1
|
Wani SN, Grewal AK, Khan H, Singh TG. Elucidating the molecular symphony: unweaving the transcriptional & epigenetic pathways underlying neuroplasticity in opioid dependence and withdrawal. Psychopharmacology (Berl) 2024; 241:1955-1981. [PMID: 39254835 DOI: 10.1007/s00213-024-06684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
The persistent use of opioids leads to profound changes in neuroplasticity of the brain, contributing to the emergence and persistence of addiction. However, chronic opioid use disrupts the delicate balance of the reward system in the brain, leading to neuroadaptations that underlie addiction. Chronic cocaine usage leads to synchronized alterations in gene expression, causing modifications in the Nucleus Accumbens (NAc), a vital part of the reward system of the brain. These modifications assist in the development of maladaptive behaviors that resemble addiction. Neuroplasticity in the context of addiction involves changes in synaptic connectivity, neuronal morphology, and molecular signaling pathways. Drug-evoked neuroplasticity in opioid addiction and withdrawal represents a complicated interaction between environmental, genetic, and epigenetic factors. Identifying specific transcriptional and epigenetic targets that can be modulated to restore normal neuroplasticity without disrupting essential physiological processes is a critical consideration. The discussion in this article focuses on the transcriptional aspects of drug-evoked neuroplasticity, emphasizing the role of key transcription factors, including cAMP response element-binding protein (CREB), ΔFosB, NF-kB, Myocyte-enhancing factor 2 (MEF2), Methyl-CpG binding protein 2 (MeCP2), E2F3a, and FOXO3a. These factors regulate gene expression and lead to the neuroadaptive changes observed in addiction and withdrawal. Epigenetic regulation, which involves modifying gene accessibility by controlling these structures, has been identified as a critical component of addiction development. By unraveling these complex molecular processes, this study provides valuable insights that may pave the way for future therapeutic interventions targeting the mechanisms underlying addiction and withdrawal.
Collapse
Affiliation(s)
- Shahid Nazir Wani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Aman Pharmacy College, Dholakhera, Udaipurwati, Jhunjhunu, Rajasthan, 333307, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
2
|
Riyahi J, Taslimi Z, Gelfo F, Petrosini L, Haghparast A. Trans-generational effects of parental exposure to drugs of abuse on offspring memory functions. Neurosci Biobehav Rev 2024; 160:105644. [PMID: 38548003 DOI: 10.1016/j.neubiorev.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Recent evidence reported that parental-derived phenotypes can be passed on to the next generations. Within the inheritance of epigenetic characteristics allowing the transmission of information related to the ancestral environment to the offspring, the specific case of the trans-generational effects of parental drug addiction has been extensively studied. Drug addiction is a chronic disorder resulting from complex interactions among environmental, genetic, and drug-related factors. Repeated exposures to drugs induce epigenetic changes in the reward circuitry that in turn mediate enduring changes in brain function. Addictive drugs can exert their effects trans-generally and influence the offspring of addicted parents. Although there is growing evidence that shows a wide range of behavioral, physiological, and molecular phenotypes in inter-, multi-, and trans-generational studies, transmitted phenotypes often vary widely even within similar protocols. Given the breadth of literature findings, in the present review, we restricted our investigation to learning and memory performances, as examples of the offspring's complex behavioral outcomes following parental exposure to drugs of abuse, including morphine, cocaine, cannabinoids, nicotine, heroin, and alcohol.
Collapse
Affiliation(s)
- Javad Riyahi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Zahra Taslimi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mallick R, Duttaroy AK. Epigenetic modification impacting brain functions: Effects of physical activity, micronutrients, caffeine, toxins, and addictive substances. Neurochem Int 2023; 171:105627. [PMID: 37827244 DOI: 10.1016/j.neuint.2023.105627] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Changes in gene expression are involved in many brain functions. Epigenetic processes modulate gene expression by histone modification and DNA methylation or RNA-mediated processes, which is important for brain function. Consequently, epigenetic changes are also a part of brain diseases such as mental illness and addiction. Understanding the role of different factors on the brain epigenome may help us understand the function of the brain. This review discussed the effects of caffeine, lipids, addictive substances, physical activity, and pollutants on the epigenetic changes in the brain and their modulatory effects on brain function.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046 Blindern, Oslo, Norway.
| |
Collapse
|
4
|
Miao B, Xing X, Bazylianska V, Madden P, Moszczynska A, Zhang B. Methamphetamine-induced region-specific transcriptomic and epigenetic changes in the brain of male rats. Commun Biol 2023; 6:991. [PMID: 37758941 PMCID: PMC10533900 DOI: 10.1038/s42003-023-05355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Psychostimulant methamphetamine (METH) is neurotoxic to the brain and, therefore, its misuse leads to neurological and psychiatric disorders. The gene regulatory network (GRN) response to neurotoxic METH binge remains unclear in most brain regions. Here we examined the effects of binge METH on the GRN in the nucleus accumbens, dentate gyrus, Ammon's horn, and subventricular zone in male rats. At 24 h after METH, ~16% of genes displayed altered expression and over a quarter of previously open chromatin regions - parts of the genome where genes are typically active - showed shifts in their accessibility. Intriguingly, most changes were unique to each area studied, and independent regulation between transcriptome and chromatin accessibility was observed. Unexpectedly, METH differentially impacted gene activity and chromatin accessibility within the dentate gyrus and Ammon's horn. Around 70% of the affected chromatin-accessible regions in the rat brain have conserved DNA sequences in the human genome. These regions frequently act as enhancers, ramping up the activity of nearby genes, and contain mutations linked to various neurological conditions. By sketching out the gene regulatory networks associated with binge METH in specific brain regions, our study offers fresh insights into how METH can trigger profound, region-specific molecular shifts.
Collapse
Affiliation(s)
- Benpeng Miao
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Viktoriia Bazylianska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Santiago NA, He B, Howard SL, Beaudin S, Strupp BJ, Smith DR. Developmental Manganese Exposure Causes Lasting Attention Deficits Accompanied by Dysregulation of mTOR Signaling and Catecholaminergic Gene Expression in Brain Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549215. [PMID: 37503220 PMCID: PMC10370122 DOI: 10.1101/2023.07.16.549215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Elevated manganese (Mn) exposure is associated with attentional deficits in children, and is an environmental risk factor for attention deficit hyperactivity disorder (ADHD). We have shown that developmental Mn exposure causes lasting attention and sensorimotor deficits in a rat model of early childhood Mn exposure, and that these deficits are associated with a hypofunctioning catecholaminergic system in the prefrontal cortex (PFC), though the mechanistic basis for these deficits is not well understood. To address this, male Long-Evans rats were exposed orally to Mn (50 mg/kg/d) over PND 1-21 and attentional function was assessed in adulthood using the 5-Choice Serial Reaction Time Task. Targeted catecholaminergic system and epigenetic gene expression, followed by unbiased differential DNA methylation and gene regulation expression transcriptomics in the PFC, were performed in young adult littermates. Results show that developmental Mn exposure causes lasting focused attention deficits that are associated with reduced gene expression of tyrosine hydroxylase, dopamine transporter, and DNA methyltransferase 3a. Further, developmental Mn exposure causes broader lasting methylation and gene expression dysregulation associated with epigenetic regulation, inflammation, cell development, and hypofunctioning catecholaminergic neuronal systems. Pathway enrichment analyses uncovered mTOR and Wnt signaling pathway genes as significant transcriptomic regulators of the Mn altered transcriptome, and Western blot of total, C1 and C2 phospho-mTOR confirmed mTOR pathway dysregulation. Our findings deepen our understanding of the mechanistic basis of how developmental Mn exposure leads to lasting catecholaminergic dysfunction and attention deficits, which may aid future therapeutic interventions of environmental exposure associated disorders. Significance Statement Attention deficit hyperactivity disorder (ADHD) is associated with environmental risk factors, including exposure to neurotoxic agents. Here we used a rodent model of developmental manganese (Mn) exposure producing lasting attention deficits to show broad epigenetic and gene expression changes in the prefrontal cortex, and to identify disrupted mTOR and Wnt signaling pathways as a novel mechanism for how developmental Mn exposure may induce lasting attention and catecholaminergic system impairments. Importantly, our findings establish early development as a critical period of susceptibility to lasting deficits in attentional function caused by elevated environmental toxicant exposure. Given that environmental health threats disproportionately impact communities of color and low socioeconomic status, our findings can aid future studies to assess therapeutic interventions for vulnerable populations.
Collapse
|
6
|
Phosphorylation Signals Downstream of Dopamine Receptors in Emotional Behaviors: Association with Preference and Avoidance. Int J Mol Sci 2022; 23:ijms231911643. [PMID: 36232945 PMCID: PMC9570387 DOI: 10.3390/ijms231911643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Dopamine regulates emotional behaviors, including rewarding and aversive behaviors, through the mesolimbic dopaminergic pathway, which projects dopamine neurons from the ventral tegmental area to the nucleus accumbens (NAc). Protein phosphorylation is critical for intracellular signaling pathways and physiological functions, which are regulated by neurotransmitters in the brain. Previous studies have demonstrated that dopamine stimulated the phosphorylation of intracellular substrates, such as receptors, ion channels, and transcription factors, to regulate neuronal excitability and synaptic plasticity through dopamine receptors. We also established a novel database called KANPHOS that provides information on phosphorylation signals downstream of monoamines identified by our kinase substrate screening methods, including dopamine, in addition to those reported in the literature. Recent advances in proteomics techniques have enabled us to clarify the mechanisms through which dopamine controls rewarding and aversive behaviors through signal pathways in the NAc. In this review, we discuss the intracellular phosphorylation signals regulated by dopamine in these two emotional behaviors.
