1
|
Coggins SJ, Kimble B, Malik R, Thompson MF, Norris JM, Govendir M. Assessing in vitro stability of remdesivir (GS-5734) and conversion to GS-441524 in feline plasma and whole blood. Vet Q 2024; 44:1-9. [PMID: 38288972 PMCID: PMC10829815 DOI: 10.1080/01652176.2024.2305731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a potentially fatal coronavirus-driven disease of cats. Treatment with nucleoside analogue GS-441524 and or prodrug remdesivir (RDV) have produced remission in both experimentally induced and naturally occurring FIP, yet information regarding metabolism of RDV into GS-441524 in cats is scarce. This study assessed possible phase I metabolism of RDV in cats, utilising an in vitro feline microsome model with in vitro t1/2 and in vitro Clint calculated using the substrate depletion method. A previously validated high-performance liquid chromatography (HPLC) fluorescence method was utilised for detection and analysis of RDV and GS-441524. Qualitative yield of RDV and intermediate metabolite GS-441524 were determined following microsome incubation, then compared to whole blood and plasma incubations. In vitro microsome incubation resulted in rapid depletion of RDV, though it did not appear to resemble a conventional phase I-dependent reaction in cats, as it is in humans and dogs. Depletion of RDV into GS-441524 was demonstrated in whole blood in vitro, suggesting cats convert RDV to GS-441524, likely via blood esterases, as observed in mice and rats. RDV metabolism is unlikely to be impacted by impaired liver function in cats. Furthermore, as RDV depletes within minutes, whereas GS-441524 is very stable, whole blood or plasma GS-441524 concentrations, rather than plasma RDV concentrations, are more appropriate for therapeutic drug monitoring (TDM) in cats receiving RDV.
Collapse
Affiliation(s)
- Sally J. Coggins
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, Australia
- Centre for Veterinary Education, The University of Sydney, Camperdown, Australia
| | - Benjamin Kimble
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, Australia
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Camperdown, Australia
- Animal and Veterinary Science, Charles Sturt University, Wagga Wagga, Australia
| | - Mary F. Thompson
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, Australia
| | - Jacqueline M. Norris
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, Australia
| |
Collapse
|
2
|
D’Erasmo M, Sharma SK, Pribut N, Basson A, Dasari M, Bartsch P, Iskandar SE, Giesler KE, Burton S, Derdeyn CA, Liotta DC, Miller EJ. Building Metabolically Stable and Potent Anti-HIV Thioether-Lipid Analogues of Tenofovir Exalidex: A thorough Pharmacological Analysis. J Med Chem 2024; 67:18204-18220. [PMID: 39411803 PMCID: PMC11513920 DOI: 10.1021/acs.jmedchem.4c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Inherently limited by poor bioavailability, antiviral agent tenofovir (TFV) is administered to people living with HIV in prodrug form. However, current prodrugs are prematurely metabolized, compromising access to HIV-infected cells and inducing toxicity. Inspired by lipid conjugate TFV exalidex (TXL), we recently disclosed TXL analogs with potent activity and robust hepatic stability in vitro, as well as attractive oral PK profiles in vivo. In parallel, we discovered the equipotent and equally stable hexadecylthiopropyl (HTP) derivative of TXL (2a). Reported herein are the synthetic and bioanalytic efforts that led to potent, safe, and hepatically stable HTP derivatives. While HTP analog 16h showed the most attractive PK profile in mice (55% F) discrepancies in translating in vitro cell-based results to in vivo PK data, for certain prodrugs, indicated that further in vitro/in vivo optimization is required for continued advancement of this program.
Collapse
Affiliation(s)
- Michael
P. D’Erasmo
- Department
of Chemistry, Emory University College of
Arts & Sciences, Atlanta, Georgia 30322, United States
| | - Savita K. Sharma
- Department
of Chemistry, Emory University College of
Arts & Sciences, Atlanta, Georgia 30322, United States
| | - Nicole Pribut
- Department
of Chemistry, Emory University College of
Arts & Sciences, Atlanta, Georgia 30322, United States
| | - Adriaan Basson
- HIV
Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg 2000, Gauteng, South Africa
| | - Madhuri Dasari
- Department
of Chemistry, Emory University College of
Arts & Sciences, Atlanta, Georgia 30322, United States
| | - Perry Bartsch
- Department
of Chemistry, Emory University College of
Arts & Sciences, Atlanta, Georgia 30322, United States
| | - Sabrina E. Iskandar
- Department
of Chemistry, Emory University College of
Arts & Sciences, Atlanta, Georgia 30322, United States
| | - Kyle E. Giesler
- Department
of Chemistry, Emory University College of
Arts & Sciences, Atlanta, Georgia 30322, United States
| | - Samantha Burton
- Department
of Chemistry, Emory University College of
Arts & Sciences, Atlanta, Georgia 30322, United States
| | - Cindy A. Derdeyn
- Department
of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Dennis C. Liotta
- Department
of Chemistry, Emory University College of
Arts & Sciences, Atlanta, Georgia 30322, United States
| | - Eric J. Miller
- Department
of Pharmacology & Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Kumar S, Arora A, Chaudhary R, Kumar R, Len C, Mukherjee M, Singh BK, Parmar VS. Recent Advances in the Synthesis of Acyclic Nucleosides and Their Therapeutic Applications. Top Curr Chem (Cham) 2024; 382:34. [PMID: 39441318 DOI: 10.1007/s41061-024-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
DNA is commonly known as the "molecule of life" because it holds the genetic instructions for all living organisms on Earth. The utilization of modified nucleosides holds the potential to transform the management of a wide range of human illnesses. Modified nucleosides and their role directly led to the 2023 Nobel prize. Acyclic nucleosides, due to their distinctive physiochemical and biological characteristics, rank among the most adaptable modified nucleosides in the field of medicinal chemistry. Acyclic nucleosides are more resistant to chemical and biological deterioration, and their adaptable acyclic structure makes it possible for them to interact with various enzymes. A phosphonate group, which is linked via an aliphatic functionality to a purine or a pyrimidine base, distinguishes acyclic nucleoside phosphonates (ANPs) from other nucleotide analogs. Acyclic nucleosides and their derivatives have demonstrated various biological activities such as anti-viral, anti-bacterial, anti-cancer, anti-microbial, etc. Ganciclovir, Famciclovir, and Penciclovir are the acyclic nucleoside-based drugs approved by FDA for the treatment of various diseases. Thus, acyclic nucleosides are extremely useful for generating a variety of unique bioactive chemicals. Their biological activities as well as selectivity is significantly influenced by the stereochemistry of the acyclic nucleosides because chiral acyclic nucleosides have drawn a lot of interest due to their intriguing biological functions and potential as medicines. For example, tenofovir's (R) enantiomer is roughly 50 times more potent against HIV than its (S) counterpart. We can confidently state, "The most promising developments are yet to come in the realm of acyclic nucleosides!" Herein, we have covered the most current developments in the field of chemical synthesis and therapeutic applications of acyclic nucleosides based upon our continued interest and activity in this field since mid-1990's.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India
- Department of Chemistry and Environmental Science, Medgar Evers College, 1638 Bedford Avenue, Brooklyn, NY, 11225, USA
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | - Riya Chaudhary
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | - Rajesh Kumar
- P.G. Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur, 842002, India
| | - Christophe Len
- Chimie ParisTech, PSL Research University, CNRS, UMR8060, Institute of Chemistry for Life and Health Sciences, 11 rue Pierre et Marie Curie, 75005, Paris, France.
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry and Research Studies, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Virinder S Parmar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India.
- Department of Chemistry and Environmental Science, Medgar Evers College, 1638 Bedford Avenue, Brooklyn, NY, 11225, USA.
- Amity Institute of Click Chemistry and Research Studies, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India.
- Nanoscience Program, CUNY Graduate Center and Departments of Chemistry, Medgar Evers College and City College, 160 Convent Avenue, New York, NY, 10031, USA.
| |
Collapse
|
4
|
Kim NY, Vishwanath D, Basappa S, Harish KK, Madegowda M, Rangappa KS, Basappa B, Ahn KS. Isoxazole based nucleosides induce autophagy through the production of ROS and the suppression of the β-catenin pathway in human colorectal carcinoma cells. Chem Biol Interact 2024; 404:111285. [PMID: 39442680 DOI: 10.1016/j.cbi.2024.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
β-catenin is frequently implicated in signaling pathways that regulate autophagy, and the production of reactive oxygen species (ROS) has been linked to autophagy activation. Isoxazole-based nucleoside compounds have demonstrated anti-cancer properties. In this study, we report the identification of novel isoxazole-nucleosides as anti-tumor agents and their impact on autophagy in human colorectal carcinoma (CRC) cells. Among the ITP series, ITP-7 and ITP-9 (ITP-7/9) exhibited significant cytotoxicity compared to other compounds. Treatment with ITP-7/9 upregulated the expression of key autophagy-related proteins, including LC3 II, Atg7, and phosphorylated Beclin-1. Additionally, ITP-7/9 promoted the formation of LC3 II puncta and increased the number of AO-stained and MDC-stained cells, indicating enhanced autophagy. ROS levels were elevated following ITP-7/9 exposure, and treatment with N-acetyl l-cysteine (NAC), a ROS inhibitor, reduced the ITP-7/9-induced expression of LC3 II. Furthermore, ITP-7/9 inhibited β-catenin's role as a transcription factor, as observed in ICC assays. Moreover, cells with β-catenin gene deletion exhibited stronger autophagy when treated with ITP-7/9 compared to those treated with ITP-7/9 alone. These findings suggest that ITP-7/9 induces autophagy and promotes CRC cell death by downregulating β-catenin.
Collapse
Affiliation(s)
- Na Young Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Divakar Vishwanath
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru, 570006, India
| | - Shreeja Basappa
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, 500078, India
| | - Keshav Kumar Harish
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Mahendra Madegowda
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Kanchugarakoppal S Rangappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru, 570006, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru, 570006, India.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
5
|
Hayat K, Nixon G, Zhang Q, Matziari M. Symmetrical Phosphinic Acids: Synthesis and Esterification Optimization toward Potential HIV Prodrugs. ACS OMEGA 2024; 9:41742-41757. [PMID: 39398174 PMCID: PMC11465283 DOI: 10.1021/acsomega.4c05988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
A highly efficient method to synthesize diverse symmetrical phosphinic acids with the potential to act as pivotal candidates in the design of HIV-1 protease inhibitors has been developed. Such compounds have been designed based on the enzyme-substrate specificity, and their elongated analogues are expected to demonstrate significant inhibition against the HIV-1 protease with IC50 values in the low nanomolar range. Moreover, a highly efficient esterification protocol with carbohydrates and flavonoids has been devised to address the inherent absorption challenges associated with phosphinic-based drugs. These esters not only exhibit low toxicity but also have the potential to generate flavonoid moieties in situ, which are associated with hepatoprotective effects, or naturally occurring carbohydrate metabolites. The methodology utilizes effective peptide coupling reagents, such as aminium-based TBTU and carbodiimide-based DIC, and affords the target products in excellent to quantitative yields. This research represents a promising avenue for the development of novel HIV-1 protease inhibitors with significant therapeutic benefits.
