1
|
Ukah N, Wegner HA. On-surface synthesis - Ullmann coupling reactions on N-heterocyclic carbene functionalized gold nanoparticles. NANOSCALE 2024; 16:18524-18533. [PMID: 39269035 DOI: 10.1039/d4nr03065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Organic on-surface syntheses promise to be a useful method for direct integration of organic molecules onto 2-dimensional (2D) flat surfaces. In the past years, there has been an increasing understanding of the mechanistic details of reactions on surfaces, however, mostly under ultra-high vacuum on very defined surfaces. Herein, we expand the scope to gold nanoparticles (AuNps) in solution via an Ullmann reaction of aryl halides connected via N-heterocyclic carbenes (NHCs) to AuNps. Through design and syntheses of various organic precursors, we address the influence of the contact angle, reactivity of the halogen and the proximity of the entire coupling partner on on-surface reactivities, thus, establishing general parameters governing organic on-surface syntheses on AuNps in solution, in comparison with the reactivity on defined surfaces under ultra-high vacuum. The retention of such halogenated Nps even at higher reaction temperatures holds great promise in the fields of materials engineering, nanotechnology and molecular self-assembly, while expanding the toolbox of organic chemistry synthesis in accessing various covalent architectures.
Collapse
Affiliation(s)
- Nathaniel Ukah
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
- Center for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
- Center for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
2
|
Nguyen DTH, Salek S, Shultz-Johnson LR, Bélanger-Bouliga M, Jurca T, Byers JC, Nazemi A. Poly(N-Heterocyclic Carbene)-Capped Alloy and Core-Shell AuAg Bimetallic Nanoparticles. Angew Chem Int Ed Engl 2024; 63:e202409800. [PMID: 38887177 DOI: 10.1002/anie.202409800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
N-Heterocyclic carbene (NHC)-stabilized metal nanoparticles (NPs) have recently attracted considerable attention. While most efforts in the field have been devoted to the development of NHC-tethered monometallic NPs and enhancing their stabilities under various conditions, their bimetallic counterparts are rare in the literature. Herein, we demonstrate that the covalent immobilization of Au and Ag atoms on polymerized NHCs is a powerful method to access bimetallic AuAg NPs. In addition, we show that while AuAg alloy NPs are often obtained via this method, the use of bimetallic polymeric substrates with lower Ag content, relative to Au, results in the formation of core-shell NPs with Au core and Ag shell. Application of these nanomaterials for oxygen reduction reaction is demonstrated with all materials exhibiting electrocatalytic activity. This work demonstrates for the first time that while bimetallic poly(NHC-metal)s are viable substrates to access NHC-stabilized bimetallic NPs, careful adjustment of metal content in the polymeric substrates can finetune the microstructure of the resulting NPs, i.e. alloy vs. core-shell.
Collapse
Affiliation(s)
- Diep T H Nguyen
- Department of Chemistry, Université du Québec à Montréal, NanoQAM, Quebec Center for Advanced Materials (QCAM), C.P.8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | - Samaneh Salek
- Department of Chemistry, Université du Québec à Montréal, NanoQAM, Quebec Center for Advanced Materials (QCAM), C.P.8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | - Lorianne R Shultz-Johnson
- Department of Chemistry, Renewable Energy and Chemical Transformation Faculty Cluster, University of Central Florida, Orlando, Florida, 32816, USA
| | - Marilyne Bélanger-Bouliga
- Department of Chemistry, Université du Québec à Montréal, NanoQAM, Quebec Center for Advanced Materials (QCAM), C.P.8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | - Titel Jurca
- Department of Chemistry, Renewable Energy and Chemical Transformation Faculty Cluster, University of Central Florida, Orlando, Florida, 32816, USA
| | - Joshua C Byers
- Department of Chemistry, Université du Québec à Montréal, NanoQAM, Quebec Center for Advanced Materials (QCAM), C.P.8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | - Ali Nazemi
- Department of Chemistry, Université du Québec à Montréal, NanoQAM, Quebec Center for Advanced Materials (QCAM), C.P.8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| |
Collapse
|
3
|
Du YR, Li XQ, Yang XX, Duan GY, Chen YM, Xu BH. Stabilizing High-Valence Copper(I) Sites with Cu-Ni Interfaces Enhances Electroreduction of CO 2 to C 2+ Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402534. [PMID: 38850182 DOI: 10.1002/smll.202402534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Indexed: 06/10/2024]
Abstract
In this study, the copper-nickel (Cu-Ni) bimetallic electrocatalysts for electrochemical CO2 reduction reaction(CO2RR) are fabricated by taking the finely designed poly(ionic liquids) (PIL) containing abundant Salen and imidazolium chelating sites as the surficial layer, wherein Cu-Ni, PIL-Cu and PIL-Ni interaction can be readily regulated by different synthetic scheme. As a proof of concept, Cu@Salen-PIL@Ni(NO3)2 and Cu@Salen-PIL(Ni) hybrids differ significantly in the types and distribution of Ni species and Cu species at the surface, thereby delivering distinct Cu-Ni cooperation fashion for the CO2RR. Remarkably, Cu@Salen-PIL@Ni(NO3)2 provides a C2+ faradaic efficiency (FEC2+) of 80.9% with partial current density (jC 2+) of 262.9 mA cm-2 at -0.80 V (versus reversible hydrogen electrode, RHE) in 1 m KOH in a flow cell, while Cu@Salen-PIL(Ni) delivers the optimal FEC2+ of 63.8% at jC2+ of 146.7 mA cm-2 at -0.78 V. Mechanistic studies indicates that the presence of Cu-Ni interfaces in Cu@Salen-PIL@Ni(NO3)2 accounts for the preserve of high-valence Cu(I) species under CO2RR conditions. It results in a high activity of both CO2-to-CO conversion and C-C coupling while inhibition of the competitive HER.
Collapse
Affiliation(s)
- Yi-Ran Du
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao-Qiang Li
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xian-Xia Yang
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guo-Yi Duan
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yong-Mei Chen
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bao-Hua Xu
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
4
|
Eisen C, Keppler BK, Chin JM, Su X, Reithofer MR. Fabrication of azido-PEG-NHC stabilized gold nanoparticles as a functionalizable platform. Chem Sci 2024:d4sc04112g. [PMID: 39430936 PMCID: PMC11487300 DOI: 10.1039/d4sc04112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024] Open
Abstract
Rapid and precise detection of biochemical markers is vital for accurate medical diagnosis. Gold nanoparticles (AuNPs) have emerged as promising candidates for diagnostic sensing due to their biocompatibility and distinctive physical properties. However, AuNPs functionalized with selective targeting vectors often suffer from reduced stability in complex biological environments. To address this, (N)-heterocyclic carbene (NHC) ligands have been investigated for their robust binding affinity to AuNP surfaces, enhancing stability. This study outlines an optimized top-down synthesis route for highly stable, azide-terminal PEGylated NHC (PEG-NHC) functionalized AuNPs. This process employs well-defined oleylamine-protected AuNPs and masked PEGylated NHC precursors. The activation and attachment mechanisms of the masked NHCs were elucidated through the identification of intermediate AuNPs formed during incomplete ligand exchange. The resulting PEG-NHC@AuNPs exhibit exceptional colloidal stability across various biologically relevant media, showing no significant aggregation or ripening over extended periods. These particles demonstrate superior stability compared to those synthesized via a bottom-up approach. Further functionalization of azide-terminal PEG-NHC@AuNPs was achieved through copper-catalyzed click- and bioorthogonal strain-promoted azide-alkyne cycloaddition reactions. The maintained colloidal stability and successful conjugation highlight the potential of azide-functionalized PEG-NHC@AuNPs as a versatile platform for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Constantin Eisen
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Jia Min Chin
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| |
Collapse
|
5
|
Wang M, Zhang S, Gong Y, Zhang W, Wang Y, Chen Y, Zheng Q, Liu Z, Tang C. Highly Stable Carboranyl Ligated Gold Nano-Catalysts for Regioselective Aromatic Bromination. Angew Chem Int Ed Engl 2024; 63:e202409283. [PMID: 38962888 DOI: 10.1002/anie.202409283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Achieving electronic/steric control and realizing selectivity regulation in nanocatalysis remains a formidable challenge, as the dynamic nature of metal-ligand interfaces, including dissolution (metal leaching) and structural reconstruction, poses significant obstacles. Herein, we disclose carboranyls (CBs) as unprecedented carbon-bonded functional ligands (Eads.CB-Au(111)=-2.90 eV) for gold nanoparticles (AuNPs), showcasing their exceptional stabilization capability that is attributed by strong Au-C bonds combined with B-H⋅⋅⋅Au interactions. The synthesized CB@AuNPs exhibit core(Aun)-satellite(CB2Au-) structure, showing high stability towards multiple stimuli (110 °C, pH=1-12, thiol etchants). In addition, different from conventional AuNP catalysts such as triphenylphosphine (PPh3) stabilized AuNPs, dissolution of catalytically active gold species was suppressed in CB@AuNPs under the reaction conditions. Leveraging these distinct features, CB@AuNPs realized outstanding p : o selectivities in aromatic bromination. Unbiased arenes including chlorobenzene (up to >30 : 1), bromobenzene (15 : 1) and phenyl acrylate were examined using CB@AuNPs as catalysts to afford highly-selective p-products. Both carboranyl ligands and carboranyl derived counterions are crucial for such regioselective transformation. This work has provided valuable insights for AuNPs in realizing diverse regioselective transformations.
Collapse
Affiliation(s)
- Mengyue Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengye Zhang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wangyang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, CAS, Shanghai, 201204, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipan Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai, 200032, China
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Cen Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Coronado S, Herrera J, Pino MG, Martín S, Ballesteros-Rueda L, Cea P. Advancements in Engineering Planar Model Cell Membranes: Current Techniques, Applications, and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1489. [PMID: 39330645 PMCID: PMC11434481 DOI: 10.3390/nano14181489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Cell membranes are crucial elements in living organisms, serving as protective barriers and providing structural support for cells. They regulate numerous exchange and communication processes between cells and their environment, including interactions with other cells, tissues, ions, xenobiotics, and drugs. However, the complexity and heterogeneity of cell membranes-comprising two asymmetric layers with varying compositions across different cell types and states (e.g., healthy vs. diseased)-along with the challenges of manipulating real cell membranes represent significant obstacles for in vivo studies. To address these challenges, researchers have developed various methodologies to create model cell membranes or membrane fragments, including mono- or bilayers organized in planar systems. These models facilitate fundamental studies on membrane component interactions as well as the interactions of membrane components with external agents, such as drugs, nanoparticles (NPs), or biomarkers. The applications of model cell membranes have extended beyond basic research, encompassing areas such as biosensing and nanoparticle camouflage to evade immune detection. In this review, we highlight advancements in the engineering of planar model cell membranes, focusing on the nanoarchitectonic tools used for their fabrication. We also discuss approaches for incorporating challenging materials, such as proteins and enzymes, into these models. Finally, we present our view on future perspectives in the field of planar model cell membranes.