Collapse
|
7
|
Jia S, Guo X, Chen Z, Li S, Liu XA. The roles of the circadian hormone melatonin in drug addiction. Pharmacol Res 2022; 183:106371. [PMID: 35907435 DOI: 10.1016/j.phrs.2022.106371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Given the devastating social and health consequences of drug addiction and the limitations of current treatments, a new strategy is needed. Circadian system disruptions are frequently associated with drug addiction. Correcting abnormal circadian rhythms and improving sleep quality may thus be beneficial in the treatment of patients with drug addiction. Melatonin, an essential circadian hormone that modulates the biological clock, has anti-inflammatory, analgesic, anti-depressive, and neuroprotective effects via gut microbiota regulation and epigenetic modifications. It has attracted scientists' attention as a potential solution to drug abuse. This review summarized scientific evidence on the roles of melatonin in substance use disorders at the cellular, circuitry, and system levels, and discussed its potential applications as an intervention strategy for drug addiction.
Collapse
Affiliation(s)
- Shuhui Jia
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuantong Guo
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Jones-Tabah J, Martin RD, Chen JJ, Tanny JC, Clarke PBS, Hébert TE. A role for BET proteins in regulating basal, dopamine-induced and cAMP/PKA-dependent transcription in rat striatal neurons. Cell Signal 2021; 91:110226. [PMID: 34974082 DOI: 10.1016/j.cellsig.2021.110226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
The activity of striatal medium-spiny projection neurons is regulated by D1 and D2 dopamine receptors. The D1 receptor (D1R) is a Gαs/olf-coupled GPCR which activates a cAMP/PKA/DARPP-32 signalling cascade that increases excitability and facilitates plasticity, partly through the regulation of transcription. Upon activation via D1R, PKA can translocate to the nucleus to regulate transcription through the phosphorylation of various targets. One candidate effector of PKA-dependent transcriptional regulation is the BET protein Brd4. It is known that when Brd4 is activated by phosphorylation, it binds more readily to acetylated histones at promoters and enhancers; moreover, in non-neuronal cells, PKA signalling has been shown to increase recruitment of Brd4 to chromatin. However, it is unknown whether BET proteins, or Brd4 specifically, are involved in transcriptional activation by cAMP/PKA in neurons. Here, we demonstrate that in adult rats, inhibition of BET proteins with the bromodomain inhibitor JQ1 suppressed the expression of ~25% of D1R-upregulated genes, while also increasing the expression of a subset of immediate-early genes. We further found that cAMP/PKA signalling promotes Brd4 recruitment to dopamine-induced genes in striatal neurons, and that knockdown of Brd4 attenuates D1R-induced gene expression. Finally, we report that JQ1 treatment downregulated expression of many GPCRs and also impaired ERK1/2 signalling in striatal neurons. Our findings identify the BET protein family, and Brd4 in particular, as novel regulators of basal and D1R-dependent transcription in rat striatal neurons, and delineate complex bi-directional effects of bromodomain inhibitors on neuronal transcription.
Collapse
Affiliation(s)
- Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Jennifer J Chen
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
9
|
Török B, Fazekas CL, Szabó A, Zelena D. Epigenetic Modulation of Vasopressin Expression in Health and Disease. Int J Mol Sci 2021; 22:ijms22179415. [PMID: 34502322 PMCID: PMC8430944 DOI: 10.3390/ijms22179415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Vasopressin is a ubiquitous molecule playing an important role in a wide range of physiological processes thereby implicated in the pathomechanism of many disorders. Its effect is well characterized through V2 receptors, which regulates the water resorption in kidney, while its vasoconstrictory effect through V1a receptor also received a lot of attention in the maintenance of blood pressure during shock. However, the most striking is its central effect both through the V1b receptors in stress-axis regulation as well as through V1a receptors regulating many aspects of our behavior (e.g., social behavior, learning and memory). Vasopressin has been implicated in the development of depression, due to its connection with chronic stress, as well as schizophrenia because of its involvement in social interactions and memory processes. Epigenetic changes may also play a role in the development of these disorders. The possible mechanism includes DNA methylation, histone modification and/or micro RNAs, and these possible regulations will be in the focus of our present review.
Collapse
Affiliation(s)
- Bibiána Török
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (B.T.); (C.L.F.); (A.S.)
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (B.T.); (C.L.F.); (A.S.)
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Adrienn Szabó
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (B.T.); (C.L.F.); (A.S.)
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Dóra Zelena
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (B.T.); (C.L.F.); (A.S.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
10
|
Saad L, Zwiller J, Kalsbeek A, Anglard P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes (Basel) 2021; 12:1263. [PMID: 34440437 PMCID: PMC8394526 DOI: 10.3390/genes12081263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Based on studies describing an increased prevalence of addictive behaviours in several rare sleep disorders and shift workers, a relationship between circadian rhythms and addiction has been hinted for more than a decade. Although circadian rhythm alterations and molecular mechanisms associated with neuropsychiatric conditions are an area of active investigation, success is limited so far, and further investigations are required. Thus, even though compelling evidence connects the circadian clock to addictive behaviour and vice-versa, yet the functional mechanism behind this interaction remains largely unknown. At the molecular level, multiple mechanisms have been proposed to link the circadian timing system to addiction. The molecular mechanism of the circadian clock consists of a transcriptional/translational feedback system, with several regulatory loops, that are also intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape shows profound changes in the addictive brain, with significant alterations in histone modification, DNA methylation, and small regulatory RNAs. The combination of these two observations raises the possibility that epigenetic regulation is a common plot linking the circadian clocks with addiction, though very little evidence has been reported to date. This review provides an elaborate overview of the circadian system and its involvement in addiction, and we hypothesise a possible connection at the epigenetic level that could further link them. Therefore, we think this review may further improve our understanding of the etiology or/and pathology of psychiatric disorders related to drug addiction.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
| |
Collapse
|
11
|
Sequeira-Cordero A, Brenes JC. Time-dependent changes in striatal monoamine levels and gene expression following single and repeated amphetamine administration in rats. Eur J Pharmacol 2021; 904:174148. [PMID: 33961872 DOI: 10.1016/j.ejphar.2021.174148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
As drug addiction may result from pathological usurpations of learning and memory's neural mechanisms, we focused on the amphetamine-induced time-dependent neurochemical changes associated with neural plasticity. We used juvenile rats as the risk for drug abuse is higher during adolescence. Experiment 1 served to define the appropriate amphetamine dose and the neurochemical effects of a single administration. In experiment 2, rats received seven amphetamine or saline injections in the open-field test throughout a twelve-day period. We measured the mRNA levels of the brain-derived neurotrophic factor (BDNF), its tropomyosin receptor kinase B (TrkB), the cAMP response element-binding protein (CREB), the microRNA-132, the Rho GTPase-activating protein 32 (p250GAP), the corticotropin-releasing factor (CRF), and monoamines and amino-acids contents in the nucleus accumbens and the dorsal striatum 45, 90, and 180 min after the last injection. We found that amphetamine changed gene expression only at certain time points and in a dose and region-dependent manner. Repeated but not single administrations upregulated accumbal and striatal BDNF (180 min) and striatal pri-miR-132 (90 min) expression, while downregulated accumbal CREB levels (90 min). As only some drug users develop addiction, we compared brain parameters between low and high amphetamine responders. Prone subjects characterized by having reduced striatal 5-HT metabolism, higher accumbal BDNF and TrkB expression, and lower levels of CREB in the dorsal striatum and p250GAP in both regions. Thus, individual differences in drug-induced changes in neurotransmission and gene expression in nigrostriatal and mesolimbic dopaminergic pathways may underlie the plasticity adaptations associated with behavioral sensitization to amphetamine.
Collapse
Affiliation(s)
- Andrey Sequeira-Cordero
- Instituto de Investigaciones en Salud, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica.
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
12
|
Faillace MP, Bernabeu RO. Epigenetic Mechanisms Mediate Nicotine-Induced Reward and Behaviour in Zebrafish. Curr Neuropharmacol 2021; 20:510-523. [PMID: 34279203 PMCID: PMC9608226 DOI: 10.2174/1570159x19666210716112351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/03/2021] [Accepted: 07/11/2021] [Indexed: 11/26/2022] Open
Abstract
Nicotine induces long-term changes in the neural activity of the mesocorticolimbic reward pathway structures. The mechanisms involved in this process have not been fully characterized. The hypothesis discussed here proposed that epigenetic regulation participates in the installation of persistent adaptations and long-lasting synaptic plasticity generated by nicotine action on the mesolimbic dopamine neurons of zebrafish. The epigenetic mechanisms induced by nicotine entail histone and DNA chemical modifications, which have been described to lead to changes in gene expression. Among the enzymes that catalyze epigenetic chemical modifications, histone deacetylases (HDACs) remove acetyl groups from histones, thereby facilitating DNA relaxation and making DNA more accessible to gene transcription. DNA methylation, which is dependent on DNA methyltransferase (DNMTs) activity, inhibits gene expression by recruiting several methyl binding proteins that prevent RNA polymerase binding to DNA. In zebrafish, phenylbutyrate (PhB), an HDAC inhibitor, abolishes nicotine rewarding properties together with a series of typical reward-associated behaviors. Furthermore, PhB and nicotine alter long- and short-term object recognition memory in zebrafish, respectively. Regarding DNA methylation effects, a methyl group donor L-methionine (L-met) was found to dramatically reduce nicotine-induced conditioned place preference (CPP) in zebrafish. Simultaneous treatment with DNMT inhibitor 5-aza-2’-deoxycytidine (AZA) was found to reverse the L-met effect on nicotine-induced CPP as well as nicotine reward-specific effects on genetic expression in zebrafish. Therefore, pharmacological interventions that modulate epigenetic regulation of gene expression should be considered as a potential therapeutic method to treat nicotine addiction.