Collapse
Affiliation(s)
- Komal Hayat
- Department
of Chemistry, School of Science, Xi’an
Jiaotong-Liverpool University, 111 Ren’ai Road, SIP, Suzhou, Jiangsu Province 215123, P. R. China
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Gemma Nixon
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Qian Zhang
- Department
of Chemistry, School of Science, Xi’an
Jiaotong-Liverpool University, 111 Ren’ai Road, SIP, Suzhou, Jiangsu Province 215123, P. R. China
| | - Magdalini Matziari
- Department
of Chemistry, School of Science, Xi’an
Jiaotong-Liverpool University, 111 Ren’ai Road, SIP, Suzhou, Jiangsu Province 215123, P. R. China
| |
Collapse
|
6
|
Guan Q, Gao Z, Chen Y, Guo C, Chen Y, Sun H. Structural modification strategies of triazoles in anticancer drug development. Eur J Med Chem 2024; 275:116578. [PMID: 38889607 DOI: 10.1016/j.ejmech.2024.116578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The triazole functional group plays a pivotal role in the composition of biomolecules with potent anticancer activities, including numerous clinically approved drugs. The strategic utilization of the triazole fragment in the rational modification of lead compounds has demonstrated its ability to improve anticancer activities, enhance selectivity, optimize pharmacokinetic properties, and overcome resistance. There has been significant interest in triazole-containing hybrids in recent years due to their remarkable anticancer potential. However, previous reviews on triazoles in cancer treatment have failed to provide tailored design strategies specific to these compounds. Herein, we present an overview of design strategies encompassing a structure-modification approach for incorporating triazoles into hybrid molecules. This review offers valuable references and briefly introduces the synthesis of triazole derivatives, thereby paving the way for further research and advancements in the field of effective and targeted anticancer therapies.
Collapse
Affiliation(s)
- Qianwen Guan
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ziming Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yuting Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
7
|
Zhang Y, Fan C, Zhang J, Tian X, Zuo W, He K. Lipid-conjugated nucleoside monophosphate and monophosphonate prodrugs: A versatile drug delivery paradigm. Eur J Med Chem 2024; 275:116614. [PMID: 38925014 DOI: 10.1016/j.ejmech.2024.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Integrating lipid conjugation strategies into the design of nucleoside monophosphate and monophosphonate prodrugs is a well-established approach for discovering potential therapeutics. The unique prodrug design endows nucleoside analogues with strong lipophilicity and structures resembling lysoglycerophospholipids, which improve cellular uptake, oral bioavailability and pharmacological activity. In addition, the metabolic stability, pharmacological activity, pharmacokinetic profiles and biodistribution of lipid prodrugs can be finely optimized by adding biostable caps, incorporating transporter-targeted groups, inserting stimulus-responsive bonds, adjusting chain lengths, and applying proper isosteric replacements. This review summarizes recent advances in the structural features and application fields of lipid-conjugated nucleoside monophosphate and monophosphonate prodrugs. This collection provides deep insights into the increasing repertoire of lipid prodrug development strategies and offers design inspirations for medicinal chemists for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Yanhua Zhang
- College of Science, Xichang University, Sichuan, 615000, China.
| | - Conghua Fan
- Xichang People's Hospital, Xichang, Sichuan, 615000, China
| | - Junjie Zhang
- College of Science, Xichang University, Sichuan, 615000, China
| | - Xin Tian
- College of Science, Xichang University, Sichuan, 615000, China
| | - Wen Zuo
- Xichang People's Hospital, Xichang, Sichuan, 615000, China
| | - Kehan He
- College of Science, Xichang University, Sichuan, 615000, China
| |
Collapse
|
8
|
Abdallah A, Gillon E, Rannou P, Imberty A, Halila S. Microwave-Assisted Synthesis of β- N-Aryl Glycoamphiphiles with Diverse Supramolecular Assemblies and Lectin Accessibility. Bioconjug Chem 2024; 35:1200-1206. [PMID: 38982902 DOI: 10.1021/acs.bioconjchem.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Glycoamphiphiles have attracted considerable interest in a broad range of application fields owing to their solution and bulk-state self-assembly abilities. Despite their importance, the straightforward synthesis of glycoamphiphiles consisting of a hydrophilic carbohydrate linked to a hydrophobic aglycone remains one of the major challenges in glycosciences. Here, a rapid, simple, and efficient synthetic access to chemically stable glycoamphiphiles at physiological pH, namely, N-(β-d-glycosyl)-2-alkylbenzamide, is reported. It leverages the nonreductive amination of unprotected carbohydrates with ortho-substituted aniline derivatives which could be readily obtained by reacting commercially available primary alkylamines with isatoic anhydride. This strategy avoids protection and deprotection of sugar hydroxyl groups and the use of reductive agents, which makes it advantageous in terms of atom and step economy. Moreover, in order to circumvent the cons of classical N-aryl glycosylation, we investigate the use of microwave as a heat source that provides fast, clean, and high-yield β-N-arylation of unprotected carbohydrates. Their self-assembly into water led to multiple morphologies of dynamic supramolecular glycoamphiphiles that were characterized to assess their ability to bind to lectins from pathogenic bacteria. Biophysical interactions probed by isothermal titration microcalorimetry revealed micromolar affinities for most of the synthesized glycoamphiphiles.
Collapse
Affiliation(s)
| | | | - Patrice Rannou
- Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, Grenoble INP, LEPMI, Grenoble 38000, France
| | - Anne Imberty
- University Grenoble Alpes, Grenoble 38000, France
| | - Sami Halila
- University Grenoble Alpes, Grenoble 38000, France
| |
Collapse
|
9
|
Cimafonte M, Esposito A, De Fenza M, Zaccaria F, D’Alonzo D, Guaragna A. Synthesis of Natural and Sugar-Modified Nucleosides Using the Iodine/Triethylsilane System as N-Glycosidation Promoter. Int J Mol Sci 2024; 25:9030. [PMID: 39201716 PMCID: PMC11354600 DOI: 10.3390/ijms25169030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
The reagent system based on the combined use of Et3SiH/I2 acts as an efficient N-glycosidation promoter for the synthesis of natural and sugar-modified nucleosides. An analysis of reaction stereoselectivity in the absence of C2-positioned stereodirecting groups revealed high selectivity with six-membered substrates, depending on the nucleophilic character of the nucleobase or based on anomerization reactions. The synthetic utility of the Et3SiH/I2-mediated N-glycosidation reaction was highlighted by its use in the synthesis of the investigational drug apricitabine.
Collapse
Affiliation(s)
- Martina Cimafonte
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Anna Esposito
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, I-80125 Naples, Italy;
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Francesco Zaccaria
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| |
Collapse
|
10
|
Xiong Y, Dai Y. Palladium-Catalyzed Regio- and Stereoselective Glycosylation of Azole Heterocycles Enables Access to Diverse Heterocyclic N-Glycosides. Org Lett 2024; 26:6878-6883. [PMID: 39106448 DOI: 10.1021/acs.orglett.4c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
An efficient and practical glycosylation platform for synthesizing N-glycosides by leveraging palladium catalysis is disclosed. This approach enables facile access to diverse heterocyclic N-glycosides with excellent regio- and stereoselectivities and high site selectivity of multiple N atoms. The reaction exhibits a broad substrate scope (65 examples), high functional group tolerance, and easy scalability. Its synthetic utility is demonstrated through late-stage functionalization of pharmaceutically relevant molecules and various diastereoselective transformations of the glycoside products. Overall, our method provides a handy tool for efficient and stereocontrolled synthesis of valuable N-glycosylated heterocycles.
Collapse
Affiliation(s)
- Yimeng Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yuanwei Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
11
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
12
|
Westarp S, Benckendorff CMM, Motter J, Röhrs V, Sanghvi YS, Neubauer P, Kurreck J, Kurreck A, Miller GJ. Biocatalytic Nucleobase Diversification of 4'-Thionucleosides and Application of Derived 5-Ethynyl-4'-thiouridine for RNA Synthesis Detection. Angew Chem Int Ed Engl 2024; 63:e202405040. [PMID: 38785103 DOI: 10.1002/anie.202405040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Nucleoside and nucleotide analogues have proven to be transformative in the treatment of viral infections and cancer. One branch of structural modification to deliver new nucleoside analogue classes explores replacement of canonical ribose oxygen with a sulfur atom. Whilst biological activity of such analogues has been shown in some cases, widespread exploration of this compound class is hitherto hampered by the lack of a straightforward and universal nucleobase diversification strategy. Herein, we present a synergistic platform enabling both biocatalytic nucleobase diversification from 4'-thiouridine in a one-pot process, and chemical functionalization to access new entities. This methodology delivers entry across pyrimidine and purine 4'-thionucleosides, paving a way for wider synthetic and biological exploration. We exemplify our approach by enzymatic synthesis of 5-iodo-4'-thiouridine on multi-milligram scale and from here switch to complete chemical synthesis of a novel nucleoside analogue probe, 5-ethynyl-4'-thiouridine. Finally, we demonstrate the utility of this probe to monitor RNA synthesis in proliferating HeLa cells, validating its capability as a new metabolic RNA labelling tool.