Collapse
Affiliation(s)
- Sara Coronado
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Johan Herrera
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - María Graciela Pino
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Santiago Martín
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luz Ballesteros-Rueda
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Jensen IM, Clark V, Kirby HL, Arroyo-Currás N, Jenkins DM. Tuning N-heterocyclic carbene wingtips to form electrochemically stable adlayers on metals. MATERIALS ADVANCES 2024; 5:7052-7060. [PMID: 39156595 PMCID: PMC11325317 DOI: 10.1039/d4ma00648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Self-assembled monolayers (SAMs) are employed in electrochemical biosensors to passivate and functionalize electrode surfaces. These monolayers prevent the occurrence of undesired electrochemical reactions and act as scaffolds for coupling bioaffinity reagents. Thiols are the most common adlayer used for this application; however, the thiol-gold bond is susceptible to competitive displacement by naturally occurring solvated thiols in biological fluids, as well as to desorption under continuous voltage interrogation. To overcome these issues, N-heterocyclic carbene (NHC) monolayers have been proposed as an alternative for electrochemical biosensor applications due to the strong carbon-gold bond. To maximize the effectiveness of NHCs for SAMs, a thorough understanding of both the steric effects of wingtip substituents and NHC precursor type to the passivation of electrode surfaces is required. In this study, five different NHC wingtips as well as two kinds of NHC precursors were evaluated. The best performing NHC adlayers can be cycled continuously for four days (over 30 000 voltammetric cycles) without appreciably desorbing from the electrode surface. Benchmark thiol monolayers, in contrast, rapidly desorb after only twelve hours. Investigations also show NHC adlayer formation on other biosensor-relevant electrodes such as platinum and palladium.
Collapse
Affiliation(s)
- Isabel M Jensen
- Department of Chemistry University of Tennessee Knoxville Knoxville TN 37996 USA
| | - Vincent Clark
- Chemistry-Biology Interface Program Johns Hopkins University Baltimore MD 21218 USA
| | - Harper L Kirby
- Department of Chemistry University of Tennessee Knoxville Knoxville TN 37996 USA
| | - Netzahualcóyotl Arroyo-Currás
- Chemistry-Biology Interface Program Johns Hopkins University Baltimore MD 21218 USA
- Department of Pharmacology and Molecular Sciences Johns Hopkins University School of Medicine Baltimore MD 21205 USA
| | - David M Jenkins
- Department of Chemistry University of Tennessee Knoxville Knoxville TN 37996 USA
| |
Collapse
|
8
|
Hazer MSA, Malola S, Häkkinen H. Metal-ligand bond in group-11 complexes and nanoclusters. Phys Chem Chem Phys 2024; 26:21954-21964. [PMID: 39010760 DOI: 10.1039/d4cp00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Density functional theory is used to study geometric, energetic, and electronic properties of metal-ligand bonds in a series of group-11 metal complexes and ligand-protected metal clusters. We study complexes as the forms of M-L (L = SCH3, SC8H9, PPh3, NHCMe, NHCEt, NHCiPr, NHCBn, CCMe, CCPh) and L1-M-L2 (L1 = NHCBn, PPh3, and L2 = CCPh). Furthermore, we study clusters denoted as [M13L6Br6]- (L = PPh3, NHCMe, NHCEt, NHCiPr, NHCBn). The systems were studied at the standard GGA level using the PBE functional and including vdW corrections via BEEF-vdW. Generally, Au has the highest binding energies, followed by Cu and Ag. PBE and BEEF-vdW functionals show the order Ag-L > Au-L > Cu-L for bond lengths in both M-L complexes and metal clusters. In clusters, the smallest side group (CH3) in NHCs leads to the largest binding energy whereas no significant variations are seen concerning different side groups of NHC in M-L complexes. By analyzing the projected density of states and molecular orbitals in complexes and clusters, the M-thiolate bonds were shown to have σ and π bond characteristics whereas phosphines and carbenes were creating σ bonds to the transition metals. Interestingly, this analysis revealed divergent behavior for M-alkynyl complexes: while the CCMe group displayed both σ and π bonding features, the CCPh ligand was found to possess only σ bond properties in direct head-to-head binding configuration. Moreover, synergetic effects increase the average binding strength to the metal atom significantly in complexes of two different ligands and underline the potential of adding Cu to synthesize structurally richer cluster systems. This study helps in understanding the effects of different ligands on the stability of M-L complexes and clusters and suggests that PPh3 and NHCs-protected Cu clusters are most stable after Au clusters.
Collapse
Affiliation(s)
| | - Sami Malola
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Hannu Häkkinen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
9
|
Qi L, Mayall RM, Lee DS, Smith C, Woods A, Narouz MR, Hyla A, Bhattacharjee H, She Z, Crudden CM, Birss VI. Energetics and Redox Kinetics of Pure Ferrocene-Terminated N-Heterocyclic Carbene Self-Assembled Monolayers on Gold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17367-17377. [PMID: 39106183 DOI: 10.1021/acs.langmuir.4c01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
N-heterocyclic carbene (NHC) self-assembled monolayers (SAMs) on gold have received considerable attention, but little is known about the lateral interactions between neighboring NHC molecules, their stability when subjected to aggressive oxidizing/reducing conditions, and their interactions with solution ions, all of which are essential for their use in a wide range of applications. To address these deficiencies, we present a comprehensive investigation of two different ferrocene (Fc)-terminated NHC SAMs with different chain lengths and linking groups. Pure monolayers of Fc-terminated NHCs display only a single, symmetrical pair of redox peaks, implying the formation of a homogeneous SAM structure with uniformly distributed Fc/Fc+ redox centers. By comparison, pure Fc-alkylthiol SAMs exhibit complex and impractical redox chemistry and require surface dilution in order to achieve reproducible properties. The NHC SAMs examined in this study exhibit very fast Fc redox kinetics and comparable or even superior stability against the application of multiple potential cycles or long-time holding at constant potential compared to alkylthiol SAMs. Furthermore, ion pairing of Fc+ and hydrophobic perchlorate and other hydrophilic anions is observed with Fc-NHC SAMs, highlighting conditions favorable for future applications of these monolayers. This study should therefore shed light on the very promising characteristics of redox-active NHC SAMs as an alternative to traditional Fc-alkylthiol SAMs for multiple practical applications, including in sensors and electrocatalysis.
Collapse
Affiliation(s)
- Lin Qi
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Robert M Mayall
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Dianne S Lee
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Christene Smith
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - April Woods
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Mina R Narouz
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Alexander Hyla
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | | | - Zhe She
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Viola Ingrid Birss
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N1N4, Canada
| |
Collapse
|
10
|
Cegiełka D, Frey M, Kozieł K, Neumann C, Turchanin A, Cyganik P. Electron-Beam-Induced Modification of N-Heterocyclic Carbenes: Carbon Nanomembrane Formation. J Phys Chem Lett 2024; 15:8196-8204. [PMID: 39094029 PMCID: PMC11331524 DOI: 10.1021/acs.jpclett.4c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Electron irradiation of self-assembled monolayers (SAMs) is a versatile tool for lithographic methods and the formation of new 2D materials such as carbon nanomembranes (CNMs). While the interaction between the electron beam and standard thiolate SAMs has been well studied, the effect of electron irradiation for chemically and thermally ultrastable N-heterocyclic carbenes (NHCs) remains unknown. Here we analyze electron irradiation of NHC SAMs featuring different numbers of benzene moieties and different sizes of the nitrogen side groups to modify their structure. Our results provide design rules to optimize NHC SAMs for effective electron-beam modification that includes the formation of sulfur-free CNMs, which are more suitable for ultrafiltration applications. Considering that NHC monolayers exhibit up to 100 times higher stability of their bonding with the metal substrate toward electron-irradiation compared to standard SAMs, they offer a new alternative for chemical lithography where structural modification of SAMs should be limited to the functional group.
Collapse
Affiliation(s)
- Daria
M. Cegiełka
- Jagiellonian
University, Faculty of Physics,
Astronomy and Applied Computer Science, Smoluchowski Institute of
Physics, Łojasiewicza
11, 30-348 Krakow, Poland
- Jagiellonian
University, Doctoral School of Exact and
Natural Sciences, Łojasiewicza
11, 30-348 Krakow, Poland
| | - Martha Frey
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Lessingstraße 10, 07743 Jena, Germany
| | - Krzysztof Kozieł
- Faculty
of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Christof Neumann
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Lessingstraße 10, 07743 Jena, Germany
| | - Andrey Turchanin
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Lessingstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter, 07743 Jena, Germany
| | - Piotr Cyganik
- Jagiellonian
University, Faculty of Physics,
Astronomy and Applied Computer Science, Smoluchowski Institute of
Physics, Łojasiewicza
11, 30-348 Krakow, Poland
| |
Collapse
|
11
|
Lee J, Woo G, Lee G, Jeon J, Lee S, Wang Z, Shin H, Lee GW, Kim YJ, Lee DH, Kim MJ, Kim E, Seok H, Cho J, Kang B, No YS, Jang WJ, Kim T. Ultrastable 3D Heterogeneous Integration via N-Heterocyclic Carbene Self-Assembled Nanolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35505-35515. [PMID: 38935928 DOI: 10.1021/acsami.4c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The commercialization of 3D heterogeneous integration through hybrid bonding has accelerated, and accordingly, Cu-polymer bonding has gained significant attention as a means of overcoming the limitations of conventional Cu-SiO2 hybrid bonding, offering high compatibility with other fabrication processes. Polymers offer robust bonding strength and a low dielectric constant, enabling high-speed signal transmission with high reliability, but suffer from low thermomechanical stability. Thermomechanical stability of polymers was not achieved previously because of thermal degradation and unstable anchoring. To overcome these limitations, wafer-scale Cu-polymer bonding via N-heterocyclic carbene (NHC) nanolayers was presented for 3D heterogeneous integration, affording ultrastable packing density, crystallinity, and thermal properties. NHC nanolayers were deposited on copper electrodes via electrochemical deposition, and wafer-scale 3D heterogeneous integration was achieved by adhesive bonding at 170 °C for 1 min. Ultrastable conductivity and thermomechanical properties were observed by the spatial mapping of conductivity, work function, and force-distance curves. With regard to the characterization of NHC nanolayers, low-temperature bonding, robust corrosion inhibition, enhanced electrical conductivity, back-end-of-line process compatibility, and fabrication process reduction, NHC Cu/polymer bonding provides versatile advances in 3D heterogeneous integration, indicating that NHC Cu/polymer bonding can be utilized as a platform for future 3D vertical chip architectures.
