1
|
Hayat M, Syed RA, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Albassam LAM, Kaleem I, Wang X, Wang R, Bhatti MS, Bashir S. Decoding molecular mechanisms: brain aging and Alzheimer's disease. Neural Regen Res 2025; 20:2279-2299. [PMID: 39104174 DOI: 10.4103/nrr.nrr-d-23-01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
The complex morphological, anatomical, physiological, and chemical mechanisms within the aging brain have been the hot topic of research for centuries. The aging process alters the brain structure that affects functions and cognitions, but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. Beyond these observable, mild morphological shifts, significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain. Understanding these changes is important for maintaining cognitive health, especially given the increasing prevalence of age-related conditions that affect cognition. This review aims to explore the age-induced changes in brain plasticity and molecular processes, differentiating normal aging from the pathogenesis of Alzheimer's disease, thereby providing insights into predicting the risk of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Mahnoor Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafay Ali Syed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad (IIUI), Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Imdad Kaleem
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS University), Islamabad, Pakistan
| | - Xueyi Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mehwish S Bhatti
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Li Y, Xu X, Wu X, Li J, Chen S, Chen D, Li G, Tang Z. Cell polarization in ischemic stroke: molecular mechanisms and advances. Neural Regen Res 2025; 20:632-645. [PMID: 38886930 PMCID: PMC11433909 DOI: 10.4103/nrr.nrr-d-23-01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 06/20/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as 'cell polarization.' There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations (microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Ali A, Azmat U, Ji Z, Khatoon A, Murtaza B, Akbar K, Irshad U, Raza R, Su Z. Beyond Genes: Epiregulomes as Molecular Commanders in Innate Immunity. Int Immunopharmacol 2024; 142:113149. [PMID: 39278059 DOI: 10.1016/j.intimp.2024.113149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The natural fastest way to deal with pathogens or danger signals is the innate immune system. This system prevents too much inflammation and tissue damage and efficiently eliminates pathogens. The epiregulome is the chromatin structure influenced by epigenetic factors and linked to cis-regulatory elements (CREs). The epiregulome helps to end the inflammatory response and also assists innate immune cells to show specific action by making cell-specific gene expression patterns. This inspection unfolds two concepts: (1) how epiregulomes are shaped by switching the expression levels of genes, manoeuvre enzyme activity and earmark of chromatin modifiers on specific genes; during and after the infection, and (2) how the expression of specific genes (aids in prompt management of innate cell growth, or the reaction to aggravation and illness) command by epiregulomes that formed during the above process. In this review, the consequences of intrinsic immuno-metabolic remodelling on epiregulomes and potential difficulties in identifying the master epiregulome that regulates innate immunity and inflammation have been discussed.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, China.
| | - Urooj Azmat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ziyi Ji
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Science and Technology, Dalian, China
| | - Kaynaat Akbar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Urooj Irshad
- Department Biological Sciences, Faculty of Sciences, Superior University Lahore, Punjab, Pakistan
| | - Rameen Raza
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, China.
| |
Collapse
|
4
|
Chan S, Liu Z, Chen Y, Chen S, Liang Y, Yang Z, Zhang Z, Li M, Zhang X, Liu X. The JAK-STAT signaling-related signature serves as a prognostic and predictive biomarker for renal cell carcinoma immunotherapy. Gene 2024; 927:148719. [PMID: 38917875 DOI: 10.1016/j.gene.2024.148719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Renal cell carcinoma (RCC) represents a significant portion of genitourinary cancers, marked by challenging prognosis and high metastasis rates. Immunotherapy has been applied in managing advanced renal cell carcinoma, but the therapeutic outcomes are unsatisfactory. In this study, we order to construct a Janus kinase/signal transduction and activator transcriptional (JAK/STAT)-related signature linked to kidney patient outcomes for better predicting the efficacy to immune checkpoint inhibitors (ICIs) and to provide guidance for effective combination therapy. We screened 25 differentially expressed genes (DEGs) that exhibited high expression in RCC samples and were enriched in the JAK-STAT signaling pathway. Among these genes, 11 key genes were identified and correlated with the expectation of Kidney Clear Cell Carcinoma (KIRC) patients and all these genes was significantly elevated in RCC tumor tissues and cancer cells compared to para-cancer tissues and normal renal cells. Utilizing these 11 genes, we divided RCC patients into high-risk and low-risk groups. We found a clear correlation between the clinicopathologic factors of KIRC patients and the JAK-STAT-related risk score. And the IHC results shown that the JAK3 and STAT4 expression of tumor was significantly higher than normal tissue in RCC patients, the level of JAK3 and STAT4 was positively related to the T stage of RCC patients. In addition, high-risk patients had a poorer prognosis and greater protumor immune cell infiltration, and benefitted less from immunotherapy than did low-risk patients. Furthermore, the JAK-STAT-related risk score can predict disease-free survival (DFS) in RCC patients according to the nomogram, which constructed in combination with other clinical features such as age, TNM-staging and stage. Our study demonstrated the JAK-STAT signaling pathway's important regulatory function in RCC tumor immunity. This insight not only enhances our ability to accurately predict the survival rate of RCC patients, but also underscores a potential therapeutic alternative for RCC, involving the combined targeting of the JAK-STAT pathway and immune checkpoints.
Collapse
Affiliation(s)
- Szehoi Chan
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Zixuan Liu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Yingying Chen
- College of Stomatology, Jinan University, Guangzhou 510632, China
| | - Shuna Chen
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Yuelan Liang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Ziyi Yang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Zixuan Zhang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Miao Li
- Department of Dermatovenereology, The Seveneth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518106, China.
| | - Xingding Zhang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| | - Xueqi Liu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
5
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
6
|
Shin JJ, Suk K, Lee WH. LncRNA BRE-AS1 regulates the JAK2/STAT3-mediated inflammatory activation via the miR-30b-5p/SOC3 axis in THP-1 cells. Sci Rep 2024; 14:25726. [PMID: 39468152 PMCID: PMC11519362 DOI: 10.1038/s41598-024-77265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators in numerous biological processes, including macrophage-mediated inflammatory responses, which play a critical role in the progress of diverse diseases. This study focuses on the regulatory function of lncRNA brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in modulating the inflammatory activation of monocytes/macrophages. Employing the THP-1 cell line as a model, we demonstrate that lipopolysaccharide (LPS) treatment significantly upregulates BRE-AS1 expression. Notably, specific knockdown of BRE-AS1 via siRNA transfection enhances LPS-induced expression of interleukin (IL)-6 and IL-1β, while not affecting tumor necrosis factor (TNF)-α levels. This selective augmentation of pro-inflammatory cytokine production coincides with increased phosphorylation of Janus kinase (JAK)2 and signal transducer and activator of transcription (STAT)3. Furthermore, BRE-AS1 suppression results in the downregulation of suppressor of cytokine signaling (SOCS)3, an established inhibitor of the JAK2/STAT3 pathway. Bioinformatics analysis identified binding sites for miR-30b-5p on both BRE-AS1 and SOCS3 mRNA. Intervention with a miR-30b-5p inhibitor and a synthetic RNA fragment that represents the miR-30b-5p binding site on BRE-AS1 attenuates the pro-inflammatory effects of BRE-AS1 knockdown. Conversely, a miR-30b-5p mimic replicated the BRE-AS1 attenuation outcomes. Our findings elucidate the role of lncRNA BRE-AS1 in modulating inflammatory activation in THP-1 cells via the miR-30b-5p/SOCS3/JAK2/STAT3 signaling pathway, proposing that manipulation of macrophage BRE-AS1 activity may offer a novel therapeutic avenue in diseases characterized by macrophage-driven pathogenesis.
Collapse
Affiliation(s)
- Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
7
|
Herrera-Uribe J, Convery O, ALmohammadi D, Weinberg FI, Stevenson NJ. The Neglected Suppressor of Cytokine Signalling (SOCS): SOCS4-7. Inflammation 2024:10.1007/s10753-024-02163-7. [PMID: 39460806 DOI: 10.1007/s10753-024-02163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
SOCS proteins are essential for the regulation of oncogenic, anti-pathogenic, and proinflammatory signalling cascades, including the JAK/STAT and NF-kB pathways, where they act as negative feedback regulators. Given their powerful role in a broad spectrum of biological processes, it is surprising that the functions of many SOCS proteins have not been widely explored. While the mechanisms of action of CIS, SOCS1-3 are well-documented, information regarding SOCS4-7 remains limited. However, recent studies have begun to elucidate the regulatory functions of these proteins during infection and disease, such as influenza infection, cancer and diabetes. Therefore, this review aims to describe and discuss studies detailing our current understanding of SOCS4-7, painting a clearer picture of the biological processes these regulatory proteins maintain. Indeed, our review highlights important evidence proving that all SOCS play a role in biological processes that are essential for normal immunological homeostasis, clearance of infection and avoidance of disease. Understanding how SOCS proteins interact with other proteins or how they are dysregulated in disease is likely to provide valuable insights for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Convery
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniah ALmohammadi
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fabienne Ingrid Weinberg
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Huang H, Pan Y, Mai Q, Zhang C, Du Q, Liao Y, Qin S, Chen Y, Huang J, Li J, Liu T, Zou Q, Zhou Y, Yuan L, Wang W, Liang Y, Pan CY, Liu J, Yao S. Targeting CDCP1 boost CD8+ T cells-mediated cytotoxicity in cervical cancer via the JAK/STAT signaling pathway. J Immunother Cancer 2024; 12:e009416. [PMID: 39455095 PMCID: PMC11529519 DOI: 10.1136/jitc-2024-009416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cervical cancer remains a global health challenge. The identification of new immunotherapeutic targets may provide a promising platform for advancing cervical cancer treatment. OBJECTIVE This study aims to investigate the role of CUB domain-containing protein 1 (CDCP1) in cervical cancer progression and evaluate its potential as a therapeutic target. METHODS We performed comprehensive analyses using patient cohorts and preclinical models to examine the association between CDCP1 expression and cervical cancer prognosis. Then in immunodeficient and immunocompetent mouse models, we further investigated the impact of CDCP1 on the tumor immune microenvironment, focusing on its effects on tumor-infiltrating T cells, including cytotoxic T lymphocytes (CTLs) and regulatory T cells (Tregs). Mechanistic studies were performed to elucidate the pathways involved in CDCP1-mediated immune modulation, in particular its interaction with the T cell receptor CD6 and the activation of the JAK-STAT signaling pathway. RESULTS Our results show that CDCP1 overexpression is associated with poor prognosis and T cell infliction in cervical cancer. Specifically, it affects the activity of CTLs and Tregs. Mechanistically, CDCP1 binds to CD6 and inhibits the JAK-STAT pathway of T cells. The study further demonstrates that targeting CDCP1 with the inhibitor 8-prenylnaringenin (8PN) effectively suppresses tumor growth in vivo and enhances antitumor immunity. CONCLUSIONS CDCP1 plays a critical role in cervical cancer progression by modulating the tumor immune microenvironment. Targeting CDCP1 offers a promising therapeutic strategy to improve the outcome of patients with cervical cancer.