Collapse
Affiliation(s)
- Sarah Westarp
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76 ACK24, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstrasse 76, D-13355, Berlin, Germany
| | - Caecilie M M Benckendorff
- Centre for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Jonas Motter
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76 ACK24, D-13355, Berlin, Germany
| | - Viola Röhrs
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, TIB 4/3-2, D-13355, Berlin, Germany
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California, 92024, USA
| | - Peter Neubauer
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76 ACK24, D-13355, Berlin, Germany
| | - Jens Kurreck
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, TIB 4/3-2, D-13355, Berlin, Germany
| | - Anke Kurreck
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76 ACK24, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstrasse 76, D-13355, Berlin, Germany
| | - Gavin J Miller
- Centre for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
13
|
Kennelly S, Sawyer JM, Payne AF, Ciota AT, Harki DA. Development of 3'-Deoxy-3',4'-didehydro-nucleoside Prodrug Inhibitors of West Nile and Zika Viruses. ACS Med Chem Lett 2024; 15:1334-1339. [PMID: 39140046 PMCID: PMC11318099 DOI: 10.1021/acsmedchemlett.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
The antiviral enzyme viperin catalyzes the formation of 3'-deoxy-3',4'-didehydro-cytidine-5'-triphosphate (ddhCTP). ddhCTP is incorporated into viral genomes and terminates genomic replication to confer broad-spectrum antiviral effects. We have previously utilized phosphoramidate pronucleotide (ProTide) technology to enable metabolic production of ddhCTP in cells from an exogenously dosed 3'-deoxy-3',4'-didehydro-cytidine ProTide, which confers inhibitory activity against West Nile virus (WNV) and Zika virus (ZIKV). Herein, we synthesized 3'-deoxy-3',4'-didehydro-nucleosides containing all native nucleobases (thymine, uracil, adenine, guanine, and hypoxanthine), elaborated each to a ProTide, and measured their activity for controlling WNV and ZIKV infection. In comparison to the ddhC ProTide, we found that the ProTides of 3'-deoxy-3',4'-didehydro-guanosine and 3'-deoxy-3',4'-didehydro-adenosine possess 2- and 4-fold greater antiviral effects against ZIKV, respectively. Collectively, this work advances the development of 3'-deoxy-3',4'-didehydro nucleosides as promising compounds for further development into broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Samantha
A. Kennelly
- Department
of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Jacob M. Sawyer
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Anne F. Payne
- Department
of Biomedical Sciences, State University
of New York at Albany School of Public Health, Albany, New York 12144, United States
- The
Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12201, United States
| | - Alexander T. Ciota
- Department
of Biomedical Sciences, State University
of New York at Albany School of Public Health, Albany, New York 12144, United States
- The
Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12201, United States
| | - Daniel A. Harki
- Department
of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Li Y, Zhou Y, Zhou D, Jiang Y, Butt M, Yang H, Que Y, Li Z, Chen G. Regioselective Homolytic C 2-H Borylation of Unprotected Adenosine and Adenine Derivatives via Minisci Reaction. J Am Chem Soc 2024; 146:21428-21441. [PMID: 39051926 DOI: 10.1021/jacs.4c03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A Minisci-type borylation of unprotected adenosine, adenine nucleotide, and adenosine analogues was successfully achieved through photocatalysis or thermal activation. Despite the challenges posed by the presence of two potential reactive sites (C2 and C8) in the purine motif, the unique nucleophilic amine-ligated boryl radicals effortlessly achieved excellent C2 site selectivity and simultaneously avoided the formation of multifunctionalized products. This protocol proved effective for the late-stage borylation of some important biomolecules as well as a few antiviral and antitumor drug molecules, such as AMP, cAMP, Vidarabine, Cordycepin, Tenofovir, Adefovir, GS-441524, etc. Theoretical calculations shed light on the site selectivity, revealing that the free energy barriers for the C2-Minisci addition are further lowered through the chelation of additive Mg2+ to N3 and furyl oxygen. This phenomenon has been confirmed by an IGMH analysis. Preliminary antitumor evaluation, derivation of the C2-borylated adenosine to other analogues with high-value functionalities, along with the CuAAC click reactions, suggest the potential application of this methodology in drug molecular optimization studies and chemical biology.
Collapse
Affiliation(s)
- Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| | - Dazhi Zhou
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Yujie Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Madiha Butt
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hui Yang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Yingchuan Que
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiming Li
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| |
Collapse
|
15
|
Yoshida Y, Niimi Y, Fushihara D, Katakura H, Fukui R, Murase H, Tomoike F, Hashiya F, Murakami T, Kodama EN, Suzuki T, Yasukawa K, Kimura Y, Abe H. 2'-β-Methylselenyl nucleos(t)ide analogs as reverse transcriptase inhibitors against diverse HIV mutants. Bioorg Med Chem 2024; 110:117813. [PMID: 38954919 DOI: 10.1016/j.bmc.2024.117813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) have been extensively studied as drugs targeting HIV RT. However, the practice or use of approved NRTIs lacking the 3'-hydroxy group often promotes frequent HIV mutations and generates drug-resistance. Here, we describe a novel NRTI with 2'-β-methylselenyl modification. We found that this modification inhibited the DNA elongation reaction by HIV-1 RT despite having a 3'-hydroxy group. Moreover, the conformation of this nucleoside analog is controlled at C3'-endo, a conformation that resists excision from the elongating DNA by HIV RT. Accordingly, the designed analogs exhibited activity against both wild-type HIV and multidrug-resistant HIV mutants.
Collapse
Affiliation(s)
- Yuki Yoshida
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yushi Niimi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Daichi Fushihara
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hideo Katakura
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Ryusuke Fukui
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hirotaka Murase
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Fumiaki Tomoike
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Eiichi N Kodama
- International Research Institute of Disaster Science, Graduate School of Medicine, and Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yasuaki Kimura
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Hiroshi Abe
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; CREST, Japan Science and Technology Agency 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
16
|
Pérez E, Acosta J, Pisabarro V, Cordani M, dos Santos JCS, Sanz-Landaluze J, Gallo J, Bañobre-López M, Fernández-Lucas J. Novel Directed Enzyme Prodrug Therapy for Cancer Treatment Based on 2'-Deoxyribosyltransferase-Conjugated Magnetic Nanoparticles. Biomolecules 2024; 14:894. [PMID: 39199282 PMCID: PMC11352528 DOI: 10.3390/biom14080894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Directed enzyme prodrug therapy (DEPT) strategies show promise in mitigating chemotherapy side effects during cancer treatment. Among these, the use of immobilized enzymes on solid matrices as prodrug activating agents (IDEPT) presents a compelling delivery strategy, offering enhanced tumor targeting and reduced toxicity. Herein, we report a novel IDEPT strategy by employing a His-tagged Leishmania mexicana type I 2'-deoxyribosyltransferase (His-LmPDT) covalently attached to glutaraldehyde-activated magnetic iron oxide nanoparticles (MIONPs). Among the resulting derivatives, PDT-MIONP3 displayed the most favorable catalyst load/retained activity ratio, prompting its selection for further investigation. Substrate specificity studies demonstrated that PDT-MIONP3 effectively hydrolyzed a diverse array of 6-oxo and/or 6-amino purine 2'-deoxynucleosides, including 2-fluoro-2'-deoxyadenosine (dFAdo) and 6-methylpurine-2'-deoxyribose (d6MetPRib), both well-known prodrugs commonly used in DEPT. The biophysical characterization of both MIONPs and PDT-MIONPs was conducted by TEM, DLS, and single particle ICPMS techniques, showing an ideal nanosized range and a zeta potential value of -47.9 mV and -78.2 mV for MIONPs and PDT-MIONPs, respectively. The intracellular uptake of MIONPs and PDT-MIONPs was also determined by TEM and single particle ICPMS on HeLa cancer cell lines and NIH3T3 normal cell lines, showing a higher intracellular uptake in tumor cells. Finally, the selectivity of the PDT-MIONP/dFAdo IDEPT system was tested on HeLa cells (24 h, 10 µM dFAdo), resulting in a significant reduction in tumoral cell survival (11% of viability). Based on the experimental results, PDT-MIONP/dFAdo presents a novel and alternative IDEPT strategy, providing a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Elena Pérez
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Victor Pisabarro
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Marco Cordani
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain;
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790970, CE, Brazil;
| | - Jon Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemical Science, Universidad Complutense de Madrid, Avenida Complutense S/N, 28040 Madrid, Spain;
| | - Juan Gallo
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (J.G.); (M.B.-L.)
| | - Manuel Bañobre-López
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (J.G.); (M.B.-L.)
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain;
- Grupo de Investigación en Ciencias Naturales y Exactas—GICNEX, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Colombia
| |
Collapse
|
17
|
Porter J, Noble AR, Signoret N, Fascione MA, Miller GJ. Exploring a Gemcitabine-Glucose Hybrid as a Glycoconjugate Prodrug. ACS OMEGA 2024; 9:31703-31713. [PMID: 39072123 PMCID: PMC11270703 DOI: 10.1021/acsomega.4c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Nucleoside analogues are established treatments for cancer and viral infection. Gemcitabine is a commonly employed nucleoside analogue displaying anticancer properties against a range of tumor types but is rapidly inactivated in vivo. Efforts to bolster its pharmaceutical profile include investigating prodrug forms. Herein, we explore the synthesis of a novel glucose-gemcitabine glycoconjugate, targeting uptake via glucose transport. We select a redox-reactive disulfide linker for conjugation of gemcitabine (through N4-cytosine) with glucose. Evaluation of this glycoconjugate reveals increased toxicity against androgen insensitive PC3 prostate cancer cells compared to LNCaP (which have lower levels of glucose transporter GLUT1). These preliminary results suggest that glycoconjugation of nucleosides may be an effective approach to targeting cells which display increased uptake and metabolism of glucose.
Collapse
Affiliation(s)
- Jack Porter
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Amanda R. Noble
- Hull
York Medical School, University of York, Heslington, York YO10
5DD, U.K.
| | - Nathalie Signoret
- Hull
York Medical School, University of York, Heslington, York YO10
5DD, U.K.
| | - Martin A. Fascione
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
18
|
Hao EJ, Zhao Y, Yu M, Li XJ, Wang KX, Su FY, Liang YR, Wang Y, Guo HM. Discovery, Synthesis, and Activity Evaluation of Novel Five-Membered Sulfur-Containing Heterocyclic Nucleosides as Potential Anticancer Agents In Vitro and In Vivo. J Med Chem 2024. [PMID: 39016216 DOI: 10.1021/acs.jmedchem.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
A series of novel five-membered sulfur-containing heterocyclic nucleoside derivatives were designed, synthesized, and evaluated for their anticancer activities in vitro and in vivo. The structure-activity relationship studies revealed that some of them showed obvious antitumor activities in several cancer cell lines. Among them, compound 22o exhibited remarkable antiproliferative activity against HeLa cells and was more potent than cisplatin (IC50 = 2.80 vs 7.99 μM). Furthermore, mechanism studies indicated that 22o inhibited cell metastasis, induced cell apoptosis, decreased mitochondrial membrane potential, and activated autophagy through the PI3K-Akt-mTOR signaling pathway. Moreover, drug affinity responsive target stability and the cellular thermal shift assay revealed that 22o targeted RPS6 and inhibited its phosphorylation. Importantly, 22o inhibited the growth of the HeLa xenograft mouse model with a low systemic toxicity. These results indicated that 22o may serve as potent anticancer agents that merit further attention in future anticancer drug discovery.