Collapse
Affiliation(s)
- Jinhyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
| | - Gunhoo Woo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Gyuyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jongyeong Jeon
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Seunghwan Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Ziyang Wang
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Hyelim Shin
- Department of Semiconductor Convergence Engineering, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Gil-Woo Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeon-Ji Kim
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Do-Hyun Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Min-Jae Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Eungchul Kim
- AVP Process Development Team, Samsung Electronics, Chungcheongnam-do, Cheonan-si 31086, South Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jinill Cho
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Boseok Kang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - You-Shin No
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Won-Jun Jang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Taesung Kim
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Semiconductor Convergence Engineering, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
12
|
Ariga K. Liquid-Liquid and Liquid-Solid Interfacial Nanoarchitectonics. Molecules 2024; 29:3168. [PMID: 38999120 PMCID: PMC11243083 DOI: 10.3390/molecules29133168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Nanoscale science is becoming increasingly important and prominent, and further development will necessitate integration with other material chemistries. In other words, it involves the construction of a methodology to build up materials based on nanoscale knowledge. This is also the beginning of the concept of post-nanotechnology. This role belongs to nanoarchitectonics, which has been rapidly developing in recent years. However, the scope of application of nanoarchitectonics is wide, and it is somewhat difficult to compile everything. Therefore, this review article will introduce the concepts of liquid and interface, which are the keywords for the organization of functional material systems in biological systems. The target interfaces are liquid-liquid interface, liquid-solid interface, and so on. Recent examples are summarized under the categories of molecular assembly, metal-organic framework and covalent organic framework, and living cell. In addition, the latest research on the liquid interfacial nanoarchitectonics of organic semiconductor film is also discussed. The final conclusive section summarizes these features and discusses the necessary components for the development of liquid interfacial nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
13
|
Prima DO, Kulikovskaya NS, Novikov RA, Kostyukovich AY, Burykina JV, Chernyshev VM, Ananikov VP. Revealing the Mechanism of Combining Best Properties of Homogeneous and Heterogeneous Catalysis in Hybrid Pd/NHC Systems. Angew Chem Int Ed Engl 2024; 63:e202317468. [PMID: 38572820 DOI: 10.1002/anie.202317468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
The formation of transient hybrid nanoscale metal species from homogeneous molecular precatalysts has been demonstrated by in situ NMR studies of catalytic reactions involving transition metals with N-heterocyclic carbene ligands (M/NHC). These hybrid structures provide benefits of both molecular complexes and nanoparticles, enhancing the activity, selectivity, flexibility, and regulation of active species. However, they are challenging to identify experimentally due to the unsuitability of standard methods used for homogeneous or heterogeneous catalysis. Utilizing a sophisticated solid-state NMR technique, we provide evidence for the formation of NHC-ligated catalytically active Pd nanoparticles (PdNPs) from Pd/NHC complexes during catalysis. The coordination of NHCs via C(NHC)-Pd bonding to the metal surface was first confirmed by observing the Knight shift in the 13C NMR spectrum of the frozen reaction mixture. Computational modeling revealed that as little as few NHC ligands are sufficient for complete ligation of the surface of the formed PdNPs. Catalytic experiments combined with in situ NMR studies confirmed the significant effect of surface covalently bound NHC ligands on the catalytic properties of the PdNPs formed by decomposition of the Pd/NHC complexes. This observation shows the crucial influence of NHC ligands on the activity and stability of nanoparticulate catalytic systems.
Collapse
Affiliation(s)
- Darya O Prima
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Natalia S Kulikovskaya
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Roman A Novikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Alexander Yu Kostyukovich
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Julia V Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Victor M Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| |
Collapse
|
14
|
Sun H, Huang T, Alam MM, Li J, Jang DW, Wang T, Chen H, Ho YP, Gao Z. Minimizing Contact Resistance and Flicker Noise in Micro Graphene Hall Sensors Using Persistent Carbene Modified Gold Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31473-31479. [PMID: 38850243 PMCID: PMC11194764 DOI: 10.1021/acsami.4c05451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Scalable micro graphene Hall sensors (μGHSs) hold tremendous potential for highly sensitive and label-free biomagnetic sensing in physiological solutions. To enhance the performance of these devices, it is crucial to optimize frequency-dependent flicker noise to reduce the limit of detection (LOD), but it remains a great challenge due to the large contact resistance at the graphene-metal contact. Here we present a surface modification strategy employing persistent carbene on gold electrodes to reduce the contact resistivity by a factor of 25, greatly diminishing μGHS flicker noise by a factor of 1000 to 3.13 × 10-14 V2/Hz while simultaneously lowering the magnetic LOD SB1/2 to 1440 nT/Hz1/2 at 1 kHz under a 100 μA bias current. To the best of our knowledge, this represents the lowest SB1/2 reported for scalable μGHSs fabricated through wafer-scale photolithography. The reduction in contact noise is attributed to the π-π stacking interaction between the graphene and the benzene rings of persistent carbene, as well as the decrease in the work function of gold as confirmed by Kelvin Probe Force Microscopy. By incorporating a microcoil into the μGHS, we have demonstrated the real-time detection of superparamagnetic nanoparticles (SNPs), achieving a remarkable LOD of ∼528 μg/L. This advancement holds great potential for the label-free detection of magnetic biomarkers, e.g., ferritin, for the early diagnosis of diseases associated with iron overload, such as hereditary hemochromatosis (HHC).
Collapse
Affiliation(s)
- Honglin Sun
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin,
New Territories 999077, Hong Kong SAR,
China
| | - Ting Huang
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin,
New Territories 999077, Hong Kong SAR,
China
| | - Md Masruck Alam
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin,
New Territories 999077, Hong Kong SAR,
China
| | - Jingwei Li
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin,
New Territories 999077, Hong Kong SAR,
China
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Dong Wook Jang
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin,
New Territories 999077, Hong Kong SAR,
China
| | - Tianle Wang
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin,
New Territories 999077, Hong Kong SAR,
China
| | - Haohan Chen
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin,
New Territories 999077, Hong Kong SAR,
China
- School
of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yi-Ping Ho
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin,
New Territories 999077, Hong Kong SAR,
China
- Centre
for Novel Biomaterials, The Chinese University
of Hong Kong, Shatin,
New Territories 999077, Hong Kong SAR, China
- Hong
Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong SAR, China
- State
Key
Laboratory of Marine Pollution, City University
of Hong Kong, Kowloon Tong, Kowloon 999077, Hong Kong
SAR, China
| | - Zhaoli Gao
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin,
New Territories 999077, Hong Kong SAR,
China
- Shun
Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong SAR, China
- CUHK
Shenzhen Research Institute, Nanshan, Shenzhen 518172, China
| |
Collapse
|
15
|
Kuster L, Bélanger-Bouliga M, Shaw TE, Jurca T, Nazemi A, Frenette M. Insight into the nature of carbon-metal bonding for N-heterocyclic carbenes in gold/silver complexes and nanoparticles using DFT-correlated Raman spectroscopy: strong evidence for π-backbonding. NANOSCALE 2024; 16:11052-11068. [PMID: 38619424 DOI: 10.1039/d4nr00143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
N-Heterocyclic carbenes (NHCs) have emerged as promising ligands for stabilizing metallic complexes, nanoclusters, nanoparticles (NPs) and surfaces. The carbon-metal bond between NHCs and metal atoms plays a crucial role in determining the resulting material's stability, reactivity, function, and electronic properties. Using Raman spectroscopy coupled with density functional theory calculations, we investigate the nature of carbon-metal bonding in NHC-silver and NHC-gold complexes as well as their corresponding NPs. While low wavenumbers are inaccessible to standard infrared spectroscopy, Raman detection reveals previously unreported NHC-Au/Ag bond-stretching vibrations between 154-196 cm-1. The computationally efficient r2SCAN-3c method allows an excellent correlation between experimental and predicted Raman spectra which helps calibrate an accurate description of NHC-metal bonding. While π-backbonding should stabilize the NHC-metal bond, conflicting reports for the presence and absence of π-backbonding are seen in the literature. This debate led us to further investigate experimental and theoretical results to ultimately confirm and quantify the presence of π-backbonding in these systems. Experimentally, an observed decrease in the NHC's CN stretching due to the population of the π* orbital is a good indication for the presence of π-backbonding. Using energy decomposition analysis - natural orbitals for chemical valence (EDA-NOCV), our calculations concur and quantify π-backbonding in these NHC-bound complexes and NPs. Surprisingly, we observe that NPs are less stabilized by π-backbonding compared to their respective complexes-a result that partially explains the weaker NHC-NP bond. The protocol described herein will help optimize metal-carbon bonding in NHC-stabilized metal complexes, nanoparticles and surfaces.
Collapse
Affiliation(s)
- Lucille Kuster
- Department of Chemistry, NanoQAM and Centre Québécois de Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| | - Marilyne Bélanger-Bouliga
- Department of Chemistry, NanoQAM and Centre Québécois de Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| | - Thomas E Shaw
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Ali Nazemi
- Department of Chemistry, NanoQAM and Centre Québécois de Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| | - Mathieu Frenette
- Department of Chemistry, NanoQAM and Centre Québécois de Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
16
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
17
|
Gooding JJ. The Importance of the Stability of Surface Chemistry in Sensors. ACS Sens 2024; 9:2203-2204. [PMID: 38784987 DOI: 10.1021/acssensors.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Affiliation(s)
- J Justin Gooding
- The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
18
|
Arroyo-Currás N. Beyond the Gold-Thiol Paradigm: Exploring Alternative Interfaces for Electrochemical Nucleic Acid-Based Sensing. ACS Sens 2024; 9:2228-2236. [PMID: 38661283 PMCID: PMC11129698 DOI: 10.1021/acssensors.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and biomedical research applications. Benchmark NBEs are fabricated via self-assembly of thiol-based monolayers on gold. Although robust for rapid prototyping, thiol monolayers suffer from limitations in terms of stability under voltage modulation and in the face of competitive ligands such as thiolated molecules naturally occurring in biofluids. Additionally, gold cannot be deployed as an NBE substrate for all biomedical applications, such as in cases where molecular measurements coupled to real-time, under-the-sensor tissue imaging is needed. Seeking to overcome these limitations, the field of NBEs is pursuing alternative ligands and electrode surfaces. In this perspective, I discuss new interface fabrication strategies that have successfully achieved NBE sensing, or that have the potential to allow NBE sensing on conductive surfaces other than gold. I hope this perspective will provide the reader with a fresh view of how future NBE interfaces could be constructed and will serve as inspiration for the pursuit of collaborative developments in the field of NBEs.
Collapse
Affiliation(s)
- Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology
and Molecular
Sciences, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
19
|
Qie B, Wang Z, Jiang J, Zhang Z, Jacobse PH, Lu J, Li X, Liu F, Alexandrova AN, Louie SG, Crommie MF, Fischer FR. Synthesis and characterization of low-dimensional N-heterocyclic carbene lattices. Science 2024; 384:895-901. [PMID: 38781380 DOI: 10.1126/science.adm9814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
The covalent interaction of N-heterocyclic carbenes (NHCs) with transition metal atoms gives rise to distinctive frontier molecular orbitals (FMOs). These emergent electronic states have spurred the widespread adoption of NHC ligands in chemical catalysis and functional materials. Although formation of carbene-metal complexes in self-assembled monolayers on surfaces has been explored, design and electronic structure characterization of extended low-dimensional NHC-metal lattices remains elusive. Here we demonstrate a modular approach to engineering one-dimensional (1D) metal-organic chains and two-dimensional (2D) Kagome lattices using the FMOs of NHC-Au-NHC junctions to create low-dimensional molecular networks exhibiting intrinsic metallicity. Scanning tunneling spectroscopy and first-principles density functional theory reveal the contribution of C-Au-C π-bonding states to dispersive bands that imbue 1D- and 2D-NHC lattices with exceptionally small work functions.
