family trios where infants had PCG and were part of the National Birth Defects Prevention Study (births 1997-2011), a U.S. multicenter study of birth defects. Samples underwent exome sequencing and sequence reads were aligned to the human reference sample (NCBI build 37/hg19). Variant filtration was conducted under de novo and Mendelian inheritance models using GEMINI. RESULTS Among candidate variants, CYP1B1 was most represented (five trios, 13.5%). Twelve probands (32%) had potentially pathogenic variants in other genes not previously linked to PCG but important in eye development and/or to underlie Mendelian conditions with potential phenotypic overlap (e.g., CRYBB2, RXRA, GLI2). CONCLUSION Variation in the genes identified in this population-based study may help to further explain the genetics of PCG.
Collapse
Affiliation(s)
- Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Kristin J Moore
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tania A Desrosiers
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Suzan L Carmichael
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Janson J White
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jessica X Chong
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Michael J Bamshad
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mary M Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lynn M Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lawrence C Brody
- Division of Genomics and Society, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sharon F Freedman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Martha Werler
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts, USA
- Slone Epidemiology Center at Boston University, Boston, Massachusetts, USA
| | - Denise M Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Marilyn L Browne
- New York State Department of Health, Birth Defects Registry, Albany, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, New York, USA
| | - Marcia L Feldkamp
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Wendy N Nembhard
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Faith Pangilinan
- Division of Genomics and Society, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Lin YW, Huang YS, Lin CY, Lin CW, Wu CC, Yang CH, Yang CM, Chen PL, Chen TC. High prevalence of exon-13 variants in USH2A-related retinal dystrophies in Taiwanese population. Orphanet J Rare Dis 2024; 19:238. [PMID: 38879497 PMCID: PMC11179209 DOI: 10.1186/s13023-024-03238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Biallelic pathogenic variants in USH2A lead to Usher syndrome or non-syndromic retinitis pigmentosa, and shown to have geographical and ethnical distribution in previous studies. This study provided a deeper understanding of the detailed clinical features using multimodal imaging, genetic spectrum, and genotype-phenotype correlations of USH2A-related retinal dystrophies in Taiwan. RESULTS In our cohort, the mean age at first visit was 47.66 ± 13.54 years, and the mean age at symptom onset, which was referred to the onset of nyctalopia and/or visual field constriction, was 31.21 ± 15.24 years. Among the variants identified, 23 (50%) were missense, 10 (22%) were splicing variants, 8 (17%) were nonsense, and 5 (11%) were frameshift mutations. The most predominant variant was c.2802T>G, which accounted for 21% of patients, and was located in exon 13. Patients with truncated alleles had significantly earlier symptom onset and seemly poorer disease progression regarding visual acuity, ellipsoid zone line length, and hypofluorescent lesions in the macula than those who had the complete gene. However, the clinical presentation revealed similar progression between patients with and without the c.2802T>G variant. During long-term follow-up, the patients had different ellipsoid zone line progression rates and were almost evenly distributed in the fast, moderate, and slow progression subgroups. Although a younger onset age and a smaller baseline intact macular area was observed in the fast progression subgroup, the results showed no significant difference. CONCLUSIONS This is the first cohort study to provide detailed genetic and longitudinal clinical analyses of patients with USH2A-related retinal dystrophies in Taiwan. The mutated allele frequency in exon 13 was high in Taiwan due to the predominant c.2802T>G variant. Moreover, truncated variants greatly impacted disease progression and determined the length of therapeutic windows. These findings provide insight into the characteristics of candidates for future gene therapies.
Collapse
Affiliation(s)
- Yu-Wei Lin
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Shu Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Chien-Yu Lin
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics, Medical College, National Taiwan University, No. 2, Xuzhou Road, 5F., Taipei, Taiwan.
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan.
- Center of Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Nikoo MH, Hatamnejad MR, Emkanjoo Z, Arjangzadeh A, Motahari Moadab M, Bazrafshan M, Bazrafshan Drissi H. The association between GJB2 gene (producing Cx26 protein) and the ventricular storm: A case report. ARYA ATHEROSCLEROSIS 2024; 20:1-7. [PMID: 39170815 PMCID: PMC11335029 DOI: 10.48305/arya.2023.11842.0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/10/2023] [Indexed: 08/23/2024]
Abstract
BACKGROUND A structural heart disease or functional electrical abnormalities can cause an electrical storm. CASE PRESENTATION We present a young boy with an electrical storm who had no cardiac risk factors and a positive family history of sudden cardiac death. The stepwise diagnostic approach was ineffective in determining previously known causes as the origin of the electrical storm. However, whole-exome sequencing (with Next Generation Illumina Sequencing) revealed a mutation in the GJB2 (NM_004004:exon2:c.G71A:p.W24X) gene. CONCLUSION A mutation in the GJB2 gene, which forms the connexin 26 protein, a crucial component of the myocytes' intercalated disc of gap junction complex between the myocytes, results in an abnormal electrical cell-by-cell conductance, and, eventually, ventricular storm. General anesthesia was used to control the storm, and intracardiac pacing was fruitful in ceasing the subsequent VT storms.
Collapse
Affiliation(s)
- Mohammad Hossein Nikoo
- Non-Communicable Disease Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Emkanjoo
- Rajaie Cardiovascular, Medical and Research Center, Tehran, Iran
| | - Alireza Arjangzadeh
- Department of Cardiology Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Motahari Moadab
- Department of Cardiology Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Bazrafshan
- Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
6
|
Nam DW, Song YK, Kim JH, Lee EK, Park KH, Cha J, Choi BY, Lee JH, Oh SH, Jo DH, Lee SY. Allelic hierarchy for USH2A influences auditory and visual phenotypes in South Korean patients. Sci Rep 2023; 13:20239. [PMID: 37981655 PMCID: PMC10658080 DOI: 10.1038/s41598-023-47166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023] Open
Abstract
When medical genetic syndromes are influenced by allelic hierarchies, mutant alleles have distinct effects on clinical phenotypes. Genotype-phenotype correlations for Usher syndrome type 2 (USH2) suggest that the USH2A gene exhibits an allelic hierarchy. Here, we analyzed the phenotypes and genotypes of 16 South Korean patients with USH2A biallelic variants to investigate an allelic hierarchy from audiological and ophthalmological perspectives. Using whole exome and genome sequencing, 18 mutant alleles, including 4 novel alleles, were identified and implicated in USH2A-related disorders. Truncated alleles were linked to earlier onset of subjective hearing loss and more severe thresholds; biallelic truncated alleles had more severe effects. Truncated alleles were also associated with retinal structure degeneration and severe functional deterioration. However, younger patients (aged < 16 years) did not exhibit overt retinitis pigmentosa even when they had biallelic truncated alleles, suggesting that USH2A-related USH2 can mimic nonsyndromic hearing loss. For truncated alleles, there was a clear correlation between mean hearing threshold and 30-Hz flicker electroretinography implicit time. This study provides the first evidence of an USH2A-related allelic hierarchy among South Korean patients; our data yield valuable insights concerning the natural courses of clinical phenotypes and how genotype-based therapies may be used.
Collapse
Affiliation(s)
- Dong Woo Nam
- Department of Otorhinolaryngology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Yong Keun Song
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - JuHyuen Cha
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Sanjurjo-Soriano C, Jimenez-Medina C, Erkilic N, Cappellino L, Lefevre A, Nagel-Wolfrum K, Wolfrum U, Van Wijk E, Roux AF, Meunier I, Kalatzis V. USH2A variants causing retinitis pigmentosa or Usher syndrome provoke differential retinal phenotypes in disease-specific organoids. HGG ADVANCES 2023; 4:100229. [PMID: 37654703 PMCID: PMC10465966 DOI: 10.1016/j.xhgg.2023.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
There is an emblematic clinical and genetic heterogeneity associated with inherited retinal diseases (IRDs). The most common form is retinitis pigmentosa (RP), a rod-cone dystrophy caused by pathogenic variants in over 80 different genes. Further complexifying diagnosis, different variants in individual RP genes can also alter the clinical phenotype. USH2A is the most prevalent gene for autosomal-recessive RP and one of the most challenging because of its large size and, hence, large number of variants. Moreover, USH2A variants give rise to non-syndromic and syndromic RP, known as Usher syndrome (USH) type 2, which is associated with vision and hearing loss. The lack of a clear genotype-phenotype correlation or prognostic models renders diagnosis highly challenging. We report here a long-awaited differential non-syndromic RP and USH phenotype in three human disease-specific models: fibroblasts, induced pluripotent stem cells (iPSCs), and mature iPSC-derived retinal organoids. Moreover, we identified distinct retinal phenotypes in organoids from multiple RP and USH individuals, which were validated by isogenic-corrected controls. Non-syndromic RP organoids showed compromised photoreceptor differentiation, whereas USH organoids showed a striking and unexpected cone phenotype. Furthermore, complementary clinical investigations identified macular atrophy in a high proportion of USH compared with RP individuals, further validating our observations that USH2A variants differentially affect cones. Overall, identification of distinct non-syndromic RP and USH phenotypes in multiple models provides valuable and robust readouts for testing the pathogenicity of USH2A variants as well as the efficacy of therapeutic approaches in complementary cell types.
Collapse
Affiliation(s)
- Carla Sanjurjo-Soriano
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Carla Jimenez-Medina
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Nejla Erkilic
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Luisina Cappellino
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Arnaud Lefevre
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Erwin Van Wijk
- Department of Otorhinolaryngology, Hearing, & Genes, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Anne-Françoise Roux
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
- Molecular Genetics Laboratory, University of Montpellier, CHU, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
8
|
Crane R, Tebbe L, Mwoyosvi ML, Al-Ubaidi MR, Naash MI. Expression of the human usherin c.2299delG mutation leads to early-onset auditory loss and stereocilia disorganization. Commun Biol 2023; 6:933. [PMID: 37700068 PMCID: PMC10497539 DOI: 10.1038/s42003-023-05296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of combined deafness and blindness, with USH2A being the most prevalent form. The mechanisms responsible for this debilitating sensory impairment remain unclear. This study focuses on characterizing the auditory phenotype in a mouse model expressing the c.2290delG mutation in usherin equivalent to human frameshift mutation c.2299delG. Previously we described how this model reproduces patient's retinal phenotypes. Here, we present the cochlear phenotype, showing that the mutant usherin, is expressed during early postnatal stages. The c.2290delG mutation results in a truncated protein that is mislocalized within the cell body of the hair cells. The knock-in model also exhibits congenital hearing loss that remains consistent throughout the animal's lifespan. Structurally, the stereocilia bundles, particularly in regions associated with functional hearing loss, are disorganized. Our findings shed light on the role of usherin in maintaining structural support, specifically in longer inner hair cell stereocilia, during development, which is crucial for proper bundle organization and hair cell function. Overall, we present a genetic mouse model with cochlear defects associated with the c.2290delG mutation, providing insights into the etiology of hearing loss and offering potential avenues for the development of effective therapeutic treatments for USH2A patients.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Lars Tebbe
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Maggie L Mwoyosvi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
9
|
Ordoñez-Labastida V, Chacon-Camacho OF, Lopez-Rodriguez VR, Zenteno JC. USH2A mutational spectrum causing syndromic and non-syndromic retinal dystrophies in a large cohort of Mexican patients. Mol Vis 2023; 29:31-38. [PMID: 37287646 PMCID: PMC10243674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Background Mutations in the USH2A gene are the leading cause of both non-syndromic autosomal recessive retinitis pigmentosa (RP) and Usher syndrome, a syndromic form of RP characterized by retinal dystrophy and sensorineural hearing loss. To contribute to the expansion of the USH2A-related molecular spectrum, the results of genetic screening in a large cohort of Mexican patients are presented. Methods The study population comprised 61 patients with a clinical diagnosis of either non-syndromic RP (n = 30) or Usher syndrome type 2 (USH2; n = 31) who were demonstrated to carry biallelic pathogenic variants in USH2A in a three-year period. Genetic screening was performed either by gene panel sequencing or by exome sequencing. A total of 72 available first- or second-degree relatives were also genotyped for familial segregation of the identified variants. Results The USH2A mutational spectrum in RP patients included 39 distinct pathogenic variants, most of them of the missense type. The most common RP-causing variants were p.Cys759Phe (c.2276G>T), p.Glu767Serfs*21 (c.2299delG), and p.Cys319Tyr (c.956G>A), which together accounted for 25% of all RP variants. Novel USH2A mutations included three nonsense, two missense, two frameshift, and one intragenic deletion. The USH2A mutational spectrum in USH2 patients included 26 distinct pathogenic variants, most of them of the nonsense and frameshift types. The most common Usher syndrome-causing variants were p.Glu767Serfs*21 (c.2299delG), p.Arg334Trp (c.1000C>T), and c.12067-2A>G), which together accounted for 42% of all USH2-related variants. Novel Usher syndrome USH2A mutations included six nonsense, four frameshift, and two missense mutations. The c.2299delG mutation was associated with a common haplotype for SNPs located in exons 2-21 of USH2A, indicating a founder mutation effect. Conclusions Our work expands the USH2A mutational profile by identifying 20 novel pathogenic variants causing syndromic and non-syndromic retinal dystrophy. The prevalent c.2299delG allele is shown to arise from a founder effect. Our results emphasize the usefulness of molecular screening in underrepresented populations for a better characterization of the molecular spectrum of common monogenic diseases.
