1
|
Har-Zahav A, Tobar A, Fried S, Sivan R, Wilkins BJ, Russo P, Shamir R, Wells RG, Gurevich M, Waisbourd-Zinman O. Oral N-acetylcysteine ameliorates liver fibrosis and enhances regenerative responses in Mdr2 knockout mice. Sci Rep 2024; 14:26513. [PMID: 39489865 PMCID: PMC11532366 DOI: 10.1038/s41598-024-78387-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024] Open
Abstract
Cholangiopathies are poorly understood disorders with no effective therapy. The extrahepatic biliary tree phenotype is less studied compared to the intrahepatic biliary injury in both human disease and Mdr2-/- mice, the established cholestatic mouse model. This study aimed to characterize the extra hepatic biliary tree of Mdr2-/- mice at various ages and to determine if injury can be repaired with the antioxidant and glutathione precursor N-acetyl-L-Cysteine treatment (NAC). We characterized extra hepatic bile ducts (EHBD)s at various ages from 2 to 40 weeks old FVB/N and Mdr2-/- mice. We examined the therapeutic potential of local NAC ex vivo using EHBD explants at early and late stages of injury; and systematic therapy by in vivo oral administration for 3 weeks. EHBD and liver sections were assessed by histology and immunofluorescent stains. Serum liver enzyme activities were analyzed, and liver spatial protein expression analysis was performed. Mdr2-/- mice developed progressive EHBD injury, similar to extrahepatic PSC. NAC treatment of ex vivo EHBD explants led to improved duct morphology. In vivo, oral administration of NAC improved liver fibrosis, and decreased liver enzyme activities. Spatial protein analysis revealed cell-type specific differential response to NAC, collectively indicating a transition from pro-apoptotic into proliferative state. NAC treatment should be further investigated as a potential therapeutic option for human cholangiopathies.
Collapse
Affiliation(s)
- Adi Har-Zahav
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Ana Tobar
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
- Department of Pathology, Rabin Medical Center, Petach Tikva, Israel
| | - Sophia Fried
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Sivan
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pierre Russo
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Raanan Shamir
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Rebecca G Wells
- Departments of Medicine, Bioengineering, and Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Gurevich
- The Organ Transplantation Division, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Orith Waisbourd-Zinman
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel.
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Zhang J, Wang L, Guo H, Kong S, Li W, He Q, Ding L, Yang B. The role of Tim-3 blockade in the tumor immune microenvironment beyond T cells. Pharmacol Res 2024; 209:107458. [PMID: 39396768 DOI: 10.1016/j.phrs.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Numerous preclinical studies have demonstrated the inhibitory function of T cell immunoglobulin mucin domain-containing protein 3 (Tim-3) on T cells as an inhibitory receptor, leading to the clinical development of anti-Tim-3 blocking antibodies. However, recent studies have shown that Tim-3 is expressed not only on T cells but also on multiple cell types in the tumor microenvironment (TME), including dendritic cells (DCs), natural killer (NK) cells, macrophages, and tumor cells. Therefore, Tim-3 blockade in the immune microenvironment not only affect the function of T cells but also influence the functions of other cells. For example, Tim-3 blockade can enhance the ability of DCs to regulate innate and adaptive immunity. The role of Tim-3 blockade in NK cells function is controversial, as it can enhance the antitumor function of NK cells under certain conditions while having the opposite effect in other situations. Additionally, Tim-3 blockade can promote the reversal of macrophage polarization from the M2 phenotype to the M1 phenotype. Furthermore, Tim-3 blockade can inhibit tumor development by suppressing the proliferation and metastasis of tumor cells. In summary, increasing evidence has shown that Tim-3 in other cell types also plays a critical role in the efficacy of anti-Tim-3 therapy. Understanding the function of anti-Tim-3 therapy in non-T cells can help elucidate the diverse responses observed in clinical patients, leading to better development of relevant therapeutic strategies. This review aims to discuss the role of Tim-3 in the TME and emphasize the impact of Tim-3 blockade in the tumor immune microenvironment beyond T cells.
Collapse
Affiliation(s)
- Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijia Kong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
3
|
Ahmady F, Curpen P, Perriman L, Fonseca Teixeira A, Wu S, Zhu HJ, Poddar A, Jayachandran A, Kannourakis G, Luwor RB. Reduced T and NK Cell Activity in Glioblastoma Patients Correlates with TIM-3 and BAT3 Dysregulation. Cells 2024; 13:1777. [PMID: 39513882 PMCID: PMC11545661 DOI: 10.3390/cells13211777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Inhibitory receptors are critical for regulating immune cell function. In cancer, these receptors are often over-expressed on the cell surface of T and NK cells, leading to reduced anti-tumor activity. Here, through the analysis of 11 commonly studied checkpoint and inhibitory receptors, we discern that only HAVCR2 (TIM3) and ENTPD1 (CD39) display significantly greater gene expression in glioblastoma compared to normal brain and lower grade glioma. Cell surface TIM-3, but not ENTPD1, was also elevated on activated CD4+ and CD8+ T cells, as well as on NK cells from glioblastoma patients compared to healthy donor T and NK cells. A subsequent analysis of molecules known to co-ordinate TIM-3 function and regulation was performed, which revealed that BAT3 expression was significantly reduced in CD4+ and CD8+ T cells, as well as NK cells from glioblastoma patients compared to counterparts from healthy donors. These pro-inhibitory changes are also correlated with reduced levels of the activation marker CD69 and the pro-inflammatory cytokine IFNγ in CD4+ and CD8+ T cells, as well as NK cells from glioblastoma patients. Collectively, these data reveal that glioblastoma-mediated CD4+ and CD8+ T cell and NK cell suppression is due, at least in part, to dysregulated TIM-3 and BAT3 expression and the associated downstream immunoregulatory and dysfunctional effects.
Collapse
Affiliation(s)
- Farah Ahmady
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (L.P.); (A.P.); (A.J.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - Peter Curpen
- Townsville Hospital and Health Service, James Cook University, Townsville, QLD 4814, Australia;
| | - Louis Perriman
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (L.P.); (A.P.); (A.J.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (A.F.T.); (S.W.); (H.-J.Z.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Siqi Wu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (A.F.T.); (S.W.); (H.-J.Z.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (A.F.T.); (S.W.); (H.-J.Z.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Arpita Poddar
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (L.P.); (A.P.); (A.J.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (L.P.); (A.P.); (A.J.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (L.P.); (A.P.); (A.J.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - Rodney B. Luwor
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (L.P.); (A.P.); (A.J.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (A.F.T.); (S.W.); (H.-J.Z.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| |
Collapse
|
4
|
Santana PT, de Lima IS, da Silva e Souza KC, Barbosa PHS, de Souza HSP. Persistent Activation of the P2X7 Receptor Underlies Chronic Inflammation and Carcinogenic Changes in the Intestine. Int J Mol Sci 2024; 25:10874. [PMID: 39456655 PMCID: PMC11507540 DOI: 10.3390/ijms252010874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Aberrant signaling through damage-associated molecular patterns (DAMPs) has been linked to several health disorders, attracting considerable research interest over the last decade. Adenosine triphosphate (ATP), a key extracellular DAMP, activates the purinergic receptor P2X7, which acts as a danger sensor in immune cells and is implicated in distinct biological functions, including cell death, production of pro-inflammatory cytokines, and defense against microorganisms. In addition to driving inflammation mediated by immune and non-immune cells, the persistent release of endogenous DAMPs, including ATP, has been shown to result in epigenetic modifications. In intestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), consequent amplification of the inflammatory response and the resulting epigenetic reprogramming may impact the development of pathological changes associated with specific disease phenotypes. P2X7 is overexpressed in the gut mucosa of patients with IBD, whereas the P2X7 blockade prevents the development of chemically induced experimental colitis. Recent data suggest a role for P2X7 in determining gut microbiota composition. Regulatory mechanisms downstream of the P2X7 receptor, combined with signals from dysbiotic microbiota, trigger intracellular signaling pathways and inflammasomes, intensify inflammation, and foster colitis-associated CRC development. Preliminary studies targeting the ATP-P2X7 pathway have shown favorable therapeutic effects in human IBD and experimental colitis.
Collapse
Affiliation(s)
- Patricia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| | - Isadora Schmukler de Lima
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Karen Cristina da Silva e Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Pedro Henrique Sales Barbosa
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Heitor Siffert Pereira de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| |
Collapse
|
5
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
6
|
Li LR, Chen L, Sun ZJ. Igniting hope: Harnessing NLRP3 inflammasome-GSDMD-mediated pyroptosis for cancer immunotherapy. Life Sci 2024; 354:122951. [PMID: 39127315 DOI: 10.1016/j.lfs.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In the contemporary landscape of oncology, immunotherapy, represented by immune checkpoint blockade (ICB) therapy, stands out as a beacon of innovation in cancer treatment. Despite its promise, the therapy's progression is hindered by suboptimal clinical response rates. Addressing this challenge, the modulation of the NLRP3 inflammasome-GSDMD-mediated pyroptosis pathway holds promise as a means to augment the efficacy of immunotherapy. In the pathway, the NLRP3 inflammasome serves as a pivotal molecular sensor that responds to inflammatory stimuli within the organism. Its activation leads to the release of cytokines interleukin 1β and interleukin 18 through the cleavage of GSDMD, thereby forming membrane pores and potentially resulting in pyroptosis. This cascade of processes exerts a profound impact on tumor development and progression, with its function and expression exhibiting variability across different tumor types and developmental stages. Consequently, understanding the specific roles of the NLRP3 inflammasome and GSDMD-mediated pyroptosis in diverse tumors is imperative for comprehending tumorigenesis and crafting precise therapeutic strategies. This review aims to elucidate the structure and activation mechanisms of the NLRP3 inflammasome, as well as the induction mechanisms of GSDMD-mediated pyroptosis. Additionally, we provide a comprehensive overview of the involvement of this pathway in various cancer types and its applications in tumor immunotherapy, nanotherapy, and other fields. Emphasis is placed on the feasibility of leveraging this approach to enhance ICB therapy within the field of immunotherapy. Furthermore, we discuss the potential applications of this pathway in other immunotherapy methods, such as chimeric antigen receptor T-cell (CAR-T) therapy and tumor vaccines.