Collapse
Affiliation(s)
- Boyu Qie
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ziyi Wang
- Kavli Energy NanoScience Institute at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jingwei Jiang
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter H Jacobse
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jiaming Lu
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xinheng Li
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Fujia Liu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steven G Louie
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael F Crommie
- Kavli Energy NanoScience Institute at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Felix R Fischer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Bakar Institute of Digital Materials for the Planet, Division of Computing, Data Science, and Society, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Shan L, Wang W, Qian L, Tang J, Liu J. A Uni-Micelle Approach for the Controlled Synthesis of Monodisperse Gold Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:900. [PMID: 38869525 PMCID: PMC11173505 DOI: 10.3390/nano14110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
Small-size gold nanoparticles (AuNPs) are showing large potential in various fields, such as photothermal conversion, sensing, and medicine. However, current synthesis methods generally yield lower, resulting in a high cost. Here, we report a novel uni-micelle method for the controlled synthesis of monodisperse gold nanocrystals, in which there is only one kind micelle containing aqueous solution of reductant while the dual soluble Au (III) precursor is dissolved in oil phase. Our synthesis includes the reversible phase transfer of Au (III) and "uni-micelle" synthesis, employing a Au (III)-OA complex as an oil-soluble precursor. Size-controlled monodisperse AuNPs with a size of 4-11 nm are synthesized by tuning the size of the micelles, in which oleylamine (OA) is adsorbed on the shell of micelles and enhances the rigidity of the micelles, depressing micellar coalescence. Monodisperse AuNPs can be obtained through a one-time separation process with a higher yield of 61%. This method also offers a promising way for the controlled synthesis of small-size alloy nanoparticles and semiconductor heterojunction quantum dots.
Collapse
Affiliation(s)
| | | | | | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (L.S.); (W.W.); (L.Q.)
| | - Jixian Liu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (L.S.); (W.W.); (L.Q.)
| |
Collapse
|
21
|
Duan H, Yang T, Sklyar W, Chen B, Chen Y, Hanson LA, Sun S, Lin Y, He J. Phenylacetylene-Terminated Poly(Ethylene Glycol) as Ligands for Colloidal Noble Metal Nanoparticles: a New Tool for "Grafting to" Approach. NANO LETTERS 2024; 24:5847-5854. [PMID: 38700109 DOI: 10.1021/acs.nanolett.4c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
We report a new design of polymer phenylacetylene (PA) ligands and the ligand exchange methodology for colloidal noble metal nanoparticles (NPs). PA-terminated poly(ethylene glycol) (PEG) can bind to metal NPs through acetylide (M-C≡C-R) that affords a high grafting density. The ligand-metal interaction can be switched between σ bonding and extended π backbonding by changing grafting conditions. The σ bonding of PEG-PA with NPs is strong and it can compete with other capping ligands including thiols, while the π backbonding is much weaker. The σ bonding is also demonstrated to improve the catalytic performance of Pd for ethanol oxidation and prevent surface absorption of the reaction intermediates. Those unique binding characteristics will enrich the toolbox in the control of colloidal surface chemistry and their applications using polymer ligands.
Collapse
Affiliation(s)
| | | | | | | | - Yuliang Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lindsey A Hanson
- Department of Chemistry, Trinity College, Hartford, Connecticut 06106, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | | | | |
Collapse
|
22
|
Amit E, Mondal R, Berg I, Nairoukh Z, Gross E. N-Heterocyclic Carbene Monolayers on Metal-Oxide Films: Correlations between Adsorption Mode and Surface Functionality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10374-10383. [PMID: 38701356 PMCID: PMC11100006 DOI: 10.1021/acs.langmuir.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
N-Heterocyclic carbene (NHC) ligands have been self-assembled on various metal and semimetal surfaces, creating a covalent bond with surface metal atoms that led to high thermal and chemical stability of the self-assembled monolayer. This study explores the self-assembly of NHCs on metal-oxide films (CuOx, FeOx, and TiOx) and reveals that the properties of these metal-oxide substrates play a pivotal role in dictating the adsorption behavior of NHCs, influencing the decomposition route of the monolayer and its impact on work function values. While the attachment of NHCs onto CuOx is via coordination with surface oxygen atoms, NHCs interact with TiOx through coordination with surface metal atoms and with FeOx via coordination with both metal and oxygen surface atoms. These distinct binding modes arise due to variances in the electronic properties of the metal atoms within the investigated metal-oxide films. Contact angle and ultraviolet photoelectron spectroscopy measurements have shown a significantly higher impact of F-NHC adsorption on CuOx than on TiOx and FeOx , correlated to a preferred, averaged upright orientation of F-NHC on CuOx.
Collapse
Affiliation(s)
- Einav Amit
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Rajarshi Mondal
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Iris Berg
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Zackaria Nairoukh
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
23
|
Palasz JM, Long Z, Meng J, Videla PE, Kelly HR, Lian T, Batista VS, Kubiak CP. A Resilient Platform for the Discrete Functionalization of Gold Surfaces Based on N-Heterocyclic Carbene Self-Assembled Monolayers. J Am Chem Soc 2024; 146:10489-10497. [PMID: 38584354 DOI: 10.1021/jacs.3c14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We describe the synthesis and characterization of a versatile platform for gold functionalization, based on self-assembled monolayers (SAMs) of distal-pyridine-functionalized N-heterocyclic carbenes (NHC) derived from bis(NHC) Au(I) complexes. The SAMs are characterized using polarization-modulation infrared reflectance-absorption spectroscopy, surface-enhanced Raman spectroscopy, and X-ray photoelectron spectroscopy. The binding mode is examined computationally using density functional theory, including calculations of vibrational spectra and direct comparisons to the experimental spectroscopic signatures of the monolayers. Our joint computational and experimental analyses provide structural information about the SAM binding geometries under ambient conditions. Additionally, we examine the reactivity of the pyridine-functionalized SAMs toward H2SO4 and W(CO)5(THF) and verify the preservation of the introduced functionality at the interface. Our results demonstrate the versatility of N-heterocyclic carbenes as robust platforms for on-surface acid-base and ligand exchange reactions.
Collapse
Affiliation(s)
- Joseph M Palasz
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Zhuoran Long
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Jinhui Meng
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Pablo E Videla
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - H Ray Kelly
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Victor S Batista
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| |
Collapse
|
24
|
Shirzadi E, Jin Q, Zeraati AS, Dorakhan R, Goncalves TJ, Abed J, Lee BH, Rasouli AS, Wicks J, Zhang J, Ou P, Boureau V, Park S, Ni W, Lee G, Tian C, Meira DM, Sinton D, Siahrostami S, Sargent EH. Ligand-modified nanoparticle surfaces influence CO electroreduction selectivity. Nat Commun 2024; 15:2995. [PMID: 38582773 PMCID: PMC10998913 DOI: 10.1038/s41467-024-47319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
Improving the kinetics and selectivity of CO2/CO electroreduction to valuable multi-carbon products is a challenge for science and is a requirement for practical relevance. Here we develop a thiol-modified surface ligand strategy that promotes electrochemical CO-to-acetate. We explore a picture wherein nucleophilic interaction between the lone pairs of sulfur and the empty orbitals of reaction intermediates contributes to making the acetate pathway more energetically accessible. Density functional theory calculations and Raman spectroscopy suggest a mechanism where the nucleophilic interaction increases the sp2 hybridization of CO(ad), facilitating the rate-determining step, CO* to (CHO)*. We find that the ligands stabilize the (HOOC-CH2)* intermediate, a key intermediate in the acetate pathway. In-situ Raman spectroscopy shows shifts in C-O, Cu-C, and C-S vibrational frequencies that agree with a picture of surface ligand-intermediate interactions. A Faradaic efficiency of 70% is obtained on optimized thiol-capped Cu catalysts, with onset potentials 100 mV lower than in the case of reference Cu catalysts.
Collapse
Affiliation(s)
- Erfan Shirzadi
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Qiu Jin
- Department of Chemistry, University of Calgary, 2500, Calgary, AB, Canada
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Roham Dorakhan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Tiago J Goncalves
- Department of Chemistry, University of Calgary, 2500, Calgary, AB, Canada
| | - Jehad Abed
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Byoung-Hoon Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Armin Sedighian Rasouli
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Joshua Wicks
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Jinqiang Zhang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Victor Boureau
- Interdisciplinary Center for Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sungjin Park
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Weiyan Ni
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Cong Tian
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Debora Motta Meira
- CLS@APS Sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | | | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Ren J, Das M, Osthues H, Nyenhuis M, Schulze Lammers B, Kolodzeiski E, Mönig H, Amirjalayer S, Fuchs H, Doltsinis NL, Glorius F. The Electron-Rich and Nucleophilic N-Heterocyclic Imines on Metal Surfaces: Binding Modes and Interfacial Charge Transfer. J Am Chem Soc 2024; 146:7288-7294. [PMID: 38456796 DOI: 10.1021/jacs.3c11738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The strongly electron-donating N-heterocyclic imines (NHIs) have been employed as excellent surface anchors for the thermodynamic stabilization of electron-deficient species due to their enhanced nucleophilicity. However, the binding mode and interfacial property of these new ligands are still unclear, representing a bottleneck for advanced applications in surface functionalization and catalysis. Here, NHIs with different side groups have been rationally designed, synthesized, and analyzed on various metal surfaces (Cu, Ag). Our results reveal different binding modes depending on the molecular structure and metal surface. The molecular design enables us to achieve a flat-lying or upright configuration and even a transition between these two binding modes depending on the coverage and time. Importantly, the two binding modes exhibit different degrees of interfacial charge transfer between the molecule and the surface. This study provides essential microscopic insight into the NHI adsorption geometry and interfacial charge transfer for the optimization of heterogeneous catalysts in coordination chemistry.
Collapse
Affiliation(s)
- Jindong Ren
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Mowpriya Das
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Helena Osthues
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Marvin Nyenhuis
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Bertram Schulze Lammers
- Physikalisches Institut, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Elena Kolodzeiski
- Physikalisches Institut, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Harry Mönig
- Physikalisches Institut, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Nikos L Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
26
|
Dery S, Cao W, Yao C, Copéret C. NMR Spectroscopic Signatures of Cationic Surface Sites from Supported Coinage Metals Interacting with N-Heterocyclic Carbenes. J Am Chem Soc 2024; 146:6466-6470. [PMID: 38428040 PMCID: PMC10941179 DOI: 10.1021/jacs.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
N-heterocyclic carbenes (NHCs) have been extensively studied to modulate the reactivity of molecular catalysts, colloids, and their supported analogues, being isolated sites, clusters, or nanoparticles. While the interaction of NHCs on metal surfaces has been discussed in great detail, showing specific coordination chemistry depending on the type of NHC ligands, much less is known when the metal is dispersed on oxide supports, as in heterogeneous catalysts. Herein, we study the interaction of NHC ligands with Au surface sites dispersed on silica, a nonreducible oxide support. We identify the easy formation of bis-NHC ligated Au(I) surface sites parallel to what is found on metallic Au surfaces. These species display a specific 13C NMR spectroscopic signature that clearly distinguishes them from the mono-NHC Au(I) surface sites or supported imidazoliums. We find that bis-ligated surface species are not unique to supported Au(I) species and are found for the corresponding Ag(I) and Cu(I) species, as well as for the isolobal surface silanols. Furthermore, the interaction of NHC ligand with silica-supported Au nanoparticles also yields bis-NHC ligated Au(I) surface sites, indicating that metal atoms can also be easily extracted from nanoparticles, further illustrating the dynamics of these systems and the overall favorable formation of such bis-ligated species across a range of systems, besides what has been found on crystalline metal facets.
