1
|
Stiel AC, Ntziachristos V. Controlling the sound of light: photoswitching optoacoustic imaging. Nat Methods 2024; 21:1996-2007. [PMID: 39322752 DOI: 10.1038/s41592-024-02396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/29/2024] [Indexed: 09/27/2024]
Abstract
Optoacoustic (photoacoustic) imaging advances allow high-resolution optical imaging much deeper than optical microscopy. However, while label-free optoacoustics have already entered clinical application, biological imaging is in need of ubiquitous optoacoustic labels for use in ways that are similar to how fluorescent proteins propelled optical microscopy. We review photoswitching advances that shine a new light or, in analogy, 'bring a new sound' to biological optoacoustic imaging. Based on engineered labels and novel devices, switching uses light or other energy forms and enables signal modulation and synchronous detection for maximizing contrast and detection sensitivity over other optoacoustic labels. Herein, we explain contrast enhancement in the spectral versus temporal domains and review labels and key concepts of switching and their properties to modulate optoacoustic signals. We further outline systems and applications and discuss how switching can enable optoacoustic imaging of cellular or molecular contrast at depths and resolutions beyond those of other optical methods.
Collapse
Affiliation(s)
- Andre C Stiel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Protein Engineering for Superresolution Microscopy Lab, University of Regensburg, Regensburg, Germany.
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Straumann N, Combes BF, Dean Ben XL, Sternke‐Hoffmann R, Gerez JA, Dias I, Chen Z, Watts B, Rostami I, Shi K, Rominger A, Baumann CR, Luo J, Noain D, Nitsch RM, Okamura N, Razansky D, Ni R. Visualizing alpha-synuclein and iron deposition in M83 mouse model of Parkinson's disease in vivo. Brain Pathol 2024; 34:e13288. [PMID: 38982662 PMCID: PMC11483525 DOI: 10.1111/bpa.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Abnormal alpha-synuclein (αSyn) and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim to visualize αSyn inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. The fluorescent pyrimidoindole derivative THK-565 probe was characterized by means of recombinant fibrils and brains from 10- to 11-month-old M83 mice. Concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging were subsequently performed in vivo. Structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 T as well as scanning transmission x-ray microscopy (STXM) were performed to characterize the iron deposits in the perfused brains. Immunofluorescence and Prussian blue staining were further performed on brain slices to validate the detection of αSyn inclusions and iron deposition. THK-565 showed increased fluorescence upon binding to recombinant αSyn fibrils and αSyn inclusions in post-mortem brain slices from patients with PD and M83 mice. Administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 min post-intravenous injection by wide-field fluorescence compared to nontransgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. In conclusion, we demonstrated in vivo mapping of αSyn by means of noninvasive epifluorescence and vMSOT imaging and validated the results by targeting the THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.
Collapse
Affiliation(s)
- Nadja Straumann
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Benjamin F. Combes
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Xose Luis Dean Ben
- Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
| | | | - Juan A. Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland
| | - Ines Dias
- Neurology DepartmentUniversity Hospital ZurichZurichSwitzerland
| | - Zhenyue Chen
- Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
| | - Benjamin Watts
- Photon Science DivisionPaul Scherrer InstituteVilligenSwitzerland
| | - Iman Rostami
- Microscopic Anatomy and Structural BiologyUniversity of BernBernSwitzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
| | - Axel Rominger
- Department of Nuclear Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
| | | | - Jinghui Luo
- Department of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
| | - Daniela Noain
- Neurology DepartmentUniversity Hospital ZurichZurichSwitzerland
| | - Roger M. Nitsch
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of MedicineTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Daniel Razansky
- Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
| | - Ruiqing Ni
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
- Department of Nuclear Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
| |
Collapse
|
3
|
Li Y, Lin Y, Li B, Feng T, Li D, Li Y, Wu Y, Ta D. Enhancing Ischemic Stroke Evaluation by a Model-Based Photoacoustic Tomography Algorithm. JOURNAL OF BIOPHOTONICS 2024:e202400203. [PMID: 39438435 DOI: 10.1002/jbio.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Ischemic stroke (IS) is characterized by the sudden interruption of blood supply to the brain, resulting in neurological impairments and even mortality. Photoacoustic computed tomography (PACT) integrates the high contrast of optical imaging and the penetration of ultrasound imaging, enabling non-invasive IS evaluation. However, the image reconstruction quality significantly affects the oxyhemoglobin saturation (sO2) estimation. This study investigates a model-based with total variation minimized by augmented Lagrangian and alternating direction (MB-TVAL3) approach and compared it with the widely used back-projection (BP) and delay-and-sum (DAS) algorithms. Both simulations and in vivo experiments are conducted to validate the performance of the MB-TVAL3 algorithm, showing a higher sO2 estimation accuracy and sensitivity in detecting infarct area compared to BP and DAS. The findings of this study emphasize the impact of acoustic inverse problem on the accuracy of sO2 estimation and the proposed approach offers valuable support for IS evaluation and cerebrovascular diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yi Lin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Boyi Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Ting Feng
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Dan Li
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Ying Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dean Ta
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| |
Collapse
|
4
|
Sultan LR, Grasso V, Jose J, Al-Hasani M, Karmacharya MB, Sehgal CM. Advanced Techniques for Liver Fibrosis Detection: Spectral Photoacoustic Imaging and Superpixel Photoacoustic Unmixing Analysis for Collagen Tracking. SENSORS (BASEL, SWITZERLAND) 2024; 24:4617. [PMID: 39066017 PMCID: PMC11281248 DOI: 10.3390/s24144617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Liver fibrosis, a major global health issue, is marked by excessive collagen deposition that impairs liver function. Noninvasive methods for the direct visualization of collagen content are crucial for the early detection and monitoring of fibrosis progression. This study investigates the potential of spectral photoacoustic imaging (sPAI) to monitor collagen development in liver fibrosis. Utilizing a novel data-driven superpixel photoacoustic unmixing (SPAX) framework, we aimed to distinguish collagen presence and evaluate its correlation with fibrosis progression. We employed an established diethylnitrosamine (DEN) model in rats to study liver fibrosis over various time points. Our results revealed a significant correlation between increased collagen photoacoustic signal intensity and advanced fibrosis stages. Collagen abundance maps displayed dynamic changes throughout fibrosis progression. These findings underscore the potential of sPAI for the noninvasive monitoring of collagen dynamics and fibrosis severity assessment. This research advances the development of noninvasive diagnostic tools and personalized management strategies for liver fibrosis.
Collapse
Affiliation(s)
- Laith R. Sultan
- Clinical Research Core, Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Valeria Grasso
- FUJIFILM VisualSonics, 1114 AB Amsterdam, The Netherlands; (V.G.); (J.J.)
| | - Jithin Jose
- FUJIFILM VisualSonics, 1114 AB Amsterdam, The Netherlands; (V.G.); (J.J.)
| | - Maryam Al-Hasani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.A.-H.); (C.M.S.)
| | - Mrigendra B. Karmacharya
- Clinical Research Core, Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Chandra M. Sehgal
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.A.-H.); (C.M.S.)
| |
Collapse
|
5
|
Khodaverdi A, Cinthio M, Reistad E, Erlöv T, Malmsjö M, Zackrisson S, Reistad N. Optical tuning of copolymer-in-oil tissue-mimicking materials for multispectral photoacoustic imaging. Biomed Phys Eng Express 2024; 10:055009. [PMID: 38959869 DOI: 10.1088/2057-1976/ad5e85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Objective. The availability of tissue-mimicking materials (TMMs) for manufacturing high-quality phantoms is crucial for standardization, evaluating novel quantitative approaches, and clinically translating new imaging modalities, such as photoacoustic imaging (PAI). Recently, a gel comprising the copolymer styrene-ethylene/butylene-styrene (SEBS) in mineral oil has shown significant potential as TMM due to its optical and acoustic properties akin to soft tissue. We propose using artists' oil-based inks dissolved and diluted in balsam turpentine to tune the optical properties.Approach. A TMM was fabricated by mixing a SEBS copolymer and mineral oil, supplemented with additives to tune its optical absorption and scattering properties independently. A systematic investigation of the tuning accuracies and relationships between concentrations of oil-based pigments and optical absorption properties of the TMM across visible and near-infrared wavelengths using collimated transmission spectroscopy was conducted. The photoacoustic spectrum of various oil-based inks was studied to analyze the effect of increasing concentration and depth.Main results. Artists' oil-based inks dissolved in turpentine proved effective as additives to tune the optical absorption properties of mineral oil SEBS-gel with high accuracy. The TMMs demonstrated long-term stability and suitability for producing phantoms with desired optical absorption properties for PAI studies.Significance. The findings, including tuning of optical absorption and spectral shape, suggest that this TMM facilitates the development of more sophisticated phantoms of arbitrary shapes. This approach holds promise for advancing the development of PAI, including investigation of the spectral coloring effect. In addition, it can potentially aid in the development and clinical translation of ultrasound optical tomography.
Collapse
Affiliation(s)
- Azin Khodaverdi
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | | | - Tobias Erlöv
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophthalmology, Skåne University Hospital, Lund University, 223 62 Lund, Sweden
| | - Sophia Zackrisson
- Department of Translational Medicine, Diagnostic Radiology, Lund University, 205 02 Malmö, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Nina Reistad
- Department of Physics, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
6
|
Suhonen M, Pulkkinen A, Tarvainen T. Single-stage approach for estimating optical parameters in spectral quantitative photoacoustic tomography. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:527-542. [PMID: 38437444 DOI: 10.1364/josaa.518768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 03/06/2024]
Abstract
In quantitative photoacoustic tomography, the optical parameters of a target, most importantly the concentrations of chromophores such as deoxygenated and oxygenated hemoglobin, are estimated from photoacoustic data measured on the boundary of the target. In this work, a numerical approximation of a forward model for spectral quantitative photoacoustic tomography is constructed by utilizing the diffusion approximation for light propagation, the acoustic wave equation for ultrasound propagation, and spectral models of optical absorption and scattering to describe the wavelength dependence of the optical parameters. The related inverse problem is approached in the framework of Bayesian inverse problems. Concentrations of four chromophores (deoxygenated and oxygenated hemoglobin, water, and lipid), two scattering parameters (reference scattering and scattering power), and the Grüneisen parameter are estimated in a single-stage from photoacoustic data. The methodology is evaluated using numerical simulations in different full-view and limited-view imaging settings. The results show that, utilizing spectral data and models, the spectral optical parameters and the Grüneisen parameter can be simultaneously estimated. Furthermore, the approach can also be utilized in limited-view imaging situations.