Collapse
Affiliation(s)
- Vianey Ordoñez-Labastida
- Rare Disease Diagnostic Unit, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana,” Mexico City, Mexico
- Faculty of Medicine, Autonomous University of the State of Morelos (UAEM), Morelos, Mexico
| | - Oscar F. Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana,” Mexico City, Mexico
- Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, UNAM, Mexico City, Mexico
| | | | - Juan C. Zenteno
- Rare Disease Diagnostic Unit, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana,” Mexico City, Mexico
- Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| |
Collapse
|
10
|
Reurink J, Weisschuh N, Garanto A, Dockery A, van den Born LI, Fajardy I, Haer-Wigman L, Kohl S, Wissinger B, Farrar GJ, Ben-Yosef T, Pfiffner FK, Berger W, Weener ME, Dudakova L, Liskova P, Sharon D, Salameh M, Offenheim A, Heon E, Girotto G, Gasparini P, Morgan A, Bergen AA, ten Brink JB, Klaver CC, Tranebjærg L, Rendtorff ND, Vermeer S, Smits JJ, Pennings RJ, Aben M, Oostrik J, Astuti GD, Corominas Galbany J, Kroes HY, Phan M, van Zelst-Stams WA, Thiadens AA, Verheij JB, van Schooneveld MJ, de Bruijn SE, Li CH, Hoyng CB, Gilissen C, Vissers LE, Cremers FP, Kremer H, van Wijk E, Roosing S. Whole genome sequencing for USH2A-associated disease reveals several pathogenic deep-intronic variants that are amenable to splice correction. HGG ADVANCES 2023; 4:100181. [PMID: 36785559 PMCID: PMC9918427 DOI: 10.1016/j.xhgg.2023.100181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.
Collapse
Affiliation(s)
- Janine Reurink
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pediatrics, Amalia’s Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Adrian Dockery
- The School of Genetics & Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Isabelle Fajardy
- Centre de Biologie Pathologie Génétique, CHU de Lille, Lille, France
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - G. Jane Farrar
- The School of Genetics & Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Tamar Ben-Yosef
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Fatma Kivrak Pfiffner
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Dror Sharon
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Manar Salameh
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ashley Offenheim
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elise Heon
- Departments of Ophthalmology and Vision Sciences, The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Giorgia Girotto
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Anna Morgan
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
| | - Arthur A. Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | - Jacoline B. ten Brink
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | - Caroline C.W. Klaver
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics, The Kennedy Center, Copenhagen University Hospital, 2600 Glostrup, Denmark
- Institute of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna D. Rendtorff
- Department of Clinical Genetics, The Kennedy Center, Copenhagen University Hospital, 2600 Glostrup, Denmark
| | - Sascha Vermeer
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Jeroen J. Smits
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center of Utrecht, Utrecht, the Netherlands
| | - Ronald J.E. Pennings
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marco Aben
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Oostrik
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Galuh D.N. Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | | | - Hester Y. Kroes
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center of Utrecht, Utrecht, the Netherlands
| | - Milan Phan
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Rijnstate Hospital, Arnhem, the Netherlands
| | | | | | - Joke B.G.M. Verheij
- Department of Medical Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mary J. van Schooneveld
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | - Suzanne E. de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Catherina H.Z. Li
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carel B. Hoyng
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lisenka E.L.M. Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P.M. Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erwin van Wijk
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
11
|
Huang Y, Yuan L, He G, Cao Y, Deng X, Deng H. Novel compound heterozygous variants in the USH2A gene associated with autosomal recessive retinitis pigmentosa without hearing loss. Front Cell Dev Biol 2023; 11:1129862. [PMID: 36875754 PMCID: PMC9974670 DOI: 10.3389/fcell.2023.1129862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Background: Retinitis pigmentosa (RP) is a group of progressive inherited retinal dystrophies characterized by the primary degeneration of rod photoreceptors and the subsequent loss of cone photoreceptors because of cell death. It is caused by different mechanisms, including inflammation, apoptosis, necroptosis, pyroptosis, and autophagy. Variants in the usherin gene (USH2A) have been reported in autosomal recessive RP with or without hearing loss. In the present study, we aimed to identify causative variants in a Han-Chinese pedigree with autosomal recessive RP. Methods: A six-member, three-generation Han-Chinese family with autosomal recessive RP was recruited. A full clinical examination, whole exome sequencing, and Sanger sequencing, as well as co-segregation analysis were performed. Results: Three heterozygous variants in the USH2A gene, c.3304C>T (p.Q1102*), c.4745T>C (p.L1582P), and c.14740G>A (p.E4914K), were identified in the proband, which were inherited from parents and transmitted to the daughters. Bioinformatics analysis supported the pathogenicity of the c.3304C>T (p.Q1102*) and c.4745T>C (p.L1582P) variants. Conclusions: Novel compound heterozygous variants in the USH2A gene, c.3304C>T (p.Q1102*) and c.4745T>C (p.L1582P), were identified as the genetic causes of autosomal recessive RP. The findings may enhance the current knowledge of the pathogenesis of USH2A-associated phenotypes, expand the spectrum of the USH2A gene variants, and contribute to improved genetic counseling, prenatal diagnosis, and disease management.
Collapse
Affiliation(s)
- Yanxia Huang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Guiyun He
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yanna Cao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Lynn J, Raney A, Britton N, Ramoin J, Yang RW, Radojevic B, McClard CK, Kingsley R, Coussa RG, Bennett LD. Genetic Diagnosis for 64 Patients with Inherited Retinal Disease. Genes (Basel) 2022; 14:74. [PMID: 36672815 PMCID: PMC9859429 DOI: 10.3390/genes14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The overlapping genetic and clinical spectrum in inherited retinal degeneration (IRD) creates challenges for accurate diagnoses. The goal of this work was to determine the genetic diagnosis and clinical features for patients diagnosed with an IRD. After signing informed consent, peripheral blood or saliva was collected from 64 patients diagnosed with an IRD. Genetic testing was performed on each patient in a Clinical Laboratory Improvement Amendments of 1988 (CLIA) certified laboratory. Mutations were verified with Sanger sequencing and segregation analysis when possible. Visual acuity was measured with a traditional Snellen chart and converted to a logarithm of minimal angle of resolution (logMAR). Fundus images of dilated eyes were acquired with the Optos® camera (Dunfermline, UK). Horizontal line scans were obtained with spectral-domain optical coherence tomography (SDOCT; Spectralis, Heidelberg, Germany). Genetic testing combined with segregation analysis resolved molecular and clinical diagnoses for 75% of patients. Ten novel mutations were found and unique genotype phenotype associations were made for the genes RP2 and CEP83. Collective knowledge is thereby expanded of the genetic basis and phenotypic correlation in IRD.
Collapse
Affiliation(s)
- Jacob Lynn
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Austin Raney
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Nathaniel Britton
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Josh Ramoin
- College of Osteopathic Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ryan W. Yang
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bojana Radojevic
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| | - Cynthia K. McClard
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| | - Ronald Kingsley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| | - Razek Georges Coussa
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| | - Lea D. Bennett
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
13
|
Lad EM, Duncan JL, Liang W, Maguire MG, Ayala AR, Audo I, Birch DG, Carroll J, Cheetham JK, Durham TA, Fahim AT, Loo J, Deng Z, Mukherjee D, Heon E, Hufnagel RB, Guan B, Iannaccone A, Jaffe GJ, Kay CN, Michaelides M, Pennesi ME, Vincent A, Weng CY, Farsiu S. Baseline Microperimetry and OCT in the RUSH2A Study: Structure-Function Association and Correlation With Disease Severity. Am J Ophthalmol 2022; 244:98-116. [PMID: 36007554 PMCID: PMC9712171 DOI: 10.1016/j.ajo.2022.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE To investigate baseline mesopic microperimetry (MP) and spectral domain optical coherence tomography (OCT) in the Rate of Progression in USH2A-related Retinal Degeneration (RUSH2A) study. DESIGN Natural history study METHODS: Setting: 16 clinical sites in Europe and North AmericaStudy Population: Participants with Usher syndrome type 2 (USH2) (N = 80) or autosomal recessive nonsyndromic RP (ARRP) (N = 47) associated with biallelic disease-causing sequence variants in USH2AObservation Procedures: General linear models were used to assess characteristics including disease duration, MP mean sensitivity and OCT intact ellipsoid zone (EZ) area. The associations between mean sensitivity and EZ area with other measures, including best corrected visual acuity (BCVA) and central subfield thickness (CST) within the central 1 mm, were assessed using Spearman correlation coefficients. MAIN OUTCOME MEASURES Mean sensitivity on MP; EZ area and CST on OCT. RESULTS All participants (N = 127) had OCT, while MP was obtained at selected sites (N = 93). Participants with Usher syndrome type 2 (USH2, N = 80) and nonsyndromic autosomal recessive Retinitis Pigmentosa (ARRP, N = 47) had the following similar measurements: EZ area (median (interquartile range [IQR]): 1.4 (0.4, 3.1) mm2 vs 2.3 (0.7, 5.7) mm2) and CST (median (IQR): 247 (223, 280) µm vs 261 (246, 288), and mean sensitivity (median (IQR): 3.5 (2.1, 8.4) dB vs 5.1 (2.9, 9.0) dB). Longer disease duration was associated with smaller EZ area (P < 0.001) and lower mean sensitivity (P = 0.01). Better BCVA, larger EZ area, and larger CST were correlated with greater mean sensitivity (r > 0.3 and P < 0.01). Better BCVA and larger CST were associated with larger EZ area (r > 0.6 and P < 0.001). CONCLUSIONS Longer disease duration correlated with more severe retinal structure and function abnormalities, and there were associations between MP and OCT metrics. Monitoring changes in retinal structure-function relationships during disease progression will provide important insights into disease mechanism in USH2A-related retinal degeneration.
Collapse
Affiliation(s)
- Eleonora M Lad
- From the Department of Ophthalmology, Duke University Medical Center Durham, North Carolina, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Wendi Liang
- Jaeb Center for Health Research, Tampa, Florida, USA
| | | | | | - Isabelle Audo
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC1423, Paris, France
| | - David G Birch
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | | | | | - Todd A Durham
- Foundation Fighting Blindness, Columbia, Maryland, USA
| | - Abigail T Fahim
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jessica Loo
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Zengtian Deng
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Dibyendu Mukherjee
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Elise Heon
- University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Bin Guan
- National Eye Institute, Bethesda, Maryland, USA
| | - Alessandro Iannaccone
- From the Department of Ophthalmology, Duke University Medical Center Durham, North Carolina, USA
| | - Glenn J Jaffe
- From the Department of Ophthalmology, Duke University Medical Center Durham, North Carolina, USA
| | | | - Michel Michaelides
- Moorfields Eye Hospital and UCL Institute of Ophthalmology (M.M.), London, United Kingdom
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Ajoy Vincent
- University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Sina Farsiu
- From the Department of Ophthalmology, Duke University Medical Center Durham, North Carolina, USA; Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
14
|
Tehreem R, Chen I, Shah MR, Li Y, Khan MA, Afshan K, Chen R, Firasat S. Exome Sequencing Identified Molecular Determinants of Retinal Dystrophies in Nine Consanguineous Pakistani Families. Genes (Basel) 2022; 13:genes13091630. [PMID: 36140798 PMCID: PMC9498396 DOI: 10.3390/genes13091630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a heterogeneous group of degenerative disorders of the retina. Retinitis Pigmentosa (RP) is a common type of IRD that causes night blindness and loss of peripheral vision and may progress to blindness. Mutations in more than 300 genes have been associated with syndromic and non-syndromic IRDs. Recessive forms are more frequent in populations where endogamy is a social preference, such as Pakistan. The aim of this study was to identify molecular determinants of IRDs with the common presentation of night blindness in consanguineous Pakistani families. This study included nine consanguineous IRD-affected families that presented autosomal recessive inheritance of the night blindness phenotype. DNA was extracted from blood samples. Targeted exome sequencing of 344 known genes for retinal dystrophies was performed. Screening of nine affected families revealed two novel (c.5571_5576delinsCTAGATand c.471dup in EYS and SPATA7 genes, respectively) and six reported pathogenic mutations (c.304C>A, c.187C>T, c.1560C>A, c.547C>T, c.109del and c.9911_11550del in PDE6A, USH2A, USH2A, NMNAT1, PAX6 and ALMS1 genes, respectively) segregating with disease phenotype in each respective family. Molecular determinants of hereditary retinal dystrophies were identified in all screened families. Identification of novel variants aid future diagnosis of retinal dystrophies and help to provide genetic counseling to affected families.