Collapse
Affiliation(s)
- Hua Huang
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Qiuwen Mai
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Shuhang Qin
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yili Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Jiaming Huang
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Jie Li
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Tianyu Liu
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Qiaojian Zou
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yijia Zhou
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Li Yuan
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Chao Yun Pan
- Department of Biochemistry, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Zhou R, Hu W, Ma PX, Liu CJ. Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases. Bone Res 2024; 12:58. [PMID: 39406741 PMCID: PMC11480210 DOI: 10.1038/s41413-024-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Bone and joint-related diseases, including osteoarthritis (OA), rheumatoid arthritis (RA), and bone tumors, pose significant health challenges due to their debilitating effects on the musculoskeletal system. 14-3-3 proteins, a family of conserved regulatory molecules, play a critical role in the pathology of these diseases. This review discusses the intricate structure and multifunctionality of 14-3-3 proteins, their regulation of signaling pathways, and their interactions with other proteins. We underscore the significance of 14-3-3 proteins in the regulation of osteoblasts, osteoclasts, chondrocytes, and bone remodeling, all key factors in the maintenance and dysfunction of bone and joint systems. Specific focus is directed toward elucidating the contribution of 14-3-3 proteins in the pathology of OA, RA, and bone malignancies, where dysregulated 14-3-3-mediated signaling cascades have been implicated in the disease processes. This review illuminates how the perturbation of 14-3-3 protein interactions can lead to the pathological manifestations observed in these disorders, including joint destruction and osteolytic activity. We highlight cutting-edge research that positions 14-3-3 proteins as potential biomarkers for disease progression and as innovative therapeutic targets, offering new avenues for disease intervention and management.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Weirong Hu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Saleem M, Aden LA, Mutchler AL, Basu C, Ertuglu LA, Sheng Q, Penner N, Hemnes AR, Park JH, Ishimwe JA, Laffer CL, Elijovich F, Wanjalla CN, de la Visitacion N, Kastner PD, Albritton CF, Ahmad T, Haynes AP, Yu J, Graber MK, Yasmin S, Wagner KU, Sayeski PP, Hatzopoulos AK, Gamazon ER, Bick AG, Kleyman TR, Kirabo A. Myeloid-Specific JAK2 Contributes to Inflammation and Salt Sensitivity of Blood Pressure. Circ Res 2024; 135:890-909. [PMID: 39263750 PMCID: PMC11466692 DOI: 10.1161/circresaha.124.323595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Salt sensitivity of blood pressure (SSBP), characterized by acute changes in blood pressure with changes in dietary sodium intake, is an independent risk factor for cardiovascular disease and mortality in people with and without hypertension. We previously found that elevated sodium concentration activates antigen-presenting cells (APCs), resulting in high blood pressure, but the mechanisms are unknown. Here, we hypothesized that APC-specific JAK2 (Janus kinase 2) through STAT3 (signal transducer and activator of transcription 3) and SMAD3 (small mothers against decapentaplegic homolog 3) contributes to SSBP. METHODS We performed bulk or single-cell transcriptomic analyses following in vitro monocytes exposed to high salt and in vivo high sodium treatment in humans using a rigorous salt-loading/depletion protocol to phenotype SSBP. We also used a myeloid cell-specific CD11c+ JAK2 knockout mouse model and measured blood pressure with radiotelemetry after N-omega-nitro-L-arginine-methyl ester and a high salt diet treatment. We used flow cytometry for immunophenotyping and measuring cytokine levels. Fluorescence in situ hybridization and immunohistochemistry were performed to spatially visualize the kidney's immune cells and cytokine levels. Echocardiography was performed to assess cardiac function. RESULTS We found that high salt treatment upregulates gene expression of the JAK/STAT/SMAD pathway while downregulating inhibitors of this pathway, such as suppression of cytokine signaling and cytokine-inducible SH2, in human monocytes. Expression of the JAK2 pathway genes mirrored changes in blood pressure after salt loading and depletion in salt-sensitive but not salt-resistant humans. Ablation of JAK2, specifically in CD11c+ APCs, attenuated salt-induced hypertension in mice with SSBP. Mechanistically, we found that SMAD3 acted downstream of JAK2 and STAT3, leading to increased production of highly reactive isolevuglandins and proinflammatory cytokine IL (interleukin)-6 in renal APCs, which activate T cells and increase production of IL-17A, IL-6, and TNF-α (tumor necrosis factor-alpha). CONCLUSIONS Our findings reveal the APC JAK2 signaling pathway as a potential target for the diagnosis and treatment of SSBP in humans.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Luul A Aden
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Ashley L Mutchler
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Chitra Basu
- Department of Medicine, Division of Genetic Medicine (C.B., E.R.G.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Cardiovascular Medicine (C.B., A.K.H.), Vanderbilt University Medical Center, Nashville, TN
| | - Lale A Ertuglu
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Quanhu Sheng
- Department of Biostatistics (Q.S.), Vanderbilt University Medical Center, Nashville, TN
| | - Niki Penner
- Division of Allergy, Pulmonary, and Critical Care Medicine (N.P., A.R.H.)
| | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine (N.P., A.R.H.)
| | - Jennifer H Park
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Jeanne A Ishimwe
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Cheryl L Laffer
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | | | - Celestine N Wanjalla
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Nestor de la Visitacion
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Paul D Kastner
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Claude F Albritton
- School of Graduate Studies, Meharry Medical College, Nashville, TN (C.F.A.)
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Punjab, Pakistan (T.A.)
| | - Alexandria P Haynes
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Justin Yu
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Meghan K Graber
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Sharia Yasmin
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Kay-Uwe Wagner
- Wayne State University, Department of Oncology and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI (K.-U.W.)
| | - Peter P Sayeski
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville (P.P.S.)
| | - Antonis K Hatzopoulos
- Department of Medicine, Division of Cardiovascular Medicine (C.B., A.K.H.), Vanderbilt University Medical Center, Nashville, TN
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine (C.B., E.R.G.), Vanderbilt University Medical Center, Nashville, TN
| | - Alexander G Bick
- Division of Genetic Medicine (A.G.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, PA (T.R.K.)
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology (A.K.)
- Vanderbilt Institute for Infection, Immunology and Inflammation (A.K.)
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN (A.K.)
| |
Collapse
|
11
|
Liang Y, Li Y, Lee C, Yu Z, Chen C, Liang C. Ulcerative colitis: molecular insights and intervention therapy. MOLECULAR BIOMEDICINE 2024; 5:42. [PMID: 39384730 PMCID: PMC11464740 DOI: 10.1186/s43556-024-00207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by abdominal pain, diarrhea, rectal bleeding, and weight loss. The pathogenesis and treatment of UC remain key areas of research interest. Various factors, including genetic predisposition, immune dysregulation, and alterations in the gut microbiota, are believed to contribute to the pathogenesis of UC. Current treatments for UC include 5-aminosalicylic acids, corticosteroids, immunosuppressants, and biologics. However, study reported that the one-year clinical remission rate is only around 40%. It is necessary to prompt the exploration of new treatment modalities. Biologic therapies, such as anti-TNF-α monoclonal antibody and JAK inhibitor, primarily consist of small molecules targeting specific pathways, effectively inducing and maintaining remission. Given the significant role of the gut microbiota, research into intestinal microecologics, such as probiotics and prebiotics, and fecal microbiota transplantation (FMT) shows promising potential in UC treatment. Additionally, medicinal herbs, such as chili pepper and turmeric, used in complementary therapy have shown promising results in UC management. This article reviews recent findings on the mechanisms of UC, including genetic susceptibility, immune cell dynamics and cytokine regulation, and gut microbiota alterations. It also discusses current applications of biologic therapy, herbal therapy, microecologics, and FMT, along with their prospects and challenges.
Collapse
Affiliation(s)
- Yuqing Liang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yang Li
- Department of Respiratory, Sichuan Integrative Medicine Hospital, Chengdu, 610042, China
| | - Chehao Lee
- Department of Traditional Chinese Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziwei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chongli Chen
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chao Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
12
|
Onyango CO, Anyona SB, Hurwitz I, Raballah E, Wasena SA, Osata SW, Seidenberg P, McMahon BH, Lambert CG, Schneider KA, Ouma C, Cheng Q, Perkins DJ. Transcriptomic and Proteomic Insights into Host Immune Responses in Pediatric Severe Malarial Anemia: Dysregulation in HSP60-70-TLR2/4 Signaling and Altered Glutamine Metabolism. Pathogens 2024; 13:867. [PMID: 39452740 PMCID: PMC11510049 DOI: 10.3390/pathogens13100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Severe malarial anemia (SMA, Hb < 6.0 g/dL) is a leading cause of childhood morbidity and mortality in holoendemic Plasmodium falciparum transmission zones. This study explored the entire expressed human transcriptome in whole blood from 66 Kenyan children with non-SMA (Hb ≥ 6.0 g/dL, n = 41) and SMA (n = 25), focusing on host immune response networks. RNA-seq analysis revealed 6862 differentially expressed genes, with equally distributed up-and down-regulated genes, indicating a complex host immune response. Deconvolution analyses uncovered leukocytic immune profiles indicative of a diminished antigenic response, reduced immune priming, and polarization toward cellular repair in SMA. Weighted gene co-expression network analysis revealed that immune-regulated processes are central molecular distinctions between non-SMA and SMA. A top dysregulated immune response signaling network in SMA was the HSP60-HSP70-TLR2/4 signaling pathway, indicating altered pathogen recognition, innate immune activation, stress responses, and antigen recognition. Validation with high-throughput gene expression from a separate cohort of Kenyan children (n = 50) with varying severities of malarial anemia (n = 38 non-SMA and n = 12 SMA) confirmed the RNA-seq findings. Proteomic analyses in 35 children with matched transcript and protein abundance (n = 19 non-SMA and n = 16 SMA) confirmed dysregulation in the HSP60-HSP70-TLR2/4 signaling pathway. Additionally, glutamine transporter and glutamine synthetase genes were differentially expressed, indicating altered glutamine metabolism in SMA. This comprehensive analysis underscores complex immune dysregulation and novel pathogenic features in SMA.
Collapse
Affiliation(s)
- Clinton O. Onyango
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno 40100, Kenya; (C.O.O.); (S.A.W.); (S.W.O.); (C.O.)
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (I.H.); (P.S.); (B.H.M.); (K.A.S.)
| | - Samuel B. Anyona
- Kenya Global Health Programs, University of New Mexico, Kisumu and Siaya 40100, Kenya; (S.B.A.); (E.R.)
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno 40100, Kenya
| | - Ivy Hurwitz
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (I.H.); (P.S.); (B.H.M.); (K.A.S.)
| | - Evans Raballah
- Kenya Global Health Programs, University of New Mexico, Kisumu and Siaya 40100, Kenya; (S.B.A.); (E.R.)
- Department of Medical Laboratory Sciences, School of Public Health Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega 50100, Kenya
| | - Sharely A. Wasena
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno 40100, Kenya; (C.O.O.); (S.A.W.); (S.W.O.); (C.O.)
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (I.H.); (P.S.); (B.H.M.); (K.A.S.)
| | - Shamim W. Osata
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno 40100, Kenya; (C.O.O.); (S.A.W.); (S.W.O.); (C.O.)
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (I.H.); (P.S.); (B.H.M.); (K.A.S.)
| | - Philip Seidenberg
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (I.H.); (P.S.); (B.H.M.); (K.A.S.)
- Department of Emergency Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Benjamin H. McMahon
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (I.H.); (P.S.); (B.H.M.); (K.A.S.)
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM 87545, USA
| | - Christophe G. Lambert
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (I.H.); (P.S.); (B.H.M.); (K.A.S.)
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kristan A. Schneider
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (I.H.); (P.S.); (B.H.M.); (K.A.S.)