Collapse
|
7
|
Gustafsson N, Bunke J, Magnusson L, Albinsson J, Hérnandez-Palacios J, Sheikh R, Malmsjö M, Merdasa A. Optimizing clinical O 2 saturation mapping using hyperspectral imaging and diffuse reflectance spectroscopy in the context of epinephrine injection. BIOMEDICAL OPTICS EXPRESS 2024; 15:1995-2013. [PMID: 38495727 PMCID: PMC10942706 DOI: 10.1364/boe.506492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 11/19/2023] [Indexed: 03/19/2024]
Abstract
Clinical determination of oxygen saturation (sO2) in patients is commonly performed via non-invasive optical techniques. However, reliance on a few wavelengths and some form of pre-determined calibration introduces limits to how these methods can be used. One example involves the assessment of sO2 after injection of local anesthetic using epinephrine, where some controversy exists around the time it takes for the epinephrine to have an effect. This is likely caused by a change in the tissue environment not accounted for by standard calibrated instruments and conventional analysis techniques. The present study aims to account for this changing environment by acquiring absorption spectra using hyperspectral imaging (HSI) and diffuse reflectance spectroscopy (DRS) before, during, and after the injection of local anesthesia containing epinephrine in human volunteers. We demonstrate the need to account for multiple absorbing species when applying linear spectral unmixing in order to obtain more clinically relevant sO2 values. In particular, we demonstrate how the inclusion of water absorption greatly affects the rate at which sO2 seemingly drops, which in turn sheds light on the current debate regarding the time required for local anesthesia with epinephrine to have an effect. In general, this work provides important insight into how spectral analysis methods need to be adapted to specific clinical scenarios to more accurately assess sO2.
Collapse
Affiliation(s)
- Nils Gustafsson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
- NanoLund and Solid State Physics, Lund University, SE-221 00, Lund, Sweden
| | - Josefine Bunke
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| | - Ludvig Magnusson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| | - John Albinsson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| | - Julio Hérnandez-Palacios
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| | - Rafi Sheikh
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| | - Malin Malmsjö
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| | - Aboma Merdasa
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| |
Collapse
|
8
|
Nozdriukhin D, Kalva SK, Özsoy C, Reiss M, Li W, Razansky D, Deán‐Ben XL. Multi-Scale Volumetric Dynamic Optoacoustic and Laser Ultrasound (OPLUS) Imaging Enabled by Semi-Transparent Optical Guidance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306087. [PMID: 38115760 PMCID: PMC10953719 DOI: 10.1002/advs.202306087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/05/2023] [Indexed: 12/21/2023]
Abstract
Major biological discoveries are made by interrogating living organisms with light. However, the limited penetration of un-scattered photons within biological tissues limits the depth range covered by optical methods. Deep-tissue imaging is achieved by combining light and ultrasound. Optoacoustic imaging exploits the optical generation of ultrasound to render high-resolution images at depths unattainable with optical microscopy. Recently, laser ultrasound has been suggested as a means of generating broadband acoustic waves for high-resolution pulse-echo ultrasound imaging. Herein, an approach is proposed to simultaneously interrogate biological tissues with light and ultrasound based on layer-by-layer coating of silica optical fibers with a controlled degree of transparency. The time separation between optoacoustic and ultrasound signals collected with a custom-made spherical array transducer is exploited for simultaneous 3D optoacoustic and laser ultrasound (OPLUS) imaging with a single laser pulse. OPLUS is shown to enable large-scale anatomical characterization of tissues along with functional multi-spectral imaging of chromophores and assessment of cardiac dynamics at ultrafast rates only limited by the pulse repetition frequency of the laser. The suggested approach provides a flexible and scalable means for developing a new generation of systems synergistically combining the powerful capabilities of optoacoustics and ultrasound imaging in biology and medicine.
Collapse
Affiliation(s)
- Daniil Nozdriukhin
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Cagla Özsoy
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Weiye Li
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Xosé Luís Deán‐Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| |
Collapse
|
9
|
Fang Z, Wang C, Yang J, Song Z, Xie C, Ji Y, Wang Z, Du X, Zheng Q, Chen C, Hu Z, Zhong Y. Oxyhaemoglobin saturation NIR-IIb imaging for assessing cancer metabolism and predicting the response to immunotherapy. NATURE NANOTECHNOLOGY 2024; 19:124-130. [PMID: 37696994 DOI: 10.1038/s41565-023-01501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/09/2023] [Indexed: 09/13/2023]
Abstract
In vivo quantitative assessment of oxyhaemoglobin saturation (sO2) status in tumour-associated vessels could provide insights into cancer metabolism and behaviour. Here we develop a non-invasive in vivo sO2 imaging technique to visualize the sO2 levels of healthy and tumour tissue based on photoluminescence bioimaging in the near-infrared IIb (NIR-IIb; 1,500-1,700 nm) window. Real-time dynamic sO2 imaging with a high frame rate (33 Hz) reveals the cerebral arteries and veins through intact mouse scalp/skull, and this imaging is consistent with the haemodynamic analysis results. Utilizing our non-invasive sO2 imaging, the tumour-associated-vessel sO2 levels of various cancer models are evaluated. A positive correlation between the tumour-associated-vessel sO2 levels and the basal oxygen consumption rate of corresponding cancer cells at the early stages of tumorigenesis suggests that cancer cells modulate the tumour metabolic microenvironment. We also find that a positive therapeutic response to the checkpoint blockade cancer immunotherapy could lead to a dramatic decrease of the tumour-associated-vessel sO2 levels. Two-plex dynamic NIR-IIb imaging can be used to simultaneously observe tumour-vessel sO2 and PD-L1, allowing a more accurate prediction of immunotherapy response.
Collapse
Affiliation(s)
- Zhiguo Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenlei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingrun Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhizheng Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyu Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Zhongliang Wang
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xiaohui Du
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiang Zheng
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yeteng Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Else TR, Hacker L, Gröhl J, Bunce EV, Tao R, Bohndiek SE. Effects of skin tone on photoacoustic imaging and oximetry. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11506. [PMID: 38125716 PMCID: PMC10732256 DOI: 10.1117/1.jbo.29.s1.s11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Significance Photoacoustic imaging (PAI) provides contrast based on the concentration of optical absorbers in tissue, enabling the assessment of functional physiological parameters such as blood oxygen saturation (sO 2 ). Recent evidence suggests that variation in melanin levels in the epidermis leads to measurement biases in optical technologies, which could potentially limit the application of these biomarkers in diverse populations. Aim To examine the effects of skin melanin pigmentation on PAI and oximetry. Approach We evaluated the effects of skin tone in PAI using a computational skin model, two-layer melanin-containing tissue-mimicking phantoms, and mice of a consistent genetic background with varying pigmentations. The computational skin model was validated by simulating the diffuse reflectance spectrum using the adding-doubling method, allowing us to assign our simulation parameters to approximate Fitzpatrick skin types. Monte Carlo simulations and acoustic simulations were run to obtain idealized photoacoustic images of our skin model. Photoacoustic images of the phantoms and mice were acquired using a commercial instrument. Reconstructed images were processed with linear spectral unmixing to estimate blood oxygenation. Linear unmixing results were compared with a learned unmixing approach based on gradient-boosted regression. Results Our computational skin model was consistent with representative literature for in vivo skin reflectance measurements. We observed consistent spectral coloring effects across all model systems, with an overestimation of sO 2 and more image artifacts observed with increasing melanin concentration. The learned unmixing approach reduced the measurement bias, but predictions made at lower blood sO 2 still suffered from a skin tone-dependent effect. Conclusion PAI demonstrates measurement bias, including an overestimation of blood sO 2 , in higher Fitzpatrick skin types. Future research should aim to characterize this effect in humans to ensure equitable application of the technology.
Collapse
Affiliation(s)
- Thomas R. Else
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Lina Hacker
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Janek Gröhl
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Ellie V. Bunce
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Ran Tao
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| |
Collapse
|
11
|
Sarkar M, Perez-Liva M, Renault G, Tavitian B, Gateau J. Motion Rejection and Spectral Unmixing for Accurate Estimation of In Vivo Oxygen Saturation Using Multispectral Optoacoustic Tomography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1671-1681. [PMID: 37603493 DOI: 10.1109/tuffc.2023.3306592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Multispectral optoacoustic tomography (MSOT) uniquely enables spatial mapping in high resolution of oxygen saturation (SO2), with potential applications in studying pathological complications and therapy efficacy. MSOT offers seamless integration with ultrasonography, by using a common ultrasound (US) detector array. However, MSOT relies on multiple successive acquisitions of optoacoustic (OA) images at different optical wavelengths and the low frame rate of OA imaging makes the MSOT acquisition sensitive to body/respiratory motion. Moreover, the estimation of SO2 is highly sensitive to noise, and artifacts related to the respiratory motion of the animal were identified as the primary source of noise in MSOT. In this work, we propose a two-step image processing method for SO2 estimation in deep tissues. First, to mitigate motion artifacts, we propose a method of selection of OA images acquired only during the respiratory pause of the animal, using ultrafast ultrasound (US) images acquired immediately after each OA acquisition (US image acquisition duration of 1.4 ms and a total delay of 7 ms). We show that gating is more effective using US images than OA images at different optical wavelengths. Second, we propose a novel method that can estimate directly the SO2 value of a pixel and at the same time evaluate the amount of noise present in that pixel. Hence, the method can efficiently eliminate the pixels dominated by noise from the final SO2 map. Our postprocessing method is shown to outperform conventional methods for SO2 estimation, and the method was validated by in vivo oxygen challenge experiments.
Collapse
|
12
|
Sweeney A, Arora A, Edwards S, Mallidi S. Ultrasound-guided Photoacoustic image Annotation Toolkit in MATLAB (PHANTOM) for preclinical applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565885. [PMID: 37986998 PMCID: PMC10659350 DOI: 10.1101/2023.11.07.565885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Depth-dependent fluence-compensation in photoacoustic (PA) imaging is paramount for accurate quantification of chromophores from deep tissues. Here we present a user-friendly toolkit named PHANTOM (PHotoacoustic ANnotation TOolkit for MATLAB) that includes a graphical interface and assists in the segmentation of ultrasound-guided PA images. We modelled the light source configuration with Monte Carlo eXtreme and utilized 3D segmented tissues from ultrasound to generate fluence maps to depth compensate PA images. The methodology was used to analyze PA images of phantoms with varying blood oxygenation and results were validated with oxygen electrode measurements. Two preclinical models, a subcutaneous tumor and a calcified placenta, were imaged and fluence-compensated using the PHANTOM toolkit and the results were verified with immunohistochemistry. The PHANTOM toolkit provides scripts and auxiliary functions to enable biomedical researchers not specialized in optical imaging to apply fluence correction to PA images, enhancing accessibility of quantitative PAI for researchers in various fields.
