1
|
Chang L, Niu X, Huang S, Song D, Ran X, Wang J. Detection of structural variants linked to mutton flavor and odor in two closely related black goat breeds. BMC Genomics 2024; 25:979. [PMID: 39425017 PMCID: PMC11490145 DOI: 10.1186/s12864-024-10874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Mutton quality is closely related to genetic variants and gene expression alterations during growth and development, resulting in differences in nutritional values, flavor, and odor. RESULTS We first evaluated and compared the composition of crude protein, crude fat, cholesterol, amino acid (AA), and fatty acid (FA) in the longissimus dorsi muscle of Guizhou black goats (GZB, n = 5) and Yunshang black goats (YBG, n = 6). The contents of cholesterol and FA related to odor in GZB were significantly lower than that in YBG, while the concentrations of umami amino acids and intramuscular fat were significantly higher in GZB. Furthermore, structural variants (SVs) in the genomes of GZB (n = 30) and YBG (n = 11) were explored. It was found that some regions in Chr 10/12/18 were densely involved with a large number of SVs in the genomes of GZB and YBG. By setting FST ≥ 0.25, we got 837 stratified SVs, of which 25 SVs (involved in 12 genes, e.g., CORO1A, CLIC6, PCSK2, and TMEM9) were limited in GZB. Functional enrichment analysis of 14 protein-coding genes (e.g., ENPEP, LIPC, ABCA5, and SLC6A15) revealed multiple terms and pathways related with metabolisms of AA, FA, and cholesterol. The SVs (n = 10) obtained by the whole genome resequencing were confirmed in percentages of 36.67 to 86.67% (n = 96) by PCR method. The SVa and SVd polymorphisms indicated a moderate negative correlation with HMGCS1 activity (n = 17). CONCLUSION This study is the first to comprehensively reveal potential SVs related to mutton nutritional values, flavor, and odor based on genomic compare between two black goat breeds with closely genetic relationship. The SVs generated in this study provide a data resource for deeper studies to understand the genomic characteristics and possible evolutionary outcomes with better nutritional values, flavor and extremely light odor.
Collapse
Affiliation(s)
- Lingle Chang
- College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xi Niu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Shihui Huang
- College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Derong Song
- Bijie Academy of Agricultural Sciences, Bijie, 551700, China
| | - Xueqin Ran
- College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| | - Jiafu Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Guarnaccia M, Morello G, La Cognata V, La Bella V, Conforti FL, Cavallaro S. Increased copy-number variant load of associated risk genes in sporadic cases of amyotrophic lateral sclerosis. Cell Mol Life Sci 2024; 81:316. [PMID: 39066921 PMCID: PMC11335238 DOI: 10.1007/s00018-024-05335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an age-related neurodegenerative disease characterized by selective loss of motor neurons in the brainstem and spinal cord. Several genetic factors have been associated to ALS, ranging from causal genes and potential risk factors to disease modifiers. The search for pathogenic variants in these genes has mostly focused on single nucleotide variants (SNVs) while relatively understudied and not fully elucidated is the contribution of structural variants, such as copy number variations (CNVs). Here, we applied an exon-centric aCGH method to investigate, in sporadic ALS patients, the load of CNVs in 131 genes previously associated to ALS. Our approach revealed that CNV load, defined as the total number of CNVs or their size, was significantly higher in ALS cases than controls. About 87% of patients harbored multiple CNVs in ALS-related genes, and 75% structural variants compromised genes directly implicated in ALS pathogenesis (C9orf72, CHCHD10, EPHA4, FUS, HNRNPA1, KIF5A, NEK1, OPTN, PFN1, SOD1, TARDBP, TBK1, UBQLN2, UNC13A, VAPB, VCP). CNV load was also associated to higher onset age and disease progression rate. Although the contribution of individual CNVs in ALS is still unknown, their extensive load in disease-related genes may have relevant implications for the diagnostic, prognostic and therapeutical management of this devastating disorder.
Collapse
Affiliation(s)
- Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, P. Gaifami 18, Catania, 95126, Italy
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, P. Gaifami 18, Catania, 95126, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, P. Gaifami 18, Catania, 95126, Italy
| | - Vincenzo La Bella
- Department of Experimental Biomedicine and Advanced Diagnostics, ALS Clinical Research Center, Laboratory of Neurochemistry, University of Palermo, Palermo, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, P. Gaifami 18, Catania, 95126, Italy.
| |
Collapse
|
3
|
Wang Y, Ma J, Wang J, Zhang L, Xu L, Chen Y, Zhu B, Wang Z, Gao H, Li J, Gao X. Genome-Wide Detection of Copy Number Variations and Their Potential Association with Carcass and Meat Quality Traits in Pingliang Red Cattle. Int J Mol Sci 2024; 25:5626. [PMID: 38891814 PMCID: PMC11172001 DOI: 10.3390/ijms25115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Copy number variation (CNV) serves as a significant source of genetic diversity in mammals and exerts substantial effects on various complex traits. Pingliang red cattle, an outstanding indigenous resource in China, possess remarkable breeding value attributed to their tender meat and superior marbling quality. However, the genetic mechanisms influencing carcass and meat quality traits in Pingliang red cattle are not well understood. We generated a comprehensive genome-wide CNV map for Pingliang red cattle using the GGP Bovine 100K SNP chip. A total of 755 copy number variable regions (CNVRs) spanning 81.03 Mb were identified, accounting for approximately 3.24% of the bovine autosomal genome. Among these, we discovered 270 potentially breed-specific CNVRs in Pingliang red cattle, including 143 gains, 73 losses, and 54 mixed events. Functional annotation analysis revealed significant associations between these specific CNVRs and important traits such as carcass and meat quality, reproduction, exterior traits, growth traits, and health traits. Additionally, our network and transcriptome analysis highlighted CACNA2D1, CYLD, UBXN2B, TG, NADK, and ITGA9 as promising candidate genes associated with carcass weight and intramuscular fat deposition. The current study presents a genome-wide CNV map in Pingliang red cattle, highlighting breed-specific CNVRs, and transcriptome findings provide valuable insights into the underlying genetic characteristics of Pingliang red cattle. These results offer potential avenues for enhancing meat quality through a targeted breeding program.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Romdhane L, Kefi S, Mezzi N, Abassi N, Jmel H, Romdhane S, Shan J, Chouchane L, Abdelhak S. Ethnic and functional differentiation of copy number polymorphisms in Tunisian and HapMap population unveils insights on genome organizational plasticity. Sci Rep 2024; 14:4654. [PMID: 38409353 PMCID: PMC10897484 DOI: 10.1038/s41598-024-54749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Admixture mapping has been useful in identifying genetic variations linked to phenotypes, adaptation and diseases. Copy number variations (CNVs) represents genomic structural variants spanning large regions of chromosomes reaching several megabases. In this investigation, the "Canary" algorithm was applied to 102 Tunisian samples and 991 individuals from eleven HapMap III populations to genotype 1279 copy number polymorphisms (CNPs). In this present work, we investigate the Tunisian population structure using the CNP makers previously identified among Tunisian. The study revealed that Sub-Saharan African populations exhibited the highest diversity with the highest proportions of allelic CNPs. Among all the African populations, Tunisia showed the least diversity. Individual ancestry proportions computed using STRUCTURE analysis revealed a major European component among Tunisians with lesser contribution from Sub-Saharan Africa and Asia. Population structure analysis indicated the genetic proximity with Europeans and noticeable distance from the Sub-Saharan African and East Asian clusters. Seven genes harbouring Tunisian high-frequent CNPs were identified known to be associated with 9 Mendelian diseases and/or phenotypes. Functional annotation of genes under selection highlighted a noteworthy enrichment of biological processes to receptor pathway and activity as well as glutathione metabolism. Additionally, pathways of potential concern for health such as drug metabolism, infectious diseases and cancers exhibited significant enrichment. The distinctive genetic makeup of the Tunisians might have been influenced by various factors including natural selection and genetic drift, resulting in the development of distinct genetic variations playing roles in specific biological processes. Our research provides a justification for focusing on the exclusive genome organization of this population and uncovers previously overlooked elements of the genome.
Collapse
Affiliation(s)
- Lilia Romdhane
- Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.
- Department of Biology, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Tunisia.
| | - Sameh Kefi
- Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nessrine Mezzi
- Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Najla Abassi
- Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Haifa Jmel
- Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Safa Romdhane
- Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jingxuan Shan
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Education City-Qatar Foundation, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Lotfi Chouchane
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Education City-Qatar Foundation, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sonia Abdelhak
- Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
5
|
Shi J, Jia Z, Sun J, Wang X, Zhao X, Zhao C, Liang F, Song X, Guan J, Jia X, Yang J, Chen Q, Yu K, Jia Q, Wu J, Wang D, Xiao Y, Xu X, Liu Y, Wu S, Zhong Q, Wu J, Cui S, Bo X, Wu Z, Park M, Kellis M, He K. Structural variants involved in high-altitude adaptation detected using single-molecule long-read sequencing. Nat Commun 2023; 14:8282. [PMID: 38092772 PMCID: PMC10719358 DOI: 10.1038/s41467-023-44034-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Structural variants (SVs), accounting for a larger fraction of the genome than SNPs/InDels, are an important pool of genetic variation, enabling environmental adaptations. Here, we perform long-read sequencing data of 320 Tibetan and Han samples and show that SVs are highly involved in high-altitude adaptation. We expand the landscape of global SVs, apply robust models of selection and population differentiation combining SVs, SNPs and InDels, and use epigenomic analyses to predict enhancers, target genes and biological functions. We reveal diverse Tibetan-specific SVs affecting the regulatory circuitry of biological functions, including the hypoxia response, energy metabolism and pulmonary function. We find a Tibetan-specific deletion disrupts a super-enhancer and downregulates EPAS1 using enhancer reporter, cellular knock-out and DNA pull-down assays. Our study expands the global SV landscape, reveals the role of gene-regulatory circuitry rewiring in human adaptation, and illustrates the diverse functional roles of SVs in human biology.
Collapse
Affiliation(s)
- Jinlong Shi
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China
- Medical Artificial Intelligence Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jinxiu Sun
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoreng Wang
- Laboratory of Nuclear and Radiation Injury, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- State Key Laboratory of Experimental Hematology, Beijing, 100853, China
| | - Xiaojing Zhao
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Chenghui Zhao
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
- Research Center for Biomedical Engineering, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Fan Liang
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Xinyu Song
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
- Medical Artificial Intelligence Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiawei Guan
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xue Jia
- Laboratory of Nuclear and Radiation Injury, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Yang
- Laboratory of Nuclear and Radiation Injury, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Qi Chen
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kang Yu
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Jia
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Wu
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Depeng Wang
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Yuhui Xiao
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Xiaoman Xu
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Yinzhe Liu
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Shijing Wu
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qin Zhong
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jue Wu
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Saijia Cui
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | | | | | - Manolis Kellis
- Massachusetts Institute of Technology; MIT Computer Science and Artificial Intelligence Laboratory, Broad Institute of MIT and Harvard, Cambridge, 02139, MA, USA
| | - Kunlun He
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China.
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China.
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China.