Collapse
Affiliation(s)
- Raeesa Tehreem
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, University Road, Islamabad 45320, Pakistan
| | - Iris Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mudassar Raza Shah
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, University Road, Islamabad 45320, Pakistan
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muzammil Ahmad Khan
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan
- Department of Human Genetics, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Kiran Afshan
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, University Road, Islamabad 45320, Pakistan
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (R.C.); (S.F.); Tel.: +(713)-798-5194 (R.C.); +92-51-9064-4410 (S.F.)
| | - Sabika Firasat
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, University Road, Islamabad 45320, Pakistan
- Correspondence: (R.C.); (S.F.); Tel.: +(713)-798-5194 (R.C.); +92-51-9064-4410 (S.F.)
| |
Collapse
|
15
|
Li W, Jiang XS, Han DM, Gao JY, Yang ZT, Jiang L, Zhang Q, Zhang SH, Gao Y, Wu JH, Li JK. Genetic Characteristics and Variation Spectrum of USH2A-Related Retinitis Pigmentosa and Usher Syndrome. Front Genet 2022; 13:900548. [PMID: 36110214 PMCID: PMC9468824 DOI: 10.3389/fgene.2022.900548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Purposes: We aimed to characterize the USH2A genotypic spectrum in a Chinese cohort and provide a detailed genetic profile for Chinese patients with USH2A-IRD.Methods: We designed a retrospective study wherein a total of 1,334 patients diagnosed with IRD were included as a study cohort, namely 1,278 RP and 56 USH patients, as well as other types of IEDs patients and healthy family members as a control cohort. The genotype-phenotype correlation of all participants with USH2A variant was evaluated.Results: Etiological mutations in USH2A, the most common cause of RP and USH, were found in 16.34% (n = 218) genetically solved IRD patients, with prevalences of 14.87% (190/1,278) and 50% (28/56). After bioinformatics and QC processing, 768 distinct USH2A variants were detected in all participants, including 136 disease-causing mutations present in 665 alleles, distributed in 5.81% of all participants. Of these 136 mutations, 43 were novel, nine were founder mutations, and two hot spot mutations with allele count ≥10. Furthermore, 38.5% (84/218) of genetically solved USH2A-IRD patients were caused by at least one of both c.2802T>G and c.8559–2 A>G mutations, and 36.9% and 69.6% of the alleles in the RP and USH groups were truncating, respectively.Conclusion: USH2A-related East Asian-specific founder and hot spot mutations were the major causes for Chinese RP and USH patients. Our study systematically delineated the genotype spectrum of USH2A-IRD, enabled accurate genetic diagnosis, and provided East Asian and other ethnicities with baseline data of a Chinese origin, which would better serve genetic counseling and therapeutic targets selection.
Collapse
Affiliation(s)
- Wei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| | - Xiao-Sen Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Dong-Ming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Jia-Yu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Zheng-Tao Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People’s Hospital, Yantai, China
| | - Qian Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Sheng-Hai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| | - Ji-Hong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| | - Jian-Kang Li
- BGI-Shenzhen, Shenzhen, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| |
Collapse
|
16
|
Santos DF, Molina Thurin LJ, Gustavo Vargas J, Izquierdo NJ, Oliver A. A Genotype-Phenotype Analysis of Usher Syndrome in Puerto Rico: A Case Series. Cureus 2022; 14:e28213. [PMID: 36003347 PMCID: PMC9392863 DOI: 10.7759/cureus.28213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction Patients with Usher syndrome (USH) have retinitis pigmentosa (RP) and hearing loss inherited as an autosomal recessive (ar) trait. Mutations in the USH2A gene are the most common cause of Usher syndrome. We report the genotype-phenotype correlation in 10 patients with Usher syndrome from Puerto Rico (PR). This is the first genotype-phenotype analysis of patients with the syndrome in PR. Methods We conducted a chart review of patients who carried an Usher syndrome diagnosis. They underwent a comprehensive ophthalmic evaluation by at least one of the authors. This included best corrected visual acuity (BCVA), visual field mean deviation (VF MD), pattern standard deviation (PSD), and macular optical coherence tomography (mOCT) average volume and thickness. Genotyping was done using the Invitae Inherited Retinal Disease (IRD) Panel. Results Three patients had a logMAR BCVA of 1.0 or worse. The median VF MD was -29.7 dB and -29.2 dB in the OD and OS, respectively. The median PSD was 5.5 dB and 5.7 dB in the OD and OS, respectively. Upon macular OCT, patients had a median volume of 8.4 μm3 and 8 μm3 in the OD and OS, respectively. The median thickness was 235 μm and 223 μm in the OD and OS, respectively. All patients had pathogenic USH2A variants, and eight of these were compound heterozygotes. The most common variants were p.Cys575Tyr and p.Glu767Serfs*21, each present in four patients. Patients with the p.Cys759Phe variant had the worst phenotype with the worst BCVA, largest VF MD, and slimmer macular thickness. Conclusion Our findings are compatible with previously reported pathogenic mutations in the USH2A gene. However, the p.Cys759Phe variant has previously been correlated with a mild phenotype. In our study, the p.Cys759Phe variant correlated with the most severe phenotype. This variant has a high prevalence in the Spanish population, and PR was a Spanish colony for 400 years. The presence of this variant could be traced back to Spain. Genotyping patients with Usher syndrome is of utmost importance. Further studies to evaluate the common founder effect of patients with the syndrome in PR are warranted.
Collapse
|
17
|
Su BN, Shen RJ, Liu ZL, Li Y, Jin ZB. Global spectrum of USH2A mutation in inherited retinal dystrophies: Prompt message for development of base editing therapy. Front Aging Neurosci 2022; 14:948279. [PMID: 36034145 PMCID: PMC9399374 DOI: 10.3389/fnagi.2022.948279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023] Open
Abstract
Purpose Mutation in the USH2A gene is the most common cause of inherited retinal dystrophy (IRD), including non-syndromic retinitis pigmentosa (RP) and Usher syndrome II (USH2). Gene editing and therapy targeting USH2A, especially the hotspot region, would benefit a large proportion of IRD patients. In this study, we comprehensively analyzed the genetic spectrum of the USH2A gene, aiming to identify global hot spot mutations in USH2A-related IRDs and differences in hot spot regions across continents. Materials and methods A retrospective USH2A-related IRD study was conducted, including our IRD cohort, and reported USH2A studies worldwide. Results A total of 3,972 mutated USH2A alleles of approximately 1,935 patients were collected from 33 cohort studies worldwide, containing 102 alleles of 51 patients in our IRD cohort. Mutations in exon 13 were the most common, reaching 18.4% globally and a higher frequency of 22% in America, 19.2% in Europe, and a lower 12% in East Asia. Pathogenic mutations that affected 10 of the 72 exons of USH2A, exon 2, exon 13, exon 41–43, exon 50, exon 54, exon 57, exon 61, and exon 63 in total were responsible for half of global USH2A mutant alleles. With base editors including adenine base editor (ABE), cytidine base editor (CBE), and glycosylase base editor (GBE), 76.3% of single nucleotide variations (SNVs) and 58% of all mutations in USH2A are correctable. Meantime, four novel pathogenic mutations were revealed in our IRD cohort, p. (Val1130Cysfs*72), p. (Ala2139fs*14), p. (Gly4139Arg), and p. (Val4166Cysfs*7). Conclusion In this study, we revealed four novel mutations, expanding the spectrum of USH2A mutations, and importantly presented global hotspot exons and mutations of USH2A as well as the proportion of SNVs that can be restored by different base editors, providing a perspective for exploring high-efficiency and broader-reaching gene editing and gene therapies.
Collapse
Affiliation(s)
- Bing-Nan Su
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Ren-Juan Shen
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Zhuo-Lin Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Yang Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
- *Correspondence: Zi-Bing Jin,
| |
Collapse
|
18
|
Feenstra HM, Al-Khuzaei S, Shah M, Broadgate S, Shanks M, Kamath A, Yu J, Jolly JK, MacLaren RE, Clouston P, Halford S, Downes SM. Phenotypic and Genetic Characteristics in a Cohort of Patients with Usher Genes. Genes (Basel) 2022; 13:1423. [PMID: 36011334 PMCID: PMC9407802 DOI: 10.3390/genes13081423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background: This study aimed to compare phenotype−genotype correlation in patients with Usher syndrome (USH) to those with autosomal recessive retinitis pigmentosa (NS-ARRP) caused by genes associated with Usher syndrome. Methods: Case notes of patients with USH or NS-ARRP and a molecularly confirmed diagnosis in genes associated with Usher syndrome were reviewed. Phenotypic information, including the age of ocular symptoms, hearing impairment, visual acuity, Goldmann visual fields, fundus autofluorescence (FAF) imaging and spectral domain optical coherence tomography (OCT) imaging, was reviewed. The patients were divided into three genotype groups based on variant severity for genotype-phenotype correlations. Results: 39 patients with Usher syndrome and 33 patients with NS-ARRP and a molecular diagnosis in an Usher syndrome-related gene were identified. In the 39 patients diagnosed with Usher syndrome, a molecular diagnosis was confirmed as follows: USH2A (28), MYO7A (4), CDH23 (2), USH1C (2), GPR98/VLGR1 (2) and PCDH15 (1). All 33 patients with NS-ARRP had variants in USH2A. Further analysis was performed on the patients with USH2A variants. USH2A patients with syndromic features had an earlier mean age of symptom onset (17.9 vs. 31.7 years, p < 0.001), had more advanced changes on FAF imaging (p = 0.040) and were more likely to have cystoid macular oedema (p = 0.021) when compared to USH2A patients presenting with non-syndromic NS-ARRP. Self-reported late-onset hearing loss was identified in 33.3% of patients with NS-ARRP. Having a syndromic phenotype was associated with more severe USH2A variants (p < 0.001). Eighteen novel variants in genes associated with Usher syndrome were identified in this cohort. Conclusions: Patients with Usher syndrome, whatever the associated gene in this cohort, tended to have an earlier onset of retinal disease (other than GPR98/VLGR1) when compared to patients presenting with NS-ARRP. Analysis of genetic variants in USH2A, the commonest gene in our cohort, showed that patients with a more severe genotype were more likely to be diagnosed with USH compared to NS-ARRP. USH2A patients with syndromic features have an earlier onset of symptoms and more severe features on FAF and OCT imaging. However, a third of patients diagnosed with NS-ARRP developed later onset hearing loss. Eighteen novel variants in genes associated with Usher syndrome were identified in this cohort, thus expanding the genetic spectrum of known pathogenic variants. An accurate molecular diagnosis is important for diagnosis and prognosis and has become particularly relevant with the advent of potential therapies for Usher-related gene
Collapse
Affiliation(s)
- Helena M. Feenstra
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Saoud Al-Khuzaei
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Mital Shah
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Morag Shanks
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Archith Kamath
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Jing Yu
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, UK
| | - Jasleen K. Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Penny Clouston
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Susan M. Downes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
19
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
20
|
Ratra D, Ozdek S, Raviselvan M, Elchuri S, Sharma T. Approach to inherited retinal diseases. Indian J Ophthalmol 2022; 70:2305-2315. [PMID: 35791111 PMCID: PMC9426075 DOI: 10.4103/ijo.ijo_314_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a group of phenotypically diverse disorders with varied genetic mutations, which result in retinal degeneration leading to visual impairment. When a patient presents to a clinician who is not an IRD expert, establishing a correct diagnosis can be challenging. The patient and the family members are often anxious about further vision loss. They are eager to know the prognosis and chance of further worsening of the vision. It is important for every eye specialist to educate himself/herself about the basics of IRD. It would help to familiarize oneself about how to approach a patient with an IRD. An early and accurate diagnosis can help predict the vision loss and also help the patient plan his/her education and choose appropriate career choices. An updated knowledge about the genetic mutations, mode of inheritance, and possible therapies would empower the eye specialist to help his/her patients. This article gives a broad plan of how to approach a patient with IRD with regards to characterization and diagnosis of the disorder, visual rehabilitation, and possible therapy.