Collapse
Affiliation(s)
- Allison Sweeney
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Aayush Arora
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Skye Edwards
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
13
|
Vogt WC, Wear KA, Pfefer TJ. Phantoms for evaluating the impact of skin pigmentation on photoacoustic imaging and oximetry performance. BIOMEDICAL OPTICS EXPRESS 2023; 14:5735-5748. [PMID: 38021140 PMCID: PMC10659791 DOI: 10.1364/boe.501950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023]
Abstract
Recent reports have raised concerns of potential racial disparities in performance of optical oximetry technologies. To investigate how variable epidermal melanin content affects performance of photoacoustic imaging (PAI) devices, we developed plastisol phantoms combining swappable skin-mimicking layers with a breast phantom containing either India ink or blood adjusted to 50-100% SO2 using sodium dithionite. Increasing skin pigmentation decreased maximum imaging depth by up to 25%, enhanced image clutter, and increased root-mean-square error in SO2 from 8.0 to 17.6% due to signal attenuation and spectral coloring effects. This phantom tool can aid in evaluating PAI device robustness to ensure high performance in all patients.
Collapse
Affiliation(s)
- William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Keith A. Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
14
|
Lin Q, Choyke PL, Sato N. Visualizing vasculature and its response to therapy in the tumor microenvironment. Theranostics 2023; 13:5223-5246. [PMID: 37908739 PMCID: PMC10614675 DOI: 10.7150/thno.84947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
Tumor vasculature plays a critical role in the progression and metastasis of tumors, antitumor immunity, drug delivery, and resistance to therapies. The morphological and functional changes of tumor vasculature in response to therapy take place in a spatiotemporal-dependent manner, which can be predictive of treatment outcomes. Dynamic monitoring of intratumor vasculature contributes to an improved understanding of the mechanisms of action of specific therapies or reasons for treatment failure, leading to therapy optimization. There is a rich history of methods used to image the vasculature. This review describes recent advances in imaging technologies to visualize the tumor vasculature, with a focus on enhanced intravital imaging techniques and tumor window models. We summarize new insights on spatial-temporal vascular responses to various therapies, including changes in vascular perfusion and permeability and immune-vascular crosstalk, obtained from intravital imaging. Finally, we briefly discuss the clinical applications of intravital imaging techniques.
Collapse
Affiliation(s)
| | | | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
Straumann N, Combes BF, Dean Ben XL, Sternke-Hoffmann R, Gerez JA, Dias I, Chen Z, Watts B, Rostami I, Shi K, Rominger A, Baumann CR, Luo J, Noain D, Nitsch RM, Okamura N, Razansky D, Ni R. Visualizing alpha-synuclein and iron deposition in M83 mouse model of Parkinson's disease in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546962. [PMID: 37425954 PMCID: PMC10327184 DOI: 10.1101/2023.06.28.546962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Abnormal alpha-synuclein and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim at visualizing alpha-synuclein inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. Methods Fluorescently labelled pyrimidoindole-derivative THK-565 was characterized by using recombinant fibrils and brains from 10-11 months old M83 mice, which subsequently underwent in vivo concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging. The in vivo results were verified against structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 Tesla and scanning transmission X-ray microscopy (STXM) of perfused brains. Brain slice immunofluorescence and Prussian blue staining were further performed to validate the detection of alpha-synuclein inclusions and iron deposition in the brain, respectively. Results THK-565 showed increased fluorescence upon binding to recombinant alpha-synuclein fibrils and alpha-synuclein inclusions in post-mortem brain slices from patients with Parkinson's disease and M83 mice. i.v. administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 minutes post-injection by wide-field fluorescence compared to non-transgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. Conclusion We demonstrated in vivo mapping of alpha-synuclein by means of non-invasive epifluorescence and vMSOT imaging assisted with a targeted THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.
Collapse
Affiliation(s)
- Nadja Straumann
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Benjamin F. Combes
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Xose Luis Dean Ben
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | | | - Juan A. Gerez
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Ines Dias
- Neurology Department, University Hospital Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Benjamin Watts
- Photon Science Division, Paul Scherrer Institute, Villigen, Switzerland
| | - Iman Rostami
- Microscopic Anatomy and Structural Biology, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Daniela Noain
- Neurology Department, University Hospital Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daniel Razansky
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Deán-Ben XL, Robin J, Nozdriukhin D, Ni R, Zhao J, Glück C, Droux J, Sendón-Lago J, Chen Z, Zhou Q, Weber B, Wegener S, Vidal A, Arand M, El Amki M, Razansky D. Deep optoacoustic localization microangiography of ischemic stroke in mice. Nat Commun 2023; 14:3584. [PMID: 37328490 PMCID: PMC10275987 DOI: 10.1038/s41467-023-39069-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/24/2023] [Indexed: 06/18/2023] Open
Abstract
Super-resolution optoacoustic imaging of microvascular structures deep in mammalian tissues has so far been impeded by strong absorption from densely-packed red blood cells. Here we devised 5 µm biocompatible dichloromethane-based microdroplets exhibiting several orders of magnitude higher optical absorption than red blood cells at near-infrared wavelengths, thus enabling single-particle detection in vivo. We demonstrate non-invasive three-dimensional microangiography of the mouse brain beyond the acoustic diffraction limit (<20 µm resolution). Blood flow velocity quantification in microvascular networks and light fluence mapping was also accomplished. In mice affected by acute ischemic stroke, the multi-parametric multi-scale observations enabled by super-resolution and spectroscopic optoacoustic imaging revealed significant differences in microvascular density, flow and oxygen saturation in ipsi- and contra-lateral brain hemispheres. Given the sensitivity of optoacoustics to functional, metabolic and molecular events in living tissues, the new approach paves the way for non-invasive microscopic observations with unrivaled resolution, contrast and speed.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| | - Justine Robin
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniil Nozdriukhin
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, Zurich, Switzerland
| | - Jim Zhao
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Chaim Glück
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Jeanne Droux
- Zurich Neuroscience Center, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich and University of Zurich, Zurich, Switzerland
| | - Juan Sendón-Lago
- Experimental Biomedicine Centre (CEBEGA), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Zhenyue Chen
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Quanyu Zhou
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Bruno Weber
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Susanne Wegener
- Zurich Neuroscience Center, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich and University of Zurich, Zurich, Switzerland
| | - Anxo Vidal
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Michael Arand
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Mohamad El Amki
- Zurich Neuroscience Center, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich and University of Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
- Zurich Neuroscience Center, Zurich, Switzerland.
| |
Collapse
|
17
|
Jüstel D, Irl H, Hinterwimmer F, Dehner C, Simson W, Navab N, Schneider G, Ntziachristos V. Spotlight on Nerves: Portable Multispectral Optoacoustic Imaging of Peripheral Nerve Vascularization and Morphology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301322. [PMID: 37092572 DOI: 10.1002/advs.202301322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 05/03/2023]
Abstract
Various morphological and functional parameters of peripheral nerves and their vascular supply are indicative of pathological changes due to injury or disease. Based on recent improvements in optoacoustic image quality, the ability of multispectral optoacoustic tomography, to investigate the vascular environment and morphology of peripheral nerves is explored in vivo in a pilot study on healthy volunteers in tandem with ultrasound imaging (OPUS). The unique ability of optoacoustic imaging to visualize the vasa nervorum by observing intraneural vessels in healthy nerves is showcased in vivo for the first time. In addition, it is demonstrated that the label-free spectral optoacoustic contrast of the perfused connective tissue of peripheral nerves can be linked to the endogenous contrast of hemoglobin and collagen. Metrics are introduced to analyze the composition of tissue based on its optoacoustic contrast and show that the high-resolution spectral contrast reveals specific differences between nervous tissue and reference tissue in the nerve's surrounding. How this showcased extraction of peripheral nerve characteristics using multispectral optoacoustic and ultrasound imaging could offer new insights into the pathophysiology of nerve damage and neuropathies, for example, in the context of diabetes is discussed.
Collapse
Affiliation(s)
- Dominik Jüstel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Hedwig Irl
- Department of Anesthesiology and Intensive Care, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Florian Hinterwimmer
- Department of Orthopaedics and Sport Orthopaedics, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Christoph Dehner
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Walter Simson
- Chair for Computer Aided Medical Procedures and Augmented Reality, Technical University of Munich, D-80333, Munich, Germany
| | - Nassir Navab
- Chair for Computer Aided Medical Procedures and Augmented Reality, Technical University of Munich, D-80333, Munich, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, D-80992, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, D-81675, Munich, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, D-80992, Munich, Germany
| |
Collapse
|
18
|
Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging. Sci Rep 2023; 13:4119. [PMID: 36914717 PMCID: PMC10011570 DOI: 10.1038/s41598-023-31343-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
To improve the assessment of carotid plaque vulnerability, a comprehensive characterization of their composition is paramount. Multispectral photoacoustic imaging (MSPAI) can provide plaque composition based on their absorption spectra. However, although various spectral unmixing methods have been developed to characterize different tissue constituents, plaque analysis remains a challenge since its composition is highly complex and diverse. In this study, we employed an adapted piecewise convex multiple-model endmember detection method to identify carotid plaque constituents. Additionally, we explore the selection of the imaging wavelengths in linear models by conditioning the coefficient matrix and its synergy with our unmixing approach. We verified our method using plaque mimicking phantoms and performed ex-vivo MSPAI on carotid endarterectomy samples in a spectral range from 500 to 1300 nm to identify the main spectral features of plaque materials for vulnerability assessment. After imaging, the samples were processed for histological analysis to validate the photoacoustic decomposition. Results show that our approach can perform spectral unmixing and classification of highly heterogeneous biological samples without requiring an extensive fluence correction, enabling the identification of relevant components to assess plaque vulnerability.