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Esplen HP, Yang RK, Kalia A, Tang Z, Tang G, Medeiros LJ, Toruner GA. Recurrent Somatic Copy Number Alterations and Their Association with Oncogene Expression Levels in High-Grade Ovarian Serous Carcinoma. Life (Basel) 2023; 13:2192. [PMID: 38004332 PMCID: PMC10672014 DOI: 10.3390/life13112192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Somatic copy number alterations (SCNAs) are frequently observed in high-grade ovarian serous carcinoma (HGOSC). However, their impact on gene expression levels has not been systematically assessed. In this study, we explored the relationship between recurrent SCNA and gene expression using The Cancer Genome Atlas Pan Cancer dataset (OSC, TCGA, PanCancer Atlas) to identify cancer-related genes in HGOSC. We then investigated any association between highly correlated cancer genes and clinicopathological parameters, including age of diagnosis, disease stage, overall survival (OS), and progression-free survival (PFS). A total of 772 genes with recurrent SCNAs were observed. SCNA and mRNA expression levels were highly correlated for 274 genes; 24 genes were classified as a Tier 1 gene in the Cancer Gene Census in the Catalogue of Somatic Mutations in Cancer (CGC-COSMIC). Of these, 11 Tier 1 genes had highly correlated SCNA and mRNA expression levels: TBL1XR1, PIK3CA, UBR5, EIF3E, RAD21, EXT1, RECQL4, KRAS, PRKACA, BRD4, and TPM4. There was no association between gene amplification and disease stage or PFS. EIF3E, RAD21, and EXT1 were more frequently amplified in younger patients, specifically those under the age of 55 years. Patients with tumors carrying PRKACA, BRD4, or TPM4 amplification were associated with a significantly shorter OS. RECQL4 amplification was more frequent in younger patients, and tumors with this amplification were associated with a significantly better OS.
Collapse
Affiliation(s)
- Hillary P. Esplen
- Graduate Program in Diagnostic Genetics and Genomics, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Richard K. Yang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Awdhesh Kalia
- Graduate Program in Diagnostic Genetics and Genomics, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Houston, TX 77030-4009, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-7815, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Houston, TX 77030-4009, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Houston, TX 77030-4009, USA
| | - Gokce A. Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Houston, TX 77030-4009, USA
| |
Collapse
|
7
|
Shi Y, Shen H. DNA cytosine deamination is associated with recurrent Somatic Copy Number Alterations in stomach adenocarcinoma. Front Genet 2023; 14:1231415. [PMID: 37867602 PMCID: PMC10587545 DOI: 10.3389/fgene.2023.1231415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Stomach Adenocarcinoma (STAD) is a leading cause of death worldwide. Somatic Copy Number Alterations (SCNAs), which result in Homologous recombination (HR) deficiency in double-strand break repair, are associated with the progression of STAD. However, the landscape of frequent breakpoints of SCNAs (hotspots) and their functional impacts remain poorly understood. In this study, we aimed to explore the frequency and impact of these hotspots in 332 STAD patients and 1,043 cancer cells using data from the Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE). We studied the rates of DSB (Double-Strand Breaks) loci in STAD patients by employing the Non-Homogeneous Poisson Distribution (λ), based on which we identified 145 DSB-hotspots with genes affected. We further verified DNA cytosine deamination as a critical process underlying the burden of DSB in STAD. Finally, we illustrated the clinical impact of the significant biological processes. Our findings highlighted the relationship between DNA cytosine deamination and SCNA in cancer was associated with recurrent Somatic Copy Number Alterations in STAD.
Collapse
Affiliation(s)
- Yilin Shi
- The College of Letters & Science, University of Wisconsin–Madison, Madison, WI, United States
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
O’Brien S, Lea RA, Jadhao S, Lee S, Sukhadia S, Arunachalam V, Roulis E, Flower RL, Griffiths L, Nagaraj SH. Genetic Characterization of Blood Group Antigens for Polynesian Heritage Norfolk Island Residents. Genes (Basel) 2023; 14:1740. [PMID: 37761880 PMCID: PMC10530796 DOI: 10.3390/genes14091740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Improvements in blood group genotyping methods have allowed large scale population-based blood group genetics studies, facilitating the discovery of rare blood group antigens. Norfolk Island, an external and isolated territory of Australia, is one example of an underrepresented segment of the broader Australian population. Our study utilized whole genome sequencing data to characterize 43 blood group systems in 108 Norfolk Island residents. Blood group genotypes and phenotypes across the 43 systems were predicted using RBCeq. Predicted frequencies were compared to data available from the 1000G project. Additional copy number variation analysis was performed, investigating deletions outside of RHCE, RHD, and MNS systems. Examination of the ABO blood group system predicted a higher distribution of group A1 (45.37%) compared to group O (35.19%) in residents of the Norfolk Island group, similar to the distribution within European populations (42.94% and 38.97%, respectively). Examination of the Kidd blood group system demonstrated an increased prevalence of variants encoding the weakened Kidd phenotype at a combined prevalence of 12.04%, which is higher than that of the European population (5.96%) but lower than other populations in 1000G. Copy number variation analysis showed deletions within the Chido/Rodgers and ABO blood group systems. This study is the first step towards understanding blood group genotype and antigen distribution on Norfolk Island.
Collapse
Affiliation(s)
- Stacie O’Brien
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| | - Rodney A. Lea
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| | - Sudhir Jadhao
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
- Clinical Services and Research, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia; (E.R.); (R.L.F.)
| | - Simon Lee
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| | - Shrey Sukhadia
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| | - Vignesh Arunachalam
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| | - Eileen Roulis
- Clinical Services and Research, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia; (E.R.); (R.L.F.)
| | - Robert L. Flower
- Clinical Services and Research, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia; (E.R.); (R.L.F.)
| | - Lyn Griffiths
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| | - Shivashankar H. Nagaraj
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| |
Collapse
|
9
|
Shih J, Sarmashghi S, Zhakula-Kostadinova N, Zhang S, Georgis Y, Hoyt SH, Cuoco MS, Gao GF, Spurr LF, Berger AC, Ha G, Rendo V, Shen H, Meyerson M, Cherniack AD, Taylor AM, Beroukhim R. Cancer aneuploidies are shaped primarily by effects on tumour fitness. Nature 2023; 619:793-800. [PMID: 37380777 PMCID: PMC10529820 DOI: 10.1038/s41586-023-06266-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
Aneuploidies-whole-chromosome or whole-arm imbalances-are the most prevalent alteration in cancer genomes1,2. However, it is still debated whether their prevalence is due to selection or ease of generation as passenger events1,2. Here we developed a method, BISCUT, that identifies loci subject to fitness advantages or disadvantages by interrogating length distributions of telomere- or centromere-bounded copy-number events. These loci were significantly enriched for known cancer driver genes, including genes not detected through analysis of focal copy-number events, and were often lineage specific. BISCUT identified the helicase-encoding gene WRN as a haploinsufficient tumour-suppressor gene on chromosome 8p, which is supported by several lines of evidence. We also formally quantified the role of selection and mechanical biases in driving aneuploidy, finding that rates of arm-level copy-number alterations are most highly correlated with their effects on cellular fitness1,2. These results provide insight into the driving forces behind aneuploidy and its contribution to tumorigenesis.
Collapse
Affiliation(s)
- Juliann Shih
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV, USA
| | - Shahab Sarmashghi
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nadja Zhakula-Kostadinova
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shu Zhang
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yohanna Georgis
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Stephanie H Hoyt
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael S Cuoco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Galen F Gao
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Liam F Spurr
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ashton C Berger
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gavin Ha
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Veronica Rendo
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew Meyerson
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Andrew D Cherniack
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alison M Taylor
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rameen Beroukhim
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
10
|
Xu J, Zhang W, Zhang P, Sun W, Han Y, Li L. A comprehensive analysis of copy number variations in diverse apple populations. BMC Genomics 2023; 24:256. [PMID: 37170226 PMCID: PMC10176694 DOI: 10.1186/s12864-023-09347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/16/2022] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND As an important source of genetic variation, copy number variation (CNV) can alter the dosage of DNA segments, which in turn may affect gene expression level and phenotype. However, our knowledge of CNV in apple is still limited. Here, we obtained high-confidence CNVs and investigated their functional impact based on genome resequencing data of two apple populations, cultivars and wild relatives. RESULTS In this study, we identified 914,610 CNVs comprising 14,839 CNV regions (CNVRs) from 346 apple accessions, including 289 cultivars and 57 wild relatives. CNVRs summed to 71.19 Mb, accounting for 10.03% of the apple genome. Under the low linkage disequilibrium (LD) with nearby SNPs, they could also accurately reflect the population structure of apple independent of SNPs. Furthermore, A total of 3,621 genes were covered by CNVRs and functionally involved in biological processes such as defense response, reproduction and metabolic processes. In addition, the population differentiation index ([Formula: see text]) analysis between cultivars and wild relatives revealed 127 CN-differentiated genes, which may contribute to trait differences in these two populations. CONCLUSIONS This study was based on identification of CNVs from 346 diverse apple accessions, which to our knowledge was the largest dataset for CNV analysis in apple. Our work presented the first comprehensive CNV map and provided valuable resources for understanding genomic variations in apple.
Collapse
Affiliation(s)
- Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weihan Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weicheng Sun
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Li Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Yagasaki K, Nishida N, Mabuchi A, Tokunaga K, Fujimoto A. Development of a novel microarray data analysis tool without normalization for genotyping degraded forensic DNA. Forensic Sci Int Genet 2023; 65:102885. [PMID: 37137205 DOI: 10.1016/j.fsigen.2023.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Since the arrest of the Golden State Killer in the US in April 2018, forensic geneticists have been increasingly interested in the investigative genetic genealogy (IGG) method. While this method has already been in practical use as a powerful tool for criminal investigation, we have yet to know well the limitations and potential risks. In this current study, we performed an evaluation study focusing on degraded DNA using the Affymetrix Genome-Wide Human SNP Array 6.0 platform (Thermo Fisher Scientific). We revealed one of the potential problems that occur during SNP genotype determination using a microarray-based platform. Our analysis results indicated that the SNP profiles derived from degraded DNA contained many false heterozygous SNPs. In addition, it was confirmed that the total amount of probe signal intensity on microarray chips derived from degraded DNA decreased significantly. Because the conventional analysis algorithm performs normalization during genotype determination, we concluded that noise signals could be genotype-called. To address this issue, we proposed a novel microarray data analysis method without normalization (nMAP). Although the nMAP algorithm resulted in a low call rate, it substantially improved genotyping accuracy. Finally, we confirmed the usefulness of the nMAP algorithm for kinship inferences. These findings and the nMAP algorithm will make a contribution to the advance of the IGG method.
Collapse
Affiliation(s)
- Kayoko Yagasaki
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan; Forensic Science Laboratory, Tokyo Metropolitan Police Department, 3-35-21, Shakujiidai, Nerima Ward, Tokyo 177-0045, Japan.
| | - Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan; Genome Medical Science Project, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Akihiko Mabuchi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan; Genome Medical Science Project, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku word, Tokyo 162-8655, Japan
| | - Akihiro Fujimoto
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Dashnau JL, Xue Q, Nelson M, Law E, Cao L, Hei D. A risk-based approach for cell line development, manufacturing and characterization of genetically engineered, induced pluripotent stem cell-derived allogeneic cell therapies. Cytotherapy 2023; 25:1-13. [PMID: 36109321 DOI: 10.1016/j.jcyt.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022]
Abstract
Advances in cellular reprogramming and gene-editing approaches have opened up the potential for a new class of ex vivo cell therapies based on genetically engineered, induced pluripotent stem cell (iPSC)-derived allogeneic cells. While these new therapies share some similarities with their primary cell-derived autologous and allogeneic cell therapy predecessors, key differences exist in the processes used for generating genetically engineered, iPSC-derived allogeneic therapies. Specifically, in iPSC-derived allogeneic therapies, donor selection and gene-editing are performed once over the lifetime of the product as opposed to as part of the manufacturing of each product batch. The introduction of a well-characterized, fully modified, clonally derived master cell bank reduces risks that have been inherent to primary-cell derived autologous and allogeneic therapies. Current regulatory guidance, which was largely developed based on the learnings gained from earlier generation therapies, leaves open questions around considerations for donor eligibility, starting materials and critical components, cell banking and genetic stability. Here, a risk-based approach is proposed to address these considerations, while regulatory guidance continues to evolve.
