1
|
Banerjee S, Minshall N, Webb H, Carrington M. How are Trypanosoma brucei receptors protected from host antibody-mediated attack? Bioessays 2024; 46:e2400053. [PMID: 38713161 DOI: 10.1002/bies.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Trypanosoma brucei is the causal agent of African Trypanosomiasis in humans and other animals. It maintains a long-term infection through an antigenic variation based population survival strategy. To proliferate in a mammal, T. brucei acquires iron and haem through the receptor mediated uptake of host transferrin and haptoglobin-hemoglobin respectively. The receptors are exposed to host antibodies but this does not lead to clearance of the infection. Here we discuss how the trypanosome avoids this fate in the context of recent findings on the structure and cell biology of the receptors.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicola Minshall
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Randle RK, Amara VR, Popik W. IFI16 Is Indispensable for Promoting HIF-1α-Mediated APOL1 Expression in Human Podocytes under Hypoxic Conditions. Int J Mol Sci 2024; 25:3324. [PMID: 38542298 PMCID: PMC10970439 DOI: 10.3390/ijms25063324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Genetic variants in the protein-coding regions of APOL1 are associated with an increased risk and progression of chronic kidney disease (CKD) in African Americans. Hypoxia exacerbates CKD progression by stabilizing HIF-1α, which induces APOL1 transcription in kidney podocytes. However, the contribution of additional mediators to regulating APOL1 expression under hypoxia in podocytes is unknown. Here, we report that a transient accumulation of HIF-1α in hypoxia is sufficient to upregulate APOL1 expression in podocytes through a cGAS/STING/IRF3-independent pathway. Notably, IFI16 ablation impedes hypoxia-driven APOL1 expression despite the nuclear accumulation of HIF-1α. Co-immunoprecipitation assays indicate no direct interaction between IFI16 and HIF-1α. Our studies identify hypoxia response elements (HREs) in the APOL1 gene enhancer/promoter region, showing increased HIF-1α binding to HREs located in the APOL1 gene enhancer. Luciferase reporter assays confirm the role of these HREs in transcriptional activation. Chromatin immunoprecipitation (ChIP)-qPCR assays demonstrate that IFI16 is not recruited to HREs, and IFI16 deletion reduces HIF-1α binding to APOL1 HREs. RT-qPCR analysis indicates that IFI16 selectively affects APOL1 expression, with a negligible impact on other hypoxia-responsive genes in podocytes. These findings highlight the unique contribution of IFI16 to hypoxia-driven APOL1 gene expression and suggest alternative IFI16-dependent mechanisms regulating APOL1 gene expression under hypoxic conditions.
Collapse
Affiliation(s)
- Richaundra K. Randle
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA;
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA;
| | - Venkateswara Rao Amara
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA;
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - Waldemar Popik
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA;
- Department of Internal Medicine, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
3
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Sengupta PP, Jacob SS, Chandu AGS, Das S. Silent Trypanosoma evansi infection in humans from India revealed by serological and molecular surveys, and characterized by variable surface glycoprotein gene sequences. Acta Trop 2022; 229:106369. [PMID: 35157840 DOI: 10.1016/j.actatropica.2022.106369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The importance of emerging atypical human trypanosomosis is gaining momentum due to increasing detection and its possible impact on human health. A cross sectional study of atypical human trypanosomosis due to Trypanosoma evansi was carried out in Kolkata and Canning area of West Bengal state of India where previously a death was reported. METHODS In this study blood and serum samples from 173 individuals were collected during August to December 2014. To check the presence of antibodies against T. evansi, card agglutination test and for the presence of T. evansi specific DNA, PCR were conducted. RESULTS T. evansi infection was identified in 5.2% (9/173) human blood samples by CATT serological test (Card agglutination test for trypanosomosis). PCR targeting VSG gene sequences suggested active T. evansi infection in 2.89% (5/173). VSG gene sequences herein determined for five isolates from human cases shared high similarity (89.4-100%). Phylogenetic inference clustered the human isolates with other isolates from different host species from India and other countries, forming a clade exclusive of Indian isolates (84.0 to 100% sequence similarity). CONCLUSION First report of symptomless human T. evansi infection detected by combined serological and PCR assays. First phylogenetic analysis of VSG gene sequences including human isolates of T. evansi in which Indian isolates of T. evansi from human and other hosts clustered in a single clade.