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM 87131, USA
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno 40100, Kenya; (C.O.O.); (S.A.W.); (S.W.O.); (C.O.)
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (I.H.); (P.S.); (B.H.M.); (K.A.S.)
| | - Qiuying Cheng
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (I.H.); (P.S.); (B.H.M.); (K.A.S.)
- Kenya Global Health Programs, University of New Mexico, Kisumu and Siaya 40100, Kenya; (S.B.A.); (E.R.)
| | - Douglas J. Perkins
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (I.H.); (P.S.); (B.H.M.); (K.A.S.)
- Kenya Global Health Programs, University of New Mexico, Kisumu and Siaya 40100, Kenya; (S.B.A.); (E.R.)
| |
Collapse
|
13
|
Zhou P, Tao K, Zeng L, Zeng X, Wan Y, Xie G, Liu X, Zhang P. IRG1/Itaconate inhibits proliferation and promotes apoptosis of CD69 +CD103 +CD8 + tissue-resident memory T cells in autoimmune hepatitis by regulating the JAK3/STAT3/P53 signalling pathway. Apoptosis 2024; 29:1738-1756. [PMID: 38641760 DOI: 10.1007/s10495-024-01970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
To investigate the protective role of immune response gene 1 (IRG1) and exogenous itaconate in autoimmune hepatitis (AIH) and elucidate the underlying mechanisms. Wild-type and IRG1-/- AIH mouse models were established, and samples of liver tissue and ocular blood were collected from each group of mice to assess the effects of IRG1/itaconate on the expression of pro- and anti-inflammatory cytokines. The levels of liver enzymes and related inflammatory factors were determined using enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (PCR). Liver histomorphology was detected through hematoxylin and eosin staining and then scored for liver injury, and the infiltration levels of tissue-resident memory T (TRM) cells and related molecules in the liver tissue were detected through immunofluorescence staining in vitro. RNA sequencing and gene enrichment analysis were conducted to identify the corresponding molecules and pathways, and lentiviral transfection was used to generate TRM cell lines with IRG1, Jak3, Stat3, and p53 knockdown. Real-time quantitative PCR and western blot were performed to detect the expression levels of relevant mRNAs and proteins in the liver tissue and cells. The percentage of apoptotic cells was determined using flow cytometry. IRG1/itaconate effectively reduced the release of pro-inflammatory cytokines and the pathological damage to liver tissue, thereby maintaining normal liver function. At the same time, IRG1/itaconate inhibited the JAK3/STAT3 signaling pathway, regulated the expression of related downstream proteins, and inhibited the proliferation and promoted the apoptosis of CD69+CD103+CD8+ TRM cells. For the first time, P53 was found to act as a downstream molecule of the JAK3/STAT3 pathway and was regulated by IRG1/itaconate to promote the apoptosis of CD8+ TRM cells. IRG1/itaconate can alleviate concanavalin A-induced autoimmune hepatitis in mice by inhibiting the proliferation and promoting the apoptosis of CD69+CD103+CD8+ TRM cells via the JAK3/STAT3/P53 pathway.
Collapse
MESH Headings
- Animals
- Mice
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Apoptosis/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Hepatitis, Autoimmune/immunology
- Hepatitis, Autoimmune/pathology
- Hepatitis, Autoimmune/genetics
- Hepatitis, Autoimmune/drug therapy
- Integrin alpha Chains/genetics
- Integrin alpha Chains/metabolism
- Janus Kinase 3/genetics
- Janus Kinase 3/metabolism
- Janus Kinase 3/antagonists & inhibitors
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Liver/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/immunology
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Memory T Cells/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Signal Transduction/drug effects
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Pei Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Liwu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Xinyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Yaqi Wan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Gengchen Xie
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Xinghua Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China.
| |
Collapse
|
14
|
Wang LL, Wang H, Lin SJ, Xu XY, Hu WJ, Liu J, Zhang HY. ABBV-744 alleviates LPS-induced neuroinflammation via regulation of BATF2-IRF4-STAT1/3/5 axis. Acta Pharmacol Sin 2024; 45:2077-2091. [PMID: 38862817 PMCID: PMC11420366 DOI: 10.1038/s41401-024-01318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Suppression of neuroinflammation using small molecule compounds targeting the key pathways in microglial inflammation has attracted great interest. Recently, increasing attention has been gained to the role of the second bromodomain (BD2) of the bromodomain and extra-terminal (BET) proteins, while its effect and molecular mechanism on microglial inflammation has not yet been explored. In this study, we evaluated the therapeutic effects of ABBV-744, a BD2 high selective BET inhibitor, on lipopolysaccharide (LPS)-induced microglial inflammation in vitro and in vivo, and explored the key pathways by which ABBV-744 regulated microglia-mediated neuroinflammation. We found that pretreatment of ABBV-744 concentration-dependently inhibited the expression of LPS-induced inflammatory mediators/enzymes including NO, TNF-α, IL-1β, IL-6, iNOS, and COX-2 in BV-2 microglial cells. These effects were validated in LPS-treated primary microglial cells. Furthermore, we observed that administration of ABBV-744 significantly alleviated LPS-induced activation of microglia and transcriptional levels of pro-inflammatory factors TNF-α and IL-1β in mouse hippocampus and cortex. RNA-Sequencing (RNA-seq) analysis revealed that ABBV-744 induced 508 differentially expressed genes (DEGs) in LPS-stimulated BV-2 cells, and gene enrichment and gene expression network analysis verified its regulation on activated microglial genes and inflammatory pathways. We demonstrated that pretreatment of ABBV-744 significantly reduced the expression levels of basic leucine zipper ATF-like transcription factor 2 (BATF2) and interferon regulatory factor 4 (IRF4), and suppressed JAK-STAT signaling pathway in LPS-stimulated BV-2 cells and mice, suggesting that the anti-neuroinflammatory effect of ABBV-744 might be associated with regulation of BATF2-IRF4-STAT1/3/5 pathway, which was confirmed by gene knockdown experiments. This study demonstrates the effect of a BD2 high selective BET inhibitor, ABBV-744, against microglial inflammation, and reveals a BATF2-IRF4-STAT1/3/5 pathway in regulation of microglial inflammation, which might provide new clues for discovery of effective therapeutic strategy against neuroinflammation.
Collapse
Affiliation(s)
- Le-le Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Si-Jin Lin
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xing-Yu Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Juan Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hai-Yan Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
15
|
Taylor PC, Downie B, Han L, Hawtin R, Hertz A, Moots RJ, Takeuchi T. Patients with High Baseline Neutrophil-to-Lymphocyte Ratio Exhibit Better Response to Filgotinib as Treatment for Rheumatoid Arthritis. Rheumatol Ther 2024; 11:1383-1392. [PMID: 38985247 PMCID: PMC11422297 DOI: 10.1007/s40744-024-00695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION High baseline neutrophil-to-lymphocyte ratio (NLR) in rheumatoid arthritis (RA) has been associated with positive responses to biologic tumor necrosis factor inhibition and negative responses to conventional synthetic disease-modifying antirheumatic drug (csDMARD) triple therapy. Datasets from three randomized clinical trials in patients with RA were used to test the hypothesis that baseline NLR is associated with improved clinical response to filgotinib in methotrexate (MTX)-naïve or MTX-experienced RA populations. METHODS Patients from FINCH 1 (inadequate response to MTX, MTX-IR; NCT02889796), FINCH 2 (inadequate response to biologic DMARDs; NCT02873936), and FINCH 3 (MTX-naïve; NCT02886728) were classified as baseline NLR-High or baseline NLR-Low based on a previously published cut point of 2.7. In total, 3365 patients were included across the three studies. Differences in clinical outcomes and patient-reported outcomes (PROs) were determined using linear-regression models. RESULTS Control-arm patients (placebo + MTX/placebo + csDMARD) classified as NLR-High exhibited worse continuous clinical and PRO responses at week 12 across clinical trials compared to NLR-Low patients. In contrast, NLR-High patients who received FIL 200 mg + MTX/csDMARD exhibited consistently better responses after 12 weeks compared to NLR-Low patients across clinical trials, clinical endpoints, and PROs. These trends were most prominent among the MTX-IR population. CONCLUSION The 2.7 baseline NLR cut point could be used to enrich for patients most likely to benefit from the addition of filgotinib to background MTX/csDMARD. Use of baseline NLR as part of therapeutic decision-making would not require additional diagnostics and could contribute to improved outcomes for patients with RA. TRIAL REGISTRATION Clinicaltrials.gov: NCT02889796; NCT02873936; NCT02886728.
Collapse
Affiliation(s)
- Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | - Bryan Downie
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Ling Han
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | | | - Angie Hertz
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Robert J Moots
- Department of Rheumatology, Aintree University Hospital, Liverpool, L9 7AL, UK
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, L39 4QP, UK
| | | |
Collapse
|
16
|
Meyer A. Illuminating the impact of γδ T cells in man and mice in spondylarthritides. Eur J Immunol 2024; 54:e2451071. [PMID: 39077953 DOI: 10.1002/eji.202451071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Spondylarthritides (SpA) are a group of autoinflammatory diseases affecting the spine, peripheral joints, and entheses, including axial spondyloarthritis (axSpA) and psoriatic arthritis. AxSpA has a multifactorial etiology that involves genetic predispositions, such as HLA-B27 and IL-23R. Although HLA-B27 is strongly associated with axSpA, its role remains unclear. GWAS studies have demonstrated that genetic polymorphisms related to the IL-23 pathway occur throughout the spectrum of SpA, including but not limited to axSpA and PsA. IL-23 promotes the production of IL-17, which drives inflammation and tissue damage. This pathway contributes not only to peripheral enthesitis but also to spinal inflammation. γδ T cells in axSpA express IL-23R and RORγt, crucial for their activation, although specific pathogenic cells and factors remain elusive. Despite drug efficacy in PsA, IL-23R inhibition is ineffective in axSpA. Murine models provide valuable insights into the intricate cellular and molecular interactions that contribute to the development and progression of SpA. Those models are useful tools to elucidate the dynamics of γδ T cell involvement, offering insights into disease mechanisms and potential therapeutic targets. This review aims to illuminate the complex interplay between IL-23 and γδ T cells in SpA pathogenesis, emphasizing their roles in chronic inflammation, tissue damage, and disease heterogeneity.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Disease Models, Animal
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Interleukin-23/genetics
- Interleukin-17/immunology
- Interleukin-17/metabolism
- HLA-B27 Antigen/genetics
- HLA-B27 Antigen/immunology
- Genetic Predisposition to Disease
- Spondylarthritis/immunology
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Interleukin/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
Collapse
Affiliation(s)
- Anja Meyer
- Center for Molecular Neurobiology Hamburg, Institute for Systems Immunology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Ji Y, Wang Y, Zhang N, Yang J, Li J, Zheng H, Wang L, Wang W, Li J. Mechanism of LMNB1 activating GPR84 through JAK-STAT pathway to mediate M2 macrophage polarization in lung cancer. Hum Immunol 2024; 85:111150. [PMID: 39357468 DOI: 10.1016/j.humimm.2024.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND It is reported that G protein-coupled receptor 84 (GPR84) can participate in inflammation and immune regulation to repress anti-tumor responses. However, the function of GPR84 in lung cancer (LC) and its potential molecular mechanisms are still largely unknown. METHODS Bioinformatics and molecular experiments were employed to assess the expression of GPR84 in LC. The pathways enriched by GPR84 were analyzed by the Kyoto Encyclopedia of Genes and Genomes. Bioinformatics prediction identified the potential upstream regulatory factors of GPR84, which were verified through dual luciferase and chromatin immunoprecipitation experiments. Cell viability was measured by methyl thiazolyl tetrazolium assay. The expression levels of key proteins related to the janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway such as JAK2, p-JAK2, p-STAT3, and STAT3 were detected by western blot. Macrophages were co-cultured with LC cells. Flow cytometry was employed to examine the proportion of mannose receptor-positive cells. The expression levels of M2 polarization marker genes chitinase-like protein 3, arginase-1, and found in inflammatory zone 1 were measured by quantitative reverse transcription polymerase chain reaction. We applied an enzyme-linked immunosorbent assay to determine levels of cytokines (interleukin-10 and transforming growth factor beta) to evaluate the M2 macrophage polarization. RESULTS GPR84 was highly expressed in LC and substantially enriched in the JAK-STAT pathway. GPR84 facilitated the M2 polarization of macrophages in LC. Adding the JAK-STAT pathway inhibitor weakened the promoting effect of GPR84 overexpression on M2 macrophage polarization. Furthermore, GPR84 also had an upstream regulatory factor lamin B1 (LMNB1). Knocking down LMNB1 blocked the JAK-STAT signaling pathway to repress M2 macrophage polarization in LC, while overexpression of GPR84 reversed the impact of LMNB1 knockdown on macrophage polarization. CONCLUSION The project suggested that the LMNB1/GPR84 axis can facilitate M2 polarization of macrophages in LC by triggering the JAK-STAT pathway. Targeting LMNB1/GPR84 or blocking the JAK-STAT pathway may be a novel approach for LC diagnosis and treatment.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Yuekun Wang
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Ning Zhang
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Junhong Yang
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Jing Li
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Hui Zheng
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Lihua Wang
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Weijie Wang
- Department of Surgical Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China.