Collapse
Affiliation(s)
- Dhanashree Ratra
- Department of Vitreoretinal Diseases, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Sengul Ozdek
- School of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - Munispriyan Raviselvan
- Department of Vitreoretinal Diseases, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Sailaja Elchuri
- Department of Nanotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Tarun Sharma
- Department of Ophthalmology, Columbia University, New York, USA
| |
Collapse
|
21
|
Zaw K, Carvalho LS, Aung-Htut MT, Fletcher S, Wilton SD, Chen FK, McLenachan S. Pathogenesis and Treatment of Usher Syndrome Type IIA. Asia Pac J Ophthalmol (Phila) 2022; 11:369-379. [PMID: 36041150 DOI: 10.1097/apo.0000000000000546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Usher syndrome (USH) is the most common form of deaf-blindness, with an estimated prevalence of 4.4 to 16.6 per 100,000 people worldwide. The most common form of USH is type IIA (USH2A), which is caused by homozygous or compound heterozygous mutations in the USH2A gene and accounts for around half of all USH cases. USH2A patients show moderate to severe hearing loss from birth, with diagnosis of retinitis pigmentosa in the second decade of life and variable vestibular involvement. Although hearing aids or cochlear implants can provide some mitigation of hearing deficits, there are currently no treatments aimed at preventing or restoring vision loss in USH2A patients. In this review, we first provide an overview of the molecular biology of the USH2A gene and its protein isoforms, which include a transmembrane protein (TM usherin) and an extracellular protein (EC usherin). The role of these proteins in the inner ear and retina and their impact on the pathogenesis of USH2A is discussed. We review animal cell-derived and patient cell-derived models currently used in USH2A research and conclude with an overview of potential treatment strategies currently in preclinical development and clinical trials.
Collapse
Affiliation(s)
- Khine Zaw
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Livia S Carvalho
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - May T Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K Chen
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
22
|
Markova TG, Lalayants MR, Alekseeva NN, Ryzhkova OP, Shatokhina OL, Galeeva NM, Bliznetz EA, Weener ME, Belov OA, Chibisova SS, Polyakov AV, Tavartkiladze GA. Early audiological phenotype in patients with mutations in the USH2A gene. Int J Pediatr Otorhinolaryngol 2022; 157:111140. [PMID: 35452909 DOI: 10.1016/j.ijporl.2022.111140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Nowadays, due to universal newborn hearing screening (UNHS) the number of children with mild-to-moderate hearing loss diagnosed in the first year of life has increased significantly. Aside from that, identification of the genetic cause improves the genetic counselling of the families and allows to reveal possible comorbidities which may need a special approach. OBJECTIVE To present the characteristics of the early audiologic phenotype in hearing impaired patients with biallelic mutations in the USH2A gene based on systematic analysis of the audiological data. PATIENTS AND METHODS 13 patients with mutations in the USH2A gene underwent audiological examination. Most of them were found among a large group of infants with bilateral nonsyndromic sensorineural hearing loss (SNHL) examined under 12 months. RESULTS Eight out of eleven children failed UNHS and were initially diagnosed as having bilateral nonsyndromic SNHL. Seven children underwent an audiological assessment before the age of 9 months. The earliest audiological examination was carried out at 1 and 3 months. The children with pathogenic variants in the USH2A gene in our examined group were identified in the first year of life via UNHS. The hearing threshold levels (HTL) for the USH2A group are compactly distributed between 51.25 dB and 66.25 dB, quartiles are 54 dB and 63.4 dB, with a median of 60 dB. The audiological profile of patients with biallelic USH2A mutations differs from audiograms of patients who had STRC-related hearing loss. We have not found any significant elevation in hearing thresholds in the first decade of life. We also estimated the prevalence of the USH2A and STRC mutations among GJB2-negative infants with bilateral nonsyndromic SNHL examined under 12 months, and it was 7.5% and 16.1%, respectively. CONCLUSION According to our results, the early hearing phenotype in pediatric patients with biallelic mutations in the USH2A- gene is characterized by nonsyndromic mild-to-moderate SNHL in the first decade of life. Our results indicate that the presence of mutations in the USH2A or STRC genes can be expected in a child with congenital mild-to-moderate nonsyndromic SNHL. This information is of practical importance for parents, as they have to know the prognosis of hearing loss for their child from the very beginning. Post-screening follow-up should include adequate clinical, genetic, and social support for children and their parents.
Collapse
Affiliation(s)
- T G Markova
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, 117513, Russia; Russian Medical Academy of Continuing Professional Education, Moscow, 125993, Russia
| | - M R Lalayants
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, 117513, Russia; Russian Medical Academy of Continuing Professional Education, Moscow, 125993, Russia
| | - N N Alekseeva
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, 117513, Russia; Russian Medical Academy of Continuing Professional Education, Moscow, 125993, Russia
| | - O P Ryzhkova
- Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - O L Shatokhina
- Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - N M Galeeva
- Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - E A Bliznetz
- Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - M E Weener
- CRO LLC «Oftalmic», Moscow, 125167, Russia
| | - O A Belov
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, 117513, Russia
| | - S S Chibisova
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, 117513, Russia; Russian Medical Academy of Continuing Professional Education, Moscow, 125993, Russia
| | - A V Polyakov
- Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - G A Tavartkiladze
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, 117513, Russia; Russian Medical Academy of Continuing Professional Education, Moscow, 125993, Russia.
| |
Collapse
|
23
|
Hufnagel RB, Liang W, Duncan JL, Brewer CC, Audo I, Ayala AR, Branham K, Cheetham JK, Daiger SP, Durham TA, Guan B, Heon E, Hoyng CB, Iannaccone A, Kay CN, Michaelides M, Pennesi ME, Singh MS, Ullah E. Tissue-specific genotype-phenotype correlations among USH2A-related disorders in the RUSH2A study. Hum Mutat 2022; 43:613-624. [PMID: 35266249 PMCID: PMC9018588 DOI: 10.1002/humu.24365] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 11/10/2022]
Abstract
We assessed genotype-phenotype correlations among the visual, auditory, and olfactory phenotypes of 127 participants with Usher syndrome (USH2) (n =80) or nonsyndromic autosomal recessive retinitis pigmentosa (ARRP) (n = 47) due to USH2A variants, using clinical data and molecular diagnostics from the Rate of Progression in USH2A Related Retinal Degeneration (RUSH2A) study. USH2A truncating alleles were associated with USH2 and had a dose-dependent effect on hearing loss severity with no effect on visual loss severity within the USH2 subgroup. A group of missense alleles in an interfibronectin domain appeared to be hypomorphic in ARRP. These alleles were associated with later age of onset, larger visual field area, better sensitivity thresholds, and better electroretinographic responses. No effect of genotype on the severity of olfactory deficits was observed. This study unveils a unique, tissue-specific USH2A allelic hierarchy with important prognostic implications for patient counseling and treatment trial endpoints. These findings may inform clinical care or research approaches in others with allelic disorders or pleiotropic phenotypes.
Collapse
Affiliation(s)
- Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | - Wendi Liang
- Foundation Fighting Blindness Consortium Coordinating Center, Jaeb Center for Health Research, Tampa, Florida, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, USA
| | - Carmen C Brewer
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Isabelle Audo
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS, Paris, France
| | - Allison R Ayala
- Foundation Fighting Blindness Consortium Coordinating Center, Jaeb Center for Health Research, Tampa, Florida, USA
| | - Kari Branham
- Department of Ophthalmology and Vision Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Stephen P Daiger
- Health Science Center, The University of Texas, Houston, Texas, USA
| | - Todd A Durham
- Foundation Fighting Blindness, Columbia, Maryland, USA
| | - Bin Guan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | - Elise Heon
- Departments of Ophthalmology and Vision Sciences, The Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
| | | | - Alessandro Iannaccone
- Department of Ophthalmology, Duke Eye Center, Duke University Medical School, Durham, North Carolina, USA
| | | | | | - Mark E Pennesi
- Paul H. Casey Ophthalmic Genetics Division, Casey Eye Institute - Oregon Health and Science University, Portland, Oregon, USA
| | - Mandeep S Singh
- Wilmer Eye Institute, John Hopkins University, Baltimore, Maryland, USA
| | - Ehsan Ullah
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Gill JS, Theofylaktopoulos V, Mitsios A, Houston S, Hagag AM, Dubis AM, Moosajee M. Investigating Biomarkers for USH2A Retinopathy Using Multimodal Retinal Imaging. Int J Mol Sci 2022; 23:ijms23084198. [PMID: 35457016 PMCID: PMC9024786 DOI: 10.3390/ijms23084198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pathogenic mutations in USH2A are a leading cause of visual loss secondary to non-syndromic or Usher syndrome-associated retinitis pigmentosa (RP). With an increasing number of RP-targeted clinical trials in progress, we sought to evaluate the photoreceptor topography underlying patterns of loss observed on clinical retinal imaging to guide surrogate endpoint selection in USH2A retinopathy. In this prospective cross-sectional study, twenty-five patients with molecularly confirmed USH2A-RP underwent fundus autofluorescence (FAF), spectral-domain optical coherence tomography (SD-OCT) and adaptive optics scanning laser ophthalmoscopy (AOSLO) retinal imaging. Analysis comprised measurement of FAF horizontal inner (IR) and outer (OR) hyperautofluorescent ring diameter; SD-OCT ellipsoid zone (EZ) and external limiting membrane (ELM) width, normalised EZ reflectance; AOSLO foveal cone density and intact macular photoreceptor mosaic (IMPM) diameter. Thirty-two eyes from 16 patients (mean age ± SD, 36.0 ± 14.2 years) with USH2A-associated Usher syndrome type 2 (n = 14) or non-syndromic RP (n = 2) met the inclusion criteria. Spatial alignment was observed between IR-EZ and OR-ELM diameters/widths (p < 0.001). The IMPM border occurred just lateral to EZ loss (p < 0.001), although sparser intact photoreceptor inner segments were detected until ELM disruption. EZ width and IR diameter displayed a biphasic relationship with cone density whereby slow cone loss occurred until retinal degeneration reached ~1350 μm from the fovea, beyond which greater reduction in cone density followed. Normalised EZ reflectance and cone density were significantly associated (p < 0.001). As the strongest correlate of cone density (p < 0.001) and best-corrected visual acuity (p < 0.001), EZ width is the most sensitive biomarker of structural and functional decline in USH2A retinopathy, rendering it a promising trial endpoint.
Collapse
Affiliation(s)
- Jasdeep S. Gill
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (J.S.G.); (V.T.); (A.M.); (S.H.); (A.M.H.); (A.M.D.)
| | - Vasileios Theofylaktopoulos
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (J.S.G.); (V.T.); (A.M.); (S.H.); (A.M.H.); (A.M.D.)
| | - Andreas Mitsios
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (J.S.G.); (V.T.); (A.M.); (S.H.); (A.M.H.); (A.M.D.)
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Sarah Houston
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (J.S.G.); (V.T.); (A.M.); (S.H.); (A.M.H.); (A.M.D.)
| | - Ahmed M. Hagag
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (J.S.G.); (V.T.); (A.M.); (S.H.); (A.M.H.); (A.M.D.)
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Adam M. Dubis
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (J.S.G.); (V.T.); (A.M.); (S.H.); (A.M.H.); (A.M.D.)