Collapse
Affiliation(s)
| | - Qiong Xue
- Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Monica Nelson
- Century Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Eric Law
- Century Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Lan Cao
- Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Derek Hei
- Clade Therapeutics, One Kendall Square, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Rooney K, Sadikovic B. DNA Methylation Episignatures in Neurodevelopmental Disorders Associated with Large Structural Copy Number Variants: Clinical Implications. Int J Mol Sci 2022; 23:ijms23147862. [PMID: 35887210 PMCID: PMC9324454 DOI: 10.3390/ijms23147862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Large structural chromosomal deletions and duplications, referred to as copy number variants (CNVs), play a role in the pathogenesis of neurodevelopmental disorders (NDDs) through effects on gene dosage. This review focuses on our current understanding of genomic disorders that arise from large structural chromosome rearrangements in patients with NDDs, as well as difficulties in overlap of clinical presentation and molecular diagnosis. We discuss the implications of epigenetics, specifically DNA methylation (DNAm), in NDDs and genomic disorders, and consider the implications and clinical impact of copy number and genomic DNAm testing in patients with suspected genetic NDDs. We summarize evidence of global methylation episignatures in CNV-associated disorders that can be used in the diagnostic pathway and may provide insights into the molecular pathogenesis of genomic disorders. Finally, we discuss the potential for combining CNV and DNAm assessment into a single diagnostic assay.
Collapse
Affiliation(s)
- Kathleen Rooney
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada;
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada;
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Correspondence: ; Tel.: +1-519-685-8500 (ext. 53074)
| |
Collapse
|
14
|
Microarrays towards nanoarrays and the future Next Generation of Sequencing methodologies (NGS). SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Arunachalam S, Szlachta K, Brady SW, Ma X, Ju B, Shaner B, Mulder HL, Easton J, Raphael BJ, Myers M, Tinkle C, Allen SJ, Orr BA, Wetmore CJ, Baker SJ, Zhang J. Convergent evolution and multi-wave clonal invasion in H3 K27-altered diffuse midline gliomas treated with a PDGFR inhibitor. Acta Neuropathol Commun 2022; 10:80. [PMID: 35642016 PMCID: PMC9153212 DOI: 10.1186/s40478-022-01381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/12/2022] [Indexed: 11/11/2022] Open
Abstract
The majority of diffuse midline gliomas, H3 K27-altered (DMG-H3 K27-a), are infiltrating pediatric brain tumors that arise in the pons with no effective treatment. To understand how clonal evolution contributes to the tumor’s invasive spread, we performed exome sequencing and SNP array profiling on 49 multi-region autopsy samples from 11 patients with pontine DMG-H3 K27-a enrolled in a phase I clinical trial of PDGFR inhibitor crenolanib. For each patient, a phylogenetic tree was constructed by testing multiple possible clonal evolution models to select the one consistent with somatic mutations and copy number variations across all tumor regions. The tree was then used to deconvolute subclonal composition and prevalence at each tumor region to study convergent evolution and invasion patterns. Somatic variants in the PI3K pathway, a late event, are enriched in our cohort, affecting 70% of patients. Convergent evolution of PI3K at distinct phylogenetic branches was detected in 40% of the patients. 24 (~ 50%) of tumor regions were occupied by subclones of mixed lineages with varying molecular ages, indicating multiple waves of invasion across the pons and extrapontine. Subclones harboring a PDGFRA amplicon, including one that amplified a PDGRFAY849C mutant allele, were detected in four patients; their presence in extrapontine tumor and normal brain samples imply their involvement in extrapontine invasion. Our study expands the current knowledge on tumor invasion patterns in DMG-H3 K27-a, which may inform the design of future clinical trials.
Collapse
|
16
|
Assessment of linkage disequilibrium patterns between structural variants and single nucleotide polymorphisms in three commercial chicken populations. BMC Genomics 2022; 23:193. [PMID: 35264116 PMCID: PMC8908679 DOI: 10.1186/s12864-022-08418-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Structural variants (SV) are causative for some prominent phenotypic traits of livestock as different comb types in chickens or color patterns in pigs. Their effects on production traits are also increasingly studied. Nevertheless, accurately calling SV remains challenging. It is therefore of interest, whether close-by single nucleotide polymorphisms (SNPs) are in strong linkage disequilibrium (LD) with SVs and can serve as markers. Literature comes to different conclusions on whether SVs are in LD to SNPs on the same level as SNPs to other SNPs. The present study aimed to generate a precise SV callset from whole-genome short-read sequencing (WGS) data for three commercial chicken populations and to evaluate LD patterns between the called SVs and surrounding SNPs. It is thereby the first study that assessed LD between SVs and SNPs in chickens. RESULTS The final callset consisted of 12,294,329 bivariate SNPs, 4,301 deletions (DEL), 224 duplications (DUP), 218 inversions (INV) and 117 translocation breakpoints (BND). While average LD between DELs and SNPs was at the same level as between SNPs and SNPs, LD between other SVs and SNPs was strongly reduced (DUP: 40%, INV: 27%, BND: 19% of between-SNP LD). A main factor for the reduced LD was the presence of local minor allele frequency differences, which accounted for 50% of the difference between SNP - SNP and DUP - SNP LD. This was potentially accompanied by lower genotyping accuracies for DUP, INV and BND compared with SNPs and DELs. An evaluation of the presence of tag SNPs (SNP in highest LD to the variant of interest) further revealed DELs to be slightly less tagged by WGS SNPs than WGS SNPs by other SNPs. This difference, however, was no longer present when reducing the pool of potential tag SNPs to SNPs located on four different chicken genotyping arrays. CONCLUSIONS The results implied that genomic variance due to DELs in the chicken populations studied can be captured by different SNP marker sets as good as variance from WGS SNPs, whereas separate SV calling might be advisable for DUP, INV, and BND effects.
Collapse
|
17
|
Susgun S, Kasan K, Yucesan E. Gene Hunting Approaches through the Combination of Linkage Analysis with Whole-Exome Sequencing in Mendelian Diseases: From Darwin to the Present Day. Public Health Genomics 2022; 24:207-217. [PMID: 34237751 DOI: 10.1159/000517102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the context of medical genetics, gene hunting is the process of identifying and functionally characterizing genes or genetic variations that contribute to disease phenotypes. In this review, we would like to summarize gene hunting process in terms of historical aspects from Darwin to now. For this purpose, different approaches and recent developments will be detailed. SUMMARY Linkage analysis and association studies are the most common methods in use for explaining the genetic background of hereditary diseases and disorders. Although linkage analysis is a relatively old approach, it is still a powerful method to detect disease-causing rare variants using family-based data, particularly for consanguineous marriages. As is known that, consanguineous marriages or endogamy poses a social problem in developing countries, however, this same condition also provides a unique opportunity for scientists to identify and characterize pathogenic variants. The rapid advancements in sequencing technologies and their parallel implementation together with linkage analyses now allow us to identify the candidate variants related to diseases in a relatively short time. Furthermore, we can now go one step further and functionally characterize the causative variant through in vitro and in vivo studies and unveil the variant-phenotype relationships on a molecular level more robustly. Key Messages: Herein, we suggest that the combined analysis of linkage and exome analysis is a powerful and precise tool to diagnose clinically rare and recessively inherited conditions.
Collapse
Affiliation(s)
- Seda Susgun
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey.,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Koray Kasan
- Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Emrah Yucesan
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
18
|
Çalışkan E, Şahin MN, Güldağ MA. Oxytocin and Oxytocin Receptor Gene Regulation in Williams Syndrome: A Systematic Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:623-635. [PMID: 34970101 PMCID: PMC8686774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Williams Syndrome (WS) is a rare genetic multisystem disorder that occurs because of a deletion of approximately 25 genes in the 7q11.23 chromosome region. This causes dysmorphic facial appearances, multiple congenital cardiovascular defects, delayed motor skills, and abnormalities in connective tissues and the endocrine system. The patients are mostly diagnosed with mild to moderate mental retardation, however, they have a hyper sociable, socially dis-inhibited, and outgoing personality, empathetic behavior, and are highly talkative. Oxytocin (OT), a neuropeptide synthesized at the hypothalamus, plays an important role in cognition and behavior, and is thought to be affecting WS patients' attitudes at its different amounts. Oxytocin receptor gene (OXTR), on chromosome 3p25.3, is considered regulating oxytocin receptors, via which OT exerts its effect. WS is a crucial disorder to understand gene, hormone, brain, and behavior associations in terms of sociality and neuropsychiatric conditions. Alterations to the WS gene region offer an opportunity to deepen our understandings of autism spectrum disorder, schizophrenia, anxiety, or depression. We aim to systematically present the data available of OT/OXTR regulation and expression, and the evidence for whether these mechanisms are dysregulated in WS. These results are important, as they predict strong epigenetic control over social behavior by methylation, single nucleotide polymorphisms, and other alterations. The comparison and collaboration of these studies may help to establish a better treatment or management approach for patients with WS if backed up with future research.
Collapse
Affiliation(s)
- Elif Çalışkan
- Trakya University School of Medicine, Edirne,
Turkey,To whom all correspondence should be addressed:
Elif Çalışkan, Trakya University School of Medicine, Edirne, Turkey;
| | | | | |
Collapse
|
19
|
Dhall A, Jain S, Sharma N, Naorem LD, Kaur D, Patiyal S, Raghava GPS. In silico tools and databases for designing cancer immunotherapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:1-50. [PMID: 35305716 DOI: 10.1016/bs.apcsb.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunotherapy is a rapidly growing therapy for cancer which have numerous benefits over conventional treatments like surgery, chemotherapy, and radiation. Overall survival of cancer patients has improved significantly due to the use of immunotherapy. It acts as a novel pillar for treating different malignancies from their primary to the metastatic stage. Recent preferments in high-throughput sequencing and computational immunology leads to the development of targeted immunotherapy for precision oncology. In the last few decades, several computational methods and resources have been developed for designing immunotherapy against cancer. In this review, we have summarized cancer-associated genomic, transcriptomic, and mutation profile repositories. We have also enlisted in silico methods for the prediction of vaccine candidates, HLA binders, cytokines inducing peptides, and potential neoepitopes. Of note, we have incorporated the most important bioinformatics pipelines and resources for the designing of cancer immunotherapy. Moreover, to facilitate the scientific community, we have developed a web portal entitled ImmCancer (https://webs.iiitd.edu.in/raghava/immcancer/), comprises cancer immunotherapy tools and repositories.
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Shipra Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Leimarembi Devi Naorem
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India.
| |
Collapse
|
20
|
Jiang SH, Mercan S, Papa I, Moldovan M, Walters GD, Koina M, Fadia M, Stanley M, Lea-Henry T, Cook A, Ellyard J, McMorran B, Sundaram M, Thomson R, Canete PF, Hoy W, Hutton H, Srivastava M, McKeon K, de la Rúa Figueroa I, Cervera R, Faria R, D’Alfonso S, Gatto M, Athanasopoulos V, Field M, Mathews J, Cho E, Andrews TD, Kitching AR, Cook MC, Riquelme MA, Bahlo M, Vinuesa CG. Deletions in VANGL1 are a risk factor for antibody-mediated kidney disease. Cell Rep Med 2021; 2:100475. [PMID: 35028616 PMCID: PMC8714939 DOI: 10.1016/j.xcrm.2021.100475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
We identify an intronic deletion in VANGL1 that predisposes to renal injury in high risk populations through a kidney-intrinsic process. Half of all SLE patients develop nephritis, yet the predisposing mechanisms to kidney damage remain poorly understood. There is limited evidence of genetic contribution to specific organ involvement in SLE.1,2 We identify a large deletion in intron 7 of Van Gogh Like 1 (VANGL1), which associates with nephritis in SLE patients. The same deletion occurs at increased frequency in an indigenous population (Tiwi Islanders) with 10-fold higher rates of kidney disease compared with non-indigenous populations. Vangl1 hemizygosity in mice results in spontaneous IgA and IgG deposition within the glomerular mesangium in the absence of autoimmune nephritis. Serum transfer into B cell-deficient Vangl1+/- mice results in mesangial IgG deposition indicating that Ig deposits occur in a kidney-intrinsic fashion in the absence of Vangl1. These results suggest that Vangl1 acts in the kidney to prevent Ig deposits and its deficiency may trigger nephritis in individuals with SLE.