Collapse
Affiliation(s)
- Shahar Dery
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| | - Weicheng Cao
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| | - Chengbo Yao
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
27
|
Chen S, Xia Y, Zeng R, Luo Z, Wu X, Hu X, Lu J, Gazit E, Pan H, Hong Z, Yan M, Tao K, Jiang Y. Ordered planar plating/stripping enables deep cycling zinc metal batteries. SCIENCE ADVANCES 2024; 10:eadn2265. [PMID: 38446894 PMCID: PMC10917354 DOI: 10.1126/sciadv.adn2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Metal anodes are emerging as culminating solutions for the development of energy-dense batteries in either aprotic, aqueous, or solid battery configurations. However, unlike traditional intercalation electrodes, the low utilization of "hostless" metal anodes due to the intrinsically disordered plating/stripping impedes their practical applications. Herein, we report ordered planar plating/stripping in a bulk zinc (Zn) anode to achieve an extremely high depth of discharge exceeding 90% with negligible thickness fluctuation and long-term stable cycling. The Zn can be plated/stripped with (0001)Zn preferential orientation throughout the consecutive charge/discharge process, assisted by a self-assembled supramolecular bilayer at the Zn anode-electrolyte interface. Through real-time tracking of the Zn atoms migration, we reveal that the ordered planar plating/stripping is driven by the construction of in-plane Zn─N bindings and the gradient energy landscape at the reaction fronts. The breakthrough results provide alternative insights into the ordered plating/stripping of metal anodes toward rechargeable energy-dense batteries.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yufan Xia
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Ran Zeng
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhen Luo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Xingxing Wu
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Xuzhi Hu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jian Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ehud Gazit
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Hongge Pan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Zijian Hong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030 China
| | - Kai Tao
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yinzhu Jiang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030 China
| |
Collapse
|
28
|
Ariga K. Confined Space Nanoarchitectonics for Dynamic Functions and Molecular Machines. MICROMACHINES 2024; 15:282. [PMID: 38399010 PMCID: PMC10892885 DOI: 10.3390/mi15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Nanotechnology has advanced the techniques for elucidating phenomena at the atomic, molecular, and nano-level. As a post nanotechnology concept, nanoarchitectonics has emerged to create functional materials from unit structures. Consider the material function when nanoarchitectonics enables the design of materials whose internal structure is controlled at the nanometer level. Material function is determined by two elements. These are the functional unit that forms the core of the function and the environment (matrix) that surrounds it. This review paper discusses the nanoarchitectonics of confined space, which is a field for controlling functional materials and molecular machines. The first few sections introduce some of the various dynamic functions in confined spaces, considering molecular space, materials space, and biospace. In the latter two sections, examples of research on the behavior of molecular machines, such as molecular motors, in confined spaces are discussed. In particular, surface space and internal nanospace are taken up as typical examples of confined space. What these examples show is that not only the central functional unit, but also the surrounding spatial configuration is necessary for higher functional expression. Nanoarchitectonics will play important roles in the architecture of such a total system.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| |
Collapse
|
29
|
Lee DS, Singh I, Veinot AJ, Aloisio MD, Lomax JT, Ragogna PJ, Crudden CM. Mesoionic carbene-based self-assembled monolayers on gold. Chem Sci 2024; 15:2480-2485. [PMID: 38362421 PMCID: PMC10866350 DOI: 10.1039/d3sc04720b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/10/2023] [Indexed: 02/17/2024] Open
Abstract
N-Heterocyclic carbenes (NHC) have been widely studied as ligands for surface chemistry, and have shown advantages compared to existing ligands (e.g. thiols). Herein, we introduce mesoionic carbenes (MICs) as a new type of surface ligand. MICs exhibit higher σ-donor ability compared to typical NHCs, yet they have received little attention in the area of surface chemistry. The synthesis of MICs derived from imidazo[1,2-a]pyridine was established and fully characterized by spectroscopic methods. The self-assembly of these MICs on gold was analyzed by X-ray photoelectron spectroscopy (XPS). Additionally, XPS was used to compare bonding ability in MICs compared to the typical NHCs. These results show that MIC overlayers on gold are robust, resistant to replacement by NHCs, and may be superior to NHCs for applications that require even greater levels of robustness.
Collapse
Affiliation(s)
- Dianne S Lee
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
| | - Ishwar Singh
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
| | - Alex J Veinot
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
- Department of Chemistry, Western University London Ontario N6A 3K7 Canada
- Surface Science Western 999 Collip Cir London Ontario N6G 0J3 Canada
| | - Mark D Aloisio
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
| | - Justin T Lomax
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
- Department of Chemistry, Western University London Ontario N6A 3K7 Canada
- Surface Science Western 999 Collip Cir London Ontario N6G 0J3 Canada
| | - Paul J Ragogna
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
- Department of Chemistry, Western University London Ontario N6A 3K7 Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
| |
Collapse
|
30
|
Zhang T, Khomane SB, Singh I, Crudden CM, McBreen PH. N-heterocyclic carbene adsorption states on Pt(111) and Ru(0001). Phys Chem Chem Phys 2024; 26:4083-4090. [PMID: 38226886 DOI: 10.1039/d3cp03539e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
N-heterocyclic carbene ligands (NHCs) are increasingly used to tune the properties of metal surfaces. The generally greater chemical and thermal robustness of NHCs on gold, as compared to thiolate surface ligands, underscores their potential for a range of applications. While much is now known about the adsorption geometry, overlayer structure, dynamics, and stability of NHCs on coinage elements, especially gold and copper, much less is known about their interaction with the surfaces of Pt-group metals, despite the importance of such metals in catalysis and electrochemistry. In this study, reflection absorption infrared spectroscopy (RAIRS) is used to probe the structure of benzimidazolylidene NHC ligands on Pt(111) and Ru(0001). The experiments exploit the intense absorption peaks of a CF3 substituent on the phenyl ring of the NHC backbone to provide unprecedented insight into adsorption geometry and chemical stability. The results also permit comparison with literature data for NHC ligands on Au(111) and to DFT predictions for NHCs on Pt(111) and Ru(0001), thereby greatly extending the known surface chemistry of NHCs and providing much needed molecular information for the design of metal-organic hybrid materials involving strongly reactive metals.
Collapse
Affiliation(s)
- Tianchi Zhang
- Département de chimie et CCVC, Université Laval, Québec (Que), Canada, G1K OA6.
| | - Sonali B Khomane
- Département de chimie et CCVC, Université Laval, Québec (Que), Canada, G1K OA6.
| | - Ishwar Singh
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6.
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6.
| | - Peter H McBreen
- Département de chimie et CCVC, Université Laval, Québec (Que), Canada, G1K OA6.
| |
Collapse
|
31
|
Gutheil C, Roß G, Amirjalayer S, Mo B, Schäfer AH, Doltsinis NL, Braunschweig B, Glorius F. Tailored Monolayers of N-Heterocyclic Carbenes by Kinetic Control. ACS NANO 2024; 18:3043-3052. [PMID: 38252154 DOI: 10.1021/acsnano.3c08045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Despite the substantial success of N-heterocyclic carbenes (NHCs) as stable and versatile surface modification ligands, their use in nanoscale applications beyond chemistry is still hampered by the failure to control the carbene binding mode, which complicates the fabrication of monolayers with the desired physicochemical properties. Here, we applied vibrational sum-frequency generation spectroscopy to conduct a pseudokinetic surface analysis of NHC monolayers on Au thin films under ambient conditions. We observe for two frequently used carbene structures that their binding mode is highly dynamic and changes with the adsorption time. In addition, we demonstrate that this transition can be accelerated or decelerated to adjust the binding mode of NHCs, which allows fabrication of tailored monolayers of NHCs simply by kinetic control.
Collapse
Affiliation(s)
- Christian Gutheil
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Gina Roß
- Institut für Physikalische Chemie, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Boris Mo
- Institut für Pharmazeutische Biologie und Phytochemie, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | | | - Nikos L Doltsinis
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Björn Braunschweig
- Institut für Physikalische Chemie, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
32
|
Amit E, Berg I, Zhang W, Mondal R, Shema H, Gutkin V, Kravchuk T, Toste FD, Nairoukh Z, Gross E. Selective Deposition of N-Heterocyclic Carbene Monolayers on Designated Au Microelectrodes within an Electrode Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302317. [PMID: 37667447 DOI: 10.1002/smll.202302317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Indexed: 09/06/2023]
Abstract
The incorporation of organic self-assembled monolayers (SAMs) in microelectronic devices requires precise spatial control over the self-assembly process. In this work, selective deposition of N-heterocyclic carbenes (NHCs) on specific electrodes within a two-microelectrode array is achieved by using pulsed electrodeposition. Spectroscopic analysis of the NHC-coated electrode arrays reveals that each electrode is selectively coated with a designated NHC. The impact of NHC monolayers on the electrodes' work function is quantified using Kelvin probe force microscopy. These measurements demonstrate that the work function values of each electrode can be independently tuned by the adsorption of a specific NHC. The presented deposition method enables to selectively coat designated microelectrodes in an electrode array with chosen NHC monolayers for tuning their chemical and electronic functionality.
Collapse
Affiliation(s)
- Einav Amit
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| | - Iris Berg
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| | - Wenhao Zhang
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Rajarshi Mondal
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
| | - Hadar Shema
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| | - Vitaly Gutkin
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| | - Tatyana Kravchuk
- Surface Science Laboratory of Solid-State Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Zackaria Nairoukh
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
| | - Elad Gross
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| |
Collapse
|
33
|
Dominique NL, Chandran A, Jensen IM, Jenkins DM, Camden JP. Unmasking the Electrochemical Stability of N-Heterocyclic Carbene Monolayers on Gold. Chemistry 2023:e202303681. [PMID: 38116819 DOI: 10.1002/chem.202303681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
N-heterocyclic carbene (NHC) monolayers are transforming electrocatalysis and biosensor design via their increased performance and stability. Despite their increasing use in electrochemical systems, the integrity of the NHC monolayer during voltage perturbations remains largely unknown. Herein, we deploy surface-enhanced Raman spectroscopy (SERS) to measure the stability of two model NHCs on gold in ambient conditions as a function of applied potential and under continuous voltammetric interrogation. Our results illustrate that NHC monolayers exhibit electrochemical stability over a wide voltage window (-1 V to 0.5 V vs Ag|AgCl), but they are found to degrade at strongly reducing (< -1 V) or oxidizing (>0.5 V) potentials. We also address NHC monolayer stability under continuous voltammetric interrogation between 0.2 V and -0.5 V, a commonly used voltage window for sensing, showing they are stable for up to 43 hours. However, we additionally find that modifications of the backbone NHC structure can lead to significantly shorter operational lifetimes. While these results highlight the potential of NHC architectures for electrode functionalization, they also reveal potential pitfalls that have not been fully appreciated in electrochemical applications of NHCs.