Collapse
Affiliation(s)
- Ling-Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Zhou Y, Na C, Li Z. Novel insights into immune cells modulation of tumor resistance. Crit Rev Oncol Hematol 2024; 202:104457. [PMID: 39038527 DOI: 10.1016/j.critrevonc.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor resistance poses a significant challenge to effective cancer treatment, making it imperative to explore new therapeutic strategies. Recent studies have highlighted the profound involvement of immune cells in the development of tumor resistance. Within the tumor microenvironment, macrophages undergo polarization into the M2 phenotype, thus promoting the emergence of drug-resistant tumors. Neutrophils contribute to tumor resistance by forming extracellular traps. While T cells and natural killer (NK) cells exert their impact through direct cytotoxicity against tumor cells. Additionally, dendritic cells (DCs) have been implicated in preventing tumor drug resistance by stimulating T cell activation. In this review, we provide a comprehensive summary of the current knowledge regarding immune cell-mediated modulation of tumor resistance at the molecular level, with a particular focus on macrophages, neutrophils, DCs, T cells, and NK cells. The targeting of immune cell modulation exhibits considerable potential for addressing drug resistance, and an in-depth understanding of the molecular interactions between immune cells and tumor cells holds promise for the development of innovative therapies. Furthermore, we explore the clinical implications of these immune cells in the treatment of drug-resistant tumors. This review emphasizes the exploration of novel approaches that harness the functional capabilities of immune cells to effectively overcome drug-resistant tumors.
Collapse
Affiliation(s)
- Yi Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Chuhan Na
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| |
Collapse
|
8
|
Kader T, Lin JR, Hug C, Coy S, Chen YA, de Bruijn I, Shih N, Jung E, Pelletier RJ, Leon ML, Mingo G, Omran DK, Lee JS, Yapp C, Satravada BA, Kundra R, Xu Y, Chan S, Tefft JB, Muhlich J, Kim S, Gysler SM, Agudo J, Heath JR, Schultz N, Drescher C, Sorger PK, Drapkin R, Santagata S. Multimodal Spatial Profiling Reveals Immune Suppression and Microenvironment Remodeling in Fallopian Tube Precursors to High-Grade Serous Ovarian Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615007. [PMID: 39386723 PMCID: PMC11463462 DOI: 10.1101/2024.09.25.615007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
High-Grade Serous Ovarian Cancer (HGSOC) originates from fallopian tube (FT) precursors. However, the molecular changes that occur as precancerous lesions progress to HGSOC are not well understood. To address this, we integrated high-plex imaging and spatial transcriptomics to analyze human tissue samples at different stages of HGSOC development, including p53 signatures, serous tubal intraepithelial carcinomas (STIC), and invasive HGSOC. Our findings reveal immune modulating mechanisms within precursor epithelium, characterized by chromosomal instability, persistent interferon (IFN) signaling, and dysregulated innate and adaptive immunity. FT precursors display elevated expression of MHC-class I, including HLA-E, and IFN-stimulated genes, typically linked to later-stage tumorigenesis. These molecular alterations coincide with progressive shifts in the tumor microenvironment, transitioning from immune surveillance in early STICs to immune suppression in advanced STICs and cancer. These insights identify potential biomarkers and therapeutic targets for HGSOC interception and clarify the molecular transitions from precancer to cancer.
Collapse
Affiliation(s)
- Tanjina Kader
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shannon Coy
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Ino de Bruijn
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Natalie Shih
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Mariana Lopez Leon
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gabriel Mingo
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dalia Khaled Omran
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jong Suk Lee
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | | | - Ritika Kundra
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Yilin Xu
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sabrina Chan
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Juliann B Tefft
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah Kim
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stefan M Gysler
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nikolaus Schultz
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Charles Drescher
- Swedish Cancer Institute Gynecologic Oncology and Pelvic Surgery, Seattle, WA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Ghosh S, Dutta R, Ghatak D, Goswami D, De R. Immunometabolic characteristics of Dendritic Cells and its significant modulation by mitochondria-associated signaling in the tumor microenvironment influence cancer progression. Biochem Biophys Res Commun 2024; 726:150268. [PMID: 38909531 DOI: 10.1016/j.bbrc.2024.150268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Dendritic cells (DCs) mediated T-cell responses is critical to anti-tumor immunity. This study explores immunometabolic attributes of DC, emphasizing on mitochondrial association, in Tumor Microenvironment (TME) that regulate cancer progression. Conventional DC subtypes cross-present tumor-associated antigens to activate lymphocytes. However, plasmacytoid DCs participate in both pro- and anti-tumor signaling where mitochondrial reactive oxygen species (mtROS) play crucial role. CTLA-4, CD-47 and other surface-receptors of DC negatively regulates T-cell. Increased glycolysis-mediated mitochondrial citrate buildup and translocation to cytosol with augmented NADPH, enhances mitochondrial fatty acid synthesis fueling DCs. Different DC subtypes and stages, exhibit variable mitochondrial content, membrane potential, structural dynamics and bioenergetic metabolism regulated by various cytokine stimulation, e.g., GM-CSF, IL-4, etc. CD8α+ cDC1s augmented oxidative phosphorylation (OXPHOS) which diminishes at advance effector stages. Glutaminolysis in mitochondria supplement energy in DCs but production of kynurenine and other oncometabolites leads to immunosuppression. Mitochondria-associated DAMPs cause activation of cGAS-STING pathway and inflammasome oligomerization stimulating DC and T cells. In this study, through a comprehensive survey and critical analysis of the latest literature, the potential of DC metabolism for more effective tumor therapy is highlighted. This underscores the need for future research to explore specific therapeutic targets and potential drug candidates.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
10
|
Greppi M, De Franco F, Obino V, Rebaudi F, Goda R, Frumento D, Vita G, Baronti C, Melaiu O, Bozzo M, Candiani S, Vellone VG, Papaccio F, Pesce S, Marcenaro E. NK Cell Receptors in Anti-Tumor and Healthy Tissue Protection: Mechanisms and Therapeutic Advances. Immunol Lett 2024:106932. [PMID: 39303993 DOI: 10.1016/j.imlet.2024.106932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Natural Killer (NK) cells are integral to the innate immune system, renowned for their ability to target and eliminate cancer cells without the need for antigen presentation, sparing normal tissues. These cells are crucial in cancer immunosurveillance due to their diverse array of activating and inhibitory receptors that modulate their cytotoxic activity. However, the tumor microenvironment can suppress NK cell function through various mechanisms. Over recent decades, research has focused on overcoming these tumor escape mechanisms. Initially, efforts concentrated on enhancing T cell activity, leading to impressive results with immunotherapeutic approaches aimed at boosting T cell responses. Nevertheless, a substantial number of patients do not benefit from these treatments and continue to seek effective alternatives. In this context, NK cells present a promising avenue for developing new treatments, given their potent cytotoxic capabilities, safety profile, and activity against T cell-resistant tumors, such as those lacking HLA-I expression. Recent advancements in immunotherapy include strategies to restore and amplify NK cell activity through immune checkpoint inhibitors, cytokines, adoptive NK cell therapy, and CAR-NK cell technology. This review provides a comprehensive overview of NK cell receptors, the tumor escape mechanisms that hinder NK cell function, and the evolving field of NK cell-based cancer immunotherapy, highlighting ongoing efforts to develop more effective and targeted cancer treatment strategies.
Collapse
Affiliation(s)
- Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Fabiana De Franco
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy.
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Federico Rebaudi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Rayan Goda
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Davide Frumento
- Department of Education Sciences, University of Rome Tre, Rome, Italy
| | - Giorgio Vita
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
| | - Camilla Baronti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova
| | - Valerio G Vellone
- Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy; Pathology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova.
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova.
| |
Collapse
|
11
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024. [PMID: 39248154 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A D King
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Kim KS, Lee C, Kim HS, Gu SJ, Yoon HJ, Won SB, Lee H, Lee YS, Kim SS, Kane LP, Park EJ. TIM-3 on myeloid cells promotes pulmonary inflammation through increased production of galectin-3. Commun Biol 2024; 7:1090. [PMID: 39237613 PMCID: PMC11377825 DOI: 10.1038/s42003-024-06762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
T cell immunoglobulin and mucin-containing molecule 3 (TIM-3) exhibits unique, cell type- and context-dependent characteristics and functions. Here, we report that TIM-3 on myeloid cells plays essential roles in modulating lung inflammation. We found that myeloid cell-specific TIM-3 knock-in (FSF-TIM3/LysM-Cre+) mice have lower body weight and shorter lifespan than WT mice. Intriguingly, the lungs of FSF-TIM3/LysM-Cre+ mice display excessive inflammation and features of disease-associated pathology. We further revealed that galectin-3 levels are notably elevated in TIM-3-overexpressing lung-derived myeloid cells. Furthermore, both TIM-3 blockade and GB1107, a galectin-3 inhibitor, ameliorated lung inflammation in FSF-TIM3/LysM-Cre+/- mice. Using an LPS-induced lung inflammation model with myeloid cell-specific TIM-3 knock-out mice, we demonstrated the association of TIM-3 with both lung inflammation and galectin-3. Collectively, our findings suggest that myeloid TIM-3 is an important regulator in the lungs and that modulation of TIM-3 and galectin-3 could offer therapeutic benefits for inflammation-associated lung diseases.
Collapse
Affiliation(s)
- Ki Sun Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Chanju Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
- Immuno-oncology Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Hyung-Seok Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Su Jeong Gu
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Hee Jung Yoon
- Immuno-oncology Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Su Bin Won
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
- Immuno-oncology Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Sang Soo Kim
- Radiological Science Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Eun Jung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea.
