1
|
Sibomana O. Genetic Diversity Landscape in African Population: A Review of Implications for Personalized and Precision Medicine. Pharmgenomics Pers Med 2024; 17:487-496. [PMID: 39555236 PMCID: PMC11566596 DOI: 10.2147/pgpm.s485452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Africa, a continent considered to be the cradle of human beings has the largest genetic diversity among its population than other continents. This review discusses the implications of this high African genetic diversity to the development of personalized and precision medicine. Methodology A comprehensive search across PubMed, Google Scholar, Science Direct, DOAJ, AJOL, and the Cochrane Library electronic databases and manual Google searches was conducted using key terms "genetics", "genetic diversity", "Africa", "precision medicine", and "personalized medicine". Updated original and review studies focusing on the implications of African high genetic diversity on personalized and precision medicine were included. Included studies were thematically synthesized to elucidate their positive or negative implications for personalized healthcare, aiming to foster informed clinical practice and scientific inquiry. Results African populations' high genetic diversity presents opportunities for personalized and precision medicine including improving pharmacogenomics, understanding gene interactions, discovering new variants, mapping disease genes, creating updated genomic reference panels, and validating biomarkers. However, challenges include underrepresentation in studies, scarcity of reference genomes, inaccuracy of genetic testing and interpretation, and ancestry misclassification. Addressing these requires the establishment of genomic research centers, increasing funding, creating biobanks and repositories, education, infrastructure, and international cooperation to enhance healthcare equity and outcomes through personalized and precision medicine. Conclusion High African genetic diversity presents both positive and negative implications for personalized and precision medicine. Deep further research is recommended to harness the challenges and use the opportunities to develop customized treatments.
Collapse
Affiliation(s)
- Olivier Sibomana
- Department of General Medicine and Surgery, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
2
|
Uyenoyama MK. Joint identity among loci under mutation and regular inbreeding. Theor Popul Biol 2024; 159:74-90. [PMID: 39208993 PMCID: PMC11495244 DOI: 10.1016/j.tpb.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
This study describes a compact method for determining joint probabilities of identity-by-state (IBS) within and between loci in populations evolving under genetic drift, crossing-over, mutation, and regular inbreeding (partial self-fertilization). Analogues of classical indices of associations among loci arise as functions of these joint identities. This coalescence-based analysis indicates that multi-locus associations reflect simultaneous coalescence events across loci. Measures of association depend on genetic diversity rather than allelic frequencies, as do linkage disequilibrium and its relatives. Scaled indices designed to show monotonic dependence on rates of crossing-over, inbreeding, and mutation may prove useful for interpreting patterns of genome-scale variation.
Collapse
Affiliation(s)
- Marcy K Uyenoyama
- Department of Biology, Duke University, Box 90338, Durham, NC 27708-0338, USA.
| |
Collapse
|
3
|
Liebenberg L, L'Abbé EN, Stull KE. Exploring cranial macromorphoscopic variation and classification accuracy in a South African sample. Int J Legal Med 2024; 138:2081-2092. [PMID: 38622313 PMCID: PMC11306635 DOI: 10.1007/s00414-024-03230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
To date South African forensic anthropologists are only able to successfully apply a metric approach to estimate population affinity when constructing a biological profile from skeletal remains. While a non-metric, or macromorphoscopic approach exists, limited research has been conducted to explore its use in a South African population. This study aimed to explore 17 cranial macromorphoscopic traits to develop improved methodology for the estimation of population affinity among black, white and coloured South Africans and for the method to be compliant with standards of best practice. The trait frequency distributions revealed substantial group variation and overlap, and not a single trait can be considered characteristic of any one population group. Kruskal-Wallis and Dunn's tests demonstrated significant population differences for 13 of the 17 traits. Random forest modelling was used to develop classification models to assess the reliability and accuracy of the traits in identifying population affinity. Overall, the model including all traits obtained a classification accuracy of 79% when assessing population affinity, which is comparable to current craniometric methods. The variable importance indicates that all the traits contributed some information to the model, with the inferior nasal margin, nasal bone contour, and nasal aperture shape ranked the most useful for classification. Thus, this study validates the use of macromorphoscopic traits in a South African sample, and the population-specific data from this study can potentially be incorporated into forensic casework and skeletal analyses in South Africa to improve population affinity estimates.
Collapse
Affiliation(s)
- Leandi Liebenberg
- Department of Anatomy, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa.
- Forensic Anthropology Research Centre, University of Pretoria, Arcadia, South Africa.
| | - Ericka N L'Abbé
- Department of Anatomy, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | - Kyra E Stull
- Department of Anatomy, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
- Department of Anthropology, University of Nevada, Reno, USA
| |
Collapse
|
4
|
Pollard RD, Wilkerson MD, Rajagopal PS. Identification of germline population variants misclassified as cancer-associated somatic variants. Front Med (Lausanne) 2024; 11:1361317. [PMID: 38572163 PMCID: PMC10987807 DOI: 10.3389/fmed.2024.1361317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Databases used for clinical interpretation in oncology rely on genetic data derived primarily from patients of European ancestry, leading to biases in cancer genetics research and clinical practice. One practical issue that arises in this context is the potential misclassification of multi-ancestral population variants as tumor-associated because they are not represented in reference genomes against which tumor sequencing data is aligned. Methods To systematically find misclassified variants, we compared somatic variants in census genes from the Catalogue of Somatic Mutations in Cancer (COSMIC) V99 with multi-ancestral population variants from the Genome Aggregation Databases' Linkage Disequilibrium (GnomAD). By comparing genomic coordinates, reference, and alternate alleles, we could identify misclassified variants in genes associated with cancer. Results We found 192 of 208 genes in COSMIC's cancer-associated census genes (92.31%) to be associated with variant misclassifications. Among the 1,906,732 variants in COSMIC, 6,957 variants (0.36%) aligned with normal population variants in GnomAD, concerning for misclassification. The African / African American ancestral population included the greatest number of misclassified variants and also had the greatest number of unique misclassified variants. Conclusion The direct, systematic comparison of variants from COSMIC for co-occurrence in GnomAD supports a more accurate interpretation of tumor sequencing data and reduces bias related to genomic ancestry.
Collapse
Affiliation(s)
- Rebecca D. Pollard
- Maret School, Washington, DC, United States
- Metis Foundation, San Antonio, TX, United States
| | - Matthew D. Wilkerson
- Center for Military Precision Health, Uniformed Services University, Bethesda, MD, United States
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Padma Sheila Rajagopal
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
5
|
Cotter DJ, Webster TH, Wilson MA. Genomic and demographic processes differentially influence genetic variation across the human X chromosome. PLoS One 2023; 18:e0287609. [PMID: 37910456 PMCID: PMC10619814 DOI: 10.1371/journal.pone.0287609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/08/2023] [Indexed: 11/03/2023] Open
Abstract
Many forces influence genetic variation across the genome including mutation, recombination, selection, and demography. Increased mutation and recombination both lead to increases in genetic diversity in a region-specific manner, while complex demographic patterns shape patterns of diversity on a more global scale. While these processes act across the entire genome, the X chromosome is particularly interesting because it contains several distinct regions that are subject to different combinations and strengths of these forces: the pseudoautosomal regions (PARs) and the X-transposed region (XTR). The X chromosome thus can serve as a unique model for studying how genetic and demographic forces act in different contexts to shape patterns of observed variation. We therefore sought to explore diversity, divergence, and linkage disequilibrium in each region of the X chromosome using genomic data from 26 human populations. Across populations, we find that both diversity and substitution rate are consistently elevated in PAR1 and the XTR compared to the rest of the X chromosome. In contrast, linkage disequilibrium is lowest in PAR1, consistent with the high recombination rate in this region, and highest in the region of the X chromosome that does not recombine in males. However, linkage disequilibrium in the XTR is intermediate between PAR1 and the autosomes, and much lower than the non-recombining X. Finally, in addition to these global patterns, we also observed variation in ratios of X versus autosomal diversity consistent with population-specific evolutionary history as well. While our results were generally consistent with previous work, two unexpected observations emerged. First, our results suggest that the XTR does not behave like the rest of the recombining X and may need to be evaluated separately in future studies. Second, the different regions of the X chromosome appear to exhibit unique patterns of linked selection across different human populations. Together, our results highlight profound regional differences across the X chromosome, simultaneously making it an ideal system for exploring the action of evolutionary forces as well as necessitating its careful consideration and treatment in genomic analyses.
Collapse
Affiliation(s)
- Daniel J. Cotter
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Timothy H. Webster
- Department of Anthropology, University of Utah, Salt Lake City, UT, United States of America
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
6
|
Takeda Y, Hyslop L, Choudhary M, Robertson F, Pyle A, Wilson I, Santibanez‐Koref M, Turnbull D, Herbert M, Hudson G. Feasibility and impact of haplogroup matching for mitochondrial replacement treatment. EMBO Rep 2023; 24:e54540. [PMID: 37589175 PMCID: PMC10561356 DOI: 10.15252/embr.202154540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023] Open
Abstract
Mitochondrial replacement technology (MRT) aims to reduce the risk of serious disease in children born to women who carry pathogenic mitochondrial DNA (mtDNA) variants. By transplanting nuclear genomes from eggs of an affected woman to enucleated eggs from an unaffected donor, MRT creates new combinations of nuclear and mtDNA. Based on sets of shared sequence variants, mtDNA is classified into ~30 haplogroups. Haplogroup matching between egg donors and women undergoing MRT has been proposed as a means of reducing mtDNA sequence divergence between them. Here we investigate the potential effect of mtDNA haplogroup matching on clinical delivery of MRT and on mtDNA sequence divergence between donor/recipient pairs. Our findings indicate that haplogroup matching would limit the availability of egg donors such that women belonging to rare haplogroups may have to wait > 4 years for treatment. Moreover, we find that intra-haplogroup sequence variation is frequently within the range observed between randomly matched mtDNA pairs. We conclude that haplogroup matching would restrict the availability of MRT, without necessarily reducing mtDNA sequence divergence between donor/recipient pairs.