Collapse
Affiliation(s)
- Er-Jun Hao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yan Zhao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Min Yu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xian-Jia Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ke-Xin Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Fu-Ying Su
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yu-Ru Liang
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
19
|
Sheng N, Li R, Li Y, Wang Z, Wang L, Li Y, Zhang J, Jiang J. Selectively T cell phosphorylation activation of azvudine in the thymus tissue with immune protection effect. Acta Pharm Sin B 2024; 14:3140-3154. [PMID: 39027259 PMCID: PMC11252455 DOI: 10.1016/j.apsb.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 07/20/2024] Open
Abstract
Thymus is the important immune organ, responsible for T cell development and differentiation. The lower circulating T counts have been observed in patients who died from COVID-19 compared with survivors. Azvudine, also known as FNC, is a thymus-homing anti-SARS-CoV-2 drug in treating COVID-19 patients. In this study, single-cell transcriptome, proteomics, and parallel reaction monitoring (PRM) were applied to insight into the activation process of FNC in rat and SARS-CoV-2 rhesus monkey thymus. The results indicated that thymic immune cells possess a robust metabolic capacity for cytidine-analogue drugs such as FNC. Key enzymes involved in the FNC phosphorylation process, such as Dck, Cmpk1, and Nme2, were highly expressed in CD4+ T cells, CD8+ T cells, and DP (CD4+ CD8+) cells. Additionally, FNC could upregulate multiple phosphorylated kinases in various cell types while downregulating the phosphatases, phosphoribosyl transferases, and deaminases, respectively. The robust phosphorylation capacity of the thymus for cytidine analogue drug FNC, and the activation effect of FNC on the NAs metabolism system potentially contribute to its enrichment in the thymus and immune protection effect. This suggests that it is crucial to consider the expression level of phosphorylation kinases when evaluating NA drug properties, as an important factor during antiviral drug design.
Collapse
Affiliation(s)
- Ning Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
20
|
Liu DY, Wang PF, Ruan YJ, Wang XL, Hu XY, Yang Q, Liu J, Wen MM, Zhang CZ, Xiao YH, Liu XG. Assembly of Heterocyclic C-Glycosides by Ru-Catalyzed C-H Activation/Cyclization with Carbonyl Sulfoxonium Ylide Glyco-Reagents. Org Lett 2024; 26:5092-5097. [PMID: 38848493 DOI: 10.1021/acs.orglett.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
New carbonyl sulfoxonium ylide glyco-reagents have been developed, enabling the synthesis of versatile heteroarene C-glycosides through a Ru-catalyzed C-H activation/annulation strategy. These reactions tolerate various saccharide donors and represent a significant advance in the stereoselective synthesis of heterocyclic C-glycosides. Furthermore, the strategy and methods could be applied to large-scale reactions and late-stage modifications of some structurally complex natural products or drugs.
Collapse
Affiliation(s)
- Deng-Yin Liu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Peng-Fei Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Yu-Jun Ruan
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xiao-Li Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Yue Hu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Qian Yang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Jing Liu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Miao-Miao Wen
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Cong-Zhen Zhang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Yu-He Xiao
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xu-Ge Liu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
21
|
Motter J, Benckendorff CMM, Westarp S, Sunde-Brown P, Neubauer P, Kurreck A, Miller GJ. Purine nucleoside antibiotics: recent synthetic advances harnessing chemistry and biology. Nat Prod Rep 2024; 41:873-884. [PMID: 38197414 PMCID: PMC11188666 DOI: 10.1039/d3np00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 01/11/2024]
Abstract
Covering: 2019 to 2023Nucleoside analogues represent one of the most important classes of small molecule pharmaceuticals and their therapeutic development is successfully established within oncology and for the treatment of viral infections. However, there are currently no nucleoside analogues in clinical use for the management of bacterial infections. Despite this, a significant number of clinically recognised nucleoside analogues are known to possess some antibiotic activity, thereby establishing a potential source for new therapeutic discovery in this area. Furthermore, given the rise in antibiotic resistance, the discovery of new clinical candidates remains an urgent global priority and natural product-derived nucleoside analogues may also present a rich source of discovery space for new modalities. This Highlight, covering work published from 2019 to 2023, presents a current perspective surrounding the synthesis of natural purine nucleoside antibiotics. By amalgamating recent efforts from synthetic chemistry with advances in biosynthetic understanding and the use of recombinant enzymes, prospects towards different structural classes of purines are detailed.
Collapse
Affiliation(s)
- Jonas Motter
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
| | - Caecilie M M Benckendorff
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Sarah Westarp
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany.
| | - Peter Sunde-Brown
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany.
| | - Gavin J Miller
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
22
|
Ni J, Zhuang J, Shi Y, Chiang YC, Cheng GJ. Discovery and substrate specificity engineering of nucleotide halogenases. Nat Commun 2024; 15:5254. [PMID: 38898020 PMCID: PMC11186838 DOI: 10.1038/s41467-024-49147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
C2'-halogenation has been recognized as an essential modification to enhance the drug-like properties of nucleotide analogs. The direct C2'-halogenation of the nucleotide 2'-deoxyadenosine-5'-monophosphate (dAMP) has recently been achieved using the Fe(II)/α-ketoglutarate-dependent nucleotide halogenase AdaV. However, the limited substrate scope of this enzyme hampers its broader applications. In this study, we report two halogenases capable of halogenating 2'-deoxyguanosine monophosphate (dGMP), thereby expanding the family of nucleotide halogenases. Computational studies reveal that nucleotide specificity is regulated by the binding pose of the phosphate group. Based on these findings, we successfully engineered the substrate specificity of these halogenases by mutating second-sphere residues. This work expands the toolbox of nucleotide halogenases and provides insights into the regulation mechanism of nucleotide specificity.
Collapse
Affiliation(s)
- Jie Ni
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Jingyuan Zhuang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Yiming Shi
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
23
|
Arora A, Kumar S, Kumar S, Dua A, Singh BK. Synthesis, characterization and photophysical studies of dual-emissive base-modified fluorescent nucleosides. Org Biomol Chem 2024; 22:4922-4939. [PMID: 38808609 DOI: 10.1039/d4ob00749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A straightforward and efficient methodology has been employed for the synthesis of a diverse set of base-modified fluorescent nucleoside conjugates via Cu(I)-catalysed cycloaddition reaction of 5-ethynyl-2',3',5'-tri-O-acetyluridine/3',5'-di-O-acetyl-2'-deoxyuridine with 4-(azidomethyl)-N9-(4'-aryl)-9,10-dihydro-2H,8H-chromeno[8,7-e][1,3]oxazin-2-ones in tBuOH to afford the desired 1,2,3-triazoles in 92-95% yields. Treatment with NaOMe/MeOH resulted in the final deprotected nucleoside analogues. The synthesized 1,2,3-triazoles demonstrated a significant emission spectrum, featuring two robust bands in the region from 350-500 nm (with excitation at 300 nm) in fluorescence studies. Photophysical investigations revealed a dual-emissive band with high fluorescence intensity, excellent Stokes shift (140-164 nm) and superior quantum yields (0.068-0.350). Furthermore, the electronic structures of the synthesized triazoles have been further verified by DFT studies. Structural characterization of all synthesized compounds was carried out using various analytical techniques, including IR, 1H-NMR, 13C-NMR, 1H-1H COSY, 1H-13C HETCOR experiments, and HRMS measurements. The dual-emissive nature of these nucleosides would be a significant contribution to nucleoside chemistry as there are limited literature reports on the same.
Collapse
Affiliation(s)
- Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sandeep Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
- Department of Chemistry, Ramjas College, University of Delhi, Delhi-110007, India
| | - Amita Dua
- Department of Chemistry, Dyal Singh College, University of Delhi, Delhi-110007, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
24
|
Dong J, Huang A, Wu T, Chen Y, Bie Z. Structure-Assisted Boronic Acid Implanted Mesoporous Metal-Organic Frameworks for Specific Extraction of cis-Diol Molecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29834-29843. [PMID: 38831710 DOI: 10.1021/acsami.4c03964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
cis-Diol-containing molecules, an essential type of compounds in living organisms, have attracted intensive research interest from various fields. The analysis of cis-diol-containing molecules is still suffering from some drawbacks, including low abundance and abundant interference. Metal-organic frameworks (MOFs) have proven to be an ideal sorbent for sample preparation. However, most of the reported MOFs are mainly restricted to a microporous regime (pore size <2 nm), which greatly limits the application. Herein, a facile strategy is established to construction of boronate affinity MOFs via the postsynthetic ligand-exchange process. Owing to the fact that the ligand-exchange process was assisted by the structural integrity of the primitive metal-organic framework and the great compatibility of click chemistry, the obtained EPBA-PCN-333(Fe) is able to realize the maximum maintaining the porosity and crystallinity of the parent material. Several intriguing features of EPBA-PCN-333(Fe) (e.g., excellent selectivity, efficient diffusion, good accessibility, and size exclusion effect) are experimentally demonstrated via a series of cis-diol-containing molecules with different molecular sizes (small molecules, glycopeptides, and glycoproteins). The binding performance of EPBA-PCN-333(Fe) is evaluated by employing catechol as the test molecule (binding capacity: 0.25 mmol/g, LOD: 200 ng/mL). Finally, the real-world applications of EPBA-PCN-333(Fe) were demonstrated by the detection of nucleosides of human urine samples.