Collapse
|
19
|
Fasoula NA, Karlas A, Prokopchuk O, Katsouli N, Bariotakis M, Liapis E, Goetz A, Kallmayer M, Reber J, Novotny A, Friess H, Ringelhan M, Schmid R, Eckstein HH, Hofmann S, Ntziachristos V. Non-invasive multispectral optoacoustic tomography resolves intrahepatic lipids in patients with hepatic steatosis. PHOTOACOUSTICS 2023; 29:100454. [PMID: 36794122 PMCID: PMC9922962 DOI: 10.1016/j.pacs.2023.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Hepatic steatosis is characterized by intrahepatic lipid accumulation and may lead to irreversible liver damage if untreated. Here, we investigate whether multispectral optoacoustic tomography (MSOT) can offer label-free detection of liver lipid content to enable non-invasive characterization of hepatic steatosis by analyzing the spectral region around 930 nm, where lipids characteristically absorb. In a pilot study, we apply MSOT to measure liver and surrounding tissues in five patients with liver steatosis and five healthy volunteers, revealing significantly higher absorptions at 930 nm in the patients, while no significant difference was observed in the subcutaneous adipose tissue of the two groups. We further corroborated the human observations with corresponding MSOT measurements in high fat diet (HFD) - and regular chow diet (CD)-fed mice. This study introduces MSOT as a potential non-invasive and portable technique for detecting/monitoring hepatic steatosis in clinical settings, providing justification for larger studies.
Collapse
Affiliation(s)
- Nikolina-Alexia Fasoula
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Angelos Karlas
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner Site Munich Heart Alliance, Munich, Germany
| | - Olga Prokopchuk
- Department of Visceral Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Nikoletta Katsouli
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michail Bariotakis
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Evangelos Liapis
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anna Goetz
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Josefine Reber
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Alexander Novotny
- Department of Visceral Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Helmut Friess
- Department of Visceral Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Marc Ringelhan
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Schmid
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner Site Munich Heart Alliance, Munich, Germany
| | - Susanna Hofmann
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Internal Medicine IV, Klinikum der Ludwig Maximilian University of Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
20
|
Ganzleben I, Klett D, Hartz W, Götzfried L, Vitali F, Neurath MF, Waldner MJ. Multispectral optoacoustic tomography for the non-invasive identification of patients with severe anemia in vivo. PHOTOACOUSTICS 2022; 28:100414. [PMID: 36276233 PMCID: PMC9583176 DOI: 10.1016/j.pacs.2022.100414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The immediate diagnosis of severe anemia is crucial for patient outcome. However, reliable non-invasive point-of-care diagnostic tools for e.g., ICU monitoring are currently lacking. Using an advanced Multispectral Optoacoustic Tomography (MSOT) research device, we first substantiated a strong positive correlation of MSOT-signal and absolute hemoglobin concentration ex vivo in blood samples. In a clinical exploratory proof-of-concept study, we then evaluated 19 patients with different severities of anemia and controls by non-invasive in vivo measurement of hemoglobin in the radial artery. Our approach proved excellent in identifying patients with severe anemia triggering RBC transfusion based on a strong positive correlation of MSOT-signal intensity and hemoglobin concentration for 700 nm single wavelength and HbR unmixed MSOT-parameter analysis. In conclusion, our study lays the foundation to further develop MSOT-based real-time quantitative perfusion analyses in follow-up preclinical and clinical imaging studies and as a promising diagnostic tool to improve patient care in the future. DRKS00021442.
Collapse
Affiliation(s)
- Ingo Ganzleben
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Ludwig-Demling-Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Daniel Klett
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Ludwig-Demling-Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Wiebke Hartz
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Ludwig-Demling-Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Lisa Götzfried
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Ludwig-Demling-Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Francesco Vitali
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Ludwig-Demling-Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Ludwig-Demling-Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Maximilian J. Waldner
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Ludwig-Demling-Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
21
|
Mantri Y, Mishra A, Anderson CA, Jokerst JV. Photoacoustic imaging to monitor outcomes during hyperbaric oxygen therapy: validation in a small cohort and case study in a bilateral chronic ischemic wound. BIOMEDICAL OPTICS EXPRESS 2022; 13:5683-5694. [PMID: 36733747 PMCID: PMC9872873 DOI: 10.1364/boe.472568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 06/18/2023]
Abstract
Hyperbaric oxygen therapy (HBO2) is a common therapeutic modality that drives oxygen into hypoxic tissue to promote healing. Here, ten patients undergoing HBO2 underwent PA oximetry of the left radial artery and forearm pre- and post-HBO2; this cohort validated the use of PA imaging in HBO2. There was a significant increase in radial artery oxygenation after HBO2 (p = 0.002) in the validation cohort. We also include a case study: a non-diabetic male in his 50s (HB 010) presenting with bilateral ischemic and gangrenous wounds. HB 010 showed higher perfusion and oxygen saturation on the right foot than the left after HBO2 which correlated with independent surgical observations. Imaging assisted with limb salvage treatment. Hence, this work shows that PA imaging can measure changes in arterial oxygen saturation due to HBO2; it can also produce 3D maps of tissue oxygenation and evaluate response to therapy during HBO2.
Collapse
Affiliation(s)
- Yash Mantri
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Aditya Mishra
- Materials Science Program, University of California San Diego, La Jolla, CA, USA
| | - Caesar A. Anderson
- Department of Emergency Medicine, Hyperbaric and Wound Healing Center, University of California San Diego, Encinitas, CA, USA
| | - Jesse V. Jokerst
- Materials Science Program, University of California San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Zare A, Shamshiripour P, Lotfi S, Shahin M, Rad VF, Moradi AR, Hajiahmadi F, Ahmadvand D. Clinical theranostics applications of photo-acoustic imaging as a future prospect for cancer. J Control Release 2022; 351:805-833. [DOI: 10.1016/j.jconrel.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
|
23
|
Madasamy A, Gujrati V, Ntziachristos V, Prakash J. Deep learning methods hold promise for light fluence compensation in three-dimensional optoacoustic imaging. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:106004. [PMID: 36209354 PMCID: PMC9547608 DOI: 10.1117/1.jbo.27.10.106004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Quantitative optoacoustic imaging (QOAI) continues to be a challenge due to the influence of nonlinear optical fluence distribution, which distorts the optoacoustic image representation. Nonlinear optical fluence correction in OA imaging is highly ill-posed, leading to the inaccurate recovery of optical absorption maps. This work aims to recover the optical absorption maps using deep learning (DL) approach by correcting for the fluence effect. AIM Different DL models were compared and investigated to enable optical absorption coefficient recovery at a particular wavelength in a nonhomogeneous foreground and background medium. APPROACH Data-driven models were trained with two-dimensional (2D) Blood vessel and three-dimensional (3D) numerical breast phantom with highly heterogeneous/realistic structures to correct for the nonlinear optical fluence distribution. The trained DL models such as U-Net, Fully Dense (FD) U-Net, Y-Net, FD Y-Net, Deep residual U-Net (Deep ResU-Net), and generative adversarial network (GAN) were tested to evaluate the performance of optical absorption coefficient recovery (or fluence compensation) with in-silico and in-vivo datasets. RESULTS The results indicated that FD U-Net-based deconvolution improves by about 10% over reconstructed optoacoustic images in terms of peak-signal-to-noise ratio. Further, it was observed that DL models can indeed highlight deep-seated structures with higher contrast due to fluence compensation. Importantly, the DL models were found to be about 17 times faster than solving diffusion equation for fluence correction. CONCLUSIONS The DL methods were able to compensate for nonlinear optical fluence distribution more effectively and improve the optoacoustic image quality.
Collapse
Affiliation(s)
- Arumugaraj Madasamy
- Indian Institute of Science, Department of Instrumentation and Applied Physics, Bengaluru, Karnataka, India
| | - Vipul Gujrati
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Munich, Germany
- Technical University of Munich, Munich Institute of Robotics and Machine Intelligence (MIRMI), Munich, Germany
| | - Jaya Prakash
- Indian Institute of Science, Department of Instrumentation and Applied Physics, Bengaluru, Karnataka, India
| |
Collapse
|
24
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
25
|
Zhang P, Miao Y, Ma Y, Niu P, Zhang L, Zhang L, Gao F. All-optical ultrasonic detector based on differential interference. OPTICS LETTERS 2022; 47:4790-4793. [PMID: 36107091 DOI: 10.1364/ol.470486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
We report on an all-optical ultrasonic detecting method based on differential interference. A linearly polarized probe beam is split into two closely separated ones with orthogonal polarization. After interacting with propagating ultrasonic waves in a coupling media, the split beams are recombined into one beam, with its polarization being changed into an elliptical one by the elastic-optical effect. The recombined beam is filtered by an analyzer and detected by a photodetector. The bandwidth and noise-equivalent pressure (NEP) of the acoustic detector are determined to be 107.4 MHz and 2.18 kPa, respectively. We also demonstrate its feasibility for photoacoustic microscopy (PAM) using agar-embedded phantoms.
Collapse
|
26
|
Naumovska M, Merdasa A, Hammar B, Albinsson J, Dahlstrand U, Cinthio M, Sheikh R, Malmsjö M. Mapping the architecture of the temporal artery with photoacoustic imaging for diagnosing giant cell arteritis. PHOTOACOUSTICS 2022; 27:100384. [PMID: 36068803 PMCID: PMC9441260 DOI: 10.1016/j.pacs.2022.100384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/02/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Photoacoustic (PA) imaging is rapidly emerging as a promising clinical diagnostic tool. One of the main applications of PA imaging is to image vascular networks in humans. This relies on the signal obtained from oxygenated and deoxygenated hemoglobin, which limits imaging of the vessel wall itself. Giant cell arteritis (GCA) is a treatable, but potentially sight- and life-threatening disease, in which the artery wall is infiltrated by leukocytes. Early intervention can prevent complications making prompt diagnosis of importance. Temporal artery biopsy is the gold standard for diagnosing GCA. We present an approach to imaging the temporal artery using multispectral PA imaging. Employing minimally supervised spectral analysis, we produce histology-like images where the artery wall is clearly discernible from the lumen and further differentiate between PA spectra from biopsies diagnosed as GCA- and GCA+ in 77 patients.