Collapse
Affiliation(s)
- Yuko Takeda
- Wellcome Centre for Mitochondrial Research, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Louise Hyslop
- Newcastle Fertility Centre, Biomedicine West WingCentre for LifeNewcastle upon TyneUK
| | - Meenakshi Choudhary
- Newcastle Fertility Centre, Biomedicine West WingCentre for LifeNewcastle upon TyneUK
| | - Fiona Robertson
- Wellcome Centre for Mitochondrial ResearchInstitute of Clinical Translational Research, Newcastle UniversityNewcastle upon TyneUK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial ResearchInstitute of Clinical Translational Research, Newcastle UniversityNewcastle upon TyneUK
| | - Ian Wilson
- Biosciences Institute, Centre for LifeNewcastle upon TyneUK
| | | | - Douglass Turnbull
- Wellcome Centre for Mitochondrial ResearchInstitute of Clinical Translational Research, Newcastle UniversityNewcastle upon TyneUK
| | - Mary Herbert
- Wellcome Centre for Mitochondrial Research, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Newcastle Fertility Centre, Biomedicine West WingCentre for LifeNewcastle upon TyneUK
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneVICAustralia
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
7
|
Onyango CO, Cheng Q, Munde EO, Raballah E, Anyona SB, McMahon BH, Lambert CG, Onyango PO, Schneider KA, Perkins DJ, Ouma C. Human NCR3 gene variants rs2736191 and rs11575837 alter longitudinal risk for development of pediatric malaria episodes and severe malarial anemia. BMC Genomics 2023; 24:542. [PMID: 37704951 PMCID: PMC10498606 DOI: 10.1186/s12864-023-09565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/08/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Plasmodium falciparum malaria is a leading cause of pediatric morbidity and mortality in holoendemic transmission areas. Severe malarial anemia [SMA, hemoglobin (Hb) < 5.0 g/dL in children] is the most common clinical manifestation of severe malaria in such regions. Although innate immune response genes are known to influence the development of SMA, the role of natural killer (NK) cells in malaria pathogenesis remains largely undefined. As such, we examined the impact of genetic variation in the gene encoding a primary NK cell receptor, natural cytotoxicity-triggering receptor 3 (NCR3), on the occurrence of malaria and SMA episodes over time. METHODS Susceptibility to malaria, SMA, and all-cause mortality was determined in carriers of NCR3 genetic variants (i.e., rs2736191:C > G and rs11575837:C > T) and their haplotypes. The prospective observational study was conducted over a 36 mos. follow-up period in a cohort of children (n = 1,515, aged 1.9-40 mos.) residing in a holoendemic P. falciparum transmission region, Siaya, Kenya. RESULTS Poisson regression modeling, controlling for anemia-promoting covariates, revealed a significantly increased risk of malaria in carriers of the homozygous mutant allele genotype (TT) for rs11575837 after multiple test correction [Incidence rate ratio (IRR) = 1.540, 95% CI = 1.114-2.129, P = 0.009]. Increased risk of SMA was observed for rs2736191 in children who inherited the CG genotype (IRR = 1.269, 95% CI = 1.009-1.597, P = 0.041) and in the additive model (presence of 1 or 2 copies) (IRR = 1.198, 95% CI = 1.030-1.393, P = 0.019), but was not significant after multiple test correction. Modeling of the haplotypes revealed that the CC haplotype had a significant additive effect for protection against SMA (i.e., reduced risk for development of SMA) after multiple test correction (IRR = 0.823, 95% CI = 0.711-0.952, P = 0.009). Although increased susceptibility to SMA was present in carriers of the GC haplotype (IRR = 1.276, 95% CI = 1.030-1.581, P = 0.026) with an additive effect (IRR = 1.182, 95% CI = 1.018-1.372, P = 0.029), the results did not remain significant after multiple test correction. None of the NCR3 genotypes or haplotypes were associated with all-cause mortality. CONCLUSIONS Variation in NCR3 alters susceptibility to malaria and SMA during the acquisition of naturally-acquired malarial immunity. These results highlight the importance of NK cells in the innate immune response to malaria.
Collapse
Affiliation(s)
- Clinton O Onyango
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya
| | - Qiuying Cheng
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Elly O Munde
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya
- Department of Clinical Medicine, School of Health Science, Kirinyaga University, Kerugoya, Kenya
| | - Evans Raballah
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya
- Department of Medical Laboratory Sciences, School of Public Health Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Samuel B Anyona
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, Kenya
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Christophe G Lambert
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Patrick O Onyango
- Department of Zoology, School of Physical and Biological Sciences, Maseno University, Maseno, Kenya
| | - Kristan A Schneider
- Department Applied Computer- and Bio-Sciences, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Douglas J Perkins
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya.
- Center for Global Health, Internal Medicine, University of New Mexico, Albuquerque, NM, USA.
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya.
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya.
| |
Collapse
|
8
|
Lee H, Kim J, Lee J. Benchmarking datasets for assembly-based variant calling using high-fidelity long reads. BMC Genomics 2023; 24:148. [PMID: 36973656 PMCID: PMC10045170 DOI: 10.1186/s12864-023-09255-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Recent advances in long-read sequencing technologies have enabled accurate identification of all genetic variants in individuals or cells; this procedure is known as variant calling. However, benchmarking studies on variant calling using different long-read sequencing technologies are still lacking. RESULTS We used two Caenorhabditis elegans strains to measure several variant calling metrics. These two strains shared true-positive genetic variants that were introduced during strain generation. In addition, both strains contained common and distinguishable variants induced by DNA damage, possibly leading to false-positive estimation. We obtained accurate and noisy long reads from both strains using high-fidelity (HiFi) and continuous long-read (CLR) sequencing platforms, and compared the variant calling performance of the two platforms. HiFi identified a 1.65-fold higher number of true-positive variants on average, with 60% fewer false-positive variants, than CLR did. We also compared read-based and assembly-based variant calling methods in combination with subsampling of various sequencing depths and demonstrated that variant calling after genome assembly was particularly effective for detection of large insertions, even with 10 × sequencing depth of accurate long-read sequencing data. CONCLUSIONS By directly comparing the two long-read sequencing technologies, we demonstrated that variant calling after genome assembly with 10 × or more depth of accurate long-read sequencing data allowed reliable detection of true-positive variants. Considering the high cost of HiFi sequencing, we herein propose appropriate methodologies for performing cost-effective and high-quality variant calling: 10 × assembly-based variant calling. The results of the present study may facilitate the development of methods for identifying all genetic variants at the population level.
Collapse
Affiliation(s)
- Hyunji Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826 Korea
- Department of Biological Sciences, Seoul National University, Seoul, 08826 Korea
| | - Jun Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826 Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826 Korea
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134 Korea
| | - Junho Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826 Korea
- Department of Biological Sciences, Seoul National University, Seoul, 08826 Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
9
|
Sydney C, Nandlal L, Haffejee F, Kathoon J, Naicker T. Lipid profiles of HIV-infected diabetic patients. JOURNAL OF ENDOCRINOLOGY, METABOLISM AND DIABETES OF SOUTH AFRICA 2023. [DOI: 10.1080/16089677.2023.2178157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Clive Sydney
- Optics & Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Louansha Nandlal
- Optics & Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Firoza Haffejee
- Department of Basic Medical Sciences, Durban University of Technology, Durban, South Africa
| | - Jamila Kathoon
- Directorate for Research and Postgraduate Support, Durban University of Technology, Durban, South Africa
| | - Thajasvarie Naicker
- Optics & Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Host susceptibility genes of asymptomatic malaria from South Central Timor, Eastern Indonesia. Parasitol Res 2023; 122:61-75. [PMID: 36284023 DOI: 10.1007/s00436-022-07696-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/14/2022] [Indexed: 01/11/2023]
Abstract
Host genetic factors, such as the genes for various cytokines and adhesion molecules, play a significant role in determining susceptibility to malaria infection. Polymorphisms in host genes have been correlated with malaria infection in both African and Asian regions. The purpose of this study was to investigate the association between both cytokine and adhesion molecule genotypes with susceptibility to malaria infection in humans. Ten cytokine polymorphism loci (IL4 + 33, IL4-590, IL6-174, IL10-1082, IL10-1035, IL12p40, TNF-238, TNF-308, TNF-1031, and TNF-β) and three adhesion molecule polymorphism loci (CD36 exon 10, ICAM-1 Kilifi, and ICAM-1 exon 6) were genotyped using PCR-RFLP analysis. We conducted this study on 178 asymptomatic malaria subjects and 122 uninfected subjects. Results showed that certain CD36 exon 10 and IL10-3575 polymorphisms were associated with asymptomatic infection. The heterozygous (GT) and homozygous (GG) genotypes for CD36 exon 10 are associated with an increased risk of malaria infection. On the other hand, the homozygous genotype (AA) for IL10-3575 reduced the risk of asymptomatic malaria infection. No significant differences were found for the other polymorphisms studied. We also found that a polymorphism in CD36 exon 10 was strongly associated with asymptomatic malaria caused specifically by Plasmodium vivax. These findings suggest that the G allele of CD36 exon 10 is associated with an increased risk of asymptomatic malaria infection. On the other hand, the genotype AA for IL10-3575 was associated with a reduced risk of malaria infection.
Collapse
|
11
|
Paiva SG, Rivara AC, de Castro Nóbrega M, de Cesare Parmesan Toledo R, de Nazaré Klautau‐Guimarães M, Madrigal L, de Oliveira SF. Cardiovascular risk factors across different levels of urbanization in Brazilian Afro‐derived communities (
quilombos
). Am J Hum Biol 2022; 35:e23839. [PMID: 36426735 DOI: 10.1002/ajhb.23839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The frequency of cardiovascular diseases has increased throughout the world. People of African descent have been disproportionately affected, particularly if they reside in urban settings. In this work, we evaluate risk factors associated with cardiovascular diseases (CVD) and other chronic diseases in rural and urban Afro-derived communities (quilombo) in Central Brazil. We also determine if there are associations between the frequency of CVD risk factors, sex, and proximity to urban environments. METHODS Through a cross-sectional study of participants (n = 347) within three Brazilian Afro-derived communities: Kalunga (a semi-isolated rural community; n = 214), Cocalinho (a non-isolated rural village; n = 70), and Pé do Morro (an urban community; n = 63), we collected data regarding chronic disease (i.e., CVD, diabetes, and hypertension) risk through questionnaires, anthropometrics, blood pressure, and blood samples using standard protocols. Differences between variables were tested by the Chi-square test of Pearson and Fisher's Exact Test, independent sample t-tests, analysis of variances, and Kruskal-Wallis tests (p ≤ .05). RESULTS The prevalence of hypertension, overweight, obesity, and other cardiovascular risk factors were higher in the non-isolated rural and urban communities than in the semi-isolated rural community. We found significant sex differences in the distribution of the CVD risk factors, with all occurring at a higher frequency among females. CONCLUSIONS Our findings indicate that Brazilian Afro-derived communities are currently going through an epidemiological transition. The urban lifestyle and its environmental factors are likely contributing to an escalation in cardio-metabolic disease risk. However, the magnitude of this transition differentially impacts the sexes, as females suffer a higher frequency of risk factors compared to males.