| | - Junkuo Li
- Department of Pathology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China.
| |
Collapse
|
18
|
Qin H, Zhou L, Haque FT, Martin-Jimenez C, Trang A, Benveniste EN, Wang Q. Diverse signaling mechanisms and heterogeneity of astrocyte reactivity in Alzheimer's disease. J Neurochem 2024; 168:3536-3557. [PMID: 37932959 DOI: 10.1111/jnc.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) affects various brain cell types, including astrocytes, which are the most abundant cell types in the central nervous system (CNS). Astrocytes not only provide homeostatic support to neurons but also actively regulate synaptic signaling and functions and become reactive in response to CNS insults through diverse signaling pathways including the JAK/STAT, NF-κB, and GPCR-elicited pathways. The advent of new technology for transcriptomic profiling at the single-cell level has led to increasing recognition of the highly versatile nature of reactive astrocytes and the context-dependent specificity of astrocyte reactivity. In AD, reactive astrocytes have long been observed in senile plaques and have recently been suggested to play a role in AD pathogenesis and progression. However, the precise contributions of reactive astrocytes to AD remain elusive, and targeting this complex cell population for AD treatment poses significant challenges. In this review, we summarize the current understanding of astrocyte reactivity and its role in AD, with a particular focus on the signaling pathways that promote astrocyte reactivity and the heterogeneity of reactive astrocytes. Furthermore, we explore potential implications for the development of therapeutics for AD. Our objective is to shed light on the complex involvement of astrocytes in AD and offer insights into potential therapeutic targets and strategies for treating and managing this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Faris T Haque
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cynthia Martin-Jimenez
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Amy Trang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
19
|
Zhou Y, Wang Q, Tang W, Ma Z, Yang Z, Li X, Chen W, Ma H, Ye X. Palmatine ameliorates N-methyl-N'-nitrosoguanidine-induced chronic atrophic gastritis through the STAT1/CXCL10 axis. FASEB J 2024; 38:e70037. [PMID: 39287361 DOI: 10.1096/fj.202401624r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
Chronic atrophic gastritis (CAG) is a prevalent preneoplastic condition of the stomach. Palmatine (PAL), an isoquinoline alkaloid isolated from Rhizoma Coptidis (RC), has significant anti-inflammatory properties and is often used to treat gastrointestinal disorders. However, the mechanism of PAL on CAG remains unclear. In this study, N-methyl-N'-nitrosoguanidine (MNNG) was used to induce CAG inflammatory disease models in vivo and in vitro. The efficacy of five alkaloids in RC and the dose-dependent effects of the most effective PAL in CAG mice were evaluated in two animal experiments. RNA-seq and western blot revealed that PAL significantly improved IL-17, TNF, and NF-kappa B inflammation-related signaling pathways. Further hub gene prediction and experimental validation revealed that PAL modulated the STAT1/CXCL10 axis, thereby exerting attenuation of CAG through the regulation of IL-17, TNF-α, and p-p65 expression. In conclusion, PAL was proposed to mitigate MNNG-induced CAG, potentially through the inhibition of oxidative stress and inflammatory responses via the STAT1/CXCL10 axis. This approach is an effective complement to the use of PAL in the treatment of CAG.
Collapse
Affiliation(s)
- Yuan Zhou
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Qiaojiao Wang
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Wanyu Tang
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Zhengcai Ma
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Zhipeng Yang
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Xuegang Li
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Wanqun Chen
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Hang Ma
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Ramakrishna C, Mason A, Edwards CJ. Tyrosine kinase 2 inhibitors in autoimmune diseases. Autoimmun Rev 2024; 23:103649. [PMID: 39349269 DOI: 10.1016/j.autrev.2024.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Tyk2 is a member of the JAK kinase family. It is an important mediator in pro-inflammatory signalling, implicated in both innate and adaptive immune system. Activation of Tyk2 is believed to be integral to cellular processes that contribute to the development and progression of autoimmune disorders. Selective targeting of Tyk2 may reduce the number of adverse events as compared to non-selective JAK inhibitors. Therefore, in recent years there has been a growing body of research examining the inhibition of Tyk2 as a therapeutic intervention in autoimmune disease. Deucravacitinib has been approved for the treatment of moderate to severe skin psoriasis. This drug and other novel Tyk2 inhibitors are now being explored as therapies for multiple autoimmune diseases, including psoriatic arthritis, SLE, Sjogren's, dermatomyositis, inflammatory bowel disease, uveitis, hidradenitis suppurativa and others. Tyk2 inhibitors offer a potentially exciting new treatment option across a wide range of autoimmune diseases. We discuss Tyk2 inhibition, the current evidence for its usage to date, ongoing trials and what the future might hold.
Collapse
Affiliation(s)
- Chethana Ramakrishna
- Department of Rheumatology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK.
| | - Alice Mason
- Department of Rheumatology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Christopher J Edwards
- Department of Rheumatology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; NIHR Southampton clinical research facility, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
21
|
Liu T, Ning J, Fan X, Wei H, Shi G, Fu QB. Identification of immune patterns in idiopathic pulmonary fibrosis patients driven by PLA2G7-positive macrophages using an integrated machine learning survival framework. Sci Rep 2024; 14:22369. [PMID: 39333367 PMCID: PMC11437001 DOI: 10.1038/s41598-024-73625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Patients with advanced idiopathic pulmonary fibrosis (IPF), a complex and incurable lung disease with an elusive pathology, are nearly exclusive candidates for lung transplantation. Improved identification of patient subtypes can enhance early diagnosis and intervention, ultimately leading to better prognostic outcomes for patients. The goal of this study is to identify new immune patterns and biomarkers in patients. Immune subtypes in IPF patients were identified using single-sample gene set enrichment analysis, and immune subtype-related genes were explored using the weighted correlation network analysis algorithm. A machine learning integration framework was used to establish the optimal prognostic model, known as the immune-related risk score (IRS). Single-cell sequencing was conducted to investigate the major role of macrophage-derived PLA2G7 in the immune microenvironment. We assessed the stability of celecoxib in targeting PLA2G7 through molecular docking and surface plasmon resonance. IPF patients present two distinct immune subtypes, one characterized by immune activation and inflammation, and the other by immune suppression. IRS can predict the immune status and prognosis of IPF patients. Furthermore, multi-cohort analysis and single-cell sequencing analysis demonstrated the diagnostic and prognostic value of PLA2G7 derived from macrophages and its role in shaping the inflammatory immune microenvironment in IPF patients. Celecoxib could effectively and stably bind with PLA2G7. PLA2G7, as identified through IRS, demonstrates marked stability in diagnosing and predicting the prognosis of IPF patients as well as predicting their immune status. It can serve as a novel biomarker for IPF patients.
Collapse
Affiliation(s)
- Tianxi Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jingyuan Ning
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaoqing Fan
- Institute of Microbiological Testing and Inspection, Tianjin Centre for Disease Control and Prevention, Tianjin , People's Republic of China
| | - Huan Wei
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Guangsen Shi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, People's Republic of China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Qingshan Bill Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, People's Republic of China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
22
|
Yang J, Yang C, Yang G, Wang R, Li J, Song Y. Pan-cancer analysis of the prognostic and immunological role of hippo-YAP signaling pathway. Discov Oncol 2024; 15:504. [PMID: 39333438 PMCID: PMC11436565 DOI: 10.1007/s12672-024-01212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/01/2024] [Indexed: 09/29/2024] Open
Abstract
The Hippo-Yes-associated protein (Hippo-YAP) signaling pathway, a conserved pathway that regulates organ size, participates in tumor progression. However, there are few comprehensive analyses of tumor prognosis and immunity. In the present study, TCGA, GTEx, GEO, TIMER2, STRING, GSCA, ImmuCellAI, and other bioinformatics tools were used to reveal the involvement of the Hippo-YAP signaling pathway in the prognosis and immunity of pan-cancers. The obtained results showed that mRNA expression differences of Hippo-YAP pathway genes between normal samples and tumor samples in pan-cancers and some genes (such as TEAD4, MAP4K4, and STK3) might affect the prognosis of patients with skin cutaneous melanoma (SKCM) and pancreatic adenocarcinoma (PAAD). Furthermore, mutation and methylation of the Hippo-YAP signaling pathway genes in normal and primary tumor tissues differ in various cancers (KIRP, BRCA). Additionally, the relationship between the tumor microenvironment, molecular pathways, and the Hippo-YAP pathway indicated that it might lead to a suppressive immune microenvironment that affects the efficacy of immunotherapy. This is a pan-cancer overview of the Hippo-YAP signaling pathway genes, which explores the aberrant expression or mutation of this pathway that regulates the tumor microenvironment and immunotherapy.