- Immuno-oncology Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea.
| |
Collapse
|
13
|
Chen J, Duan Y, Che J, Zhu J. Dysfunction of dendritic cells in tumor microenvironment and immunotherapy. Cancer Commun (Lond) 2024; 44:1047-1070. [PMID: 39051512 PMCID: PMC11492303 DOI: 10.1002/cac2.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Dendritic cells (DCs) comprise diverse cell populations that play critical roles in antigen presentation and triggering immune responses in the body. However, several factors impair the immune function of DCs and may promote immune evasion in cancer. Understanding the mechanism of DC dysfunction and the diverse functions of heterogeneous DCs in the tumor microenvironment (TME) is critical for designing effective strategies for cancer immunotherapy. Clinical applications targeting DCs summarized in this report aim to improve immune infiltration and enhance the biological function of DCs to modulate the TME to prevent cancer cells from evading the immune system. Herein, factors in the TME that induce DC dysfunction, such as cytokines, hypoxic environment, tumor exosomes and metabolites, and co-inhibitory molecules, have been described. Furthermore, several key signaling pathways involved in DC dysfunction and signal-relevant drugs evaluated in clinical trials were identified. Finally, this review provides an overview of current clinical immunotherapies targeting DCs, especially therapies with proven clinical outcomes, and explores future developments in DC immunotherapies.
Collapse
Affiliation(s)
- Jie Chen
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Yuhang Duan
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| | - Junye Che
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Jianwei Zhu
- Jecho Institute Co., LtdShanghaiP. R. China
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| |
Collapse
|
14
|
Vilela T, Valente S, Correia J, Ferreira F. Advances in immunotherapy for breast cancer and feline mammary carcinoma: From molecular basis to novel therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189144. [PMID: 38914239 DOI: 10.1016/j.bbcan.2024.189144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The role of inflammation in cancer is a topic that has been investigated for many years. As established, inflammation emerges as a defining characteristic of cancer, presenting itself as a compelling target for therapeutic interventions in the realm of oncology. Controlling the tumor microenvironment (TME) has gained paramount significance, modifying not only the effectiveness of immunotherapy but also modulating the outcomes and prognoses of standard chemotherapy and other anticancer treatments. Immunotherapy has surfaced as a central focus within the domain of tumor treatments, using immune checkpoint inhibitors as cancer therapy. Immune checkpoints and their influence on the tumor microenvironment dynamic are presently under investigation, aiming to ascertain their viability as therapeutic interventions across several cancer types. Cancer presents a significant challenge in humans and cats, where female breast cancer ranks as the most prevalent malignancy and feline mammary carcinoma stands as the third most frequent. This review seeks to summarize the data about the immune checkpoints cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), programmed cell death protein-1 (PD-1), V-domain Ig suppressor of T cell activation (VISTA), and T-cell immunoglobulin and mucin domain 3 (TIM-3) respective ongoing investigations as prospective targets for therapy for human breast cancer, while also outlining findings from studies reported on feline mammary carcinoma (FMC), strengthening the rationale for employing FMC as a representative model in the exploration of human breast cancer.
Collapse
Affiliation(s)
- Tatiana Vilela
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Sofia Valente
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Jorge Correia
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; CIISA-Center of Interdisciplinary Research in Animal Health, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fernando Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; CIISA-Center of Interdisciplinary Research in Animal Health, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal.
| |
Collapse
|
15
|
DeNiro G, Que K, Fujimoto T, Koo SM, Schneider B, Mukhopadhyay A, Kim J, Sawant A, Nguyen TA. OMIP-105: A 30-color full-spectrum flow cytometry panel to characterize the immune cell landscape in spleen and tumor within a syngeneic MC-38 murine colon carcinoma model. Cytometry A 2024; 105:659-665. [PMID: 39107997 DOI: 10.1002/cyto.a.24886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 10/25/2024]
Abstract
This panel was designed to characterize the immune cell landscape in the mouse tumor microenvironment as well as mouse lymphoid tissues (e.g., spleen). As an example, using the MC-38 mouse syngeneic tumor model, we demonstrated that we could measure the frequency and characterize the functional status of CD4 T cells, CD8 T cells, regulatory T cells, NK cells, B cells, macrophages, granulocytes, monocytes, and dendritic cells. This panel is especially useful for understanding the immune landscape in "cold" preclinical tumor models with very low immune cell infiltration and for investigating how therapeutic treatments may modulate the immune landscape.
Collapse
Affiliation(s)
| | - Kathryn Que
- Bristol-Myers Squibb, Redwood City, California, USA
| | | | - Soo Min Koo
- Bristol-Myers Squibb, Redwood City, California, USA
| | | | | | - Jeong Kim
- Bristol-Myers Squibb, Redwood City, California, USA
| | | | | |
Collapse
|
16
|
Zhou Z, Mai Y, Zhang G, Wang Y, Sun P, Jing Z, Li Z, Xu Y, Han B, Liu J. Emerging role of immunogenic cell death in cancer immunotherapy: Advancing next-generation CAR-T cell immunotherapy by combination. Cancer Lett 2024; 598:217079. [PMID: 38936505 DOI: 10.1016/j.canlet.2024.217079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Immunogenic cell death (ICD) is a stress-driven form of regulated cell death (RCD) in which dying tumor cells' specific signaling pathways are activated to release damage-associated molecular patterns (DAMPs), leading to the robust anti-tumor immune response as well as a reversal of the tumor immune microenvironment from "cold" to "hot". Chimeric antigen receptor (CAR)-T cell therapy, as a landmark in anti-tumor immunotherapy, plays a formidable role in hematologic malignancies but falls short in solid tumors. The Gordian knot of CAR-T cells for solid tumors includes but is not limited to, tumor antigen heterogeneity or absence, physical and immune barriers of tumors. The combination of ICD induction therapy and CAR-T cell immunotherapy is expected to promote the intensive use of CAR-T cell in solid tumors. In this review, we summarize the characteristics of ICD, stress-responsive mechanism, and the synergistic effect of various ICD-based therapies with CAR-T cells to effectively improve anti-tumor capacity.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yumiao Mai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yingjie Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pan Sun
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohe Jing
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
17
|
Abdolmohammadi-Vahid S, Baradaran B, Adcock IM, Mortaz E. Immune checkpoint inhibitors and SARS-CoV2 infection. Int Immunopharmacol 2024; 137:112419. [PMID: 38865755 DOI: 10.1016/j.intimp.2024.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) triggers coronavirus disease 2019 (COVID-19), which predominantly targets the respiratory tract. SARS-CoV-2 infection, especially severe COVID-19, is associated with dysregulated immune responses against the virus, including exaggerated inflammatory responses known as the cytokine storm, together with lymphocyte and NK cell dysfunction known as immune cell exhaustion. Overexpression of negative immune checkpoints such as PD-1 and CTLA-4 plays a considerable role in the dysfunction of immune cells upon SARS-CoV-2 infection. Blockade of these checkpoints has been suggested to improve the clinical outcome of COVID-19 patients by promoting potent immune responses against the virus. In the current review, we provide an overview of the potential of checkpoint inhibitors to induce potent immune responses against SARS-CoV-2 and improving the clinical outcome of severe COVID-19 patients.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ian M Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA; Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
18
|
Ausejo-Mauleon I, Martinez-Velez N, Lacalle A, de la Nava D, Cebollero J, Villanueva H, Casares N, Marco-Sanz J, Laspidea V, Becher O, Patiño-García A, Labiano S, Pastor F, Alonso MM. Combination of locoregional radiotherapy with a TIM-3 aptamer improves survival in diffuse midline glioma models. JCI Insight 2024; 9:e175257. [PMID: 39146023 PMCID: PMC11457855 DOI: 10.1172/jci.insight.175257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
Pediatric diffuse midline gliomas (DMG) with altered H3-K27M are aggressive brain tumors that arise during childhood. Despite advances in genomic knowledge and the significant number of clinical trials testing new targeted therapies, patient outcomes are still poor. Immune checkpoint blockades with small molecules, such as aptamers, are opening new therapeutic options that represent hope for this orphan disease. Here, we demonstrated that a TIM-3 aptamer (TIM-3 Apt) as monotherapy increased the immune infiltration and elicited a strong specific immune response with a tendency to improve the overall survival of treated DMG-bearing mice. Importantly, combining TIM-3 Apt with radiotherapy increased the overall median survival and led to long-term survivor mice in 2 pediatric DMG orthotopic murine models. Interestingly, TIM-3 Apt administration increased the number of myeloid populations and the proinflammatory CD8-to-Tregs ratios in the tumor microenvironment as compared with nontreated groups after radiotherapy. Importantly, the depletion of T cells led to a major loss of the therapeutic effect achieved by the combination. This work uncovers TIM-3 targeting as an immunotherapy approach to improve the radiotherapy outcome in DMGs and offers a strong foundation for propelling a phase I clinical trial using radiotherapy and TIM-3 blockade combination as a treatment for these tumors.
Collapse
Affiliation(s)
- Iker Ausejo-Mauleon
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Naiara Martinez-Velez
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Andrea Lacalle
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Daniel de la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Cebollero
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
| | - Noelia Casares
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Marco-Sanz
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Virginia Laspidea
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Research Department of Hematology and Oncology, University College London, London, UK
| | - Oren Becher
- Jack Martin Fund Division of Pediatric Hematology-Oncology, Mount Sinai, New York, New York, USA
| | - Ana Patiño-García
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Labiano
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Fernando Pastor
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
| | - Marta M. Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
19
|
Chang X, Miao J. Role of TIM-3 in ovarian cancer: the forsaken cop or a new noble. Front Immunol 2024; 15:1407403. [PMID: 39206199 PMCID: PMC11350557 DOI: 10.3389/fimmu.2024.1407403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
T cell immunoglobulin and mucin domain-3 (TIM-3), a crucial immune checkpoint following PD1 and CTLA4, is widely found in several immune cells. Nonetheless, its performance in recent clinical trials appears disappointing. Ovarian cancer (OC), a malignant tumor with a high mortality rate in gynecology, faces significant hurdles in immunotherapy. The broad presence of TIM-3 offers a new opportunity for immunotherapy in OC. This study reviews the role of TIM-3 in OC and assesses its potential as a target for immunotherapy. The regulatory effects of TIM-3 on the immune microenvironment in OC are discussed, with a focus on preclinical studies that demonstrate TIM-3's modulation of various immune cells in OC. Additionally, the potential therapeutic advantages and challenges of targeting TIM-3 in OC are examined.
