1
|
Hsu CY, Lin J, Wei MF, Chen LH, Liang HKT, Lin FH. Local delivery of carboplatin-loaded hydrogel and calcium carbonate enables two-stage drug release for limited-dose radiation to eliminate mouse malignant glioma. Biomaterials 2025; 312:122746. [PMID: 39106816 DOI: 10.1016/j.biomaterials.2024.122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2023] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Postoperative radiotherapy remains the gold standard for malignant glioma treatment. Clinical limitations, including tumor growth between surgery and radiotherapy and the emergence of radioresistance, reduce treatment effectiveness and result in local disease progression. This study aimed to develop a local drug delivery system to inhibit tumor growth before radiotherapy and enhance the subsequent anticancer effects of limited-dose radiotherapy. We developed a compound of carboplatin-loaded hydrogel (CPH) incorporated with carboplatin-loaded calcium carbonate (CPCC) to enable two-stage (peritumoral and intracellular) release of carboplatin to initially inhibit tumor growth and to synergize with limited-dose radiation (10 Gy in a single fraction) to eliminate malignant glioma (ALTS1C1 cells) in a C57BL/6 mouse subcutaneous tumor model. The doses of carboplatin in CPH and CPCC treatments were 150 μL (carboplatin concentration of 5 mg/mL) and 15 mg (carboplatin concentration of 4.1 μg/mg), respectively. Mice receiving the combination of CPH-CPCC treatment and limited-dose radiation exhibited significantly reduced tumor growth volume compared to those receiving double-dose radiation alone. Furthermore, combining CPH-CPCC treatment with limited-dose radiation resulted in significantly longer progression-free survival than combining CPH treatment with limited-dose radiation. Local CPH-CPCC delivery synergized effectively with limited-dose radiation to eliminate mouse glioma, offering a promising solution for overcoming clinical limitations.
Collapse
Affiliation(s)
- Cheng-Yi Hsu
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan.
| | - Jason Lin
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan.
| | - Ming-Feng Wei
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan.
| | - Liang-Hsin Chen
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; Division of Proton Therapy, Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, No.57, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist., Taipei 10672, Taiwan.
| | - Hsiang-Kuang Tony Liang
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan; Division of Proton Therapy, Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, No.57, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist., Taipei 10672, Taiwan.
| | - Feng-Huei Lin
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; Institute of Biomedical Engineering and Nano-medicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Miaoli County, Taiwan.
| |
Collapse
|
2
|
Lou J, Wu F, He W, Hu R, Cai Z, Chen G, Zhao W, Zhang Z, Si Y. Hesperidin activates Nrf2 to protect cochlear hair cells from cisplatin-induced damage. Redox Rep 2024; 29:2341470. [PMID: 38629504 PMCID: PMC11025410 DOI: 10.1080/13510002.2024.2341470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Cisplatin is widely employed in clinical oncology as an anticancer chemotherapy drug in clinical practice and is known for its severe ototoxic side effects. Prior research indicates that the accumulation of reactive oxygen species (ROS) plays a pivotal role in cisplatin's inner ear toxicity. Hesperidin is a flavanone glycoside extracted from citrus fruits that has anti-inflammatory and antioxidant effects. Nonetheless, the specific pharmacological actions of hesperidin in alleviating cisplatin-induced ototoxicity remain elusive. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical mediator of the cellular oxidative stress response, is influenced by hesperidin. Activation of Nrf2 was shown to have a protective effect against cisplatin-induced ototoxicity. The potential of hesperidin to stimulate Nrf2 in attenuating cisplatin's adverse effects on the inner ear warrants further investigation. This study employs both in vivo and in vitro models of cisplatin ototoxicity to explore this possibility. Our results reveal that hesperidin mitigates cisplatin-induced ototoxicity by activating the Nrf2/NQO1 pathway in sensory hair cells, thereby reducing ROS accumulation, preventing hair cell apoptosis, and alleviating hearing loss.
Collapse
Affiliation(s)
- Jintao Lou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenji Zhao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhigang Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yu Si
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Nguyen JP, Woerner LC, Johnson DE, Grandis JR. Future investigative directions for novel therapeutic targets in head and neck cancer. Expert Rev Anticancer Ther 2024; 24:1067-1084. [PMID: 39412140 PMCID: PMC11514385 DOI: 10.1080/14737140.2024.2417038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
AREAS COVERED Here we describe novel agents, their mechanism(s) of action, preclinical results, and ongoing clinical trials in HNSCC. EXPERT OPINION Established therapeutic targets in HNSCC include EGFR (cetuximab) and PD-1 (pembrolizumab and nivolumab). Despite the detection of many other possible targets in HNSCC cell lines and patient tumors, no other therapies have successfully advanced to date. Identification of predictive biomarkers may guide the use of targeted agents and combination therapies. Clinical trials supported by strong preclinical data in relevant models are more likely to advance treatment options.
Collapse
Affiliation(s)
- Jacqueline P. Nguyen
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, USA
| | - Liam C. Woerner
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, USA
| | - Daniel E. Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, USA
| |
Collapse
|
4
|
Zhu C, Li J, Sun W, Li D, Wang Y, Shen XC. Signaling Mechanism of Cuproptosis Activating cGAS-STING Immune Pathway. JACS AU 2024; 4:3988-3999. [PMID: 39483232 PMCID: PMC11522904 DOI: 10.1021/jacsau.4c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024]
Abstract
Copper-mediated programmed cell death, which influences the regulation of tumor progression, is an effective approach for antitumor molecular therapy. Unlike apoptosis, copper complex-induced cuproptosis by lipid-acylated protein aggregation triggers the mitochondrial proteotoxic stress response, which could be associated with immunomodulation. However, it remains a great challenge to understand the distinctive molecular mechanisms that presumably activate immunity by cuproptosis. Here, the new nonlabeling fluorescent molecular tools of Cu-DPPZ-Py+ and Cu-DPPZ-Ph are synthesized and used to investigate the differential immune signaling mechanisms induced by copper-mediated cuproptosis or apoptosis. With Cu-DPPZ-Py+ and Cu-Elesclomol, there is strong evidence that the triggering cuproptosis significantly drives mitochondrial DNA (mtDNA) release to activate innate immunity via cyclic GMP-AMP synthase-stimulation of interferon genes (cGAS-STING), which can improve T cell antitumor immunity in vivo. By contrast, it is observed that Cu-DPPZ-Ph treated tumor cells could release intracellular caspase-3, resulting in apoptosis-associated immunosuppression. This study supports insights into how cuproptosis bridges cGAS-STING immune pathways, contributing to the development of cuproptosis-based antitumor immunotherapy.
Collapse
Affiliation(s)
- Chengyuan Zhu
- State Key Laboratory for
Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory
for Chemistry and Molecular Engineering of Medicinal Resources (Ministry
of Education of China), Collaborative Innovation Center for Guangxi
Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jialiang Li
- State Key Laboratory for
Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory
for Chemistry and Molecular Engineering of Medicinal Resources (Ministry
of Education of China), Collaborative Innovation Center for Guangxi
Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Wanying Sun
- State Key Laboratory for
Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory
for Chemistry and Molecular Engineering of Medicinal Resources (Ministry
of Education of China), Collaborative Innovation Center for Guangxi
Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Desheng Li
- State Key Laboratory for
Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory
for Chemistry and Molecular Engineering of Medicinal Resources (Ministry
of Education of China), Collaborative Innovation Center for Guangxi
Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yiliang Wang
- State Key Laboratory for
Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory
for Chemistry and Molecular Engineering of Medicinal Resources (Ministry
of Education of China), Collaborative Innovation Center for Guangxi
Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xing-Can Shen
- State Key Laboratory for
Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory
for Chemistry and Molecular Engineering of Medicinal Resources (Ministry
of Education of China), Collaborative Innovation Center for Guangxi
Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
5
|
Lv J, Chen J, Song Y, Yao Y, Wu G, Yuan D, Gu X, Li X, Xu C, Zhou B, Ye M, Lv T, Wang D, Song Y. Co-Delivery of VEGF siRNA and THPP via Metal-Organic Framework Reverses Cisplatin-Resistant Non-Small Cell Lung Cancer and Inhibits Metastasis through a MUC4 Regulating Mechanism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56910-56925. [PMID: 39397733 DOI: 10.1021/acsami.4c15175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Cisplatin resistance significantly impacts the antitumor efficacy of cisplatin chemotherapy and contributes to poor prognosis, including metastasis. In this study, we present the utilization of metal-organic framework (MOF) nanoparticles as the therapeutic component and drug loading scaffold for implementing a ternary combination therapeutic strategy to combat cisplatin-resistant lung cancer and metastasis. Specifically, by engineering MOFs (Cis@MOF-siVEGF) through the self-assembly of THPP as photosensitizer for photodynamic therapy (PDT), along with the incorporation of cisplatin (DDP) and VEGF siRNA (siVEGF), we propose the leverage of photodynamic-induced oxidative damage and gene silencing of the angiogenic factor to reverse cisplatin resistance and sensitize therapeutic potency. Our findings demonstrated that the chemo/photodynamic/antiangiogenic triple combination therapy via Cis@MOF-siVEGF under irradiation effectively inhibits cisplatin-resistant tumor growth and induces abscopal effects. Importantly, molecular mechanistic exploration suggested that MUC4 exerted regulatory effects on governing cancer metastasis, thus representing a potential immunotherapeutic target for cancer intervention. Overall, our study creates a MOFs-based multicomponent delivery platform for complementary therapeutic modules with synergistically enhanced antitumor efficacy and sheds light on potential regulatory mechanisms on cisplatin-resistance cancers.
Collapse
Affiliation(s)
- Jiawen Lv
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Jiayan Chen
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Yueyue Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, People's Republic of China
| | - Yanwen Yao
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Guannan Wu
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Xiaoling Gu
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Xing Li
- Department of Endocrinology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Chunwei Xu
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, People's Republic of China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210002, People's Republic of China
| | - Dong Wang
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, People's Republic of China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210002, People's Republic of China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, People's Republic of China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210002, People's Republic of China
| |
Collapse
|
6
|
Barakat N, Ismail E, Zahran F. The integrated effect of roflumilast and selenium nanoparticles on nephrotoxicity generated by cisplatin through the regulation of the antioxidant and apoptotic pathways. J Trace Elem Med Biol 2024; 86:127555. [PMID: 39442470 DOI: 10.1016/j.jtemb.2024.127555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
AIM The current investigations aimed to investigate the potential synergistic effect of Roflumilast (ROF) and Selenium nanoparticles (SeNPs) administration on Cisplatin (Cis) -induced nephrotoxicity. MATERIALS AND METHODS Fifty male rats were divided into five groups; Control group: animals were administered 0.9 % saline solution. Cis group: animals were injected with a single dose of 6 mg/kg. ROF group: Rats received a dosage of 1.2 mg/kg orally daily for 11 days. SeNPs group: animals orally received 0.5 mg/kg of ROF daily for 11 days. The ROF + SeNPs group was administered both after receiving a Cis injection for 11 days. Animals were sacrificed at 5 and 11 days, and the urine and blood samples were collected on day 5 and day 11 for chemical analysis, while kidney samples were obtained for molecular, histological, and immunohistochemical studies. RESULTS The levels of serum creatinine, Blood urea nitrogen (BUN), and total protein were elevated in the Cis group compared to the control group (p < 0.05). While the combination of ROF and SeNPs dramatically decreased these values after 5 and 11 days (p < 0.05). In addition, Cis caused renal oxidative stress by elevating MDA levels and suppressing the activities of SOD, GSH, and CAT. Similarly, these effects were modulated by ROF and SeNPs after 11 days (p < 0.05). Furthermore, the concurrent administration of ROF and SeNPs resulted in a significant increase in the expression of HO-1, Nrf2, and Bcl2, while decreasing the expression of BAX and IL-6 compared to the Cis group after 11 days (P < 0.05). CONCLUSION The study showed that both ROF and SeNPs had significant therapeutic potential in reducing the pathological alterations caused by Cis.