Collapse
Affiliation(s)
- Pinaki Prasad Sengupta
- ICAR- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru - 560064, Karnataka, India
| | - Siju Susan Jacob
- ICAR- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru - 560064, Karnataka, India
| | - Atru Gnana Surya Chandu
- ICAR- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru - 560064, Karnataka, India
| | - Satadal Das
- Peerless Hospital and B. K. Roy Research Center, Kolkata - 700094, West Bengal, India.
| |
Collapse
|
5
|
Kumar R, Gupta S, Bhutia WD, Vaid RK, Kumar S. Atypical human trypanosomosis: Potentially emerging disease with lack of understanding. Zoonoses Public Health 2022; 69:259-276. [PMID: 35355422 DOI: 10.1111/zph.12945] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/03/2023]
Abstract
Trypanosomes are the hemoflagellate kinetoplastid protozoan parasites affecting a wide range of vertebrate hosts having insufficient host specificity. Climatic change, deforestation, globalization, trade agreements, close association and genetic selection in links with environmental, vector, reservoir and potential susceptible hosts' parameters have led to emergence of atypical human trypanosomosis (a-HT). Poor recording of such neglected tropical disease, low awareness in health professions and farming community has approached a serious intimidation for mankind. Reports of animal Trypanosoma species are now gradually increasing in humans, and lack of any compiled literature has diluted the issue. In the present review, global reports of livestock and rodent trypanosomes reported from human beings are assembled and discrepancies with the available literature are discussed along with morphological features of Trypanosoma species. We have described 21 human cases from the published information. Majority of cases 10 (47%) are due to T. lewisi, followed by 5 (24%) cases of T. evansi, 4 (19%) cases of T. brucei and 1 (5%) case each of T. vivax and T. congolense. Indian subcontinent witnessed 13 cases of a-HT, of which 9 cases are reported from India, which includes 7 cases of T. lewisi and 2 cases of T. evansi. Apart from, a-HT case reports, epidemiological investigation and treatment aspects are also discussed. An attempt has been made to provide an overview of the current situation of atypical human trypanosomosis caused by salivarian animal Trypanosoma globally. The probable role of Trypanosoma lytic factors (TLF) present in normal human serum (NHS) in providing innate immunity against salivarian animal Trypanosoma species and the existing paradox in medical science after the finding on intact functional apolipoprotein L1 (ApoL1) in Vietnam T. evansi Type A case is also discussed to provide an update on all aspects of a-HT. Insufficient data and poor reporting in Asian and African countries are the major hurdle resulting in under-reporting of a-HT, which is a potential emerging threat. Therefore, concerted efforts must be directed to address attentiveness, preparedness and regular surveillance in suspected areas with training of field technicians, medical health professionals and veterinarians. Enhancing a one health approach is specifically important in case of trypanosomosis.
Collapse
Affiliation(s)
- Rajender Kumar
- Parasitology Lab, ICAR-National Research Centre on Equines, Hisar, India
| | - Snehil Gupta
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | | | | | - Sanjay Kumar
- Parasitology Lab, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
6
|
Müller D, Schmitz J, Fischer K, Granado D, Groh AC, Krausel V, Lüttgenau SM, Amelung TM, Pavenstädt H, Weide T. Evolution of Renal-Disease Factor APOL1 Results in Cis and Trans Orientations at the Endoplasmic Reticulum That Both Show Cytotoxic Effects. Mol Biol Evol 2021; 38:4962-4976. [PMID: 34323996 PMCID: PMC8557400 DOI: 10.1093/molbev/msab220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recent and exclusively in humans and a few other higher primates expressed APOL1 (apolipoprotein L1) gene is linked to African human trypanosomiasis (also known as African sleeping sickness) as well as to different forms of kidney diseases. Whereas APOL1's role as a trypanolytic factor is well established, pathobiological mechanisms explaining its cytotoxicity in renal cells remain unclear. In this study, we compared the APOL family members using a combination of evolutionary studies and cell biological experiments to detect unique features causal for APOL1 nephrotoxic effects. We investigated available primate and mouse genome and transcriptome data to apply comparative phylogenetic and maximum likelihood selection analyses. We suggest that the APOL gene family evolved early in vertebrates and initial splitting occurred in ancestral mammals. Diversification and differentiation of functional domains continued in primates, including developing the two members APOL1 and APOL2. Their close relationship could be diagnosed by sequence similarity and a shared ancestral insertion of an AluY transposable element. Live-cell imaging analyses showed that both expressed proteins show a strong preference to localize at the endoplasmic reticulum (ER). However, glycosylation and secretion assays revealed that-unlike APOL2-APOL1 membrane insertion or association occurs in different orientations at the ER, with the disease-associated mutants facing either the luminal (cis) or cytoplasmic (trans) side of the ER. The various pools of APOL1 at the ER offer a novel perspective in explaining the broad spectrum of its observed toxic effects.