Collapse
Affiliation(s)
- Jing Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Guang Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
23
|
Qu Z, Zhao S, Zhang Y, Wang X, Yan L. Natural Compounds for Bone Remodeling: Targeting osteoblasts and relevant signaling pathways. Biomed Pharmacother 2024; 180:117490. [PMID: 39332184 DOI: 10.1016/j.biopha.2024.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
In the process of bone metabolism and bone remodeling, bone marrow mesenchymal stem cells (BM-MSCs) differentiate into osteoblasts (OBs) under certain conditions to enable the formation of new bone, and normal bone reconstruction and pathological bone alteration are closely related to the differentiation and proliferation functions of OBs. Osteogenic differentiation of BM-MSCs involves multiple signaling pathways, which function individually but interconnect intricately to form a complex signaling regulatory network. Natural compounds have fewer adverse effects than chemically synthesized drugs, optimize bone health, and are more suitable for long-term use. In this paper, we focus on OBs, summarize the current research progress of signaling pathways related to OBs differentiation, and review the molecular mechanisms by which chemically synthesized drugs with potential anti-osteoporosis properties regulate OBs-mediated bone formation.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Zhang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
24
|
Gu K, May HA, Kang MH. Targeting Molecular Signaling Pathways and Cytokine Responses to Modulate c-MYC in Acute Myeloid Leukemia. Front Biosci (Schol Ed) 2024; 16:15. [PMID: 39344393 DOI: 10.31083/j.fbs1603015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Overexpression of the MYC oncogene, encoding c-MYC protein, contributes to the pathogenesis and drug resistance of acute myeloid leukemia (AML) and many other hematopoietic malignancies. Although standard chemotherapy has predominated in AML therapy over the past five decades, the clinical outcomes and patient response to treatment remain suboptimal. Deeper insight into the molecular basis of this disease should facilitate the development of novel therapeutics targeting specific molecules and pathways that are dysregulated in AML, including fms-like tyrosine kinase 3 (FLT3) gene mutation and cluster of differentiation 33 (CD33) protein expression. Elevated expression of c-MYC is one of the molecular features of AML that determines the clinical prognosis in patients. Increased expression of c-MYC is also one of the cytogenetic characteristics of drug resistance in AML. However, direct targeting of c-MYC has been challenging due to its lack of binding sites for small molecules. In this review, we focused on the mechanisms involving the bromodomain and extra-terminal (BET) and cyclin-dependent kinase 9 (CDK9) proteins, phosphoinositide-Akt-mammalian target of rapamycin (PI3K/AKT/mTOR) and Janus kinase-signal transduction and activation of transcription (JAK/STAT) pathways, as well as various inflammatory cytokines, as an indirect means of regulating MYC overexpression in AML. Furthermore, we highlight Food and Drug Administration (FDA)-approved drugs for AML, and the results of preclinical and clinical studies on novel agents that have been or are currently being tested for efficacy and tolerability in AML therapy. Overall, this review summarizes our current knowledge of the molecular processes that promote leukemogenesis, as well as the various agents that intervene in specific pathways and directly or indirectly modulate c-MYC to disrupt AML pathogenesis and drug resistance.
Collapse
Affiliation(s)
- Kyle Gu
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Harry A May
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Min H Kang
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
25
|
Hsu CY, Mustafa MA, Moath Omar T, Taher SG, Ubaid M, Gilmanova NS, Nasrat Abdulraheem M, Saadh MJ, Athab AH, Mirzaei R, Karampoor S. Gut instinct: harnessing the power of probiotics to tame pathogenic signaling pathways in ulcerative colitis. Front Med (Lausanne) 2024; 11:1396789. [PMID: 39323474 PMCID: PMC11422783 DOI: 10.3389/fmed.2024.1396789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) marked by persistent inflammation of the mucosal lining of the large intestine, leading to debilitating symptoms and reduced quality of life. Emerging evidence suggests that an imbalance of the gut microbiota plays a crucial role in UC pathogenesis, and various signaling pathways are implicated in the dysregulated immune response. Probiotics are live microorganisms that confer health benefits to the host, have attracted significant attention for their potential to restore gut microbial balance and ameliorate inflammation in UC. Recent studies have elucidated the mechanisms by which probiotics modulate these signaling pathways, often by producing anti-inflammatory molecules and promoting regulatory immune cell function. For example, probiotics can inhibit the nuclear factor-κB (NF-κB) pathway by stabilizing Inhibitor of kappa B alpha (IκBα), dampening the production of proinflammatory cytokines. Similarly, probiotics can modulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, suppressing the activation of STAT1 and STAT3 and thus reducing the inflammatory response. A better understanding of the underlying mechanisms of probiotics in modulating pathogenic signaling pathways in UC will pave the way for developing more effective probiotic-based therapies. In this review, we explore the mechanistic role of probiotics in the attenuation of pathogenic signaling pathways, including NF-κB, JAK/STAT, mitogen-activated protein kinases (MAPKs), Wnt/β-catenin, the nucleotide-binding domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome, Toll-like receptors (TLRs), interleukin-23 (IL-23)/IL-17 signaling pathway in UC.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | - Sada Gh Taher
- Department of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Department of MTL, Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Nataliya S Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Aya H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Jhamat N, Guo Y, Han J, Humblot P, Bongcam-Rudloff E, Andersson G, Niazi A. Enrichment of Cis-Acting Regulatory Elements in Differentially Methylated Regions Following Lipopolysaccharide Treatment of Bovine Endometrial Epithelial Cells. Int J Mol Sci 2024; 25:9832. [PMID: 39337320 PMCID: PMC11432661 DOI: 10.3390/ijms25189832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Endometritis is an inflammatory disease that negatively influences fertility and is common in milk-producing cows. An in vitro model for bovine endometrial inflammation was used to identify enrichment of cis-acting regulatory elements in differentially methylated regions (DMRs) in the genome of in vitro-cultured primary bovine endometrial epithelial cells (bEECs) before and after treatment with lipopolysaccharide (LPS) from E. coli, a key player in the development of endometritis. The enriched regulatory elements contain binding sites for transcription factors with established roles in inflammation and hypoxia including NFKB and Hif-1α. We further showed co-localization of certain enriched cis-acting regulatory motifs including ARNT, Hif-1α, and NRF1. Our results show an intriguing interplay between increased mRNA levels in LPS-treated bEECs of the mRNAs encoding the key transcription factors such as AHR, EGR2, and STAT1, whose binding sites were enriched in the DMRs. Our results demonstrate an extraordinary cis-regulatory complexity in these DMRs having binding sites for both inflammatory and hypoxia-dependent transcription factors. Obtained data using this in vitro model for bacterial-induced endometrial inflammation have provided valuable information regarding key transcription factors relevant for clinical endometritis in both cattle and humans.
Collapse
Affiliation(s)
- Naveed Jhamat
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Yongzhi Guo
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Jilong Han
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Patrice Humblot
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
- SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Göran Andersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Adnan Niazi
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
- SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| |
Collapse
|
27
|
Mitroi GG, Mitroi GF, Ică OM, Anghelina F, Ciolofan MS, Mitroi MR. Off-Label Uses of Abrocitinib: Review of Emerging Therapeutic Applications beyond Atopic Dermatitis. Life (Basel) 2024; 14:1127. [PMID: 39337910 PMCID: PMC11432974 DOI: 10.3390/life14091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Abrocitinib, an oral small-molecule Janus Kinase 1 (JAK1) inhibitor, is primarily approved for treating moderate-to-severe atopic dermatitis (AD) in adults and adolescents aged 12 and older. This review examines the emerging off-label uses of Abrocitinib. We identified 37 papers reporting on the use of Abrocitinib in various conditions other than AD. The most commonly reported uses were for vitiligo, prurigo nodularis, and hand eczema, with 12 cases each. There were also 10 cases of lichen sclerosus and chronic pruritus of unknown origin and 5 cases each of pityriasis rubra pilaris alopecia areata. Additionally, erythematotelangiectatic rosacea and steroid-induced rosacea were reported in four cases each. Other conditions treated with Abrocitinib were noted, but these mostly had only one or two reported cases. Interestingly, out of the 103 patients reviewed, all studies reported favorable clinical outcomes and satisfactory results, with the exception of one isolated case where Abrocitinib was used to treat erythematotelangiectatic rosacea.
Collapse
Affiliation(s)
- George G. Mitroi
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - George F. Mitroi
- Department of Urology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Oana Maria Ică
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Florin Anghelina
- Department of Otorhinolaryngology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mircea Sorin Ciolofan
- Department of Otorhinolaryngology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Roxana Mitroi
- Department of Otorhinolaryngology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
28
|
Wen Q, Tang S, Mo J, Zhang M, Long M, Lu Y, Gan Z. Different activation of STAT1 and STAT2 phosphorylation by IFNc, IFNd, and IFNh in tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109776. [PMID: 39019128 DOI: 10.1016/j.fsi.2024.109776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Type I IFNs are a subset of cytokines exerting their antiviral effects mainly through the JAK-STAT signalling. Immunogenetic studies have shown that fish possess key components of IFN-JAK-STAT cascade, but the information about the distinct responses of STAT1 and STAT2 to different IFNs is rather limited in fish. Here, we identified and cloned STAT1 and STAT2 genes (named as On-STAT1 and On-STAT2) from tilapia, Oreochromis niloticus. On-STAT1 and On-STAT2 genes were detected in all orangs/tissues examined, and were rapidly induced in spleen, head kidney, and liver following the stimulation of poly(I:C). In addition, the stimulation of poly(I:C), poly(A:T), and different subgroups of recombinant IFNs could induce the expression of On-STAT1 and On-STAT2 in TA-02 cells with distinct induction levels. Importantly, On-STAT2 was rapidly phosphorylated by all three subgroups of IFNs, but the phosphorylation of On-STAT1 was only observed in IFNc- and IFNh-treated TA-02 cells, reflecting the distinct activation of STAT by different subgroups of fish IFNs. The present results thus contribute to better understanding of the JAK-STAT signalling mediated by different subgroups of IFNs in fish.
Collapse
Affiliation(s)
- Qingqing Wen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Shaoshuai Tang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jingyi Mo
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Meiling Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Meng Long
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Zhen Gan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| |
Collapse
|
29
|
Kim M, Kim C, Zheng H, Kim Y, Cho PS, Lim JY, Choi W, Kim M, Kim Y, Kim HR, Lee GY, Hwang SW. Pharmacologic inhibition of Il6st/gp130 improves dermatological inflammation and pruritus. Biomed Pharmacother 2024; 178:117155. [PMID: 39047422 DOI: 10.1016/j.biopha.2024.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Chronic dermatitis is a disease with large unmet need for pharmacological improvement. Dermatitis conditions are maintained and exacerbated by various cytokine actions in the context of inflammation. Interleukin 6 signal transducer (Il6st), also known as glycoprotein 130 (Gp130), is a key component for surface reception of a multitude of cytokines and transduction and amplification of their pro-inflammatory signals. We hypothesized accordingly that pharmacological inhibition of Il6st can alter dermatitis pathology. Treatment with SC-144 and bazedoxifene, two representative small molecule Il6st inhibitors with different binding modes led to moderate but significant improvement of skin conditions in a 1-chloro-2,4-dinitrobenzene animal model. Part of cytokine expressions indicating the dermatological index were normalized particularly when treated with SC-144. Pruritic behaviors were blunted, also possibly giving limited contribution to disease improvement. In psoriatic skin and itch of an imiquimod animal model, those two treatments appeared to be relatively moderate. Collectively, pharmacological inhibition of Il6st seems to lessen pathological irritation. Inversely, this experimental attempt newly implies that Il6st participates in pathological mechanisms. In conclusion, we suggest Il6st as a novel target for improving dermatitis, and that agents with suitable efficacy and safety for its modulation are translatable.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Chaeeun Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Haiyan Zheng
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yerin Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Pyung Sun Cho
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - WonSeok Choi
- Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Miri Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yebeen Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hong-Rae Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Gi Young Lee
- Department of Microbiology & Immunology, Cornell University, Ithaca, New York, NY 14853, USA
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
30
|
Zhang X, Wang W, Dong G, Song Y, Zhai X, Sheng C. Discovery of a potent and selective JAK1-targeting PROTAC degrader with anti-tumor activities. Bioorg Med Chem Lett 2024; 109:129838. [PMID: 38838918 DOI: 10.1016/j.bmcl.2024.129838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Aberrant activation of the JAK-STAT pathway is evident in various human diseases including cancers. Proteolysis targeting chimeras (PROTACs) provide an attractive strategy for developing novel JAK-targeting drugs. Herein, a series of CRBN-directed JAK-targeting PROTACs were designed and synthesized utilizing a JAK1/JAK2 dual inhibitor-momelotinib as the warhead. The most promising compound 10c exhibited both good enzymatic potency and cellular antiproliferative effects. Western blot analysis revealed that compound 10c effectively and selectively degraded JAK1 in a proteasome-dependent manner (DC50 = 214 nM). Moreover, PROTAC 10c significantly suppressed JAK1 and its key downstream signaling. Together, compound 10c may serve as a novel lead compound for antitumor drug discovery.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, PR China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, PR China
| | - Yingqi Song
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, PR China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, PR China.