Collapse
Affiliation(s)
- Simon H. Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
- Department of Renal Medicine, The Canberra Hospital, Canberra 2605, Australia
| | - Sevcan Mercan
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Department of Bioengineering, Kafkas University, Kars 36100, Turkey
| | - Ilenia Papa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Max Moldovan
- Centre for Population Health Research, University of South Australia, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
- Australian Institute of Health Innovation, Macquarie University, Sydney 2109, Australia
| | - Giles D. Walters
- Department of Renal Medicine, The Canberra Hospital, Canberra 2605, Australia
| | - Mark Koina
- Department of Pathology, The Canberra Hospital, Canberra 2605, Australia
| | - Mitali Fadia
- Department of Pathology, The Canberra Hospital, Canberra 2605, Australia
| | - Maurice Stanley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Tom Lea-Henry
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Amelia Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Julia Ellyard
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | - Brendan McMorran
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Madhivanan Sundaram
- Department of Renal Medicine, Royal Darwin Hospital, Northern Territory 0811, Australia
| | - Russell Thomson
- Centre for Research in Mathematics and Data Science, School of Computer, Data and Mathematical Sciences, Western Sydney University, Parramatta 2150, NSW, Australia
| | - Pablo F. Canete
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | - Wendy Hoy
- Centre for Chronic Disease, Faculty of Health, The University of Queensland, Brisbane 4029, QLD, Australia
| | - Holly Hutton
- Centre for Inflammatory Diseases, Monash University, Melbourne 3168, VIC, Australia
| | - Monika Srivastava
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Kathryn McKeon
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | | | - Ricard Cervera
- Department of Autoimmune Diseases, Hospital Clinic, Barcelona 08036, Spain
| | - Raquel Faria
- Unidade de Imunologia Clinica, Centro Hospitalar Unisersitario do Porto, Porto 4099-001, Portugal
| | | | - Mariele Gatto
- Department of Rheumatology, University of Padova, Italy
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | - Matthew Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4870, QLD, Australia
| | - John Mathews
- School of Population and Global Health, University of Melbourne, Melbourne 3053, Australia
| | - Eun Cho
- Genome Informatics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia
| | - Thomas D. Andrews
- Genome Informatics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Monash University, Melbourne 3168, VIC, Australia
- Departments Nephrology and Paediatric Nephrology. Monash Health, Melbourne 3168, Australia
| | - Matthew C. Cook
- Department of Immunology, The Canberra Hospital, Canberra 2605, Australia
| | - Marta Alarcon Riquelme
- Department of Medical Genomics, GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010 VIC, Australia
| | - Carola G. Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
- China Australia Centre for Personalised Immunology, Renji Hospital Shanghai, JiaoTong University Shanghai 200001, China
- Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| |
Collapse
|
21
|
Comprehensive characterization of copy number variation (CNV) called from array, long- and short-read data. BMC Genomics 2021; 22:826. [PMID: 34789167 PMCID: PMC8596897 DOI: 10.1186/s12864-021-08082-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SNP arrays, short- and long-read genome sequencing are genome-wide high-throughput technologies that may be used to assay copy number variants (CNVs) in a personal genome. Each of these technologies comes with its own limitations and biases, many of which are well-known, but not all of them are thoroughly quantified. RESULTS We assembled an ensemble of public datasets of published CNV calls and raw data for the well-studied Genome in a Bottle individual NA12878. This assembly represents a variety of methods and pipelines used for CNV calling from array, short- and long-read technologies. We then performed cross-technology comparisons regarding their ability to call CNVs. Different from other studies, we refrained from using the golden standard. Instead, we attempted to validate the CNV calls by the raw data of each technology. CONCLUSIONS Our study confirms that long-read platforms enable recalling CNVs in genomic regions inaccessible to arrays or short reads. We also found that the reproducibility of a CNV by different pipelines within each technology is strongly linked to other CNV evidence measures. Importantly, the three technologies show distinct public database frequency profiles, which differ depending on what technology the database was built on.
Collapse
|
22
|
Meeks KAC, Bentley AR, Gouveia MH, Chen G, Zhou J, Lei L, Adeyemo AA, Doumatey AP, Rotimi CN. Genome-wide analyses of multiple obesity-related cytokines and hormones informs biology of cardiometabolic traits. Genome Med 2021; 13:156. [PMID: 34620218 PMCID: PMC8499470 DOI: 10.1186/s13073-021-00971-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A complex set of perturbations occur in cytokines and hormones in the etiopathogenesis of obesity and related cardiometabolic conditions such as type 2 diabetes (T2D). Evidence for the genetic regulation of these cytokines and hormones is limited, particularly in African-ancestry populations. In order to improve our understanding of the biology of cardiometabolic traits, we investigated the genetic architecture of a large panel of obesity- related cytokines and hormones among Africans with replication analyses in African Americans. METHODS We performed genome-wide association studies (GWAS) in 4432 continental Africans, enrolled from Ghana, Kenya, and Nigeria as part of the Africa America Diabetes Mellitus (AADM) study, for 13 obesity-related cytokines and hormones, including adipsin, glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), interleukin-1 receptor antagonist (IL1-RA), interleukin-6 (IL-6), interleukin-10 (IL-10), leptin, plasminogen activator inhibitor-1 (PAI-1), resistin, visfatin, insulin, glucagon, and ghrelin. Exact and local replication analyses were conducted in African Americans (n = 7990). The effects of sex, body mass index (BMI), and T2D on results were investigated through stratified analyses. RESULTS GWAS identified 39 significant (P value < 5 × 10-8) loci across all 13 traits. Notably, 14 loci were African-ancestry specific. In this first GWAS for adipsin and ghrelin, we detected 13 and 4 genome-wide significant loci respectively. Stratified analyses by sex, BMI, and T2D showed a strong effect of these variables on detected loci. Eight novel loci were successfully replicated: adipsin (3), GIP (1), GLP-1 (1), and insulin (3). Annotation of these loci revealed promising links between these adipocytokines and cardiometabolic outcomes as illustrated by rs201751833 for adipsin and blood pressure and locus rs759790 for insulin level and T2D in lean individuals. CONCLUSIONS Our study identified genetic variants underlying variation in multiple adipocytokines, including the first loci for adipsin and ghrelin. We identified population differences in variants associated with adipocytokines and highlight the importance of stratification for discovery of loci. The high number of African-specific loci detected emphasizes the need for GWAS in African-ancestry populations, as these loci could not have been detected in other populations. Overall, our work contributes to the understanding of the biology linking adipocytokines to cardiometabolic traits.
Collapse
Affiliation(s)
- Karlijn A C Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Mateus H Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Lin Lei
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA.
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA.
| |
Collapse
|
23
|
Shin D, Lee KW. Dietary carbohydrates interact with AMY1 polymorphisms to influence the incidence of type 2 diabetes in Korean adults. Sci Rep 2021; 11:16788. [PMID: 34408213 PMCID: PMC8373941 DOI: 10.1038/s41598-021-96257-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/30/2021] [Indexed: 01/23/2023] Open
Abstract
The relationship between AMY1 single nucleotide polymorphisms (SNPs), dietary carbohydrates, and the risk of type 2 diabetes is unclear. We aimed to evaluate this association using an ongoing large-scale prospective study, namely the Korean Genome and Epidemiology Study. We selected six genetic variants of the AMY1 gene: rs10881197, rs4244372, rs6696797, rs1566154, rs1930212, and rs1999478. Baseline dietary data were obtained using a semi-quantitative food frequency questionnaire. Type 2 diabetes was defined according to the criteria of the World Health Organization and American Diabetes Association. During an average follow-up period of 12 years (651,780 person-years), 1082 out of 4552 (23.8%) patients had type 2 diabetes. Three AMY1 SNPs were significantly associated with diabetes incidence among patients with carbohydrate intake > 65% of total energy: rs6696797, rs4244372, and rs10881197. In multivariable Cox models, Korean women with the rs6696797 AG or AA genotype had 28% higher incidence of type 2 diabetes (hazard ratio 1.28, 95% confidence interval 1.06-1.55) than Korean women with the rs6696797 GG genotype. We did not observe significant associations between AMY1 SNPs, dietary carbohydrates, and diabetes incidence in Korean men. We conclude that AMY1 genetic variants and dietary carbohydrate intake influence the incidence of type 2 diabetes in Korean women only. Korean women who are minor carriers of the AMY1 rs6696797, rs4244372, and rs10881197 genotypes may benefit from a low-carbohydrate diet to prevent the future risk of type 2 diabetes.
Collapse
Affiliation(s)
- Dayeon Shin
- Department of Food and Nutrition, Inha University, Incheon, 22212, Republic of Korea
| | - Kyung Won Lee
- Department of Home Economics Education, Korea National University of Education, Cheongju, 28173, Republic of Korea.
| |
Collapse
|
24
|
Metwally M, Bayoumi A, Khan A, Adams LA, Aller R, García-Monzón C, Arias-Loste MT, Bugianesi E, Miele L, Anna A, Latchoumanin O, Han S, Alenizi S, Sharkawy RE, Elattar A, Gallego-Durán R, Fischer J, Berg T, Liddle C, Romero-Gomez M, George J, Eslam M. Copy number variation and expression of exportin-4 associates with severity of fibrosis in metabolic associated fatty liver disease. EBioMedicine 2021; 70:103521. [PMID: 34388518 PMCID: PMC8365315 DOI: 10.1016/j.ebiom.2021.103521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
Background Liver fibrosis risk is a heritable trait, the outcome of which is the net deposition of extracellular matrix by hepatic stellate cell-derived myofibroblasts. Whereas nucleotide sequence variations have been extensively studied in liver fibrosis, the role of copy number variations (CNV) in which genes exist in abnormal numbers of copies (mostly due to duplication or deletion) has had limited exploration. Methods The impact of the XPO4 CNV on histological liver damage was examined in a cohort comprised 646 Caucasian patients with biopsy-proven MAFLD and 170 healthy controls. XPO4 expression was modulated and function was examined in human and animal models. Findings Here we demonstrate in a cohort of 816 subjects, 646 with biopsy-proven metabolic associated liver disease (MAFLD) and 170 controls, that duplication in the exportin 4 (XPO4) CNV is associated with the severity of liver fibrosis. Functionally, this occurs via reduced expression of hepatic XPO4 that maintains sustained activation of SMAD3/SMAD4 and promotes TGF-β1-mediated HSC activation and fibrosis. This effect was mediated through termination of nuclear SMAD3 signalling. XPO4 demonstrated preferential binding to SMAD3 compared to other SMADs and led to reduced SMAD3-mediated responses as shown by attenuation of TGFβ1 induced SMAD transcriptional activity, reductions in the recruitment of SMAD3 to target gene promoters following TGF-β1, as well as attenuation of SMAD3 phosphorylation and disturbed SMAD3/SMAD4 complex formation. Interpretation We conclude that a CNV in XPO4 is a critical mediator of fibrosis severity and can be exploited as a therapeutic target for liver fibrosis. Funding ME and JG are supported by the Robert W. Storr Bequest to the Sydney Medical Foundation, University of Sydney; a National Health and Medical Research Council of Australia (NHMRC) Program Grant (APP1053206) and Project and ideas grants (APP2001692, APP1107178 and APP1108422). AB is supported by an Australian Government Research Training Program (RTP) scholarship. EB is supported by Horizon 2020 under grant 634413 for the project EPoS.