Collapse
Affiliation(s)
- Sabrina Guimarães Paiva
- Instituto de Ciências Biológicas Universidade de Brasília Brasília Distrito Federal Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Tocantins Araguaína Tocantins Brazil
- Programa de Pós‐Graduação (Mestrado) em Demandas Populares e Dinâmicas Regionais (PPGDire) Universidade Federal do Norte do Tocantins Araguaína Tocantins Brazil
| | - Anna C. Rivara
- Department of Chronic Disease Epidemiology, School of Public Health Yale University New Haven Connecticut USA
| | - Matheus de Castro Nóbrega
- Instituto de Ciências Biológicas Universidade de Brasília Brasília Distrito Federal Brazil
- Programa de Pós‐Graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | | | | | - Lorena Madrigal
- Department of Anthropology University of South Florida Tampa Florida USA
| | | |
Collapse
|
12
|
Sudi SM, Kabbashi S, Roomaney IA, Aborass M, Chetty M. The genetic determinants of oral diseases in Africa: The gaps should be filled. FRONTIERS IN ORAL HEALTH 2022; 3:1017276. [PMID: 36304994 PMCID: PMC9593064 DOI: 10.3389/froh.2022.1017276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Oral diseases are a major health concern and are among the most prevalent diseases globally. This problem is becoming more prominent in the rapidly growing populations of Africa. It is well documented that Africa exhibits the most diverse genetic make-up in the world. However, little work has been conducted to understand the genetic basis of oral diseases in Africans. Oral health is often neglected and receives low prioritisation from funders and governments. The genetic determinants of highly prevalent oral diseases such as dental caries and periodontal disease, and regionally prevalent conditions such as oral cancer and NOMA, are largely under-researched areas despite numerous articles alluding to a high burden of these diseases in African populations. Therefore, this review aims to shed light on the significant gaps in research on the genetic and genomic aspects of oral diseases in African populations and highlights the urgent need for evidence-based dentistry, in tandem with the development of the dentist/scientist workforce.
Collapse
Affiliation(s)
| | - Salma Kabbashi
- Craniofacial Biology, University of the Western Cape, Cape Town, South Africa
| | | | | | | |
Collapse
|
13
|
Korunes KL, Soares-Souza GB, Bobrek K, Tang H, Araújo II, Goldberg A, Beleza S. Sex-biased admixture and assortative mating shape genetic variation and influence demographic inference in admixed Cabo Verdeans. G3 (BETHESDA, MD.) 2022; 12:jkac183. [PMID: 35861404 PMCID: PMC9526050 DOI: 10.1093/g3journal/jkac183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022]
Abstract
Genetic data can provide insights into population history, but first, we must understand the patterns that complex histories leave in genomes. Here, we consider the admixed human population of Cabo Verde to understand the patterns of genetic variation left by social and demographic processes. First settled in the late 1400s, Cabo Verdeans are admixed descendants of Portuguese colonizers and enslaved West African people. We consider Cabo Verde's well-studied historical record alongside genome-wide SNP data from 563 individuals from 4 regions within the archipelago. We use genetic ancestry to test for patterns of nonrandom mating and sex-specific gene flow, and we examine the consequences of these processes for common demographic inference methods and genetic patterns. Notably, multiple population genetic tools that assume random mating underestimate the timing of admixture, but incorporating nonrandom mating produces estimates more consistent with historical records. We consider how admixture interrupts common summaries of genomic variation such as runs of homozygosity. While summaries of runs of homozygosity may be difficult to interpret in admixed populations, differentiating runs of homozygosity by length class shows that runs of homozygosity reflect historical differences between the islands in their contributions from the source populations and postadmixture population dynamics. Finally, we find higher African ancestry on the X chromosome than on the autosomes, consistent with an excess of European males and African females contributing to the gene pool. Considering these genomic insights into population history in the context of Cabo Verde's historical record, we can identify how assumptions in genetic models impact inference of population history more broadly.
Collapse
Affiliation(s)
| | | | - Katherine Bobrek
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Isabel Inês Araújo
- Faculdade de Ciências e Tecnologia, Universidade de Cabo Verde (Uni-CV), Praia, Ilha de Santiago CP 379C, Cabo Verde
| | - Amy Goldberg
- Evolutionary Anthropology, Duke University, Durham, NC 27705, USA
| | - Sandra Beleza
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
14
|
Osman A, Jonasson J. Cross-ethnic analysis of common gene variants in hemostasis show lopsided representation of global populations in genetic databases. BMC Med Genomics 2022; 15:69. [PMID: 35337356 PMCID: PMC8957123 DOI: 10.1186/s12920-022-01220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/21/2022] [Indexed: 11/12/2022] Open
Abstract
A majority of studies reporting human genetic variants were performed in populations of European ancestry whereas other global populations, and particularly many ethnolinguistic groups in other continents, are heavily underrepresented in these studies. To investigate the extent of this disproportionate representation of global populations concerning variants of significance to thrombosis and hemostasis, 845 single nucleotide polymorphisms (SNPs) in and around 34 genes associated with thrombosis and hemostasis and included in the commercial Axiom Precision Medicine Research Array (PMRA) were evaluated, using gene frequencies in 3 African (Somali and Luhya in East Africa, and Yoruba in West Africa) and 14 non-African (admixed American, East Asian, European, South Asian, and sub-groups) populations. Among the populations studied, Europeans were observed to be the best represented population by the hemostatic SNPs included in the PMRA. The European population also presented the largest number of common pharmacogenetic and pathogenic hemostatic variants reported in the ClinVar database. The number of such variants decreased the farther the genetic distance a population was from Europeans, with Yoruba and East Asians presenting the least number of clinically significant hemostatic SNPs in ClinVar while also being the two genetically most distinct populations from Europeans among the populations compared. Current study shows the lopsided representation of global populations as regards to hemostatic genetic variants listed in different commercial SNP arrays, such as the PMRA, and reported in genetic databases while also underlining the importance of inclusion of non-European ethnolinguistic populations in genomics studies designed to discover variants of significance to bleeding and thrombotic disorders.
Collapse
Affiliation(s)
- Abdimajid Osman
- Department of Clinical Chemistry, University Hospital in Linköping, Ing. 64, Plan 11, 581 85, Linköping, Sweden. .,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Jon Jonasson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Clinical Genetics, University Hospital in Linköping, Linköping, Sweden
| |
Collapse
|
15
|
Boujemaa M, Mighri N, Chouchane L, Boubaker MS, Abdelhak S, Boussen H, Hamdi Y. Health influenced by genetics: A first comprehensive analysis of breast cancer high and moderate penetrance susceptibility genes in the Tunisian population. PLoS One 2022; 17:e0265638. [PMID: 35333900 PMCID: PMC8956157 DOI: 10.1371/journal.pone.0265638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Abstract
Significant advances have been made to understand the genetic basis of breast cancer. High, moderate and low penetrance variants have been identified with inter-ethnic variability in mutation frequency and spectrum. Genome wide association studies (GWAS) are widely used to identify disease-associated SNPs. Understanding the functional impact of these risk-SNPs will help the translation of GWAS findings into clinical interventions. Here we aim to characterize the genetic patterns of high and moderate penetrance breast cancer susceptibility genes and to assess the functional impact of non-coding SNPs. We analyzed BRCA1/2, PTEN, STK11, TP53, ATM, BRIP1, CHEK2 and PALB2 genotype data obtained from 135 healthy participants genotyped using Affymetrix Genome-Wide Human SNP-Array 6.0. Haplotype analysis was performed using Haploview.V4.2 and PHASE.V2.1. Population structure and genetic differentiation were assessed using principal component analysis (PCA) and fixation index (FST). Functional annotation was performed using In Silico web-based tools including RegulomeDB and VARAdb. Haplotype analysis showed distinct LD patterns with high levels of recombination and haplotype blocks of moderate to small size. Our findings revealed also that the Tunisian population tends to have a mixed origin with European, South Asian and Mexican footprints. Functional annotation allowed the selection of 28 putative regulatory variants. Of special interest were BRCA1_ rs8176318 predicted to alter the binding sites of a tumor suppressor miRNA hsa-miR-149 and PALB2_ rs120963 located in tumorigenesis-associated enhancer and predicted to strongly affect the binding of P53. Significant differences in allele frequencies were observed with populations of African and European ancestries for rs8176318 and rs120963 respectively. Our findings will help to better understand the genetic basis of breast cancer by guiding upcoming genome wide studies in the Tunisian population. Putative functional SNPs may be used to develop an efficient polygenic risk score to predict breast cancer risk leading to better disease prevention and management.
Collapse
Affiliation(s)
- Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, United States of America
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
16
|
Bitanihirwe B, Ssewanyana D, Ddumba-Nyanzi I. Pacing Forward in the Face of Fragility: Lessons From African Institutions and Governments' Response to Public Health Emergencies. Front Public Health 2021; 9:714812. [PMID: 34900886 PMCID: PMC8655676 DOI: 10.3389/fpubh.2021.714812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Africa is home to 54 United Nation member states, each possessing a wealth of ethno-cultural, physiographic, and economic diversity. While Africa is credited as having the youngest population in the world, it also exhibits a unique set of “unfortunate realties” ranging from famine and poverty to volatile politics, conflicts, and diseases. These unfortunate realities all converge around social inequalities in health, that are compounded by fragile healthcare systems and a lack of political will by the continent's leaders to improve smart investment and infrastructure planning for the benefit of its people. Noteworthy are the disparities in responsive approaches to crises and emergencies that exist across African governments and institutions. In this context, the present article draws attention to 3 distinct public health emergencies (PHEs) that have occurred in Africa since 2010. We focus on the 2013–2016 Ebola outbreak in Western Africa, the ongoing COVID-19 pandemic which continues to spread throughout the continent, and the destructive locust swarms that ravaged crops across East Africa in 2020. Our aim is to provide an integrated perspective on how governments and institutions handled these PHEs and how scientific and technological innovation, along with educational response played a role in the decision-making process. We conclude by touching on public health policies and strategies to address the development of sustainable health care systems with the potential to improve the health and well-being of the African people.
Collapse
Affiliation(s)
- Byron Bitanihirwe
- Humanitarian and Conflict Response Institute, University of Manchester, Manchester, United Kingdom
| | - Derrick Ssewanyana
- Alliance for Health Development, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | | |
Collapse
|
17
|
Marina H, Chitneedi P, Pelayo R, Suárez-Vega A, Esteban-Blanco C, Gutiérrez-Gil B, Arranz JJ. Study on the concordance between different SNP-genotyping platforms in sheep. Anim Genet 2021; 52:868-880. [PMID: 34515357 DOI: 10.1111/age.13139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Different SNP genotyping technologies are commonly used in multiple studies to perform QTL detection, genotype imputation, and genomic predictions. Therefore, genotyping errors cannot be ignored, as they can reduce the accuracy of different procedures applied in genomic selection, such as genomic imputation, genomic predictions, and false-positive results in genome-wide association studies. Currently, whole-genome resequencing (WGR) also offers the potential for variant calling analysis and high-throughput genotyping. WGR might overshadow array-based genotyping technologies due to the larger amount and precision of the genomic information provided; however, its comparatively higher price per individual still limits its use in larger populations. Thus, the objective of this work was to evaluate the accuracy of the two most popular SNP-chip technologies, namely, Affymetrix and Illumina, for high-throughput genotyping in sheep considering high-coverage WGR datasets as references. Analyses were performed using two reference sheep genome assemblies, the popular Oar_v3.1 reference genome and the latest available version Oar_rambouillet_v1.0. Our results demonstrate that the genotypes from both platforms are suggested to have high concordance rates with the genotypes determined from reference WGR datasets (96.59% and 99.51% for Affymetrix and Illumina technologies, respectively). The concordance results provided in the current study can pinpoint low reproducible markers across multiple platforms used for sheep genotyping data. Comparing results using two reference genome assemblies also informs how genome assembly quality can influence genotype concordance rates among different genotyping platforms. Moreover, we describe an efficient pipeline to test the reliability of markers included in sheep SNP-chip panels against WGR datasets available on public databases. This pipeline may be helpful for discarding low-reliability markers before exploiting genomic information for gene mapping analyses or genomic prediction.