Collapse
Affiliation(s)
| | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
21
|
Biały S, Siemaszko J, Sobczyk-Kruszelnicka M, Fidyk W, Solarska I, Nasiłowska-Adamska B, Skowrońska P, Bieniaszewska M, Tomaszewska A, Basak GW, Giebel S, Wróbel T, Bogunia-Kubik K. Unravelling the potential of TIM-3 gene polymorphism in allogeneic hematopoietic stem cell transplantation - a preliminary study. Transpl Immunol 2024; 85:102084. [PMID: 38992477 DOI: 10.1016/j.trim.2024.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) molecule is a key regulator of the immune response by exerting an inhibitory effect on various types of immune cells. Understanding the role of TIM-3 in hematopoietic stem cell transplantation (HSCT) may improve transplant outcomes. Our study evaluated the potential association between TIM-3 polymorphisms, namely rs1036199 (A > C) or rs10515746 (C > A), changes which are located in exon 3 and the promoter region of the TIM-3 gene, and post-HSCT outcomes. METHODS One-hundred and twenty allogeneic HSCT patients and their respective donors were enrolled and genotyped for TIM-3 single nucleotide polymorphisms (SNPs) using real-time PCR with TaqMan assays. RESULTS We found that the presence of the rare alleles and heterozygous genotypes of studied SNP in recipients tended to protect against or increase the risk for acute graft-versus-host disease (aGvHD). For the rs1036199 polymorphism, recipients with the AC heterozygous genotype (p = 0.0287) or carrying the rarer C allele (p = 0.0334) showed a lower frequency of aGvHD development along all I-IV grades. A similar association was detected for the rs10515746 polymorphism as recipients with the CA genotype (p = 0.0095) or the recessive A allele (p = 0.0117) less frequently developed aGvHD. Furthermore, the rarer A allele of rs10515746 SNP was also associated with a prolonged aGvHD-free survival (p = 0.0424). Cytomegalovirus (CMV) infection was more common in patients transplanted with TIM-3 rs10515746 mismatched donors (p = 0.0229) and this association was also found to be independent of HLA incompatibility and pre-transplant CMV-IgG status. Multivariate analyses confirmed the role of these recessive alleles and donor-recipient TIM-3 incompatibility as an independent factor in aGvHD and CMV development. CONCLUSIONS Polymorphism of TIM-3 molecule may affect the immune response in HSCT patients. The recessive alleles of rs1036199 and rs10515746 SNPs decreased the risk of developing aGvHD. TIM-3 donor-recipient genetic matching may also affect the risk of post-transplant CMV infection, indicating the potential value of genetic profiling in optimizing transplant strategies.
Collapse
Affiliation(s)
- Sylwia Biały
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Małgorzata Sobczyk-Kruszelnicka
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Wojciech Fidyk
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Iwona Solarska
- Institute of Hematology and Blood Transfusion Medicine, Warsaw, Poland
| | | | | | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Tomaszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz W Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
22
|
Jiang J, Sun M, Wang Y, Huang W, Xia L. Deciphering the roles of the HMGB family in cancer: Insights from subcellular localization dynamics. Cytokine Growth Factor Rev 2024; 78:85-104. [PMID: 39019664 DOI: 10.1016/j.cytogfr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The high-mobility group box (HMGB) family consists of four DNA-binding proteins that regulate chromatin structure and function. In addition to their intracellular functions, recent studies have revealed their involvement as extracellular damage-associated molecular patterns (DAMPs), contributing to immune responses and tumor development. The HMGB family promotes tumorigenesis by modulating multiple processes including proliferation, metabolic reprogramming, metastasis, immune evasion, and drug resistance. Due to the predominant focus on HMGB1 in the literature, little is known about the remaining members of this family. This review summarizes the structural, distributional, as well as functional similarities and distinctions among members of the HMGB family, followed by a comprehensive exploration of their roles in tumor development. We emphasize the distributional and functional hierarchy of the HMGB family at both the organizational and subcellular levels, with a focus on their relationship with the tumor immune microenvironment (TIME), aiming to prospect potential strategies for anticancer therapy.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China.
| |
Collapse
|
23
|
Qiu GH, Yu B, Ma M. G protein-coupled receptor-mediated signaling of immunomodulation in tumor progression. FASEB J 2024; 38:e23829. [PMID: 39017658 DOI: 10.1096/fj.202400458r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
G protein-coupled receptors (GPCRs) are essential contributors to tumor growth and metastasis due to their roles in immune cell regulation. Therefore, GPCRs are potential targets for cancer immunotherapy. Here, we discuss the current understanding of the roles of GPCRs and their signaling pathways in tumor progression from an immunocellular perspective. Additionally, we focus on the roles of GPCRs in regulating immune checkpoint proteins involved in immune evasion. Finally, we review the progress of clinical trials of GPCR-targeted drugs for cancer treatment, which may be combined with immunotherapy to improve treatment efficacy. This expanded understanding of the role of GPCRs may shed light on the mechanisms underlying tumor progression and provide a novel perspective on cancer immunotherapy.
Collapse
Affiliation(s)
- Guang-Hong Qiu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Bin Yu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Mei Ma
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| |
Collapse
|
24
|
Chen M, Li H, Qu B, Huang X. The Roles of T cells in Immune Checkpoint Inhibitor-Induced Arthritis. Aging Dis 2024:AD.2024.0546. [PMID: 39122457 DOI: 10.14336/ad.2024.0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy, a novel anti-tumor strategy, can specifically eliminate tumors by activating the immune system and inhibiting tumor immune escape. However, ICI therapy can lead to notable negative outcomes known as immune-related adverse events (irAEs). ICI-induced arthritis, also known as ICI arthritis, stands as the prevailing form of irAEs. The purpose of this review is to highlight the crucial functions of T cells in the progression of ICI arthritis. Under the influence of different signaling molecules, T cells could gather in large numbers within the synovial membrane of joints, releasing inflammatory substances and enzymes that harm healthy tissues, ultimately causing ICI arthritis. Moreover, considering the functions of T cells in triggering ICI arthritis, this review suggests several treatments to prevent ICI arthritis, including inhibiting the overstimulation of T cells at the synovial sac of joints, enhancing the precision of ICI medications, and directing ICI drugs specifically towards tumor tissues instead of joints. Collectively, T lymphocytes play a vital role in the onset of ICI arthritis, offering a hopeful perspective on treating ICI arthritis through the specific targeting of T cells within the affected joints.
Collapse
Affiliation(s)
- Maike Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huili Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Baicheng Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
25
|
Yoshida T, Nakamoto T, Atsumi N, Ohe C, Sano T, Yasukochi Y, Tsuta K, Kinoshita H. Impact of LAG-3/FGL1 pathway on immune evasive contexture and clinical outcomes in advanced urothelial carcinoma. J Immunother Cancer 2024; 12:e009358. [PMID: 39043605 PMCID: PMC11268076 DOI: 10.1136/jitc-2024-009358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Anti-programmed death-1 (PD-1)/anti-PD-ligand-1 (PD-L1) pathway inhibition is a standard regimen for advanced urothelial carcinoma (UC); however, its limited efficacy has been reflected in reported medium response rates. This study explored the role of next-generation coinhibitory receptors (IRs; lymphocyte activation gene 3 (LAG-3), T-cell immunoglobulin and mucin domain 3 (TIM-3), and T-cell immunoreceptor with Ig and ITIM domains (TIGIT)) and their ligands (LGs) in the response to PD-(L)1 blockade therapy and the oncological outcomes in patients with UC. METHODS We investigated metastatic UC cases who underwent PD-(L)1 therapy (cohort 1: n=348, cohort 2: n=89, and cohort 4: n=29) or advanced UC cases involving surgery (cohort 3: n=293 and cohort 5: n=90). We assessed the mRNA expression profiles and corresponding clinical information regarding IRs and LGs using cohorts 1, 2, and 3. Additionally, we elucidated the spatial features of these targeted markers using multiplex immunohistochemistry (mIHC) on formalin-fixed paraffin-embedded samples from cohorts 4 and 5. Survival, differential expressed gene, and Gene Set Enrichment analyses were performed. For mIHC, quantitative analyses were also performed to correlate immune and tumor cell densities with patient survival. RESULTS LAG-3 expression was strongly associated with the responsiveness of PD-(L)1 blockade compared with the expression of TIM-3 and TIGIT. In tumors with high LAG-3 levels, the increased expression of fibrinogen-like protein 1 (FGL1) had a significantly negative effect on the response to PD-(L)1 blockade and overall survival. Moreover, high FGL1 levels were associated with elevated CD4+ regulatory T-cell gene signatures and the upregulation of CD39 and neuropilin-1, with both indicating CD8+ T-cell exhaustion. mIHC analyses revealed that patients with stromal CD8+LAG-3+cellshigh-tumor FGL1+cellshigh exhibited a significant negative correlation with survival rates compared with those with stromal CD8+LAG-3+cellshigh-tumor FGL1+cellslow. CONCLUSIONS LAG-3 expression and high FGL1 coexpression are important predictive factors of adverse oncological outcomes related to the presence of immunosuppressive contextures. These findings are hypothesis-generating, warranting further mechanistic and clinical studies aimed to evaluate LAG-3/FGL1 blockade in UC.