Collapse
Affiliation(s)
- Maria Paula Faillace
- Departamento de Fisiología, Facultad de Medicina e Instituto de Fisiología y Biofísica Profesor Bernardo Houssay (IFIBIO-Houssay, CONICET-UBA), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ramón O Bernabeu
- Departamento de Fisiología, Facultad de Medicina e Instituto de Fisiología y Biofísica Profesor Bernardo Houssay (IFIBIO-Houssay, CONICET-UBA), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
13
|
Abstract
Substance use disorders (SUDs) are chronic brain diseases characterized by transitions from recreational to compulsive drug use and aberrant drug craving that persists for months to years after abstinence is achieved. The transition to compulsive drug use implies that plasticity is occurring, altering the physiology of the brain to precipitate addicted states. Epigenetic phenomena represent a varied orchestra of transcriptional tuning mechanisms that, in response to environmental stimuli, create and maintain gene expression-mediated physiological outcomes. Therefore, epigenetic mechanisms represent a convergent regulatory framework through which the plasticity required to achieve an addicted state can arise and then persist long after drug use has ended. In the first section, we will introduce basic concepts in epigenetics, such as chromatin architecture, histones and their posttranslational modifications, DNA methylation, noncoding RNAs, and transcription factors, along with methods for their investigation. We will then examine the implications of these mechanisms in SUDs, with a particular focus on cocaine-mediated neuroepigenetic plasticity across multiple behavioral models of addiction.
Collapse
Affiliation(s)
- Andrew F Stewart
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sasha L Fulton
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ian Maze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
14
|
Althobaiti YS, Almutairi FM, Alshehri FS, Altowairqi E, Marghalani AM, Alghorabi AA, Alsanie WF, Gaber A, Alsaab HO, Almalki AH, Hakami AY, Alkhalifa T, Almalki AD, Hardy AMG, Shah ZA. Involvement of the dopaminergic system in the reward-related behavior of pregabalin. Sci Rep 2021; 11:10577. [PMID: 34011976 PMCID: PMC8134490 DOI: 10.1038/s41598-021-88429-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/08/2021] [Indexed: 01/23/2023] Open
Abstract
There has been an increase in cases of drug addiction and prescription drug abuse worldwide. Recently, pregabalin abuse has been a focus for many healthcare agencies, as highlighted by epidemiological studies. We previously evaluated the possibility of pregabalin abuse using the conditioned place preference (CPP) paradigm. We observed that a 60 mg/kg dose could induce CPP in mice and that pregabalin-rewarding properties were mediated through glutamate neurotransmission. Notably, the dopaminergic reward circuitry is also known to play a crucial role in medication-seeking behavior. Therefore, this study aimed to explore the possible involvement of dopaminergic receptor-1 in pregabalin-induced CPP. Mice were randomly allocated to receive saline or the dopamine-1 receptor antagonist SKF-83566 (0.03 mg/kg, intraperitoneal). After 30 min, the mice received either saline or pregabalin (60 mg/kg) during the conditioning phase. Among the control groups that received saline or SKF-83566, the time spent in the two conditioning chambers was not significantly altered. However, among the pregabalin-treated group, there was a marked increase in the time spent in the drug-paired chamber compared to the time spent in the vehicle-paired chamber. Notably, blocking dopamine-1 receptors with SKF-83566 completely prevented pregabalin-induced place preference, thus demonstrating the engagement of the dopaminergic system in pregabalin-induced reward-related behavior.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
- General Administration for Precursors and Laboratories, General Directorate of Narcotics Control, Ministry of Interior, Riyadh, Saudi Arabia.
| | - Farooq M Almutairi
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Deanship of Scientific Research, Taif University, Taif, 21944, Saudi Arabia
- Department of Clinical Laboratories Sciences, University of Hafar Al-Batin, College of Clinical Laboratories Sciences, Hafar Al-Batin, 39923, Saudi Arabia
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ebtehal Altowairqi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Aliyah M Marghalani
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Amal A Alghorabi
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Walaa F Alsanie
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Ahmed Gaber
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Biology, Faculty of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Hashem O Alsaab
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, 21944, Saudi Arabia
| | - Atiah H Almalki
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Alqassem Y Hakami
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Turki Alkhalifa
- General Administration for Precursors and Laboratories, General Directorate of Narcotics Control, Ministry of Interior, Riyadh, Saudi Arabia
| | - Ahmad D Almalki
- General Administration for Precursors and Laboratories, General Directorate of Narcotics Control, Ministry of Interior, Riyadh, Saudi Arabia
| | - Ana M G Hardy
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
15
|
Epigenetics of addiction. Neurochem Int 2021; 147:105069. [PMID: 33992741 DOI: 10.1016/j.neuint.2021.105069] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
Substance use disorders are complex biopsychosocial disorders that have substantial negative neurocognitive impact in various patient populations. These diseases involve the compulsive use of licit or illicit substances despite adverse medicolegal consequences and appear to be secondary to long-lasting epigenetic and transcriptional adaptations in brain reward and non-reward circuits. The accumulated evidence supports the notion that repeated drug use causes changes in post-translational histone modifications and in DNA methylation/hydroxymethylation processes in several brain regions. This review provides an overview of epigenetic changes reported in models of cocaine, methamphetamine, and opioid use disorders. The accumulated data suggest that future therapeutic interventions should focus on the development of epigenetic drugs against addictive diseases.
Collapse
|
16
|
Akbarabadi A, Sadat-Shirazi MS, Kabbaj M, Nouri Zadeh-Tehrani S, Khalifeh S, Pirri F, Zarrindast MR. Effects of Morphine and Maternal Care on Behaviors and Protein Expression of Male Offspring. Neuroscience 2021; 466:58-76. [PMID: 33915201 DOI: 10.1016/j.neuroscience.2021.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/26/2023]
Abstract
Genes and environment interact during development to alter gene expression and behavior. Parental morphine exposure before conception has devastating effects on the offspring. In the present study, we evaluated the role of maternal care in the intergenerational effect of maternal morphine exposure. Female rats received morphine or saline for ten days and were drugfree for another ten days. Thereafter, they were allowed to mate with drug-naïve male rats. When pups were born, they were cross-fostered to assess the contribution of maternal care versus morphine effects on the offspring. Adult male offspring were examined for anxiety-like behavior, spatial memory, and obsessive-compulsive-like behavior. To determine the mechanisms underlying the observed behavioral changes, protein levels of acetylated histone H3, BDNF, Trk-B, NMDA subunits, p-CREB, and 5-HT3R were measured in the brain. Our results indicate that maternal caregiving is impaired in morphine-abstinent mothers. Interestingly, maternal care behaviors were also affected in drug-naïve mothers that raised offspring of morphine-exposed mothers. In addition, the offspring of morphine abstinent and non-drug dependent mothers, when raised by morphine abstinent mothers, exhibited more anxiety, obsessive-compulsive behaviors and impaired spatial memory. These altered behaviors were associated with alterations in the levels of the above-mentioned proteins. These data illustrate the intergenerational effects of maternal morphine exposure on offspring behaviors. Moreover, exposure to morphine before gestation not only affects maternal care and offspring behavior, but also has negative consequences on behaviors and protein expression in adoptive mothers of affected offspring.
Collapse
Affiliation(s)
- Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, United States; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, United States
| | | | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University, Tehran, Iran
| | - Fardad Pirri
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
17
|
Xu S, Koo JW, Kang UG. Comparison of the sensitizing effects of cocaine and ethanol on histone deacetylase isoforms in the rat brain. Neuroreport 2021; 32:423-430. [PMID: 33788811 DOI: 10.1097/wnr.0000000000001587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Behavioral sensitization, an animal model of drug addiction, persists for a prolonged period after repeated exposure to drugs of abuse. The persistence of an addiction behavioral phenotype suggests long-lasting changes in gene regulation at the epigenetic level. We measured the expression of histone deacetylases (HDACs) isoforms in the prefrontal cortex and dorsal striatum following the development of sensitization to cocaine (15 mg/kg, administered five times) and ethanol (0.5 g/kg, administered 15 times) to investigate the epigenetic changes that mediate sensitization. Animals sensitized to ethanol exhibited augmented locomotor activity in response to the cocaine challenge. Similarly, those sensitized to cocaine exhibited increased locomotor activity in response to an ethanol challenge. These findings indicate cross-sensitization between ethanol and cocaine and suggest that a common molecular mechanism underlying the cross-sensitization. In animals sensitized to cocaine or ethanol, mRNA levels of class II HDACs (HDAC4 and HDAC5) were decreased in the prefrontal cortex and dorsal striatum, whereas acute treatments with either drug had no effect on the expression of class II HDACs. By contrast, class I HDACs (HDAC1 and HDAC2) responded to the acute cocaine challenge, whereas sensitization itself did not have a consistent effect on class I HDAC levels. These findings support the hypothesis of a common epigenetic mechanism underlying persistent behavioral sensitization induced by different drugs, which may be mediated by the altered expression of class II HDACs.