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Global Business School for Health, University College London, London WC1E 6BT, UK
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (J.S.G.); (V.T.); (A.M.); (S.H.); (A.M.H.); (A.M.D.)
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Correspondence: ; Tel.: +44-207-608-6971
| |
Collapse
|
25
|
Generation of a human iPSC line, INMi005-A, from a patient with non-syndromic USH2A-associated retinitis pigmentosa. Stem Cell Res 2022; 60:102738. [PMID: 35248879 DOI: 10.1016/j.scr.2022.102738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 11/21/2022] Open
Abstract
We report here the generation of the human iPSC line INMi005-A from a patient with non-syndromic autosomal recessive retinitis pigmentosa caused by compound heterozygous mutations in the USH2A gene. The reprogramming of primary human dermal fibroblasts was performed using the non-integrative Sendai virus method and the OSKM transcription factor cocktail. The generated INMi005-A iPSC line is pluripotent and genetically stable, and will represent a valuable tool for understanding the pathophysiology associated with USH2A mutations.
Collapse
|
26
|
The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification. Hum Genet 2022; 141:709-735. [PMID: 35353227 PMCID: PMC9034986 DOI: 10.1007/s00439-022-02448-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Usher syndrome (USH) is the most common cause of deaf–blindness in humans, with a prevalence of about 1/10,000 (~ 400,000 people worldwide). Cochlear implants are currently used to reduce the burden of hearing loss in severe-to-profoundly deaf patients, but many promising treatments including gene, cell, and drug therapies to restore the native function of the inner ear and retinal sensory cells are under investigation. The traditional clinical classification of Usher syndrome defines three major subtypes—USH1, 2 and 3—according to hearing loss severity and onset, the presence or absence of vestibular dysfunction, and age at onset of retinitis pigmentosa. Pathogenic variants of nine USH genes have been initially reported: MYO7A, USH1C, PCDH15, CDH23, and USH1G for USH1, USH2A, ADGRV1, and WHRN for USH2, and CLRN1 for USH3. Based on the co-occurrence of hearing and vision deficits, the list of USH genes has been extended to few other genes, but with limited supporting information. A consensus on combined criteria for Usher syndrome is crucial for the development of accurate diagnosis and to improve patient management. In recent years, a wealth of information has been obtained concerning the properties of the Usher proteins, related molecular networks, potential genotype–phenotype correlations, and the pathogenic mechanisms underlying the impairment or loss of hearing, balance and vision. The advent of precision medicine calls for a clear and more precise diagnosis of Usher syndrome, exploiting all the existing data to develop a combined clinical/genetic/network/functional classification for Usher syndrome.
Collapse
|
27
|
Molina Romero M, Yoldi Chaure A, Gañán Parra M, Navas Bastida P, del Pico Sánchez JL, Vaquero Argüelles Á, de la Fuente Vaquero P, Ramírez López JP, Castilla Alcalá JA. Probability of high-risk genetic matching with oocyte and semen donors: complete gene analysis or genotyping test? J Assist Reprod Genet 2022; 39:341-355. [PMID: 35091964 PMCID: PMC8956772 DOI: 10.1007/s10815-021-02381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To estimate the probability of high-risk genetic matching when assisted reproductive techniques (ART) are applied with double gamete donation, following an NGS carrier test based on a complete study of the genes concerned. We then determine the results that would have been obtained if the genotyping tests most widely used in Spanish gamete banks had been applied. METHODS In this descriptive observational study, 1818 gamete donors were characterised by NGS. The pathogenic variants detected were analysed to estimate the probability of high-risk genetic matching and to determine the results that would have been obtained if the three most commonly used genotyping tests in ART had been applied. RESULTS The probability of high-risk genetic matching with gamete donation, screened by NGS and complete gene analysis, was 5.5%, versus the 0.6-2.7% that would have been obtained with the genotyping test. A total of 1741 variants were detected, including 607 different variants, of which only 22.6% would have been detected by all three genotyping tests considered and 44.7% of which would not have been detected by any of these tests. CONCLUSION Our study highlights the considerable heterogeneity of the genotyping tests, which present significant differences in their ability to detect pathogenic variants. The complete study of the genes by NGS considerably reduces reproductive risks when genetic matching is performed with gamete donors. Accordingly, we recommend that carrier screening in gamete donors be carried out using NGS and a complete study with nontargeted analysis of the variants of the screened genes.
Collapse
Affiliation(s)
- Marta Molina Romero
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain
| | | | | | | | | | | | | | | | - José Antonio Castilla Alcalá
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain ,U. Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain ,Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| |
Collapse
|
28
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
29
|
Biswas P, Villanueva AL, Soto-Hermida A, Duncan JL, Matsui H, Borooah S, Kurmanov B, Richard G, Khan SY, Branham K, Huang B, Suk J, Bakall B, Goldberg JL, Gabriel L, Khan NW, Raghavendra PB, Zhou J, Devalaraja S, Huynh A, Alapati A, Zawaydeh Q, Weleber RG, Heckenlively JR, Hejtmancik JF, Riazuddin S, Sieving PA, Riazuddin SA, Frazer KA, Ayyagari R. Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis. PLoS Genet 2021; 17:e1009848. [PMID: 34662339 PMCID: PMC8589175 DOI: 10.1371/journal.pgen.1009848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/12/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with inherited retinal dystrophies (IRDs) were recruited from two understudied populations: Mexico and Pakistan as well as a third well-studied population of European Americans to define the genetic architecture of IRD by performing whole-genome sequencing (WGS). Whole-genome analysis was performed on 409 individuals from 108 unrelated pedigrees with IRDs. All patients underwent an ophthalmic evaluation to establish the retinal phenotype. Although the 108 pedigrees in this study had previously been examined for mutations in known IRD genes using a wide range of methodologies including targeted gene(s) or mutation(s) screening, linkage analysis and exome sequencing, the gene mutations responsible for IRD in these 108 pedigrees were not determined. WGS was performed on these pedigrees using Illumina X10 at a minimum of 30X depth. The sequence reads were mapped against hg19 followed by variant calling using GATK. The genome variants were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs) were called using GenomeSTRiP and LUMPY. We identified potential causative sequence alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes. For 57 of these pedigrees the observed genotype was consistent with the initial clinical diagnosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), including 4 pedigrees with causal variants in more than one IRD gene within all affected family members, one pedigree with intrafamilial genetic heterogeneity (different affected family members carrying causal variants in different IRD genes), one pedigree carrying a dominant causative variant present in pseudo-recessive form due to consanguinity and one pedigree with a de-novo variant in the affected family member. Combined atypical and large structural variants contributed to about 20% of cases. Among the novel mutations, 75% were detected in Mexican and 50% found in European American pedigrees and have not been reported in any other population while only 20% were detected in Pakistani pedigrees and were not previously reported. The remaining novel IRD causative variants were listed in gnomAD but were found to be very rare and population specific. Mutations in known IRD associated genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European American pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathology in these three populations was similar to that observed in other populations worldwide. This study revealed a spectrum of mutations contributing to IRD in three populations, identified a large proportion of novel potentially causative variants that are specific to the corresponding population or not reported in gnomAD and shed light on the genetic architecture of IRD in these diverse global populations.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
| | - Adda L. Villanueva
- Retina and Genomics Institute, Yucatán, México
- Laboratoire de Diagnostic Moleculaire, Hôpital Maisonneuve Rosemont, Montreal, Quebec, Canada
| | - Angel Soto-Hermida
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Jacque L. Duncan
- Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Berzhan Kurmanov
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | | | - Shahid Y. Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kari Branham
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Bonnie Huang
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - John Suk
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Benjamin Bakall
- Ophthalmology, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, United States of America
| | - Jeffrey L. Goldberg
- Byers Eye Institute, Stanford, Palo Alto, California, United States of America
| | - Luis Gabriel
- Genetics and Ophthalmology, Genelabor, Goiânia, Brazil
| | - Naheed W. Khan
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Pongali B. Raghavendra
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
- School of Regenerative Medicine, Manipal University, Bengaluru, Karnataka, India
| | - Jason Zhou
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Sindhu Devalaraja
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Andrew Huynh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Akhila Alapati
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Qais Zawaydeh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Richard G. Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - John R. Heckenlively
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Paul A. Sieving
- National Eye Institute, Bethesda, Maryland, United States of America
- Ophthalmology & Vision Science, UC Davis Medical Center, California, United States of America
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly A. Frazer
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, Rady Children’s Hospital, Division of Genome Information Sciences, San Diego, California, United States of America
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
30
|
Rehman AU, Sepahi N, Bedoni N, Ravesh Z, Salmaninejad A, Cancellieri F, Peter VG, Quinodoz M, Mojarrad M, Pasdar A, Asad AG, Ghalamkari S, Piran M, Piran M, Superti-Furga A, Rivolta C. Whole exome sequencing in 17 consanguineous Iranian pedigrees expands the mutational spectrum of inherited retinal dystrophies. Sci Rep 2021; 11:19332. [PMID: 34588515 PMCID: PMC8481312 DOI: 10.1038/s41598-021-98677-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) constitute one of the most heterogeneous groups of Mendelian human disorders. Using autozygome-guided next-generation sequencing methods in 17 consanguineous pedigrees of Iranian descent with isolated or syndromic IRD, we identified 17 distinct genomic variants in 11 previously-reported disease genes. Consistent with a recessive inheritance pattern, as suggested by pedigrees, variants discovered in our study were exclusively bi-allelic and mostly in a homozygous state (in 15 families out of 17, or 88%). Out of the 17 variants identified, 5 (29%) were never reported before. Interestingly, two mutations (GUCY2D:c.564dup, p.Ala189ArgfsTer130 and TULP1:c.1199G > A, p.Arg400Gln) were also identified in four separate pedigrees (two pedigrees each). In addition to expanding the mutational spectrum of IRDs, our findings confirm that the traditional practice of endogamy in the Iranian population is a prime cause for the appearance of IRDs.
Collapse
Affiliation(s)
- Atta Ur Rehman
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Neda Sepahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Nicola Bedoni
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Zeinab Ravesh
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Arash Salmaninejad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Francesca Cancellieri
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Virginie G Peter
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.,Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Institute of Experimental Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Mathieu Quinodoz
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.,Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Aberdeen, UK
| | - Ali Ghanbari Asad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Mehran Piran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mehrdad Piran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Carlo Rivolta
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK. .,Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland. .,Department of Ophthalmology, University of Basel, Basel, Switzerland.
| |
Collapse
|
31
|
Rodríguez-Muñoz A, García-Bohórquez B, Udaondo P, Hervás-Ontiveros A, Salom D, Aller E, Jaijo T, García-García G, Millán J. CONCOMITANT MUTATIONS IN INHERITED RETINAL DYSTROPHIES: Why the Reproductive and Therapeutic Counseling Should Be Addressed Cautiously. Retina 2021; 41:1966-1975. [PMID: 33411470 DOI: 10.1097/iae.0000000000003103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To highlight the challenge of correct reproductive and therapeutic counseling in complex pedigrees with different inherited retinal dystrophies (IRD). METHODS Two hundred eight patients diagnosed with nonsyndromic IRD underwent full ophthalmologic examination and molecular analysis using targeted next-generation sequencing. RESULTS Five families (4%) carried mutations in more than one gene that contribute to different IRD. Family fRPN-NB had a dominant mutation in SNRNP200, which was present in nine affected individuals and four unaffected, and a mutation in RP2 among 11 family members. Family fRPN-142 carried a mutation in RPGR that cosegregated with the disease in all affected individuals. In addition, the proband also harbored two disease-causing mutations in the genes BEST1 and SNRNP200. Family fRPN-169 beared compound heterozygous mutations in USH2A and a dominant mutation in RP1. Genetic testing of fRPN-194 determined compound heterozygous mutations in CNGA3 and a dominant mutation in PRPF8 only in the proband. Finally, fRPN-219 carried compound heterozygous mutations in the genes ABCA4 and TYR. CONCLUSION These findings reinforce the complexity of IRD and underscore the need for the combination of high-throughput genetic testing and clinical characterization. Because of these features, the reproductive and therapeutic counseling for IRD must be approached with caution.