Collapse
Affiliation(s)
- Takashi Yoshida
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
- Graduate School of Engineering, Tottori University, Tottori, Japan
- Department of Urology, Osaka Saiseikai-Noe Hospital, Osaka, Japan
- Corporate Sponsored Research Programs for Multicellular Interactions in Cancer, Kansai Medical University, Osaka, Japan
| | - Takahiro Nakamoto
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
- Department of Pathology, Kansai Medical University, Osaka, Japan
| | - Naho Atsumi
- Corporate Sponsored Research Programs for Multicellular Interactions in Cancer, Kansai Medical University, Osaka, Japan
- Department of Pathology, Kansai Medical University, Osaka, Japan
| | - Chisato Ohe
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
- Department of Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Takeshi Sano
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Yoshiki Yasukochi
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Koji Tsuta
- Corporate Sponsored Research Programs for Multicellular Interactions in Cancer, Kansai Medical University, Osaka, Japan
- Department of Pathology, Kansai Medical University, Osaka, Japan
| | - Hidefumi Kinoshita
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
26
|
Binder AK, Bremm F, Dörrie J, Schaft N. Non-Coding RNA in Tumor Cells and Tumor-Associated Myeloid Cells-Function and Therapeutic Potential. Int J Mol Sci 2024; 25:7275. [PMID: 39000381 PMCID: PMC11242727 DOI: 10.3390/ijms25137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The RNA world is wide, and besides mRNA, there is a variety of other RNA types, such as non-coding (nc)RNAs, which harbor various intracellular regulatory functions. This review focuses on small interfering (si)RNA and micro (mi)RNA, which form a complex network regulating mRNA translation and, consequently, gene expression. In fact, these RNAs are critically involved in the function and phenotype of all cells in the human body, including malignant cells. In cancer, the two main targets for therapy are dysregulated cancer cells and dysfunctional immune cells. To exploit the potential of mi- or siRNA therapeutics in cancer therapy, a profound understanding of the regulatory mechanisms of RNAs and following targeted intervention is needed to re-program cancer cells and immune cell functions in vivo. The first part focuses on the function of less well-known RNAs, including siRNA and miRNA, and presents RNA-based technologies. In the second part, the therapeutic potential of these technologies in treating cancer is discussed, with particular attention on manipulating tumor-associated immune cells, especially tumor-associated myeloid cells.
Collapse
Affiliation(s)
- Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
27
|
Tyrinova TV, Chernykh ER. Inhibitory Checkpoint Receptor TIM-3 as a Regulator of the Functional Activity of Dendritic Cells. Bull Exp Biol Med 2024; 177:287-292. [PMID: 39123087 DOI: 10.1007/s10517-024-06175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 08/12/2024]
Abstract
T-cell immunoglobulin and mucin domain 3 (TIM-3) belongs to the group of inhibitory checkpoint receptors and has traditionally been of interest in terms of its expression on activated CD4+ and CD8+ T cells. The treatment with TIM-3 inhibitors is considered as a promising strategy in cancer immunotherapy. The review focuses on new data on the expression of TIM-3 on dendritic cells (DCs) that play a key role in initiating the antigen-specific immune response and inducing effector CD8+ T cells. The main hypothesis is that TIM-3 is suggested to act as a negative regulator of DCs. Further studies on TIM-3-mediated DC regulation will improve the effectiveness of current strategies in the treatment of cancer using DCs and checkpoint molecule inhibitors, where the main targets can be not only T cells, but also TIM-3-expressing DCs.
Collapse
Affiliation(s)
- T V Tyrinova
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia.
| | - E R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
28
|
Liang H, Xu C, Guo D, Peng F, Chen N, Song H, Ji X. Dismantlable Coronated Nanoparticles for Coupling the Induction and Perception of Immunogenic Cell Death. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313097. [PMID: 38643386 DOI: 10.1002/adma.202313097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Therapy-induced immunogenic cell death (ICD) can initiate both innate and adaptive immune responses for amplified anti-tumor efficacy. However, dying cell-released ICD signals are prone to being sequestered by the TIM-3 receptors on dendritic cell (DC) surfaces, preventing immune surveillance. Herein, dismantlable coronated nanoparticles (NPs) are fabricated as a type of spatiotemporally controlled nanocarriers for coupling tumor cell-mediated ICD induction to DC-mediated immune sensing. These NPs are loaded with an ICD inducer, mitoxantrone (MTO), and wrapped by a redox-labile anti-TIM-3 (αTIM-3) antibody corona, forming a separable core-shell structure. The antibody corona disintegrates under high levels of extracellular reactive oxygen species in the tumor microenvironment, exposing the MTO-loaded NP core for ICD induction and releasing functional αTIM-3 molecules for DC sensitization. Systemic administration of the coronated NPs augments DC maturation, promotes cytotoxic T cell recruitment, enhances tumor susceptibility to immune checkpoint blockade, and prevents the side effects of MTO. This study develops a promising nanoplatform to unleash the potential of host immunity in cancer therapy.
Collapse
Affiliation(s)
- Huan Liang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunchen Xu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Daoxia Guo
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fei Peng
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Nan Chen
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Haiyun Song
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyuan Ji
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
29
|
Zheng W, Ao D, Cao Q, Liu A, Lv M, Sun Z, Zhang H, Zheng W, Chen N, Zhu J. Porcine TLR8 signaling and its anti-infection function are disturbed by immune checkpoint receptor TIM-3 via inhibition of P13K-AKT pathway. Int J Biol Macromol 2024; 269:132018. [PMID: 38702002 DOI: 10.1016/j.ijbiomac.2024.132018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Toll-like receptor 8 (TLR8), an important innate immune receptor recognizing single stranded RNA and the antiviral imidazoquinoline compounds, can activate intracellular signaling pathway and produce an inflammatory response to kill and eliminate pathogens. However, the molecular regulation mechanisms of TLR8 signaling and its anti-infection activity are not fully elucidated. Our previous transcriptome analysis of porcine TLR8 (pTLR8) signaling suggested the immune checkpoint receptor TIM-3 as the potential regulator for pTLR8. Here we investigated TIM-3 in the regulation of pTLR8 signaling and its anti-infection activity. Our results showed that porcine TIM-3 is upregulated by pTLR8 signaling and TIM-3 inhibits pTLR8 signaling activity in a negative feedback way. Accordingly, TIM-3 disturbs pTLR8 mediated anti-bacterial and anti-viral activity. Mechanistically, TIM-3 suppresses PI3K-AKT pathway by inhibiting the TLR8-PI3K p85 interaction and subsequent AKT phosphorylation which is essential for TLR8 signaling and anti-infection activity. Therefore, our study reveals new insights into innate immune TLR8 signaling and its anti-infection function.
Collapse
Affiliation(s)
- Wangli Zheng
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Da Ao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qi Cao
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Anjing Liu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Mengjia Lv
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ziyan Sun
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | | | - Wanglong Zheng
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nanhua Chen
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianzhong Zhu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
30
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
31
|
Qian W, Ye J, Xia S. DNA sensing of dendritic cells in cancer immunotherapy. Front Mol Biosci 2024; 11:1391046. [PMID: 38841190 PMCID: PMC11150630 DOI: 10.3389/fmolb.2024.1391046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Dendritic cells (DCs) are involved in the initiation and maintenance of immune responses against malignant cells by recognizing conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs). According to recent studies, tumor cell-derived DNA molecules act as DAMPs and are recognized by DNA sensors in DCs. Once identified by sensors in DCs, these DNA molecules trigger multiple signaling cascades to promote various cytokines secretion, including type I IFN, and then to induce DCs mediated antitumor immunity. As one of the potential attractive strategies for cancer therapy, various agonists targeting DNA sensors are extensively explored including the combination with other cancer immunotherapies or the direct usage as major components of cancer vaccines. Moreover, this review highlights different mechanisms through which tumor-derived DNA initiates DCs activation and the mechanisms through which the tumor microenvironment regulates DNA sensing of DCs to promote tumor immune escape. The contributions of chemotherapy, radiotherapy, and checkpoint inhibitors in tumor therapy to the DNA sensing of DCs are also discussed. Finally, recent clinical progress in tumor therapy utilizing agonist-targeted DNA sensors is summarized. Indeed, understanding more about DNA sensing in DCs will help to understand more about tumor immunotherapy and improve the efficacy of DC-targeted treatment in cancer.
Collapse
Affiliation(s)
- Wei Qian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- The Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
32
|
Sun M, Yang P, Wang W, Yu Y, Yang D, Ping Y, Zhu B. Advancements in the research of immune checkpoint inhibitors for the treatment of advanced esophageal squamous cell carcinoma. Am J Cancer Res 2024; 14:1981-1998. [PMID: 38859835 PMCID: PMC11162652 DOI: 10.62347/xuwc6412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
Esophageal cancer (EC) has a high mortality rate and poor prognosis. Most patients are diagnosed at an advanced stage or with distant metastasis, making surgery impossible. Traditional curative radiotherapy and chemotherapy have limited efficacy. In recent years, with the development of clinical trials, immune checkpoint inhibitors (ICIs) have shown promising results in treating advanced and metastatic esophageal squamous cell carcinoma (ESCC) patients. ICIs have gradually become a primary therapeutic approach for EC. This review summarizes and provides an overview of the current research status and progress of ICIs in the treatment of advanced ESCC patients.
Collapse
Affiliation(s)
- Mengfei Sun
- College of Pharmacy, Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
| | - Pengjie Yang
- Department of Thoracic Surgery, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
| | - Weisong Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
| | - Yongjun Yu
- Department of Thoracic Surgery, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
| | - Dongdong Yang
- Department of Pharmacy, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
| | - Yaodong Ping
- Department of Pharmacy, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
- Department of Pharmacy, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and InstituteBeijing, China
| | - Benben Zhu
- Department of Pharmacy, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
33
|
Sakuma M, Katagata M, Okayama H, Nakajima S, Saito K, Sato T, Fukai S, Tsumuraya H, Onozawa H, Sakamoto W, Saito M, Saze Z, Momma T, Mimura K, Kono K. TIM-3 Expression on Dendritic Cells in Colorectal Cancer. Cancers (Basel) 2024; 16:1888. [PMID: 38791963 PMCID: PMC11120027 DOI: 10.3390/cancers16101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
TIM-3 was originally identified as a negative regulator of helper T cells and is expressed on dendritic cells (DCs). Since the inhibition of TIM-3 on DCs has been suggested to enhance T cell-mediated anti-tumor immunity, we examined its expression on DCs within the tumor microenvironment (TME) in colorectal cancer (CRC) using transcriptomic data from a public database (n = 592) and immunohistochemical evaluations from our cohorts of CRC (n = 115). The expression of TIM-3 on DCs in vitro was examined by flow cytometry, while the expression of its related molecules, cGAS and STING, on immature and mature DCs was assessed by Western blotting. The expression of HAVCR2 (TIM-3) was strongly associated with the infiltration of DCs within the TME of CRC. Immunohistochemical staining of clinical tissue samples revealed that tumor-infiltrating DCs expressed TIM-3; however, their number at the tumor-invasive front significantly decreased with stage progression. TIM-3 expression was higher on immature DCs than on mature DCs from several different donors (n = 6). Western blot analyses showed that the expression of STING was higher on mature DCs than on immature DCs, which was opposite to that of TIM-3. We demonstrated that TIM-3 was highly expressed on tumor-infiltrating DCs of CRC and that its expression was higher on immature DCs than on mature DCs.