Collapse
Affiliation(s)
- Mayada Metwally
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Anis Khan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Leon A Adams
- Medical School, Sir Charles Gairdner Hospital Unit, University of Western Australia, Nedlands, WA, Australia
| | - Rocio Aller
- Center of Investigation of Endocrinology and Nutrition, School of Medicine, and Unit of Investigation, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Instituto de Investigacion Sanitaria Princesa, University Hospital Santa Cristina, CIBERehd, Madrid, Spain
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Science, University of Turin, Turin, Italy
| | - Luca Miele
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Alisi Anna
- Research Unit of Molecular Genetics of Complex Phenotypes, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Shuanglin Han
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Shafi Alenizi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Rasha El Sharkawy
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Afaf Elattar
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Rocio Gallego-Durán
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Janett Fischer
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Manuel Romero-Gomez
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
25
|
Gordeeva V, Sharova E, Babalyan K, Sultanov R, Govorun VM, Arapidi G. Benchmarking germline CNV calling tools from exome sequencing data. Sci Rep 2021; 11:14416. [PMID: 34257369 PMCID: PMC8277855 DOI: 10.1038/s41598-021-93878-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Whole-exome sequencing is an attractive alternative to microarray analysis because of the low cost and potential ability to detect copy number variations (CNV) of various sizes (from 1-2 exons to several Mb). Previous comparison of the most popular CNV calling tools showed a high portion of false-positive calls. Moreover, due to a lack of a gold standard CNV set, the results are limited and incomparable. Here, we aimed to perform a comprehensive analysis of tools capable of germline CNV calling available at the moment using a single CNV standard and reference sample set. Compiling variants from previous studies with Bayesian estimation approach, we constructed an internal standard for NA12878 sample (pilot National Institute of Standards and Technology Reference Material) including 110,050 CNV or non-CNV exons. The standard was used to evaluate the performance of 16 germline CNV calling tools on the NA12878 sample and 10 correlated exomes as a reference set with respect to length distribution, concordance, and efficiency. Each algorithm had a certain range of detected lengths and showed low concordance with other tools. Most tools are focused on detection of a limited number of CNVs one to seven exons long with a false-positive rate below 50%. EXCAVATOR2, exomeCopy, and FishingCNV focused on detection of a wide range of variations but showed low precision. Upon unified comparison, the tools were not equivalent. The analysis performed allows choosing algorithms or ensembles of algorithms most suitable for a specific goal, e.g. population studies or medical genetics.
Collapse
Affiliation(s)
- Veronika Gordeeva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia.
| | - Elena Sharova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Konstantin Babalyan
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Rinat Sultanov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, Russia
| | - Vadim M Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Georgij Arapidi
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
Qin F, Luo X, Cai G, Xiao F. Shall genomic correlation structure be considered in copy number variants detection? Brief Bioinform 2021; 22:6295811. [PMID: 34114005 DOI: 10.1093/bib/bbab215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/16/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
Copy number variation has been identified as a major source of genomic variation associated with disease susceptibility. With the advent of whole-exome sequencing (WES) technology, massive WES data have been generated, allowing for the identification of copy number variants (CNVs) in the protein-coding regions with direct functional interpretation. We have previously shown evidence of the genomic correlation structure in array data and developed a novel chromosomal breakpoint detection algorithm, LDcnv, which showed significantly improved detection power through integrating the correlation structure in a systematic modeling manner. However, it remains unexplored whether the genomic correlation exists in WES data and how such correlation structure integration can improve the CNV detection accuracy. In this study, we first explored the correlation structure of the WES data using the 1000 Genomes Project data. Both real raw read depth and median-normalized data showed strong evidence of the correlation structure. Motivated by this fact, we proposed a correlation-based method, CORRseq, as a novel release of the LDcnv algorithm in profiling WES data. The performance of CORRseq was evaluated in extensive simulation studies and real data analysis from the 1000 Genomes Project. CORRseq outperformed the existing methods in detecting medium and large CNVs. In conclusion, it would be more advantageous to model genomic correlation structure in detecting relatively long CNVs. This study provides great insights for methodology development of CNV detection with NGS data.
Collapse
Affiliation(s)
- Fei Qin
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina (USC), Discovery 449, 915 Greene St, Columbia, SC 29208, USA
| | - Xizhi Luo
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, USC, Discovery 449, 915 Greene St, Columbia, SC 29208, USA
| | - Guoshuai Cai
- Department of Environmental Health Science, Arnold School of Public Health, USC, Discovery 449, 915 Greene St, Columbia, SC 29208, USA
| | - Feifei Xiao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, USC, Discovery 449, 915 Greene St, Columbia, SC 29208, USA
| |
Collapse
|
27
|
Yilmaz F, Null M, Astling D, Yu HC, Cole J, Santorico SA, Hallgrimsson B, Manyama M, Spritz RA, Hendricks AE, Shaikh TH. Genome-wide copy number variations in a large cohort of bantu African children. BMC Med Genomics 2021; 14:129. [PMID: 34001112 PMCID: PMC8130444 DOI: 10.1186/s12920-021-00978-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Copy number variations (CNVs) account for a substantial proportion of inter-individual genomic variation. However, a majority of genomic variation studies have focused on single-nucleotide variations (SNVs), with limited genome-wide analysis of CNVs in large cohorts, especially in populations that are under-represented in genetic studies including people of African descent. METHODS We carried out a genome-wide copy number analysis in > 3400 healthy Bantu Africans from Tanzania. Signal intensity data from high density (> 2.5 million probes) genotyping arrays were used for CNV calling with three algorithms including PennCNV, DNAcopy and VanillaICE. Stringent quality metrics and filtering criteria were applied to obtain high confidence CNVs. RESULTS We identified over 400,000 CNVs larger than 1 kilobase (kb), for an average of 120 CNVs (SE = 2.57) per individual. We detected 866 large CNVs (≥ 300 kb), some of which overlapped genomic regions previously associated with multiple congenital anomaly syndromes, including Prader-Willi/Angelman syndrome (Type1) and 22q11.2 deletion syndrome. Furthermore, several of the common CNVs seen in our cohort (≥ 5%) overlap genes previously associated with developmental disorders. CONCLUSIONS These findings may help refine the phenotypic outcomes and penetrance of variations affecting genes and genomic regions previously implicated in diseases. Our study provides one of the largest datasets of CNVs from individuals of African ancestry, enabling improved clinical evaluation and disease association of CNVs observed in research and clinical studies in African populations.
Collapse
Affiliation(s)
- Feyza Yilmaz
- Integrative and Systems Biology Program, University of Colorado Denver, Denver, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, USA
| | - Megan Null
- Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, USA
| | - David Astling
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, USA
| | - Hung-Chun Yu
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, USA
| | - Joanne Cole
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, USA
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, USA
| | - Stephanie A Santorico
- Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, USA
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, USA
- Biostatistics and Informatics, Colorado School of Public Health, Aurora, USA
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, Cumming School of Medicine and Alberta, Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Mange Manyama
- Anatomy in Radiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Richard A Spritz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, USA
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, USA
| | - Audrey E Hendricks
- Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, USA
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, USA
- Biostatistics and Informatics, Colorado School of Public Health, Aurora, USA
| | - Tamim H Shaikh
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, USA.
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, USA.
| |
Collapse
|
28
|
Luo X, Qin F, Cai G, Xiao F. Integrating genomic correlation structure improves copy number variations detection. Bioinformatics 2021; 37:312-317. [PMID: 32805016 DOI: 10.1093/bioinformatics/btaa737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/23/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
MOTIVATION Copy number variation plays important roles in human complex diseases. The detection of copy number variants (CNVs) is identifying mean shift in genetic intensities to locate chromosomal breakpoints, the step of which is referred to as chromosomal segmentation. Many segmentation algorithms have been developed with a strong assumption of independent observations in the genetic loci, and they assume each locus has an equal chance to be a breakpoint (i.e. boundary of CNVs). However, this assumption is violated in the genetics perspective due to the existence of correlation among genomic positions, such as linkage disequilibrium (LD). Our study showed that the LD structure is related to the location distribution of CNVs, which indeed presents a non-random pattern on the genome. To generate more accurate CNVs, we proposed a novel algorithm, LDcnv, that models the CNV data with its biological characteristics relating to genetic dependence structure (i.e. LD). RESULTS We theoretically demonstrated the correlation structure of CNV data in SNP array, which further supports the necessity of integrating biological structure in statistical methods for CNV detection. Therefore, we developed the LDcnv that integrated the genomic correlation structure with a local search strategy into statistical modeling of the CNV intensities. To evaluate the performance of LDcnv, we conducted extensive simulations and analyzed large-scale HapMap datasets. We showed that LDcnv presented high accuracy, stability and robustness in CNV detection and higher precision in detecting short CNVs compared to existing methods. This new segmentation algorithm has a wide scope of potential application with data from various high-throughput technology platforms. AVAILABILITY AND IMPLEMENTATION https://github.com/FeifeiXiaoUSC/LDcnv. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xizhi Luo
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Fei Qin
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Guoshuai Cai
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Feifei Xiao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
29
|
Robertson AG, Yau C, Carrot-Zhang J, Damrauer JS, Knijnenburg TA, Chambwe N, Hoadley KA, Kemal A, Zenklusen JC, Cherniack AD, Beroukhim R, Zhou W. Integrative modeling identifies genetic ancestry-associated molecular correlates in human cancer. STAR Protoc 2021; 2:100483. [PMID: 33982016 PMCID: PMC8082263 DOI: 10.1016/j.xpro.2021.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cellular and molecular aberrations contribute to the disparity of human cancer incidence and etiology between ancestry groups. Multiomics profiling in The Cancer Genome Atlas (TCGA) allows for querying of the molecular underpinnings of ancestry-specific discrepancies in human cancer. Here, we provide a protocol for integrative associative analysis of ancestry with molecular correlates, including somatic mutations, DNA methylation, mRNA transcription, miRNA transcription, and pathway activity, using TCGA data. This protocol can be generalized to analyze other cancer cohorts and human diseases. For complete details on the use and execution of this protocol, please refer to Carrot-Zhang et al. (2020). Protocols for ancestry associations with TCGA molecular data Protocols for ancestry associations with oncogenic pathways Statistical and power analysis for determining significant associations Key considerations of potential confounding factors
Collapse
Affiliation(s)
- A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Christina Yau
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,Department of Surgery, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Jian Carrot-Zhang
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anab Kemal
- National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Andrew D Cherniack
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Rameen Beroukhim
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Harvard Medical School, Boston, MA 02115, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Chen L, Abel HJ, Das I, Larson DE, Ganel L, Kanchi KL, Regier AA, Young EP, Kang CJ, Scott AJ, Chiang C, Wang X, Lu S, Christ R, Service SK, Chiang CWK, Havulinna AS, Kuusisto J, Boehnke M, Laakso M, Palotie A, Ripatti S, Freimer NB, Locke AE, Stitziel NO, Hall IM. Association of structural variation with cardiometabolic traits in Finns. Am J Hum Genet 2021; 108:583-596. [PMID: 33798444 PMCID: PMC8059371 DOI: 10.1016/j.ajhg.2021.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
The contribution of genome structural variation (SV) to quantitative traits associated with cardiometabolic diseases remains largely unknown. Here, we present the results of a study examining genetic association between SVs and cardiometabolic traits in the Finnish population. We used sensitive methods to identify and genotype 129,166 high-confidence SVs from deep whole-genome sequencing (WGS) data of 4,848 individuals. We tested the 64,572 common and low-frequency SVs for association with 116 quantitative traits and tested candidate associations using exome sequencing and array genotype data from an additional 15,205 individuals. We discovered 31 genome-wide significant associations at 15 loci, including 2 loci at which SVs have strong phenotypic effects: (1) a deletion of the ALB promoter that is greatly enriched in the Finnish population and causes decreased serum albumin level in carriers (p = 1.47 × 10-54) and is also associated with increased levels of total cholesterol (p = 1.22 × 10-28) and 14 additional cholesterol-related traits, and (2) a multi-allelic copy number variant (CNV) at PDPR that is strongly associated with pyruvate (p = 4.81 × 10-21) and alanine (p = 6.14 × 10-12) levels and resides within a structurally complex genomic region that has accumulated many rearrangements over evolutionary time. We also confirmed six previously reported associations, including five led by stronger signals in single nucleotide variants (SNVs) and one linking recurrent HP gene deletion and cholesterol levels (p = 6.24 × 10-10), which was also found to be strongly associated with increased glycoprotein level (p = 3.53 × 10-35). Our study confirms that integrating SVs in trait-mapping studies will expand our knowledge of genetic factors underlying disease risk.