| |
Collapse
|
31
|
Tong Z, Zou JP, Wang SY, Luo WW, Wang YY. Activation of the cGAS-STING-IRF3 Axis by Type I and II Interferons Contributes to Host Defense. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308890. [PMID: 39004913 PMCID: PMC11425201 DOI: 10.1002/advs.202308890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/08/2024] [Indexed: 07/16/2024]
Abstract
Interferons (IFNs) activate JAK-STAT pathways to induce downstream effector genes for host defense against invaded pathogens and tumors. Here both type I (β) and II (γ) IFNs are shown that can activate the transcription factor IRF3 in parallel with STAT1. IRF3-deficiency impairs transcription of a subset of downstream effector genes induced by IFN-β and IFN-γ. Mechanistically, IFN-induced activation of IRF3 is dependent on the cGAS-STING-TBK1 axis. Both IFN-β and IFN-γ cause mitochondrial DNA release into the cytosol. In addition, IFNs induce JAK1-mediated tyrosine phosphorylation of cGAS at Y214/Y215, which is essential for its DNA binding activity and signaling. Furthermore, deficiency of cGAS, STING, or IRF3 impairs IFN-β- or IFN-γ-mediated antiviral and antitumor activities. The findings reveal a novel IRF3 activation pathway parallel with the canonical STAT1/2 activation pathways triggered by IFNs and provide an explanation for the pleiotropic roles of the cGAS-STING-IRF3 axis in host defense.
Collapse
Affiliation(s)
- Zhen Tong
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Bejing, 100049, China
| | - Jia-Peng Zou
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Bejing, 100049, China
| | - Su-Yun Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei-Wei Luo
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Bejing, 100049, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Yan-Yi Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Bejing, 100049, China
| |
Collapse
|
32
|
Hong H, Wang Y, Menard M, Buckley JA, Zhou L, Volpicelli-Daley L, Standaert DG, Qin H, Benveniste EN. Suppression of the JAK/STAT pathway inhibits neuroinflammation in the line 61-PFF mouse model of Parkinson's disease. J Neuroinflammation 2024; 21:216. [PMID: 39218899 PMCID: PMC11368013 DOI: 10.1186/s12974-024-03210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of α-synuclein (α-Syn) into insoluble aggregates called Lewy pathology. The Line 61 α-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human α-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human α-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-α-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-α-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.
Collapse
Affiliation(s)
- Huixian Hong
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Yong Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Marissa Menard
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jessica A Buckley
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Laura Volpicelli-Daley
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA.
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA.
| |
Collapse
|
33
|
Zhang JY, Su YH, Wang X, Yao X, Du JZ. Recent Progress on Nanomedicine-Mediated Repolarization of Tumor-Associated Macrophages for Cancer Immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2001. [PMID: 39425549 DOI: 10.1002/wnan.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/07/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute the largest number of immune cells in the tumor microenvironment (TME). They play an essential role in promoting tumor progression and metastasis, which makes them a potential therapeutic target for cancer treatment. TAMs are usually divided into two categories: pro-tumoral M2-like TAMs and antitumoral M1 phenotypes at either extreme. The reprogramming of M2-like TAMs toward a tumoricidal M1 phenotype is of particular interest for the restoration of antitumor immunity in cancer immunotherapy. Notably, nanomedicines have shown great potential for cancer therapy due to their unique structures and properties. This review will briefly describe the biological features and roles of TAMs in tumor, and then discuss recent advances in nanomedicine-mediated repolarization of TAMs for cancer immunotherapy. Finally, perspectives on nanomedicine-mediated repolarization of TAMs for effective cancer immunotherapy are also presented.
Collapse
Affiliation(s)
- Jing-Yang Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Yun-He Su
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Xu Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Xueqing Yao
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
34
|
Bahman F, Choudhry K, Al-Rashed F, Al-Mulla F, Sindhu S, Ahmad R. Aryl hydrocarbon receptor: current perspectives on key signaling partners and immunoregulatory role in inflammatory diseases. Front Immunol 2024; 15:1421346. [PMID: 39211042 PMCID: PMC11358079 DOI: 10.3389/fimmu.2024.1421346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a versatile environmental sensor and transcription factor found throughout the body, responding to a wide range of small molecules originating from the environment, our diets, host microbiomes, and internal metabolic processes. Increasing evidence highlights AhR's role as a critical regulator of numerous biological functions, such as cellular differentiation, immune response, metabolism, and even tumor formation. Typically located in the cytoplasm, AhR moves to the nucleus upon activation by an agonist where it partners with either the aryl hydrocarbon receptor nuclear translocator (ARNT) or hypoxia-inducible factor 1β (HIF-1β). This complex then interacts with xenobiotic response elements (XREs) to control the expression of key genes. AhR is notably present in various crucial immune cells, and recent research underscores its significant impact on both innate and adaptive immunity. This review delves into the latest insights on AhR's structure, activating ligands, and its multifaceted roles. We explore the sophisticated molecular pathways through which AhR influences immune and lymphoid cells, emphasizing its emerging importance in managing inflammatory diseases. Furthermore, we discuss the exciting potential of developing targeted therapies that modulate AhR activity, opening new avenues for medical intervention in immune-related conditions.
Collapse
Affiliation(s)
- Fatemah Bahman
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Khubaib Choudhry
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
35
|
Kiran Kumar KD, Singh S, Schmelzle SM, Vogel P, Fruhner C, Hanswillemenke A, Brun A, Wettengel J, Füll Y, Funk L, Mast V, Botsch JJ, Reautschnig P, Li JB, Stafforst T. An improved SNAP-ADAR tool enables efficient RNA base editing to interfere with post-translational protein modification. Nat Commun 2024; 15:6615. [PMID: 39103360 DOI: 10.1038/s41467-024-50395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
RNA base editing relies on the introduction of adenosine-to-inosine changes into target RNAs in a highly programmable manner in order to repair disease-causing mutations. Here, we propose that RNA base editing could be broadly applied to perturb protein function by removal of regulatory phosphorylation and acetylation sites. We demonstrate the feasibility on more than 70 sites in various signaling proteins and identify key determinants for high editing efficiency and potent down-stream effects. For the JAK/STAT pathway, we demonstrate both, negative and positive regulation. To achieve high editing efficiency over a broad codon scope, we applied an improved version of the SNAP-ADAR tool. The transient nature of RNA base editing enables the comparably fast (hours to days), dose-dependent (thus partial) and reversible manipulation of regulatory sites, which is a key advantage over DNA (base) editing approaches. In summary, PTM interference might become a valuable field of application of RNA base editing.
Collapse
Affiliation(s)
| | - Shubhangi Singh
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Paul Vogel
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Carolin Fruhner
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Adrian Brun
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jacqueline Wettengel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Yvonne Füll
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Lukas Funk
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Valentin Mast
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - J Josephine Botsch
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Philipp Reautschnig
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine University Tübingen, Tübingen, Germany.
- iFIT Cluster of Excellence (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
36
|
Kumari S, Dhapola R, Sharma P, Nagar P, Medhi B, HariKrishnaReddy D. The impact of cytokines in neuroinflammation-mediated stroke. Cytokine Growth Factor Rev 2024; 78:105-119. [PMID: 39004599 DOI: 10.1016/j.cytogfr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Cerebral stroke is ranked as the third most common contributor to global mortality and disability. The involvement of inflammatory mechanisms, both peripherally and within the CNS, holds significance in the pathophysiological cascades following the initiation of stroke. After the onset of acute stroke, predominantly ischemic, a subsequent phase of neuroinflammation ensues. It is a dual-effect process that not only exacerbates injury, leading to cell death, but paradoxically, it also serves a shielding role in facilitating recovery. Cytokines serve as pivotal mediators within the inflammatory cascade, actively contributing to the progression of ischemic damage. Stroke is followed by increased expression of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, etc. leading to the recruitment and stimulation of glial cells and peripheral leukocytes at the site of injury, promoting neuroinflammation. Cytokines can directly induce neuronal injury and death through various mechanisms, including excitotoxicity, oxidative stress, HPA-axis activation, secretion of matrix metalloproteinase and apoptosis. They can also amplify the inflammatory response, leading to further neuronal damage. Therapeutic strategies aimed at modulating cytokine release, immune response and cytokine signalling or activity are being explored as potential interventions to mitigate neuroinflammation and its detrimental effects in stroke. In this review, we have given a concise summary of our current knowledge of the function of various cytokines, brain inflammation and various signalling and molecular pathways including JAK/STAT3, TGF-β/Smad, MAPK, HMGB1/TLR and NF-κB modulated cytokines regulation in stroke. Therapeutic agents such as MCC950, genistein, edaravone, minocycline, etc. targeting various cytokines-associated signalling pathways have shown efficacy in preclinical and clinical trials reducing the pathophysiology of the illness were also addressed in this study.
Collapse
Affiliation(s)
- Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pushank Nagar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
37
|
Shan M, Zhao X, Sun P, Qu X, Cheng G, Qin LP. Revisiting Structure-activity Relationships: Unleashing the potential of selective Janus kinase 1 inhibitors. Bioorg Chem 2024; 149:107506. [PMID: 38833989 DOI: 10.1016/j.bioorg.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Janus kinases (JAKs), a kind of non-receptor tyrosine kinases, the function has been implicated in the regulation of cell proliferation, differentiation and apoptosis, immune, inflammatory response and malignancies. Among them, JAK1 represents an essential target for modulating cytokines involved in inflammation and immune function. Rheumatoid arthritis, atopic dermatitis, ulcerative colitis and psoriatic arthritis are areas where approved JAK1 drugs have been applied for the treatment. In the review, we provided a brief introduction to JAK1 inhibitors in market and clinical trials. The structures of high active JAK1 compounds (IC50 ≤ 0.1 nM) were highlighted, with primary focus on structure-activity relationship and selectivity. Moreover, the druggability processes of approved drugs and high active compounds were analyzed. In addition, the issues involved in JAK1 compounds clinical application as well as strategies to surmount these challenges, were discussed.