Collapse
Affiliation(s)
- Magdalena Naumovska
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Aboma Merdasa
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Björn Hammar
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - John Albinsson
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Ulf Dahlstrand
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Rafi Sheikh
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
27
|
Wu Y, Kang J, Lesniak WG, Lisok A, Zhang HK, Taylor RH, Pomper MG, Boctor EM. System-level optimization in spectroscopic photoacoustic imaging of prostate cancer. PHOTOACOUSTICS 2022; 27:100378. [PMID: 36068804 PMCID: PMC9441267 DOI: 10.1016/j.pacs.2022.100378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/17/2022] [Accepted: 06/06/2022] [Indexed: 05/25/2023]
|
28
|
Muhammad M, Prakash J, Liapis E, Ntziachristos V, Jüstel D. Weighted model-based optoacoustic reconstruction for partial-view geometries. JOURNAL OF BIOPHOTONICS 2022; 15:e202100334. [PMID: 35133073 DOI: 10.1002/jbio.202100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Acoustic heterogeneities in biological samples are known to cause artifacts in tomographic optoacoustic (photoacoustic) image reconstruction. A statistical weighted model-based reconstruction approach was previously introduced to mitigate such artifacts. However, this approach does not reliably provide high-quality reconstructions for partial-view imaging systems, which are common in preclinical and clinical optoacoustics. In this article, the capability of the weighted model-based algorithm is extended to generate optoacoustic reconstructions with less distortions for partial-view geometry data. This is achieved by manipulating the weighting scheme based on the detector geometry. Using partial-view optoacoustic tomography data from a tissue-mimicking phantom containing a strong acoustic reflector, tumors grafted onto mice, and a mouse brain with intact skull, the proposed partial-view-corrected weighted model-based algorithm is shown to mitigate reflection artifacts in reconstructed images without distorting structures or boundaries, compared with both conventional model-based and the weighted model-based algorithms. It is also demonstrated that the partial-view-corrected weighted model-based algorithm has the additional advantage of suppressing streaking artifacts due to the partial-view geometry itself in the presence of a very strong optoacoustic chromophore. Due to its enhanced performance, the partial-view-corrected weighted model-based algorithm may prove useful for improving the quality of partial-view multispectral optoacoustic tomography, leading to enhanced visualization of functional parameters such as tissue oxygenation.
Collapse
Affiliation(s)
- Marwan Muhammad
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Jaya Prakash
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Evangelos Liapis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
| | - Dominik Jüstel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
29
|
Grasso V, Willumeit-Rӧmer R, Jose J. Superpixel spectral unmixing framework for the volumetric assessment of tissue chromophores: A photoacoustic data-driven approach. PHOTOACOUSTICS 2022; 26:100367. [PMID: 35601933 PMCID: PMC9120071 DOI: 10.1016/j.pacs.2022.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The assessment of tissue chromophores at a volumetric scale is vital for an improved diagnosis and treatment of a large number of diseases. Spectral photoacoustic imaging (sPAI) co-registered with high-resolution ultrasound (US) is an innovative technology that has a great potential for clinical translation as it can assess the volumetric distribution of the tissue components. Conventionally, to detect and separate the chromophores from sPAI, an input of the expected tissue absorption spectra is required. However, in pathological conditions, the prediction of the absorption spectra is difficult as it can change with respect to the physiological state. Besides, this conventional approach can also be hampered due to spectral coloring, which is a prominent distortion effect that induces spectral changes at depth. Here, we are proposing a novel data-driven framework that can overcome all these limitations and provide an improved assessment of the tissue chromophores. We have developed a superpixel spectral unmixing (SPAX) approach that can detect the most and less prominent absorber spectra and their volumetric distribution without any user interactions. Within the SPAX framework, we have also implemented an advanced spectral coloring compensation approach by utilizing US image segmentation and Monte Carlo simulations, based on a predefined library of optical properties. The framework has been tested on tissue-mimicking phantoms and also on healthy animals. The obtained results show enhanced specificity and sensitivity for the detection of tissue chromophores. To our knowledge, this is a unique framework that accounts for the spectral coloring and provides automated detection of tissue spectral signatures at a volumetric scale, which can open many possibilities for translational research.
Collapse
Affiliation(s)
- Valeria Grasso
- FUJIFILM VisualSonics, Amsterdam, the Netherlands
- Faculty of Engineering, Institute for Materials Science, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Regine Willumeit-Rӧmer
- Faculty of Engineering, Institute for Materials Science, Christian-Albrecht University of Kiel, Kiel, Germany
- Division Metallic Biomaterials, Institute of Materials Research, Helmholtz-Zentrum Hereon GmbH, Geesthacht, Germany
| | - Jithin Jose
- FUJIFILM VisualSonics, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Zuo H, Cui M, Wang X, Ma C. Spectral crosstalk in photoacoustic computed tomography. PHOTOACOUSTICS 2022; 26:100356. [PMID: 35574185 PMCID: PMC9095891 DOI: 10.1016/j.pacs.2022.100356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Multispectral photoacoustic (PA) imaging faces two major challenges: the spectral coloring effect, which has been studied extensively as an optical inversion problem, and the spectral crosstalk, which is basically a result of non-ideal acoustic inversion. So far, there is no systematic work to analyze the spectral crosstalk because acoustic inversion and spectroscopic measurement are always treated as decoupled. In this work, we theorize and demonstrate through a series of simulations and experiments how imperfect acoustic inversion induces inaccurate PA spectrum measurement. We provide detailed analysis to elucidate how different factors, including limited bandwidth, limited view, light attenuation, out-of-plane signal, and image reconstruction schemes, conspire to render the measured PA spectrum inaccurate. We found that the model-based reconstruction outperforms universal back-projection in suppressing the spectral crosstalk in some cases.
Collapse
Affiliation(s)
- Hongzhi Zuo
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Manxiu Cui
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xuanhao Wang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Cheng Ma
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
- Center for Clinical Big Data Research, Institute of Precision Medicine, Tsinghua University, Beijing 100084, China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Vagenknecht P, Luzgin A, Ono M, Ji B, Higuchi M, Noain D, Maschio CA, Sobek J, Chen Z, Konietzko U, Gerez JA, Riek R, Razansky D, Klohs J, Nitsch RM, Dean-Ben XL, Ni R. Non-invasive imaging of tau-targeted probe uptake by whole brain multi-spectral optoacoustic tomography. Eur J Nucl Med Mol Imaging 2022; 49:2137-2152. [PMID: 35128565 PMCID: PMC9165274 DOI: 10.1007/s00259-022-05708-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Abnormal tau accumulation within the brain plays an important role in tauopathies such as Alzheimer's disease and frontotemporal dementia. High-resolution imaging of tau deposits at the whole-brain scale in animal disease models is highly desired. METHODS We approached this challenge by non-invasively imaging the brains of P301L mice of 4-repeat tau with concurrent volumetric multi-spectral optoacoustic tomography (vMSOT) at ~ 115 μm spatial resolution using the tau-targeted pyridinyl-butadienyl-benzothiazole derivative PBB5 (i.v.). In vitro probe characterization, concurrent vMSOT and epi-fluorescence imaging of in vivo PBB5 targeting (i.v.) was performed in P301L and wild-type mice, followed by ex vivo validation using AT-8 antibody for phosphorylated tau. RESULTS PBB5 showed specific binding to recombinant K18 tau fibrils by fluorescence assay, to post-mortem Alzheimer's disease brain tissue homogenate by competitive binding against [11C]PBB3 and to tau deposits (AT-8 positive) in post-mortem corticobasal degeneration and progressive supranuclear palsy brains. Dose-dependent optoacoustic and fluorescence signal intensities were observed in the mouse brains following i.v. administration of different concentrations of PBB5. In vivo vMSOT brain imaging of P301L mice showed higher retention of PBB5 in the tau-laden cortex and hippocampus compared to wild-type mice, as confirmed by ex vivo vMSOT, epi-fluorescence, multiphoton microscopy, and immunofluorescence staining. CONCLUSIONS We demonstrated non-invasive whole-brain imaging of tau in P301L mice with vMSOT system using PBB5 at a previously unachieved ~ 115 μm spatial resolution. This platform provides a new tool to study tau spreading and clearance in a tauopathy mouse model, foreseeable in monitoring tau targeting putative therapeutics.
Collapse
Affiliation(s)
- Patrick Vagenknecht
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Artur Luzgin
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Maiko Ono
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Bin Ji
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Makoto Higuchi
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daniela Noain
- Neurology Department, University Hospital Zurich, Zurich, Switzerland
| | - Cinzia A Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
| | - Jens Sobek
- Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Juan A Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland.
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Kirchner T, Jaeger M, Frenz M. Machine learning enabled multiple illumination quantitative optoacoustic oximetry imaging in humans. BIOMEDICAL OPTICS EXPRESS 2022; 13:2655-2667. [PMID: 35774340 PMCID: PMC9203099 DOI: 10.1364/boe.455514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
Optoacoustic (OA) imaging is a promising modality for quantifying blood oxygen saturation (sO2) in various biomedical applications - in diagnosis, monitoring of organ function, or even tumor treatment planning. We present an accurate and practically feasible real-time capable method for quantitative imaging of sO2 based on combining multispectral (MS) and multiple illumination (MI) OA imaging with learned spectral decoloring (LSD). For this purpose we developed a hybrid real-time MI MS OA imaging setup with ultrasound (US) imaging capability; we trained gradient boosting machines on MI spectrally colored absorbed energy spectra generated by generic Monte Carlo simulations and used the trained models to estimate sO2 on real OA measurements. We validated MI-LSD in silico and on in vivo image sequences of radial arteries and accompanying veins of five healthy human volunteers. We compared the performance of the method to prior LSD work and conventional linear unmixing. MI-LSD provided highly accurate results in silico and consistently plausible results in vivo. This preliminary study shows a potentially high applicability of quantitative OA oximetry imaging, using our method.
Collapse
Affiliation(s)
- Thomas Kirchner
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Michael Jaeger
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Martin Frenz
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Gröhl J, Dreher KK, Schellenberg M, Rix T, Holzwarth N, Vieten P, Ayala L, Bohndiek SE, Seitel A, Maier-Hein L. SIMPA: an open-source toolkit for simulation and image processing for photonics and acoustics. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210395SSR. [PMID: 35380031 PMCID: PMC8978263 DOI: 10.1117/1.jbo.27.8.083010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 05/09/2023]
Abstract
SIGNIFICANCE Optical and acoustic imaging techniques enable noninvasive visualisation of structural and functional properties of tissue. The quantification of measurements, however, remains challenging due to the inverse problems that must be solved. Emerging data-driven approaches are promising, but they rely heavily on the presence of high-quality simulations across a range of wavelengths due to the lack of ground truth knowledge of tissue acoustical and optical properties in realistic settings. AIM To facilitate this process, we present the open-source simulation and image processing for photonics and acoustics (SIMPA) Python toolkit. SIMPA is being developed according to modern software design standards. APPROACH SIMPA enables the use of computational forward models, data processing algorithms, and digital device twins to simulate realistic images within a single pipeline. SIMPA's module implementations can be seamlessly exchanged as SIMPA abstracts from the concrete implementation of each forward model and builds the simulation pipeline in a modular fashion. Furthermore, SIMPA provides comprehensive libraries of biological structures, such as vessels, as well as optical and acoustic properties and other functionalities for the generation of realistic tissue models. RESULTS To showcase the capabilities of SIMPA, we show examples in the context of photoacoustic imaging: the diversity of creatable tissue models, the customisability of a simulation pipeline, and the degree of realism of the simulations. CONCLUSIONS SIMPA is an open-source toolkit that can be used to simulate optical and acoustic imaging modalities. The code is available at: https://github.com/IMSY-DKFZ/simpa, and all of the examples and experiments in this paper can be reproduced using the code available at: https://github.com/IMSY-DKFZ/simpa_paper_experiments.