Collapse
Affiliation(s)
- Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Joint Unit of Rare Diseases IIS La Fe-CIPF, Valencia, Spain
- Biomedical Research Network of Rare Diseases (CIBERER), Spain
| | - Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Joint Unit of Rare Diseases IIS La Fe-CIPF, Valencia, Spain
| | - Patricia Udaondo
- Department of Ophthalmology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Ana Hervás-Ontiveros
- Department of Ophthalmology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - David Salom
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Biomedical Research Network of Rare Diseases (CIBERER), Spain
- Department of Ophthalmology Hospital de Manises, Valencia, Spain; and
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Joint Unit of Rare Diseases IIS La Fe-CIPF, Valencia, Spain
- Biomedical Research Network of Rare Diseases (CIBERER), Spain
- Unit of Genetics, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Joint Unit of Rare Diseases IIS La Fe-CIPF, Valencia, Spain
- Biomedical Research Network of Rare Diseases (CIBERER), Spain
- Unit of Genetics, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Joint Unit of Rare Diseases IIS La Fe-CIPF, Valencia, Spain
- Biomedical Research Network of Rare Diseases (CIBERER), Spain
| | - José Millán
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Joint Unit of Rare Diseases IIS La Fe-CIPF, Valencia, Spain
- Biomedical Research Network of Rare Diseases (CIBERER), Spain
| |
Collapse
|
32
|
Wang H, Huo L, Wang Y, Sun W, Gu W. Usher syndrome type 2A complicated with glycogen storage disease type 3 due to paternal uniparental isodisomy of chromosome 1 in a sporadic patient. Mol Genet Genomic Med 2021; 9:e1779. [PMID: 34405590 PMCID: PMC8580083 DOI: 10.1002/mgg3.1779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 05/01/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The condition of uniparental disomy (UPD) occurs when an individual inherits two copies of a chromosome, or part of a chromosome, from one parent. Most cases of uniparental heterodisomy (UPhD) do not cause diseases, whereas cases of uniparental isodisomy (UPiD), while rare, may be pathogenic. Theoretically, UPiD may cause rare genetic diseases in a homozygous recessive manner. METHODS A 4-year-old girl presented with congenital hearing loss, developmental delay, hepatomegaly, and other clinical features. She and her parents were genetically tested using trio whole exome sequencing (Trio-WES) and copy number variation sequencing (CNV-seq). In addition, we built a structural model to further examine the pathogenicity of the UPiD variants. RESULTS Trio-WES identified a paternal UPiD in chromosome 1, and two homozygous pathogenic variants AGL c.4284T>G/p.Tyr1428* and USH2A c.6528T>A/p.Tyr2176* in the UPiD region. We further analyzed the pathogenicity of these two variations. The patient was diagnosed with Usher syndrome type 2A (USH2A) and glycogen storage disease type III (GSD3). CONCLUSIONS Our study reports a rare case of a patient carrying two pathogenic variants of different genes caused by paternal UPiD, supporting the potential application of Trio-WES in detecting and facilitating the diagnosis of UPD.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Liang Huo
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yajian Wang
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, P.R. China
| | - Weiwei Sun
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, P.R. China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, P.R. China
| |
Collapse
|
33
|
Genetics, pathogenesis and therapeutic developments for Usher syndrome type 2. Hum Genet 2021; 141:737-758. [PMID: 34331125 DOI: 10.1007/s00439-021-02324-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/24/2021] [Indexed: 12/28/2022]
Abstract
Usher syndrome (USH) is a rare, autosomal recessively inherited disorder resulting in a combination of sensorineural hearing loss and a progressive loss of vision resulting from retinitis pigmentosa (RP), occasionally accompanied by an altered vestibular function. More and more evidence is building up indicating that also sleep deprivation, olfactory dysfunction, deficits in tactile perception and reduced sperm motility are part of the disease etiology. USH can be clinically classified into three different types, of which Usher syndrome type 2 (USH2) is the most prevalent. In this review, we, therefore, assess the genetic and clinical aspects, available models and therapeutic developments for USH2. Mutations in USH2A, ADGRV1 and WHRN have been described to be responsible for USH2, with USH2A being the most frequently mutated USH-associated gene, explaining 50% of all cases. The proteins encoded by the USH2 genes together function in a dynamic protein complex that, among others, is found at the photoreceptor periciliary membrane and at the base of the hair bundles of inner ear hair cells. To unravel the pathogenic mechanisms underlying USH2, patient-derived cellular models and animal models including mouse, zebrafish and drosophila, have been generated that all in part mimic the USH phenotype. Multiple cellular and genetic therapeutic approaches are currently under development for USH2, mainly focused on preserving or partially restoring the visual function of which one is already in the clinical phase. These developments are opening a new gate towards a possible treatment for USH2 patients.
Collapse
|
34
|
Iannaccone A, Brewer CC, Cheng P, Duncan JL, Maguire MG, Audo I, Ayala AR, Bernstein PS, Bidelman GM, Cheetham JK, Doty RL, Durham TA, Hufnagel RB, Myers MH, Stingl K, Zein WM. Auditory and olfactory findings in patients with USH2A-related retinal degeneration-Findings at baseline from the rate of progression in USH2A-related retinal degeneration natural history study (RUSH2A). Am J Med Genet A 2021; 185:3717-3727. [PMID: 34331386 DOI: 10.1002/ajmg.a.62437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 11/09/2022]
Abstract
Sensorineural hearing loss (SNHL) is characteristic of Usher syndrome type 2 (USH2), but less is known about SNHL in nonsyndromic autosomal recessive retinitis pigmentosa (ARRP) and olfaction in USH2A-associated retinal degeneration. The Rate of Progression of USH2A-related Retinal Degeneration (RUSH2A) is a natural history study that enrolled 127 participants, 80 with USH2 and 47 with ARRP. Hearing was measured by pure-tone thresholds and word recognition scores, and olfaction by the University of Pennsylvania Smell Identification Test (UPSIT). SNHL was moderate in 72% of USH2 participants and severe or profound in 25%, while 9% of ARRP participants had moderate adult-onset SNHL. Pure-tone thresholds worsened with age in ARRP but not in USH2 participants. The degree of SNHL was not associated with other participant characteristics in either USH2 or ARRP. Median pure-tone thresholds in ARRP participants were significantly higher than the normative population (p < 0.001). Among 14 USH2 participants reporting newborn hearing screening results, 7 reported passing. Among RUSH2A participants, 7% had mild microsmia and 5% had moderate or severe microsmia. Their mean (±SD) UPSIT score was 35 (±3), similar to healthy controls (34 [±3]; p = 0.39). Olfaction differed by country (p = 0.02), but was not significantly associated with clinical diagnosis, age, gender, race/ethnicity, smoking status, visual measures, or hearing. Hearing loss in USH2A-related USH2 did not progress with age. ARRP patients had higher pure-tone thresholds than normal. Newborn hearing screening did not identify all USH2A-related hearing loss. Olfaction was not significantly worse than normal in participants with USH2A-related retinal degeneration.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- Duke Eye Center, Department of Ophthalmology, Duke University Medical School, Durham, North Carolina, USA
| | - Carmen C Brewer
- National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland, USA
| | - Peiyao Cheng
- Jaeb Center for Health Research, Tampa, Florida, USA
| | - Jacque L Duncan
- University of California, San Francisco, San Francisco, California, USA
| | | | - Isabelle Audo
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC1423, Paris, France
| | | | | | | | | | - Richard L Doty
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd A Durham
- Foundation Fighting Blindness, Columbia, Maryland, USA
| | | | - Mark H Myers
- University of Tennessee Health and Science Center, Memphis, Tennessee, USA
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tübingen, Tübingen, Germany.,Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
35
|
Duzkale N, Arslan U. Investigation of genotype-phenotype relationship in Turkish patients with inherited retinal disease by next generation sequencing. Ophthalmic Genet 2021; 42:674-684. [PMID: 34315337 DOI: 10.1080/13816810.2021.1952616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Inherited retinal dystrophies (IRDs) are a group of retinal diseases genetically and clinically highly heterogeneous and associated with more than 300 genes. This study aims to investigate the genetic basis of Turkish patients with IRDs. MATERIALS AND METHODS In the study, genes related to retinal diseases in 86 IRDs patients were analyzed using the Next Generations Sequencing method (NGS). RESULTS The mean age of 86 patients was 35 and the mean age at diagnosis was 18. There was consanguinity between the parents of 62% of these patients. Fifty-six retinal disease-associated genes of 46 patients and 230 retinal disease-associated genes of 40 patients were examined. Genetic analysis provides a molecular diagnosis in a total of 53 (61.6%) patients. The genes responsible for the IRDs phenotype were frequently identified as ABCA4 (25%), EYS (11%), and RDH12 (9%). There was no significant difference between those with and without a molecular diagnosis in terms of demographic characteristics and family history. CONCLUSIONS Determination of genetic cause by NGS method in IRDs subgroups that are difficult to define by ophthalmic examination ensures that patients receive accurate diagnosis, treatment and counseling. This study contributed to the understanding of the genotype-phenotype relationship of Turkish patients with IRDs.
Collapse
Affiliation(s)
- Neslihan Duzkale
- Department of Medical Genetic, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Umut Arslan
- Department of Bioretina, Ankara University Technopolis, Ankara, Turkey
| |
Collapse
|
36
|
García Bohórquez B, Aller E, Rodríguez Muñoz A, Jaijo T, García García G, Millán JM. Updating the Genetic Landscape of Inherited Retinal Dystrophies. Front Cell Dev Biol 2021; 9:645600. [PMID: 34327195 PMCID: PMC8315279 DOI: 10.3389/fcell.2021.645600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Inherited retinal dystrophies (IRD) are a group of diseases characterized by the loss or dysfunction of photoreceptors and a high genetic and clinical heterogeneity. Currently, over 270 genes have been associated with IRD which makes genetic diagnosis very difficult. The recent advent of next generation sequencing has greatly facilitated the diagnostic process, enabling to provide the patients with accurate genetic counseling in some cases. We studied 92 patients who were clinically diagnosed with IRD with two different custom panels. In total, we resolved 53 patients (57.6%); in 12 patients (13%), we found only one mutation in a gene with a known autosomal recessive pattern of inheritance; and 27 patients (29.3%) remained unsolved. We identified 120 pathogenic or likely pathogenic variants; 30 of them were novel. Among the cone-rod dystrophy patients, ABCA4 was the most common mutated gene, meanwhile, USH2A was the most prevalent among the retinitis pigmentosa patients. Interestingly, 10 families carried pathogenic variants in more than one IRD gene, and we identified two deep-intronic variants previously described as pathogenic in ABCA4 and CEP290. In conclusion, the IRD study through custom panel sequencing demonstrates its efficacy for genetic diagnosis, as well as the importance of including deep-intronic regions in their design. This genetic diagnosis will allow patients to make accurate reproductive decisions, enroll in gene-based clinical trials, and benefit from future gene-based treatments.
Collapse
Affiliation(s)
- Belén García Bohórquez
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
- Unit of Genetics, University Hospital La Fe, Valencia, Spain
| | - Ana Rodríguez Muñoz
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
- Unit of Genetics, University Hospital La Fe, Valencia, Spain
| | - Gema García García
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
| |
Collapse
|
37
|
Fuster-García C, García-Bohórquez B, Rodríguez-Muñoz A, Aller E, Jaijo T, Millán JM, García-García G. Usher Syndrome: Genetics of a Human Ciliopathy. Int J Mol Sci 2021; 22:6723. [PMID: 34201633 PMCID: PMC8268283 DOI: 10.3390/ijms22136723] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive syndromic ciliopathy characterized by sensorineural hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. There are three clinical types depending on the severity and age of onset of the symptoms; in addition, ten genes are reported to be causative of USH, and six more related to the disease. These genes encode proteins of a diverse nature, which interact and form a dynamic protein network called the "Usher interactome". In the organ of Corti, the USH proteins are essential for the correct development and maintenance of the structure and cohesion of the stereocilia. In the retina, the USH protein network is principally located in the periciliary region of the photoreceptors, and plays an important role in the maintenance of the periciliary structure and the trafficking of molecules between the inner and the outer segments of photoreceptors. Even though some genes are clearly involved in the syndrome, others are controversial. Moreover, expression of some USH genes has been detected in other tissues, which could explain their involvement in additional mild comorbidities. In this paper, we review the genetics of Usher syndrome and the spectrum of mutations in USH genes. The aim is to identify possible mutation associations with the disease and provide an updated genotype-phenotype correlation.