Collapse
Affiliation(s)
- Shijie Xu
- Medical Research Center, Hainan Cancer Hospital, Haikou, Hainan, China
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University
- Biomedical Research Institute, Seoul National University Hospital, Seoul
| | - Ja Wook Koo
- Emotion, Cognitive & Behavior Research Group, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu
| | - Ung Gu Kang
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
19
|
Hamilton PJ, Nestler EJ. Epigenetics and addiction. Curr Opin Neurobiol 2019; 59:128-136. [PMID: 31255844 PMCID: PMC6889055 DOI: 10.1016/j.conb.2019.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/02/2019] [Accepted: 05/28/2019] [Indexed: 01/04/2023]
Abstract
As an individual becomes addicted to a drug of abuse, nerve cells within the brain's reward circuitry adapt at the epigenetic level during the course of repeated drug exposure. These drug-induced epigenetic adaptations mediate enduring changes in brain function which contribute to life-long, drug-related behavioral abnormalities that define addiction. Targeting these epigenetic alterations will enhance our understanding of the biological basis of addiction and might even yield more effective anti-addiction therapies. However, the complexity of the neuroepigenetic landscape makes it difficult to determine which drug-induced epigenetic changes causally contribute to the pathogenic mechanisms of drug addiction. In this review, we highlight the evidence that epigenetic modifications, specifically histone modifications, within key brain reward regions are correlated with addiction. We then discuss the emerging field of locus-specific neuroepigenetic editing, which is a promising method for determining the causal epigenetic molecular mechanisms that drive an addicted state. Such approaches will substantially increase the field's ability to establish the precise epigenetic mechanisms underlying drug addiction, and could lead to novel treatments for addictive disorders.
Collapse
Affiliation(s)
- Peter J Hamilton
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
20
|
Valjent E, Biever A, Gangarossa G, Puighermanal E. Dopamine signaling in the striatum. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:375-396. [PMID: 31036297 DOI: 10.1016/bs.apcsb.2019.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The striatum integrates dopamine-mediated reward signals to generate appropriate behavior in response to glutamate-mediated sensory cues. Such associative learning relies on enduring neural plasticity in striatal GABAergic spiny projection neurons which, when altered, can lead to the development of a wide variety of pathological states. Considerable progress has been made in our understanding of the intracellular signaling mechanisms in dopamine-related behaviors and pathologies. Through the prism of the regulation of histone H3 and ribosomal protein S6 phosphorylation, we review how dopamine-mediated signaling events regulate gene transcription and mRNA translation. Particularly, we focus on the intracellular cascades controlling these phosphorylations downstream of the modulation of dopamine receptors by psychostimulants, antipsychotics and l-DOPA. Finally, we highlight the importance to precisely determine in which neuronal populations these signaling events occur in order to understand how they participate in remodeling neural circuits and altering dopamine-related behaviors.
Collapse
Affiliation(s)
- Emmanuel Valjent
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France.
| | - Anne Biever
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Giuseppe Gangarossa
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Emma Puighermanal
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Beayno A, El Hayek S, Noufi P, Tarabay Y, Shamseddeen W. The Role of Epigenetics in Addiction: Clinical Overview and Recent Updates. Methods Mol Biol 2019; 2011:609-631. [PMID: 31273724 DOI: 10.1007/978-1-4939-9554-7_35] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Addiction is an international public health problem. It is a polygenic disorder best understood by accounting for the interplay between genetic and environmental factors. A recent way of perceiving this interaction is through epigenetics, which help grasp the neurobiological changes that occur in addiction and explain its relapsing-remitting nature. It is now known that every cell has a different way of expressing its phenotype, despite a universal DNA sequence. This is particularly true in the central nervous system where environmental factors influence this expression. Three major epigenetic processes have been found to participate in the perpetuation of addiction by changing the state of the chromatin and the degree of gene transcription: histone acetylation and methylation, DNA methylation, and noncoding RNAs. In the animal model literature, substantial evidence exists about the role of these epigenetic changes in the different phases of substance use disorders. This book chapter is a non-systematic literature review of the recent publications tackling the topic of epigenetics in addiction. Even though this evidence remains scarce and relatively poorly systematized, it is a promising foundation for future research of molecules that target specific brain regions and their functions to address core behavioral changes seen in addiction.
Collapse
Affiliation(s)
- Antoine Beayno
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samer El Hayek
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Paul Noufi
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yara Tarabay
- Faculty of Pedagogy, Lebanese University, New Rawda, Lebanon.,Faculty of Natural and Applied Sciences, Notre Dame University, Louaize, Lebanon
| | - Wael Shamseddeen
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon. .,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
22
|
González B, Pantoja CRG, Sosa MH, Vitullo AD, Bisagno V, González CR. Cocaine alters the mouse testicular epigenome with direct impact on histone acetylation and DNA methylation marks. Reprod Biomed Online 2018; 37:269-278. [PMID: 30126647 DOI: 10.1016/j.rbmo.2018.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 11/29/2022]
Abstract
RESEARCH QUESTION Recent evidence suggests that cocaine administration in animal models can trigger non-genetic inheritance of addiction traits from father to offspring, affecting development and behaviour. Is chronic cocaine intake involved in alterations of epigenetic homeostasis in the testis? DESIGN Epigenetic marks and mediators in testis and isolated germ cells of adult mice treated with cocaine (10 mg/kg) or vehicle (sterile saline solution) were evaluated in an intermittent binge protocol: three intraperitoneal injections, 1 h apart, one day on/off for 13 days, collecting tissue 24 h after the last binge administration (day 14). RESULTS It was shown that chronic cocaine intake in mice disrupts testicular epigenetic homeostasis, increasing global methylated cytosine levels in DNA from germ cells and sperm. Cocaine also increased testicular and germ cell acetylated histone 3 and 4 and decreased expression of histone deacetylases HDAC1/2. Immunolocalization studies showed that HDAC1/2 and acetylated histone 3 and 4 proteins localize to meiotic germ cells. Analysis of mRNA expression in isolated germ cells shows decreased levels of Hdac1/2/8, Dnmt3b and Tet1 and increased levels of Dnmt3a gene expression after cocaine treatment. CONCLUSIONS Cocaine intake is associated with testicular toxicity and significant reproductive function impairment. The results presented here broaden the basic knowledge of the impact of addictive stimulants on testicular pathophysiology, fertility and male reproductive health and imply that altered epigenetic homeostasis by cocaine may have potential consequences on future generations.
Collapse
Affiliation(s)
- Betina González
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Camilo R Gambini Pantoja
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Maximo H Sosa
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Verónica Bisagno
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Candela R González
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Epigenetic mechanisms associated with addiction-related behavioural effects of nicotine and/or cocaine: implication of the endocannabinoid system. Behav Pharmacol 2018; 28:493-511. [PMID: 28704272 DOI: 10.1097/fbp.0000000000000326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addictive use of nicotine (NC) and cocaine (COC) continues to be a major public health problem, and their combined use has been reported, particularly during adolescence. In neural plasticity, commonly induced by NC and COC, as well as behavioural plasticity related to the use of these two drugs, the involvement of epigenetic mechanisms, in which the reversible regulation of gene expression occurs independently of the DNA sequence, has recently been reported. Furthermore, on the basis of intense interactions with the target neurotransmitter systems, the endocannabinoid (ECB) system has been considered pivotal for eliciting the effects of NC or COC. The combined use of marijuana with NC and/or COC has also been reported. This article presents the addiction-related behavioural effects of NC and/or COC, based on the common behavioural/neural plasticity and combined use of NC/COC, and reviews the interacting role of the ECB system. The epigenetic processes inseparable from the effects of NC and/or COC (i.e. DNA methylation, histone modifications and alterations in microRNAs) and the putative therapeutic involvement of the ECB system at the epigenetic level are also discussed.
Collapse
|
24
|
Mews P, Walker DM, Nestler EJ. Epigenetic Priming in Drug Addiction. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 83:131-139. [PMID: 30936392 PMCID: PMC6764605 DOI: 10.1101/sqb.2018.83.037663] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Drug addiction is a chronic relapsing brain disorder that is characterized by compulsive drug seeking and continued use despite negative outcomes. Current pharmacological therapies target neuronal receptors or transporters upon which drugs of abuse act initially, yet these treatments remain ineffective for most individuals and do not prevent disease relapse after abstinence. Drugs of abuse, in addition to their acute effects, cause persistent plasticity after repeated use, involving dysregulated gene expression in the brain's reward regions, which are thought to mediate the persistent behavioral abnormalities that characterize addiction. Emerging evidence implicates epigenetic priming as a key mechanism that underlies the long-lasting alterations in neuronal gene regulation, which can remain latent until triggered by re-exposure to drug-associated stimuli or the drug itself. Thus, to effectively treat drug addiction, we must identify the precise epigenetic mechanisms that establish and preserve the drug-induced pathology of the brain reward circuitry.
Collapse
Affiliation(s)
- Philipp Mews
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Deena M Walker
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Eric J Nestler
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
25
|
Abstract
Drug addiction involves long-term behavioral abnormalities that arise in response to repeated exposure to drugs of abuse in vulnerable individuals. It is a multifactorial syndrome involving a complex interplay between genes and the environment. Evidence suggests that the underlying mechanisms regulating these persistent behavioral abnormalities involve changes in gene expression throughout the brain's reward circuitry, in particular, in the mesolimbic dopamine system. In the past decade, investigations have begun to reveal potential genes involved in the risk for addiction through genomewide association studies. Additionally, a crucial role for epigenetic mechanisms, which mediate the enduring effects of drugs of abuse on the brain in animal models of addiction, has been established. This chapter focuses on recent evidence that genetic and epigenetic regulatory events underlie the changes throughout the reward circuitry in humans, as well as animal models of addiction. While further investigations are necessary, a picture of genetic and epigenetic mechanisms involved in addiction is beginning to emerge and the insight gained from these studies will be key to the identification of novel targets for improved diagnosis and treatment of addiction syndromes in humans.