Collapse
Affiliation(s)
- Mengyi Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xuan Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Peng Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xinhao Qu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Gang Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| | - Lu-Ping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| |
Collapse
|
38
|
Neurath L, Sticherling M, Schett G, Fagni F. Targeting cytokines in psoriatic arthritis. Cytokine Growth Factor Rev 2024; 78:1-13. [PMID: 39068140 DOI: 10.1016/j.cytogfr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Psoriatic arthritis (PsA) is part of the psoriatic disease spectrum and is characterized by a chronic inflammatory process that affects entheses, tendons and joints. Cytokines produced by immune and non-immune cells play a central role in the pathogenesis of PsA by orchestrating key aspects of the inflammatory response. Pro-inflammatory cytokines such as TNF, IL-23 and IL-17 have been shown to regulate the initiation and progression of PsA, ultimately leading to the destruction of the architecture of the local tissues such as soft tissue, cartilage and bone. The important role of cytokines in PsA has been underscored by the clinical success of antibodies that neutralize their function. In addition to biologic agents targeting individual pro-inflammatory cytokines, signaling inhibitors that block multiple cytokines simultaneously such as JAK inhibitors have been approved for PsA therapy. In this review, we will focus on our current understanding of the role of cytokines in the disease process of PsA and discuss potential new treatment options based on modulation of cytokine function.
Collapse
Affiliation(s)
- Laura Neurath
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Sticherling
- Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Department of Dermatology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
39
|
Liu Y, Chen P, Hu B, Xiao Y, Su T, Luo X, Tu M, Cai G. Excessive mechanical loading promotes osteoarthritis development by upregulating Rcn2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167251. [PMID: 38795835 DOI: 10.1016/j.bbadis.2024.167251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Exposure of articular cartilage to excessive mechanical loading is closely related to the pathogenesis of osteoarthritis (OA). However, the exact molecular mechanism by which excessive mechanical loading drives OA remains unclear. In vitro, primary chondrocytes were exposed to cyclic tensile strain at 0.5 Hz and 10 % elongation for 30 min to simulate excessive mechanical loading in OA. In vivo experiments involved mice undergoing anterior cruciate ligament transection (ACLT) to model OA, followed by interventions on Rcn2 expression through adeno-associated virus (AAV) injection and tamoxifen-induced gene deletion. 10 μL AAV2/5 containing AAV-Rcn2 or AAV-shRcn2 was administered to the mice by articular injection at 1 week post ACLT surgery, and Col2a1-creERT: Rcn2flox/flox mice were injected with tamoxifen intraperitoneally to obtain Rcn2-conditional knockout mice. Finally, we explored the mechanism of Rcn2 affecting OA. Here, we identified reticulocalbin-2 (Rcn2) as a mechanosensitive factor in chondrocytes, which was significantly elevated in chondrocytes under mechanical overloading. PIEZO type mechanosensitive ion channel component 1 (Piezo1) is a critical mechanosensitive ion channel, which mediates the effect of mechanical loading on chondrocytes, and we found that increased Rcn2 could be suppressed through knocking down Piezo1 under excessive mechanical loading. Furthermore, chondrocyte-specific deletion of Rcn2 in adult mice alleviated OA progression in the mice receiving the surgery of ACLT. On the contrary, articular injection of Rcn2-expressing adeno-associated virus (AAV) accelerated the progression of ACLT-induced OA in mice. Mechanistically, Rcn2 accelerated the progression of OA through promoting the phosphorylation and nuclear translocation of signal transducer and activator of transcription 3 (Stat3).
Collapse
Affiliation(s)
- Yalin Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Peng Chen
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Manli Tu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, China; Jiangxi Branch of National Clinical Research Center for metabolic Disease, China.
| | - Guangping Cai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
40
|
Fasouli ES, Katsantoni E. Age-associated myeloid malignancies - the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia. FEBS Lett 2024. [PMID: 39048534 DOI: 10.1002/1873-3468.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Biomedical Research Foundation, Academy of Athens, Basic Research Center, Athens, Greece
| | - Eleni Katsantoni
- Biomedical Research Foundation, Academy of Athens, Basic Research Center, Athens, Greece
| |
Collapse
|
41
|
Li D, Jiang Y, Cui Z, Ma M, Zhu F, Li G, Yang H, Li S, Zhang T, Chen D, Ma W. Lactobacillus acidophilus protects against Corynebacterium pseudotuberculosis infection by regulating the autophagy of macrophages and maintaining gut microbiota homeostasis in C57BL/6 mice. mSystems 2024; 9:e0048424. [PMID: 38934644 PMCID: PMC11265446 DOI: 10.1128/msystems.00484-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Corynebacterium pseudotuberculosis (C. p), a facultative intracellular bacterium, is an important zoonotic pathogen that causes abscesses and pyogenic granulomas. The relationship between gut microbiota and host health or diseases has received increasing attention. However, the role of gut microbiota in the process of C. p infection is still unclear. In this study, we established a C. p infection model in C57BL/6 mice and examined the impact of preemptive oral administration Lactobacillus acidophilus (L. acidophilus) on infection. Our findings revealed that C. p infection led to pronounced pathological alterations in the liver and kidneys, characterized by abscess formation, intense inflammatory responses, and bacterial overload. Remarkably, these deleterious effects were greatly relieved by oral administration of L. acidophilus before infection with C. p. Additionally, we further found that during C. p infection, peritoneal macrophages (PMs) of mice orally administered with L. acidophilus accumulated more rapidly at sites of infection. Furthermore, our results showed that PMs from mice with oral L. acidophilus administration showed a stronger C. p clearance effect, and this was mediated by high expression of LC3-II protein. Meanwhile, oral administration of L. acidophilus protected the gut microbiota disorder in C57BL/6 mice caused by C. p infection. In summary, our study demonstrates that oral administration of L. acidophilus confers effective protection against C. p infection in C57BL/6 mice by modulating macrophage autophagy, thereby augmenting bacterial clearance and preserving gut microbiota and function stability. These findings position L. acidophilus as a viable probiotic candidate for the clinical prevention of C. p infection. IMPORTANCE Corynebacterium pseudotuberculosis (C. p) is known to induce a range of chronic diseases in both animals and humans. Currently, clinical treatment for C. p infection mainly relies on antibiotic therapy or surgical intervention. However, excessive use of antibiotics may increase the risk of drug-resistant strains, and the effectiveness of treatment remains unsatisfactory. Furthermore, surgical procedures do not completely eradicate pathogens and can easily cause environmental pollution. Probiotic interventions are receiving increasing attention for improving the body's immune system and maintaining health. In this study, we established a C. p infection model in C57BL/6 mice to explore the impact of Lactobacillus acidophilus during C. p infection. Our results showed that L. acidophilus effectively protected against C. p infection by regulating the autophagy of macrophages and maintaining intestinal microbiota homeostasis. This study may provide a new strategy for the prevention of C. p infection.
Collapse
Affiliation(s)
- Dengliang Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yuecai Jiang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Zhanding Cui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Mengzhen Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Fang Zhu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Guanhua Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Haoyue Yang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Shaofei Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Tianliang Zhang
- Shaanxi Qianyang Saanen dairy goats Development Co., Ltd, Qianyang, Shaanxi, China
| | - Dekun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
42
|
Qiu G, Yu L, Jia L, Cai Y, Chen Y, Jin J, Xu L, Zhu J. Identification of novel covalent JAK3 inhibitors through consensus scoring virtual screening: integration of common feature pharmacophore and covalent docking. Mol Divers 2024:10.1007/s11030-024-10918-5. [PMID: 39009908 DOI: 10.1007/s11030-024-10918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
Accumulated research strongly indicates that Janus kinase 3 (JAK3) is intricately involved in the initiation and advancement of a diverse range of human diseases, underscoring JAK3 as a promising target for therapeutic intervention. However, JAK3 shows significant homology with other JAK family isoforms, posing substantial challenges in the development of JAK3 inhibitors. To address these limitations, one strategy is to design selective covalent JAK3 inhibitors. Therefore, this study introduces a virtual screening approach that combines common feature pharmacophore modeling, covalent docking, and consensus scoring to identify novel inhibitors for JAK3. First, common feature pharmacophore models were constructed based on a selection of representative covalent JAK3 inhibitors. The optimal qualitative pharmacophore model proved highly effective in distinguishing active and inactive compounds. Second, 14 crystal structures of the JAK3-covalent inhibitor complex were chosen for the covalent docking studies. Following validation of the screening performance, 5TTU was identified as the most suitable candidate for screening potential JAK3 inhibitors due to its higher predictive accuracy. Finally, a virtual screening protocol based on consensus scoring was conducted, integrating pharmacophore mapping and covalent docking. This approach resulted in the discovery of multiple compounds with notable potential as effective JAK3 inhibitors. We hope that the developed virtual screening strategy will provide valuable guidance in the discovery of novel covalent JAK3 inhibitors.
Collapse
Affiliation(s)
- Genhong Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Li Yu
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou, 213164, Jiangsu, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
43
|
Liu J, Zhao J, Zhang YL, Zhang C, Yang GD, Tian WS, Zhou BH, Wang HW. Underlying Mechanism of Fluoride Inhibits Colonic Gland Cells Proliferation by Inducing an Inflammation Response. Biol Trace Elem Res 2024:10.1007/s12011-024-04212-6. [PMID: 38995434 DOI: 10.1007/s12011-024-04212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 07/13/2024]
Abstract
The integrity of colonic gland cells is a prerequisite for normal colonic function and maintenance. To evaluate the underlying injury mechanisms in colonic gland cells induced by excessive fluoride (F), forty-eight female Kunming mice were randomly allocated into four groups and treated with different concentrations of NaF (0, 25, 50, and 100 mg F-/L) for 70 days. As a result, the integrity of the colonic mucosa and the cell layer was seriously damaged after F treatment, as manifested by atrophy of the colonic glands, colonic cell surface collapse, breakage of microvilli, and mitochondrial vacuolization. Alcian blue and periodic acid Schiff staining revealed that F decreased the number of goblet cells and glycoprotein secretion. Furthermore, F increased the protein expression of TLR4, NF-κB, and ERK1/2 and decreased IL-6, interfered with NF-κB signaling, following induced colonic gland cells inflammation. The accumulation of F inhibited proliferation via the JAK/STAT signaling pathway, as characterized by decreased mRNA and protein expression of JAK, STAT3, STAT5, PCNA, and Ki67 in colon tissue. Additionally, the expression of CDK4 was up-regulated by increased F concentration. In conclusion, excessive F triggered colonic inflammation and inhibited colonic gland cell proliferation via regulation of the NF-κB and JAK/STAT signaling pathways, leading to histopathology and barrier damage in the colon. The results explain the damaging effect of the F-induced inflammatory response on the colon from the perspective of cell proliferation and provide a new idea for explaining the potential mechanism of F-induced intestinal damage.