Collapse
Affiliation(s)
- H Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - P Chitneedi
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - R Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - A Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - C Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - B Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - J J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| |
Collapse
|
18
|
Stein CM, Benchek P, Bartlett J, Igo RP, Sobota RS, Chervenak K, Mayanja-Kizza H, von Reyn CF, Lahey T, Bush WS, Boom WH, Scott WK, Marsit C, Sirugo G, Williams SM. Methylome-wide Analysis Reveals Epigenetic Marks Associated With Resistance to Tuberculosis in Human Immunodeficiency Virus-Infected Individuals From East Africa. J Infect Dis 2021; 224:695-704. [PMID: 33400784 DOI: 10.1093/infdis/jiaa785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is the most deadly infectious disease globally and is highly prevalent in the developing world. For individuals infected with both Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV), the risk of active TB is 10% or more annually. Previously, we identified in a genome-wide association study (GWAS) a region on chromosome 5 associated with resistance to TB, which included epigenetic marks that could influence gene regulation. We hypothesized that HIV-infected individuals exposed to Mtb who remain disease free carry epigenetic changes that strongly protect them from active TB. METHODS We conducted a methylome-wide study in HIV-infected, TB-exposed cohorts from Uganda and Tanzania and integrated data from our GWAS. RESULTS We identified 3 regions of interest that included markers that were differentially methylated between TB cases and controls with latent TB infection: chromosome 1 (RNF220, P = 4 × 10-5), chromosome 2 (between COPS8 and COL6A3, P = 2.7 × 10-5), and chromosome 5 (CEP72, P = 1.3 × 10-5). These methylation results co-localized with associated single-nucleotide polymorphisms (SNPs), methylation QTLs, and methylation × SNP interaction effects. These markers were in regions with regulatory markers for cells involved in TB immunity and/or lung. CONCLUSIONS Epigenetic regulation is a potential biologic factor underlying resistance to TB in immunocompromised individuals that can act in conjunction with genetic variants.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Penelope Benchek
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jacquelaine Bartlett
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rafal S Sobota
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Keith Chervenak
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Harriet Mayanja-Kizza
- Department of Medicine and Mulago Hospital, School of Medicine, Makerere University, Kampala, Uganda
| | - C Fordham von Reyn
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Timothy Lahey
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - W Henry Boom
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - William K Scott
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Carmen Marsit
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Giorgio Sirugo
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Analysis of HLA gene polymorphisms in East Africans reveals evidence of gene flow in two Semitic populations from Sudan. Eur J Hum Genet 2021; 29:1259-1271. [PMID: 33753913 PMCID: PMC8384866 DOI: 10.1038/s41431-021-00845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/28/2020] [Accepted: 02/25/2021] [Indexed: 02/02/2023] Open
Abstract
Sudan, a northeastern African country, is characterized by high levels of cultural, linguistic, and genetic diversity, which is believed to be affected by continuous migration from neighboring countries. Consistent with such demographic effect, genome-wide SNP data revealed a shared ancestral component among Sudanese Afro-Asiatic speaking groups and non-African populations, mainly from West Asia. Although this component is shared among all Afro-Asiatic speaking groups, the extent of this sharing in Semitic groups, such as Sudanese Arab, is still unknown. Using genotypes of six polymorphic human leukocyte antigen (HLA) genes (i.e., HLA-A, -C, -B, -DRB1, -DQB1, and -DPB1), we examined the genetic structure of eight East African ethnic groups with origins in Sudan, South Sudan, and Ethiopia. We identified informative HLA alleles using principal component analysis, which revealed that the two Semitic groups (Gaalien and Shokrya) constituted a distinct cluster from the other Afro-Asiatic speaking groups in this study. The HLA alleles that distinguished Semitic Arabs co-exist in the same extended HLA haplotype, and those alleles are in strong linkage disequilibrium. Interestingly, we find the four-locus haplotype "C*12:02-B*52:01-DRB1*15:02-DQB1*06:01" exclusively in non-African populations and it is widely spread across Asia. The identification of this haplotype suggests a gene flow from Asia, and likely these haplotypes were brought to Africa through back migration from the Near East. These findings will be of interest to biomedical and anthropological studies that examine the demographic history of northeast Africa.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To review susceptibility genes and how they could integrate in systemic sclerosis (SSc) pathophysiology providing insight and perspectives for innovative therapies. RECENT FINDINGS SSc is a rare disease characterized by vasculopathy, dysregulated immunity and fibrosis. Genome-Wide association studies and ImmunoChip studies performed in recent years revealed associated genetic variants mainly localized in noncoding regions and mostly affecting the immune system of SSc patients. Gene variants were described in innate immunity (IRF5, IRF7 and TLR2), T and B cells activation (CD247, TNFAIP3, STAT4 and BLK) and NF-κB pathway (TNFAIP3 and TNIP1) confirming previous biological data. In addition to impacting immune response, CSK, DDX6, DNASE1L3 and GSDMA/B could also act in the vascular and fibrotic components of SSc. SUMMARY Although genetic studies highlighted the dysregulated immune response in SSc, future research must focus on a deeper characterization of these variants with determination of their functional effects. Moreover, the role of these genes or others on specific vasculopathy and fibrosis would provide insight. Establishment of polygenic score or integrated genome approaches could identify new targets specific of SSc clinical features. This will allow physicians to propose new therapies to SSc patients.
Collapse
|
21
|
Thaler DS. Is Global Microbial Biodiversity Increasing, Decreasing, or Staying the Same? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.565649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Animal and plant biodiversity is decreasing. In contrast, the global direction and the pace of change in microbial, including viral, biodiversity is unknown. Important niches for microbial diversity occur in highly specific associations with plants and animals, and these niches are lost as hosts become extinct. The taxonomic diversity of human gut bacteria is reported to be decreasing. On the other hand, SARS-CoV-2 variation is increasing. Where microbes are concerned, Darwin’s “tangled bank” of interdependent organisms may be composed mostly of other microbes. There is the likelihood that as some classes of microbes become extinct, others evolve and diversify. A better handle on all processes that affect microbial biodiversity and their net balance is needed. Lack of insight into the dynamics of evolution of microbial biodiversity is arguably the single most profound and consequential unknown with regard to human knowledge of the biosphere. If some or all parts of microbial diversity are relentlessly increasing, then survey approaches may be too slow to ever catch up. New approaches, including single-molecule or single-cell sequencing in populations, as well as focused attention on modulators and vectors of vertical and horizontal evolution may offer more direct insights into some aspects of the pace of microbial evolution.
Collapse
|
22
|
Kasaie P, Weir B, Schnure M, Dun C, Pennington J, Teng Y, Wamai R, Mutai K, Dowdy D, Beyrer C. Integrated screening and treatment services for HIV, hypertension and diabetes in Kenya: assessing the epidemiological impact and cost-effectiveness from a national and regional perspective. J Int AIDS Soc 2021; 23 Suppl 1:e25499. [PMID: 32562353 PMCID: PMC7305418 DOI: 10.1002/jia2.25499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/28/2020] [Accepted: 04/03/2020] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION As people with HIV age, prevention and management of other communicable and non-communicable diseases (NCDs) will become increasingly important. Integration of screening and treatment for HIV and NCDs is a promising approach for addressing the dual burden of these diseases. The aim of this study was to assess the epidemiological impact and cost-effectiveness of a community-wide integrated programme for screening and treatment of HIV, hypertension and diabetes in Kenya. METHODS Coupling a microsimulation of cardiovascular diseases (CVDs) with a population-based model of HIV dynamics (the Spectrum), we created a hybrid HIV/CVD model. Interventions were modelled from year 2019 (baseline) to 2023, and population was followed to 2033. Analyses were carried at a national level and for three selected regions (Nairobi, Coast and Central). RESULTS At a national level, the model projected 7.62 million individuals living with untreated hypertension, 692,000 with untreated diabetes and 592,000 individuals in need of ART in year 2018. Improving ART coverage from 68% at baseline to 88% in 2033 reduced HIV incidence by an estimated 64%. Providing NCD treatment to 50% of diagnosed cases from 2019 to 2023 and maintaining them on treatment afterwards could avert 116,000 CVD events and 43,600 CVD deaths in Kenya over the next 15 years. At a regional level, the estimated impact of expanded HIV services was highest in Nairobi region (averting 42,100 HIV infections compared to baseline) while Central region experienced the highest impact of expanded NCD treatment (with a reduction of 22,200 CVD events). The integrated HIV/NCD intervention could avert 7.76 million disability-adjusted-life-years (DALYs) over 15 years at an estimated cost of $6.68 billion ($445.27 million per year), or $860.30 per DALY averted. At a cost-effectiveness threshold of $2,010 per DALY averted, the probability of cost-effectiveness was 0.92, ranging from 0.71 in Central to 0.92 in Nairobi region. CONCLUSIONS Integrated screening and treatment of HIV and NCDs can be a cost-effective and impactful approach to save lives of people with HIV in Kenya, although important variation exists at the regional level. Containing the substantial costs required for scale-up will be critical for management of HIV and NCDs on a national scale.
Collapse
Affiliation(s)
- Parastu Kasaie
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brian Weir
- Department of Health, Behavior and Society, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Melissa Schnure
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Chen Dun
- Department of Health, Behavior and Society, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeff Pennington
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yu Teng
- Avenir Health, Glastonbury, CT, USA
| | - Richard Wamai
- Department of Cultures, Societies and Global Studies, Integrated Initiative for Global Health, Northeastern University, Boston, MA, USA
| | | | - David Dowdy
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Chris Beyrer
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
23
|
Cole BS, Gudiseva HV, Pistilli M, Salowe R, McHugh CP, Zody MC, Chavali VRM, Ying GS, Moore JH, O'Brien JM. The Role of Genetic Ancestry as a Risk Factor for Primary Open-angle Glaucoma in African Americans. Invest Ophthalmol Vis Sci 2021; 62:28. [PMID: 33605984 PMCID: PMC7900887 DOI: 10.1167/iovs.62.2.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/27/2021] [Indexed: 01/01/2023] Open
Abstract
Purpose POAG is the leading cause of irreversible blindness in African Americans. In this study, we quantitatively assess the association of autosomal ancestry with POAG risk in a large cohort of self-identified African Americans. Methods Subjects recruited to the Primary Open-Angle African American Glaucoma Genetics (POAAGG) study were classified as glaucoma cases or controls by fellowship-trained glaucoma specialists. POAAGG subjects were genotyped using the MEGA Ex array (discovery cohort, n = 3830; replication cohort, n = 2135). Population structure was interrogated using principal component analysis in the context of the 1000 Genomes Project superpopulations. Results The majority of POAAGG samples lie on an axis between African and European superpopulations, with great variation in admixture. Cases had a significantly lower mean value of the ancestral component q0 than controls for both cohorts (P = 6.14-4; P = 3-6), consistent with higher degree of African ancestry. Among POAG cases, higher African ancestry was also associated with thinner central corneal thickness (P = 2-4). Admixture mapping showed that local genetic ancestry was not a significant risk factor for POAG. A polygenic risk score, comprised of 23 glaucoma-associated single nucleotide polymorphisms from the NHGRI-EBI genome-wide association study catalog, was significant in both cohorts (P < 0.001), suggesting that both known POAG single nucleotide polymorphisms and an omnigenic ancestry effect influence POAG risk. Conclusions In sum, the POAAGG study population is very admixed, with a higher degree of African ancestry associated with an increased POAG risk. Further analyses should consider social and environmental factors as possible confounding factors for disease predisposition.