Collapse
Affiliation(s)
- Lei Chen
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Haley J Abel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Indraniel Das
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - David E Larson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liron Ganel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Krishna L Kanchi
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Allison A Regier
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erica P Young
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Alexandra J Scott
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colby Chiang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xinxin Wang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shuangjia Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ryan Christ
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Susan K Service
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki 00014, Finland; Finnish Institute for Health and Welfare (THL), Helsinki 00271, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio 70210, Finland; Department of Medicine, Kuopio University Hospital, Kuopio 70210, Finland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio 70210, Finland; Department of Medicine, Kuopio University Hospital, Kuopio 70210, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki 00014, Finland; Analytical and Translational Genetics Unit (ATGU), Psychiatric & Neurodevelopmental Genetics Unit, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki 00014, Finland; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Nelson B Freimer
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Adam E Locke
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan O Stitziel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Ira M Hall
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
31
|
Romdhane L, Mezzi N, Dallali H, Messaoud O, Shan J, Fakhro KA, Kefi R, Chouchane L, Abdelhak S. A map of copy number variations in the Tunisian population: a valuable tool for medical genomics in North Africa. NPJ Genom Med 2021; 6:3. [PMID: 33420067 PMCID: PMC7794582 DOI: 10.1038/s41525-020-00166-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022] Open
Abstract
Copy number variation (CNV) is considered as the most frequent type of structural variation in the human genome. Some CNVs can act on human phenotype diversity, encompassing rare Mendelian diseases and genomic disorders. The North African populations remain underrepresented in public genetic databases in terms of single-nucleotide variants as well as for larger genomic mutations. In this study, we present the first CNV map for a North African population using the Affymetrix Genome-Wide SNP (single-nucleotide polymorphism) array 6.0 array genotyping intensity data to call CNVs in 102 Tunisian healthy individuals. Two softwares, PennCNV and Birdsuite, were used to call CNVs in order to provide reliable data. Subsequent bioinformatic analyses were performed to explore their features and patterns. The CNV map of the Tunisian population includes 1083 CNVs spanning 61.443 Mb of the genome. The CNV length ranged from 1.017 kb to 2.074 Mb with an average of 56.734 kb. Deletions represent 57.43% of the identified CNVs, while duplications and the mixed loci are less represented. One hundred and three genes disrupted by CNVs are reported to cause 155 Mendelian diseases/phenotypes. Drug response genes were also reported to be affected by CNVs. Data on genes overlapped by deletions and duplications segments and the sequence properties in and around them also provided insights into the functional and health impacts of CNVs. These findings represent valuable clues to genetic diversity and personalized medicine in the Tunisian population as well as in the ethnically similar populations from North Africa.
Collapse
Affiliation(s)
- Lilia Romdhane
- Biomedical Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.
- Department of Biology, Faculty of Science of Bizerte, Jarzouna, Tunisia.
| | - Nessrine Mezzi
- Biomedical Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hamza Dallali
- Biomedical Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Olfa Messaoud
- Biomedical Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Jingxuan Shan
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Rym Kefi
- Biomedical Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sonia Abdelhak
- Biomedical Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
32
|
Heo Y, Heo J, Han SS, Kim WJ, Cheong HS, Hong Y. Difference of copy number variation in blood of patients with lung cancer. Int J Biol Markers 2020; 36:3-9. [PMID: 33307925 DOI: 10.1177/1724600820980739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Copy number variation (CNV) in several genetic regions correlate with cancer susceptibility. Hence, this study evaluated the association between CNV and non-small cell lung cancer (NSCLC) in the peripheral blood. METHODS Blood samples of 150 patients with NSCLC and 150 normal controls were obtained from a bioresource center (Seoul, Korea). Through an epigenome-wide analysis using the MethylationEPIC BeadChip method, we extracted CNVs by using an SVS8 software-supplied multivariate method. We compared CNV frequencies between the NSCLC and controls, and then performed stratification analyses according to smoking status. RESULTS We acquired 979 CNVs, with 582 and 967 copy-number gains and losses, respectively. We identified five nominally significant associations (ACOT1, NAA60, GSDMD, HLA-DPA1, and SLC35B3 genes). Among the current smokers, the NSCLC group had more CNV losses and gains at the GSDMD gene in chromosome 8 (P=0.02) and at the ACOT1 gene in chromosome 14 (P=0.03) than the control group. It also had more CNV losses at the NAA60 gene in chromosome 16 (P=0.03) among non-smokers. In the NSCLC group, current smokers had more CNV gains and losses at the ACOT1 gene in chromosome 14 (P=0.003) and at HLA-DPA1 gene in chromosome 6 (P=0.02), respectively, than non-smokers. CONCLUSION Five nominally significant associations were found between the NSCLC and CNVs. CNVs are associated with the mechanism of lung cancer development. However, the role of CNVs in lung cancer development needs further investigation.
Collapse
Affiliation(s)
- Yeonjeong Heo
- Department of Internal Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| | - Jeongwon Heo
- Department of Internal Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| | - Seon-Sook Han
- Department of Internal Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Sogang University, Mapo-gu, Seoul, Republic of Korea
| | - Yoonki Hong
- Department of Internal Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| |
Collapse
|
33
|
El Bitar F, Al Sudairy N, Qadi N, Al Rajeh S, Alghamdi F, Al Amari H, Al Dawsari G, Alsubaie S, Al Sudairi M, Abdulaziz S, Al Tassan N. A Comprehensive Analysis of Unique and Recurrent Copy Number Variations in Alzheimer's Disease and its Related Disorders. Curr Alzheimer Res 2020; 17:926-938. [PMID: 33256577 DOI: 10.2174/1567205017666201130111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Copy number variations (CNVs) play an important role in the genetic etiology of various neurological disorders, including Alzheimer's disease (AD). Type 2 diabetes mellitus (T2DM) and major depressive disorder (MDD) were shown to have share mechanisms and signaling pathways with AD. OBJECTIVE We aimed to assess CNVs regions that may harbor genes contributing to AD, T2DM, and MDD in 67 Saudi familial and sporadic AD patients, with no alterations in the known genes of AD and genotyped previously for APOE. METHODS DNA was analyzed using the CytoScan-HD array. Two layers of filtering criteria were applied. All the identified CNVs were checked in the Database of Genomic Variants (DGV). RESULTS A total of 1086 CNVs (565 gains and 521 losses) were identified in our study. We found 73 CNVs harboring genes that may be associated with AD, T2DM or MDD. Nineteen CNVs were novel. Most importantly, 42 CNVs were unique in our studied cohort existing only in one patient. Two large gains on chromosomes 1 and 13 harbored genes implicated in the studied disorders. We identified CNVs in genes that encode proteins involved in the metabolism of amyloid-β peptide (AGRN, APBA2, CR1, CR2, IGF2R, KIAA0125, MBP, RER1, RTN4R, VDR and WISPI) or Tau proteins (CACNAIC, CELF2, DUSP22, HTRA1 and SLC2A14). CONCLUSION The present work provided information on the presence of CNVs related to AD, T2DM, and MDD in Saudi Alzheimer's patients.
Collapse
Affiliation(s)
- Fadia El Bitar
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nourah Al Sudairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Najeeb Qadi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Fatimah Alghamdi
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hala Al Amari
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ghadeer Al Dawsari
- Institute of Biology and Environmental Research, National Center for Genomics Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sahar Alsubaie
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mishael Al Sudairi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sara Abdulaziz
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Polygenic Risk for Major Depression Interacts with Parental Criticism in Predicting Adolescent Depressive Symptom Development. J Youth Adolesc 2020; 50:159-176. [PMID: 33230654 PMCID: PMC7815554 DOI: 10.1007/s10964-020-01353-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/02/2020] [Indexed: 11/27/2022]
Abstract
Research has focused more and more on the interplay between genetics and environment in predicting different forms of psychopathology, including depressive symptoms. While the polygenic nature of depressive symptoms is increasingly recognized, only few studies have applied a polygenic approach in gene-by-environment interaction (G × E) studies. Furthermore, longitudinal G × E studies on developmental psychopathological properties of depression are scarce. Therefore, this 6-year longitudinal community study examined the interaction between genetic risk for major depression and a multi-informant longitudinal index of critical parenting in relation to depressive symptom development from early to late adolescence. The sample consisted of 327 Dutch adolescents of European descent (56% boys; Mage T1 = 13.00, SDage T1 = 0.44). Polygenic risk for major depression was based on the Hyde et al. (Nature Genetics, 48, 1031–1036, 2016) meta-analysis and genetic sensitivity analyses were based on the 23andMe discovery dataset. Latent Growth Models suggested that polygenic risk score for major depression was associated with higher depressive symptoms across adolescence (significant main effect), particularly for those experiencing elevated levels of critical parenting (significant G × E). These findings highlight how polygenic risk for major depression in combination with a general environmental factor impacts depressive symptom development from early to late adolescence.
Collapse
|
35
|
Yang L, Niu Q, Zhang T, Zhao G, Zhu B, Chen Y, Zhang L, Gao X, Gao H, Liu GE, Li J, Xu L. Genomic sequencing analysis reveals copy number variations and their associations with economically important traits in beef cattle. Genomics 2020; 113:812-820. [PMID: 33080318 DOI: 10.1016/j.ygeno.2020.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022]
Abstract
Copy number variation (CNV) represents a major source of genetic variation, which may have potentially large effects, including alternating gene regulation and dosage, as well as contributing to gene expression and risk for normal phenotypic variability. We carried out a comprehensive analysis of CNV based on whole genome sequencing in Chinese Simmental beef cattle. Totally, we found 9313 deletion and 234 duplication events, covering 147.5 Mb autosomal regions. Within them, 257 deletion events of high frequency overlapped with 193 known RefGenes. Among these genes, we observed several genes were related to economically important traits, like residual feed intake, immune responding, pregnancy rate and muscle differentiation. Using a locus-based analysis, we identified 11 deletions and 1 duplication, which were significantly associated with three traits including carcass weight, tenderloin and longissimus muscle area. Our sequencing-based study provided important insights into investigating the association of CNVs with important traits in beef cattle.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunhao Niu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianliu Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guoyao Zhao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Zhu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lupei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xue Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huijiang Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, USA.
| | - Junya Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lingyang Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
36
|
Zhang Q, Zhang X, Liu J, Mao C, Chen S, Zhang Y, Leng L. Identification of copy number variation and population analysis of the sacred lotus ( Nelumbo nucifera). Biosci Biotechnol Biochem 2020; 84:2037-2044. [PMID: 32594903 DOI: 10.1080/09168451.2020.1786351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The sacred lotus (Nelumbo nucifera) is widely cultured in East Asia for its horticultural, agricultural, and medicinal values. Although many molecular markers had been used to extrapolate population genetics of the sacred lotus, a study of large variations, such as copy number variation (CNV), are absent up to now. In this study, we applied whole-genome re-sequencing to 24 lotus accessions, and use read depth information to genotype and filter original CNV call. Totally 448 duplications and 4,267 deletions were identified in the final CNV set. Further analysis of population structure revealed that the population structure patterns revealed by CNV and SNP are largely consistent with each other. Our result indicated that deep sequencing followed by genotyping is a quick and straightforward way to mine out CNV from the population, and the CNV along with SNP could enable us to better comprehend the biology of the plant.