Collapse
Affiliation(s)
- Mei Sakuma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
| | - Masanori Katagata
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
| | - Takahiro Sato
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
| | - Satoshi Fukai
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
| | - Hideaki Tsumuraya
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
| | - Hisashi Onozawa
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan; (M.S.); (H.O.)
| |
Collapse
|
34
|
Chen Y, Li X, Yang M, Liu SB. Research progress on morphology and mechanism of programmed cell death. Cell Death Dis 2024; 15:327. [PMID: 38729953 PMCID: PMC11087523 DOI: 10.1038/s41419-024-06712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Programmed cell death (PCD) is a basic process of life that is closely related to the growth, development, aging and disease of organisms and is one of the hotspots of life science research today. PCD is a kind of genetic control, autonomous and orderly important cell death that involves the activation, expression, and regulation of a series of genes. In recent years, with the deepening of research in this field, new mechanisms of multiple PCD pathways have been revealed. This article reviews and summarizes the multiple PCD pathways that have been discovered, analyses and compares the morphological characteristics and biomarkers of different types of PCD, and briefly discusses the role of various types of PCD in the diagnosis and treatment of different diseases, especially malignant tumors.
Collapse
Grants
- Jiangsu higher education institution innovative research team for science and technology (2021), Program of Jiangsu vocational college engineering technology research center (2023), Key technology progrom of Suzhou people’s livelihood technology projects (Grant No. SKY2021029), the Open Project of Jiangsu Biobank of Clinical Resources (TC2021B009), the Project of State Key Laboratory of Radiation Medicine and Protection, Soochow University, (No. GZK12023013), Programs of the Suzhou Vocational Health College (SZWZYTD202201), Qing‐Lan Project of Jiangsu Province in China (2021).
- Programs of the Suzhou Vocational Health College (szwzy 202210), Qing‐Lan Project of Jiangsu Province in China (2022).
- the Project of State Key Laboratory of Radiation Medicine and Protection, Soochow University, (No. GZK12023013)
Collapse
Affiliation(s)
- Yao Chen
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Xiaohua Li
- Department of Thyroid and Breast Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, China
| | - Minfeng Yang
- School of Public Health, Nantong University, Nantong, 226019, China.
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
35
|
González-Cao M, Cai X, Bracht JWP, Han X, Yang Y, Pedraz-Valdunciel C, Morán T, García-Corbacho J, Aguilar A, Bernabé R, De Marchi P, Sussuchi da Silva L, Leal LF, Reis RM, Codony-Servat J, Jantus-Lewintre E, Molina-Vila MA, Cao P, Rosell R. HMGB1 Expression Levels Correlate with Response to Immunotherapy in Non-Small Cell Lung Cancer. LUNG CANCER (AUCKLAND, N.Z.) 2024; 15:55-67. [PMID: 38741920 PMCID: PMC11090191 DOI: 10.2147/lctt.s455034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
Purpose High-mobility group box 1 protein (HMGB1) is subject to exportin 1 (XPO1)-dependent nuclear export, and it is involved in functions implicated in resistance to immunotherapy. We investigated whether HMGB1 mRNA expression was associated with response to immune checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC). Patients and Methods RNA was isolated from pretreatment biopsies of patients with advanced NSCLC treated with ICI. Gene expression analysis of several genes, including HMGB1, was conducted using the NanoString Counter analysis system (PanCancer Immune Profiling Panel). Western blotting analysis and cell viability assays in EGFR and KRAS mutant cell lines were carried out. Evaluation of the antitumoral effect of ICI in combination with XPO1 blocker (selinexor) and trametinib was determined in a murine Lewis lung carcinoma model. Results HMGB1 mRNA levels in NSCLC patients treated with ICI correlated with progression-free survival (PFS) (median PFS 9.0 versus 18.0 months, P=0.008, hazard ratio=0.30 in high versus low HMGB1). After TNF-α stimulation, HMGB1 accumulates in the cytoplasm of PC9 cells, but this accumulation can be prevented by using selinexor or antiretroviral drugs. Erlotinib or osimertinib with selinexor in EGFR-mutant cells and trametinib plus selinexor in KRAS mutant abolish tumor cell proliferation. Selinexor with a PD-1 inhibitor with or without trametinib abrogates the tumor growth in the murine Lewis lung cancer model. Conclusion An in-depth exploration of the functions of HMGB1 mRNA and protein is expected to uncover new potential targets and provide a basis for treating metastatic NSCLC in combination with ICI.
Collapse
Affiliation(s)
- Maria González-Cao
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Xueting Cai
- Integrated Traditional Chinese and Western Medicine Department of Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | | | - Xuan Han
- Integrated Traditional Chinese and Western Medicine Department of Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yang Yang
- Integrated Traditional Chinese and Western Medicine Department of Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | | | - Teresa Morán
- Medical Oncology Department, Catalan Institute of Oncology (ICO), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Javier García-Corbacho
- Medical Oncology Department (Hospital Clinic)/Translational Genomics and Targeted Therapies in Solid Tumors (IDIBAPs), Barcelona, Spain
| | - Andrés Aguilar
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Reyes Bernabé
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Pedro De Marchi
- Molecular Oncology Research Center; Barretos Cancer Hospital, Barretos, Brazil
- Oncoclinicas, Rio de Janeiro, Brazil
| | | | - Leticia Ferro Leal
- Molecular Oncology Research Center; Barretos Cancer Hospital, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center; Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3b’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jordi Codony-Servat
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Eloisa Jantus-Lewintre
- Valencian Community Foundation Principe Felipe Research Center, Laboratory of Molecular Oncology, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Madrid, Spain
- Universitat Politècnica de Valencia, Biotechnology Department, Valencia, Spain
| | | | - Peng Cao
- Integrated Traditional Chinese and Western Medicine Department of Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Rafael Rosell
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
- Laboratory of Molecular Biology, Germans Trias i Pujol Health Sciences Institute and Hospital (IGTP), Badalona, Spain
| |
Collapse
|
36
|
Tian Z, Zhu L, Xie Y, Hu H, Ren Q, Liu J, Wang Q. The mechanism of high mobility group box-1 protein and its bidirectional regulation in tumors. BIOMOLECULES & BIOMEDICINE 2024; 24:477-485. [PMID: 37897664 PMCID: PMC11088895 DOI: 10.17305/bb.2023.9760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
High-mobility group box-1 protein (HMGB1) is a nonhistone chromatin-related protein widely found in eukaryotic cells. It is involved in the transcription, replication, and repair of DNA to maintain nuclear homeostasis. It participates in cell growth, differentiation, and signal transduction. Recent studies showed that HMGB1 has a bidirectional regulatory effect on tumors by regulating TLR4/MYD88/NF-κB and RAGE/AMPK/mTOR signaling pathways. On the one hand, it is highly expressed in a variety of tumors, promoting tumor proliferation and invasion, while on the other hand, it induces autophagy and apoptosis of tumor cells and stimulates tumor-infiltrating lymphocytes to produce an anti-tumor immune response. At present, HMGB1 could be used as a target to regulate the drug resistance and prognostication in cancer. Clinical applications of HMGB1 in cancer need further in-depth studies.
Collapse
Affiliation(s)
- Zhongjia Tian
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Zhu
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Yutong Xie
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Huan Hu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qunli Ren
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Wang
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
37
|
Zentsova I, Klocperk A, Bloomfield M, Kubesova H, Malcova H, Cebecauerova D, Horvath R, Sediva A, Parackova Z. Tumor-necrosis factor α-rich environment alters type-I interferon response to viral stimuli in patients with juvenile idiopathic arthritis by altering myeloid dendritic cell phenotype. Clin Immunol 2024; 262:110170. [PMID: 38460895 DOI: 10.1016/j.clim.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The balance between the tumor-necrosis factor α (TNFα) and type-I interferon (T1IFN) pathways is crucial for proper immune function. Dysregulation of either pathway can contribute to autoimmune diseases development. Even though TNFα blockade has shown promising results in various autoimmune diseases, the effect on the balance between TNFα and T1IFN is elusive. We used targeted anti-TNFα therapies in juvenile idiopathic arthritis (JIA) as an experimental approach to study the cross-regulation between TNFα and type-I IFN. We found that TNFα-rich environment affected viral defense through the attenuation of T1IFN responses and affected the phenotype and distribution of myeloid dendritic cells, which are engaged in early viral infections. Anti-TNFα therapy normalized the observed deviations in JIA patients. We hypothesize that the inadequate immune response caused by a high TNFα environment could be projected to more frequent or lengthy viral infections and possibly play a role in the process of JIA disease development.