Collapse
Affiliation(s)
- Deena M Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
26
|
Prom-Wormley EC, Ebejer J, Dick DM, Bowers MS. The genetic epidemiology of substance use disorder: A review. Drug Alcohol Depend 2017; 180:241-259. [PMID: 28938182 PMCID: PMC5911369 DOI: 10.1016/j.drugalcdep.2017.06.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Substance use disorder (SUD) remains a significant public health issue. A greater understanding of how genes and environment interact to regulate phenotypes comprising SUD will facilitate directed treatments and prevention. METHODS The literature studying the neurobiological correlates of SUD with a focus on the genetic and environmental influences underlying these mechanisms was reviewed. Results from twin/family, human genetic association, gene-environment interaction, epigenetic literature, phenome-wide association studies are summarized for alcohol, nicotine, cannabinoids, cocaine, and opioids. RESULTS There are substantial genetic influences on SUD that are expected to influence multiple neurotransmission pathways, and these influences are particularly important within the dopaminergic system. Genetic influences involved in other aspects of SUD etiology including drug processing and metabolism are also identified. Studies of gene-environment interaction emphasize the importance of environmental context in SUD. Epigenetic studies indicate drug-specific changes in gene expression as well as differences in gene expression related to the use of multiple substances. Further, gene expression is expected to differ by stage of SUD such as substance initiation versus chronic substance use. While a substantial literature has developed for alcohol and nicotine use disorders, there is comparatively less information for other commonly abused substances. CONCLUSIONS A better understanding of genetically-mediated mechanisms involved in the neurobiology of SUD provides increased opportunity to develop behavioral and biologically based treatment and prevention of SUD.
Collapse
Affiliation(s)
- Elizabeth C Prom-Wormley
- Dvision of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, PO Box 980212, Richmond, VA 23298-0212, USA.
| | - Jane Ebejer
- School of Cognitive Behavioural and Social Sciences, University of New England, Armidale, NSW 2350, Australia
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, PO Box 842509, Richmond, VA 23284-2509, USA
| | - M Scott Bowers
- Faulk Center for Molecular Therapeutics, Biomedical Engeneering, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
27
|
Elvir L, Duclot F, Wang Z, Kabbaj M. Epigenetic regulation of motivated behaviors by histone deacetylase inhibitors. Neurosci Biobehav Rev 2017; 105:305-317. [PMID: 29020607 DOI: 10.1016/j.neubiorev.2017.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
Growing evidence has begun to elucidate the contribution of epigenetic mechanisms in the modulation and maintenance of gene expression and behavior. Histone acetylation is one such epigenetic mechanism, which has been shown to profoundly alter gene expression and behaviors. In this review, we begin with an overview of the major epigenetic mechanisms including histones acetylation. We next focus on recent evidence about the influence of environmental stimuli on various motivated behaviors through histone acetylation and highlight how histone deacetylase inhibitors can correct some of the pathologies linked to motivated behaviors including substance abuse, feeding and social attachments. Particularly, we emphasize that the effects of histone deacetylase inhibitors on motivated behaviors are time and context-dependent.
Collapse
Affiliation(s)
- Lindsay Elvir
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Florian Duclot
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Zuoxin Wang
- Department of Psychology, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA.
| |
Collapse
|
28
|
Histone deacetylase 5 modulates the effects of social adversity in early life on cocaine-induced behavior. Physiol Behav 2017; 171:7-12. [DOI: 10.1016/j.physbeh.2016.12.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
|
29
|
Nohesara S, Ghadirivasfi M, Barati M, Ghasemzadeh MR, Narimani S, Mousavi-Behbahani Z, Joghataei M, Soleimani M, Taban M, Mehrabi S, Thiagalingam S, Abdolmaleky HM. Methamphetamine-induced psychosis is associated with DNA hypomethylation and increased expression of AKT1 and key dopaminergic genes. Am J Med Genet B Neuropsychiatr Genet 2016; 171:1180-1189. [PMID: 27753212 PMCID: PMC7115129 DOI: 10.1002/ajmg.b.32506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/03/2016] [Indexed: 12/31/2022]
Abstract
Methamphetamine, one of the most frequently used illicit drugs worldwide, can induce psychosis in a large fraction of abusers and it is becoming a major problem for the health care institutions. There is some evidence that genetic and epigenetic factors may play roles in methamphetamine psychosis. In this study, we examined methamphetamine-induced epigenetic and expression changes of several key genes involved in psychosis. RNA and DNA extracted from the saliva samples of patients with methamphetamine dependency with and without psychosis as well as control subjects (each group 25) were analyzed for expression and promoter DNA methylation status of DRD1, DRD2, DRD3, DRD4, MB-COMT, GAD1, and AKT1 using qRT-PCR and q-MSP, respectively. We found statistically significant DNA hypomethylation of the promoter regions of DRD3 (P = 0.032), DRD4 (P = 0.05), MB-COMT (P = 0.009), and AKT1 (P = 0.0008) associated with increased expression of the corresponding genes in patients with methamphetamine psychosis (P = 0.022, P = 0.034, P = 0.035, P = 0.038, respectively), and to a lesser degree in some of the candidate genes in non-psychotic patients versus the control subjects. In general, methamphetamine dependency is associated with reduced DNA methylation and corresponding increase in expression of several key genes involved in the pathogenesis of psychotic disorders. While these epigenetic changes can be useful diagnostic biomarkers for psychosis in methamphetamine abusers, it is also consistent with the use of methyl rich diet for prevention or suppression of psychosis in these patients. However, this needs to be confirmed in future studies. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Mental Health Research Center and Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghadirivasfi
- Mental Health Research Center and Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Ghasemzadeh
- Mental Health Research Center and Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Narimani
- Mental Health Research Center and Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Mousavi-Behbahani
- Mental Health Research Center and Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadtaghi Joghataei
- Faculty of Medicine, Department of Anatomy and Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Faculty of Medicine, Department of Anatomy and Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mozhgan Taban
- Mental Health Research Center and Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts,Correspondence to: Sam Thiagalingam and Hamid Mostafavi Abdolmaleky, Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118., (S.T.); (H.M.A.)
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts,Correspondence to: Sam Thiagalingam and Hamid Mostafavi Abdolmaleky, Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118., (S.T.); (H.M.A.)
| |
Collapse
|
30
|
Lud Cadet J. Dysregulation of Acetylation Enzymes Inanimal Models of Psychostimulant use Disorders: Evolving Stories. Curr Neuropharmacol 2016; 14:10-6. [PMID: 26813118 PMCID: PMC4787278 DOI: 10.2174/1570159x13666150121230133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/01/2015] [Accepted: 01/20/2015] [Indexed: 01/22/2023] Open
Abstract
Substance use disorders are neuropsychiatric illnesses that have substantial negative biopsychosocial impact. These diseases are defined as compulsive abuse of licit or illicit substances despite adverse medicolegal consequences. Although much research has been conducted to elucidate the pathobiological bases of these disorders, much remains to be done to develop an overarching neurobiological understanding that might be translatable to beneficial pharmacological therapies. Recent advances in epigenetics promise to lead to such an elucidation. Here I provide a brief overview of observations obtained using some models of psychostimulant administration in rodents. The review identifies CREB binding protein (CBP), HDAC1, HDAC2, HADC3, HDAC4, and HDAC5 as important players in the acetylation and deacetylation processes that occur after contingent or non-contingent administration of psychostimulants. These observations are discussed within a framework that suggests a need for better animal models of addiction in order to bring these epigenetic advances to bear on the pharmacological treatment of human addicts.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224.
| |
Collapse
|
31
|
Effects of histone deacetylase inhibitor sodium butyrate on heroin seeking behavior in the nucleus accumbens in rats. Brain Res 2016; 1652:151-157. [PMID: 27742468 DOI: 10.1016/j.brainres.2016.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 01/10/2023]
Abstract
Histone acetylation and other modifications of the chromatin are important regulators of gene expression and may contribute to drug-induced behaviors and neuroplasticity. Inhibition of histone deacetylases (HDAC) activity results in the change of some drug-induced behaviors,however, relatively little is known about the effects of HDAC inhibitors on heroin-seeking behavior. In the present study, male rats were trained to self-administer heroin under a FR1 schedule for consecutive 14 days, followed by 14 daily 2h extinction session in the operant chamber. After training, the heroin priming (250μg/kg) was introduced for the reinstatement of heroin-seeking behavior. Pretreatment with sodium butyrate (NaB) (200 or 400mg/kg, i.p.), an inhibitor of HDAC, failed to affect heroin self-administration. Additionally,systemic administration of NaB (400mg/kg, i.p.)increased significantly the reinstatement of heroin-seeking induced by heroin priming when NaB administered 12h, but not 6h before the reinstatement test. The same effect was observed after the intracerebroventricular injection of NaB (5μL, 100μg/μL). Moreover, the levels of histone H3 acetylation at lysine 18(H3K18)and H4 acetylation at lysine 5 or lysine 8(H4K5 or H4K8)in the accumbens nucleus core and shell were remarkably increased during the reinstatement and were further strengthened after intracerebroventricular injection of NaB. These results demonstrated that activation of histone acetylation may be involved in the heroin-seeking behavior, and identifying these epigenetic changes will be critical in proposing a novel pharmacological strategy for treating heroin addiction.