Collapse
Affiliation(s)
- Qing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Xueting Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Jing Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Chaoyi Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Sha Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Yujun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Liang Leng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| |
Collapse
|
37
|
Hu Y, Xia H, Li M, Xu C, Ye X, Su R, Zhang M, Nash O, Sonstegard TS, Yang L, Liu GE, Zhou Y. Comparative analyses of copy number variations between Bos taurus and Bos indicus. BMC Genomics 2020; 21:682. [PMID: 33004001 PMCID: PMC7528262 DOI: 10.1186/s12864-020-07097-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bos taurus and Bos indicus are two main sub-species of cattle. However, the differential copy number variations (CNVs) between them are not yet well studied. RESULTS Based on the new high-quality cattle reference genome ARS-UCD1.2, we identified 13,234 non-redundant CNV regions (CNVRs) from 73 animals of 10 cattle breeds (4 Bos taurus and 6 Bos indicus), by integrating three detection strategies. While 6990 CNVRs (52.82%) were shared by Bos taurus and Bos indicus, large CNV differences were discovered between them and these differences could be used to successfully separate animals into two subspecies. We found that 2212 and 538 genes uniquely overlapped with either indicine-specific CNVRs and or taurine-specific CNVRs, respectively. Based on FST, we detected 16 candidate lineage-differential CNV segments (top 0.1%) under selection, which overlapped with eight genes (CTNNA1, ENSBTAG00000004415, PKN2, BMPER, PDE1C, DNAJC18, MUSK, and PLCXD3). Moreover, we obtained 1.74 Mbp indicine-specific sequences, which could only be mapped on the Bos indicus reference genome UOA_Brahman_1. We found these sequences and their associated genes were related to heat resistance, lipid and ATP metabolic process, and muscle development under selection. We further analyzed and validated the top significant lineage-differential CNV. This CNV overlapped genes related to muscle cell differentiation, which might be generated from a retropseudogene of CTH but was deleted along Bos indicus lineage. CONCLUSIONS This study presents a genome wide CNV comparison between Bos taurus and Bos indicus. It supplied essential genome diversity information for understanding of adaptation and phenotype differences between the Bos taurus and Bos indicus populations.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Xia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxun Li
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Building 306, Room 111, BARC-East, Beltsville, MD, 20705, USA
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chang Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaowei Ye
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruixue Su
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mai Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Oyekanmi Nash
- Centre for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | | | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Building 306, Room 111, BARC-East, Beltsville, MD, 20705, USA.
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
38
|
Jun Shin S, Wu Y, Hao N. A backward procedure for change‐point detection with applications to copy number variation detection. CAN J STAT 2020. [DOI: 10.1002/cjs.11535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Seung Jun Shin
- Department of StatisticsKorea UniversitySeoul South Korea
| | - Yichao Wu
- Department of Mathematics, Statistics, and Computer ScienceThe University of Illinois at ChicagoChicago IL U.S.A
| | - Ning Hao
- Department of MathematicsThe University of ArizonaTuscon AZ U.S.A
| |
Collapse
|
39
|
Yang L. A Practical Guide for Structural Variation Detection in the Human Genome. CURRENT PROTOCOLS IN HUMAN GENETICS 2020; 107:e103. [PMID: 32813322 PMCID: PMC7738216 DOI: 10.1002/cphg.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Profiling genetic variants-including single nucleotide variants, small insertions and deletions, copy number variations, and structural variations (SVs)-from both healthy individuals and individuals with disease is a key component of genetic and biomedical research. SVs are large-scale changes in the genome and involve breakage and rejoining of DNA fragments. They may affect thousands to millions of nucleotides and can lead to loss, gain, and reshuffling of genes and regulatory elements. SVs are known to impact gene expression and potentially result in altered phenotypes and diseases. Therefore, identifying SVs from the human genomes is particularly important. In this review, I describe advantages and disadvantages of the available high-throughput assays for the discovery of SVs, which are the most challenging genetic alterations to detect. A practical guide is offered to suggest the most suitable strategies for discovering different types of SVs including common germline, rare, somatic, and complex variants. I also discuss factors to be considered, such as cost and performance, for different strategies when designing experiments. Last, I present several approaches to identify potential SV artifacts caused by samples, experimental procedures, and computational analysis. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Lixing Yang
- Ben May Department for Cancer Research, Department of Human Genetics, University of Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Magi A, Bolognini D, Bartalucci N, Mingrino A, Semeraro R, Giovannini L, Bonifacio S, Parrini D, Pelo E, Mannelli F, Guglielmelli P, Maria Vannucchi A. Nano-GLADIATOR: real-time detection of copy number alterations from nanopore sequencing data. Bioinformatics 2020; 35:4213-4221. [PMID: 30949684 DOI: 10.1093/bioinformatics/btz241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/05/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION The past few years have seen the emergence of nanopore-based sequencing technologies which interrogate single molecule of DNA and generate reads sequentially. RESULTS In this paper, we demonstrate that, thanks to the sequentiality of the nanopore process, the data generated in the first tens of minutes of a typical MinION/GridION run can be exploited to resolve the alterations of a human genome at a karyotype level with a resolution in the order of tens of Mb, while the data produced in the first 6-12 h allow to obtain a resolution comparable to currently available array-based technologies, and thanks to a novel probabilistic approach are capable to predict the allelic fraction of genomic alteration with high accuracy. To exploit the unique characteristics of nanopore sequencing data we developed a novel software tool, Nano-GLADIATOR, that is capable to perform copy number variants/alterations detection and allelic fraction prediction during the sequencing run ('On-line' mode) and after experiment completion ('Off-line' mode). We tested Nano-GLADIATOR on publicly available ('Off-line' mode) and on novel whole genome sequencing dataset generated with MinION device ('On-line' mode) showing that our tool is capable to perform real-time copy number alterations detection obtaining good results with respect to other state-of-the-art tools. AVAILABILITY AND IMPLEMENTATION Nano-GLADIATOR is freely available at https://sourceforge.net/projects/nanogladiator/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Davide Bolognini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Niccoló Bartalucci
- Department of Experimental and Clinical Medicine, CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Alessandra Mingrino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luna Giovannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Bonifacio
- Department of Laboratory Diagnosis, Genetic Diagnosis Service, Careggi Teaching Hospital, Florence, Italy
| | - Daniela Parrini
- Department of Laboratory Diagnosis, Genetic Diagnosis Service, Careggi Teaching Hospital, Florence, Italy
| | - Elisabetta Pelo
- Department of Laboratory Diagnosis, Genetic Diagnosis Service, Careggi Teaching Hospital, Florence, Italy
| | - Francesco Mannelli
- Department of Experimental and Clinical Medicine, CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Alessandro Maria Vannucchi
- Department of Experimental and Clinical Medicine, CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| |
Collapse
|
41
|
Xiao F, Luo X, Hao N, Niu YS, Xiao X, Cai G, Amos CI, Zhang H. An accurate and powerful method for copy number variation detection. Bioinformatics 2020; 35:2891-2898. [PMID: 30649252 DOI: 10.1093/bioinformatics/bty1041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/28/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Integration of multiple genetic sources for copy number variation detection (CNV) is a powerful approach to improve the identification of variants associated with complex traits. Although it has been shown that the widely used change point based methods can increase statistical power to identify variants, it remains challenging to effectively detect CNVs with weak signals due to the noisy nature of genotyping intensity data. We previously developed modSaRa, a normal mean-based model on a screening and ranking algorithm for copy number variation identification which presented desirable sensitivity with high computational efficiency. To boost statistical power for the identification of variants, here we present a novel improvement that integrates the relative allelic intensity with external information from empirical statistics with modeling, which we called modSaRa2. RESULTS Simulation studies illustrated that modSaRa2 markedly improved both sensitivity and specificity over existing methods for analyzing array-based data. The improvement in weak CNV signal detection is the most substantial, while it also simultaneously improves stability when CNV size varies. The application of the new method to a whole genome melanoma dataset identified novel candidate melanoma risk associated deletions on chromosome bands 1p22.2 and duplications on 6p22, 6q25 and 19p13 regions, which may facilitate the understanding of the possible roles of germline copy number variants in the etiology of melanoma. AVAILABILITY AND IMPLEMENTATION http://c2s2.yale.edu/software/modSaRa2 or https://github.com/FeifeiXiaoUSC/modSaRa2. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Feifei Xiao
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Xizhi Luo
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Ning Hao
- Department of Mathematics, University of Arizona, Tucson, AZ, USA
| | - Yue S Niu
- Department of Mathematics, University of Arizona, Tucson, AZ, USA
| | - Xiangjun Xiao
- Department of Quantitative Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Guoshuai Cai
- Department of Environmental Health Science, University of South Carolina, Columbia, SC, USA
| | - Christopher I Amos
- Department of Quantitative Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Heping Zhang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
42
|
Chaubey A, Shenoy S, Mathur A, Ma Z, Valencia CA, Reddy Nallamilli BR, Szekeres E, Stansberry L, Liu R, Hegde MR. Low-Pass Genome Sequencing. J Mol Diagn 2020; 22:823-840. [DOI: 10.1016/j.jmoldx.2020.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/02/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023] Open
|
43
|
Li L, Yang P, Shi S, Zhang Z, Shi Q, Xu J, He H, Lei C, Wang E, Chen H, Huang Y. Association Analysis to Copy Number Variation (CNV) of Opn4 Gene with Growth Traits of Goats. Animals (Basel) 2020; 10:ani10030441. [PMID: 32155759 PMCID: PMC7143651 DOI: 10.3390/ani10030441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Copy number variation is a common genetic polymorphism and is mainly represented by submicroscopic levels of deletion and duplication which are caused by rearrangement of the genome. It is well known that copy number variations of genes are associated with growth traits of livestock. In this study, we detected the correlation between the copy number variation of the Opn4 gene and growth traits of Guizhou goats. We found that the copy number variation of the Opn4 gene had a significant influence on the body length and body weight of Guizhou goats. The results may provide preliminary suggestions into Guizhou goat breeding and new insights into the future of CNV as a new promising molecular marker in animal breeding. Abstract Extensive research has been carried out regarding the correlation between the growth traits of livestock and genetic polymorphisms, including single nucleotide polymorphisms and copy number variations (CNV). The purpose of this study was to analyze the CNV and its genetic effects of the Opn4 gene in 284 Guizhou goats (Guizhou black goat: n = 186, Guizhou white goat: n = 98). We used qPCR to detect the CNV of the Opn4 gene in Guizhou goats, and the classification results were correlated with the corresponding individual growth traits by SPSS software. The results showed that the Opn4 gene had a superior effect on growth traits with multiple copy variants in Guizhou black goats, and there was a significant correlation between copy number variation sites and body length traits. Contrary to the former conclusion, in Guizhou white goats, individuals with the Normal copy number type showed superior growth traits and copy number variant sites were significantly associated with body weight traits. Therefore, the CNV of the Opn4 gene can be used as a candidate molecular genetic marker to improve goat growth traits, speeding up the breeding process of goat elite varieties.
Collapse
Affiliation(s)
- LiJuan Li
- Institute of Bijie Test Area, Guizhou University of Engineering Science, Bijie, Guizhou 551700, China; (L.L.)
| | - Peng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - ShuYue Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - ZiJing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 45002, China; (Z.Z.); (Q.S.)
| | - QiaoTing Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 45002, China; (Z.Z.); (Q.S.)
| | - JiaWei Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - Hua He
- Institute of Bijie Test Area, Guizhou University of Engineering Science, Bijie, Guizhou 551700, China; (L.L.)
- College of Veterinary Medicine, Northwest A&F University, Yangling Shaanxi 712100, China
| | - ChuZhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - ErYao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 45002, China; (Z.Z.); (Q.S.)