Collapse
Affiliation(s)
- Jiacheng Dong
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Ailan Huang
- Department of Chemistry, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Tianrun Wu
- Department of Chemistry, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Yang Chen
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
- Department of Chemistry, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Zijun Bie
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
- Department of Chemistry, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| |
Collapse
|
25
|
Lopes EC, Shi F, Sawant A, Ibrahim M, Gomez-Jenkins M, Hu Z, Manchiraju P, Bhatt V, Wang W, Hinrichs CS, Wallace DC, Su X, Rabinowitz JD, Chan CS, Guo JY, Ganesan S, Lattime EC, White E. RESPIRATION DEFECTS LIMIT SERINE SYNTHESIS REQUIRED FOR LUNG CANCER GROWTH AND SURVIVAL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596339. [PMID: 38853873 PMCID: PMC11160605 DOI: 10.1101/2024.05.28.596339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mitochondrial function is important for both energetic and anabolic metabolism. Pathogenic mitochondrial DNA (mtDNA) mutations directly impact these functions, resulting in the detrimental consequences seen in human mitochondrial diseases. The role of pathogenic mtDNA mutations in human cancers is less clear; while pathogenic mtDNA mutations are observed in some cancer types, they are almost absent in others. We report here that the proofreading mutant DNA polymerase gamma ( PolG D256A ) induced a high mtDNA mutation burden in non-small-cell lung cancer (NSCLC), and promoted the accumulation of defective mitochondria, which is responsible for decreased tumor cell proliferation and viability and increased cancer survival. In NSCLC cells, pathogenic mtDNA mutations increased glycolysis and caused dependence on glucose. The glucose dependency sustained mitochondrial energetics but at the cost of a decreased NAD+/NADH ratio that inhibited de novo serine synthesis. Insufficient serine synthesis, in turn, impaired the downstream synthesis of GSH and nucleotides, leading to impaired tumor growth that increased cancer survival. Unlike tumors with intact mitochondrial function, NSCLC with pathogenic mtDNA mutations were sensitive to dietary serine and glycine deprivation. Thus, mitochondrial function in NSCLC is required specifically to sustain sufficient serine synthesis for nucleotide production and redox homeostasis to support tumor growth, explaining why these cancers preserve functional mtDNA. In brief High mtDNA mutation burden in non-small-cell lung cancer (NSCLC) leads to the accumulation of respiration-defective mitochondria and dependency on glucose and glycolytic metabolism. Defective respiratory metabolism causes a massive accumulation of cytosolic nicotinamide adenine dinucleotide + hydrogen (NADH), which impedes serine synthesis and, thereby, glutathione (GSH) and nucleotide synthesis, leading to impaired tumor growth and increased survival. Highlights Proofreading mutations in Polymerase gamma led to a high burden of mitochondrial DNA mutations, promoting the accumulation of mitochondria with respiratory defects in NSCLC.Defective respiration led to reduced proliferation and viability of NSCLC cells increasing survival to cancer.Defective respiration caused glucose dependency to fuel elevated glycolysis.Altered glucose metabolism is associated with high NADH that limits serine synthesis, leading to impaired GSH and nucleotide production.Mitochondrial respiration defects sensitize NSCLC to dietary serine/glycine starvation, further increasing survival. Abstract Figure
Collapse
|
26
|
Kapoor D, Sharma P, Shukla D. Emerging drugs for the treatment of herpetic keratitis. Expert Opin Emerg Drugs 2024; 29:113-126. [PMID: 38603466 DOI: 10.1080/14728214.2024.2339899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Herpes simplex keratitis stands as a prominent factor contributing to infectious blindness among developed nations. On a global scale, over 60% of the population tests positive for herpes simplex virus type-1 (HSV-1). Despite these statistics, there is currently no vaccine available for the virus. Moreover, the conventional nucleoside drugs prescribed to patients are proving ineffective in addressing issues related to drug resistance, recurrence, latency, and the escalating risk of vision loss. Hence, it is imperative to continually explore all potential avenues to restrict the virus. This review article centers on the present treatment methods for HSV-1 keratitis (HSK), highlighting the ongoing clinical trials. It delves into the emerging drugs, their mode-of-action and future therapeutics. AREAS COVERED The review focuses on the significance of a variety of small molecules targeting HSV-1 lifecycle at multiple steps. Peer-reviewed articles and abstracts were searched in MEDLINE, PubMed, Embase, and clinical trial websites. EXPERT OPINION The exploration of small molecules that target specific pathways within the herpes lifecycle holds the potential for substantial impact on the antiviral pharmaceutical market. Simultaneously, the pursuit of disease-specific biomarkers has the capacity to usher in a transformative era in diagnostics within the field.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, USA
| | - Pankaj Sharma
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, USA
| |
Collapse
|
27
|
Morán-Serradilla C, Plano D, Sanmartín C, Sharma AK. Selenization of Small Molecule Drugs: A New Player on the Board. J Med Chem 2024; 67:7759-7787. [PMID: 38716896 DOI: 10.1021/acs.jmedchem.3c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of a wide range of pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Throughout the years, selenium (Se) has attracted a great deal of attention due to its important role in human health. Besides, a growing body of work has unveiled that the inclusion of Se motifs into a great number of molecules is a promising strategy for obtaining novel therapeutic agents. In the current Perspective, we have gathered the most recent literature related to the incorporation of different Se moieties into the scaffolds of a wide range of known drugs and their feasible pharmaceutical applications. In addition, we highlight different representative examples as well as provide our perspective on Se drugs and the possible future directions, promises, opportunities, and challenges of this ground-breaking area of research.
Collapse
Affiliation(s)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
- Penn State Cancer Institute, 400 University Drive,Hershey, Pennsylvania 17033, United States
| |
Collapse
|
28
|
Kothapalli Y, Jones RA, Chu CK, Singh US. Synthesis of Fluorinated Nucleosides/Nucleotides and Their Antiviral Properties. Molecules 2024; 29:2390. [PMID: 38792251 PMCID: PMC11124531 DOI: 10.3390/molecules29102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The FDA has approved several drugs based on the fluorinated nucleoside pharmacophore, and numerous drugs are currently in clinical trials. Fluorine-containing nucleos(t)ides offer significant antiviral and anticancer activity. The insertion of a fluorine atom, either in the base or sugar of nucleos(t)ides, alters its electronic and steric parameters and transforms the lipophilicity, pharmacodynamic, and pharmacokinetic properties of these moieties. The fluorine atom restricts the oxidative metabolism of drugs and provides enzymatic metabolic stability towards the glycosidic bond of the nucleos(t)ide. The incorporation of fluorine also demonstrates additional hydrogen bonding interactions in receptors with enhanced biological profiles. The present article discusses the synthetic methodology and antiviral activities of FDA-approved drugs and ongoing fluoro-containing nucleos(t)ide drug candidates in clinical trials.
Collapse
Affiliation(s)
| | | | - Chung K. Chu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA; (Y.K.); (R.A.J.)
| | - Uma S. Singh
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA; (Y.K.); (R.A.J.)
| |
Collapse
|
29
|
Abu-Zaied MA, Hebishy AMS, Salama HT, Elgemeie GH. Design and synthesis of novel 1,3,4-thiadiazole thioglycosides as promising antimicrobial potent structures. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-20. [PMID: 38741543 DOI: 10.1080/15257770.2024.2348749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Thiosemicarbazide was used as a key starting material for the building of a diversity of novel heterocyclic moieties. The heterocyclization reaction of thiosemicarbazide derivatives with carbon disulfide in basic conditions afforded novel heterocyclic 1,3,4-thiadiazolethiolate derivatives. 1,3,4-thiadiazole-2-thiol was successfully reacted with protected α-D-gluco- and galacto-pyranosyl bromides in dimethylformamide at room temperature to give the matching 1,3,4-thiadiazole S-glycosides in good yields. The latter compounds were reacted with ammonia-methanol at room temperature for 10 min, and the deprotected derivatives were obtained in good yields. The newly synthesized compounds were characterized by basic analyses and spectral information (IR,1H NMR, and 13C NMR, X-ray). All newly produced compounds were evaluated and screened for their antibacterial activities. Compound 6f proved to be the most active antimicrobial among the investigated heterocycles.
Collapse
Affiliation(s)
| | - Ali M S Hebishy
- Chemistry Department, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
| | - Hagar T Salama
- Chemistry Department, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
| | - Galal H Elgemeie
- Chemistry Department, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
| |
Collapse
|
30
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
31
|
Fleuti M, Sanchez-Quirante T, Poštová Slavětínská L, Tloušt'ová E, Tichý M, Gurská S, Džubák P, Hajdúch M, Hocek M. Synthesis and Biological Profiling of Quinolino-Fused 7-Deazapurine Nucleosides. ACS OMEGA 2024; 9:20557-20570. [PMID: 38737052 PMCID: PMC11080019 DOI: 10.1021/acsomega.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024]
Abstract
A series of quinolino-fused 7-deazapurine (pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline) ribonucleosides were designed and synthesized. The synthesis of the key 11-chloro-pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline was based on the Negishi cross-coupling of iodoquinoline with zincated 4,6-dichloropyrimidine followed by azidation and thermal or photochemical cyclization. Vorbrüggen glycosylation of the tetracyclic heterocycle followed by cross-coupling or substitution reactions at position 11 gave the desired set of final nucleosides that showed moderate to weak cytostatic activity and fluorescent properties. The corresponding fused adenosine derivative was converted to the triphosphate and successfully incorporated to RNA using in vitro transcription with T7 RNA polymerase.
Collapse
Affiliation(s)
- Marianne Fleuti
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2 CZ-12843, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Tania Sanchez-Quirante
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2 CZ-12843, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Eva Tloušt'ová
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Michal Tichý
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Soňa Gurská
- Institute
of Molecular and Translational Medicine, Palacky University and University
Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská
5, Olomouc CZ-77515, Czech Republic
| | - Petr Džubák
- Institute
of Molecular and Translational Medicine, Palacky University and University
Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská
5, Olomouc CZ-77515, Czech Republic
| | - Marián Hajdúch
- Institute
of Molecular and Translational Medicine, Palacky University and University
Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská
5, Olomouc CZ-77515, Czech Republic
| | - Michal Hocek
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2 CZ-12843, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| |
Collapse
|
32
|
Wei T, Xie MS, Guo HM. Construction of thioglycoside bonds via an asymmetric organocatalyzed sulfa-Michael/aldol reaction: access to 4'-thionucleosides. Chem Commun (Camb) 2024; 60:5018-5021. [PMID: 38639063 DOI: 10.1039/d4cc00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Thioglycoside bond formation via an asymmetric sulfa-Michael/aldol reaction of (E)-β-nucleobase acrylketones and 1,4-dithiane-2,5-diol has been achieved with a cinchona alkaloid-derived bifunctional squaramide chiral catalyst. Diverse purine, benzimidazole, and imidazole substrates are well tolerated and generate 4'-thionucleoside derivatives containing three contiguous stereogenic centers with excellent results (30 examples, up to 97% yield, >20 : 1 dr and up to 99% ee). Moreover, the novel strategy provides an efficient and convenient synthetic route to construct chiral 4'-thionucleosides.