Collapse
Affiliation(s)
- Brian S. Cole
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Harini V. Gudiseva
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Maxwell Pistilli
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca Salowe
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | | | - Michael C. Zody
- New York Genome Center, New York City, New York, United States
| | - Venkata R. M. Chavali
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gui Shuang Ying
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jason H. Moore
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Joan M. O'Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
24
|
Bitanihirwe BKY, Ssewanyana D. The health and economic burden of the coronavirus in sub-Saharan Africa. Glob Health Promot 2020; 28:70-74. [DOI: 10.1177/1757975920977874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The current coronavirus (COVID-19) pandemic continues to overwhelm healthcare systems and to exert a negative influence on the global economy. Of particular concern is the impact of COVID-19 in low-income settings — especially in terms of their capacity to mitigate a surge in COVID-19 cases. Indeed, response measures currently in place to tackle the spread of COVID-19 in geographic regions predominantly consisting of low-income nations, such as Sub-Saharan Africa (SSA), remain tenuous and will require context-appropriate interventions. Control measures to tackle COVID-19 in SSA should therefore be informed through lessons learned from past outbreaks and emergencies on the continent. These lessons will represent a key source of guidance for the strategic implementation and promotion of public health interventions to assist scale-up of COVID-19 case management, infection prevention and control. Importantly, as governments in SSA continue to combat the spread of COVID-19, there will be a need to expand the coverage of social safety net programs and fiscal policy responses to tackle the socio-economic and health impact of COVID-19.
Collapse
Affiliation(s)
- Byron K. Y. Bitanihirwe
- Centre for Global Health, Trinity College, Dublin, Ireland
- Department of Psychology, Trinity College, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Ireland
| | | |
Collapse
|
25
|
Taiwo RO, Ipadeola J, Yusuf T, Fagbohunlu F, Jenfa G, Adebamowo SN, Adebamowo CA. Qualitative study of comprehension of heritability in genomics studies among the Yoruba in Nigeria. BMC Med Ethics 2020; 21:124. [PMID: 33298068 PMCID: PMC7726892 DOI: 10.1186/s12910-020-00567-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With growth of genomics research in Africa, concern has arisen about comprehension and adequacy of informed consent given the highly technical terms used in this field. We therefore decided to study whether there are linguistic and cultural concepts used to communicate heritability of characters, traits and diseases in an indigenous African population. METHODS We conducted Focus Group Discussions among 115 participants stratified by sex, age and socio-economic status and Key Informant Interviews among 25 stakeholders and Key Opinion Leaders among Yoruba living in Ibadan, Nigeria. We used Atlas-ti v.8.3.17 software to analyze the data, using thematic approach. RESULTS The study participants identified several linguistic and cultural concepts including words, proverbs, and aphorisms that are used to describe heritable characters, traits and diseases in their local dialect. These included words that can be appropriated to describe dominant and recessive traits, variations in penetrance and dilution of strength of heritable characteristics by time and inter-marriage. They also suggested that these traits are transmitted by "blood", and specific partner's blood may be stronger than the other regardless of sex. CONCLUSIONS Indigenous Yoruba populations have words and linguistic concepts that describe the heritability of characters, traits and diseases which can be appropriated to improve comprehension and adequacy of informed consent in genomics research. Our methods are openly available and can be used by genomic researchers in other African communities.
Collapse
Affiliation(s)
- Rasheed O Taiwo
- Division of Research Ethics, Center for Bioethics and Research, Ibadan, Nigeria
| | - John Ipadeola
- Division of Research Ethics, Center for Bioethics and Research, Ibadan, Nigeria
| | - Temilola Yusuf
- Division of Research Ethics, Center for Bioethics and Research, Ibadan, Nigeria
| | - Faith Fagbohunlu
- Division of Research Ethics, Center for Bioethics and Research, Ibadan, Nigeria
| | - Gbemisola Jenfa
- Division of Research Ethics, Center for Bioethics and Research, Ibadan, Nigeria
| | - Sally N Adebamowo
- Division of Research Ethics, Center for Bioethics and Research, Ibadan, Nigeria.,Department of Epidemiology and Public Health, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Clement A Adebamowo
- Division of Research Ethics, Center for Bioethics and Research, Ibadan, Nigeria. .,Department of Epidemiology and Public Health, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA. .,Institute of Human Virology, Abuja, Nigeria. .,Institute of Human Virology Building, School of Medicine, University of Maryland, 725 West Lombard Street, Baltimore, MD, 21201, USA.
| | | |
Collapse
|
26
|
Su XZ, Zhang C, Joy DA. Host-Malaria Parasite Interactions and Impacts on Mutual Evolution. Front Cell Infect Microbiol 2020; 10:587933. [PMID: 33194831 PMCID: PMC7652737 DOI: 10.3389/fcimb.2020.587933] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Malaria is the most deadly parasitic disease, affecting hundreds of millions of people worldwide. Malaria parasites have been associated with their hosts for millions of years. During the long history of host-parasite co-evolution, both parasites and hosts have applied pressure on each other through complex host-parasite molecular interactions. Whereas the hosts activate various immune mechanisms to remove parasites during an infection, the parasites attempt to evade host immunity by diversifying their genome and switching expression of targets of the host immune system. Human intervention to control the disease such as antimalarial drugs and vaccination can greatly alter parasite population dynamics and evolution, particularly the massive applications of antimalarial drugs in recent human history. Vaccination is likely the best method to prevent the disease; however, a partially protective vaccine may have unwanted consequences that require further investigation. Studies of host-parasite interactions and co-evolution will provide important information for designing safe and effective vaccines and for preventing drug resistance. In this essay, we will discuss some interesting molecules involved in host-parasite interactions, including important parasite antigens. We also discuss subjects relevant to drug and vaccine development and some approaches for studying host-parasite interactions.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cui Zhang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Deirdre A Joy
- Parasitology and International Programs Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
27
|
K. Rangan G, Raghubanshi A, Chaitarvornkit A, Chandra AN, Gardos R, Munt A, Read MN, Saravanabavan S, Zhang JQ, Wong AT. Current and emerging treatment options to prevent renal failure due to autosomal dominant polycystic kidney disease. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1804859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gopala K. Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Aarya Raghubanshi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Alissa Chaitarvornkit
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Faculty of Engineering, The University of Sydney, Camperdown, Australia
| | - Ashley N. Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | | | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Mark N. Read
- The School of Computer Science and the Westmead Initiative, The University of Sydney, Westmead, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Jennifer Q.J. Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Annette T.Y. Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| |
Collapse
|
28
|
Ali Albsheer MM, Hussien A, Kwiatkowski D, Hamid MMA, Ibrahim ME. The Duffy T-33C is an insightful marker of human history and admixture. Meta Gene 2020; 26:100782. [PMID: 32837914 PMCID: PMC7418637 DOI: 10.1016/j.mgene.2020.100782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/13/2020] [Accepted: 08/08/2020] [Indexed: 01/07/2023] Open
Abstract
A contrasting genotype and allele frequency pattern between Africans and non-Africans in the Duffy (T-33C) locus is reported. Its near fixation in various populations suggest is no longer under natural selection, and that current distribution is possibly a relic of distant extreme selection combined with genetic drift during the out of Africa. We put this difference into the utility to infer the ancestral state of ambiguous loci in different populations.
Collapse
Affiliation(s)
- Musab M Ali Albsheer
- Institute of Endemic Diseases, University of Khartoum, Sudan.,Faculty of Medical Laboratory Sciences, Sinnar University, Sudan
| | - Ayman Hussien
- Institute of Endemic Diseases, University of Khartoum, Sudan
| | | | | | | |
Collapse
|
29
|
Abstract
Malaria has been the pre-eminent cause of early mortality in many parts of the world throughout much of the last five thousand years and, as a result, it is the strongest force for selective pressure on the human genome yet described. Around one third of the variability in the risk of severe and complicated malaria is now explained by additive host genetic effects. Many individual variants have been identified that are associated with malaria protection, but the most important all relate to the structure or function of red blood cells. They include the classical polymorphisms that cause sickle cell trait, α-thalassaemia, G6PD deficiency, and the major red cell blood group variants. More recently however, with improving technology and experimental design, others have been identified that include the Dantu blood group variant, polymorphisms in the red cell membrane protein ATP2B4, and several variants related to the immune response. Characterising how these genes confer their effects could eventually inform novel therapeutic approaches to combat malaria. Nevertheless, all together, only a small proportion of the heritable component of malaria resistance can be explained by the variants described so far, underscoring its complex genetic architecture and the need for continued research.
Collapse
Affiliation(s)
- Silvia N Kariuki
- Department of Epidemiology, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Thomas N Williams
- Department of Epidemiology, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Department of Medicine, Imperial College of Science and Technology, London, UK.
| |
Collapse
|
30
|
Genome-wide analyses disclose the distinctive HLA architecture and the pharmacogenetic landscape of the Somali population. Sci Rep 2020; 10:5652. [PMID: 32221414 PMCID: PMC7101338 DOI: 10.1038/s41598-020-62645-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
African populations are underrepresented in medical genomics studies. For the Somali population, there is virtually no information on genomic markers with significance to precision medicine. Here, we analyzed nearly 900,000 genomic markers in samples collected from 95 unrelated individuals in the North Eastern Somalia. ADMIXTURE program for estimation of individual ancestries revealed a homogenous Somali population. Principal component analysis with PLINK software showed approximately 60% East African and 40% West Eurasian genes in the Somali population, with a close relation to the Cushitic and Semitic speaking Ethiopian populations. We report the unique features of human leukocyte antigens (HLA) in the Somali population, which seem to differentiate from all other neighboring regions compared. Current study identified high prevalence of the diabetes type 1 (T1D) predisposing HLA DR-DQ haplotypes in Somalia. This finding may explain the increased T1D risk observed among Somali children. In addition, ethnic Somalis were found to host the highest frequencies observed thus far for several pharmacogenetic variants, including UGT1A4*2. In conclusion, we report that the Somali population displays genetic traits of significance to health and disease. The Somali dataset is publicly available and will add more information to the few genomic datasets available for African populations.