Collapse
Affiliation(s)
- Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt.
| | - Ehab Ismail
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Faten Zahran
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Cederroth CR, Dyhrfjeld-Johnsen J, Canlon B. Pharmacological Approaches to Hearing Loss. Pharmacol Rev 2024; 76:1063-1088. [PMID: 39164117 DOI: 10.1124/pharmrev.124.001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Hearing disorders pose significant challenges to individuals experiencing them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap regarding effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging, and ototoxicity have opened new avenues for drug development, some of which have led to numerous clinical trials, with promising results. The development of optimal drug delivery solutions in animals and humans can also enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to a genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system, and preclinical evidence suggests that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches would be beneficial. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery as well as optimized timing of drug administration, holds great promise of more effective treatments. SIGNIFICANCE STATEMENT: Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures and optimized timing of drug administration, holds the promise of more effective treatments.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| |
Collapse
|
8
|
Jiang W, Wang G, Bai F, Hu B, Xu Y, Xu X, Nie G, Zhu WG, Chen F, Pei XH. BRCA1 Promotes Repair of DNA Damage in Cochlear Hair Cells and Prevents Hearing Loss. J Neurosci 2024; 44:e0132242024. [PMID: 39227158 PMCID: PMC11484548 DOI: 10.1523/jneurosci.0132-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Cochlear hair cells (HCs) sense sound waves and allow us to hear. Loss of HCs will cause irreversible sensorineural hearing loss. It is well known that DNA damage repair plays a critical role in protecting cells in many organs. However, how HCs respond to DNA damage and how defective DNA damage repair contributes to hearing loss remain elusive. In this study, we showed that cisplatin induced DNA damage in outer hair cells (OHCs) and promoted OHC loss, leading to hearing loss in mice of either sex. Cisplatin induced the expression of Brca1, a DNA damage repair factor, in OHCs. Deficiency of Brca1 induced OHC and hearing loss, and further promoted cisplatin-induced DNA damage in OHCs, accelerating OHC loss. This study provides the first in vivo evidence demonstrating that cisplatin mainly induces DNA damage in OHCs and that BRCA1 promotes repair of DNA damage in OHCs and prevents hearing loss. Our findings not only demonstrate that DNA damage-inducing agent generates DNA damage in postmitotic HCs but also suggest that DNA repair factors, like BRCA1, protect postmitotic HCs from DNA damage-induced cell death and hearing loss.
Collapse
Affiliation(s)
- Weitao Jiang
- International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Otolaryngology, The First Affiliated Hospital, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Guanrun Wang
- International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Otolaryngology, The First Affiliated Hospital, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Feng Bai
- Department of Pathology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Bing Hu
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yang Xu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Hai Pei
- International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Otolaryngology, The First Affiliated Hospital, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
9
|
Sahebnasagh R, Deli H, Shadboorestan A, Vakili-Ghartavol Z, Salehi N, Komeili-Movahhed T, Azizi Z, Ghahremani MH. Identification of key lncRNAs associated with oxaliplatin resistance in colorectal cancer cells and isolated exosomes: From In-Silico prediction to In-Vitro validation. PLoS One 2024; 19:e0311680. [PMID: 39401197 PMCID: PMC11472961 DOI: 10.1371/journal.pone.0311680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/23/2024] [Indexed: 10/17/2024] Open
Abstract
One of the critical challenges in managing colorectal cancer (CRC) is the development of oxaliplatin (OXP) resistance. Long non-coding RNAs (lncRNAs) have a crucial role in CRC progression and chemotherapy resistance, with exosomal lncRNAs emerging as potential biomarkers. This study aimed to predict key lncRNAs involved in OXP-resistance using in-silico methods and validate them using RT-qPCR methods in CRC cells and their isolated exosomes. Two public datasets, GSE42387 and GSE119481, were downloaded from the GEO database to identify differentially expressed genes (DEGs) and miRNAs (DEmiRNAs) associated with OXP-resistance in the HCT116 cell line. The analysis of GSE42387 revealed 210 DEGs, and GSE119481 identified 73 DEmiRNAs. A protein-protein interaction (PPI) network analysis of the DEGs identified 133 interconnected genes, from which the top ten genes with the highest degree scores were selected. By intersecting predicted miRNAs targeting these genes with the DEmiRNAs, 38 common miRNAs were found. Subsequently, 224 lncRNAs targeting these common miRNAs were predicted. LncRNA-miRNA-mRNA network were constructed and the top five lncRNAs with the highest degree scores were identified. Analysis using the Kaplan-Meier plotter database revealed that the key lncRNAs NEAT1, OIP5-AS1, and MALAT1 are significantly associated with the overall survival of CRC patients. To validate these lncRNAs, OXP-resistant HCT116 sub-cell line (HCT116/OXR) was developed by exposing parental HCT116 cells to gradually increasing concentrations of OXP. Exosomes derived from both HCT116 and HCT116/OXR cells were isolated and characterized utilizing dynamic light scattering (DLS), transmission electron microscopy (TEM), and Western blotting. RT-qPCR confirmed elevated levels of NEAT1, OIP5-AS1, and MALAT1 in HCT116/OXR cells and their exosomes compared to parental HCT116 cells and their exosomes. This study concludes that NEAT1, OIP5-AS1, and MALAT1 are associated with the OXP-resistance in CRC. The high levels of these lncRNAs in exosomes of resistant cells suggest their involvement in intercellular communication and resistance propagation. This positioning makes them promising biomarkers for OXP-resistance in CRC.
Collapse
Affiliation(s)
- Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Deli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeynab Vakili-Ghartavol
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Salehi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
He X, Zhong L, Wang N, Zhao B, Wang Y, Wu X, Zheng C, Ruan Y, Hou J, Luo Y, Yin Y, He Y, Xiang AP, Wang J. Gastric Cancer Actively Remodels Mechanical Microenvironment to Promote Chemotherapy Resistance via MSCs-Mediated Mitochondrial Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404994. [PMID: 39392399 DOI: 10.1002/advs.202404994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Indexed: 10/12/2024]
Abstract
Chemotherapy resistance is the main reason of treatment failure in gastric cancer (GC). However, the mechanism of oxaliplatin (OXA) resistance remains unclear. Here, we demonstrate that extracellular mechanical signaling plays crucial roles in OXA resistance within GC. We selected OXA-resistant GC patients and analyzed tumor tissues by single-cell sequencing, and found that the mitochondrial content of GC cells increased in a biosynthesis-independent manner. Moreover, we found that the increased mitochondria of GC cells were mainly derived from mesenchymal stromal cells (MSCs), which could repair the mitochondrial function and reduce the levels of mitophagy in GC cells, thus leading to OXA resistance. Furthermore, we investigated the underlying mechanism and found that mitochondrial transfer was mediated by mechanical signals of the extracellular matrix (ECM). After OXA administration, GC cells actively secreted ECM in the tumor microenvironment (TEM), increasing matrix stiffness of the tumor tissues, which promoted mitochondria to transfer from MSCs to GC cells via microvesicles (MVs). Meanwhile, inhibiting the mechanical-related RhoA/ROCK1 pathway could alleviate OXA resistance in GC cells. In summary, these results indicate that matrix stiffness could be used as an indicator to identify chemotherapy resistance, and targeting mechanical-related pathway could effectively alleviate OXA resistance and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Xin He
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Li Zhong
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Nan Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Baiwei Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yannan Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinxiang Wu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Changyu Zheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yueheng Ruan
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianfeng Hou
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yusheng Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuehan Yin
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
11
|
Wang M, Li F, Wang Z, Lv L, Liu W. Research progress of natural product-conjugated platinum and gold complexes as potential antitumor agents. Eur J Med Chem 2024; 280:116956. [PMID: 39413444 DOI: 10.1016/j.ejmech.2024.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Cancer is widely recognized as a serious disease that poses a significant threat to human life and health. The distinctive chemical properties and pronounced antiproliferative activity of platinum drugs are considered to be responsible for their remarkable efficacy in clinical applications. However, undesirable side effects and resistance have severely hampered the treatment of various types of cancer with platinum-based drugs. Natural products (NPs) exhibit extensive pharmacological activities and represent an important source for developing cancer therapeutics. Therefore, the combination of metals and NPs is an attractive strategy for the development of new anticancer agents. Several studies have indicated that combining metals with NPs has a synergistic enhancement effect in antitumor activity. For transition metals, there has been burgeoning research output investigating NP-conjugated platinum and gold complexes. The present article reviews the progress made over the past 5-10 years on the development of NP-conjugated platinum and gold complexes, including a brief introduction to their chemistry and mechanism of action, and a summary of their benefits.
Collapse
Affiliation(s)
- Meiyu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Fuwei Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhaoran Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lin Lv
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wukun Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
12
|
D'Andrea VD, Magnani CJ, Ernandez J, Bellmunt J, Mossanen M, Clinton TN, Carvalho FLF, Mouw KW. Impact of DNA Repair Deficiency in the Evolving Treatment Landscape of Bladder Cancer. Curr Urol Rep 2024; 26:12. [PMID: 39382743 DOI: 10.1007/s11934-024-01242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE OF REVIEW This review explores the current landscape of treatments which target the DNA damage response (DDR) in metastatic and muscle-invasive bladder cancer. It emphasizes recent clinical trials which integrate DDR inhibitors with standard chemotherapy and immunotherapy. RECENT FINDINGS Noteworthy findings include the ATLANTIS trial, which demonstrated prolonged progression-free survival (PFS) in DDR biomarker-selected patients using PARP inhibitors as maintenance after standard chemotherapy. Trials such as BAYOU, which combined immunotherapy with PARP inhibition, similarly suggested a potential therapeutic benefit in DDR biomarker-selected patients with bladder cancer. Efforts to develop bladder-sparing treatment regimens based on DDR-associated mutational profiles, such as the RETAIN and HCRN 16-257 trials, have had mixed outcomes to date. There are now ongoing efforts to combine DDR inhibitors with the newest bladder cancer therapies, such as antibody-drug conjugates. This review highlights the most recent advances in targeting DNA repair deficiency in the evolving treatment landscape of bladder cancer.
Collapse
Affiliation(s)
- Vincent D D'Andrea
- Brigham & Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Christopher J Magnani
- Brigham & Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John Ernandez
- Brigham & Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Joaquim Bellmunt
- Brigham & Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew Mossanen
- Brigham & Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Timothy N Clinton
- Brigham & Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Filipe L F Carvalho
- Brigham & Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kent W Mouw
- Brigham & Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Guo L, Ding Y, Li L, Gao C, Su J, Zhang Z. Molecular Logic Gate for Sensing pH/Peroxynitrite with Potential Applications in Cisplatin Treatment. Anal Chem 2024; 96:15950-15959. [PMID: 39327258 DOI: 10.1021/acs.analchem.4c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Cisplatin is a common chemotherapy drug for multiple solid tumors; however, due to the nitrification of peroxynitrite (ONOO-), a series of side effects seriously affect its dose and efficacy. Considering that the reactivity of ONOO- is significantly affected by pH in vitro, revealing their roles in living cells contributes to understanding the side-effect process induced by cisplatin. Herein, we present a near-infrared fluorescent logic gate for sensing pH/ONOO-, which can accurately discriminate four scenarios (no analyte, analyte H+ alone, analyte ONOO- alone, and H+ + ONOO-) and which one comes first. With this probe, the significant roles of pH and ONOO- in cisplatin treatment are disclosed, in which the cell account shows a dramatic reduction accompanied by decreased pH and upregulated ONOO- levels. By artificially recovering the pH, the ONOO- content and cell account can maintain a stable state, possibly due to the protection from acidification and nitration. This work provides an ideal pH/ONOO- logical sensor for revealing their potential roles under cisplatin, which is expected to proffer new insights into more related diseases and drug research.