Collapse
Affiliation(s)
- Tao Wei
- School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Ming-Sheng Xie
- School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Hai-Ming Guo
- School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
33
|
Calbert ML, Chandramouly G, Adams CM, Saez-Ayala M, Kent T, Tyagi M, Ayyadevara VSSA, Wang Y, Krais JJ, Gordon J, Atkins J, Toma MM, Betzi S, Boghossian AS, Rees MG, Ronan MM, Roth JA, Goldman AR, Gorman N, Mitra R, Childers WE, Graña X, Skorski T, Johnson N, Hurtz C, Morelli X, Eischen CM, Pomerantz RT. 4'-Ethynyl-2'-Deoxycytidine (EdC) Preferentially Targets Lymphoma and Leukemia Subtypes by Inducing Replicative Stress. Mol Cancer Ther 2024; 23:683-699. [PMID: 38064712 PMCID: PMC11286238 DOI: 10.1158/1535-7163.mct-23-0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Anticancer nucleosides are effective against solid tumors and hematologic malignancies, but typically are prone to nucleoside metabolism resistance mechanisms. Using a nucleoside-specific multiplexed high-throughput screening approach, we discovered 4'-ethynyl-2'-deoxycytidine (EdC) as a third-generation anticancer nucleoside prodrug with preferential activity against diffuse large B-cell lymphoma (DLBCL) and acute lymphoblastic leukemia (ALL). EdC requires deoxycytidine kinase (DCK) phosphorylation for its activity and induces replication fork arrest and accumulation of cells in S-phase, indicating it acts as a chain terminator. A 2.1Å cocrystal structure of DCK bound to EdC and UDP reveals how the rigid 4'-alkyne of EdC fits within the active site of DCK. Remarkably, EdC was resistant to cytidine deamination and SAMHD1 metabolism mechanisms and exhibited higher potency against ALL compared with FDA-approved nelarabine. Finally, EdC was highly effective against DLBCL tumors and B-ALL in vivo. These data characterize EdC as a preclinical nucleoside prodrug candidate for DLBCL and ALL.
Collapse
Affiliation(s)
- Marissa L. Calbert
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Fels Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Clare M. Adams
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Magali Saez-Ayala
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Tatiana Kent
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mrityunjay Tyagi
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - V. S. S. Abhinav Ayyadevara
- Fels Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yifan Wang
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - John Gordon
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Jessica Atkins
- Fels Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Monika M. Toma
- Fels Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Stéphane Betzi
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | | | | | | | | | | | | | - Ramkrishna Mitra
- Division of Biostatistics, Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wayne E. Childers
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Xavier Graña
- Fels Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Tomasz Skorski
- Fels Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | | | - Christian Hurtz
- Fels Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Christine M. Eischen
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard T. Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
34
|
Fralish Z, Chen A, Khan S, Zhou P, Reker D. The landscape of small-molecule prodrugs. Nat Rev Drug Discov 2024; 23:365-380. [PMID: 38565913 DOI: 10.1038/s41573-024-00914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 04/04/2024]
Abstract
Prodrugs are derivatives with superior properties compared with the parent active pharmaceutical ingredient (API), which undergo biotransformation after administration to generate the API in situ. Although sharing this general characteristic, prodrugs encompass a wide range of different chemical structures, therapeutic indications and properties. Here we provide the first holistic analysis of the current landscape of approved prodrugs using cheminformatics and data science approaches to reveal trends in prodrug development. We highlight rationales that underlie prodrug design, their indications, mechanisms of API release, the chemistry of promoieties added to APIs to form prodrugs and the market impact of prodrugs. On the basis of this analysis, we discuss strengths and limitations of current prodrug approaches and suggest areas for future development.
Collapse
Affiliation(s)
- Zachary Fralish
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Ashley Chen
- Department of Computer Science, Duke University, Durham, NC, USA
| | | | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Daniel Reker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
35
|
Sun M, Manson ML, Guo T, de Lange ECM. CNS Viral Infections-What to Consider for Improving Drug Treatment: A Plea for Using Mathematical Modeling Approaches. CNS Drugs 2024; 38:349-373. [PMID: 38580795 PMCID: PMC11026214 DOI: 10.1007/s40263-024-01082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
Neurotropic viruses may cause meningitis, myelitis, encephalitis, or meningoencephalitis. These inflammatory conditions of the central nervous system (CNS) may have serious and devastating consequences if not treated adequately. In this review, we first summarize how neurotropic viruses can enter the CNS by (1) crossing the blood-brain barrier or blood-cerebrospinal fluid barrier; (2) invading the nose via the olfactory route; or (3) invading the peripheral nervous system. Neurotropic viruses may then enter the intracellular space of brain cells via endocytosis and/or membrane fusion. Antiviral drugs are currently used for different viral CNS infections, even though their use and dosing regimens within the CNS, with the exception of acyclovir, are minimally supported by clinical evidence. We therefore provide considerations to optimize drug treatment(s) for these neurotropic viruses. Antiviral drugs should cross the blood-brain barrier/blood cerebrospinal fluid barrier and pass the brain cellular membrane to inhibit these viruses inside the brain cells. Some antiviral drugs may also require intracellular conversion into their active metabolite(s). This illustrates the need to better understand these mechanisms because these processes dictate drug exposure within the CNS that ultimately determine the success of antiviral drugs for CNS infections. Finally, we discuss mathematical model-based approaches for optimizing antiviral treatments. Thereby emphasizing the potential of CNS physiologically based pharmacokinetic models because direct measurement of brain intracellular exposure in living humans faces ethical restrictions. Existing physiologically based pharmacokinetic models combined with in vitro pharmacokinetic/pharmacodynamic information can be used to predict drug exposure and evaluate efficacy of antiviral drugs within the CNS, to ultimately optimize the treatments of CNS viral infections.
Collapse
Affiliation(s)
- Ming Sun
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn L Manson
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Tingjie Guo
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
36
|
Liu DP, Zhang XS, Liu S, Hu XG. Dehydroxylative radical N-glycosylation of heterocycles with 1-hydroxycarbohydrates enabled by copper metallaphotoredox catalysis. Nat Commun 2024; 15:3401. [PMID: 38649350 PMCID: PMC11035684 DOI: 10.1038/s41467-024-47711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
N-Glycosylated heterocycles play important roles in biological systems and drug development. The synthesis of these compounds heavily relies on ionic N-glycosylation, which is usually constrained by factors such as labile glycosyl donors, precious metal catalysts, and stringent conditions. Herein, we report a dehydroxylative radical method for synthesizing N-glycosides by leveraging copper metallaphotoredox catalysis, in which stable and readily available 1-hydroxy carbohydrates are activated for direct N-glycosylation. Our method employs inexpensive photo- and copper- catalysts and can tolerate some extent of water. The reaction exhibits a broad substrate scope, encompassing 76 examples, and demonstrates high stereoselectivity, favoring 1,2-trans selectivity for furanoses and α-selectivity for pyranoses. It also exhibits high site-selectivity for substrates containing multiple N-atoms. The synthetic utility is showcased through the late-stage functionalization of bioactive compounds and pharmaceuticals like Olaparib, Axitinib, and Metaxalone. Mechanistic studies prove the presence of glycosyl radicals and the importance of copper metallaphotoredox catalysis.
Collapse
Affiliation(s)
- Da-Peng Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiao-Sen Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Shuai Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
37
|
Gurwitz D, Shomron N. Artificial intelligence utility for drug development: ChatGPT and beyond. Drug Dev Res 2024; 85:e22121. [PMID: 37815084 DOI: 10.1002/ddr.22121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Affiliation(s)
- David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv, Israel
| | - Noam Shomron
- Sagol School of Neuroscience, Tel Aviv, Israel
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
- Tel Aviv University Innovation Labs (TILabs), Tel Aviv, Israel
- Djerassi Institute of Oncology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Serpi M, di Ciano S, Pertusati F. Design, synthesis and biological evaluation of aryloxy thiophosphoramidate triesters of anticancer nucleoside analogues. Bioorg Med Chem 2024; 103:117696. [PMID: 38547648 DOI: 10.1016/j.bmc.2024.117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Aryloxy phosphoroamidate triesters, known as ProTides, are a class of prodrugs developed to enhance the physicochemical and pharmacological properties of therapeutic nucleosides. This approach has been extensively investigated in the antiviral and anticancer areas leading to three prodrugs on the market and several others in clinical stage. In this article we have prepared the PS analogues of three ProTides that have reached the clinic as anticancer agents. These novel PS ProTides were tested for their capacity in enzymatic activation and for their cytotoxic properties against a panel of solid and liquid tumor cell lines. As expected, the replacement of the PO with a PS bond led to increased metabolic stability albeit concomitant to a decrease in potency. Surprisingly, the intermediate formed after the first activation step of a thiophosphoramidate with carboxypeptidase Y is not the expected PS aminoacyl product but the corresponding PO aminoacyl compound.
Collapse
Affiliation(s)
- Michaela Serpi
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, Wales, UK
| | - Samule di Ciano
- School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edwards VII avenue, CF10 3NB Cardiff, Wales, UK
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edwards VII avenue, CF10 3NB Cardiff, Wales, UK.
| |
Collapse
|
39
|
Tang X, Zhou Y, Wang Y, Lin Y, Pan S, Che Q, Sang J, Gao Z, Zhang W, Wang Y, Li G, Gao L, Wang Z, Yang X, Liu A, Wang S, Yu B, Xu P, Wang Z, Zhang Z, Yang P, Xie W, Sun H, Li W. Direct Synthesis of α- and β-2'-Deoxynucleosides with Stereodirecting Phosphine Oxide via Remote Participation. J Am Chem Soc 2024; 146:8768-8779. [PMID: 38483318 DOI: 10.1021/jacs.4c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
2'-Deoxynucleosides and analogues play a vital role in drug development, but their preparation remains a significant challenge. Previous studies have focused on β-2'-deoxynucleosides with the natural β-configuration. In fact, their isomeric α-2'-deoxynucleosides also exhibit diverse bioactivities and even better metabolic stability. Herein, we report that both α- and β-2'-deoxynucleosides can be prepared with high yields and stereoselectivity using a remote directing diphenylphosphinoyl (DPP) group. It is particularly efficient to prepare α-2'-deoxynucleosides with an easily accessible 3,5-di-ODPP donor. Instead of acting as a H-bond acceptor on a 2-(diphenylphosphinoyl)acetyl (DPPA) group in our previous studies for syn-facial O-glycosylation, the phosphine oxide moiety here acts as a remote participating group to enable highly antifacial N-glycosylation. This proposed remote participation mechanism is supported by our first characterization of an important 1,5-briged P-heterobicyclic intermediate via variable-temperature NMR spectroscopy. Interestingly, antiproliferative assays led to a α-2'-deoxynucleoside with IC50 values in the low micromole range against central nervous system tumor cell lines SH-SY5Y and LN229, whereas its β-anomer exhibited no inhibition at 100 μM. Furthermore, the DPP group significantly enhanced the antitumor activities by 10 times.