Collapse
Affiliation(s)
- Carla Fuster-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
38
|
Meng X, Liu X, Li Y, Guo T, Yang L. Correlation between Genotype and Phenotype in 69 Chinese Patients with USH2A Mutations: A comparative study of the patients with Usher Syndrome and Nonsyndromic Retinitis Pigmentosa. Acta Ophthalmol 2021; 99:e447-e460. [PMID: 33124170 DOI: 10.1111/aos.14626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE The aim of this study was to analyse 69 Chinese patients with USH2A mutations and to assess the genotype-phenotype correlation. METHODS All 36 Usher syndrome type IIA patients and 33 nonsyndromic RP (retinitis pigmentosa) patients underwent clinical examinations. Eye examinations included best-corrected visual acuity, slit-lamp biomicroscopy, fundus examination with dilated pupils, fundus fluorescent angiography, visual field test, full-field electroretinography and optic coherence tomography; audiological assessment included pure tone audiometry and hearing thresholds. The molecular diagnosis of genotype combined the single-gene Sanger sequencing and next-generation sequencing. This study is a retrospective study. RESULTS The mean age of first symptoms with Usher syndrome type IIa and nonsyndromic RP patients was 13.7 versus 29.8 years (ocular phenotypes, p < 0.001); 17.7 versus 29.9 years (nyctalopia, p < 0.001); 44.7 versus 54.8 years (low vision based on VF, p < 0.001); 41.7 versus 54.7 years (low vision based on VA, p < 0.001); and 46.0 versus 56.7 years (legal blindness based on VF, p < 0.001). There was significant difference in variants in the two groups (p < 0.05). Among patients with mutation c.2802T > G (p.Cys934Trp), more (66.7%) presented with normal hearing. All patients (3/3, 100%) with the variant c.8232G > C (p.Trp2744Cys) had hearing loss. Furthermore, we identified 23 novel variants in USH2A. CONCLUSIONS Patients with Usher syndrome type IIa had an earlier onset of the disease, inferior visual function and presented with more truncating variants, compared with the nonsyndromic RP patients.
Collapse
Affiliation(s)
- Xiang Meng
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| | - XiaoZhen Liu
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| | - YingYing Li
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| | - Tong Guo
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| | - Liping Yang
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| |
Collapse
|
39
|
Jaffal L, Joumaa H, Mrad Z, Zeitz C, Audo I, El Shamieh S. The genetics of rod-cone dystrophy in Arab countries: a systematic review. Eur J Hum Genet 2021; 29:897-910. [PMID: 33188265 PMCID: PMC8187393 DOI: 10.1038/s41431-020-00754-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Since a substantial difference in the prevalence of genetic causes of rod-cone dystrophy (RCD) was found among different populations, we conducted a systematic review of the genetic findings associated with RCD in Arab countries. Of the 816 articles retrieved from PubMed, 31 studies conducted on 407 participants from 11 countries were reviewed. Next-generation sequencing (NGS) was the most commonly used technique (68%). Autosomal recessive pattern was the most common pattern of inheritance (97%) and half of the known genes associated with RCD (32/63) were identified. In the Kingdom of Saudi Arabia, in addition to RP1 (20%) and TULP1 (20%), gene defects in EYS (8%) and CRB1 (7%) were also prevalently mutated. In North Africa, the main gene defects were in MERTK (18%) and RLBP1 (18%). Considering all countries, RP1 and TULP1 remained the most prevalently mutated. Variants in TULP1, RP1, EYS, MERTK, and RLBP1 were the most prevalent, possibly because of founder effects. On the other hand, only ten Individuals were found to have dominant or X-linked RCD. This is the first time a catalog of RCD genetic variations has been established in subjects from the Arabi countries. Although the last decade has seen significant interest, expertise, and an increase in RCD scientific publication, much work needs to be conducted.
Collapse
Affiliation(s)
- Lama Jaffal
- Department of Biological and Environmental Sciences, Faculty of Science, Beirut Arab University, Debbieh, 1107 2809, Lebanon
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh, 1700, Lebanon
| | - Hawraa Joumaa
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh, 1700, Lebanon
| | - Zamzam Mrad
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh, 1700, Lebanon
| | - Christina Zeitz
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, 75012, France
| | - Isabelle Audo
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, 75012, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, 28 rue de Charenton, F-75012, Paris, France
- University College London Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Said El Shamieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, 1107 2809, Lebanon.
| |
Collapse
|
40
|
Establishing Genotype-phenotype Correlation in USH2A-related Disorders to Personalize Audiological Surveillance and Rehabilitation. Otol Neurotol 2021; 41:431-437. [PMID: 32176120 DOI: 10.1097/mao.0000000000002588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE USH2A-related disorders are characterised by genetic and phenotypic heterogeneity, and are associated with a spectrum of sensory deficits, ranging from deaf blindness to blindness with normal hearing. It has been previously proposed that the presence of specific USH2A alleles can be predictive of unaffected hearing. This study reports the clinical and genetic findings in a group of patients with USH2A-related disease and evaluates the validity of the allelic hierarchy model. PATIENTS AND INTERVENTION USH2A variants from 27 adults with syndromic and nonsyndromic USH2A-related disease were analyzed according to a previously reported model of allelic hierarchy. The analysis was replicated on genotype-phenotype correlation information from 197 individuals previously reported in 2 external datasets. MAIN OUTCOME MEASURE Genotype-phenotype correlations in USH2A-related disease. RESULTS A valid allelic hierarchy model was observed in 93% of individuals with nonsyndromic USH2A-retinopathy (n = 14/15) and in 100% of patients with classic Usher syndrome type IIa (n = 8/8). Furthermore, when two large external cohorts of cases were combined, the allelic hierarchy model was valid across 85.7% (n = 78/91) of individuals with nonsyndromic USH2A-retinopathy and 95% (n = 123/129) of individuals with classic Usher syndrome type II (p = 0.012, χ test). Notably, analysis of all three patient datasets revealed that USH2A protein truncating variants were reported most frequently in individuals with hearing loss. CONCLUSION Genetic testing results in individuals suspected to have an USH2A-related disorder have the potential to facilitate personalized audiological surveillance and rehabilitation pathways.
Collapse
|
41
|
Identification of 13 novel USH2A mutations in Chinese retinitis pigmentosa and Usher syndrome patients by targeted next-generation sequencing. Biosci Rep 2021; 40:221779. [PMID: 31904091 PMCID: PMC6974426 DOI: 10.1042/bsr20193536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Accepted: 12/29/2019] [Indexed: 12/22/2022] Open
Abstract
Background: The USH2A gene encodes usherin, a basement membrane protein that is involved in the development and homeostasis of the inner ear and retina. Mutations in USH2A are linked to Usher syndrome type II (USH II) and non-syndromic retinitis pigmentosa (RP). Molecular diagnosis can provide insight into the pathogenesis of these diseases, facilitate clinical diagnosis, and identify individuals who can most benefit from gene or cell replacement therapy. Here, we report 21 pathogenic mutations in the USH2A gene identified in 11 Chinese families by using the targeted next-generation sequencing (NGS) technology. Methods: In all, 11 unrelated Chinese families were enrolled, and NGS was performed to identify mutations in the USH2A gene. Variant analysis, Sanger validation, and segregation tests were utilized to validate the disease-causing mutations in these families. Results: We identified 21 pathogenic mutations, of which 13, including 5 associated with non-syndromic RP and 8 with USH II, have not been previously reported. The novel variants segregated with disease phenotype in the affected families and were absent from the control subjects. In general, visual impairment and retinopathy were consistent between the USH II and non-syndromic RP patients with USH2A mutations. Conclusions: These findings provide a basis for investigating genotype–phenotype relationships in Chinese USH II and RP patients and for clarifying the pathophysiology and molecular mechanisms of the diseases associated with USH2A mutations.
Collapse
|
42
|
Sánchez-Bellver L, Toulis V, Marfany G. On the Wrong Track: Alterations of Ciliary Transport in Inherited Retinal Dystrophies. Front Cell Dev Biol 2021; 9:623734. [PMID: 33748110 PMCID: PMC7973215 DOI: 10.3389/fcell.2021.623734] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
Ciliopathies are a group of heterogeneous inherited disorders associated with dysfunction of the cilium, a ubiquitous microtubule-based organelle involved in a broad range of cellular functions. Most ciliopathies are syndromic, since several organs whose cells produce a cilium, such as the retina, cochlea or kidney, are affected by mutations in ciliary-related genes. In the retina, photoreceptor cells present a highly specialized neurosensory cilium, the outer segment, stacked with membranous disks where photoreception and phototransduction occurs. The daily renewal of the more distal disks is a unique characteristic of photoreceptor outer segments, resulting in an elevated protein demand. All components necessary for outer segment formation, maintenance and function have to be transported from the photoreceptor inner segment, where synthesis occurs, to the cilium. Therefore, efficient transport of selected proteins is critical for photoreceptor ciliogenesis and function, and any alteration in either cargo delivery to the cilium or intraciliary trafficking compromises photoreceptor survival and leads to retinal degeneration. To date, mutations in more than 100 ciliary genes have been associated with retinal dystrophies, accounting for almost 25% of these inherited rare diseases. Interestingly, not all mutations in ciliary genes that cause retinal degeneration are also involved in pleiotropic pathologies in other ciliated organs. Depending on the mutation, the same gene can cause syndromic or non-syndromic retinopathies, thus emphasizing the highly refined specialization of the photoreceptor neurosensory cilia, and raising the possibility of photoreceptor-specific molecular mechanisms underlying common ciliary functions such as ciliary transport. In this review, we will focus on ciliary transport in photoreceptor cells and discuss the molecular complexity underpinning retinal ciliopathies, with a special emphasis on ciliary genes that, when mutated, cause either syndromic or non-syndromic retinal ciliopathies.
Collapse
Affiliation(s)
- Laura Sánchez-Bellver
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
| | - Vasileios Toulis
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
- CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Toualbi L, Toms M, Moosajee M. USH2A-retinopathy: From genetics to therapeutics. Exp Eye Res 2020; 201:108330. [PMID: 33121974 PMCID: PMC8417766 DOI: 10.1016/j.exer.2020.108330] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023]
Abstract
Bilallelic variants in the USH2A gene can cause Usher syndrome type 2 and non-syndromic retinitis pigmentosa. In both disorders, the retinal phenotype involves progressive rod photoreceptor loss resulting in nyctalopia and a constricted visual field, followed by subsequent cone degeneration, leading to the loss of central vision and severe visual impairment. The USH2A gene raises many challenges for researchers and clinicians due to a broad spectrum of mutations, a large gene size hampering gene therapy development and limited knowledge on its pathogenicity. Patients with Usher type 2 may benefit from hearing aids or cochlear implants to correct their hearing defects, but there are currently no approved treatments available for the USH2A-retinopathy. Several treatment strategies, including antisense oligonucleotides and translational readthrough inducing drugs, have shown therapeutic promise in preclinical studies. Further understanding of the pathogenesis and natural history of USH2A-related disorders is required to develop innovative treatments and design clinical trials based on reliable outcome measures. The present review will discuss the current knowledge about USH2A, the emerging therapeutics and existing challenges.