Collapse
Affiliation(s)
- Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, United States
| | - Aruna Chandran
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, United States
| | - Isabel M Jensen
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN-37996
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN-37996
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, United States
| |
Collapse
|
34
|
Das M, Hogan C, Zielinski R, Kubicki M, Koy M, Kosbab C, Brozzesi S, Das A, Nehring MT, Balfanz V, Brühne J, Dähne M, Franz M, Esser N, Glorius F. N-Heterocyclic Olefins on a Silicon Surface. Angew Chem Int Ed Engl 2023; 62:e202314663. [PMID: 37849449 DOI: 10.1002/anie.202314663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
The adsorption of N-heterocyclic olefins (NHOs) on silicon is investigated in a combined scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory study. We find that both of the studied NHOs bind covalently, with ylidic character, to the silicon adatoms of the substrate and exhibit good thermal stability. The adsorption geometry strongly depends on the N-substituents: for large N-substituents, an upright adsorption geometry is favored, while a flat-lying geometry is found for the NHO with smaller wingtips. These different geometries strongly influence the quality and properties of the obtained monolayers. The upright geometry leads to the formation of ordered monolayers, whereas the flat-lying NHOs yield a mostly disordered, but denser, monolayer. The obtained monolayers both show large work function reductions, as the higher density of the flat-lying monolayer is found to compensate for the smaller vertical dipole moments. Our findings offer new prospects in the design of tailor-made ligand structures in organic electronics and optoelectronics, catalysis, and material science.
Collapse
Affiliation(s)
- Mowpriya Das
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| | - Conor Hogan
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy
- Dipartimento di Fisica, Università di Roma 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Robert Zielinski
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Milan Kubicki
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Maximilian Koy
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| | - Canan Kosbab
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Simone Brozzesi
- Dipartimento di Fisica, Università di Roma 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Ankita Das
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| | - Mike Thomas Nehring
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Viktoria Balfanz
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Juls Brühne
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Mario Dähne
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Martin Franz
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Norbert Esser
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS e.V., Schwarzschildstrasse 8, 12489, Berlin, Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
35
|
Ren J, Koy M, Osthues H, Lammers BS, Gutheil C, Nyenhuis M, Zheng Q, Xiao Y, Huang L, Nalop A, Dai Q, Gao HJ, Mönig H, Doltsinis NL, Fuchs H, Glorius F. On-surface synthesis of ballbot-type N-heterocyclic carbene polymers. Nat Chem 2023; 15:1737-1744. [PMID: 37640855 DOI: 10.1038/s41557-023-01310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
N-Heterocyclic carbenes (NHCs) are established ligands for metal complexes and surfaces. Here we go beyond monomeric NHCs and report on the synthesis of NHC polymers on gold surfaces, consisting of ballbot-type repeating units bound to single Au adatoms. We designed, synthesized and deposited precursors containing different halogens on gold surfaces under ultrahigh vacuum. Conformational, electronic and charge transport properties were assessed by combining low-temperature scanning tunneling microscopy, non-contact atomic force microscopy, X-ray photoelectron spectroscopy, first-principles calculations and reactive force field simulations. The confirmed ballbot-type nature of the NHCs explains the high surface mobility of the incommensurate NHC polymers, which is prerequisite for their desired spatial alignment. The delicate balance between mobility and polymerization rate allows essential parameters for controlling polymer directionality to be derived. These polymers open up new opportunities in the fields of nanoelectronics, surface functionalization and catalysis.
Collapse
Affiliation(s)
- Jindong Ren
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, PR China
- Physikalisches Institut, Westfälische Wilhelms-Universität, Münster, Germany
- Center for Nanotechnology, Münster, Germany
| | - Maximilian Koy
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Münster, Germany
| | - Helena Osthues
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität, Münster, Germany
| | - Bertram Schulze Lammers
- Physikalisches Institut, Westfälische Wilhelms-Universität, Münster, Germany
- Center for Nanotechnology, Münster, Germany
| | - Christian Gutheil
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Münster, Germany
| | - Marvin Nyenhuis
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität, Münster, Germany
| | - Qi Zheng
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, PR China
| | - Yao Xiao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, PR China
| | - Li Huang
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, PR China
| | - Arne Nalop
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Münster, Germany
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, PR China
| | - Hong-Jun Gao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, PR China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, PR China.
| | - Harry Mönig
- Physikalisches Institut, Westfälische Wilhelms-Universität, Münster, Germany.
- Center for Nanotechnology, Münster, Germany.
| | - Nikos L Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität, Münster, Germany.
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität, Münster, Germany.
- Center for Nanotechnology, Münster, Germany.
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Münster, Germany.
| |
Collapse
|
36
|
Berg I, Schio L, Reitz J, Molteni E, Lahav L, Bolaños CG, Goldoni A, Grazioli C, Fratesi G, Hansmann MM, Floreano L, Gross E. Self-Assembled Monolayers of N-Heterocyclic Olefins on Au(111). Angew Chem Int Ed Engl 2023; 62:e202311832. [PMID: 37743324 DOI: 10.1002/anie.202311832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Self-assembled monolayers (SAMs) of N-heterocyclic olefins (NHOs) have been prepared on Au(111) and their thermal stability, adsorption geometry, and molecular order were characterized by X-ray photoelectron spectroscopy, polarized X-ray absorption spectroscopy, scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The strong σ-bond character of NHO anchoring to Au induced high geometrical flexibility that enabled a flat-lying adsorption geometry via coordination to a gold adatom. The flat-lying adsorption geometry was utilized to further increase the surface interaction of the NHO monolayer by backbone functionalization with methyl groups that induced high thermal stability and a large impact on work-function values, which outperformed that of N-heterocyclic carbenes. STM measurements, supported by DFT modeling, identified that the NHOs were self-assembled in dimers, trimers, and tetramers constructed of two, three, and four complexes of NHO-Au-adatom. This self-assembly pattern was correlated to strong NHO-Au interactions and steric hindrance between adsorbates, demonstrating the crucial influence of the carbon-metal σ-bond on monolayer properties.
Collapse
Affiliation(s)
- Iris Berg
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Luca Schio
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Justus Reitz
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Elena Molteni
- Dipartimento di Fisica "Aldo Pontremoli'' Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Linoy Lahav
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | | | - Andrea Goldoni
- Elettra-Sincrotrone Trieste S.C.p.A, Basovizza SS-14, Km 163.5, Trieste, 34149, Italy
| | - Cesare Grazioli
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Guido Fratesi
- Dipartimento di Fisica "Aldo Pontremoli'' Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Max M Hansmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Luca Floreano
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| |
Collapse
|
37
|
Das M, Kohlstädt M, Enders M, Burger S, Sasmal HS, Zimmermann B, Schäfer A, Tyler BJ, Arlinghaus HF, Krossing I, Würfel U, Glorius F. Surface Modification of ITO with N-Heterocyclic Carbene Precursors Results in Electron Selective Contacts in Organic Photovoltaic Devices. Chemistry 2023; 29:e202301482. [PMID: 37488067 DOI: 10.1002/chem.202301482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023]
Abstract
Surface modification of indium tin oxide (ITO) electrodes with organic molecules is known to tune their work function which results in higher charge carrier selectivity in corresponding organic electronic devices and hence influences the performance of organic solar cells. In recent years, N-heterocyclic carbenes (NHCs) have also been proven to be capable to modify the work function of metals and semimetals compared to the unfunctionalized surface via the formation of strong covalent bonds. In this report, we have designed and performed the modification of the ITO surface with NHC by using the zwitterionic bench stable IPr-CO2 as the NHC precursor, applied via spin coating. Upon modification, the work function of ITO electrodes was reduced significantly which resulted in electron selective contacts in corresponding organic photovoltaic devices. In addition, various characterization techniques and analytical methods are used to elucidate the nature of the bound species and the corresponding binding mechanism of the material to the ITO surface.
Collapse
Affiliation(s)
- Mowpriya Das
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Markus Kohlstädt
- Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstraße 2, 79110, Freiburg, Germany
- Albert-Ludwigs-Universität Freiburg, Freiburger Materialforschungszentrum FMF, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
| | - Maria Enders
- Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstraße 2, 79110, Freiburg, Germany
| | - Stephan Burger
- Albert-Ludwigs-Universität Freiburg, Freiburger Materialforschungszentrum FMF, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Himadri Sekhar Sasmal
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Birger Zimmermann
- Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstraße 2, 79110, Freiburg, Germany
| | - Andreas Schäfer
- NanoAnalytics GmbH, Heisenbergstraße 40, 48149, Münster, Germany
| | - Bonnie J Tyler
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| | - Heinrich F Arlinghaus
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| | - Ingo Krossing
- Albert-Ludwigs-Universität Freiburg, Freiburger Materialforschungszentrum FMF, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Uli Würfel
- Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstraße 2, 79110, Freiburg, Germany
- Albert-Ludwigs-Universität Freiburg, Freiburger Materialforschungszentrum FMF, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
38
|
Chen N, Li S, Zhao P, Liu R, Xie Y, Lin JL, Nijhuis CA, Xu B, Zhang L, Xu H, Li Y. Extreme long-lifetime self-assembled monolayer for air-stable molecular junctions. SCIENCE ADVANCES 2023; 9:eadh3412. [PMID: 37851815 PMCID: PMC10584343 DOI: 10.1126/sciadv.adh3412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
The molecular electronic devices based on self-assembled monolayer (SAM) on metal surfaces demonstrate novel electronic functions for device minimization yet are unable to realize in practical applications, due to their instability against oxidation of the sulfur-metal bond. This paper describes an alternative to the thiolate anchoring group to form stable SAMs on gold by selenides anchoring group. Because of the formation of strong selenium-gold bonds, these stable SAMs allow us to incorporate them in molecular tunnel junctions to yield extremely stable junctions for over 200 days. A detailed structural characterization supported by spectroscopy and first-principles modeling shows that the oxidation process is much slower with the selenium-gold bond than the sulfur-gold bond, and the selenium-gold bond is strong enough to avoid bond breaking even when it is eventually oxidized. This proof of concept demonstrates that the extraordinarily stable SAMs derived from selenides are useful for long-lived molecular electronic devices and can possibly become important in many air-stable applications involving SAMs.