Collapse
Affiliation(s)
- Irena Zentsova
- Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic.
| | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| | - Marketa Bloomfield
- Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| | - Helena Kubesova
- Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| | - Hana Malcova
- Department of Pediatric and Adult Rheumatology, University Hospital in Motol, Prague, V Uvalu 84, 150 06, Czech Republic
| | - Dita Cebecauerova
- Department of Pediatric and Adult Rheumatology, University Hospital in Motol, Prague, V Uvalu 84, 150 06, Czech Republic
| | - Rudolf Horvath
- Department of Pediatric and Adult Rheumatology, University Hospital in Motol, Prague, V Uvalu 84, 150 06, Czech Republic
| | - Anna Sediva
- Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| | - Zuzana Parackova
- Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic.
| |
Collapse
|
38
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
39
|
Wang J, Wang Y, Jiang X, Xu M, Wang M, Wang R, Zheng B, Chen M, Ke Q, Long J. Unleashing the power of immune checkpoints: Post-translational modification of novel molecules and clinical applications. Cancer Lett 2024; 588:216758. [PMID: 38401885 DOI: 10.1016/j.canlet.2024.216758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Immune checkpoint molecules play a pivotal role in the initiation, regulation, and termination of immune responses. Tumor cells exploit these checkpoints to dampen immune cell function, facilitating immune evasion. Clinical interventions target this mechanism by obstructing the binding of immune checkpoints to their ligands, thereby restoring the anti-tumor capabilities of immune cells. Notably, therapies centered on immune checkpoint inhibitors, particularly PD-1/PD-L1 and CTLA-4 blocking antibodies, have demonstrated significant clinical promise. However, a considerable portion of patients still encounter suboptimal efficacy and develop resistance. Recent years have witnessed an exponential surge in preclinical and clinical trials investigating novel immune checkpoint molecules such as TIM3, LAG3, TIGIT, NKG2D, and CD47, along with their respective ligands. The processes governing immune checkpoint molecules, from their synthesis to transmembrane deployment, interaction with ligands, and eventual degradation, are intricately tied to post-translational modifications. These modifications encompass glycosylation, phosphorylation, ubiquitination, neddylation, SUMOylation, palmitoylation, and ectodomain shedding. This discussion proceeds to provide a concise overview of the structural characteristics of several novel immune checkpoints and their ligands. Additionally, it outlines the regulatory mechanisms governed by post-translational modifications, offering insights into their potential clinical applications in immune checkpoint blockade.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meifang Xu
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Meifeng Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Rong Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Boshu Zheng
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Qi Ke
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| |
Collapse
|
40
|
Fu C, Wang J, Ma T, Yin C, Zhou L, Clausen BE, Mi QS, Jiang A. β-Catenin in Dendritic Cells Negatively Regulates CD8 T Cell Immune Responses through the Immune Checkpoint Molecule Tim-3. Vaccines (Basel) 2024; 12:460. [PMID: 38793711 PMCID: PMC11125945 DOI: 10.3390/vaccines12050460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies have demonstrated that β-catenin in dendritic cells (DCs) serves as a key mediator in promoting both CD4 and CD8 T cell tolerance, although the mechanisms underlying how β-catenin exerts its functions remain incompletely understood. Here, we report that activation of β-catenin leads to the up-regulation of inhibitory molecule T-cell immunoglobulin and mucin domain 3 (Tim-3) in type 1 conventional DCs (cDC1s). Using a cDC1-targeted vaccine model with anti-DEC-205 engineered to express the melanoma antigen human gp100 (anti-DEC-205-hgp100), we demonstrated that CD11c-β-cateninactive mice exhibited impaired cross-priming and memory responses of gp100-specific CD8 T (Pmel-1) cells upon immunization with anti-DEC-205-hgp100. Single-cell RNA sequencing (scRNA-seq) analysis revealed that β-catenin in DCs negatively regulated transcription programs for effector function and proliferation of primed Pmel-1 cells, correlating with suppressed CD8 T cell immunity in CD11c-β-cateninactive mice. Further experiments showed that treating CD11c-β-cateninactive mice with an anti-Tim-3 antibody upon anti-DEC-205-hgp100 vaccination led to restored cross-priming and memory responses of gp100-specific CD8 T cells, suggesting that anti-Tim-3 treatment likely synergizes with DC vaccines to improve their efficacy. Indeed, treating B16F10-bearing mice with DC vaccines using anti-DEC-205-hgp100 in combination with anti-Tim-3 treatment resulted in significantly reduced tumor growth compared with treatment with the DC vaccine alone. Taken together, we identified the β-catenin/Tim-3 axis as a potentially novel mechanism to inhibit anti-tumor CD8 T cell immunity and that combination immunotherapy of a DC-targeted vaccine with anti-Tim-3 treatment leads to improved anti-tumor efficacy.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jie Wang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Tianle Ma
- Department of Computer Science and Engineering, School of Engineering and Computer Science, Oakland University, Rochester, MI 48309, USA;
| | - Congcong Yin
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
41
|
Yan Z, Ma T, Wang X, Yi L, Wei P, Zhang H, Wang J. Establishment of novel anti-TIM-3 antibodies interfering with its binding to ligands. Heliyon 2024; 10:e28126. [PMID: 38560237 PMCID: PMC10979056 DOI: 10.1016/j.heliyon.2024.e28126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
The T cell immunoglobulin and mucin-domain containing-3 (TIM-3) receptor has gained significant attention as a promising target for cancer immunotherapy. The inhibitory effect of T cells by TIM-3 is mediated through the interaction between TIM-3 and its ligands. Ligand-blocking anti-TIM-3 antibodies possess the potential to reactivate antigen-specific T cells and augment anti-tumor immunity. However, the precise ligand-receptor interactions disrupted by the administration of TIM-3 blocking Abs have yet to be fully elucidated. In this study, we have developed a panel of monoclonal antibodies targeting human TIM-3, namely MsT001, MsT065, MsT229, and MsT286. They exhibited high sensitivities (10 pg/mL) and affinities (3.70 × 10-9 to 4.61 × 10-11 M) for TIM-3. The TIM-3 antibodies recognized distinct epitopes, including linear epitopes (MsT001 and MsT065), and a conformational epitope (MsT229 and MsT286). Additionally, the MsT229 and MsT286 displayed reactivity towards cynomolgus TIM-3. The interactions between TIM-3/Gal-9, TIM-3/HMGB-1, and TIM-3/CEACAM-1 disrupt the binding of MsT229 and MsT286, while leaving the binding of MsT001 and MsT065 unaffected. The inhibitory effect on the interaction between Gal-9 and TIM-3 was found to be dose-dependently in the presence of either MsT229 or MsT286. The findings suggested that the involvement of conformational epitopes in TIM-3 is crucial for its interaction with ligands, and we successfully generated novel anti-TIM-3 Abs that exhibit inhibitory potential. In conclusion, our finding offers valuable insights -on the comprehension and targeting of human TIM-3.
Collapse
Affiliation(s)
- Zhuohong Yan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Ling Yi
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hongtao Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| |
Collapse
|
42
|
Chang H, Marquez J, Chen BK, Kim DM, Cheng ML, Liu EV, Yang H, Zhang L, Sinha M, Cheung A, Kwek SS, Chow ED, Bridge M, Aggarwal RR, Friedlander TW, Small EJ, Anderson M, Fong L. Immune Modulation with RANKL Blockade through Denosumab Treatment in Patients with Cancer. Cancer Immunol Res 2024; 12:453-461. [PMID: 38276989 PMCID: PMC10993769 DOI: 10.1158/2326-6066.cir-23-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/21/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Denosumab is a fully human mAb that binds receptor activator of NFκB ligand (RANKL). It is routinely administered to patients with cancer to reduce the incidence of new bone metastasis. RANK-RANKL interactions regulate bone turnover by controlling osteoclast recruitment, development, and activity. However, these interactions also can regulate immune cells including dendritic cells and medullary thymic epithelial cells. Inhibition of the latter results in reduced thymic negative selection of T cells and could enhance the generation of tumor-specific T cells. We examined whether administering denosumab could modify modulate circulating immune cells in patients with cancer. Blood was collected from 23 patients with prostate cancer and 3 patients with renal cell carcinoma, all of whom had advanced disease and were receiving denosumab, prior to and during denosumab treatment. Using high-dimensional mass cytometry, we found that denosumab treatment by itself induced modest effects on circulating immune cell frequency and activation. We also found minimal changes in the circulating T-cell repertoire and the frequency of new thymic emigrants with denosumab treatment. However, when we stratified patients by whether they were receiving chemotherapy and/or steroids, patients receiving these concomitant treatments showed significantly greater immune modulation, including an increase in the frequency of natural killer cells early and classical monocytes later. We also saw broad induction of CTLA-4 and TIM3 expression in circulating lymphocytes and some monocyte populations. These findings suggest that denosumab treatment by itself has modest immunomodulatory effects, but when combined with conventional cancer treatments, can lead to the induction of immunologic checkpoints. See related Spotlight by Nasrollahi and Davar, p. 383.
Collapse
Affiliation(s)
- Hewitt Chang
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jaqueline Marquez
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Brandon K. Chen
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Daniel M. Kim
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Michael L. Cheng
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Eric V. Liu
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Hai Yang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Li Zhang
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Meenal Sinha
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Alexander Cheung
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Serena S. Kwek
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Eric D. Chow
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Department of Biochemistry and Biophysics, Center for Advanced Technologies, University of California San Francisco, San Francisco, California
| | - Mark Bridge
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Rahul R. Aggarwal
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Terence W. Friedlander
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Eric J. Small
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Mark Anderson
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
43
|
Lu T, Liu Y, Huang X, Sun S, Xu H, Jin A, Wang X, Gao X, Liu J, Zhu Y, Dai Q, Wang C, Lin K, Jiang L. Early-Responsive Immunoregulation Therapy Improved Microenvironment for Bone Regeneration Via Engineered Extracellular Vesicles. Adv Healthc Mater 2024; 13:e2303681. [PMID: 38054523 DOI: 10.1002/adhm.202303681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 12/07/2023]
Abstract
Overactivated inflammatory reactions hinder the bone regeneration process. Timely transformation of microenvironment from pro-inflammatory to anti-inflammatory after acute immune response is favorable for osteogenesis. Macrophages play an important role in the immune response to inflammation. Therefore, this study adopts TIM3 high expression extracellular vesicles (EVs) with immunosuppressive function to reshape the early immune microenvironment of bone injury, mainly by targeting macrophages. These EVs can be phagocytosed by macrophages, thereby increasing the infiltration of TIM3-positive macrophages (TIM3+ macrophages) and M2 subtypes. The TIM3+ macrophage group has some characteristics of M2 macrophages and secretes cytokines, such as IL-10 and TGF-β1 to regulate inflammation. TIM3, which is highly expressed in the engineered EVs, mediates the release of anti-inflammatory cytokines by inhibiting the p38/MAPK pathway and promotes osseointegration by activating the Bmp2 promoter to enhance macrophage BMP2 secretion. After evenly loading the engineered EVs into the hydrogel, the continuous and slow release of EVsTIM3OE recruits more anti-inflammatory macrophages during the early stages of bone defect repair, regulating the immune microenvironment and eliminating the adverse effects of excessive inflammation. In summary, this study provides a new strategy for the treatment of refractory wounds through early inflammation control.