Collapse
|
32
|
Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem Int 2016; 99:110-132. [DOI: 10.1016/j.neuint.2016.06.011] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/30/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
|
33
|
White AO, Kramár EA, López AJ, Kwapis JL, Doan J, Saldana D, Davatolhagh MF, Alaghband Y, Blurton-Jones M, Matheos DP, Wood MA. BDNF rescues BAF53b-dependent synaptic plasticity and cocaine-associated memory in the nucleus accumbens. Nat Commun 2016; 7:11725. [PMID: 27226355 PMCID: PMC4894971 DOI: 10.1038/ncomms11725] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Recent evidence implicates epigenetic mechanisms in drug-associated memory processes. However, a possible role for one major epigenetic mechanism, nucleosome remodelling, in drug-associated memories remains largely unexplored. Here we examine mice with genetic manipulations targeting a neuron-specific nucleosome remodelling complex subunit, BAF53b. These mice display deficits in cocaine-associated memory that are more severe in BAF53b transgenic mice compared with BAF53b heterozygous mice. Similar to the memory deficits, theta-induced long-term potentiation (theta-LTP) in the nucleus accumbens (NAc) is significantly impaired in slices taken from BAF53b transgenic mice but not heterozygous mice. Further experiments indicate that theta-LTP in the NAc is dependent on TrkB receptor activation, and that BDNF rescues theta-LTP and cocaine-associated memory deficits in BAF53b transgenic mice. Together, these results suggest a role for BAF53b in NAc neuronal function required for cocaine-associated memories, and also that BDNF/TrkB activation in the NAc may overcome memory and plasticity deficits linked to BAF53b mutations.
Collapse
Affiliation(s)
- André O White
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - Enikö A Kramár
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - Alberto J López
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - Janine L Kwapis
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697, USA
| | - John Doan
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - David Saldana
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - M Felicia Davatolhagh
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yasaman Alaghband
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - Mathew Blurton-Jones
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697, USA.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697, USA
| | - Dina P Matheos
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - Marcelo A Wood
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697, USA
| |
Collapse
|
34
|
Dogra S, Sona C, Kumar A, Yadav PN. Epigenetic regulation of G protein coupled receptor signaling and its implications in psychiatric disorders. Int J Biochem Cell Biol 2016; 77:226-39. [PMID: 27046448 DOI: 10.1016/j.biocel.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) act as a relay center through which extracellular signals, in the form of neurotransmitters or therapeutics, are converted into an intracellular response, which ultimately shapes the overall response at the tissue and behavioral level. Remarkably in similar ways, epigenetic mechanisms also modulate the expression pattern of a large number of genes in response to the dynamic environment inside and outside of the body, and consequently overall response. Emerging evidences from the pharmacogenomics and preclinical studies clearly suggest that these two distinct mechanisms criss-cross each other in several neurological disorders. At one hand such cross-talks between two distinct mechanisms make disease etiology more challenging to understand, while on the other hand if dealt appropriately, such situations might provide an opportunity to find novel druggable target and strategy for the treatment of complex diseases. In this review article, we have summarized and highlighted the main findings that tie epigenetic mechanisms to GPCR mediated signaling in the pathophysiology of central nervous system (CNS) disorders, including depression, addiction and pain.
Collapse
Affiliation(s)
- Shalini Dogra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Chandan Sona
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Ajeet Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.
| |
Collapse
|
35
|
Demeter K, Török B, Fodor A, Varga J, Ferenczi S, Kovács KJ, Eszik I, Szegedi V, Zelena D. Possible contribution of epigenetic changes in the development of schizophrenia-like behavior in vasopressin-deficient Brattleboro rats. Behav Brain Res 2016; 300:123-34. [DOI: 10.1016/j.bbr.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 12/25/2022]
|
36
|
Cadet JL, McCoy MT, Jayanthi S. Epigenetics and addiction. Clin Pharmacol Ther 2016; 99:502-11. [PMID: 26841306 DOI: 10.1002/cpt.345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 12/13/2022]
Abstract
Addictions are public health menaces. However, despite advances in addiction research, the cellular or molecular mechanisms that cause transition from recreational use to addiction remain to be elucidated. We have recently suggested that addiction may be secondary to long-term epigenetic modifications that determine the clinical course of substance use disorders. A better understanding of epigenetic mechanisms in animal models that mimic human conditions should help to usher in a new area of drug development against addiction.
Collapse
Affiliation(s)
- J L Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - M T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - S Jayanthi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Cadet JL. Epigenetics of Stress, Addiction, and Resilience: Therapeutic Implications. Mol Neurobiol 2016; 53:545-560. [PMID: 25502297 PMCID: PMC4703633 DOI: 10.1007/s12035-014-9040-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/30/2014] [Indexed: 12/12/2022]
Abstract
Substance use disorders (SUDs) are highly prevalent. SUDs involve vicious cycles of binges followed by occasional periods of abstinence with recurrent relapses despite treatment and adverse medical and psychosocial consequences. There is convincing evidence that early and adult stressful life events are risks factors for the development of addiction and serve as cues that trigger relapses. Nevertheless, the fact that not all individuals who face traumatic events develop addiction to licit or illicit drugs suggests the existence of individual and/or familial resilient factors that protect these mentally healthy individuals. Here, I give a brief overview of the epigenetic bases of responses to stressful events and of epigenetic changes associated with the administration of drugs of abuse. I also discuss the psychobiology of resilience and alterations in epigenetic markers that have been observed in models of resilience. Finally, I suggest the possibility that treatment of addiction should involve cognitive and pharmacological approaches that enhance resilience in at risk individuals. Similar approaches should also be used with patients who have already succumbed to the nefarious effects of addictive substances.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
38
|
Etiévant A, Manta S, Latapy C, Magno LAV, Fecteau S, Beaulieu JM. Repetitive transcranial magnetic stimulation induces long-lasting changes in protein expression and histone acetylation. Sci Rep 2015; 5:16873. [PMID: 26585834 PMCID: PMC4653621 DOI: 10.1038/srep16873] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/20/2015] [Indexed: 12/27/2022] Open
Abstract
The use of non-invasive brain stimulation like repetitive transcranial magnetic stimulation (rTMS) is an increasingly popular set of methods with promising results for the treatment of neurological and psychiatric disorders. Despite great enthusiasm, the impact of non-invasive brain stimulation on its neuronal substrates remains largely unknown. Here we show that rTMS applied over the frontal cortex of awaken mice induces dopamine D2 receptor dependent persistent changes of CDK5 and PSD-95 protein levels specifically within the stimulated brain area. Importantly, these modifications were associated with changes of histone acetylation at the promoter of these genes and prevented by administration of the histone deacetylase inhibitor MS-275. These findings show that, like several other psychoactive treatments, repeated rTMS sessions can exert long-lasting effects on neuronal substrates. This underscores the need of understanding these effects in the development of future clinical applications as well as in the establishment of improved guidelines to use rTMS in non-medical settings.
Collapse
Affiliation(s)
- Adeline Etiévant
- Department of psychiatry and neuroscience, Faculty of medicine, Université Laval. Québec City, Qc, Canada
| | - Stella Manta
- Department of psychiatry and neuroscience, Faculty of medicine, Université Laval. Québec City, Qc, Canada
| | - Camille Latapy
- Department of psychiatry and neuroscience, Faculty of medicine, Université Laval. Québec City, Qc, Canada
| | - Luiz Alexandre V Magno
- Department of psychiatry and neuroscience, Faculty of medicine, Université Laval. Québec City, Qc, Canada.,Universidade Federal de Minas Gerai, Belo Horizonte, Brazil
| | - Shirley Fecteau
- Departement of readaptation, Faculty of medicine, Université Laval, Québec City, Qc, Canada and Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jean-Martin Beaulieu
- Department of psychiatry and neuroscience, Faculty of medicine, Université Laval. Québec City, Qc, Canada
| |
Collapse
|
39
|
Transgenerational Inheritance of Paternal Neurobehavioral Phenotypes: Stress, Addiction, Ageing and Metabolism. Mol Neurobiol 2015; 53:6367-6376. [PMID: 26572641 DOI: 10.1007/s12035-015-9526-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023]
Abstract
Epigenetic modulation is found to get involved in multiple neurobehavioral processes. It is believed that different types of environmental stimuli could alter the epigenome of the whole brain or related neural circuits, subsequently contributing to the long-lasting neural plasticity of certain behavioral phenotypes. While the maternal influence on the health of offsprings has been long recognized, recent findings highlight an alternative way for neurobehavioral phenotypes to be passed on to the next generation, i.e., through the male germ line. In this review, we focus specifically on the transgenerational modulation induced by environmental stress, drugs of abuse, and other physical or mental changes (e.g., ageing, metabolism, fear) in fathers, and recapitulate the underlying mechanisms potentially mediating the alterations in epigenome or gene expression of offsprings. Together, these findings suggest that the inheritance of phenotypic traits through male germ-line epigenome may represent the unique manner of adaptation during evolution. Hence, more attention should be paid to the paternal health, given its equivalently important role in affecting neurobehaviors of descendants.
Collapse
|
40
|
Mancino S, Burokas A, Gutiérrez-Cuesta J, Gutiérrez-Martos M, Martín-García E, Pucci M, Falconi A, D'Addario C, Maccarrone M, Maldonado R. Epigenetic and Proteomic Expression Changes Promoted by Eating Addictive-Like Behavior. Neuropsychopharmacology 2015; 40:2788-800. [PMID: 25944409 PMCID: PMC4864655 DOI: 10.1038/npp.2015.129] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/21/2022]
Abstract
An increasing perspective conceptualizes obesity and overeating as disorders related to addictive-like processes that could share common neurobiological mechanisms. In the present study, we aimed at validating an animal model of eating addictive-like behavior in mice, based on the DSM-5 substance use disorder criteria, using operant conditioning maintained by highly palatable chocolate-flavored pellets. For this purpose, we evaluated persistence of food-seeking during a period of non-availability of food, motivation for food, and perseverance of responding when the reward was associated with a punishment. This model has allowed identifying extreme subpopulations of mice related to addictive-like behavior. We investigated in these subpopulations the epigenetic and proteomic changes. A significant decrease in DNA methylation of CNR1 gene promoter was revealed in the prefrontal cortex of addict-like mice, which was associated with an upregulation of CB1 protein expression in the same brain area. The pharmacological blockade (rimonabant 3 mg/kg; i.p.) of CB1 receptor during the late training period reduced the percentage of mice that accomplished addiction criteria, which is in agreement with the reduced performance of CB1 knockout mice in this operant training. Proteomic studies have identified proteins differentially expressed in mice vulnerable or not to addictive-like behavior in the hippocampus, striatum, and prefrontal cortex. These changes included proteins involved in impulsivity-like behavior, synaptic plasticity, and cannabinoid signaling modulation, such as alpha-synuclein, phosphatase 1-alpha, doublecortin-like kinase 2, and diacylglycerol kinase zeta, and were validated by immunoblotting. This model provides an excellent tool to investigate the neurobiological substrate underlying the vulnerability to develop eating addictive-like behavior.