Collapse
Affiliation(s)
- Xintong Tang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yueer Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yingjie Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yetong Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Shuheng Pan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Qianwei Che
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Jinpeng Sang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Ziming Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Weiting Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yuanyuan Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Guolong Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Longwei Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zhimei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Xudong Yang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Ao Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Suyu Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhe Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zhaolun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Peng Yang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Weijia Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
40
|
Guiraud M, Ali LMA, Gabrieli-Magot E, Lichon L, Daurat M, Egron D, Gary-Bobo M, Peyrottes S. Probing the Use of Triphenyl Phosphonium Cation for Mitochondrial Nucleoside Delivery. ACS Med Chem Lett 2024; 15:418-422. [PMID: 38505859 PMCID: PMC10945795 DOI: 10.1021/acsmedchemlett.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Herein, we report the design, the synthesis, and the study of novel triphenyl phosphonium-based nucleoside conjugates. 2'-Deoxycytidine was chosen as nucleosidic cargo, as it allows the introduction of fluorescein on the exocyclic amine of the nucleobase and grafting of the vector was envisaged through the formation of a biolabile ester bond with the hydroxyl function at the 5'-position. Compound 3 was identified as a potential nucleoside prodrug, showing ability to be internalized efficiently into cells and to be co-localized with mitochondria.
Collapse
Affiliation(s)
- Mathis Guiraud
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Lamiaa M. A. Ali
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
- Department
of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | - Emma Gabrieli-Magot
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | - Laure Lichon
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | | | - David Egron
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Magali Gary-Bobo
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | - Suzanne Peyrottes
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
41
|
Alexandrova LA, Oskolsky IA, Makarov DA, Jasko MV, Karpenko IL, Efremenkova OV, Vasilyeva BF, Avdanina DA, Ermolyuk AA, Benko EE, Kalinin SG, Kolganova TV, Berzina MY, Konstantinova ID, Chizhov AO, Kochetkov SN, Zhgun AA. New Biocides Based on N4-Alkylcytidines: Effects on Microorganisms and Application for the Protection of Cultural Heritage Objects of Painting. Int J Mol Sci 2024; 25:3053. [PMID: 38474298 DOI: 10.3390/ijms25053053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The rapid increase in the antibiotic resistance of microorganisms, capable of causing diseases in humans as destroying cultural heritage sites, is a great challenge for modern science. In this regard, it is necessary to develop fundamentally novel and highly active compounds. In this study, a series of N4-alkylcytidines, including 5- and 6-methylcytidine derivatives, with extended alkyl substituents, were obtained in order to develop a new generation of antibacterial and antifungal biocides based on nucleoside derivatives. It has been shown that N4-alkyl 5- or 6-methylcytidines effectively inhibit the growth of molds, isolated from the paintings in the halls of the Ancient Russian Paintings of the State Tretyakov Gallery, Russia, Moscow. The novel compounds showed activity similar to antiseptics commonly used to protect works of art, such as benzalkonium chloride, to which a number of microorganisms have acquired resistance. It was also shown that the activity of N4-alkylcytidines is comparable to that of some antibiotics used in medicine to fight Gram-positive bacteria, including resistant strains of Staphylococcus aureus and Mycobacterium smegmatis. N4-dodecyl-5- and 6-methylcytidines turned out to be the best. This compound seems promising for expanding the palette of antiseptics used in painting, since quite often the destruction of painting materials is caused by joint fungi and bacteria infection.
Collapse
Affiliation(s)
| | - Ivan A Oskolsky
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Dmitry A Makarov
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Maxim V Jasko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Inna L Karpenko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Olga V Efremenkova
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya, Moscow 119021, Russia
| | - Byazilya F Vasilyeva
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya, Moscow 119021, Russia
| | - Darya A Avdanina
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| | - Anna A Ermolyuk
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| | - Elizaveta E Benko
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| | - Stanislav G Kalinin
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| | | | - Maria Ya Berzina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Irina D Konstantinova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Alexander O Chizhov
- Zelinsky Institute of Organic Chemistry RAS 47 Leninsky Ave, Moscow 119991, Russia
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Alexander A Zhgun
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| |
Collapse
|
42
|
Wong XK, Ng CS, Yeong KY. Shaping the future of antiviral Treatment: Spotlight on Nucleobase-Containing drugs and their revolutionary impact. Bioorg Chem 2024; 144:107150. [PMID: 38309002 DOI: 10.1016/j.bioorg.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Nucleobases serve as essential molecular frameworks present in both natural and synthetic compounds that exhibit notable antiviral activity. Through molecular modifications, novel nucleobase-containing drugs (NCDs) have been developed, exhibiting enhanced antiviral activity against a wide range of viruses, including the recently emerged SARS‑CoV‑2. This article provides a detailed examination of the significant advancements in NCDs from 2015 till current, encompassing various aspects concerning their mechanisms of action, pharmacology and antiviral properties. Additionally, the article discusses antiviral prodrugs relevant to the scope of this review. It fills in the knowledge gap by examining the structure-activity relationship and trend of NCDs as therapeutics against a diverse range of viral diseases, either as approved drugs, clinical candidates or as early-stage development prospects. Moreover, the article highlights on the status of this field of study and addresses the prevailing limitations encountered.
Collapse
Affiliation(s)
- Xi Khai Wong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Chen Seng Ng
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
43
|
Tang P, Harding CJ, Dickson AL, da Silva RG, Harrison DJ, Czekster CM. Snapshots of the Reaction Coordinate of a Thermophilic 2'-Deoxyribonucleoside/ribonucleoside Transferase. ACS Catal 2024; 14:3090-3102. [PMID: 38449528 PMCID: PMC10913048 DOI: 10.1021/acscatal.3c06260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/08/2024]
Abstract
Nucleosides are ubiquitous to life and are required for the synthesis of DNA, RNA, and other molecules crucial for cell survival. Despite the notoriously difficult organic synthesis of nucleosides, 2'-deoxynucleoside analogues can interfere with natural DNA replication and repair and are successfully employed as anticancer, antiviral, and antimicrobial compounds. Nucleoside 2'-deoxyribosyltransferase (dNDT) enzymes catalyze transglycosylation via a covalent 2'-deoxyribosylated enzyme intermediate with retention of configuration, having applications in the biocatalytic synthesis of 2'-deoxynucleoside analogues in a single step. Here, we characterize the structure and function of a thermophilic dNDT, the protein from Chroococcidiopsis thermalis (CtNDT). We combined enzyme kinetics with structural and biophysical studies to dissect mechanistic features in the reaction coordinate, leading to product formation. Bell-shaped pH-rate profiles demonstrate activity in a broad pH range of 5.5-9.5, with two very distinct pKa values. A pronounced viscosity effect on the turnover rate indicates a diffusional step, likely product (nucleobase1) release, to be rate-limiting. Temperature studies revealed an extremely curved profile, suggesting a large negative activation heat capacity. We trapped a 2'-fluoro-2'-deoxyarabinosyl-enzyme intermediate by mass spectrometry and determined high-resolution structures of the protein in its unliganded, substrate-bound, ribosylated, 2'-difluoro-2'-deoxyribosylated, and in complex with probable transition-state analogues. We reveal key features underlying (2'-deoxy)ribonucleoside selection, as CtNDT can also use ribonucleosides as substrates, albeit with a lower efficiency. Ribonucleosides are the building blocks of RNA and other key intracellular metabolites participating in energy and metabolism, expanding the scope of use of CtNDT in biocatalysis.
Collapse
Affiliation(s)
- Peijun Tang
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Christopher J. Harding
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Alison L. Dickson
- School
of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - Rafael G. da Silva
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - David J. Harrison
- School
of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - Clarissa Melo Czekster
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
44
|
Li P, Gao S, Qu W, Li Y, Liu Z. Chemo-Selective Single-Cell Metabolomics Reveals the Spatiotemporal Behavior of Exogenous Pollutants During Xenopus Laevis Embryogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305401. [PMID: 38115758 PMCID: PMC10916618 DOI: 10.1002/advs.202305401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/20/2023] [Indexed: 12/21/2023]
Abstract
In-depth profiling of embryogenesis-associated endogenous and exogenous metabolic changes can reveal potential bio-effects resulting from human-made chemicals and underlying mechanisms. Due to the lack of potent tools for monitoring spatiotemporal distribution and bio-transformation behavior of dynamic metabolites at single-cell resolution, however, how and to what extent environmental chemicals may influence or interfere embryogenesis largely remain unclear. Herein, a zero-sample-loss micro-biopsy-based mass spectrometric platform is presented for quantitative, chemo-selective, high-coverage, and minimal-destructive profiling of development-associated cis-diol metabolites, which are critical for signal transduction and epigenome regulation, at both cellular level and tissue level of Xenopus laevis. Using this platform, three extraordinary findings that are otherwise hard to achieve are revealed: 1) there are characteristically different cis-diol metabolic signatures among oocytes, anterior and posterior part of tailbud-stage embryos; 2) halogenated cis-diols heavily accumulate at the posterior part of tailbud-stage embryos of Xenopus laevis; 3) dimethachlon, a kind of exogenous fungicide that is widely used as pesticide, may be bio-transformed and accumulated in vertebrate animals in environment. Thus, this study opens a new avenue to simultaneously monitoring intercellular and intraembryonic heterogeneity of endogenous and exogenous metabolites, providing new insights into metabolic remolding during embryogenesis and putting a warning on potential environmental risk.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Song Gao
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Wanting Qu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Ying Li
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
45
|
Jia X, Schols D, Meier C. Antiviral Activity of Lipophilic Nucleoside Tetraphosphate Compounds. J Med Chem 2024; 67:2864-2883. [PMID: 38345794 PMCID: PMC10895676 DOI: 10.1021/acs.jmedchem.3c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
We report on the synthesis and characterization of three types of nucleoside tetraphosphate derivatives 4-9 acting as potential prodrugs of d4T nucleotides: (i) the δ-phosph(on)ate is modified by two hydrolytically stable alkyl residues 4 and 5; (ii) the δ-phosph(on)ate is esterified covalently by one biodegradable acyloxybenzyl moiety and a nonbioreversible moiety 6 and 7; or (iii) the δ-phosphate of nucleoside tetraphosphate is masked by two biodegradable prodrug groups 8 and 9. We were able to prove the efficient release of d4T triphosphate (d4TTP, (i)), δ-monoalkylated d4T tetraphosphates (20 and 24, (ii)), and d4T tetraphosphate (d4T4P, (iii)), respectively, by chemical or enzymatic processes. Surprisingly, δ-dialkylated d4T tetraphosphates, δ-monoalkylated d4T tetraphosphates, and d4T4P were substrates for HIV-RT. Remarkably, the antiviral activity of TetraPPPPro-prodrug 7 was improved by 7700-fold (SI 5700) as compared to the parent d4T in CEM/TK- cells, denoting a successful cell membrane passage of these lipophilic prodrugs and an intracellular delivery of the nucleotide metabolites.