Collapse
Affiliation(s)
- Janek Gröhl
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
| | - Kris K. Dreher
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
- Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany
| | - Melanie Schellenberg
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
- Heidelberg University, Faculty of Mathematics and Computer Science, Heidelberg, Germany
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Heidelberg, Germany
| | - Tom Rix
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
- Heidelberg University, Faculty of Mathematics and Computer Science, Heidelberg, Germany
| | - Niklas Holzwarth
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
| | - Patricia Vieten
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
- Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany
| | - Leonardo Ayala
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Sarah E. Bohndiek
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Alexander Seitel
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
| | - Lena Maier-Hein
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
- Heidelberg University, Faculty of Mathematics and Computer Science, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| |
Collapse
|
34
|
Lin L, Wang LV. The emerging role of photoacoustic imaging in clinical oncology. Nat Rev Clin Oncol 2022; 19:365-384. [PMID: 35322236 DOI: 10.1038/s41571-022-00615-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clinical oncology can benefit substantially from imaging technologies that reveal physiological characteristics with multiscale observations. Complementing conventional imaging modalities, photoacoustic imaging (PAI) offers rapid imaging (for example, cross-sectional imaging in real time or whole-breast scanning in 10-15 s), scalably high levels of spatial resolution, safe operation and adaptable configurations. Most importantly, this novel imaging modality provides informative optical contrast that reveals details on anatomical, functional, molecular and histological features. In this Review, we describe the current state of development of PAI and the emerging roles of this technology in cancer screening, diagnosis and therapy. We comment on the performance of cutting-edge photoacoustic platforms, and discuss their clinical applications and utility in various clinical studies. Notably, the clinical translation of PAI is accelerating in the areas of macroscopic and mesoscopic imaging for patients with breast or skin cancers, as well as in microscopic imaging for histopathology. We also highlight the potential of future developments in technological capabilities and their clinical implications, which we anticipate will lead to PAI becoming a desirable and widely used imaging modality in oncological research and practice.
Collapse
Affiliation(s)
- Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA. .,Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
35
|
Lefebvre TL, Brown E, Hacker L, Else T, Oraiopoulou ME, Tomaszewski MR, Jena R, Bohndiek SE. The Potential of Photoacoustic Imaging in Radiation Oncology. Front Oncol 2022; 12:803777. [PMID: 35311156 PMCID: PMC8928467 DOI: 10.3389/fonc.2022.803777] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy is recognized globally as a mainstay of treatment in most solid tumors and is essential in both curative and palliative settings. Ionizing radiation is frequently combined with surgery, either preoperatively or postoperatively, and with systemic chemotherapy. Recent advances in imaging have enabled precise targeting of solid lesions yet substantial intratumoral heterogeneity means that treatment planning and monitoring remains a clinical challenge as therapy response can take weeks to manifest on conventional imaging and early indications of progression can be misleading. Photoacoustic imaging (PAI) is an emerging modality for molecular imaging of cancer, enabling non-invasive assessment of endogenous tissue chromophores with optical contrast at unprecedented spatio-temporal resolution. Preclinical studies in mouse models have shown that PAI could be used to assess response to radiotherapy and chemoradiotherapy based on changes in the tumor vascular architecture and blood oxygen saturation, which are closely linked to tumor hypoxia. Given the strong relationship between hypoxia and radio-resistance, PAI assessment of the tumor microenvironment has the potential to be applied longitudinally during radiotherapy to detect resistance at much earlier time-points than currently achieved by size measurements and tailor treatments based on tumor oxygen availability and vascular heterogeneity. Here, we review the current state-of-the-art in PAI in the context of radiotherapy research. Based on these studies, we identify promising applications of PAI in radiation oncology and discuss the future potential and outstanding challenges in the development of translational PAI biomarkers of early response to radiotherapy.
Collapse
Affiliation(s)
- Thierry L. Lefebvre
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Emma Brown
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Else
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mariam-Eleni Oraiopoulou
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michal R. Tomaszewski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Rajesh Jena
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
36
|
Fuenzalida-Werner JP, Mishra K, Stankevych M, Klemm U, Ntziachristos V, Stiel AC. Alginate beads as a highly versatile test-sample for optoacoustic imaging. PHOTOACOUSTICS 2022; 25:100301. [PMID: 35036313 PMCID: PMC8749058 DOI: 10.1016/j.pacs.2021.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 05/04/2023]
Abstract
Test-samples are necessary for the development of emerging imaging approaches such as optoacoustics (OA); these can be used to benchmark new labeling agents and instrumentation, or to characterize image analysis algorithms or the inversion required to form the three-dimensional reconstructions. Alginate beads (AlBes) loaded with labeled mammalian or bacterial cells provide a method of creating defined structures of controllable size and photophysical characteristics and are well-suited for both in vitro and in vivo use. Here we describe a simple and rapid method for efficient and reproducible production of AlBes with specific characteristics and show three example applications with multispectral OA tomography imaging. We show the advantage of AlBes for studying and eventually improving photo-switching OA imaging approaches. As highly defined, homogeneous, quasi point-like signal sources, AlBes might hold similar advantages for studying other agents, light-fluence models, or the impact of detection geometries on correct image formation in the near future.
Collapse
Affiliation(s)
- Juan Pablo Fuenzalida-Werner
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biogenic Functional Materials, Technical University of Munich, D-94315 Straubing, Germany
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Mariia Stankevych
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 München, Germany
- Center for Translational Cancer Research (TranslaTUM), D-81675 München, Germany
| | - Andre C. Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Corresponding author.
| |
Collapse
|
37
|
Chen M, Cheng T, Xu C, Pan M, Wu J, Wang T, Wu D, Yan G, Wang C, Shao J. Sodium houttuyfonate enhances the mono-therapy of fluconazole on oropharyngeal candidiasis (OPC) through HIF-1α/IL-17 axis by inhibiting cAMP mediated filamentation in Candida albicans-Candida glabrata dual biofilms. Virulence 2022; 13:428-443. [PMID: 35195502 PMCID: PMC8890385 DOI: 10.1080/21505594.2022.2035066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Candida albicans and Candida glabrata are two common opportunistic fungi that can be co-isolated in oropharyngeal candidiasis (OPC). Hypha is a hallmark of the biofilm formation of C. albicans, indispensable for the attachment of C. glabrata, which is seldom in mycelial morphology. Increasing evidence reveals a hypoxic microenvironment in interior fungal biofilms, reminding of a fact that inflammation is usually accompanied by oxygen deprivation. As a result, it is assumed that the disaggregation of hypha-mediated hypoxia of biofilms might be a solution to alleviate OPC. Based on this hypothesis, sodium houttuyfonate (SH), a well-identified traditional herbal compound with antifungal activity, is used in combination with fluconazole (FLU), a well-informed synthesized antimycotics, to investigate their impact on filamentation in C. albicans and C. glabrata dual biofilms and the underlying mechanism of their combined treatment on OPC. The results show that compared with the single therapy, SH plus FLU can inhibit the hyphal growth in the mixed biofilms in vitro, decrease the fungal burden of oral tissues and internal organs, restore mucosal epithelial integrity and function, and reduce hypoxic microenvironment and inflammation in a mice OPC model. The possible mechanism of the combined therapy of SH plus FLU can be attributed to the regulation of HIF-1α/IL-17A axis through direct abrogation of the dual Candida biofilm formation. This study highlights the role of HIF-1α/IL-17A axis and the promising application of SH as a sensitizer of conventional antifungals in the treatment of OPC.
Collapse
Affiliation(s)
- Mengli Chen
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China
| | - Ting Cheng
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China
| | - Chen Xu
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China
| | - Min Pan
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China
| | - Jiadi Wu
- Department of Anatomy, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, P. R, China
| | - Tianming Wang
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, P. R, China
| | - Daqiang Wu
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui P. R, China.,Cas Center for Excellence in Molecular Cell Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.r, China
| | - Guiming Yan
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui P. R, China
| | - Changzhong Wang
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui P. R, China
| | - Jing Shao
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui P. R, China
| |
Collapse
|
38
|
Kalva SK, Sánchez-Iglesias A, Deán-Ben XL, Liz-Marzán LM, Razansky D. Rapid Volumetric Optoacoustic Tracking of Nanoparticle Kinetics across Murine Organs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:172-178. [PMID: 34949083 DOI: 10.1021/acsami.1c17661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Large-scale visualization of nanoparticle kinetics is essential for optimizing drug delivery and characterizing in vivo toxicity associated with engineered nanomaterials. Real-time tracking of nanoparticulate agents across multiple murine organs is hindered with the currently available whole-body preclinical imaging systems due to limitations in contrast, sensitivity, spatial, or temporal resolution. Herein, we demonstrate rapid volumetric tracking of gold nanoagent kinetics and biodistribution in mice at a suborgan level with single-sweep volumetric optoacoustic tomography (sSVOT). The imaging system accomplishes whole-body three-dimensional scans in less than 1.8 s, further attaining a high spatial resolution of 130 μm and sub-picomolar sensitivity. We visualized the clearance dynamics of purposely synthesized gold nanorods and nanorod clusters, featuring different sizes and surface chemistries as well as their corresponding accumulation within the liver and spleen. The newly discovered capacity to image rapid whole-body kinetics down to suborgan scales opens up new avenues for the development and characterization of diagnostic and therapeutic nanoagents.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8092, Switzerland
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastian 20014, Spain
| | - Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8092, Switzerland
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastian 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8092, Switzerland
| |
Collapse
|
39
|
Agrawal S, Suresh T, Garikipati A, Dangi A, Kothapalli SR. Modeling combined ultrasound and photoacoustic imaging: Simulations aiding device development and artificial intelligence. PHOTOACOUSTICS 2021; 24:100304. [PMID: 34584840 PMCID: PMC8452892 DOI: 10.1016/j.pacs.2021.100304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 05/07/2023]
Abstract
Combined ultrasound and photoacoustic (USPA) imaging has attracted several pre-clinical and clinical applications due to its ability to simultaneously display structural, functional, and molecular information of deep biological tissue in real time. However, the depth and wavelength dependent optical attenuation and the unknown optical and acoustic heterogeneities limit the USPA imaging performance in deep tissue regions. Novel instrumentation, image reconstruction, and artificial intelligence (AI) methods are currently being investigated to overcome these limitations and improve the USPA image quality. Effective implementation of these approaches requires a reliable USPA simulation tool capable of generating US based anatomical and PA based molecular contrasts of deep biological tissue. Here, we developed a hybrid USPA simulation platform by integrating finite element models of light (NIRFast) and ultrasound (k-Wave) propagations for co-simulation of B-mode US and PA images. The platform allows optimization of different design parameters for USPA devices, such as the aperture size and frequency of both light and ultrasound detector arrays. For designing tissue-realistic digital phantoms, a dictionary-based function has been added to k-Wave to generate various levels of ultrasound speckle contrast. The feasibility of modeling US imaging combined with optical fluence dependent multispectral PA imaging is demonstrated using homogeneous as well as heterogeneous tissue phantoms mimicking human organs (e.g., prostate and finger). In addition, we also demonstrate the potential of the simulation platform to generate large scale application-specific training and test datasets for AI enhanced USPA imaging. The complete USPA simulation codes together with the supplementary user guides have been posted to an open-source repository (https://github.com/KothapalliLabPSU/US-PA_simulation_codes).