Collapse
Affiliation(s)
- Lyes Toualbi
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK; Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.
| |
Collapse
|
44
|
Duncan JL, Liang W, Maguire MG, Audo I, Ayala AR, Birch DG, Carroll J, Cheetham JK, Esposti SD, Durham TA, Erker L, Farsiu S, Ferris FL, Heon E, Hufnagel RB, Iannaccone A, Jaffe GJ, Kay CN, Michaelides M, Pennesi ME, Sahel JA. Baseline Visual Field Findings in the RUSH2A Study: Associated Factors and Correlation With Other Measures of Disease Severity. Am J Ophthalmol 2020; 219:87-100. [PMID: 32446738 DOI: 10.1016/j.ajo.2020.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To report baseline visual fields in the Rate of Progression in USH2A-related Retinal Degeneration (RUSH2A) study. DESIGN Cross-sectional study within a natural history study. METHODS Setting: multicenter, international. STUDY POPULATION Usher syndrome type 2 (USH2) (n = 80) or autosomal recessive nonsyndromic retinitis pigmentosa (ARRP) (n = 47) associated with biallelic disease-causing sequence variants in USH2A. OBSERVATION PROCEDURES Repeatability of full-field static perimetry (SP) and between-eye symmetry of kinetic perimetry (KP) were evaluated with intraclass correlation coefficients (ICCs). The association of demographic and clinical characteristics with total hill of vision (VTOT) was assessed with general linear models. Associations between VTOT and other functional and morphologic measures were assessed using Spearman correlation coefficients and t tests. MAIN OUTCOME MEASURES VTOT (SP) and III4e isopter area (KP). RESULTS USH2 participants had more severe visual field loss than ARRP participants (P < .001, adjusting for disease duration, age of enrollment). Mean VTOT measures among 3 repeat tests were 32.7 ± 24.1, 31.2 ± 23.4, and 31.7 ± 23.9 decibel-steradians (intraclass correlation coefficient [ICC] = 0.96). Better VA, greater photopic ERG 30-Hz flicker amplitudes, higher mean microperimetry sensitivity, higher central subfield thickness, absence of macular cysts, and higher III4e seeing area were associated with higher VTOT (all r > .48; P < .05). Mean III4e isopter areas for left (4561 ± 4426 squared degrees) and right eyes (4215 ± 4300 squared degrees) were concordant (ICC = 0.94). CONCLUSIONS USH2 participants had more visual field loss than participants with USH2A-related ARRP, adjusting for duration of disease and age of enrollment. VTOT was repeatable and correlated with other functional and structural metrics, suggesting it may be a good summary measure of disease severity in patients with USH2A-related retinal degeneration.
Collapse
|
45
|
Ellingford JM, Hufnagel RB, Arno G. Phenotype and Genotype Correlations in Inherited Retinal Diseases: Population-Guided Variant Interpretation, Variable Expressivity and Incomplete Penetrance. Genes (Basel) 2020; 11:genes11111274. [PMID: 33137882 PMCID: PMC7692259 DOI: 10.3390/genes11111274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jamie M. Ellingford
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, St Mary’s Hospital, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, Neuroscience and Mental Health Domain, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Correspondence: (J.M.E.); (R.B.H.); (G.A.)
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20016, USA
- Correspondence: (J.M.E.); (R.B.H.); (G.A.)
| | - Gavin Arno
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
- Moorfields Eye Hospital, London EC1V 2PD, UK
- Correspondence: (J.M.E.); (R.B.H.); (G.A.)
| |
Collapse
|
46
|
Inaba A, Maeda A, Yoshida A, Kawai K, Hirami Y, Kurimoto Y, Kosugi S, Takahashi M. Truncating Variants Contribute to Hearing Loss and Severe Retinopathy in USH2A-Associated Retinitis Pigmentosa in Japanese Patients. Int J Mol Sci 2020; 21:ijms21217817. [PMID: 33105608 PMCID: PMC7659936 DOI: 10.3390/ijms21217817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
USH2A is a common causal gene of retinitis pigmentosa (RP), a progressive blinding disease due to retinal degeneration. Genetic alterations in USH2A can lead to two types of RP, non-syndromic and syndromic RP, which is called Usher syndrome, with impairments of vision and hearing. The complexity of the genotype–phenotype correlation in USH2A-associated RP (USH2A-RP) has been reported. Genetic and clinical characterization of USH2A-RP has not been performed in Japanese patients. In this study, genetic analyses were performed using targeted panel sequencing in 525 Japanese RP patients. Pathogenic variants of USH2A were identified in 36 of 525 (6.9%) patients and genetic features of USH2A-RP were characterized. Among 36 patients with USH2A-RP, 11 patients had syndromic RP with congenital hearing problems. Amino acid changes due to USH2A alterations were similarly located throughout entire regions of the USH2A protein structure in non-syndromic and syndromic RP cases. Notably, truncating variants were detected in all syndromic patients with a more severe retinal phenotype as compared to non-syndromic RP cases. Taken together, truncating variants could contribute to more serious functional and tissue damages in Japanese patients, suggesting important roles for truncating mutations in the pathogenesis of syndromic USH2A-RP.
Collapse
Affiliation(s)
- Akira Inaba
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; (A.I.); (A.Y.); (K.K.); (Y.H.); (Y.K.); (M.T.)
- Laboratory for Retinal Regeneration, RIKEN, Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Department of Medical Ethics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; (A.I.); (A.Y.); (K.K.); (Y.H.); (Y.K.); (M.T.)
- Laboratory for Retinal Regeneration, RIKEN, Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Correspondence: ; Tel.: +81-(0)78-306-3305
| | - Akiko Yoshida
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; (A.I.); (A.Y.); (K.K.); (Y.H.); (Y.K.); (M.T.)
- Laboratory for Retinal Regeneration, RIKEN, Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kanako Kawai
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; (A.I.); (A.Y.); (K.K.); (Y.H.); (Y.K.); (M.T.)
- Laboratory for Retinal Regeneration, RIKEN, Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; (A.I.); (A.Y.); (K.K.); (Y.H.); (Y.K.); (M.T.)
- Laboratory for Retinal Regeneration, RIKEN, Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yasuo Kurimoto
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; (A.I.); (A.Y.); (K.K.); (Y.H.); (Y.K.); (M.T.)
- Laboratory for Retinal Regeneration, RIKEN, Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Shinji Kosugi
- Department of Medical Ethics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| | - Masayo Takahashi
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; (A.I.); (A.Y.); (K.K.); (Y.H.); (Y.K.); (M.T.)
- Laboratory for Retinal Regeneration, RIKEN, Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
47
|
Tatour Y, Ben-Yosef T. Syndromic Inherited Retinal Diseases: Genetic, Clinical and Diagnostic Aspects. Diagnostics (Basel) 2020; 10:diagnostics10100779. [PMID: 33023209 PMCID: PMC7600643 DOI: 10.3390/diagnostics10100779] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal diseases (IRDs), which are among the most common genetic diseases in humans, define a clinically and genetically heterogeneous group of disorders. Over 80 forms of syndromic IRDs have been described. Approximately 200 genes are associated with these syndromes. The majority of syndromic IRDs are recessively inherited and rare. Many, although not all, syndromic IRDs can be classified into one of two major disease groups: inborn errors of metabolism and ciliopathies. Besides the retina, the systems and organs most commonly involved in syndromic IRDs are the central nervous system, ophthalmic extra-retinal tissues, ear, skeleton, kidney and the cardiovascular system. Due to the high degree of phenotypic variability and phenotypic overlap found in syndromic IRDs, correct diagnosis based on phenotypic features alone may be challenging and sometimes misleading. Therefore, genetic testing has become the benchmark for the diagnosis and management of patients with these conditions, as it complements the clinical findings and facilitates an accurate clinical diagnosis and treatment.
Collapse
|
48
|
Toms M, Pagarkar W, Moosajee M. Usher syndrome: clinical features, molecular genetics and advancing therapeutics. Ther Adv Ophthalmol 2020; 12:2515841420952194. [PMID: 32995707 PMCID: PMC7502997 DOI: 10.1177/2515841420952194] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 01/12/2023] Open
Abstract
Usher syndrome has three subtypes, each being clinically and genetically heterogeneous characterised by sensorineural hearing loss and retinitis pigmentosa (RP), with or without vestibular dysfunction. It is the most common cause of deaf–blindness worldwide with a prevalence of between 4 and 17 in 100 000. To date, 10 causative genes have been identified for Usher syndrome, with MYO7A accounting for >50% of type 1 and USH2A contributing to approximately 80% of type 2 Usher syndrome. Variants in these genes can also cause non-syndromic RP and deafness. Genotype–phenotype correlations have been described for several of the Usher genes. Hearing loss is managed with hearing aids and cochlear implants, which has made a significant improvement in quality of life for patients. While there is currently no available approved treatment for the RP, various therapeutic strategies are in development or in clinical trials for Usher syndrome, including gene replacement, gene editing, antisense oligonucleotides and small molecule drugs.
Collapse
Affiliation(s)
- Maria Toms
- UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | - Waheeda Pagarkar
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; University College London Hospitals NHS Foundation Trust, London, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
49
|
Charng J, Lamey TM, Thompson JA, McLaren TL, Attia MS, McAllister IL, Constable IJ, Mackey DA, De Roach JN, Chen FK. Edge of Scotoma Sensitivity as a Microperimetry Clinical Trial End Point in USH2A Retinopathy. Transl Vis Sci Technol 2020; 9:9. [PMID: 32974081 PMCID: PMC7488629 DOI: 10.1167/tvst.9.10.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/14/2020] [Indexed: 01/05/2023] Open
Abstract
Purpose Microperimetry is commonly used to assess retinal function. We perform cross-sectional and longitudinal analysis on microperimetry parameters in USH2A retinopathy and explore end points suitable for future clinical trials. Methods Microperimetry was performed using two grids, Grid 1 (18° diameter) and Grid 2 (6° diameter). In Grid 1, four parameters (number of nonscotomatous loci, mean sensitivity [MS], responding point sensitivity [RPS], and edge of scotoma sensitivity [ESS]) were analyzed. In Grid 2, number of nonscotomatous loci and MS were examined. Interocular symmetry was also examined. Longitudinal analysis was conducted in a subset of eyes. Results Microperimetry could be performed in 16 of 21 patients. In Grid 1 (n = 15; average age, 35.6 years), average number of nonscotomatous loci, MS, RPS, and ESS were 46.6 loci, 10.0 dB, 14.7 and 9.6 dB, respectively. In Grid 2 (n = 13; average age, 37.4 years), 12 eyes had measurable sensitivity across the entire grid. Average MS was 23.8 dB. Interocular analysis revealed large 95% confidence intervals for all parameters. Longitudinally, Grid 1 (n = 12, average follow-up 2.6 years) ESS showed the fastest rate of decline (–1.84 dB/y) compared with MS (–0.34 dB/y) and RPS (–0.90 dB/y). Conclusions Our data suggest that ESS may be more useful than MS and RPS in test grids that cover a large extent of the macula. We caution the use of contralateral eye as an internal control. Translational Relevance ESS may decrease the duration or sample size of treatment trials in USH2A retinopathy.
Collapse
Affiliation(s)
- Jason Charng
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia, Australia
| | - Tina M Lamey
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Terri L McLaren
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Mary S Attia
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia, Australia
| | - Ian L McAllister
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia, Australia
| | - Ian J Constable
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia, Australia
| | - David A Mackey
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia, Australia
| | - John N De Roach
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Fred K Chen
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia.,Department of Ophthalmology, Perth Children's Hospital, Perth, Western Australia, Australia
| |
Collapse
|
50
|
Chen C, Sun Q, Gu M, Qian T, Luo D, Liu K, Xu X, Yu S. Multimodal imaging and genetic characteristics of Chinese patients with USH2A-associated nonsyndromic retinitis pigmentosa. Mol Genet Genomic Med 2020; 8:e1479. [PMID: 32893482 PMCID: PMC7667352 DOI: 10.1002/mgg3.1479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/18/2020] [Accepted: 08/05/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND To determine the clinical characteristics and molecular genetic background responsible for USH2A mutations associated with nonsyndromic retinitis pigmentosa (RP) in five Chinese families, a retrospective cross-sectional study was performed. METHODS Data on detailed history and comprehensive ophthalmological examinations were extracted from medical charts. Genomic DNA was sequenced by whole-exome sequencing. The pathogenicity predictions were evaluated by in silico analysis. The structural modeling of the wide-type and mutant USH2A proteins was displayed based on the I-Tasser software. RESULTS The ultra-wide-field fundus imaging showed a distinctive pattern of hyperautofluorescence in the parafoveal ring with macular sparing. Ten USH2A variants were detected, including seven missense mutations, two splicing mutations, and one insertion mutation. Six of these variants have already been reported, and the remaining four were novel. Of the de novo mutations, the p.C931Y and p.G4489S mutations were predicted to be deleterious or probably damaging; the p.M4853V mutation was predicted to be neutral or benign; and the IVS22+3A>G mutation was a splicing mutation that could influence mRNA splicing and affect the formation of the hairpin structure of the USH2A protein. CONCLUSIONS Our data further confirm that USH2A protein plays a pivotal role in the maintenance of photoreceptors and expand the spectrum of USH2A mutations that are associated with nonsyndromic RP in Chinese patients.
Collapse
Affiliation(s)
- Chong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qiao Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Mingmin Gu
- Department of Medical Genetics, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianwei Qian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Suqin Yu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|