Collapse
Affiliation(s)
- Lifang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuxi Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lu Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Caifang Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
14
|
Pigg HC, Alley KR, Griffin CR, Moon CH, Kraske SJ, DeRose VJ. The Unique Pt(II)-Induced Nucleolar Stress Response and its Deviation from DNA Damage Response Pathways. J Biol Chem 2024:107858. [PMID: 39374783 DOI: 10.1016/j.jbc.2024.107858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024] Open
Abstract
The mechanisms of action for the platinum compounds cisplatin and oxaliplatin have yet to be fully elucidated, despite the worldwide use of these drugs. Recent studies suggest that the two compounds may be working through different mechanisms, with cisplatin inducing cell death via the DNA damage response (DDR) and oxaliplatin utilizing a nucleolar stress-based cell death pathway. While cisplatin-induced DDR has been subject to much research, the mechanisms for oxaliplatin's influence on the nucleolus are not well understood. Prior work has outlined structural parameters for Pt(II) derivatives capable of nucleolar stress induction. In this work, we gain insight into the nucleolar stress response induced by these Pt(II) derivatives by investigating potential correlations between this unique pathway and DDR. Key findings from this study indicate that Pt(II)-induced nucleolar stress occurs when DDR is inhibited and works independently of the ATM/ATR-dependent DDR pathway. We also determine that Pt(II)-induced stress may be linked to the G1 cell cycle phase, as cisplatin can induce nucleolar stress when cell cycle inhibition occurs at the G1/S checkpoint. Finally, we compare Pt(II)-induced nucleolar stress with other small-molecule nucleolar stress-inducing compounds Actinomycin D, BMH-21, and CX-5461, and find that only Pt(II) compounds cause irreversible nucleolar stress. Taken together, these findings contribute to a better understanding of Pt(II)-induced nucleolar stress, its deviation from ATM/ATR-dependent DDR, and the possible influence of cell cycle on the ability of Pt(II) compounds to cause nucleolar stress.
Collapse
Affiliation(s)
- Hannah C Pigg
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Katelyn R Alley
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Christopher R Griffin
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Caleb H Moon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Sarah J Kraske
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Victoria J DeRose
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
15
|
Antonets AA, Spitsyna EV, Tyurin VY, Mazur DM, Yakovlev DS, Babkov DA, Pshenichnikova MS, Spasov AA, Milaeva ER, Nazarov AA. Ruthenium complexes with abiraterone acetate as antiproliferative agents. J Inorg Biochem 2024; 262:112754. [PMID: 39383670 DOI: 10.1016/j.jinorgbio.2024.112754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
This study is dedicated to the development of multimodal anticancer agents. We have obtained ruthenium complexes conjugated with the steroid-type antitumor drug abiraterone acetate in order to take advantage of the dual antitumor properties of both ruthenium and abiraterone. The compounds exhibit good antiproliferative activity against cancer cells, with selectivity over primary fibroblasts. Real-time cell analysis revealed that compound dichlorido(η66-p-cymene)(abiraterone acetate)ruthenium(II) had pronounced antiproliferation activity compared to abiraterone acetate. Flow cytometric studies on the mechanism of cell death have revealed that the most active compound induces apoptosis more effectively than abiraterone acetate. Our findings demonstrate the potential of this novel dual-action compound as promising candidates for further development as anticancer agents.
Collapse
Affiliation(s)
- Anastasia A Antonets
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Ekaterina V Spitsyna
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Vladimir Yu Tyurin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
| | - Dmitrii M Mazur
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Dmitry S Yakovlev
- Volgograd State Medical University, Pavshikh Bortsov Sq. 1, 400131 Volgograd, Russia
| | - Denis A Babkov
- Volgograd State Medical University, Pavshikh Bortsov Sq. 1, 400131 Volgograd, Russia
| | | | - Alexander A Spasov
- Volgograd State Medical University, Pavshikh Bortsov Sq. 1, 400131 Volgograd, Russia
| | - Elena R Milaeva
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Alexey A Nazarov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia.
| |
Collapse
|
16
|
Park J, Sim J, Yi HJ, Rhee SG, Woo HA. Cisplatin induces kidney damage through the down-regulation of Prx I by autophagic degradation. Free Radic Biol Med 2024; 225:236-246. [PMID: 39366472 DOI: 10.1016/j.freeradbiomed.2024.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
In this study, we investigated the potential role of PrxI in cis-diamminedichloroplatinum (cisplatin)-induced renal damage in mice. The anticancer drug cisplatin is a chemotherapeutic agent that is widely used to treat solid tumors. Cisplatin-induced nephrotoxicity is a serious dose-limiting side effect, primarily caused by oxidative stress. The oxidative stress further damages DNA, membranes, and mitochondria, and increases endoplasmic reticulum (ER) stress. Cisplatin produces reactive oxygen species (ROS) through Cytochrome P450 2E1 (CYP2E1) and localizes to the surface of the ER, where CYP2E1 is located. Among the six Prx isoforms, Prx I was selectively degraded in cisplatin-treated kidneys during severe renal function damage. Prx I degradation is blocked in mouse proximal tubular cells treated with 3-methyladenine, an autophagy inhibitor, and in MEF lacking ATG7. Moreover, increased ROS levels on the ER surface due to CYP2E1 overexpression further accelerated Prx I degradation. These results suggest that Prx I degradation is largely mediated through autophagy, which is promoted by cisplatin-induced ER stress. Ablation of Prx I exacerbated cisplatin-induced nephrotoxicity and significantly increased the abundance of oxidative stress, ER stress, and inflammatory markers in the kidney, indicating that Prx I plays a protective role against cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea; Fluorescence Core Imaging Center, Department of Life Science, Ewha Womans University, Seoul, South Korea.
| | - Juhyun Sim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea; National Forensic Service, 26460, 10 Ipchun-ro, Wonju, Gangwon-do, South Korea.
| | - Ho Jin Yi
- College of Pharmacy, Graduate School of Applied Science and Technology for Skin Health and Aesthetics, Ewha Womans University, Seoul, 120-750, South Korea.
| | - Sue Goo Rhee
- Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea; College of Pharmacy, Graduate School of Applied Science and Technology for Skin Health and Aesthetics, Ewha Womans University, Seoul, 120-750, South Korea.
| |
Collapse
|
17
|
Abstract
Ribosomes synthesize protein in all cells. Maintaining both the correct number and composition of ribosomes is critical for protein homeostasis. To address this challenge, cells have evolved intricate quality control mechanisms during assembly to ensure that only correctly matured ribosomes are released into the translating pool. However, these assembly-associated quality control mechanisms do not deal with damage that arises during the ribosomes' exceptionally long lifetimes and might equally compromise their function or lead to reduced ribosome numbers. Recent research has revealed that ribosomes with damaged ribosomal proteins can be repaired by the release of the damaged protein, thereby ensuring ribosome integrity at a fraction of the energetic cost of producing new ribosomes, appropriate for stress conditions. In this article, we cover the types of ribosome damage known so far, and then we review the known repair mechanisms before surveying the literature for possible additional instances of repair.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Current affiliation: Graduate School of Biomedical Science and Engineering and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Katrin Karbstein
- Current affiliation: Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
18
|
Li G, Chen J, Xie Y, Yang Y, Niu Y, Chen X, Zeng X, Zhou L, Liu Y. White light increases anticancer effectiveness of iridium(III) complexes toward lung cancer A549 cells. J Inorg Biochem 2024; 259:112652. [PMID: 38945112 DOI: 10.1016/j.jinorgbio.2024.112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Anticancer activity has been extensively studies. In this article, three ligands 2-(6-bromobenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (BDIP), 2-(7-methoxybenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (MDIP), 2-(6-nitrobenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (NDIP) and their iridium(III) complexes: [Ir(ppy)2(BDIP)](PF6) (ppy = deprotonated 2-phenylpyridine, 3a), [Ir(ppy)2(MDIP)](PF6) (3b) and [Ir(ppy)2(NDIP)](PF6) (3c) were synthesized. The cytotoxicity of 3a, 3b, 3c against Huh7, A549, BEL-7402, HepG2, HeLa, and non-cancer NIH3T3 was tested using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. The results obtained from the MTT test stated clearly that these complexes demonstrated moderate or non-cytotoxicity toward Huh7, BEL-7402, HepG2 and HeLa except A549 cells. To improve the anticancer efficacy, we used white light to irradiate the mixture of cells and complexes for 30 min, the anticancer activity of the complexes was greatly enhanced. Particularly, 3a and 3b exhibited heightened capability to inhibit A549 cells proliferation with IC50 (half maximal inhibitory concentration) values of 0.7 ± 0.3 μM and 1.8 ± 0.1 μM, respectively. Cellular uptake has shown that 3a and 3b can be accumulated in the cytoplasm. Wound healing and colony forming showed that 3a and 3b significantly hinder the cell migration and growth in the S phase. The complexes open mitochondrial permeability transition pore (MPTP) channel and cause the decrease of membrane potential, release of cytochrome C, activation of caspase 3, and finally lead to apoptosis. In addition, 3a and 3b cause autophagy, increase the lipid peroxidation and lead to ferroptosis. Also, 3a and 3b increase the expression of calreticulin (CRT), high mobility group box 1 (HMGB1), heat shock protein 70 (HSP70), thereby inducing immunogenic cell death.
Collapse
Affiliation(s)
- Gechang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yufeng Xie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 510317, PR China.
| | - Yajie Niu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaolan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiandong Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lin Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
19
|
Deng Z, Dong Z, Wang Y, Dai Y, Liu J, Deng F. Identification of TACSTD2 as novel therapeutic targets for cisplatin-induced acute kidney injury by multi-omics data integration. Hum Genet 2024; 143:1061-1080. [PMID: 38369676 DOI: 10.1007/s00439-024-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Cisplatin-induced acute kidney injury (CP-AKI) is a common complication in cancer patients. Although ferroptosis is believed to contribute to the progression of CP-AKI, its mechanisms remain incompletely understood. In this study, after initially processed individual omics datasets, we integrated multi-omics data to construct a ferroptosis network in the kidney, resulting in the identification of the key driver TACSTD2. In vitro and in vivo results showed that TACSTD2 was notably upregulated in cisplatin-treated kidneys and BUMPT cells. Overexpression of TACSTD2 accelerated ferroptosis, while its gene disruption decelerated ferroptosis, likely mediated by its potential downstream targets HMGB1, IRF6, and LCN2. Drug prediction and molecular docking were further used to propose that drugs targeting TACSTD2 may have therapeutic potential in CP-AKI, such as parthenolide, progesterone, premarin, estradiol and rosiglitazone. Our findings suggest a significant association between ferroptosis and the development of CP-AKI, with TACSTD2 playing a crucial role in modulating ferroptosis, which provides novel perspectives on the pathogenesis and treatment of CP-AKI.