Collapse
Affiliation(s)
- Ningyue Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuwei Li
- Center for Combustion Energy, Tsinghua University, Beijing 100084, China
- School of Vehicle and Mobility, and State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Peng Zhao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ran Liu
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yu Xie
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Liang Lin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Christian A. Nijhuis
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Centre and Centre for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, Netherlands
| | - Bingqian Xu
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Liang Zhang
- Center for Combustion Energy, Tsinghua University, Beijing 100084, China
- School of Vehicle and Mobility, and State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Li Z, Sun X, Zheng X, Li B, Gao D, Zhang S, Wu X, Li S, Gong J, Luther JM, Li Z, Zhu Z. Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 2023; 382:284-289. [PMID: 37856581 DOI: 10.1126/science.ade9637] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
P-i-n geometry perovskite solar cells (PSCs) offer simplified fabrication, greater amenability to charge extraction layers, and low-temperature processing over n-i-p counterparts. Self-assembled monolayers (SAMs) can enhance the performance of p-i-n PSCs but ultrathin SAMs can be thermally unstable. We report a thermally robust hole-selective layer comprised of nickel oxide (NiOx) nanoparticle film with a surface-anchored (4-(3,11-dimethoxy-7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid (MeO-4PADBC) SAM that can improve and stabilize the NiOx/perovskite interface. The energetic alignment and favorable contact and binding between NiOx/MeO-4PADBC and perovskite reduced the voltage deficit of PSCs with various perovskite compositions and led to strong interface toughening effects under thermal stress. The resulting 1.53-electron-volt devices achieved 25.6% certified power conversion efficiency and maintained >90% of their initial efficiency after continuously operating at 65 degrees Celsius for 1200 hours under 1-sun illumination.
Collapse
Affiliation(s)
- Zhen Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Xianglang Sun
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xiaopeng Zheng
- National Renewable Energy Laboratory, Golden, CO 80401, USA
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Science, Beijing, 100049, P.R. China
| | - Bo Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Danpeng Gao
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Shoufeng Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Xin Wu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Shuai Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Jianqiu Gong
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | | | - Zhong'an Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| |
Collapse
|
40
|
Hanson MD, Simpson SM. Geometric and Electronic Effects in the Binding Affinity of Imidazole-Based N-Heterocyclic Carbenes to Cu(100)- and Ag(100)-Based Pd and Pt Single-Atom Alloy Surfaces. ACS OMEGA 2023; 8:37402-37412. [PMID: 37841151 PMCID: PMC10568601 DOI: 10.1021/acsomega.3c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
We have conducted nonlocal periodic density functional theory (DFT) calculations of N-heterocyclic carbenes (NHCs) adsorbed to Pd/Cu(100), Pt/Cu(100), Pd/Ag(100), and Pt/Ag(100) single atom alloys (SAAs) utilizing the nonlocal optPBE-vdW functional. NHCs with electron donating groups (EDGs) are predicted to bind more strongly to the SAA surface compared to NHCs functionalized with electron withdrawing groups (EWGs). Our calculations show that NHCs typically bind to SAA geometries containing a small space between the heteroatom sites for the SAAs considered. Generally, this pattern is predicted to persist for a single NHCs or for a pair of NHCs bound to the SAA surfaces. Approximate linear relationships between NMR-based parameters and NHC-SAA binding energies are uncovered. We predict that the binding of NHCs to SAA surfaces is composition-dependent and heteroatom geometry dependent.
Collapse
Affiliation(s)
- Matthew D. Hanson
- Department
of Chemistry, Le Moyne College, Syracuse, New York 13214, United States
| | - Scott M. Simpson
- Department
of Chemistry, St. Bonaventure University, St. Bonaventure, New York 14778, United States
| |
Collapse
|
41
|
Li N, Shou Z, Yang S, Cheng X, Chen C, Zheng S, Shi Y, Tang H. Subtle distinction in molecular structure of flavonoids leads to vastly different coating efficiency and mechanism of metal-polyphenol networks with excellent antioxidant activities. Colloids Surf B Biointerfaces 2023; 229:113454. [PMID: 37499546 DOI: 10.1016/j.colsurfb.2023.113454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Metal-polyphenol networks (MPNs) are of immense scientific interest because of their simple and rapid process to deposit on various substrates or particles with different shapes. However, there are rare reports on the effect of polyphenol molecular structure on coating efficiency and mechanism of MPNs. Herein, three typical flavonoid polyphenols, catechin (Cat), epigallocatechin (EGC) and procyanidin (PC), with the same skeleton (C6-C3-C6) but subtle distinction in molecular structure, were selected to build MPN coatings with ferric ions (Fe3+). And various techniques combined with the density functional theory (DFT) were applied to deeply reveal the roles of coordinative phenolic hydroxyl groups as well as noncovalent interactions (hydrogen bonding and π - π stacking) in the formation of flavonoid-based MPNs. We found that more accessible numbers of coordinative phenolic hydroxyl groups, the higher coating efficiency. In these flavonoid-based MPNs, the single-complex is the predominant during the coordinative modes between phenolic hydroxyl and Fe3+, not the previously reported mono-complex, bis-complex and/or tris-complex. Besides coordinative interaction, noncovalent interactions also contribute to MPNs formation, and hydrogen bonds prevail in the noncovalent interaction compared with π-π stacking. And these engineered MPN coatings can endow the substrate with excellent antioxidant activities. This study contributes to in-depth understanding the building mechanism of flavonoid-based MPNs, and increasing coating efficiency by choosing proper polyphenols.
Collapse
Affiliation(s)
- Na Li
- Department of Anesthesiology, Wenzhou Key Laboratory of perioperative medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Zeyu Shou
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Siyun Yang
- College of Science and Technology, Wenzhou-Kean University, 88 Daxue Rd, Wenzhou, Zhejiang 325060, People's Republic of China
| | - Xinxiu Cheng
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
| | - Chun Chen
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co.,Ltd, Wenzhou 325000, People's Republic of China
| | - Yelu Shi
- College of Science and Technology, Wenzhou-Kean University, 88 Daxue Rd, Wenzhou, Zhejiang 325060, People's Republic of China.
| | - Hongli Tang
- Department of Anesthesiology, Wenzhou Key Laboratory of perioperative medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China.
| |
Collapse
|
42
|
Chevalier RB, Pantano J, Kiesewetter MK, Dwyer JR. N-Heterocyclic carbene-based gold etchants. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:865-871. [PMID: 37674545 PMCID: PMC10477970 DOI: 10.3762/bjnano.14.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
N-Heterocyclic carbenes (NHCs) are an emerging alternative to thiols for the formation of stable self-assembled monolayers (SAMs) on gold. We examined several different species that have been used to produce NHC-based monolayers on gold, namely 1,3-diisopropyl-5-nitrobenzimidazolium iodide, 1,3-diisopropyl-5-nitrobenzimidazolium hydrogen carbonate, bis(1,3-diisopropyl-5-nitrobenzimidazolium)gold(I) iodide, and 1,3-diisopropyl-5-nitrobenzimidazole-2-ylidene. Contrary to expectation, solutions containing the first two species in tetrahydrofuran and dichloromethane caused visible loss of gold from thin-film-coated glass slides. The use of toluene solutions of all species resulted in no apparent dissolution of gold. We present scanning electron micrographs and elemental imaging analyses by energy dispersive X-ray spectroscopy to examine the effect of solutions of each species on the gold film. This work highlights the risk of unwanted etching during some routes to NHC-based surface functionalization but also the potential for deliberate etching, with the outcome determined by choice of chemically synthesized organic species and solvent.
Collapse
Affiliation(s)
- Robert B Chevalier
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 02881, USA
| | - Justin Pantano
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 02881, USA
| | - Matthew K Kiesewetter
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 02881, USA
| | - Jason R Dwyer
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 02881, USA
| |
Collapse
|
43
|
Badgurjar D, Huynh M, Masters B, Wuttig A. Non-Covalent Interactions Mimic the Covalent: An Electrode-Orthogonal Self-Assembled Layer. J Am Chem Soc 2023; 145:17734-17745. [PMID: 37548952 PMCID: PMC10436282 DOI: 10.1021/jacs.3c04387] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/08/2023]
Abstract
Charge-transfer events central to energy conversion and storage and molecular sensing occur at electrified interfaces. Synthetic control over the interface is traditionally accessed through electrode-specific covalent tethering of molecules. Covalent linkages inherently limit the scope and the potential stability window of molecularly tunable electrodes. Here, we report a synthetic strategy that is agnostic to the electrode's surface chemistry to molecularly define electrified interfaces. We append ferrocene redox reporters to amphiphiles, utilizing non-covalent electrostatic and van der Waals interactions to prepare a self-assembled layer stable over a 2.9 V range. The layer's voltammetric response and in situ infrared spectra mimic those reported for analogous covalently bound ferrocene. This design is electrode-orthogonal; layer self-assembly is reversible and independent of the underlying electrode material's surface chemistry. We demonstrate that the design can be utilized across a wide range of electrode material classes (transition metal, carbon, carbon composites) and morphologies (nanostructured, planar). Merging atomically precise organic synthesis of amphiphiles with in situ non-covalent self-assembly at polarized electrodes, our work sets the stage for predictive and non-fouling synthetic control over electrified interfaces.
Collapse
Affiliation(s)
| | | | - Benjamin Masters
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
44
|
Hippolyte L, Sadek O, Ba Sowid S, Porcheron A, Bridonneau N, Blanchard S, Desage-El Murr M, Gatineau D, Gimbert Y, Mercier D, Marcus P, Chauvier C, Chanéac C, Ribot F, Fensterbank L. N-Heterocyclic Carbene Boranes: Dual Reagents for the Synthesis of Gold Nanoparticles. Chemistry 2023; 29:e202301610. [PMID: 37265455 DOI: 10.1002/chem.202301610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/03/2023]
Abstract
N-Heterocyclic carbenes (NHCs) have drawn considerable interest in the field of nanomaterials chemistry as highly stabilizing ligands enabling the formation of strong and covalent carbon-metal bonds. Applied to gold nanoparticles synthesis, the most common strategy consists of the reduction of a preformed NHC-AuI complex with a large excess of a reducing agent that makes the particle size difficult to control. In this paper, we report the straightforward synthesis of NHC-coated gold nanoparticles (NHC-AuNPs) by treating a commercially available gold(I) precursor with an easy-to-synthesize NHC-BH3 reagent. The latter acts as both the reducing agent and the source of surface ligands operating under mild conditions. Mechanistic studies including NMR spectroscopy and mass spectrometry demonstrate that the reduction of gold(I) generates NHC-BH2 Cl as a by-product. This strategy gives efficient control over the nucleation and growth of gold particles by varying the NHC-borane/gold(I) ratio, allowing unparalleled particle size variation over the range of 4.9±0.9 to 10.0±2.7 nm. Our strategy also allows an unprecedented precise and controlled seeded growth of gold nanoparticles. In addition, the as-prepared NHC-AuNPs exhibit narrow size distributions without the need for extensive purification or size-selectivity techniques, and are stable over months.