Collapse
Affiliation(s)
- Xiao Jia
- Organic
Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics
and Natural Sciences, Universität
Hamburg, Martin-Luther-King-Platz 6, Hamburg D-20146, Germany
| | - Dominique Schols
- Laboratory
of Virology and Chemotherapy, Department of Microbiology and Immunology
and Transplantation, Rega Institute for
Medical Research, KU
Leuven, Herestraat 49, Leuven B-3000, Belgium
| | - Chris Meier
- Organic
Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics
and Natural Sciences, Universität
Hamburg, Martin-Luther-King-Platz 6, Hamburg D-20146, Germany
- Centre
for Structural Systems Biology (CSSB), Hamburg, DESY Campus, Notkestrasse 85, Hamburg D-22607, Germany
| |
Collapse
|
46
|
Tan F, Wang W, Huang X, Zhong Y, Song T, Wang J, Mei L. O-H Insertion of Hydrogenphosphate Derivatives and α-Diazo Compounds. J Org Chem 2024; 89:2588-2598. [PMID: 38270667 DOI: 10.1021/acs.joc.3c02605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
An efficient O-H insertion of hydrogenphosphate derivatives and α-diazo compounds has been developed to construct α-phosphoryloxy scaffolds. Diverse α-phosphoryloxy skeletons could be obtained under mild and catalyst-free conditions in good yields. The control experiments suggest a protonation and nucleophilic addition process of α-diazo compounds via a diazonium ion pair for this transformation.
Collapse
Affiliation(s)
- Fei Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Wei Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiao Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yi Zhong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Tao Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jian Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ling Mei
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
47
|
Zhang SM, Paulin CB, Shu H, Yagüe-Capilla M, Michel M, Marttila P, Ortis F, Bwanika HC, Dirks C, Venkatram RP, Wiita E, Jemth AS, Almlöf I, Loseva O, Hormann FM, Koolmeister T, Linde E, Lee S, Llona-Minguez S, Haraldsson M, Axelsson H, Strömberg K, Homan EJ, Scobie M, Lundbäck T, Helleday T, Rudd SG. Identification and evaluation of small-molecule inhibitors against the dNTPase SAMHD1 via a comprehensive screening funnel. iScience 2024; 27:108907. [PMID: 38318365 PMCID: PMC10839966 DOI: 10.1016/j.isci.2024.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 09/05/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
SAMHD1 is a dNTP triphosphohydrolase governing nucleotide pool homeostasis and can detoxify chemotherapy metabolites controlling their clinical responses. To understand SAMHD1 biology and investigate the potential of targeting SAMHD1 as neoadjuvant to current chemotherapies, we set out to discover selective small-molecule inhibitors. Here, we report a discovery pipeline encompassing a biochemical screening campaign and a set of complementary biochemical, biophysical, and cell-based readouts for rigorous characterization of the screen output. The identified small molecules, TH6342 and analogs, accompanied by inactive control TH7126, demonstrated specific, low μM potency against both physiological and oncology-drug-derived substrates. By coupling kinetic studies with thermal shift assays, we reveal the inhibitory mechanism of TH6342 and analogs, which engage pre-tetrameric SAMHD1 and deter oligomerization and allosteric activation without occupying nucleotide-binding pockets. Altogether, our study diversifies inhibitory modes against SAMHD1, and the discovery pipeline reported herein represents a thorough framework for future SAMHD1 inhibitor development.
Collapse
Affiliation(s)
- Si Min Zhang
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Cynthia B.J. Paulin
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Huazhang Shu
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Miriam Yagüe-Capilla
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Maurice Michel
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Petra Marttila
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Florian Ortis
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Henri Colyn Bwanika
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Christopher Dirks
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Rajagopal Papagudi Venkatram
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Elisée Wiita
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Olga Loseva
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Femke M. Hormann
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Erika Linde
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sun Lee
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sabin Llona-Minguez
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Kia Strömberg
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Evert J. Homan
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Martin Scobie
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Sean G. Rudd
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
48
|
Beghennou A, Rondot O, Corcé V, Botuha C. 1 H-1,2,3-triazolyl-1,6-naphthyridin-7(6 H)-ones as Potential Fluorescent Nucleoside Analogues: Synthesis and Optical Properties. Molecules 2024; 29:687. [PMID: 38338431 PMCID: PMC10856630 DOI: 10.3390/molecules29030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this article, we present the synthesis and the optical properties of three original molecules as potential fluorescent ribonucleoside analogues incorporating a 1,6-naphthyridin-7(6H)-one scaffold as a fluorescent nucleobase and a 1,2,3-triazole as a linkage. The nucleosides were prepared via a Cu alkyne-azide cycloaddition (CuAAC) reaction between a ribofuranosyl azide and a 4-ethynylpyridine partner. Construction of substituted 1,6-naphthyridin-7(6H)-ones was achieved through two additional steps. Optical property studies were investigated on nucleoside analogues. Powerful fluorescence properties have been evidenced with a remarkable change of emissivity depending on the polarity of the solvent, making these molecules suitable as a new class of artificial fluorescent nucleosides for investigating enzyme binding sites as well as probing nucleic acids. In addition, we are convinced that such analogues could be of great interest in the search for new antiviral or antitumoral drugs based on nucleosides.
Collapse
Affiliation(s)
| | | | - Vincent Corcé
- Institut Parisien de Chimie Moléculaire, CNRS UMR 9232, Sorbonne Université, F-75252 Paris, France; (A.B.); (O.R.)
| | - Candice Botuha
- Institut Parisien de Chimie Moléculaire, CNRS UMR 9232, Sorbonne Université, F-75252 Paris, France; (A.B.); (O.R.)
| |
Collapse
|
49
|
Moreira T, Manuel DM, Rosa J, Nunes RS, Vojáčková V, Jorda R, Oliveira MC, Xavier NM. Synthesis and Antiproliferative Evaluation of d-Glucuronamide-Based Nucleosides and (Triazolyl)methyl Amide-Linked Pseudodisaccharide Nucleosides. ChemMedChem 2024; 19:e202300608. [PMID: 38095428 DOI: 10.1002/cmdc.202300608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Indexed: 02/03/2024]
Abstract
The synthesis and antiproliferative evaluation of novel d-glucopyranuronamide-containing nucleosides is described. Based on our previously reported anticancer d-glucuronamide-based nucleosides, new analogues comprising N/O-dodecyl or N-propargyl substituents at the glucuronamide unit and anomerically-N-linked 2-acetamido-6-chloropurine, 6-chloropurine or 4-(6-chloropurinyl)methyl triazole motifs were synthesized in 4-6 steps starting from acetonide-protected glucofuranurono-6,3-lactone. The methodologies were based on the access to N-substituted glycopyranuronamide precursors, namely 1,2-O-acetyl derivatives or glucuronoamidyl azides for further nucleobase N-glycosylation or 1,3-dipolar cycloaddition with N9 - and N7 -propargyl-6-chloropurines, respectively. N-Propargyl glucuronamide-based N9 -purine nucleosides were converted into (triazolyl)methyl amide-6,6-linked pseudodisaccharide nucleosides via cycloaddition with methyl 6-azido-glucopyranoside. A CuI/Amberlyst A-21 catalytic system employed in the cycloaddition reactions also effected conversion into 6-dimethylaminopurine nucleosides. Antiproliferative evaluation in chronic myeloid leukemia (K562) and breast cancer (MCF-7) cells revealed significant effects exhibited by the synthesized monododecylated purine-containing nucleosides. A N-propargyl 3-O-dodecyl glucuronamide derivative comprising a N9 -β-linked 6-chloropurine moiety was the most active compound against MCF-7 cells (GI50 =11.9 μM) while a related α-(purinyl)methyltriazole nucleoside comprising a N7 -linked 6-chloropurine moiety exhibited the highest activity against K562 cells (GI50 =8.0 μM). Flow cytometry and immunoblotting analysis of apoptosis-related proteins in K562 cells treated with the N-propargyl 3-O-dodecyl glucuronamide-based N9 -linked 6-chloropurine nucleoside indicated that it acts via apoptosis induction.
Collapse
Affiliation(s)
- Tânia Moreira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal
| | - Domingos M Manuel
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal
| | - Joana Rosa
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal
| | - Rafael Santana Nunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisboa, Portugal
| | - Veronika Vojáčková
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - M Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco País, 1049-001, Lisboa, Portugal
| | - Nuno M Xavier
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
50
|
Rios-Usuga C, Martinez-Gutierrez M, Ruiz-Saenz J. Antiviral Potential of Azathioprine and Its Derivative 6- Mercaptopurine: A Narrative Literature Review. Pharmaceuticals (Basel) 2024; 17:174. [PMID: 38399389 PMCID: PMC10892228 DOI: 10.3390/ph17020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The use of azathioprine (AZA) in human medicine dates back to research conducted in 1975 that led to the development of several drugs, including 6-mercaptopurine. In 1958, it was shown that 6-mercaptopurine decreased the production of antibodies against earlier administered antigens, raising the hypothesis of an immunomodulatory effect. AZA is a prodrug that belongs to the thiopurine group of drugs that behave as purine analogs. After absorption, it is converted into 6-mercaptopurine. Subsequently, it can be degraded through various enzymatic pathways into inactive compounds and biologically active compounds related to the mechanism of action, which has been the subject of study to evaluate a possible antiviral effect. This study aims to examine the metabolism, mechanism of action, and antiviral potential of AZA and its derivatives, exploring AZA impact on antiviral targets and adverse effects through a narrative literature review. Ultimately, the review will provide insights into the antiviral mechanism, present evidence of its in vitro effectiveness against various DNA and RNA viruses, and suggest in vivo studies to further demonstrate its antiviral effects.
Collapse
Affiliation(s)
- Carolina Rios-Usuga
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (C.R.-U.); (M.M.-G.)
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (C.R.-U.); (M.M.-G.)
- Grupo de Investigación en Microbiología Veterinaria, Escuela de Microbiología, Universidad de Antioquia UdeA, Medellín 050001, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (C.R.-U.); (M.M.-G.)
| |
Collapse
|