Collapse
Affiliation(s)
- Zebin Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jiachen Liu
- Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Center of Systems Biology and Data Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Jiang M, Li W, Liang J, Pang M, Li S, Xu G, Zhu M, Liang H, Zhang Z, Yang F. Developing a Palladium(II) Agent to Overcome Multidrug Resistance and Metastasis of Liver Tumor by Targeted Multiacting on Tumor Cell, Inactivating Cancer-Associated Fibroblast and Activating Immune Response. J Med Chem 2024; 67:16296-16310. [PMID: 39238096 DOI: 10.1021/acs.jmedchem.4c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
To targeted overcome the multidrug resistance (MDR) and metastasis of liver tumors, we proposed to develop a palladium (Pd) agent based on a specific residue of human serum albumin (HSA) for multiacting on tumor cell and other components in the tumor microenvironment. To this end, a series of Pd(II) 2-acetylpyridine thiosemicarbazone compounds were optimized to obtain a Pd(II) compound (5b) with significant cytotoxicity against HepG2/ADM cells. Subsequently, we constructed a HSA-5b complex delivery system and revealed the structural mechanism of HSA delivering 5b. Importantly, 5b/HSA-5b effectively inhibited the growth and metastasis of multidrug resistant liver tumors, and HSA enhanced the targeting ability of 5b and reduced its side effects in vivo. Furthermore, we confirmed the mechanisms of 5b/HSA-5b integrating to overcome MDR and metastasis of liver tumors: multiacting on cancer cell, activating immune response, and inactivating cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Jinzhe Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Min Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| |
Collapse
|
21
|
Li P, Li D, Lu Y, Pan S, Cheng F, Li S, Zhang X, Huo J, Liu D, Liu Z. GSTT1/GSTM1 deficiency aggravated cisplatin-induced acute kidney injury via ROS-triggered ferroptosis. Front Immunol 2024; 15:1457230. [PMID: 39386217 PMCID: PMC11461197 DOI: 10.3389/fimmu.2024.1457230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/23/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Cisplatin is a widely used chemotherapeutic agent prescribed to treat solid tumors. However, its clinical application is limited because of cisplatin- induced nephrotoxicity. A known complication of cisplatin is acute kidney injury (AKI). Deletion polymorphisms of GSTM1 and GSTT1, members of the glutathione S-transferase family, are common in humans and are presumed to be associated with various kidney diseases. However, the specific roles and mechanisms of GSTM1 and GSTT1 in cisplatin induced AKI remain unclear. Methods To investigate the roles of GSTM1 and GSTT1 in cisplatin-induced AKI, we generated GSTM1 and GSTT1 knockout mice using CRISPR-Cas9 technology and assessed their kidney function under normal physiological conditions and cisplatin treatment. Using ELISA kits, we measured the levels of oxidative DNA and protein damage, along with MDA, SOD, GSH, and the GSH/GSSG ratio in wild-type and GSTM1/GSTT1 knockout mice following cisplatin treatment. Additionally, oxidative stress levels and the expression of ferroptosis-related proteins in kidney tissues were examined through Western blotting, qPCR, immunohistochemistry, and immunofluorescence techniques. Results Here, we found that GSTT1 and GSTM1 were downregulated in the renal tubular cells of AKI patients and cisplatin-treated mice. Compared with WT mice, Gstm1/Gstt1-DKO mice were phenotypically normal but developed more severe kidney dysfunction and exhibited increased ROS levels and severe ferroptosis after injecting cisplatin. Discussion Our study revealed that GSTM1 and GSTT1 can protect renal tubular cells against cisplatin-induced nephrotoxicity and ferroptosis, and genetic screening for GSTM1 and GSTT1 polymorphisms can help determine a standard cisplatin dose for cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Peipei Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Duopin Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yanfang Lu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Fei Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaonan Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jinling Huo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
22
|
W FA, Jose J, E I A. Assessing anticancer properties of PEGylated platinum nanoparticles on human breast cancer cell lines using in-vitroassays. Biomed Phys Eng Express 2024; 10:065019. [PMID: 39260382 DOI: 10.1088/2057-1976/ad795d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
This study describes the in-vitro cytotoxic effects of PEG-400 (Polyethylene glycol-400)-capped platinum nanoparticles (PEGylated Pt NPs) on both normal and cancer cell lines. Structural characterization was carried out using x-ray diffraction and Raman spectroscopy with an average crystallite size 5.7 nm, and morphological assessment using Scanning electron microscopy (SEM) revealed the presence of spherical platinum nanoparticles. The results of energy-dispersive x-ray spectroscopy (EDX) showed a higher percentage fraction of platinum content by weight, along with carbon and oxygen, which are expected from the capping agent, confirming the purity of the platinum sample. The dynamic light scattering experiment revealed an average hydrodynamic diameter of 353.6 nm for the PEGylated Pt NPs. The cytotoxicity profile of PEGylated Pt NPs was assessed on a normal cell line (L929) and a breast cancer cell line (MCF-7) using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results revealed an IC50of 79.18 μg ml-1on the cancer cell line and non-toxic behaviour on the normal cell line. In the dual staining apoptosis assay, it was observed that the mortality of cells cultured in conjunction with platinum nanoparticles intensified and the proliferative activity of MCF-7 cells gradually diminished over time in correlation with the increasing concentration of the PEGylated Pt NPs sample. Thein vitroDCFH-DA assay for oxidative stress assessment in nanoparticle-treated cells unveiled the mechanistic background of the anticancer activity of PEGylated platinum nanoparticles as ROS-assisted mitochondrial dysfunction.
Collapse
Affiliation(s)
- Felicia Aswathy W
- Department of Physics and Electronics, Christ University, Bengaluru, Karnataka- 560029, India
| | - Jiya Jose
- Division of Microbiology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Cochin, Kerala- 683104, India
| | - Anila E I
- Department of Physics and Electronics, Christ University, Bengaluru, Karnataka- 560029, India
| |
Collapse
|
23
|
Canti G, Rapozzi V. PDT and antitumor immunity: the beginnings of the story. Photochem Photobiol Sci 2024:10.1007/s43630-024-00627-1. [PMID: 39235681 DOI: 10.1007/s43630-024-00627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
This mini-review reports a brief description of the first experiments conducted by Canti's group on the role of photodynamic therapy in generating immunity against cancer. It highlights for the first time the effective role of PDT in the induction of anti-tumor T lymphocytes and shows that this effect is tumor-specific. It has also been reported how this adoptive immunity can improve the efficacy of chemotherapy. These studies have helped to open an important new field of scientific research on the role of PDT-generated immunity and to stimulate today's important new pre-clinical approaches.
Collapse
Affiliation(s)
- Gianfranco Canti
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20129, Milan, Italy.
| | | |
Collapse
|
24
|
Mandal B, Pramanik A, Sarkar D, Haldar A, Das D, Saha R, Mandal D, Bhattacharyya S. Novel Octahedral Nickel (II) Complex with Flexible Piperazinyl Moiety Exhibits Potent Cytotoxic Effect Along with Anti-Migratory and Anti-Metastatic Effect on Human Cancer Cells. ChemMedChem 2024; 19:e202300728. [PMID: 38757641 DOI: 10.1002/cmdc.202300728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Synthesis of non-platinum transition metal complexes with N,O donor chelating ligand for application against pathogenesis of cancer with higher efficacy and selectivity is currently an important field of research. We assessed the anti-cancer effect of a mixed ligand Ni(II) complex on human breast and lung cancer cell lines in this investigation. Mononuclear mixed ligand octahedral Ni(II) complex [NiIIL(NO3)(MeOH)] complex (1), with tri-dentate phenol-based ligand 2,4-dichloro-6-((4-methylpiperazin-1-yl) methyl) phenol (HL) along with methanol and nitrate as ancillary ligand was prepared. Piperazine moiety of the ligand exists as boat conformation in this complex as revealed from single crystal X-ray study. UV-visible spectrum of complex (1) exhibits three distinct d-d bands due to spin-allowed 3 A2 g→3T1 g (P), 3 A2 g→3T1 g(F) and 3 A2 g→3T2 g(F) transitions as expected in an octahedral d8 system. Our study revealed that Complex (1) induces apoptotic cell death in mouse and human cancer cells such as mcf-7, A549 and MDA-MB-231 through transactivation of p53 and its pro-apoptotic downstream targets in a dose dependent manner. Furthermore, complex (1) was able to slow the migratory rate of MDA-MB-231 cells' in vitro as well as epithelia -mesenchymal transition (EMT), the key step for metastatic transition and malignancy. Over all our results suggest complex (1) as a potential agent in anti-tumor treatment regimen showing both cytotoxic and anti-metastatic activity against malignant neoplasia.
Collapse
Affiliation(s)
- Bikramaditya Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli, -140306, India
| | - Anik Pramanik
- Immunobiology and translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| | - Debanjan Sarkar
- Immunobiology and translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| | - Anwesha Haldar
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, West Bengal, India
| | - Dona Das
- Immunobiology and translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Asansol, Paschim Bardhaman, -713340, West Bengal, India
| | - Debdas Mandal
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, West Bengal, India
| | - Sankar Bhattacharyya
- Immunobiology and translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| |
Collapse
|
25
|
He J, Wang Y, Su C, Hu Y, Hu W, Hu L, Wang H. Synthesis and anti-tumor activities of three newly designed organotin(IV) carboxylates complexes. J Inorg Biochem 2024; 258:112609. [PMID: 38820620 DOI: 10.1016/j.jinorgbio.2024.112609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
Three distinctive end group-containing organotin (IV) carboxylates complexes (YDCOOSn, CLCOOSn and BZCOOSn) were designed and synthesized. Together with theoretical calculations, a thorough examination was carried out to investigate the photophysical properties of these compounds. The cytotoxicity of the synthesized compounds was tested using normal cell line GES-1 and was assessed against four cancer cell lines (A549, Hela, H1299 and HepG2). The outcomes of the experiments demonstrated that these complexes had superior selectivity than cisplatin towards cancerous cells, particularly in the A549 cell line. BZCOOSn was selected as a candidate compound for additional research because it exhibited the lowest IC50 value and the most impressive inducing effect on cell death and G2/M phase arrest. Increased caspase-3 and -9 enzyme activity, a decline in mitochondrial membrane potential (MMP), characteristic nuclear apoptotic morphology, and an accumulation of intracellular reactive oxygen species (ROS) were seen in A549 exposed to BZCOOSn. These findings demonstrated that BZCOOSn exhibited strong cytotoxicity by triggering cell death in A549 via the mitochondrial route. Furthermore, using the scratch wound healing assay, it was discovered that BZCOOSn reduced the migration of A549 cancerous cells. These data all pointed to BZCOOSn as a possible candidate for more research and development as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Jing He
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Yuqing Wang
- School of pharmacy, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Chang Su
- School of Clinical Medicine, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Yuqing Hu
- School of Clinical Medicine, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Weihua Hu
- Reproductive Medicine Center of the First Affiliated Hospital of Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Lei Hu
- School of pharmacy, Wannan Medical College, Wuhu 241002, People's Republic of China.
| | - Hui Wang
- School of pharmacy, Wannan Medical College, Wuhu 241002, People's Republic of China.