Collapse
Affiliation(s)
- Laura Hippolyte
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Omar Sadek
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Salem Ba Sowid
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Alexandre Porcheron
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Nathalie Bridonneau
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), 91400, Orsay Cedex, France
| | - Sébastien Blanchard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Marine Desage-El Murr
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - David Gatineau
- Département de Chimie Moléculaire (UMR CNRS 5250), Université Grenoble Alpes, 38050, Grenoble, France
| | - Yves Gimbert
- Département de Chimie Moléculaire (UMR CNRS 5250), Université Grenoble Alpes, 38050, Grenoble, France
| | - Dimitri Mercier
- PSL Research University, CNRS - Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), Physical Chemistry of Surfaces Research Group, 75005, Paris, France
| | - Philippe Marcus
- PSL Research University, CNRS - Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), Physical Chemistry of Surfaces Research Group, 75005, Paris, France
| | - Clément Chauvier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Corinne Chanéac
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
| | - François Ribot
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| |
Collapse
|
45
|
Richstein R, Eisen C, Ge L, Chalermnon M, Mayer F, Keppler BK, Chin JM, Reithofer MR. NHC stabilized copper nanoparticles via reduction of a copper NHC complex. Chem Commun (Camb) 2023; 59:9738-9741. [PMID: 37477599 PMCID: PMC10408246 DOI: 10.1039/d3cc02745g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
The bottom-up synthesis of plasmonic NHC@CuNPs from common starting reagents, via the formation of the synthetically accessible NHC-Cu(I)-Br complex and its reduction by NH3·BH3 is reported. The resulting NHC@CuNPs have been characterized in detail by XPS, TEM and NMR spectroscopy. The stability of NHC@CuNPs was investigated under both inert and ambient conditions using UV-Vis analysis. While the NHC@CuNPs are stable under inert conditions for an extended period of time, the NPs oxidize under air to form CuxO with concomitant release of the stabilizing NHC ligand.
Collapse
Affiliation(s)
- Robert Richstein
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Constantin Eisen
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Lingcong Ge
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Monnaya Chalermnon
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Florian Mayer
- Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Jia Min Chin
- Institute of Inorganic Chemistry - Functional Materials, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| |
Collapse
|
46
|
Pellitero M, Jensen IM, Dominique NL, Ekowo LC, Camden JP, Jenkins DM, Arroyo-Currás N. Stability of N-Heterocyclic Carbene Monolayers under Continuous Voltammetric Interrogation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35701-35709. [PMID: 37449918 PMCID: PMC10377464 DOI: 10.1021/acsami.3c06148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
N-Heterocyclic carbenes (NHCs) are promising monolayer-forming ligands that can overcome limitations of thiol-based monolayers in terms of stability, surface functionality, and reactivity across a variety of transition-metal surfaces. Recent publications have reported the ability of NHCs to support biomolecular receptors on gold substrates for sensing applications and improved tolerance to prolonged biofluid exposure relative to thiols. However, important questions remain regarding the stability of these monolayers when subjected to voltage perturbations, which is needed for applications with electrochemical platforms. Here, we investigate the ability of two NHCs, 1,3-diisopropylbenzimidazole and 5-(ethoxycarbonyl)-1,3-diisopropylbenzimidazole, to form monolayers via self-assembly from methanolic solutions of their trifluoromethanesulfonate salts. We compare the electrochemical behavior of the resulting monolayers relative to that of benchmark mercaptohexanol monolayers in phosphate-buffered saline. Within the -0.15 to 0.25 V vs Ag|AgCl voltage window, NHC monolayers are stable on gold surfaces, wherein they electrochemically perform like thiol-based monolayers and undergo similar reorganization kinetics, displaying long-term stability under incubation in buffered media and under continuous voltammetric interrogation. At negative voltages, NHC monolayers cathodically desorb from the electrode surface at lower bias (-0.1 V) than thiol-based monolayers (-0.5 V). At voltages more positive than 0.25 V, NHC monolayers anodically desorb from electrode surfaces at similar voltages to thiol-based monolayers. These results highlight new limitations to NHC monolayer stability imposed by electrochemical interrogation of the underlying gold electrodes. Our results serve as a framework for future optimization of NHC monolayers on gold for electrochemical applications, as well as structure-functionality studies of NHCs on gold.
Collapse
Affiliation(s)
- Miguel
Aller Pellitero
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Isabel M. Jensen
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Nathaniel L. Dominique
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Lilian Chinenye Ekowo
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Jon P. Camden
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - David M. Jenkins
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Netzahualcóyotl Arroyo-Currás
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
47
|
Thimes RL, Santos AVB, Chen R, Kaur G, Jensen L, Jenkins DM, Camden JP. Using Surface-Enhanced Raman Spectroscopy to Unravel the Wingtip-Dependent Orientation of N-Heterocyclic Carbenes on Gold Nanoparticles. J Phys Chem Lett 2023; 14:4219-4224. [PMID: 37125787 DOI: 10.1021/acs.jpclett.3c00588] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
N-Heterocyclic carbenes (NHCs) are an attractive alternative to thiol ligands when forming self-assembled monolayers on noble-metal surfaces; however, relative to the well-studied thiol monolayers, comparatively little is known about the binding, orientation, and packing of NHC monolayers. Herein, we combine surface-enhanced Raman spectroscopy (SERS) and first-principles theory to investigate how the alkyl "wingtip" groups, i.e., those attached to the nitrogens of N-heterocyclic carbenes, affect the NHC orientation on gold nanoparticles. Consistent with previous literature, smaller wingtip groups lead to stable flat configurations; surprisingly, bulkier wingtips also have stable flat configurations likely due to the presence of an adatom. Comparison of experimental SERS results with the theoretically calculated spectra for flat and vertical configurations shows that we are simultaneously detecting both NHC configurations. In addition to providing information on the adsorbate geometry, this study highlights the extreme SERS enhancement of vibrational modes perpendicular to the surface.
Collapse
Affiliation(s)
- Rebekah L Thimes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Alyssa V B Santos
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ran Chen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
48
|
Nguyen DTH, Shultz LR, Jurca T, Nazemi A. Monomeric and Polymeric Mesoionic N-Heterocyclic Carbene-Tethered Silver Nanoparticles: Synthesis, Stability, and Catalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3204-3215. [PMID: 36821834 DOI: 10.1021/acs.langmuir.2c02864] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, N-heterocyclic carbenes (NHCs) have garnered significant attention as promising alternatives to thiols to stabilize metallic nanoparticles and planar surfaces. While most studies thus far have focused on NHC-functionalized gold nanoparticles (AuNPs), as an ideal platform to investigate the role of NHCs in stabilizing such nanoparticles, their ability to protect more unstable coinage metal nanoparticles, such as silver nanoparticles (AgNPs), has been largely overlooked. This is despite the fact that AgNPs possess a much more sensitive optical response that, upon their enhanced stability, can broaden their scope of application in various fields, including nanomedicine and catalysis. In this study, the synthesis and use of monomeric and polymeric mesoionic NHC-Ag(I) complexes as precursors to mono- and multidentate NHC-tethered AgNPs are reported. The polymeric analog was obtained by first synthesizing a polymer, containing 1,2,3-triazole repeat units, employing the copper-catalyzed alkyne-azide cycloaddition click polymerization of monomers containing diazide- and dialkyne functional groups. Subsequent quaternization of the triazole moieties and Ag insertion yielded the target NHC-Ag-containing polymer. Using this polymer as well as its monomeric analog as substrates, AgNPs with either catenated networks of NHCs or monomeric NHCs were fabricated by their reduction using borane-tert-butylamine complex. Our stability studies demonstrate that while monomeric NHCs impart some degree of stability to AgNPs, particularly at elevated temperatures in aqueous as well as organic medium, their polymeric analogs further enhance their stability in acidic environment (pH = 2) and against glutathione (3 mM), as an example of a biologically relevant thiol, in aqueous media. To highlight the application of these NHC-functionalized AgNPs in catalysis, we explore the aqueous phase reduction of methyl orange and 4-nitrophenol.
Collapse
Affiliation(s)
- Diep Thi Hong Nguyen
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Lorianne R Shultz
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- Renewable Energy and Chemical Transformation Faculty Cluster, University of Central Florida, Orlando, Florida 32816, United States
| | - Ali Nazemi
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
49
|
Dominique NL, Jensen IM, Kaur G, Kotseos CQ, Boggess WC, Jenkins DM, Camden JP. Giving Gold Wings: Ultrabright and Fragmentation Free Mass Spectrometry Reporters for Barcoding, Bioconjugation Monitoring, and Data Storage. Angew Chem Int Ed Engl 2023; 62:e202219182. [PMID: 36853583 DOI: 10.1002/anie.202219182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
The widespread application of laser desorption/ionization mass spectrometry (LDI-MS) highlights the need for a bright and multiplexable labeling platform. While ligand-capped Au nanoparticles (AuNPs) have emerged as a promising LDI-MS contrast agent, the predominant thiol ligands suffer from low ion yields and extensive fragmentation. In this work, we develop a N-heterocyclic carbene (NHC) ligand platform that enhances AuNP LDI-MS performance. NHC scaffolds are tuned to generate barcoded AuNPs which, when benchmarked against thiol-AuNPs, are bright mass tags and form unfragmented ions in high yield. To illustrate the transformative potential of NHC ligands, the mass tags were employed in three orthogonal applications: monitoring a bioconjugation reaction, performing multiplexed imaging, and storing and reading encoded information. These results demonstrate that NHC-nanoparticle systems are an ideal platform for LDI-MS and greatly broaden the scope of nanoparticle contrast agents.
Collapse
Affiliation(s)
- Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Isabel M Jensen
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Chandler Q Kotseos
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - William C Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
50
|
Eisen C, Ge L, Santini E, Chin JM, Woodward RT, Reithofer MR. Hyper crosslinked polymer supported NHC stabilized gold nanoparticles with excellent catalytic performance in flow processes. NANOSCALE ADVANCES 2023; 5:1095-1101. [PMID: 36798502 PMCID: PMC9926895 DOI: 10.1039/d2na00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Highly active and selective heterogeneous catalysis driven by metallic nanoparticles relies on a high degree of stabilization of such nanomaterials facilitated by strong surface ligands or deposition on solid supports. In order to tackle these challenges, N-heterocyclic carbene stabilized gold nanoparticles (NHC@AuNPs) emerged as promising heterogeneous catalysts. Despite the high degree of stabilization obtained by NHCs as surface ligands, NHC@AuNPs still need to be loaded on support structures to obtain easily recyclable and reliable heterogeneous catalysts. Therefore, the combination of properties obtained by NHCs and support structures as NHC bearing "functional supports" for the stabilization of AuNPs is desirable. Here, we report the synthesis of hyper-crosslinked polymers containing benzimidazolium as NHC precursors to stabilize AuNPs. Following the successful synthesis of hyper-crosslinked polymers (HCP), a two-step procedure was developed to obtain HCP·NHC@AuNPs. Detailed characterization not only revealed the successful NHC formation but also proved that the NHC functions as a stabilizer to the AuNPs in the porous polymer network. Finally, HCP·NHC@AuNPs were evaluated in the catalytic decomposition of 4-nitrophenol. In batch reactions, a conversion of greater than 99% could be achieved in as little as 90 s. To further evaluate the catalytic capability of HCP·NHC@AuNP, the catalytic decomposition of 4-nitrophenol was also performed in a flow setup. Here the catalyst not only showed excellent catalytic conversion but also exceptional recyclability while maintaining the catalytic performance.
Collapse
Affiliation(s)
- Constantin Eisen
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Lingcong Ge
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Elena Santini
- Institute of Material Chemistry and Research, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Jia Min Chin
- Institute of Inorganic Chemistry - Functional Materials, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Robert T Woodward
- Institute of Material Chemistry and Research, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| |
Collapse
|