Collapse
|
31
|
Wang W, Chen C, Wang X, Zhang L, Shen D, Wang S, Gao B, Mao J, Song C. Development of Molecular Markers Based on the L1 Retrotransposon Insertion Polymorphisms in Pigs (Sus scrofa) and Their Association with Economic Traits. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Vorster E, Essop FB, Rodda JL, Krause A. Spinal Muscular Atrophy in the Black South African Population: A Matter of Rearrangement? Front Genet 2020; 11:54. [PMID: 32117462 PMCID: PMC7033609 DOI: 10.3389/fgene.2020.00054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder, characterized by muscle atrophy and impaired mobility. A homozygous deletion of survival motor neuron 1 (SMN1), exon 7 is the main cause of SMA in ~94% of patients worldwide, but only accounts for 51% of South African (SA) black patients. SMN1 and its highly homologous centromeric copy, survival motor neuron 2 (SMN2), are located in a complex duplicated region. Unusual copy number variations (CNVs) have been reported in black patients, suggesting the presence of complex pathogenic rearrangements. The aim of this study was to further investigate the genetic cause of SMA in the black SA population. Multiplex ligation-dependent probe amplification (MLPA) testing was performed on 197 unrelated black patients referred for SMA testing (75 with a homozygous deletion of SMN1, exon 7; 50 with a homozygous deletion of SMN2, exon 7; and 72 clinically suggestive patients with no homozygous deletions). Furthermore, 122 black negative controls were tested. For comparison, 68 white individuals (30 with a homozygous deletion of SMN1, exon 7; 8 with a homozygous deletion of SMN2, exon 7 and 30 negative controls) were tested. Multiple copies (>2) of SMN1, exon 7 were observed in 50.8% (62/122) of black negative controls which could mask heterozygous SMN1 deletions and potential pathogenic CNVs. MLPA is not a reliable technique for detecting carriers in the black SA population. Large deletions extending into the rest of SMN1 and neighboring genes were more frequently observed in black patients with homozygous SMN1, exon 7 deletions when compared to white patients. Homozygous SMN2, exon 7 deletions were commonly observed in black individuals. No clear pathogenic CNVs were identified in black patients but discordant copy numbers of exons suggest complex rearrangements, which may potentially interrupt the SMN1 gene. Only 8.3% (6/72) of clinically suggestive patients had heterozygous deletions of SMN1, exon 7 (1:0) which is lower than previous SA reports of 69.5%. This study emphasizes the lack of understanding of the architecture of the SMN region as well as the cause of SMA in the black SA population. These factors need to be taken into account when counseling and performing diagnostic testing in black populations.
Collapse
Affiliation(s)
- Elana Vorster
- National Health Laboratory Service and School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Fahmida B Essop
- National Health Laboratory Service and School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - John L Rodda
- Department of Paediatrics, University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda Krause
- National Health Laboratory Service and School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
33
|
Genetic insight into Nigerian population groups using an X-chromosome decaplex system. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
King Thomas J, Mir H, Kapur N, Singh S. Racial Differences in Immunological Landscape Modifiers Contributing to Disparity in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11121857. [PMID: 31769418 PMCID: PMC6966521 DOI: 10.3390/cancers11121857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer affects African Americans disproportionately by exhibiting greater incidence, rapid disease progression, and higher mortality when compared to their Caucasian counterparts. Additionally, standard treatment interventions do not achieve similar outcome in African Americans compared to Caucasian Americans, indicating differences in host factors contributing to racial disparity. African Americans have allelic variants and hyper-expression of genes that often lead to an immunosuppressive tumor microenvironment, possibly contributing to more aggressive tumors and poorer disease and therapeutic outcomes than Caucasians. In this review, we have discussed race-specific differences in external factors impacting internal milieu, which modify immunological topography as well as contribute to disparity in prostate cancer.
Collapse
Affiliation(s)
- Jeronay King Thomas
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (J.K.T.); (H.M.); (N.K.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Hina Mir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (J.K.T.); (H.M.); (N.K.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Neeraj Kapur
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (J.K.T.); (H.M.); (N.K.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (J.K.T.); (H.M.); (N.K.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence: ; Tel.: +1-404-756-5718; Fax: +1-404-752-1179
| |
Collapse
|
35
|
Thami PK, Chimusa ER. Population Structure and Implications on the Genetic Architecture of HIV-1 Phenotypes Within Southern Africa. Front Genet 2019; 10:905. [PMID: 31611910 PMCID: PMC6777512 DOI: 10.3389/fgene.2019.00905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
The interesting history of Southern Africa has put the region in the spotlight for population medical genetics. Major events including the Bantu expansion and European colonialism have imprinted unique genetic signatures within autochthonous populations of Southern Africa, this resulting in differential allele frequencies across the region. This genetic structure has potential implications on susceptibility and resistance to infectious diseases such as human immunodeficiency virus (HIV) infection. Southern Africa is the region affected worst by HIV. Here, we discuss advances made in genome-wide association studies (GWAS) of HIV-1 in the past 12 years and dissect population diversity within Southern Africa. Our findings accentuate that a plethora of factors such as migration, language and culture, admixture, and natural selection have profiled the genetics of the people of Southern Africa. Genetic structure has been observed among the Khoe-San, among Bantu speakers, and between the Khoe-San, Coloureds, and Bantu speakers. Moreover, Southern African populations have complex admixture scenarios. Few GWAS of HIV-1 have been conducted in Southern Africa, with only one of these identifying two novel variants (HCG22rs2535307 and CCNG1kgp22385164) significantly associated with HIV-1 acquisition and progression. High genetic diversity, multi-wave genetic mixture and low linkage disequilibrium of Southern African populations constitute a challenge in identifying genetic variants with modest risk or protective effect against HIV-1. We therefore posit that it is compelling to assess genome-wide contribution of ancestry to HIV-1 infection. We further suggest robust methods that can pin-point population-specific variants that may contribute to the control of HIV-1 in Southern Africa.
Collapse
Affiliation(s)
- Prisca K Thami
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Onywera H, Williamson AL, Mbulawa ZZA, Coetzee D, Meiring TL. Factors associated with the composition and diversity of the cervical microbiota of reproductive-age Black South African women: a retrospective cross-sectional study. PeerJ 2019; 7:e7488. [PMID: 31435492 PMCID: PMC6698374 DOI: 10.7717/peerj.7488] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/16/2019] [Indexed: 01/07/2023] Open
Abstract
Background Lactobacillus spp. are common bacteria in the cervical and vaginal microbiota (CVM) and are thought to represent a “healthy” cervicovaginal state. Several studies have found an independent association between ethnicity/race and cervical and vaginal microbiota (CVM) composition. Women of sub-Saharan African descent appear to be significantly more likely to have non-Lactobacillus-dominated CVM compared to women of European descent. The factors contributing to these differences remain to be fully elucidated. The CVM of Black South African women and factors influencing their CVM remain understudied. In this study, we characterized the cervical microbiota of reproductive-age South African women and assessed the associations of these microbiota with participants’ metadata. Methods The cervical microbiota from cervical DNA of 62 reproductive-age women were profiled by Ion Torrent sequencing the V4 hypervariable region of the bacterial 16S ribosomal RNA (rRNA) gene and analyzed with the Quantitative Insights Into Microbial Ecology (QIIME), UPARSE, and metagenomeSeq tools. Associations between cervical microbiota and participants’ metadata were assessed using GraphPad Prism, R packages and an in-house script. Results The cervical microbiota clustered into three distinct community state types (CSTs): Lactobacillus iners-dominated cervical microbiota (CST I (38.7%, 24/62)), unclassified Lactobacillus-dominated cervical microbiota (CST II (4.8%, 3/62)), and diverse cervical microbiota (CST III (56.5%, 35/62)) with an array of heterogeneous bacteria, predominantly the bacterial vaginosis (BV)-associated Gardnerella, Prevotella, Sneathia, and Shuttleworthia. CST III was associated with BV (p = 0.001). Women in CST I were more likely to be on hormonal contraception, especially progestin-based, compared to women in CST III (odds ratio: 5.2 (95% CI [1.6–17.2]); p = 0.005). Women on hormonal contraception had a significantly lower alpha (Shannon indices: 0.9 (0.2–1.9) versus 2.3 (0.6–2.3); p = 0.025) and beta (permutational multivariate analysis of variance (PERMANOVA) pseudo-F statistic =4.31, p = 0.019) diversity compared to non-users. There was no significant difference in the alpha (Shannon indices: 1.0 (0.3–2.2) versus 1.9 (0.3–2.2); p = 0.483) and beta (PERMANOVA pseudo-F statistic = 0.89, p = 0.373) diversity in women with versus without human papillomavirus infection. Conclusions The majority of Black women in our study had non-Lactobacillus-dominated cervical microbiota. Additional studies are needed to examine whether such microbiota represent abnormal, intermediate or variant states of health. Lastly, the association of hormonal contraception with L. iners dominance requires further in-depth research to confirm this association, determine its biological mechanism and whether it has a beneficial effect on the cervicovaginal health.
Collapse
Affiliation(s)
- Harris Onywera
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, Western Cape, South Africa.,Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, Western Cape, South Africa.,Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa.,SAMRC Gynaecological Cancer Research Centre, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Zizipho Z A Mbulawa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, Western Cape, South Africa.,Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa.,SAMRC Gynaecological Cancer Research Centre, University of Cape Town, Cape Town, Western Cape, South Africa.,Center for HIV & STIs, National Institute for Communicable Diseases, National Health Laboratory Service, University of Cape Town, Johannesburg, Gauteng, South Africa
| | - David Coetzee
- Center for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Tracy L Meiring
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, Western Cape, South Africa.,Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| |
Collapse
|
37
|
Transcriptome variation in human populations and its potential application in forensics. J Appl Genet 2019; 60:319-328. [PMID: 31401728 PMCID: PMC6803616 DOI: 10.1007/s13353-019-00510-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/04/2022]
Abstract
This review presents the state-of-the-art in the forensic application of genetic methods driven by the research in population transcriptomics. In the first part of the review, the constraints of using classical genomic markers are shortly reviewed. In the second part, the developments in the field of inter-population diversity at the transcriptomic level are presented. Subsequently, a potential of population-specific transcriptomic markers in forensic science applications, including ascertaining population affiliation of human samples and cell mixtures separation, are presented.
Collapse
|
38
|
Mboowa G, Sserwadda I. Role of genomics literacy in reducing the burden of common genetic diseases in Africa. Mol Genet Genomic Med 2019; 7:e00776. [PMID: 31131548 PMCID: PMC6625136 DOI: 10.1002/mgg3.776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/12/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In Africa, health practitioners and the current knowledge of the public on genetics and genomics is still very low and yet this has potential to reduce the burden of common genetic diseases. Many initiatives have promoted genomic research, infrastructure, and capacity building in Africa. What remains to be done is to improve genomics literacy among populations and communities while utilizing an array of strategies. Genomic literacy and awareness are key in the management of genetic diseases which includes diagnosis, prevention of complications and therapy. Africa is characterized by great cultural and language diversity thereby requiring a multidisciplinary approach to improving public and community genomics literacy and engagement. However, this is further complicated by having the fact that sub-Saharan Africa is comprised of countries with the lowest literacy rates in the world. METHODS We applied the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to review genomic literacy in Africa using PubMed database. RESULTS We found very limited evidence of genomics literacy for genetic diseases in Africa. CONCLUSION We propose a number of approaches that if adopted will significantly increase the genomic literacy and reduce the burden of genetic diseases in Africa.