| |
Collapse
|
26
|
Liang G, Montesdeoca N, Tang D, Wang B, Xiao H, Karges J, Shang K. Facile one-pot synthesis of Ir(III) Bodipy polymeric gemini nanoparticles for tumor selective NIR photoactivated anticancer therapy. Biomaterials 2024; 309:122618. [PMID: 38797122 DOI: 10.1016/j.biomaterials.2024.122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Over the last decades, a variety of metal complexes have been developed as chemotherapeutic agents. Despite the promising therapeutic prospects, the vast majority of these compounds suffer from low solubility, poor pharmacological properties, and most importantly poor tumor accumulation. To circumvent these limitations, herein, the incorporation of cytotoxic Ir(III) complexes and a variety of photosensitizers into polymeric gemini nanoparticles that selectively accumulate in the tumorous tissue and could be activated by near-infrared (NIR) light to exert an anticancer effect is reported. Upon exposure to light, the photosensitizer is able to generate singlet oxygen, triggering the rapid dissociation of the nanostructure and the activation of the Ir prodrug, thereby initiating a cascade of mitochondrial targeting and damage that ultimately leads to cell apoptosis. While selectively accumulating into tumorous tissue, the nanoparticles achieve almost complete eradication of the cisplatin-resistant cervical carcinoma tumor in vivo upon exposure to NIR irradiation.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| | - Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
27
|
Wei D, Yan J, Cao Z, Han S, Sun Y. Nucleus-targeting Oxaplatin(IV) prodrug Amphiphile for enhanced chemotherapy and immunotherapy. J Control Release 2024; 373:216-223. [PMID: 39002797 DOI: 10.1016/j.jconrel.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Platinum(II)-based drugs (PtII), which hinder DNA replication, are the most widely used chemotherapeutics. However, current PtII drugs often miss their DNA targets, leading to severe side effects and drug resistance. To overcome this challenge, we developed a oxaliplatin-based platinum(IV) (PtIV) prodrug amphiphile (C16-OPtIV-R8K), integrating a long-chain hydrophobic lipid and a nucleus-targeting hydrophilic peptide (R8K). This design allows the prodrug to self-assemble into highly uniform lipid nanoparticles (NTPtIV) for enhanced targeting chemotherapy and immunotherapy. Subsequently, NTPtIV's bioactivity and effects were examined at diverse levels, encompassing cancer cells, 3D tumor spheres, and in vivo. Our in vitro studies show a 74% cancer cell nucleus localization of platinum drugs-3.6 times higher than that of oxaliplatin, achieving more than a ten-fold increase in eliminating drug-resistant cancer cells. In vivo, NTPtIV shows efficient tumor accumulation, leading to suppressed tumor growth of murine breast cancer. Moreover, NTPtIV recruited more CD4+ and CD8+ T cells and reduced CD4+ Foxp3+ Tregs to synergistically enhance targeted chemotherapy and immunotherapy. Overall, this strategy presents a promising advancement in nucleus-targeted cancer therapy, synergistically boosting the efficacy of chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA 90066
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
28
|
Jogadi W, Kshetri MB, Alqarni S, Sharma A, Cheline M, Amin MA, Sheets C, Nsoure-Engohang A, Zheng YR. Engineering Novel Amphiphilic Platinum(IV) Complexes to Co-Deliver Cisplatin and Doxorubicin. Molecules 2024; 29:4095. [PMID: 39274943 PMCID: PMC11397443 DOI: 10.3390/molecules29174095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
In this study, we report a novel platinum-doxorubicin conjugate that demonstrates superior therapeutic indices to cisplatin, doxorubicin, or their combination, which are commonly used in cancer treatment. This new molecular structure (1) was formed by conjugating an amphiphilic Pt(IV) prodrug of cisplatin with doxorubicin. Due to its amphiphilic nature, the Pt(IV)-doxorubicin conjugate effectively penetrates cell membranes, delivering both cisplatin and doxorubicin payloads intracellularly. The intracellular accumulation of these payloads was assessed using graphite furnace atomic absorption spectrometry and fluorescence imaging. Since the therapeutic effects of cisplatin and doxorubicin stem from their ability to target nuclear DNA, we hypothesized that the amphiphilic Pt(IV)-doxorubicin conjugate (1) would effectively induce nuclear DNA damage toward killing cancer cells. To test this hypothesis, we used flow the cytometric analysis of phosphorylated H2AX (γH2AX), a biomarker of nuclear DNA damage. The Pt(IV)-doxorubicin conjugate (1) markedly induced γH2AX in treated MDA-MB-231 breast cancer cells, showing higher levels than cells treated with either cisplatin or doxorubicin alone. Furthermore, MTT cell viability assays revealed that the enhanced DNA-damaging capability of complex 1 resulted in superior cytotoxicity and selectivity against human cancer cells compared to cisplatin, doxorubicin, or their combination. Overall, the development of this amphiphilic Pt(IV)-doxorubicin conjugate represents a new form of combination therapy with improved therapeutic efficacy.
Collapse
Affiliation(s)
- Wjdan Jogadi
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Man B Kshetri
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Suha Alqarni
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
- Department of Chemistry, University of Bisha, Bisha 67714, Saudi Arabia
| | - Arpit Sharma
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - May Cheline
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Md Al Amin
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Cynthia Sheets
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Angele Nsoure-Engohang
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| |
Collapse
|
29
|
Botter E, Caligiuri I, Rizzolio F, Visentin F, Scattolin T. Liposomal Formulations of Metallodrugs for Cancer Therapy. Int J Mol Sci 2024; 25:9337. [PMID: 39273286 PMCID: PMC11394711 DOI: 10.3390/ijms25179337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The search for new antineoplastic agents is imperative, as cancer remains one of the most preeminent causes of death worldwide. Since the discovery of the therapeutic potential of cisplatin, the study of metallodrugs in cancer chemotherapy acquired increasing interest. Starting from cisplatin derivatives, such as oxaliplatin and carboplatin, in the last years, different compounds were explored, employing different metal centers such as iron, ruthenium, gold, and palladium. Nonetheless, metallodrugs face several drawbacks, such as low water solubility, rapid clearance, and possible side toxicity. Encapsulation has emerged as a promising strategy to overcome these issues, providing both improved biocompatibility and protection of the payload from possible degradation in the biological environment. In this respect, liposomes, which are spherical vesicles characterized by an aqueous core surrounded by lipid bilayers, have proven to be ideal candidates due to their versatility. In fact, they can encapsulate both hydrophilic and hydrophobic drugs, are biocompatible, and their properties can be tuned to improve the selective delivery to tumour sites exploiting both passive and active targeting. In this review, we report the most recent findings on liposomal formulations of metallodrugs, with a focus on encapsulation techniques and the obtained biological results.
Collapse
Affiliation(s)
- Eleonora Botter
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Isabella Caligiuri
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
30
|
Montesdeoca N, Ni K, Karges J. Encapsulation of Cu(II) Terpyridine Complexes into Polymeric Nanoparticles for Enhanced Anticancer Therapy. Chemistry 2024; 30:e202401988. [PMID: 38923696 DOI: 10.1002/chem.202401988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Cancer is one of the deadliest diseases worldwide. One of the most commonly applied therapeutic techniques to combat this disease is chemotherapy. Despite its success, the majority of clinically applied chemotherapeutic agents are associated with strong side effects and drug resistance. To overcome this limitation, much research efforts are devoted toward the development of new anticancer agents. Among the most promising class of compounds, Cu(II) complexes have emerged. Despite their strong cytotoxic effect, these agents are typically associated with low water solubility, low stability, and poor tumor selectivity. To overcome these limitations, herein, we report on the encapsulation of a promising Cu(II) terpyridine complex with the Pluronic F-127/Poloxamer-407 polymeric carrier into nanoparticles. Besides overcoming the pharmacological drawbacks, the nanoparticles were able to eradicate human breast adenocarcinoma monolayer cells as well as challenging multicellular tumor spheroids at nanomolar concentrations.
Collapse
Affiliation(s)
- Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Kaixin Ni
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| |
Collapse
|
31
|
Bortolamiol E, Mauceri M, Piccolo R, Cavarzerani E, Demitri N, Donati C, Gandin V, Brezar SK, Kamensek U, Cemazar M, Canzonieri V, Rizzolio F, Visentin F, Scattolin T. Palladium(II)-Indenyl Complexes Bearing N-Heterocyclic Carbene (NHC) Ligands as Potent and Selective Metallodrugs toward High-Grade Serous Ovarian Cancer Models. J Med Chem 2024; 67:14414-14431. [PMID: 39119630 DOI: 10.1021/acs.jmedchem.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
In this study, we synthesized novel Pd(II)-indenyl complexes using various N-heterocyclic carbene (NHC) ligands, including chelating NHC-picolyl, NHC-thioether, and diNHC ligands, and two monodentate NHCs. Transmetalation reactions between a Pd(II)-indenyl precursor and silver-NHC complexes were generally employed, except for chelating diNHC derivatives, which required direct reaction with bisimidazolium salts and potassium carbonate. Characterization included NMR, HRMS analysis, and single-crystal X-ray diffraction. In vitro on five ovarian cancer cell lines showed notable cytotoxicity, with IC50 values in the micro- and submicromolar range. Some compounds exhibited intriguing selectivity for cancer cells due to higher tumor cell uptake. Mechanistic studies revealed that monodentate NHCs induced mitochondrial damage while chelating ligands caused DNA damage. One chelating NHC-picolyl ligand showed promising cytotoxicity and selectivity in high-grade serous ovarian cancer models, supporting its consideration for preclinical study.
Collapse
Affiliation(s)
- Enrica Bortolamiol
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Matteo Mauceri
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Rachele Piccolo
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Enrico Cavarzerani
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Chiara Donati
- Dipartimento di Scienze del Farmaco, Universita di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Universita di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Vincenzo Canzonieri
- Department of Medical, Surgical and Health Sciences, Università degli Studi di Trieste, Strada di Fiume 447, 34100 Trieste, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.), IRCCS via Franco Gallini 2, 33081 Aviano, Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.), IRCCS via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
32
|
Lyrio RMDC, Rocha BRA, Corrêa ALRM, Mascarenhas MGS, Santos FL, Maia RDH, Segundo LB, de Almeida PAA, Moreira CMO, Sassi RH. Chemotherapy-induced acute kidney injury: epidemiology, pathophysiology, and therapeutic approaches. FRONTIERS IN NEPHROLOGY 2024; 4:1436896. [PMID: 39185276 PMCID: PMC11341478 DOI: 10.3389/fneph.2024.1436896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Despite significant advancements in oncology, conventional chemotherapy remains the primary treatment for diverse malignancies. Acute kidney injury (AKI) stands out as one of the most prevalent and severe adverse effects associated with these cytotoxic agents. While platinum compounds are well-known for their nephrotoxic potential, other drugs including antimetabolites, alkylating agents, and antitumor antibiotics are also associated. The onset of AKI poses substantial risks, including heightened morbidity and mortality rates, prolonged hospital stays, treatment interruptions, and the need for renal replacement therapy, all of which impede optimal patient care. Various proactive measures, such as aggressive hydration and diuresis, have been identified as potential strategies to mitigate AKI; however, preventing its occurrence during chemotherapy remains challenging. Additionally, several factors, including intravascular volume depletion, sepsis, exposure to other nephrotoxic agents, tumor lysis syndrome, and direct damage from cancer's pathophysiology, frequently contribute to or exacerbate kidney injury. This article aims to comprehensively review the epidemiology, mechanisms of injury, diagnosis, treatment options, and prevention strategies for AKI induced by conventional chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Felipe Luz Santos
- Department of Medicine, Universidade Salvador (UNIFACS), Salvador, Brazil
| | | | | | | | | | - Rafael Hennemann Sassi
- Hematology Department, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
33
|
Tonon G, Rizzolio F, Visentin F, Scattolin T. Antibody Drug Conjugates for Cancer Therapy: From Metallodrugs to Nature-Inspired Payloads. Int J Mol Sci 2024; 25:8651. [PMID: 39201338 PMCID: PMC11355040 DOI: 10.3390/ijms25168651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
This review highlights significant advancements in antibody-drug conjugates (ADCs) equipped with metal-based and nature-inspired payloads, focusing on synthetic strategies for antibody conjugation. Traditional methods such us maleimide and succinimide conjugation and classical condensation reactions are prevalent for metallodrugs and natural compounds. However, emerging non-conventional strategies such as photoconjugation are gaining traction due to their milder conditions and, in an aspect which minimizes side reactions, selective formation of ADC. The review also summarizes the therapeutic and diagnostic properties of these ADCs, highlighting their enhanced selectivity and reduced side effects in cancer treatment compared to non-conjugated payloads. ADCs combine the specificity of monoclonal antibodies with the cytotoxicity of chemotherapy drugs, offering a targeted approach to the elimination of cancer cells while sparing healthy tissues. This targeted mechanism has demonstrated impressive clinical efficacy in various malignancies. Key future advancements include improved linker technology for enhanced stability and controlled release of cytotoxic agents, incorporation of novel, more potent, cytotoxic agents, and the identification of new cancer-specific antigens through genomic and proteomic technologies. ADCs are also expected to play a crucial role in combination therapies with immune checkpoint inhibitors, CAR-T cells, and small molecule inhibitors, leading to more durable and potentially curative outcomes. Ongoing research and clinical trials are expanding their capabilities, paving the way for more effective, safer, and personalized treatments, positioning ADCs as a cornerstone of modern medicine and offering new hope to patients.