Collapse
Affiliation(s)
- Jing Liu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Yu-Ling Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Cai Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Guo-Dong Yang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Wei-Shun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China.
| |
Collapse
|
44
|
Yang S, Tian M, Dai Y, Wang R, Yamada S, Feng S, Wang Y, Chhangani D, Ou T, Li W, Guo X, McAdow J, Rincon-Limas DE, Yin X, Tai W, Cheng G, Johnson A. Infection and chronic disease activate a systemic brain-muscle signaling axis. Sci Immunol 2024; 9:eadm7908. [PMID: 38996009 DOI: 10.1126/sciimmunol.adm7908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show nonneural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood. We developed multiple models to investigate the impact of CNS stressors on motor function and found that Escherichia coli infections and SARS-CoV-2 protein expression caused reactive oxygen species (ROS) to accumulate in the brain. ROS induced expression of the cytokine Unpaired 3 (Upd3) in Drosophila and its ortholog, IL-6, in mice. CNS-derived Upd3/IL-6 activated the JAK-STAT pathway in skeletal muscle, which caused muscle mitochondrial dysfunction and impaired motor function. We observed similar phenotypes after expressing toxic amyloid-β (Aβ42) in the CNS. Infection and chronic disease therefore activate a systemic brain-muscle signaling axis in which CNS-derived cytokines bypass the connectome and directly regulate muscle physiology, highlighting IL-6 as a therapeutic target to treat disease-associated muscle dysfunction.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics and Genetics Engineering, School of Life Science, Fudan University, Shanghai 200438, China
| | - Meijie Tian
- Genetics Branch, Oncogenomics Section, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yulong Dai
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Rong Wang
- Department of Genetics and Genetics Engineering, School of Life Science, Fudan University, Shanghai 200438, China
| | - Shigehiro Yamada
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Shengyong Feng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yunyun Wang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Deepak Chhangani
- Department of Neurology and McKnight Brain Institute, Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, Genetics Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Tiffany Ou
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Wenle Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuan Guo
- Life Science Institute, Jinzhou Medical University, Jinzhou 121001, China
| | - Jennifer McAdow
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Diego E Rincon-Limas
- Department of Neurology and McKnight Brain Institute, Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, Genetics Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| | - Aaron Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
45
|
Saito K, Yoshida S, Ebina H, Miyata M, Suzuki E, Kanno T, Sumichika Y, Matsumoto H, Temmoku J, Fujita Y, Matsuoka N, Asano T, Sato S, Migita K. Real-world comparative study of drug retention of Janus kinase inhibitors in patients with rheumatoid arthritis. PLoS One 2024; 19:e0306714. [PMID: 38990897 PMCID: PMC11239012 DOI: 10.1371/journal.pone.0306714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Janus kinase (JAK) inhibitors (JAKis) are effective therapeutic agents against rheumatoid arthritis (RA). However, patients having RA with particular risk factors may have a higher incidence of adverse effects (AEs), including major cardiovascular events (MACE) and infections. In this multicenter cohort study, we aimed to clarify the risk factors affecting the drug retention of JAKis in patients with RA. METHODS We retrospectively evaluated patients with RA who received their first JAKi (tofacitinib, baricitinib, upadacitinib, or filgotinib) at our institute. The clinical outcomes, including AEs, were recorded, particularly MACE and serious infections. The drug retention rates were analyzed using the Kaplan-Meier method, and risk factors affecting drug retention rates were determined using a multivariable Cox regression hazards model. RESULTS Overall 184 patients with RA receiving their first use of baricitinib (57.6%), tofacitinib (23.9%), upadacitinib (12.0%), or filgotinib (6.5%) were included in this study. Fifty-six (30.4%) patients discontinued JAKi treatment owing to ineffectiveness (9.2%) or AEs, including infections (21.2%). The overall drug retention rates were significantly lower in patients treated with pan-JAKi than in those treated with JAK1 inhibitors (p = 0.03). In the Cox regression model, the presence of baseline high RA disease activity, use of glucocorticoid and treatments with pan-JAKis were associated with reduced drug retention rates of JAKis (p < 0.001, p = 0.01 and 0.04, respectively). Pan-JAKi treated patients with high disease activity had significantly lower drug retention rates (p < 0.001). CONCLUSIONS In a real-world setting, the drug retention rates of JAKis were reduced mainly by treatment discontinuation owing to AEs. Treatment with pan-JAKis and high baseline RA disease activity were identified as predictive factors for the discontinuation of JAKis. Lower drug retention rates were found in patients receiving pan-JAKis with high disease activity than in those without high disease activity.
Collapse
Affiliation(s)
- Kenji Saito
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shuhei Yoshida
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Honoka Ebina
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masayuki Miyata
- Department of Rheumatology, Japanese Red Cross Fukushima Hospital, Fukushima, Japan
| | - Eiji Suzuki
- Department of Rheumatology, Ohta Nishinouchi General Hospital Foundation, Koriyama, Fukushima, Japan
| | - Takashi Kanno
- Department of Rheumatology, Ohta Nishinouchi General Hospital Foundation, Koriyama, Fukushima, Japan
| | - Yuya Sumichika
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Haruki Matsumoto
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jumpei Temmoku
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoki Matsuoka
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Rheumatology, St. Francis Hospital, Nagasaki, Japan
| |
Collapse
|
46
|
Zheng S, Tsao PS, Pan C. Abdominal aortic aneurysm and cardiometabolic traits share strong genetic susceptibility to lipid metabolism and inflammation. Nat Commun 2024; 15:5652. [PMID: 38969659 PMCID: PMC11226445 DOI: 10.1038/s41467-024-49921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Abdominal aortic aneurysm has a high heritability and often co-occurs with other cardiometabolic disorders, suggesting shared genetic susceptibility. We investigate this commonality leveraging recent GWAS studies of abdominal aortic aneurysm and 32 cardiometabolic traits. We find significant genetic correlations between abdominal aortic aneurysm and 21 of the cardiometabolic traits investigated, including causal relationships with coronary artery disease, hypertension, lipid traits, and blood pressure. For each trait pair, we identify shared causal variants, genes, and pathways, revealing that cholesterol metabolism and inflammation are shared most prominently. Additionally, we show the tissue and cell type specificity in the shared signals, with strong enrichment across traits in the liver, arteries, adipose tissues, macrophages, adipocytes, and fibroblasts. Finally, we leverage drug-gene databases to identify several lipid-lowering drugs and antioxidants with high potential to treat abdominal aortic aneurysm with comorbidities. Our study provides insight into the shared genetic mechanism between abdominal aortic aneurysm and cardiometabolic traits, and identifies potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Shufen Zheng
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, China
- Center for Evolutionary Biology, Intelligent Medicine Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA.
- Stanford Cardiovascular Institute, Stanford University, California, USA.
- VA Palo Alto Health Care System, Palo Alto, California, USA.
| | - Cuiping Pan
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, China.
- Center for Evolutionary Biology, Intelligent Medicine Institute, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Zhang WJ, Hu CL, Guo BL, Liang XP, Wang CY, Yang T. STAT5B Suppresses Ferroptosis by Promoting DCAF13 Transcription to Regulate p53/xCT Pathway to Promote Mantle Cell Lymphoma Progression. Biologics 2024; 18:181-193. [PMID: 38979130 PMCID: PMC11229983 DOI: 10.2147/btt.s461287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Objective The purpose of this study was to analyze the mechanism by which STAT5B inhibits ferroptosis in mantle cell lymphoma (MCL) by promoting DCAF13 transcriptional regulation of p53/xCT pathway. Methods The correlations between STAT5B, DCAF13 and ferroptosis in MCL were analyzed using Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/index.html). The expression levels and pairwise correlations of STAT5B, DCAF13, p53 and xCT in MCL patients were detected, respectively. STAT5B was silenced to confirm their criticality in MCL ferroptosis. the effects of blocking necrosis, apoptosis and ferroptosis on the anti-MCL effects of STAT5B were examined. Cells with STAT5B overexpression and/or DCAF13 silencing were constructed to confirm the involvement of DCAF13 in the STAT5B-regulated p53/xCT pathway. The regulation of p53 ubiquitination was confirmed by DCAF13 overexpression and MG132. The effects of silencing DCAF13 and MG132 on STAT5B overexpression on MCL was clarified by a tumor-bearing nude mouse model. Results DCAF13 was overexpressed in MCL and positively correlated with STAT5B, negatively correlated with p53, and positively correlated with xCT. Inhibition of ferroptosis alleviated the inhibitory effects of siSTAT5B on MCL, while inhibition of necrosis and apoptosis had few effects. Silencing of DCAF13 led to the blocking of STAT5B regulation of p53/xCT and ferroptosis. The changes in DCAF13 and the addition of MG132 did not have statistically significant effects on p53 mRNA. Elevation of DCAF13 resulted in downregulation of p53 protein levels, and this inhibition was reversed by MG132. In animal models, the promotion of MCL and the inhibition of ferroptosis by STAT5B. Silencing of DCAF13 blocked STAT5B inhibition of p53 and induction of xCT, GPX4, and GSH. Conclusion STAT5B suppresses ferroptosis by promoting DCAF13 transcription to regulate p53/xCT pathway to promote MCL progression.
Collapse
Affiliation(s)
- Wen Jun Zhang
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Chong Ling Hu
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Bing Ling Guo
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Xi Ping Liang
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Chao Yu Wang
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Tao Yang
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| |
Collapse
|
48
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
49
|
Hawkes JE, Al-Saedy M, Bouché N, Al-Saedy S, Drew DT, Song EJ. The Psoriasis Treatment Pipeline: An Overview and Update. Dermatol Clin 2024; 42:365-375. [PMID: 38796268 DOI: 10.1016/j.det.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Significant research advances in our understanding of psoriatic disease have led to the development of several highly selective, effective, and safe topical and systemic treatments. These treatments have led to unprecedented levels of disease clearance and control for most patients with psoriasis with cutaneous disease. However, there remains a need for improved treatments for those patients with recalcitrant disease, psoriatic arthritis, or nonplaque disease variants. Recently approved therapies and investigational products in ongoing clinical development programs that target IL-17A/F, IL-23, TYK2, PDE4, AhR or IL-36 cytokine signaling are improving the clinician's ability to care for a broader range of patients affected by psoriasis.
Collapse
Affiliation(s)
- Jason E Hawkes
- Department of Dermatology, Integrative Skin Science and Research, Pacific Skin Institute, 1495 River Park Drive, Sacramento, CA 95815, USA
| | - Miriam Al-Saedy
- Elson S. Floyd College of Medicine, 412 East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Nicole Bouché
- Elson S. Floyd College of Medicine, 412 East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Salsabeal Al-Saedy
- Elson S. Floyd College of Medicine, 412 East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Delaney T Drew
- University Hospitals Regional Hospitals, 13207 Ravenna Road, Chardon, OH 44024, USA
| | - Eingun James Song
- Department of Dermatology, Frontier Dermatology, 15906 Mill Creek Boulevard #105, Mill Creek, WA 98012, USA.
| |
Collapse
|
50
|
He W, Li ZQ, Gu HY, Pan QL, Lin FX. Targeted Therapy of Spinal Cord Injury: Inhibition of Apoptosis Is a Promising Therapeutic Strategy. Mol Neurobiol 2024; 61:4222-4239. [PMID: 38066400 DOI: 10.1007/s12035-023-03814-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 07/11/2024]
Abstract
Spinal cord injury (SCI) is a serious disabling central nervous system injury that can lead to motor, sensory, and autonomic dysfunction below the injury level. SCI can be divided into primary injury and secondary injury according to pathological process. Primary injury is mostly irreversible, while secondary injury is a dynamic regulatory process. Apoptosis is an important pathological event of secondary injury and has a significant effect on the recovery of nerve function after SCI. Nerve cell death can further aggravate the microenvironment of the injured site, leading to neurological dysfunction and thus affect the clinical outcome of patients. Therefore, apoptosis plays a crucial role in the pathological progression of secondary SCI, while inhibiting apoptosis may be a promising therapeutic strategy for SCI. This review will summarize and explore the factors that lead to cell death after SCI, the influence of cross talk between signaling pathways and pathways involved in apoptosis and discuss the influence of apoptosis on SCI, and the therapeutic significance of targeting apoptosis on SCI. This review helps us to understand the role of apoptosis in secondary SCI and provides a theoretical basis for the treatment of SCI based on apoptosis.
Collapse
Affiliation(s)
- Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Zhi-Qiang Li
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|