Collapse
Affiliation(s)
- Gerald Mboowa
- Department of Immunology and Molecular BiologyCollege of Health Sciences, Makerere UniversityKampalaUganda
- Department of Medical MicrobiologyCollege of Health Sciences, Makerere UniversityKampalaUganda
| | - Ivan Sserwadda
- Department of Immunology and Molecular BiologyCollege of Health Sciences, Makerere UniversityKampalaUganda
| |
Collapse
|
39
|
Mendes C, Viana VST, Pasoto SG, Leon EP, Bonfa E, Sampaio-Barros PD. Clinical and laboratory features of African-Brazilian patients with systemic sclerosis. Clin Rheumatol 2019; 39:9-17. [PMID: 31065858 DOI: 10.1007/s10067-019-04575-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE African-Brazilians comprise a group of blacks and "pardos." As racial differences can be associated with distinct presentations, we evaluated the clinical and serological associations of African-Brazilians with systemic sclerosis (SSc). METHODS Sera from 260 adult SSc patients (203 whites and 57 African-Brazilians) were evaluated. Patients with overlap syndromes were excluded. Clinical and demographic data were obtained from an electronic register database. Laboratory analysis included the following: anti-CENP-A/CENP-B, Scl70, RNA polymerase III, Ku, fibrillarin, Th/To, PM-Scl75, and PM-Scl100 by line immunoassay and anti-nuclear antibodies (ANA) by indirect immunofluorescence (IIF) on HEp-2 cells. RESULTS African-Brazilian SSc patients presented shorter disease duration (12.8 ± 6.5 vs. 15.9 ± 8.1 years, p = 0.009), higher frequency of nucleolar ANA pattern (28% vs. 13%, p = 0.008), and lower frequencies of centromeric ANA pattern (14% vs. 29%, p = 0.026) and CENP-B (18% vs. 34%, p = 0.017), as well as an association with severe interstitial lung disease (58% vs. 43%; p = 0.044). Further comparison of ethnic groups according to subsets revealed that diffuse SSc African-Brazilian patients presented higher frequency of pulmonary hypertension (p = 0.017), heart involvement (p = 0.037), nucleolar ANA pattern (p = 0.036), anti-fibrillarin antibodies (p = 0.037), and higher mortality (48% vs. 19%; p = 0.009). A different pattern was observed for the limited subset with solely a lower frequency of esophageal involvement (p = 0.050) and centromeric ANA pattern (p = 0.049). Survival analysis showed that African-Brazilians had a higher mortality, when adjusted for age, gender, and clinical subset (RR 2.06, CI 95% 1.10-3.83, p = 0.023). CONCLUSION African-Brazilians have distinct characteristics according to clinical subset and an overall more severe SSc than whites, similar to the blacks from other countries.Key Points • African-Brazilian SSc patients were associated with severe interstitial lung disease and nucleolar ANA pattern when compared to white SSc patients. • When disease subsets were considered, African-Brazilian patients with diffuse SSc presented association with pulmonary hypertension, heart involvement, nucleolar ANA pattern, and anti-fibrillarin antibodies. • White SSc patients were associated with centromeric ANA pattern. • Survival analysis at 5, 10, 15, and 20 years, adjusted for age, gender, and disease subset, was significantly worse in African-Brazilian SSc patients.
Collapse
Affiliation(s)
- Cristiane Mendes
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Universidade Federal de Alfenas, Alfenas, Brazil
| | - Vilma S T Viana
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sandra G Pasoto
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Elaine P Leon
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eloisa Bonfa
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Percival D Sampaio-Barros
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil. .,Disciplina de Reumatologia, Universidade de São Paulo, Avenida Dr. Arnaldo 455, sala 3142, Cerqueira César, Sao Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
40
|
Novel Y-chromosome short tandem repeat sequence variation for loci DYS710, DYS518, DYS385, DYS644, DYS612, DYS626, DYS504, DYS481, DYS447 and DYS449. Int J Legal Med 2019; 133:1681-1689. [PMID: 30982129 DOI: 10.1007/s00414-019-02056-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
In forensic casework, Y-chromosome short tandem repeats (Y-STRs) are essential for differentiating between unrelated males and resolving the male component of admixed biological evidence. While the majority of Y-STRs are adequate for discriminating between different paternal lineages, rapidly mutating Y-STRs are necessary for improving discrimination between males within populations of low Y-chromosome diversity and between paternal relatives. Alternatively, sequencing of Y-STRs may also improve the discrimination between isometric Y-STR alleles by identifying variation in the repeat unit pattern arrangements and by identifying SNPs in the flanking region or within the STR repeat unit itself. In this report, a total of 153 DNA sequences are presented across the Y-STR loci DYS710, DYS518, DYS385, DYS644, DYS612, DYS626, DYS504, DYS481, DYS447 and DYS449. A total of 94 Y-STR sequences provided herein are reported for the first time, of which 37 sequences represent alleles showing size homoplasy, 34 sequences of known alleles for which sequence data has been unavailable and a total of 23 novel allele sequences across loci DYS644, DS447, DYS710 and DYS504. This study further encountered a rare sequence variant in the 5' flanking region of DYS385 and a total of two SNPs in the repeat structure at DYS481 and DYS449.
Collapse
|
41
|
Nemat-Gorgani N, Guethlein LA, Henn BM, Norberg SJ, Chiaroni J, Sikora M, Quintana-Murci L, Mountain JL, Norman PJ, Parham P. Diversity of KIR, HLA Class I, and Their Interactions in Seven Populations of Sub-Saharan Africans. THE JOURNAL OF IMMUNOLOGY 2019; 202:2636-2647. [PMID: 30918042 DOI: 10.4049/jimmunol.1801586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
HLA class I and KIR sequences were determined for Dogon, Fulani, and Baka populations of western Africa, Mbuti of central Africa, and Datooga, Iraqw, and Hadza of eastern Africa. Study of 162 individuals identified 134 HLA class I alleles (41 HLA-A, 60 HLA-B, and 33 HLA-C). Common to all populations are three HLA-C alleles (C1+C*07:01, C1+C*07:02, and C2+C*06:02) but no HLA-A or -B Unexpectedly, no novel HLA class I was identified in these previously unstudied and anthropologically distinctive populations. In contrast, of 227 KIR detected, 22 are present in all seven populations and 28 are novel. A high diversity of HLA A-C-B haplotypes was observed. In six populations, most haplotypes are represented just once. But in the Hadza, a majority of haplotypes occur more than once, with 2 having high frequencies and 10 having intermediate frequencies. The centromeric (cen) part of the KIR locus exhibits an even balance between cenA and cenB in all seven populations. The telomeric (tel) part has an even balance of telA to telB in East Africa, but this changes across the continent to where telB is vestigial in West Africa. All four KIR ligands (A3/11, Bw4, C1, and C2) are present in six of the populations. HLA haplotypes of the Iraqw and Hadza encode two KIR ligands, whereas the other populations have an even balance between haplotypes encoding one and two KIR ligands. Individuals in these African populations have a mean of 6.8-8.4 different interactions between KIR and HLA class I, compared with 2.9-6.5 for non-Africans.
Collapse
Affiliation(s)
- Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, NY 11794
| | | | - Jacques Chiaroni
- UMR 7268-Anthropologie Bio-Culturelle, Droit, Éthique et Santé, Aix-Marseille Université, l'Etablissement Français du Sang, Centre National de la Recherche Scientifique, 13344 Marseille, France
| | - Martin Sikora
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
| | | | | | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, CO 80045; and.,Department of Immunology, University of Colorado, Denver, CO 80045
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
42
|
Torres JB. Race, Rare Genetic Variants, and the Science of Human Difference in the Post‐Genomic Age. TRANSFORMING ANTHROPOLOGY 2019. [DOI: 10.1111/traa.12144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jada Benn Torres
- Genetic Anthropology and Biocultural Studies Laboratory Department of Anthropology Vanderbilt University Nashville TN 37235
| |
Collapse
|
43
|
Luo S, Yu JA, Li H, Song YS. Worldwide genetic variation of the IGHV and TRBV immune receptor gene families in humans. Life Sci Alliance 2019; 2:2/2/e201800221. [PMID: 30808649 PMCID: PMC6391684 DOI: 10.26508/lsa.201800221] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
This article presents a comprehensive study of the IGHV and TRBV gene families in a globally diverse sample of humans and shows that the two gene families exhibit starkly different patterns of variation. The immunoglobulin heavy variable (IGHV) and T cell beta variable (TRBV) loci are among the most complex and variable regions in the human genome. Generated through a process of gene duplication/deletion and diversification, these loci can vary extensively between individuals in copy number and contain genes that are highly similar, making their analysis technically challenging. Here, we present a comprehensive study of the functional gene segments in the IGHV and TRBV loci, quantifying their copy number and single-nucleotide variation in a globally diverse sample of 109 (IGHV) and 286 (TRBV) humans from over a 100 populations. We find that the IGHV and TRBV gene families exhibit starkly different patterns of variation. In addition to providing insight into the different evolutionary paths of the IGHV and TRBV loci, our results are also important to the adaptive immune repertoire sequencing community, where the lack of frequencies of common alleles and copy number variants is hampering existing analytical pipelines.
Collapse
Affiliation(s)
- Shishi Luo
- Computer Science Division, University of California, Berkeley, Berkeley, CA, USA.,Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Jane A Yu
- Computer Science Division, University of California, Berkeley, Berkeley, CA, USA
| | - Heng Li
- Department of Biostatistics, Harvard Medical School, Boston, MA, USA
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, Berkeley, CA, USA .,Department of Statistics, University of California, Berkeley, Berkeley, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
44
|
Matume ND, Tebit DM, Gray LR, Turner SD, Rekosh D, Bessong PO, Hammarskjöld ML. Characterization of APOBEC3 variation in a population of HIV-1 infected individuals in northern South Africa. BMC MEDICAL GENETICS 2019; 20:21. [PMID: 30660178 PMCID: PMC6339282 DOI: 10.1186/s12881-018-0740-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/21/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) genes A3D, A3F, A3G and A3H have all been implicated in the restriction of human immunodeficiency virus type 1 (HIV-1) replication. Polymorphisms in these genes are likely to impact viral replication and fitness, contributing to viral diversity. Currently, only a few studies indicate that polymorphisms in the A3 genes may be correlated with infection risk and disease progression. METHODS To characterize polymorphisms in the coding regions of these APOBEC3 genes in an HIV-1 infected population from the Limpopo Province of South Africa, APOBEC3 gene fragments were amplified from genomic DNA of 192 HIV-1 infected subjects and sequenced on an Illumina MiSeq platform. SNPs were confirmed and compared to SNPs in other populations reported in the 1000 Genome Phase III and HapMap databases, as well as in the ExAC exome database. Hardy-Weinberg Equilibrium was calculated and haplotypes were inferred using the LDlink 3.0 web tool. Linkage Disequilibrium (LD) for these SNPS were calculated in the total 1000 genome and AFR populations using the same tool. RESULTS Known variants compared to the GRCh37 consensus genome sequence were detected at relatively high frequencies (> 5%) in all of the APOBEC3 genes. A3H showed the most variation, with several of the variants present in both alleles in almost all of the patients. Several minor allele variants (< 5%) were also detected in A3D, A3F and A3G. In addition, novel R6K, L221R and T238I variants in A3D and I117I in A3F were observed. Four, five, four, and three haplotypes were identified for A3D, A3F, A3G, and A3H respectively. CONCLUSIONS The study showed significant polymorphisms in the APOBEC3D, 3F, 3G and 3H genes in our South African HIV1-infected cohort. In the case of all of these genes, the polymorphisms were generally present at higher frequencies than reported in other 1000 genome populations and in the ExAC exome consortium database .