Collapse
Affiliation(s)
- Giovanni Tonon
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
34
|
Luković D, Franich AA, Živković MD, Rajković S, Stojanović B, Gajović N, Jurišević M, Pavlović S, Simović Marković B, Jovanović M, Stojanović BS, Pavlović R, Jovanović I. Biological Evaluation of Dinuclear Platinum(II) Complexes with Aromatic N-Heterocycles as Bridging Ligands. Int J Mol Sci 2024; 25:8525. [PMID: 39126093 PMCID: PMC11312983 DOI: 10.3390/ijms25158525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The history of effective anti-cancer medications begins with the discovery of cisplatin's anti-cancer properties. Second-generation analogue, carboplatin, with a similar range of effectiveness, made progress in improving these drugs with fewer side effects and better solubility. Renewed interest in platinum-based drugs has been increasing in the past several years. These developments highlight a revitalized enthusiasm and ongoing exploration in platinum chemotherapy based on the series of dinuclear platinum(II) complexes, [{Pt(L)Cl}2(μ-bridging ligand)]2+, which have been synthesized and evaluated for their biological activities. These complexes are designed to target various cancerous conditions, exhibiting promising antitumor, antiproliferative, and apoptosis-inducing activities. The current work aims to shed light on the potential of these complexes as next-generation platinum-based therapies, highlighting their enhanced efficacy and reduced side effects, which could revolutionize the approach to chemotherapy.
Collapse
Affiliation(s)
- Desimir Luković
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Andjela A. Franich
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia; (A.A.F.); (S.R.)
| | - Marija D. Živković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Snežana Rajković
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia; (A.A.F.); (S.R.)
| | - Bojan Stojanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Nevena Gajović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Milena Jurišević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
- Department of Clinical Pharmacy, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia;
| | - Slađana Pavlović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Bojana Simović Marković
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Marina Jovanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Bojana S. Stojanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Radiša Pavlović
- Department of Clinical Pharmacy, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia;
| | - Ivan Jovanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| |
Collapse
|
35
|
Gutgarts V, Gerardine S, Shingarev RA, Knezevic A, Zabor EC, Latcha S, Joy MS, Aleksunes LM, Jaimes EA. Evaluation of Cisplatin-Induced Acute Kidney Injury in Patients Coprescribed Serotonin Receptor Antagonists: A Retrospective Analysis. KIDNEY360 2024; 5:1094-1100. [PMID: 38814726 PMCID: PMC11371355 DOI: 10.34067/kid.0000000000000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Key Points Serotonin receptor antagonists reduce the incidence of AKI in patients receiving cisplatin as chemotherapy. New-generation serotonin receptors do not offer any additional advantage in terms of protection from cisplatin induced AKI. Background Cisplatin is an effective first-line therapy for a variety of cancers. Cisplatin is highly emetogenic and resulting volume depletion can contribute to AKI. Antiemetic drugs, such as 5-hydroxytryptamine type 3 receptor antagonists (5-HT3RAs), are commonly prescribed to prevent this complication. Preclinical studies suggest first-generation 5-HT3RAs may alter the renal clearance and increase cisplatin toxicity. This retrospective study evaluated whether different 5-HT3RAs modify the risk of AKI in patients receiving cisplatin. Methods Patients with cancer who received cisplatin between January 1, 2010, and December 31, 2016, were included. Patients older than 18 years with available data for baseline and post-treatment serum creatinine, cisplatin cumulative dose, and administration of 5-HT3RAs, including first-generation (ondansetron, granisetron, and ramosetron) and second-generation (palonosetron), were analyzed. AKI was defined as 1.5× increase in serum creatinine. Fisher exact and Wilcoxon rank-sum tests were used to assess univariable associations between baseline covariates and AKI and logistic regression for multivariable associations with AKI. Results Of 8703 patients identified with cisplatin exposure, 6889 were included. A total of 3881 patients (56.3%) received at least one 5-HT3RA, including palonosetron (3750, 54.4%), ondansetron (1399, 20.3%), and granisetron (11, 0.2%). AKI developed in 1666 patients (24.2%) after cisplatin therapy. Patients who received any 5-HT3RAs were less likely to experience AKI as compared with patients who did not (22.6% versus 26.2%, P = 0.001). Older age, male sex, African ethnicity, and cumulative cisplatin dose were univariably associated with higher risk of AKI (P < 0.001). After adjusting for these variables, use of any of these antiemetic drugs was protective for AKI (odds ratio, 0.84; 95% confidence interval, 0.75 to 0.94; P = 0.003) with no difference detected between type of 5-HT3RA. Conclusions Nephrotoxicity continues to be a concern after cisplatin therapy. Given its emetogenic nature, use of antiemetic drugs, such as 5-HT3RAs, can lessen emesis and lower risk of kidney injury. This retrospective analysis supports use of any 5-HT3RAs to lower risk of AKI.
Collapse
Affiliation(s)
- Victoria Gutgarts
- Renal Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | | | | | - Andrea Knezevic
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily C. Zabor
- Department of Quantitative Health Sciences & Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sheron Latcha
- Renal Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Melanie S. Joy
- Division of Nephrology, Cancer Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, School of Medicine, University of Colorado, Denver, Colorado
| | | | - Edgar A. Jaimes
- Renal Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| |
Collapse
|
36
|
Sun P, Hu D, Chen P, Wang X, Shen Q, Chen S, Li D, Fan Q. Anti-Quenching NIR-II Excitation Phenylboronic Acid Modified Conjugated Polyelectrolyte for Intracellular Peroxynitrite-Enhanced Chemo-Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309446. [PMID: 38885368 PMCID: PMC11321672 DOI: 10.1002/advs.202309446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Multidrug resistance to clinical chemotherapeutic drugs severely limits antitumor efficacy and patient survival. The integration of chemotherapy with photothermal therapy (PTT) and reactive nitrogen species has become a major strategy to enhance cancer treatment efficacy. Herein, a multifunctional peroxynitrite (ONOO-) nanogenerator (PBT/NO/Pt) for NIR-II fluorescence (NIR-II FL)/NIR-II photoacoustic (NIR-II PA) imaging-guided chemo/NIR-II PTT/ONOO- combination therapy is reported. The multifunction nanogenerator is developed by co-loading a pH-sensitive nitric oxide donor (DETA NONOate) and nicotinamide adenine dinucleotide phosphate oxidases trigger superoxide (O2 •-) generator chemotherapy drug (CDDP) to an NIR-II excitation-conjugated polyelectrolyte (PNC11BA). PNC11BA has non-conjugated alkyl chain segments in the polymer backbone and abundant positively charged phenylboronic acid in its side chains, which support the anti-quenching of NIR-II FL and the integration of DETA NONOate and CDDP into PBT/NO/Pt. In the acidic tumor microenvironment, the coordination bonds between CDDP and PNC11BA are cleaved, releasing CDDP for chemotherapeutic activity. The simultaneous release of nitric oxide (NO) and O2 •- rapidly leads to the in situ generation of the more cytotoxic reactive physiological nitrogen species ONOO-. In vitro and in vivo results prove that PBT/NO/Pt exhibited a markedly ONOO- enhanced chemo-photothermal synergistic therapy for SKOV3/DDP tumor by downregulating the intracellular glutathione and increasing CDDP-DNA adducts.
Collapse
Affiliation(s)
- Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Danni Hu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Pengfei Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Xuanzong Wang
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Qingming Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Shangyu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Daifeng Li
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| |
Collapse
|
37
|
Wang T, Li Q, Xu R, Zhao Z, Sun Q, Xu X, Li R. Nanoparticles (NPs)-mediated lncMALAT1 silencing to reverse cisplatin resistance for effective hepatocellular carcinoma therapy. Front Pharmacol 2024; 15:1437071. [PMID: 39139640 PMCID: PMC11319142 DOI: 10.3389/fphar.2024.1437071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Platinum-based chemotherapy has been widely used for clinical cancer treatment, but drug resistance is the main barrier to induce the poor prognosis of cancer patients. Long non-coding RNAs (lncRNAs) have been recognized as a type of new cancer therapeutic targets due to their important role in regulating cancer progression such as drug resistance. However, it is still challenged to effectively intervene the expression of lncRNAs as they are usually located at various subcellular organelles (e.g., nucleus, mitochondrion, and endoplasmic reticulum). We herein developed an endosomal pH-responsive nanoparticle (NP) platform for small interfering RNA (siRNA) and cisplatin prodrug co-delivery and effective cisplatin-resistant hepatocellular carcinoma (HCC) therapy. This co-delivery nanoplatform is comprised of a hydrophilic polyethylene glycol (PEG) shell and a hydrophobic poly (2-(diisopropylamino)ethyl methacrylate) (PDPA) core, in which cisplatin prodrug and electrostatic complexes of nucleus-targeting amphiphilic peptide (NTPA) and siRNA are encapsulated. After intravenous injection and then uptake by tumor cells, the endosomal pH could trigger the dissociation of nanoplatform and enhance the endosomal escape of loaded cisplatin prodrug and NTPA/siRNA complexes via the "proton sponge" effect. Subsequently, the NTPA/siRNA complexes could specifically transport siRNA into the nucleus and efficiently reverse cisplatin resistance via silencing the expression of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (lncMALAT1) mainly localized in the nucleus, ultimately inhibiting the growth of cisplatin-resistant HCC tumor.