Collapse
Affiliation(s)
- Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qinggang Dai
- The 2nd Dental Center, Ninth People's Hospital, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 201999, China
| | - Chao Wang
- Department of Obstetrics & Gynecology, Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200433, China
| | - Kaili Lin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
44
|
Heras-Murillo I, Adán-Barrientos I, Galán M, Wculek SK, Sancho D. Dendritic cells as orchestrators of anticancer immunity and immunotherapy. Nat Rev Clin Oncol 2024; 21:257-277. [PMID: 38326563 DOI: 10.1038/s41571-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Dendritic cells (DCs) are a heterogeneous group of antigen-presenting innate immune cells that regulate adaptive immunity, including against cancer. Therefore, understanding the precise activities of DCs in tumours and patients with cancer is important. The classification of DC subsets has historically been based on ontogeny; however, single-cell analyses are now additionally revealing a diversity of functional states of DCs in cancer. DCs can promote the activation of potent antitumour T cells and immune responses via numerous mechanisms, although they can also be hijacked by tumour-mediated factors to contribute to immune tolerance and cancer progression. Consequently, DC activities are often key determinants of the efficacy of immunotherapies, including immune-checkpoint inhibitors. Potentiating the antitumour functions of DCs or using them as tools to orchestrate short-term and long-term anticancer immunity has immense but as-yet underexploited therapeutic potential. In this Review, we outline the nature and emerging complexity of DC states as well as their functions in regulating adaptive immunity across different cancer types. We also describe how DCs are required for the success of current immunotherapies and explore the inherent potential of targeting DCs for cancer therapy. We focus on novel insights on DCs derived from patients with different cancers, single-cell studies of DCs and their relevance to therapeutic strategies.
Collapse
Affiliation(s)
- Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Irene Adán-Barrientos
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Galán
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
45
|
Lu C, Tan Y. Promising immunotherapy targets: TIM3, LAG3, and TIGIT joined the party. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200773. [PMID: 38596295 PMCID: PMC10905042 DOI: 10.1016/j.omton.2024.200773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have shown great promise as immunotherapy for restoring T cell function and reactivating anti-tumor immunity. The US Food and Drug Administration (FDA) approved the first immune checkpoint inhibitor, ipilimumab, in 2011 for advanced melanoma patients, leading to significant improvements in survival rates. Subsequently, other immune checkpoint-targeting antibodies were tested. Currently, seven ICIs, namely ipilimumab (anti-cytotoxic T lymphocyte-associated protein 4 [CTLA4]), pembrolizumab, nivolumab (anti-programmed cell death protein 1 [PD-1]), atezolizumab, avelumab, durvalumab, and cemiplimab (anti-PD-L1), have been approved for various cancer types. However, the efficacy of antibodies targeting CTLA4 or PD-1/programmed death-ligand 1 (PD-L1) remains suboptimal. Consequently, ongoing studies are evaluating the next generation of ICIs, such as lymphocyte activation gene-3 (LAG3), T cell immunoglobulin and mucin-domain containing 3 (TIM3), and T cell immunoglobulin and ITIM domain (TIGIT). Our review provides a summary of clinical trials evaluating these novel immune checkpoints in cancer treatment.
Collapse
Affiliation(s)
- Chenyu Lu
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Yuanyan Tan
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, Shenzhen 518061, Guangdong, China
| |
Collapse
|
46
|
Wang C, Liu J, Wu Q, Wang Z, Hu B, Bo L. The role of TIM-3 in sepsis: a promising target for immunotherapy? Front Immunol 2024; 15:1328667. [PMID: 38576606 PMCID: PMC10991702 DOI: 10.3389/fimmu.2024.1328667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Sepsis remains a significant cause of mortality and morbidity worldwide, with limited effective treatment options. The T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) has emerged as a potential therapeutic target in various immune-related disorders. This narrative review aims to explore the role of TIM-3 in sepsis and evaluate its potential as a promising target for immunotherapy. We discuss the dynamic expression patterns of TIM-3 during sepsis and its involvement in regulating immune responses. Furthermore, we examine the preclinical studies investigating the regulation of TIM-3 signaling pathways in septic models, highlighting the potential therapeutic benefits and challenges associated with targeting TIM-3. Overall, this review emphasizes the importance of TIM-3 in sepsis pathogenesis and underscores the promising prospects of TIM-3-based immunotherapy as a potential strategy to combat this life-threatening condition.
Collapse
Affiliation(s)
- Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinhai Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi Wu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
47
|
Dixon KO, Lahore GF, Kuchroo VK. Beyond T cell exhaustion: TIM-3 regulation of myeloid cells. Sci Immunol 2024; 9:eadf2223. [PMID: 38457514 DOI: 10.1126/sciimmunol.adf2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) is an important immune checkpoint molecule initially identified as a marker of IFN-γ-producing CD4+ and CD8+ T cells. Since then, our understanding of its role in immune responses has significantly expanded. Here, we review emerging evidence demonstrating unexpected roles for TIM-3 as a key regulator of myeloid cell function, in addition to recent work establishing TIM-3 as a delineator of terminal T cell exhaustion, thereby positioning TIM-3 at the interface between fatigued immune responses and reinvigoration. We share our perspective on the antagonism between TIM-3 and T cell stemness, discussing both cell-intrinsic and cell-extrinsic mechanisms underlying this relationship. Looking forward, we discuss approaches to decipher the underlying mechanisms by which TIM-3 regulates stemness, which has remarkable potential for the treatment of cancer, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Karen O Dixon
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Gonzalo Fernandez Lahore
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
48
|
Tiberio L, Laffranchi M, Zucchi G, Salvi V, Schioppa T, Sozzani S, Del Prete A, Bosisio D. Inhibitory receptors of plasmacytoid dendritic cells as possible targets for checkpoint blockade in cancer. Front Immunol 2024; 15:1360291. [PMID: 38504978 PMCID: PMC10948453 DOI: 10.3389/fimmu.2024.1360291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the major producers of type I interferons (IFNs), which are essential to mount antiviral and antitumoral immune responses. To avoid exaggerated levels of type I IFNs, which pave the way to immune dysregulation and autoimmunity, pDC activation is strictly regulated by a variety of inhibitory receptors (IRs). In tumors, pDCs display an exhausted phenotype and correlate with an unfavorable prognosis, which largely depends on the accumulation of immunosuppressive cytokines and oncometabolites. This review explores the hypothesis that tumor microenvironment may reduce the release of type I IFNs also by a more pDC-specific mechanism, namely the engagement of IRs. Literature shows that many cancer types express de novo, or overexpress, IR ligands (such as BST2, PCNA, CAECAM-1 and modified surface carbohydrates) which often represent a strong predictor of poor outcome and metastasis. In line with this, tumor cells expressing ligands engaging IRs such as BDCA-2, ILT7, TIM3 and CD44 block pDC activation, while this blocking is prevented when IR engagement or signaling is inhibited. Based on this evidence, we propose that the regulation of IFN secretion by IRs may be regarded as an "innate checkpoint", reminiscent of the function of "classical" adaptive immune checkpoints, like PD1 expressed in CD8+ T cells, which restrain autoimmunity and immunopathology but favor chronic infections and tumors. However, we also point out that further work is needed to fully unravel the biology of tumor-associated pDCs, the neat contribution of pDC exhaustion in tumor growth following the engagement of IRs, especially those expressed also by other leukocytes, and their therapeutic potential as targets of combined immune checkpoint blockade in cancer immunotherapy.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Giovanni Zucchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
49
|
Fu W, Li X, Li Y, Luo R, Ou C, Huang D, Liang X, You Y, Wu Q, Gong C. A programmable releasing versatile hydrogel platform boosts systemic immune responses via sculpting tumor immunogenicity and reversing tolerogenic dendritic cells. Biomaterials 2024; 305:122444. [PMID: 38142471 DOI: 10.1016/j.biomaterials.2023.122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Immunogenicity improvement is a valuable strategy for tumor immunotherapy. However, immunosuppressive factors bestow tolerogenic phenotype on tumor-infiltrating DCs, which exhibit weak antigen presentation and strong anti-inflammatory cytokines secretion abilities, limiting the effectiveness of tumor immunotherapy even if the tumor has adequate immunogenicity. Herein, we designed a programmable releasing versatile hydrogel platform (PIVOT) to sculpt tumor immunogenicity, increase intratumoral DCs and cDC1s abundance, and reverse the tolerogenic phenotype of DCs, thus promoting their maturation for boosting innate and adaptive immune responses. Responsive to tumoral reactive oxygen species (ROS), the hydrogel splits and promotes the activation of DCs and macrophages. Then, oxaliplatin is first released from PIVOT to sculpt tumor immunogenicity by inducing immunogenic cell death (ICD) and causing tumoral DNA fragments exposure simultaneously. Subsequently, the impaired DNA fragments bind to high mobility group protein 1 (HMGB1) forming the DNA-HMGB1 complex. Moreover, exogenous FMS-like tyrosine kinase 3 ligand (Flt-3L) recruits masses of DCs, especially cDC1s, which will endocytose the complex benefiting from TIM-3 blockade (αTIM3) that can reverse tolerogenic DCs. Finally, the endocytosis activates the cGAS-STING pathway of cDC1s, which promotes the secretion of type I IFN that triggers innate immune responses, and CXCL9 which recruits CD8+ effector T cells to initiate the following adaptive immune response against tumor progress. PIVOT achieves nearly 90 % tumor growth inhibition and induces systemic antitumor immune responses. In conclusion, this study focuses on ICD-mediated tumor immunogenicity sculpture and nucleic acid endocytosis-involved tolerogenic DCs reversal, providing a novel paradigm for enhancing DCs-based antitumor immune responses.
Collapse
Affiliation(s)
- Wangxian Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinchao Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingjie Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunqing Ou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dongxue Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuqi Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanjie You
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
50
|
Ebrahimi N, Abdulwahid AHRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, Adelian S, Khorram R, Vafadar R, Hamblin MR, Aref AR. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci 2024; 81:106. [PMID: 38418707 PMCID: PMC10902086 DOI: 10.1007/s00018-023-05098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 03/02/2024]
Abstract
Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T‑lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Karimi
- Department of Biology, Faculty of Basic Science, Islamic Azad University Damghan Branch, Damghan, Iran
| | | | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|