Collapse
Affiliation(s)
- Sumit Agrawal
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Thaarakh Suresh
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ankit Garikipati
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ajay Dangi
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA
| |
Collapse
|
40
|
Feng T, Ge Y, Xie Y, Xie W, Liu C, Li L, Ta D, Jiang Q, Cheng Q. Detection of collagen by multi-wavelength photoacoustic analysis as a biomarker for bone health assessment. PHOTOACOUSTICS 2021; 24:100296. [PMID: 34522607 PMCID: PMC8426564 DOI: 10.1016/j.pacs.2021.100296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 05/26/2023]
Abstract
Collagen is an important biomarker of osteoporosis progression. Noninvasive, multispectral, photoacoustic (PA) techniques use pulsed laser light to induce PA signals to facilitate the visualization of chemical components that are strongly related to tissue health. In this study, the feasibility of multi-wavelength PA (MWPA) measurement of the collagen in bone, using the wavelength range of 1300-1800 nm, was investigated. First, the feasibility of this approach for detecting the collagen content of bone was demonstrated by means of numerical simulation. Then, ex vivo experiments were conducted on both animal and human bone specimens with different bone densities using the MWPA method. The relative collagen content was extracted and compared with the results of micro-computed tomography (micro-CT) and histology. The results showed that the "relative collagen content" parameter obtained using the MWPA approach correlated well with the bone volume ratio obtained from micro-CT images and histological analysis results. This study highlights the potential of the proposed PA technique for determining the collagen content of bones as a biomarker for bone health assessment.
Collapse
Affiliation(s)
- Ting Feng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuxiang Ge
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Yejing Xie
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Lan Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
41
|
Mahmoodkalayeh S, Kratkiewicz K, Manwar R, Shahbazi M, Ansari MA, Natarajan G, Asano E, Avanaki K. Wavelength and pulse energy optimization for detecting hypoxia in photoacoustic imaging of the neonatal brain: a simulation study. BIOMEDICAL OPTICS EXPRESS 2021; 12:7458-7477. [PMID: 35003846 PMCID: PMC8713673 DOI: 10.1364/boe.439147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/10/2021] [Accepted: 10/20/2021] [Indexed: 05/03/2023]
Abstract
Cerebral hypoxia is a severe injury caused by oxygen deprivation to the brain. Hypoxia in the neonatal period increases the risk for the development of neurological disorders, including hypoxic-ischemic encephalopathy, cerebral palsy, periventricular leukomalacia, and hydrocephalus. It is crucial to recognize hypoxia as soon as possible because early intervention improves outcomes. Photoacoustic imaging, using at least two wavelengths, through a spectroscopic analysis, can measure brain oxygen saturation. Due to the spectral coloring effect arising from the dependency of optical properties of biological tissues to the wavelength of light, choosing the right wavelength-pair for efficient and most accurate oxygen saturation measurement and consequently quantifying hypoxia at a specific depth is critical. Using a realistic neonate head model and Monte Carlo simulations, we found practical wavelength-pairs that quantified regions with hypoxia most accurately at different depths down to 22 mm into the cortex neighboring the lateral ventricle. We also demonstrated, for the first time, that the accuracy of the sO2 measurement can be increased by adjusting the level of light energy for each wavelength-pair. Considering the growing interest in photoacoustic imaging of the brain, this work will assist in a more accurate use of photoacoustic spectroscopy and help in the clinical translation of this promising imaging modality. Please note that explaining the effect of acoustic aberration of the skull is not in the scope of this study.
Collapse
Affiliation(s)
- Sadreddin Mahmoodkalayeh
- Department of Physics, Shahid Beheshti University, Tehran, Iran
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
- These authors have contributed equally
| | - Karl Kratkiewicz
- Wayne State University, Bioengineering Department, Detroit, Michigan 48201, USA
| | - Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Meysam Shahbazi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Ali Ansari
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Girija Natarajan
- Wayne State University School of Medicine, Department of Neurology, Detroit, Michigan 48201, USA
- Wayne State University School of Medicine, Department of Pediatrics, Detroit, Michigan 48201, USA
| | - Eishi Asano
- Wayne State University School of Medicine, Department of Neurology, Detroit, Michigan 48201, USA
- Wayne State University School of Medicine, Department of Pediatrics, Detroit, Michigan 48201, USA
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- These authors have contributed equally
| |
Collapse
|
42
|
Zhu J, Liu C, Liu Y, Chen J, Zhang Y, Yao K, Wang L. Self-Fluence-Compensated Functional Photoacoustic Microscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3856-3866. [PMID: 34310295 DOI: 10.1109/tmi.2021.3099820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) can image blood oxygen saturation (sO2) in vivo with high resolution and excellent sensitivity and offers a great tool for neurovascular study and early cancer diagnosis. OR-PAM ignores the wavelength-dependent optical attenuation in superficial tissue, which cause errors in sO2 imaging. Monte Carlo simulation shows that variations in imaging depth, vessel diameter, and focal position can cause up to ∼ 60 % decrease in sO2 imaging. Here, we develop a self-fluence-compensated OR-PAM to compensate for the wavelength-dependent fluence attenuation. We propose a linearized model to estimate the fluence attenuations and use three optical wavelengths to compensate for them in sO2 calculation. We validate the model in both numerical and physical phantoms and show that the compensation method can effectively reduce the sO2 errors. In functional brain imaging, we demonstrate that the compensation method can effectively improve sO2 accuracy, especially in small vessels. Compared with uncompensated ones, the sO2 values are improved by 10~30% in the brain. We monitor ischemic-stroke-induced brain injury which demonstrates great potential for the pre-clinical study of vascular diseases.
Collapse
|
43
|
Xiao Y, Gateau J, Silva AKA, Shi X, Gazeau F, Mangeney C, Luo Y. Hybrid nano‐ and microgels doped with photoacoustic contrast agents for cancer theranostics. VIEW 2021. [DOI: 10.1002/viw.20200176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yu Xiao
- LCBPT CNRS UMR 8601 Université de Paris Paris France
| | - Jérôme Gateau
- CNRS INSERM Laboratoire d'Imagerie Biomédicale, LIB Sorbonne Université Paris France
| | | | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai P. R. China
| | | | | | - Yun Luo
- LCBPT CNRS UMR 8601 Université de Paris Paris France
| |
Collapse
|
44
|
Multi-Aspect Optoacoustic Imaging of Breast Tumors under Chemotherapy with Exogenous and Endogenous Contrasts: Focus on Apoptosis and Hypoxia. Biomedicines 2021; 9:biomedicines9111696. [PMID: 34829925 PMCID: PMC8615838 DOI: 10.3390/biomedicines9111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022] Open
Abstract
Breast cancer is a complex tumor type involving many biological processes. Most chemotherapeutic agents exert their antitumoral effects by rapid induction of apoptosis. Another main feature of breast cancer is hypoxia, which may drive malignant progression and confer resistance to various forms of therapy. Thus, multi-aspect imaging of both tumor apoptosis and oxygenation in vivo would be of enormous value for the effective evaluation of therapy response. Herein, we demonstrate the capability of a hybrid imaging modality known as multispectral optoacoustic tomography (MSOT) to provide high-resolution, simultaneous imaging of tumor apoptosis and oxygenation, based on both the exogenous contrast of an apoptosis-targeting dye and the endogenous contrast of hemoglobin. MSOT imaging was applied on mice bearing orthotopic 4T1 breast tumors before and following treatment with doxorubicin. Apoptosis was monitored over time by imaging the distribution of xPLORE-APOFL750©, a highly sensitive poly-caspase binding apoptotic probe, within the tumors. Oxygenation was monitored by tracking the distribution of oxy- and deoxygenated hemoglobin within the same tumor areas. Doxorubicin treatment induced an increase in apoptosis-depending optoacoustic signal of xPLORE-APOFL750© at 24 h after treatment. Furthermore, our results showed spatial correspondence between xPLORE-APO750© and deoxygenated hemoglobin. In vivo apoptotic status of the tumor tissue was independently verified by ex vivo fluorescence analysis. Overall, our results provide a rationale for the use of MSOT as an effective tool for simultaneously investigating various aspects of tumor pathophysiology and potential effects of therapeutic regimes based on both endogenous and exogenous molecular contrasts.
Collapse
|
45
|
Kirchner T, Frenz M. Multiple illumination learned spectral decoloring for quantitative optoacoustic oximetry imaging. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210069RR. [PMID: 34350736 PMCID: PMC8336722 DOI: 10.1117/1.jbo.26.8.085001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Quantitative measurement of blood oxygen saturation (sO2) with optoacoustic (OA) imaging is one of the most sought after goals of quantitative OA imaging research due to its wide range of biomedical applications. AIM A method for accurate and applicable real-time quantification of local sO2 with OA imaging. APPROACH We combine multiple illumination (MI) sensing with learned spectral decoloring (LSD). We train LSD feedforward neural networks and random forests on Monte Carlo simulations of spectrally colored absorbed energy spectra, to apply the trained models to real OA measurements. We validate our combined MI-LSD method on a highly reliable, reproducible, and easily scalable phantom model, based on copper and nickel sulfate solutions. RESULTS With this sulfate model, we see a consistently high estimation accuracy using MI-LSD, with median absolute estimation errors of 2.5 to 4.5 percentage points. We further find fewer outliers in MI-LSD estimates compared with LSD. Random forest regressors outperform previously reported neural network approaches. CONCLUSIONS Random forest-based MI-LSD is a promising method for accurate quantitative OA oximetry imaging.