Collapse
Affiliation(s)
- Ting Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianyao Li
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Rui Xu
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Zixuan Zhao
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qi Sun
- Department of Neurosurgery, Yiyang Central Hospital, Yiyang, China
| | - Xiaoding Xu
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Rong Li
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
38
|
Pinard L, Adam JP, Chagnon M, Bollée G, Soulières D. Hypokalemia, hypomagnesemia, and hyponatremia are associated with acute kidney injury in patients treated with cisplatin. J Oncol Pharm Pract 2024:10781552241262248. [PMID: 39051634 DOI: 10.1177/10781552241262248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Cisplatin-associated acute kidney injury (C-AKI) is common. Predictive factors include age >60 years, hypertension, cisplatin dose, diabetes, and serum albumin < 3.5 g/L. The association between C-AKI and hypokalemia, hypomagnesemia or hyponatremia has not been well characterized. METHODS Data from a previous retrospective observational study was obtained. Patients were separated into three groups with similar cisplatin doses and schedules. Group A received cisplatin 60-100 mg/m2 every three weeks with laboratory assessments before treatment, group B received cisplatin 60-75 mg/m2 every three weeks with laboratory assessments before days 1 and 8 and group C had weekly cisplatin 40 mg/m2 with weekly laboratories assessments. The association between hypomagnesemia, hypokalemia, hyponatremia, and risk of AKI was determined using a counting process specification of Cox's regression models. RESULTS A total of 1301 patients were separated into groups A (n = 713), B (n = 204), and C (n = 384). The proportion of patients with at least one event of hypokalemia, hypomagnesemia, or hyponatremia was lower in group A (29.2%, 57.6%, 36.2%) compared to groups B (43.6%, 67.2%, 59.8%) and C (49.0%, 78.7%, 51.0%). The incidence of all grade C-AKI was 35.6% (group A), 46.6% (group B), and 18.2% (group C). In group A, the risk of AKI doubled with hyponatremia or hypomagnesemia and tripled with hypokalemia. This association was not seen with other groups. CONCLUSION Among patients with the highest doses of cisplatin, the presence of one electrolyte disorder was associated with an increased risk of C-AKI. Other studies are needed to characterize the presence of an electrolyte disorder as a predictive risk factor of C-AKI in this subpopulation.
Collapse
Affiliation(s)
- Louis Pinard
- Division of Nephrology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Jean-Philippe Adam
- Department of Pharmacy, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Miguel Chagnon
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
| | - Guillaume Bollée
- Division of Nephrology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Denis Soulières
- Axe cancer, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Division of Medical Oncology/Hematology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| |
Collapse
|
39
|
Wang P, Fares M, Eladwy RA, Bhuyan DJ, Wu X, Lewis W, Loeb SJ, Macreadie LK, Gale PA. Platinum-based metal complexes as chloride transporters that trigger apoptosis. Chem Sci 2024; 15:11584-11593. [PMID: 39055016 PMCID: PMC11268493 DOI: 10.1039/d4sc02115k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
In this paper we demonstrate that Pt(ii) complexes can function as efficient transmembrane chloride transporters. A series of Pt(ii) metal complexes with urea-appended isoquinoline ligands were synthesised and operate via classical hydrogen bonding interactions rather than ligand exchange. A number of the complexes exhibited potent transmembrane chloride activity in vesicle studies, while also showing strong antiproliferative activity in cisplatin-resistant cell lines via induction of apoptosis and inhibition of intracellular ROS.
Collapse
Affiliation(s)
- Patrick Wang
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney NSW 2006 Australia
| | - Radwa A Eladwy
- NICM, Research Health Institute, Western Sydney University NSW 2751 Australia
| | - Deep J Bhuyan
- NICM, Research Health Institute, Western Sydney University NSW 2751 Australia
| | - Xin Wu
- School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 Fujian China
| | - William Lewis
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Stephen J Loeb
- Department of Chemistry and Biochemistry, University of Windsor Ontario N9B 3P4 Canada
| | | | - Philip A Gale
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney Ultimo NSW 2007 Australia
| |
Collapse
|
40
|
Ferrari G, Lopez-Martinez I, Wanek T, Kuntner C, Montagner D. Recent Advances on Pt-Based Compounds for Theranostic Applications. Molecules 2024; 29:3453. [PMID: 39124859 PMCID: PMC11313463 DOI: 10.3390/molecules29153453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Since the discovery of cisplatin's antitumoral activity and its approval as an anticancer drug, significant efforts have been made to enhance its physiological stability and anticancer efficacy and to reduce its side effects. With the rapid development of targeted and personalized therapies, and the promising theranostic approach, platinum drugs have found new opportunities in more sophisticated systems. Theranostic agents combine diagnostic and therapeutic moieties in one scaffold, enabling simultaneous disease monitoring, therapy delivery, response tracking, and treatment efficacy evaluation. In these systems, the platinum core serves as the therapeutic agent, while the functionalized ligand provides diagnostic tools using various imaging techniques. This review aims to highlight the significant role of platinum-based complexes in theranostic applications, and, to the best of our knowledge, this is the first focused contribution on this type of platinum compounds. This review presents a brief introduction to the development of platinum chemotherapeutic drugs, their limitations, and resistance mechanisms. It then describes recent advancements in integrating platinum complexes with diagnostic agents for both tumor treatment and monitoring. The main body is organized into three categories based on imaging techniques: fluorescence, positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). Finally, this review outlines promising strategies and future perspectives in this evolving field.
Collapse
Affiliation(s)
- Giulia Ferrari
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Ines Lopez-Martinez
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
| | - Thomas Wanek
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
| | - Claudia Kuntner
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
- Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria
| | - Diego Montagner
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Ireland
- Kathleen Londsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| |
Collapse
|
41
|
Yao YM, Miodownik I, O'Hagan MP, Jbara M, Afek A. Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome. Transcription 2024:1-25. [PMID: 39033307 DOI: 10.1080/21541264.2024.2379161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Transcription factors (TFs) intricately navigate the vast genomic landscape to locate and bind specific DNA sequences for the regulation of gene expression programs. These interactions occur within a dynamic cellular environment, where both DNA and TF proteins experience continual chemical and structural perturbations, including epigenetic modifications, DNA damage, mechanical stress, and post-translational modifications (PTMs). While many of these factors impact TF-DNA binding interactions, understanding their effects remains challenging and incomplete. This review explores the existing literature on these dynamic changes and their potential impact on TF-DNA interactions.
Collapse
Affiliation(s)
- Yumi Minyi Yao
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irina Miodownik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael P O'Hagan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Zebret S, Hadiji M, Romano-deGea J, Bornet A, Ortiz D, Fadaei-Tirani F, Stathopoulos C, Nowak-Sliwinska P, Munier FL, Dyson PJ. New melphalan derivatives for the treatment of retinoblastoma in combination with thermotherapy. RSC Med Chem 2024; 15:2300-2304. [PMID: 39026655 PMCID: PMC11253858 DOI: 10.1039/d4md00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Of the different modalities used to treat retinoblastoma, a chemothermotherapeutic regimen combining carboplatin and thermotherapy (also termed focal therapy), and the application of melphalan as a monotherapy, are particularly successful. Some studies indicate that melphalan shows potential when applied in combination with focal therapy, and yet is not applied in this combination. Here we describe a series of synthetically modified melphalan derivatives that display enhanced cytotoxicity relative to melphalan itself, with some displaying further enhancements in cytotoxicity when applied in combination with heat (used as a model for thermotherapy). The synthetic approach, which involves modifying melphalan with perfluorous chains of varying lengths via an ester linker, could lead to a more effective treatment option for retinoblastoma with reduced side-effects, which is a key limitation of melphalan.
Collapse
Affiliation(s)
- Soumaila Zebret
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Mouna Hadiji
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jan Romano-deGea
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Aurélien Bornet
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Daniel Ortiz
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei-Tirani
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Christina Stathopoulos
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne 1004 Lausanne Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva 1211 Geneva Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva 1211 Geneva Switzerland
| | - Francis L Munier
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne 1004 Lausanne Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
43
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Anticancer Activity of Metallodrugs and Metallizing Host Defense Peptides-Current Developments in Structure-Activity Relationship. Int J Mol Sci 2024; 25:7314. [PMID: 39000421 PMCID: PMC11242492 DOI: 10.3390/ijms25137314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
This article provides an overview of the development, structure and activity of various metal complexes with anti-cancer activity. Chemical researchers continue to work on the development and synthesis of new molecules that could act as anti-tumor drugs to achieve more favorable therapies. It is therefore important to have information about the various chemotherapeutic substances and their mode of action. This review focuses on metallodrugs that contain a metal as a key structural fragment, with cisplatin paving the way for their chemotherapeutic application. The text also looks at ruthenium complexes, including the therapeutic applications of phosphorescent ruthenium(II) complexes, emphasizing their dual role in therapy and diagnostics. In addition, the antitumor activities of titanium and gold derivatives, their side effects, and ongoing research to improve their efficacy and reduce adverse effects are discussed. Metallization of host defense peptides (HDPs) with various metal ions is also highlighted as a strategy that significantly enhances their anticancer activity by broadening their mechanisms of action.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
44
|
Liu Y, Sundah NR, Ho NRY, Shen WX, Xu Y, Natalia A, Yu Z, Seet JE, Chan CW, Loh TP, Lim BY, Shao H. Bidirectional linkage of DNA barcodes for the multiplexed mapping of higher-order protein interactions in cells. Nat Biomed Eng 2024; 8:909-923. [PMID: 38898172 DOI: 10.1038/s41551-024-01225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/05/2024] [Indexed: 06/21/2024]
Abstract
Capturing the full complexity of the diverse hierarchical interactions in the protein interactome is challenging. Here we report a DNA-barcoding method for the multiplexed mapping of pairwise and higher-order protein interactions and their dynamics within cells. The method leverages antibodies conjugated with barcoded DNA strands that can bidirectionally hybridize and covalently link to linearize closely spaced interactions within individual 3D protein complexes, encoding and decoding the protein constituents and the interactions among them. By mapping protein interactions in cancer cells and normal cells, we found that tumour cells exhibit a larger diversity and abundance of protein complexes with higher-order interactions. In biopsies of human breast-cancer tissue, the method accurately identified the cancer subtype and revealed that higher-order protein interactions are associated with cancer aggressiveness.
Collapse
Affiliation(s)
- Yu Liu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Noah R Sundah
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Nicholas R Y Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Wan Xiang Shen
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yun Xu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Zhonglang Yu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Ju Ee Seet
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Ching Wan Chan
- Department of Surgery, National University Hospital, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tze Ping Loh
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Brian Y Lim
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
- Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore.