Collapse
MESH Headings
- Animals
- Behavior, Addictive/genetics
- Behavior, Addictive/metabolism
- Body Weight/genetics
- Brain/metabolism
- Conditioning, Operant/physiology
- Diacylglycerol Kinase/metabolism
- Doublecortin-Like Kinases
- Epigenesis, Genetic/physiology
- Epigenomics
- Feeding Behavior/physiology
- Hyperphagia/genetics
- Hyperphagia/metabolism
- Male
- Mice
- Mice, Knockout
- Phosphoric Monoester Hydrolases/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Proteomics
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/genetics
- Reinforcement, Psychology
- alpha-Synuclein/metabolism
Collapse
Affiliation(s)
- Samantha Mancino
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Aurelijus Burokas
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier Gutiérrez-Cuesta
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Miriam Gutiérrez-Martos
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Martín-García
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Anastasia Falconi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University of Rome, and European Center for Brain Research/Santa Lucia Foundation, Rome, Italy
| | - Rafael Maldonado
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
41
|
Hitchcock LN, Lattal KM. Histone-mediated epigenetics in addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 128:51-87. [PMID: 25410541 DOI: 10.1016/b978-0-12-800977-2.00003-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many of the brain regions, neurotransmitter systems, and behavioral changes that occur after occasional drug use in healthy subjects and after chronic drug abuse in addicted patients are well characterized. An emerging literature suggests that epigenetic processes, those processes that regulate the accessibility of DNA to regulatory proteins within the nucleus, are keys to how addiction develops and how it may be treated. Investigations of the regulation of chromatin, the organizational system of DNA, by histone modification are leading to a new understanding of the cellular and behavioral alterations that occur after drug use. We will describe how, when, and where histone tails are modified and how some of the most recognized histone regulation patterns are involved in the cycle of addiction, including initial and chronic drug intake, withdrawal, abstinence, and relapse. Finally, we consider how an approach that targets histone modifications may promote successful treatment.
Collapse
Affiliation(s)
- Leah N Hitchcock
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
42
|
Pereira RB, Andrade PB, Valentão P. A Comprehensive View of the Neurotoxicity Mechanisms of Cocaine and Ethanol. Neurotox Res 2015; 28:253-67. [PMID: 26105693 DOI: 10.1007/s12640-015-9536-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 01/17/2023]
Abstract
Substance use disorder is an emerging problem concerning to human health, causing severe side effects, including neurotoxicity. The use of illegal drugs and the misuse of prescription or over-the-counter drugs are growing in this century, being one of the major public health problems. Ethanol and cocaine are one of the most frequently used drugs and, according to the National Institute on Drug Abuse, their concurrent consumption is one of the major causes for emergency hospital room visits. These molecules act in the brain through different mechanisms, altering the nervous system function. Researchers have focused the attention not just in the mechanism of action of these drugs, but also in the mechanism by which they damage the nervous tissue (neurotoxicity). Therefore, the goal of the present review is to provide a global perspective about the mechanisms of the neurotoxicity of cocaine and ethanol.
Collapse
Affiliation(s)
- Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal
| | | | | |
Collapse
|
43
|
Kalda A, Zharkovsky A. Epigenetic Mechanisms of Psychostimulant-Induced Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 120:85-105. [PMID: 26070754 DOI: 10.1016/bs.irn.2015.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychostimulant-induced addiction involves potentially life-long behavioral abnormalities that are caused by repeated exposure to a drug of abuse in vulnerable individuals. The persistence of these behavioral changes suggests that long-lasting alterations in gene expression, particularly within the brain's reward regions, may contribute significantly to the addiction phenotype. An increasing number of works over the past decade have demonstrated the important role of epigenetic regulatory events in mediating the lasting effects of drugs of abuse (including psychostimulants, such as cocaine and amphetamine) in animal models of drug addiction. In this review, we have introduced the importance of epigenetic processes in regulating gene expression and have described the role that dynamic epigenetic changes may play in psychostimulant-induced addiction via long-lasting transcriptional changes following repeated drug exposure. We overviewed the evidence showing that repeated exposure to psychostimulants induces three major modes of epigenetic regulation within the brain's reward regions-histone modification, DNA methylation, and noncoding RNAs. In several instances, it has been possible to demonstrate directly the contribution of these epigenetic changes to psychostimulant-related behavioral abnormalities. Studies of epigenetics may also help to determine the role environmental factors play in an individual's vulnerability to addiction. Further studies are required to validate these epigenetic changes in human addiction and to evaluate the possibility of developing new diagnostic tests and more effective treatments for addiction syndromes.
Collapse
Affiliation(s)
- Anti Kalda
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
44
|
Daws SE, Vaissière T, Miller CA. Neuroepigenetic Regulation of Pathogenic Memories. NEUROEPIGENETICS 2015; 1:28-33. [PMID: 25642412 PMCID: PMC4310006 DOI: 10.1016/j.nepig.2014.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our unique collection of memories determines our individuality and shapes our future interactions with the world. Remarkable advances into the neurobiological basis of memory have identified key epigenetic mechanisms that support the stability of memory. Various forms of epigenetic regulation at the levels of DNA methylation, histone modification, and non-coding RNAs (ncRNAs) can modulate transcriptional and translational events required for memory processes. By changing the cellular profile in the brain's emotional, reward, and memory circuits, these epigenetic modifications have also been linked to perseverant, pathogenic memories. In this review, we will delve into the relevance of epigenetic dysregulation to pathogenic memory mechanisms by focusing on two neuropsychiatric disorders perpetuated by aberrant memory associations: substance use disorder (SUD) and post-traumatic stress disorder (PTSD). As our understanding improves, neuroepigenetic mechanisms may someday be harnessed to develop novel therapeutic targets for the treatment of these chronic, relapsing disorders.
Collapse
Affiliation(s)
- Stephanie E Daws
- Department of Metabolism & Aging, Department of Neuroscience, The Scripps Research Institute, Jupiter, FL USA
| | - Thomas Vaissière
- Department of Metabolism & Aging, Department of Neuroscience, The Scripps Research Institute, Jupiter, FL USA
| | - Courtney A Miller
- Department of Metabolism & Aging, Department of Neuroscience, The Scripps Research Institute, Jupiter, FL USA
| |
Collapse
|
45
|
Walker DM, Cates HM, Heller EA, Nestler EJ. Regulation of chromatin states by drugs of abuse. Curr Opin Neurobiol 2014; 30:112-21. [PMID: 25486626 DOI: 10.1016/j.conb.2014.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/08/2014] [Accepted: 11/09/2014] [Indexed: 02/07/2023]
Abstract
Drug addiction involves long-term behavioral abnormalities and gene expression changes throughout the mesolimbic dopamine system. Epigenetic mechanisms establish/maintain alterations in gene expression in the brain, providing the impetus for investigations characterizing how epigenetic processes mediate the effects of drugs of abuse. This review focuses on evidence that epigenetic events, specifically histone modifications, regulate gene expression changes throughout the reward circuitry. Drugs of abuse induce changes in histone modifications throughout the reward circuitry by altering histone-modifying enzymes, manipulation of which reveals a role for histone modification in addiction-related behaviors. There is a complex interplay between these enzymes, resulting in a histone signature of the addicted phenotype. Insights gained from these studies are key to identifying novel targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Deena M Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, United States
| | - Hannah M Cates
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, United States
| | - Elizabeth A Heller
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, United States
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, United States.
| |
Collapse
|
46
|
Sadri-Vakili G. Cocaine triggers epigenetic alterations in the corticostriatal circuit. Brain Res 2014; 1628:50-9. [PMID: 25301690 DOI: 10.1016/j.brainres.2014.09.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/22/2014] [Accepted: 09/27/2014] [Indexed: 01/04/2023]
Abstract
Acute and repeated exposure to cocaine induces long-lasting alterations in neural networks that underlie compulsive drug seeking and taking. Cocaine exposure triggers complex adaptations in the brain that are mediated by dynamic patterns of gene expression that are translated into enduring changes. Recently, epigenetic modifications have been unveiled as critical mechanisms underlying addiction that contribute to drug-induced plasticity by regulating gene expression. These alterations are also now linked to the heritability of cocaine-induced phenotypes. This review focuses on how changes in the epigenome, such as altered DNA methylation, histone modifications, and microRNAs, regulate transcription of specific genes that contribute to cocaine addiction.