Collapse
Affiliation(s)
- Thomas Kirchner
- University of Bern, Biomedical Photonics, Institute of Applied Physics, Bern, Switzerland
| | - Martin Frenz
- University of Bern, Biomedical Photonics, Institute of Applied Physics, Bern, Switzerland
| |
Collapse
|
46
|
Orfanakis M, Tserevelakis GJ, Zacharakis G. A Cost-Efficient Multiwavelength LED-Based System for Quantitative Photoacoustic Measurements. SENSORS 2021; 21:s21144888. [PMID: 34300627 PMCID: PMC8309896 DOI: 10.3390/s21144888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
The unique ability of photoacoustic (PA) sensing to provide optical absorption information of biomolecules deep inside turbid tissues with high sensitivity has recently enabled the development of various novel diagnostic systems for biomedical applications. In many cases, PA setups can be bulky, complex, and costly, as they typically require the integration of expensive Q-switched nanosecond lasers, and also presents limited wavelength availability. This article presents a compact, cost-efficient, multiwavelength PA sensing system for quantitative measurements, by utilizing two high-power LED sources emitting at central wavelengths of 444 and 628 nm, respectively, and a single-element ultrasonic transducer at 3.5 MHz for signal detection. We investigate the performance of LEDs in pulsed mode and explore the dependence of PA responses on absorber's concentration and applied energy fluence using tissue-mimicking phantoms demonstrating both optical absorption and scattering properties. Finally, we apply the developed system on the spectral unmixing of two absorbers contained at various relative concentrations in the phantoms, to provide accurate estimations with absolute deviations ranging between 0.4 and 12.3%. An upgraded version of the PA system may provide valuable in-vivo multiparametric measurements of important biomarkers, such as hemoglobin oxygenation, melanin concentration, local lipid content, and glucose levels.
Collapse
Affiliation(s)
- Michalis Orfanakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, GR-70013 Heraklion, Greece; (M.O.); (G.J.T.)
- School of Medicine, University of Crete, GR-71003 Heraklion, Greece
| | - George J. Tserevelakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, GR-70013 Heraklion, Greece; (M.O.); (G.J.T.)
| | - Giannis Zacharakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, GR-70013 Heraklion, Greece; (M.O.); (G.J.T.)
- Correspondence:
| |
Collapse
|
47
|
Hult J, Merdasa A, Pekar-Lukacs A, Tordengren Stridh M, Khodaverdi A, Albinsson J, Gesslein B, Dahlstrand U, Engqvist L, Hamid Y, Larsson Albèr D, Persson B, Erlöv T, Sheikh R, Cinthio M, Malmsjö M. Comparison of photoacoustic imaging and histopathological examination in determining the dimensions of 52 human melanomas and nevi ex vivo. BIOMEDICAL OPTICS EXPRESS 2021; 12:4097-4114. [PMID: 34457401 PMCID: PMC8367235 DOI: 10.1364/boe.425524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 05/21/2023]
Abstract
Surgical excision followed by histopathological examination is the gold standard for the diagnosis and staging of melanoma. Reoperations and unnecessary removal of healthy tissue could be reduced if non-invasive imaging techniques were available for presurgical tumor delineation. However, no technique has gained widespread clinical use to date due to shallow imaging depth or the absence of functional imaging capability. Photoacoustic (PA) imaging is a novel technology that combines the strengths of optical and ultrasound imaging to reveal the molecular composition of tissue at high resolution. Encouraging results have been obtained from previous animal and human studies on melanoma, but there is still a lack of clinical data. This is the largest study of its kind to date, including 52 melanomas and nevi. 3D multiwavelength PA scanning was performed ex vivo, using 59 excitation wavelengths from 680 nm to 970 nm. Spectral unmixing over this broad wavelength range, accounting for the absorption of several tissue chromophores, provided excellent contrast between healthy tissue and tumor. Combining the results of spectral analysis with spatially resolved information provided a map of the tumor borders in greater detail than previously reported. The tumor dimensions determined with PA imaging were strongly correlated with those determined by histopathological examination for both melanomas and nevi.
Collapse
Affiliation(s)
- Jenny Hult
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Aboma Merdasa
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | | | - Magne Tordengren Stridh
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Azin Khodaverdi
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Sweden
| | - John Albinsson
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Bodil Gesslein
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ulf Dahlstrand
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Linn Engqvist
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Yousef Hamid
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Douglas Larsson Albèr
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Bertil Persson
- Department of Dermatology, Skåne University Hospital, Lund, Sweden
| | - Tobias Erlöv
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Sweden
| | - Rafi Sheikh
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
48
|
Bunke J, Merdasa A, Sheikh R, Albinsson J, Erlöv T, Gesslein B, Cinthio M, Reistad N, Malmsjö M. Photoacoustic imaging for the monitoring of local changes in oxygen saturation following an adrenaline injection in human forearm skin. BIOMEDICAL OPTICS EXPRESS 2021; 12:4084-4096. [PMID: 34457400 PMCID: PMC8367244 DOI: 10.1364/boe.423876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 05/12/2023]
Abstract
Clinical monitoring of blood oxygen saturation (sO2) is traditionally performed using optical techniques, such as pulse oximetry and diffuse reflectance spectroscopy (DRS), which lack spatial resolution. Photoacoustic imaging (PAI) is a rapidly developing biomedical imaging technique that is superior to previous techniques in that it combines optical excitation and acoustic detection, providing a map of chromophore distribution in the tissue. Hitherto, PAI has primarily been used in preclinical studies, and only a few studies have been performed in patients. Its ability to measure sO2 with spatial resolution during local vasoconstriction after adrenaline injection has not yet been investigated. Using PAI and spectral unmixing we characterize the heterogeneous change in sO2 after injecting a local anesthetic containing adrenaline into the dermis on the forearm of seven healthy subjects. In comparison to results obtained using DRS, we highlight contrasting results obtained between the two methods arising due to the so-called 'window effect' caused by a reduced blood flow in the superficial vascular plexus. The results demonstrate the importance of spatially resolving sO2 and the ability of PAI to assess the tissue composition in different layers of the skin.
Collapse
Affiliation(s)
- Josefine Bunke
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Aboma Merdasa
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Physics, Lund University, Sweden
| | - Rafi Sheikh
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - John Albinsson
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Tobias Erlöv
- Department of Biomedical Engineering, Lund University, Sweden
| | - Bodil Gesslein
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Lund University, Sweden
| | | | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
49
|
Na S, Wang LV. Photoacoustic computed tomography for functional human brain imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2021; 12:4056-4083. [PMID: 34457399 PMCID: PMC8367226 DOI: 10.1364/boe.423707] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 05/02/2023]
Abstract
The successes of magnetic resonance imaging and modern optical imaging of human brain function have stimulated the development of complementary modalities that offer molecular specificity, fine spatiotemporal resolution, and sufficient penetration simultaneously. By virtue of its rich optical contrast, acoustic resolution, and imaging depth far beyond the optical transport mean free path (∼1 mm in biological tissues), photoacoustic computed tomography (PACT) offers a promising complementary modality. In this article, PACT for functional human brain imaging is reviewed in its hardware, reconstruction algorithms, in vivo demonstration, and potential roadmap.
Collapse
Affiliation(s)
- Shuai Na
- Caltech Optical Imaging Laboratory, Andrew
and Peggy Cherng Department of Medical Engineering,
California Institute of Technology, 1200
East California Boulevard, Pasadena, CA 91125, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew
and Peggy Cherng Department of Medical Engineering,
California Institute of Technology, 1200
East California Boulevard, Pasadena, CA 91125, USA
- Caltech Optical Imaging Laboratory,
Department of Electrical Engineering, California
Institute of Technology, 1200 East California Boulevard,
Pasadena, CA 91125, USA
| |
Collapse
|
50
|
Wang R, Pan T, Huang L, Liao C, Li Q, Jiang H, Yang J. Photoacoustic imaging in evaluating early intestinal ischemia injury and reperfusion injury in rat models. Quant Imaging Med Surg 2021; 11:2968-2979. [PMID: 34249627 DOI: 10.21037/qims-20-1160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Background It remains a challenge to distinguish whether the damaged intestine is viable in treating acute mesenteric ischemia. In this study, photoacoustic imaging (PAI) was used to observe intestinal tissue viability after ischemia and reperfusion injury in rats. Methods An in vivo study was conducted using forty male SD rats, which were randomly divided into a sham-operated (SO) group, a 1 h ischemia group, a 2 h ischemia group, and an ischemia-reperfusion (I/R) group with 10 rats in each group. In the ischemia group, the superior mesenteric artery (SMA) was isolated and clamped for 1 and 2 h, respectively, and in the I/R group, after ischemia for 1 h, the clamp was removed and reperfused for 1 h. The same time interval was used in the SO group. Immediately after establishing the animal model, a PAI examination was performed, and the small intestine was collected for histopathology. Results The levels of PAI parameters Hb, HbR, MAP 760, and MAP 840 were increased to different degrees in the ischemia groups, especially in the 2 h ischemia group, compared with the SO group (P<0.05), and with prolongation of the ischemia time, the injury was aggravated. All PAI signal levels except HbO in the I/R group were higher than those in the control group, and the increased range differed, especially in Hb and MAP 840. Using western blot, compared with the SO group, the BAX increased significantly in the 2 h ischemia group (P<0.05), and Caspase-3 in the experimental group was significantly higher than in the SO group (P<0.05). The level of HIF-1α increased in the 2 h ischemia group and I/R group (P<0.05), and TUNEL staining showed that the number of positive apoptotic nuclei in the 2 h ischemia group was significantly higher than in the SO group (P<0.05). Hematoxylin-eosin (HE) staining showed that ischemia for 2 hours was the most serious, with obvious mucosal damage, extensive epithelial injury, and bleeding. Conclusions PAI can be used as an effective tool to detect acute intestinal ischemia injury and quantitatively evaluate tissue viability.
Collapse
Affiliation(s)
- Rui Wang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| | - Teng Pan
- School of Electronic Science and Engineering, Center for Information in Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Lin Huang
- School of Electronic Science and Engineering, Center for Information in Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Chengde Liao
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| | - Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| |
Collapse
|