| | - Huilin Shao
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
45
|
Li J, Zhang Q, Yang H, Lu W, Fu Y, Xiong Y, Wang X, Lu T, Xin Y, Xie Z, Chen W, Wang G, Guo Y, Qi R. Sequential dual-locking strategy using photoactivated Pt(IV)-based metallo-nano prodrug for enhanced chemotherapy and photodynamic efficacy by triggering ferroptosis and macrophage polarization. Acta Pharm Sin B 2024; 14:3251-3265. [PMID: 39027238 PMCID: PMC11252391 DOI: 10.1016/j.apsb.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 07/20/2024] Open
Abstract
Selective activation of Pt(IV) prodrugs within tumors has emerged as a promising strategy in tumor treatment. Although progress has been made with photo- and ultrasound-activated Pt(IV) prodrugs, concerns remain over the non-specific activation of photosensitizers (PS) and the potential for phototoxicity and chemical toxicity. In this study, a sequential dual-locked Pt(IV) nano-prodrug that can be activated by both the acidic tumor microenvironment and light was developed. The Pt(IV) prodrug was prepared by conjugating PS-locked Pt(IV) to a polymeric core, which was then chelated with metallo iron to lock its photoactivity and form a metallo-nano prodrug. Under acidic tumor microenvironment conditions, the metallo-nano prodrug undergoes dissociation of iron, triggering a reduction process in oxaliplatin under light irradiation, resulting in the activation of both chemotherapy and photodynamic therapy (PDT). Additionally, the prodrug could induce metallo-triggered ferroptosis and polarization of tumor-associated macrophages (TAM), thereby enhancing tumor inhibition. The dual-lock strategy employed in a nanoparticle delivery system represents an expansion in the application of platinum-based anticancer drugs, making it a promising new direction in cancer treatment.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiang Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenli Lu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yulong Fu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yingcai Xiong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuan Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianming Lu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanlin Xin
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zejuan Xie
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichao Chen
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Guo
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
46
|
Jacinto FE, de Oliveira LP, Batista AA, Oliveira KM, Correa RS. Ruthenium(II) complexes of curcumin and β-diketone derivatives: effect of structural modifications on their cytotoxicity. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240353. [PMID: 39086819 PMCID: PMC11289651 DOI: 10.1098/rsos.240353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024]
Abstract
Ruthenium(II) complexes (Ru1-Ru3) with the general formula [Ru(O-O)(PPh3)2(bipy)]PF6, bearing two triphenylphosphine (PPh3), bipyridine (bipy) and a series of natural and synthetic β-diketones (O,O) ligands were synthesized and characterized using various analytical techniques. The interaction between the complexes and calf thymus DNA (CT-DNA) was investigated and demonstrated a weak interaction. The cytotoxicity of the complexes was investigated against breast cancer cells (MDA-MB-231 and MCF-7), lung cancer cells (A549), cisplatin-resistant ovarian cancer cells (A2780cis), as well as non-tumour lung (MRC-5) and non-tumour breast (MCF-10A) cell lines. All complexes exhibited cytotoxic activity against all the cell lines studied, with half maximal inhibitory concentration (IC50) values ranging from 0.39 to 13 µM. Notably, the three complexes demonstrated selectivity against the A2780cis cell line, with IC50 ranging from 0.39 to 0.82 µM. Among them, Ru2 exhibited the highest cytotoxicity, with an IC50 value of 0.39 µM. Consequently, this new class of complexes shows good selectivity towards cisplatin-resistant ovarian cancer cells and it is promising for further investigation as anti-cancer agents.
Collapse
Affiliation(s)
- Flávia E. Jacinto
- Department of Chemistry, Institute of Biological and Exact Sciences, Campus Morro do Cruzeiro, Federal University of Ouro Preto (UFOP), Ouro Preto, MG35400-000, Brazil
| | - Letícia Pires de Oliveira
- Department of Chemistry, Federal University of São Carlos (UFSCar), CP 676, São Carlos, SP13561-901, Brazil
| | - Alzir A. Batista
- Department of Chemistry, Federal University of São Carlos (UFSCar), CP 676, São Carlos, SP13561-901, Brazil
| | - Katia M. Oliveira
- Department of Chemistry, Institute of Biological and Exact Sciences, Campus Morro do Cruzeiro, Federal University of Ouro Preto (UFOP), Ouro Preto, MG35400-000, Brazil
- Institute of Chemistry, University of Brasília (UnB) – Campus Darcy Ribeiro, Brasília, DF70910-900, Brazil
| | - Rodrigo S. Correa
- Department of Chemistry, Institute of Biological and Exact Sciences, Campus Morro do Cruzeiro, Federal University of Ouro Preto (UFOP), Ouro Preto, MG35400-000, Brazil
| |
Collapse
|
47
|
Zhou J, Huang Y, Wang W, Li J, Hou Y, Yi Z, Yang H, Hu K, Zhu Y, Wang Z, Ma S. Chronotoxici-Plate Containing Droplet-Engineered Rhythmic Liver Organoids for Drug Toxicity Evaluation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305925. [PMID: 38720476 PMCID: PMC11267367 DOI: 10.1002/advs.202305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Indexed: 07/25/2024]
Abstract
The circadian clock coordinates the daily rhythmicity of biological processes, and its dysregulation is associated with various human diseases. Despite the direct targeting of rhythmic genes by many prevalent and World Health Organization (WHO) essential drugs, traditional approaches can't satisfy the need of explore multi-timepoint drug administration strategies across a wide range of drugs. Here, droplet-engineered primary liver organoids (DPLOs) are generated with rhythmic characteristics in 4 days, and developed Chronotoxici-plate as an in vitro high-throughput automated rhythmic tool for chronotherapy assessment within 7 days. Cryptochrome 1 (Cry1) is identified as a rhythmic marker in DPLOs, providing insights for rapid assessment of organoid rhythmicity. Using oxaliplatin as a representative drug, time-dependent variations are demonstrated in toxicity on the Chronotoxici-plate, highlighting the importance of considering time-dependent effects. Additionally, the role of chronobiology is underscored in primary organoid modeling. This study may provide tools for both precision chronotherapy and chronotoxicity in drug development by optimizing administration timing.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Yi‐chun Huang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Wanlong Wang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Jiawei Li
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Yibo Hou
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Ziqi Yi
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Haowei Yang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Keer Hu
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Yu Zhu
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Zitian Wang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
- Key Lab of Industrial Biocatalysis Ministry of EducationTsinghua UniversityBeijing100084China
| |
Collapse
|
48
|
Chowdhury M, Biswas N, Saha S, Rahaman A, Gupta PS, Banerjee A, Mandal DP, Bhattacharjee S, Zangrando E, Sciortino G, Pisanu F, Garribba E, Roy Choudhury R, Roy Choudhury C. Interaction with CT-DNA and in vitro cytotoxicity of two new copper(II)-based potential drugs derived from octanoic hydrazide ligands. J Inorg Biochem 2024; 256:112546. [PMID: 38593611 DOI: 10.1016/j.jinorgbio.2024.112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Two copper(II) complexes [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(peoh)(N3)]2 (2) were designed and synthesized by reaction of Cu(NO3)2·3H2O with hydrazone Schiff base ligands,abbreviated with Hpmoh and Hpeoh. Hpmoh and Hpeoh were prepared by condensation reaction of octanoic hydrazide with pyridine-2-carboxyaldehyde and 2-acetylpyridine, respectively. Complexes 1 and 2 were characterized using different analytical techniques such as FT-IR, UV-Vis, IR, EPR and single X-ray diffraction (XRD) analyses as well as computational methods (DFT). The XRD of 1 and 2 shows a mononuclear or a dinuclear structure with the copper(II) centre adopting a slightly distorted square pyramidal geometry. In water-containing solution and in DMSO, 1 and 2 undergo a partial transformation with formation of [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(Hpmoh)(NO3)(H2O/DMSO)] (1a) in one system and [Cu(peoh)(N3)] (2a) in the other one, as supported by DFT calculations. Docking simulations confirmed that the intercalation is the preferred binding mode with DNA for 1, 1a and 2a, but suggested that the minor groove binding is also possible. A significant fluorescence quenching of the DNA-ethidium bromide conjugate was observed upon the addition of complexes 1 and 2 with a quenching constant around 104 M-1 s-1. Finally, both 1 and 2 were examined for anti-cancer activity using MDA-MB-231 (human breast adenocarcinoma) and A375 (malignant melanoma) cell lines through in vitro MTT assay which suggest comparable cancer cell killing efficacy, with the higher effectiveness of 2 due to the dissociation into two [Cu(peoh)(N3)] units.
Collapse
Affiliation(s)
- Manas Chowdhury
- Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126, India
| | - Niladri Biswas
- Department of Biotechnology, Institute of Genetic Engineering, No. 30, Thakurhat Road, Badu, Madhyamgram, Kolkata, West Bengal 700128, India
| | - Sandeepta Saha
- Sripur High School, Madhyamgram Bazar, Kolkata 700130, India
| | - Ashikur Rahaman
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Poulami Sen Gupta
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Ankur Banerjee
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Shamee Bhattacharjee
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, 07100 Sassari, Italy.
| | - Ruma Roy Choudhury
- Department of Chemistry and Environment, Heritage Institute of Technology, Chowbaga Road, Badu, Kolkata 700 107, India
| | | |
Collapse
|
49
|
Tian S, Nie Q, Chen H, Liang L, Hu H, Tang S, Yang J, Liu Y, Yin H. Synthesis, characterization and irradiation enhances anticancer activity of liposome-loaded iridium(III) complexes. J Inorg Biochem 2024; 256:112549. [PMID: 38579631 DOI: 10.1016/j.jinorgbio.2024.112549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Herein, we synthesized and characterized two novel iridium (III) complexes: [Ir(bzq)2(PPD)](PF6) (4a, with bzq = deprotonated benzo[h]quinoline and PPD = pteridino[6,7-f][1,10]phenanthroline-11,13-diamine) and [Ir(piq)2(PPD)](PF6) (4b, with piq = deprotonated 1-phenylisoquinoline). The anticancer efficacy of these complexes, 4a and 4b, was investigated using 3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide (MTT). Complex 4a exhibited no cytotoxic activity, while 4b demonstrated moderate efficacy against SGC-7901, A549, and HepG2 cancer cells. To enhance their anticancer potential, we explored two strategies: (I) light irradiation and (II) encapsulation of the complexes in liposomes, resulting in the formation of 4alip and 4blip. Both strategies significantly increased the ability of 4a, 4b to kill cancer cells. The cellular studies indicated that both the free complexes 4a, 4b and their liposomal forms 4alip and 4blip effectively inhibited cell proliferation. The cell cycle arrest analysis uncovered 4alip and 4blip arresting cell growth in the S period. Additionally, we investigated apoptosis and ferroptosis pathways, observing an increase in malondialdehyde (MDA) levels, a reduction of glutathione (GSH), a down-regulation of GPX4 (glutathione peroxidase) expression, and lipid peroxidation. The effects on mitochondrial membrane potential and intracellular Ca2+ concentrations were also examined, revealing that both light-activated and liposomal forms of 4alip and 4blip caused a decline in mitochondrial membrane potential and an enhancement in intracellular Ca2+ levels. In conclusion, these complexes and them encapsulated liposomes induce cell death through apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Shuang Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qianying Nie
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haomin Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuanghui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawan Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hui Yin
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
50
|
Markova L, Maji M, Kostrhunova H, Novohradsky V, Kasparkova J, Gibson D, Brabec V. Multiaction Pt(IV) Prodrugs Releasing Cisplatin and Dasatinib Are Potent Anticancer and Anti-Invasive Agents Displaying Synergism between the Two Drugs. J Med Chem 2024; 67:9745-9758. [PMID: 38819023 DOI: 10.1021/acs.jmedchem.4c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Herein, we describe the general design, synthesis, characterization, and biological activity of new multitargeting Pt(IV) prodrugs that combine antitumor cisplatin and dasatinib, a potent inhibitor of Src kinase. These prodrugs exhibit impressive antiproliferative and anti-invasive activities in tumor cell lines in both two-dimensional (2D) monolayers of cell cultures and three-dimensional (3D) spheroids. We show that the cisplatin moiety and dasatinib in the investigated Pt(IV) complexes are both involved in the mechanism of action in MCF7 breast cancer cells and act synergistically. Thus, combining dasatinib and cisplatin into one molecule, compared to using individual components in a mix, may bring several advantages, such as significantly higher activity in cancer cell lines and higher selectivity for tumor cells. Most importantly, Pt(IV)-dasatinib complexes hold significant promise for potential anticancer therapies by targeting epithelial-mesenchymal transition, thus preventing the spread and metastasis of tumors, a value unachievable by a simple combination of both individual components.
Collapse
Affiliation(s)
- Lenka Markova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
| | - Moumita Maji
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
| | - Vojtech Novohradsky
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
| | - Jana Kasparkova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|