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - YongZhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
- Correspondence: ; Tel.: +86-29-87092102; Fax: +86-29-87092164
| |
Collapse
|
44
|
Amiri Ghanatsaman Z, Wang GD, Asadollahpour Nanaei H, Asadi Fozi M, Peng MS, Esmailizadeh A, Zhang YP. Whole genome resequencing of the Iranian native dogs and wolves to unravel variome during dog domestication. BMC Genomics 2020; 21:207. [PMID: 32131720 PMCID: PMC7057629 DOI: 10.1186/s12864-020-6619-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/25/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Advances in genome technology have simplified a new comprehension of the genetic and historical processes crucial to rapid phenotypic evolution under domestication. To get new insight into the genetic basis of the dog domestication process, we conducted whole-genome sequence analysis of three wolves and three dogs from Iran which covers the eastern part of the Fertile Crescent located in Southwest Asia where the independent domestication of most of the plants and animals has been documented and also high haplotype sharing between wolves and dog breeds has been reported. RESULTS Higher diversity was found within the wolf genome compared with the dog genome. A total number of 12.45 million SNPs were detected in all individuals (10.45 and 7.82 million SNPs were identified for all the studied wolves and dogs, respectively) and a total number of 3.49 million small Indels were detected in all individuals (3.11 and 2.24 million small Indels were identified for all the studied wolves and dogs, respectively). A total of 10,571 copy number variation regions (CNVRs) were detected across the 6 individual genomes, covering 154.65 Mb, or 6.41%, of the reference genome (canFam3.1). Further analysis showed that the distribution of deleterious variants in the dog genome is higher than the wolf genome. Also, genomic annotation results from intron and intergenic regions showed that the proportion of variations in the wolf genome is higher than that in the dog genome, while the proportion of the coding sequences and 3'-UTR in the dog genome is higher than that in the wolf genome. The genes related to the olfactory and immune systems were enriched in the set of the structural variants (SVs) identified in this work. CONCLUSIONS Our results showed more deleterious mutations and coding sequence variants in the domestic dog genome than those in wolf genome. By providing the first Iranian dog and wolf variome map, our findings contribute to understanding the genetic architecture of the dog domestication.
Collapse
Affiliation(s)
- Zeinab Amiri Ghanatsaman
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
- Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
- Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Masood Asadi Fozi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
45
|
Abstract
Identifying structural variation (SV) is essential for genome interpretation but has been historically difficult due to limitations inherent to available genome technologies. Detection methods that use ensemble algorithms and emerging sequencing technologies have enabled the discovery of thousands of SVs, uncovering information about their ubiquity, relationship to disease and possible effects on biological mechanisms. Given the variability in SV type and size, along with unique detection biases of emerging genomic platforms, multiplatform discovery is necessary to resolve the full spectrum of variation. Here, we review modern approaches for investigating SVs and proffer that, moving forwards, studies integrating biological information with detection will be necessary to comprehensively understand the impact of SV in the human genome.
Collapse
Affiliation(s)
- Steve S Ho
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan E Mills
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
46
|
Shen F, Kidd JM. Rapid, Paralog-Sensitive CNV Analysis of 2457 Human Genomes Using QuicK-mer2. Genes (Basel) 2020; 11:genes11020141. [PMID: 32013076 PMCID: PMC7073954 DOI: 10.3390/genes11020141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
Gene duplication is a major mechanism for the evolution of gene novelty, and copy-number variation makes a major contribution to inter-individual genetic diversity. However, most approaches for studying copy-number variation rely upon uniquely mapping reads to a genome reference and are unable to distinguish among duplicated sequences. Specialized approaches to interrogate specific paralogs are comparatively slow and have a high degree of computational complexity, limiting their effective application to emerging population-scale data sets. We present QuicK-mer2, a self-contained, mapping-free approach that enables the rapid construction of paralog-specific copy-number maps from short-read sequence data. This approach is based on the tabulation of unique k-mer sequences from short-read data sets, and is able to analyze a 20X coverage human genome in approximately 20 min. We applied our approach to newly released sequence data from the 1000 Genomes Project, constructed paralog-specific copy-number maps from 2457 unrelated individuals, and uncovered copy-number variation of paralogous genes. We identify nine genes where none of the analyzed samples have a copy number of two, 92 genes where the majority of samples have a copy number other than two, and describe rare copy number variation effecting multiple genes at the APOBEC3 locus.
Collapse
Affiliation(s)
- Feichen Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Jeffrey M. Kidd
- Department of Human Genetics and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
47
|
Lee YL, Bosse M, Mullaart E, Groenen MAM, Veerkamp RF, Bouwman AC. Functional and population genetic features of copy number variations in two dairy cattle populations. BMC Genomics 2020; 21:89. [PMID: 31992181 PMCID: PMC6988284 DOI: 10.1186/s12864-020-6496-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Copy Number Variations (CNVs) are gain or loss of DNA segments that are known to play a role in shaping a wide range of phenotypes. In this study, we used two dairy cattle populations, Holstein Friesian and Jersey, to discover CNVs using the Illumina BovineHD Genotyping BeadChip aligned to the ARS-UCD1.2 assembly. The discovered CNVs were investigated for their functional impact and their population genetics features. RESULTS We discovered 14,272 autosomal CNVs, which were aggregated into 1755 CNV regions (CNVR) from 451 animals. These CNVRs together cover 2.8% of the bovine autosomes. The assessment of the functional impact of CNVRs showed that rare CNVRs (MAF < 0.01) are more likely to overlap with genes, than common CNVRs (MAF ≥ 0.05). The Population differentiation index (Fst) based on CNVRs revealed multiple highly diverged CNVRs between the two breeds. Some of these CNVRs overlapped with candidate genes such as MGAM and ADAMTS17 genes, which are related to starch digestion and body size, respectively. Lastly, linkage disequilibrium (LD) between CNVRs and BovineHD BeadChip SNPs was generally low, close to 0, although common deletions (MAF ≥ 0.05) showed slightly higher LD (r2 = ~ 0.1 at 10 kb distance) than the rest. Nevertheless, this LD is still lower than SNP-SNP LD (r2 = ~ 0.5 at 10 kb distance). CONCLUSIONS Our analyses showed that CNVRs detected using BovineHD BeadChip arrays are likely to be functional. This finding indicates that CNVs can potentially disrupt the function of genes and thus might alter phenotypes. Also, the population differentiation index revealed two candidate genes, MGAM and ADAMTS17, which hint at adaptive evolution between the two populations. Lastly, low CNVR-SNP LD implies that genetic variation from CNVs might not be fully captured in routine animal genetic evaluation, which relies solely on SNP markers.
Collapse
Affiliation(s)
- Young-Lim Lee
- Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, Wageningen, AH, 6700, the Netherlands.
| | - Mirte Bosse
- Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, Wageningen, AH, 6700, the Netherlands
| | | | - Martien A M Groenen
- Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, Wageningen, AH, 6700, the Netherlands
| | - Roel F Veerkamp
- Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, Wageningen, AH, 6700, the Netherlands
| | - Aniek C Bouwman
- Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, Wageningen, AH, 6700, the Netherlands
| |
Collapse
|
48
|
Endedijk HM, Nelemans SA, Schür RR, Boks MPM, van Lier P, Meeus W, Branje S, Vinkers CH. The Role of Stress and Mineralocorticoid Receptor Haplotypes in the Development of Symptoms of Depression and Anxiety During Adolescence. Front Psychiatry 2020; 11:367. [PMID: 32499723 PMCID: PMC7242744 DOI: 10.3389/fpsyt.2020.00367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Adolescence is a critical developmental period characterized by heightened levels of depressive and anxiety symptoms. Experiencing chronic or environmental stress, for example, as a result of traumatic events or insensitive parenting, increases the risk for depression and anxiety. However, not all adolescents develop depressive or anxiety symptoms following environmental stressors, due to differences in stress resilience. One of the factors involved in stress resilience is enhanced functionality of the mineralocorticoid receptor (MR), one of the two brain receptors for the stress hormone cortisol. High levels of MR functionality result in relatively lower rates of depression, particularly in women that experienced stress. However, much less is known about MR functionality in relation to the development of adolescent depression and to other internalizing behavior problems such as anxiety. We therefore examined whether the effects of a functional MR haplotype (i.e., the MR CA haplotype) on the development of depressive and anxiety symptoms are sex-dependent, as well as interact with environmental stressors. In a community sample of adolescents (N = 343, 9 waves between age 13 and 24), environmental stressors were operationalized as parental psychological control and childhood trauma. Results showed a sex-dependent effect of MR CA haplotype on the development of depressive symptoms but not for anxiety symptoms. MR CA haplotypes were protective for girls but not for boys. This study sheds more light on the sex-dependent effects of MR functionality related to the development of depressive and anxiety symptoms during adolescence.
Collapse
Affiliation(s)
- Hinke M Endedijk
- Department of Youth and Family, Utrecht University, Utrecht, Netherlands
| | | | - Remmelt R Schür
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marco P M Boks
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pol van Lier
- Clinical Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wim Meeus
- Department of Youth and Family, Utrecht University, Utrecht, Netherlands
| | - Susan Branje
- Department of Youth and Family, Utrecht University, Utrecht, Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, Netherlands.,Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
49
|
Winberg J, Gustavsson P, Sahlin E, Larsson M, Ehrén H, Fossum M, Wester T, Nordgren A, Nordenskjöld A. Pathogenic copy number variants are detected in a subset of patients with gastrointestinal malformations. Mol Genet Genomic Med 2019; 8:e1084. [PMID: 31837127 PMCID: PMC7005659 DOI: 10.1002/mgg3.1084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Background Gastrointestinal atresias and urological defects are main causes of pediatric surgery in infants. As copy number variants (CNVs) have been shown to be involved in the development of congenital malformations, the aim of our study was to investigate the presence of CNVs in patients with gastrointestinal and urological malformations as well as the possibility of tissue‐specific mosaicism for CNVs in the cohort. Methods We have collected tissue and/or blood samples from 25 patients with anorectal malformations, esophageal atresia, or hydronephrosis, and screened for pathogenic CNVs using array comparative genomic hybridization (array‐CGH). Results We detected pathogenic aberrations in 2/25 patients (8%) and report a novel possible susceptibility region for esophageal atresia on 15q26.3. CNV analysis in different tissues from the same patients did not reveal evidence of tissue‐specific mosaicism. Conclusion Our study shows that it is important to perform clinical genetic investigations, including CNV analysis, in patients with congenital gastrointestinal malformations since this leads to improved information to families as well as an increased understanding of the pathogenesis.
Collapse
Affiliation(s)
- Johanna Winberg
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ellika Sahlin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Larsson
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Ehrén
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Fossum
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Wester
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Karim MR, Rahman A, Jares JB, Decker S, Beyan O. A snapshot neural ensemble method for cancer-type prediction based on copy number variations. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04616-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractAn accurate diagnosis and prognosis for cancer are specific to patients with particular cancer types and molecular traits, which needs to address carefully. The discovery of important biomarkers is becoming an important step toward understanding the molecular mechanisms of carcinogenesis in which genomics data and clinical outcomes need to be analyzed before making any clinical decision. Copy number variations (CNVs) are found to be associated with the risk of individual cancers and hence can be used to reveal genetic predispositions before cancer develops. In this paper, we collect the CNVs data about 8000 cancer patients covering 14 different cancer types from The Cancer Genome Atlas. Then, two different sparse representations of CNVs based on 578 oncogenes and 20,308 protein-coding genes, including genomic deletions and duplication across the samples, are prepared. Then, we train Conv-LSTM and convolutional autoencoder (CAE) networks using both representations and create snapshot models. While the Conv-LSTM can capture locally and globally important features, CAE can utilize unsupervised pretraining to initialize the weights in the subsequent convolutional layers against the sparsity. Model averaging ensemble (MAE) is then applied to combine the snapshot models in order to make a single prediction. Finally, we identify most significant CNVs biomarkers using guided-gradient class activation map plus (GradCAM++) and rank top genes for different cancer types. Results covering several experiments show fairly high prediction accuracies for the majority of cancer types. In particular, using protein-coding genes, Conv-LSTM and CAE networks can predict cancer types correctly at least 72.96% and 76.77% of the cases, respectively. Contrarily, using oncogenes gives moderately higher accuracies of 74.25% and 78.32%, whereas the snapshot model based on MAE shows overall 2.5% of accuracy improvement.
Collapse
|