Collapse
Affiliation(s)
- Nontokozo D Matume
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA.,HIV/AIDS & Global Health Research Programme and Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - Denis M Tebit
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA.,HIV/AIDS & Global Health Research Programme and Department of Microbiology, University of Venda, Thohoyandou, South Africa.,Global Biomed Scientific LLC, PO Box 2368, Forest, VA, 24551, USA
| | - Laurie R Gray
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Stephen D Turner
- Department of Public Health Sciences and Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA.,HIV/AIDS & Global Health Research Programme and Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - Pascal O Bessong
- HIV/AIDS & Global Health Research Programme and Department of Microbiology, University of Venda, Thohoyandou, South Africa.
| | - Marie-Louise Hammarskjöld
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA. .,HIV/AIDS & Global Health Research Programme and Department of Microbiology, University of Venda, Thohoyandou, South Africa.
| |
Collapse
|
45
|
Chimusa ER, Defo J, Thami PK, Awany D, Mulisa DD, Allali I, Ghazal H, Moussa A, Mazandu GK. Dating admixture events is unsolved problem in multi-way admixed populations. Brief Bioinform 2018; 21:144-155. [PMID: 30462157 DOI: 10.1093/bib/bby112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Advances in human sequencing technologies, coupled with statistical and computational tools, have fostered the development of methods for dating admixture events. These methods have merits and drawbacks in estimating admixture events in multi-way admixed populations. Here, we first provide a comprehensive review and comparison of current methods pertinent to dating admixture events. Second, we assess various admixture dating tools. We do so by performing various simulations. Third, we apply the top two assessed methods to real data of a uniquely admixed population from South Africa. Results reveal that current dating admixture models are not sufficiently equipped to estimate ancient admixtures events and to identify multi-faceted admixture events in complex multi-way admixed populations. We conclude with a discussion of research areas where further work on dating admixture-based methods is needed.
Collapse
Affiliation(s)
- Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Joel Defo
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Prisca K Thami
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.,Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Denis Awany
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Delesa D Mulisa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Imane Allali
- Division of Computational Biology, Department of Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | | | - Ahmed Moussa
- Abdelmalek Essaadi University ENSA, Tangier, Morocco
| | - Gaston K Mazandu
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.,Division of Computational Biology, Department of Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.,African Institute for Mathematical Sciences (AIMS),Muizenberg, Cape Town, South Africa
| |
Collapse
|
46
|
George C, Yako YY, Okpechi IG, Matsha TE, Kaze Folefack FJ, Kengne AP. An African perspective on the genetic risk of chronic kidney disease: a systematic review. BMC MEDICAL GENETICS 2018; 19:187. [PMID: 30340464 PMCID: PMC6194564 DOI: 10.1186/s12881-018-0702-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Individuals of African ethnicity are disproportionately burdened with chronic kidney disease (CKD). However, despite the genetic link, genetic association studies of CKD in African populations are lacking. METHODS We conducted a systematic review to critically evaluate the existing studies on CKD genetic risk inferred by polymorphism(s) amongst African populations in Africa. The study followed the HuGE handbook and PRISMA protocol. We included studies reporting on the association of polymorphism(s) with prevalent CKD, end-stage renaldisease (ESRD) or CKD-associated traits. Given the very few studies investigating the effects of the same single nucleotide polymorphisms (SNPs) on CKD risk, a narrative synthesis of the evidence was conducted. RESULTS A total of 30 polymorphisms in 11 genes were investigated for their association with CKD, ESRD or related traits, all using the candidate-gene approach. Of all the included genes, MYH9, AT1R and MTHFR genes failed to predict CKD or related traits, while variants in the APOL1, apoE, eNOS, XPD, XRCC1, renalase, ADIPOQ, and CCR2 genes were associated with CKD or other related traits. Two SNPs (rs73885319, rs60910145) and haplotypes (G-A-G; G1; G2) of the apolipoprotein L1 (APOL1) gene were studied in more than one population group, with similar association with prevalent CKD observed. The remaining polymorphisms were investigated in single studies. CONCLUSION According to this systematic review, there is currently insufficient evidence of the specific polymorphisms that poses African populations at an increased risk of CKD. Large-scale genetic studies are warranted to better understand susceptibility polymorphisms, specific to African populations.
Collapse
Affiliation(s)
- Cindy George
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Parow Valley, PO Box 19070, Cape Town, South Africa.
| | - Yandiswa Y Yako
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Ikechi G Okpechi
- Department of Medicine, Division of Nephrology and Hypertension, University of Cape Town, Cape Town, South Africa.,Kidney and Hypertension Research Unit, University of Cape Town, Cape Town, South Africa
| | - Tandi E Matsha
- Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Bellville, Cape Town, South Africa
| | - Francois J Kaze Folefack
- Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon.,Medicine Unit, Yaounde University Teaching Hospital, Yaounde, Cameroon
| | - Andre P Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Parow Valley, PO Box 19070, Cape Town, South Africa
| |
Collapse
|
47
|
Sato DX, Kawata M. Positive and balancing selection on SLC18A1 gene associated with psychiatric disorders and human-unique personality traits. Evol Lett 2018; 2:499-510. [PMID: 30283697 PMCID: PMC6145502 DOI: 10.1002/evl3.81] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of genetic variants susceptible to psychiatric disorders is one of the intriguing evolutionary enigmas. The present study detects three psychiatric disorder‐relevant genes (CLSTN2, FAT1, and SLC18A1) that have been under positive selection during the human evolution. In particular, SLC18A1 (vesicular monoamine transporter 1; VMAT1) gene has a human‐unique variant (rs1390938, Thr136Ile), which is associated with bipolar disorders and/or the anxiety‐related personality traits. 136Ile shows relatively high (20–61%) frequency in non‐African populations, and Tajima's D reports a significant peak around the Thr136Ile site, suggesting that this polymorphism has been positively maintained by balancing selection in non‐African populations. Moreover, Coalescent simulations predict that 136Ile originated around 100,000 years ago, the time being generally associated with the Out‐of‐Africa migration of modern humans. Our study sheds new light on a gene in monoamine pathway as a strong candidate contributing to human‐unique psychological traits.
Collapse
Affiliation(s)
- Daiki X Sato
- Graduate School of Life Sciences, Tohoku University Sendai 980-8578 Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University Sendai 980-8578 Japan
| |
Collapse
|
48
|
De novo human genome assemblies reveal spectrum of alternative haplotypes in diverse populations. Nat Commun 2018; 9:3040. [PMID: 30072691 PMCID: PMC6072799 DOI: 10.1038/s41467-018-05513-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022] Open
Abstract
The human reference genome is used extensively in modern biological research. However, a single consensus representation is inadequate to provide a universal reference structure because it is a haplotype among many in the human population. Using 10× Genomics (10×G) “Linked-Read” technology, we perform whole genome sequencing (WGS) and de novo assembly on 17 individuals across five populations. We identify 1842 breakpoint-resolved non-reference unique insertions (NUIs) that, in aggregate, add up to 2.1 Mb of so far undescribed genomic content. Among these, 64% are considered ancestral to humans since they are found in non-human primate genomes. Furthermore, 37% of the NUIs can be found in the human transcriptome and 14% likely arose from Alu-recombination-mediated deletion. Our results underline the need of a set of human reference genomes that includes a comprehensive list of alternative haplotypes to depict the complete spectrum of genetic diversity across populations. The majority of the human reference genome assembly is represented as a single consensus haplotype. Here, Wong et al. analyze de novo assemblies of 17 diverse, haplotype-resolved genomes to gain insights into the structure of genetic diversity and compile a list of alternative haplotypes across populations.
Collapse
|
49
|
Reay R, Dandara C, Viljoen M, Rheeders M. CYP2B6 Haplotype Predicts Efavirenz Plasma Concentration in Black South African HIV-1-Infected Children: A Longitudinal Pediatric Pharmacogenomic Study. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:465-473. [PMID: 28816644 DOI: 10.1089/omi.2017.0078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
South Africa has the highest burden of the human immunodeficiency virus (HIV) infection globally. Efavirenz (EFV), a frequently used drug against HIV infection, displays a relationship between drug concentration and pharmacodynamics effects clinically. However, haplotype-based genetic variation in drug metabolism in a pediatric sample has been little considered in a longitudinal long-term context. CYP2B6 plays a key role in variation of EFV plasma concentration through altered drug metabolism. We report here on a prospective clinical pharmacogenomics/pharmacokinetic study of Bantu-speaking children, importantly, over a period of 24 months post-initiation of EFV-based treatment in South Africa. We characterized the HIV-1-infected children (n = 60) for the CYP2B6 c.516G>T, c.785A>G, c.983T>C, and c.1459C>T single nucleotide polymorphisms (SNPs). These SNPs were determined using polymerase chain reaction/restricted fragment length polymorphism and SNaPshot genotyping. Longitudinal mid-dose EFV plasma concentrations were determined by LC-MS/MS and association analyses with genotypes and haplotypes at 1, 3, and 24 months were performed. The CYP2B6 c.516T/T genotype showed significantly higher EFV plasma concentrations (p < 0.001) compared to non 516T-allele carriers at all three time points. The minor allele frequencies (MAF) for CYP2B6 c.516T, c.785G, c.983C, and c.1459T were 0.410, 0.408, 0.110, and 0.000 respectively. Haplotypes were constructed using CYP2B6 c.516G>T,-c.785A>G and c.983T>C. The haplotype T-G-T presented with significantly increased EFV plasma concentrations compared to the reference G-A-T haplotype at 1, 3, and 24 months (p = 0.009; p = 0.003; p = 0.001), suggesting that the T-G-T haplotype predisposes a risk of EFV plasma concentrations >4 μg/mL. The clinical implications of these pharmacogenomics observations for EFV toxicity and treatment resistance warrant further future research.
Collapse
Affiliation(s)
- Riaan Reay
- 1 Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University , Potchefstroom, South Africa
| | - Collet Dandara
- 2 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Michelle Viljoen
- 1 Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University , Potchefstroom, South Africa
| | - Malie Rheeders
- 1 Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University , Potchefstroom, South Africa
| |
Collapse
|
50
|
Assessment of the Precision ID Ancestry panel. Int J Legal Med 2018; 132:1581-1594. [DOI: 10.1007/s00414-018-1785-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/17/2018] [Indexed: 01/28/2023]
|