Collapse
Affiliation(s)
- Ghazaleh Sadri-Vakili
- MassGeneral Institute for Neurodegenerative Disease Massachusetts General Hospital 114 16th Street, Charlestown, MA 02129-4404, USA.
| |
Collapse
|
47
|
Sprow GM, Rinker JA, Thiele TE. Histone acetylation in the nucleus accumbens shell modulates ethanol-induced locomotor activity in DBA/2J mice. Alcohol Clin Exp Res 2014; 38:2377-86. [PMID: 25130590 DOI: 10.1111/acer.12502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/20/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND A growing body of literature suggests that epigenetic mechanisms, including histone acetylation, may play key roles in drug abuse and the development of addiction. Experiments in this study were designed to investigate the role of histone acetylation in ethanol (EtOH)-induced locomotor sensitization. METHODS Immunohistochemical, Western blotting, and site-directed pharmacological techniques were used to explore the roles of histone acetylation at histone H3 (acH3K9) in both the expression of and acquisition of EtOH-induced locomotor sensitization. A commonly used sensitization protocol, in which animals were exposed to repeated injections of a low dose of EtOH while in their home cage, was used to examine this behavioral phenomenon. Additionally, site-directed administration of the histone deacetylase inhibitor (HDACi) Trichostatin A (TSA), in the absence of repeated EtOH injections, was used to examine the role of hyperacetylation in the nucleus accumbens (NAC) shell in EtOH-induced locomotor sensitization. RESULTS Sensitized mice displayed elevated acH3K9 immunoreactivity (IR) localized to the shell of the NAC. This augmentation in acH3K9 IR was confirmed, in a separate experiment, using Western blot analyses. Next, repeated intra-accumbal infusions of TSA, in the absence of repeated EtOH injections, were sufficient to induce an augmented locomotor response to a later injection of a low dose (2.0 g/kg, intraperitoneally) of EtOH, indicative of cross-sensitization to this locomotor stimulation between TSA and EtOH. Finally, a local infusion of TSA into the shell of the accumbens was also associated with a significant increase in acH3K9 IR within this region. CONCLUSIONS Together, the present observations suggest that histone acetylation, particularly within the shell of the NAC, is important for the development and expression of EtOH-induced locomotor sensitization.
Collapse
Affiliation(s)
- Gretchen M Sprow
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | |
Collapse
|
48
|
FGF2 is a target and a trigger of epigenetic mechanisms associated with differences in emotionality: partnership with H3K9me3. Proc Natl Acad Sci U S A 2014; 111:11834-9. [PMID: 25071177 DOI: 10.1073/pnas.1411618111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Posttranslational modifications of histone tails in chromatin template can result from environmental experiences such as stress and substance abuse. However, the role of epigenetic modifications as potential predisposing factors in affective behavior is less well established. To address this question, we used our selectively bred lines of high responder (bHR) and low responder (bLR) rats that show profound and stable differences in affective responses, with bLRs being prone to anxiety- and depression-like behavior and bHRs prone to addictive behavior. We first asked whether these phenotypes are associated with basal differences in epigenetic profiles. Our results reveal broad between-group differences in basal levels of trimethylated histone protein H3 at lysine 9 (H3K9me3) in hippocampus (HC), amygdala, and nucleus accumbens. Moreover, levels of association of H3K9me3 at Glucocorticoid Receptor (GR) and Fibroblast growth Factor 2 (FGF2) promoters differ reciprocally between bHRs and bLRs in these regions, consistent with these genes' opposing levels of expression and roles in modulating anxiety behavior. Importantly, this basal epigenetic pattern is modifiable by FGF2, a factor that modulates anxiety behavior. Thus, early-life FGF2, which decreases anxiety, altered the levels of H3K9me3 and its binding at FGF2 and GR promoters of bLRs rendering them more similar to bHRs. Conversely, knockdown of HC FGF2 altered both anxiety behavior and levels of H3K9me3 in bHRs, rendering them more bLR-like. These findings implicate FGF2 as a modifier of epigenetic mechanisms associated with emotional responsiveness, and point to H3K9me3 as a key player in the regulation of affective vulnerability.
Collapse
|
49
|
Viola TW, Tractenberg SG, Levandowski ML, Pezzi JC, Bauer ME, Teixeira AL, Grassi-Oliveira R. Neurotrophic factors in women with crack cocaine dependence during early abstinence: the role of early life stress. J Psychiatry Neurosci 2014; 39:206-14. [PMID: 24331739 PMCID: PMC3997606 DOI: 10.1503/jpn.130027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/26/2013] [Accepted: 10/11/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neurotrophic factors have been investigated in the pathophysiology of alcohol and drug dependence and have been related to early life stress driving developmental programming of neuroendocrine systems. METHODS We conducted a follow-up study that aimed to assess the plasma levels of glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT3) and neurotrophin-4/5 (NT4/5) in crack users during 3 weeks of early abstinence in comparison with healthy controls. We performed a comprehensive clinical assessment in female inpatients with crack cocaine dependence (separated into 2 groups: participants with (CSA+) and without (CSA-) a history of childhood sexual abuse) and a group of nonuser control participants. RESULTS Our sample included 104 women with crack cocaine dependence and 22 controls; of the women who used crack cocaine, 22 had a history of childhood sexual abuse and 82 did not. The GDNF plasma levels in the CSA+ group increased dramatically during 3 weeks of detoxification. In contrast, those in the CSA- group showed lower and stable levels of GDNF under the same conditions. Compared with the control group, BDNF plasma levels remained elevated and NGF levels were reduced during early abstinence. We found no differences in NT3 and NT4/5 between the patients and controls. However, within-group analyses showed that the CSA+ group exhibited higher levels of NT4/5 than the CSA- group at the end of detoxification. LIMITATIONS Some of the participants were using neuroleptics, mood stabilizers or antidepressants; our sample included only women; memory bias could not be controlled; and we did not investigate the possible confounding effects of other forms of stress during childhood. CONCLUSION This study supports the association between early life stress and peripheral neurotrophic factor levels in crack cocaine users. During early abstinence, plasmastic GDNF and NT4/5 were the only factors to show changes associated with a history of childhood sexual abuse.
Collapse
Affiliation(s)
- Thiago Wendt Viola
- Viola, Tractenberg, Levandowski, Bauer, Grassi-Oliveira — Centre of Studies and Research in Traumatic Stress, PostGraduate Program in Psychology, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Pezzi — Post-Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Bauer, Grassi-Oliveira — Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Teixeira — Neuroscience Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Saulo Gantes Tractenberg
- Viola, Tractenberg, Levandowski, Bauer, Grassi-Oliveira — Centre of Studies and Research in Traumatic Stress, PostGraduate Program in Psychology, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Pezzi — Post-Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Bauer, Grassi-Oliveira — Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Teixeira — Neuroscience Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mateus Luz Levandowski
- Viola, Tractenberg, Levandowski, Bauer, Grassi-Oliveira — Centre of Studies and Research in Traumatic Stress, PostGraduate Program in Psychology, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Pezzi — Post-Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Bauer, Grassi-Oliveira — Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Teixeira — Neuroscience Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Júlio Carlos Pezzi
- Viola, Tractenberg, Levandowski, Bauer, Grassi-Oliveira — Centre of Studies and Research in Traumatic Stress, PostGraduate Program in Psychology, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Pezzi — Post-Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Bauer, Grassi-Oliveira — Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Teixeira — Neuroscience Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Moisés Evandro Bauer
- Viola, Tractenberg, Levandowski, Bauer, Grassi-Oliveira — Centre of Studies and Research in Traumatic Stress, PostGraduate Program in Psychology, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Pezzi — Post-Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Bauer, Grassi-Oliveira — Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Teixeira — Neuroscience Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Antonio Lúcio Teixeira
- Viola, Tractenberg, Levandowski, Bauer, Grassi-Oliveira — Centre of Studies and Research in Traumatic Stress, PostGraduate Program in Psychology, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Pezzi — Post-Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Bauer, Grassi-Oliveira — Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Teixeira — Neuroscience Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rodrigo Grassi-Oliveira
- Viola, Tractenberg, Levandowski, Bauer, Grassi-Oliveira — Centre of Studies and Research in Traumatic Stress, PostGraduate Program in Psychology, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Pezzi — Post-Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Bauer, Grassi-Oliveira — Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Teixeira — Neuroscience Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
50
|
Clozapine ameliorates epigenetic and behavioral abnormalities induced by phencyclidine through activation of dopamine D1 receptor. Int J Neuropsychopharmacol 2014; 17:723-37. [PMID: 24345457 DOI: 10.1017/s1461145713001466] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Accumulating evidence suggests that dysregulation of histone modification is involved in the pathogenesis and/or pathophysiology of psychiatric disorders. However, the abnormalities in histone modification in the animal model of schizophrenia and the efficacy of antipsychotics for such abnormalities remain unclear. Here, we investigated the involvement of histone modification in phencyclidine-induced behavioral abnormalities and the effects of antipsychotics on these abnormalities. After repeated phencyclidine (10 mg/kg) treatment for 14 consecutive days, mice were treated with antipsychotics (clozapine or haloperidol) or the histone deacetylase inhibitor sodium butyrate for 7 d. Repeated phencyclidine treatments induced memory impairment and social deficit in the mice. The acetylation of histone H3 at lysine 9 residues decreased in the prefrontal cortex with phencyclidine treatment, whereas the expression level of histone deacetylase 5 increased. In addition, the phosphorylation of Ca²⁺/calmodulin-dependent protein kinase II in the nucleus decreased in the prefrontal cortex of phencyclidine-treated mice. These behavioral and epigenetic changes in phencyclidine-treated mice were attenuated by clozapine and sodium butyrate but not by haloperidol. The dopamine D1 receptor antagonist SCH-23390 blocked the ameliorating effects of clozapine but not of sodium butyrate. Furthermore, clozapine and sodium butyrate attenuated the decrease in expression level of GABAergic system-related genes in the prefrontal cortex of phencyclidine-treated mice. These findings suggest that the antipsychotic effect of clozapine develops, at least in part, through epigenetic modification by activation of the dopamine D1 receptor in the prefrontal cortex.
Collapse
|