Collapse
Affiliation(s)
- Daria Müller
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | - Katharina Fischer
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Daniel Granado
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Ann-Christin Groh
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Vanessa Krausel
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Simona Mareike Lüttgenau
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Till Maximilian Amelung
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Hermann Pavenstädt
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Thomas Weide
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| |
Collapse
|
7
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
8
|
Iyori M, Ogawa R, Emran TB, Tanbo S, Yoshida S. Characterization of the Gene Expression Patterns in the Murine Liver Following Intramuscular Administration of Baculovirus. Gene Expr 2021; 20:147-155. [PMID: 33115550 PMCID: PMC8201657 DOI: 10.3727/105221620x16039045978676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intramuscular administration of wild-type baculovirus is able to both protect against Plasmodium sporozoite challenge and eliminate liver-stage parasites via a Toll-like receptor 9-independent pathway. To investigate its effector mechanism(s), the gene expression profile in the liver of baculovirus-administered mice was characterized by cDNA microarray analysis. The ingenuity pathway analysis gene ontology module revealed that the major gene subsets induced by baculovirus were immune-related signaling, such as interferon signaling. A total of 40 genes commonly upregulated in a Toll-like receptor 9-independent manner were included as possible candidates for parasite elimination. This gene subset consisted of NT5C3, LOC105246895, BTC, APOL9a/b, G3BP3, SLC6A6, USP25, TRIM14, and PSMB8 as the top 10 candidates according to the special unit. These findings provide new insight into effector molecules responsible for liver-stage parasite killing and, possibly, the development of a new baculovirus-mediated prophylactic and therapeutic biopharmaceutical for malaria.
Collapse
Affiliation(s)
- Mitsuhiro Iyori
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Ryohei Ogawa
- †Department of Radiological Sciences, University of Toyama, Toyama, Japan
| | - Talha Bin Emran
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Shuta Tanbo
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Shigeto Yoshida
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| |
Collapse
|
9
|
An P, Sezgin E, Kirk GD, Duggal P, Binns-Roemer E, Nelson G, Limou S, Van Natta ML, Jabs DA, Estrella M, Kopp JB, Winkler CA. APOL1 variant alleles associate with reduced risk for opportunistic infections in HIV infection. Commun Biol 2021; 4:284. [PMID: 33674766 PMCID: PMC7977062 DOI: 10.1038/s42003-021-01812-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
Apolipoprotein L1 (APOL1), an innate immune factor against African trypanosoma brucei, inhibits HIV-1 in vitro. The impact of APOL1 G1-G2 variants on HIV-1-associated opportunistic infections (OIs) is unknown. Here, we report findings from a metaanalysis of four HIV/AIDS prospective cohorts (ALIVE, LSOCA, MACS, and WIHS) including 2066 African American participants. Using a global test combining all four cohorts, carriage of two APOL1 variant alleles is associated with a 50% reduction in odds of OI (combined OR 0.50, 95% CI 0.33-0.76). Subgroup analysis of OI etiological categories (viral, parasitic, fungal and Mycobacterial) suggests the possibility of specific protection from fungal infections (OR 0.54. 95% CI 0.32-0.93; PBonferroni corrected = 0.08). We observe an association of APOL1 variant alleles with host protection against OI in HIV-positive individuals. The study suggests a broader role of APOL1 variant alleles in innate immunity in vivo.
Collapse
Affiliation(s)
- Ping An
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Efe Sezgin
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Department of Epidemiology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Laboratory of Nutrigenomics and Epidemiology, Izmir Institute of Technology, Izmir, Turkey
| | - Gregory D Kirk
- Department of Epidemiology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Priya Duggal
- Department of Epidemiology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elizabeth Binns-Roemer
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - George Nelson
- Center for Cancer Research Informatics Core, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sophie Limou
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- CRTI UMR1064, Inserm, Université de Nantes & ITUN, CHU Nantes, Nantes, France
- Ecole Centrale de Nantes, Nantes, France
| | - Mark L Van Natta
- Department of Epidemiology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Douglas A Jabs
- Department of Epidemiology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Ophthalmology, the Wilmer Eye Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Estrella
- Kidney Health Research Collaborative, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- San Francisco VA Health Care System, San Francisco, CA, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Cheryl A Winkler
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
10
|
Madhavan SM, Buck M. The Relationship between APOL1 Structure and Function: Clinical Implications. KIDNEY360 2020; 2:134-140. [PMID: 35368828 PMCID: PMC8785724 DOI: 10.34067/kid.0002482020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/04/2020] [Indexed: 02/04/2023]
Abstract
Common variants in the APOL1 gene are associated with an increased risk of nondiabetic kidney disease in individuals of African ancestry. Mechanisms by which APOL1 variants mediate kidney disease pathogenesis are not well understood. Amino acid changes resulting from the kidney disease-associated APOL1 variants alter the three-dimensional structure and conformational dynamics of the C-terminal α-helical domain of the protein, which can rationalize the functional consequences. Understanding the three-dimensional structure of the protein, with and without the risk variants, can provide insights into the pathogenesis of kidney diseases mediated by APOL1 variants.
Collapse
Affiliation(s)
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
11
|
Blood of African Hedgehog Atelerix albiventris Contains 115-kDa Trypanolytic Protein that Kills Trypanosoma congolense. Acta Parasitol 2020; 65:733-742. [PMID: 32385812 DOI: 10.2478/s11686-020-00211-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/01/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Protozoan parasites of the Order Trypanosomatida infect a wide range of multicellular plants and animals, causing devastating and potentially fatal diseases. Trypanosomes are the most relevant members of the order in sub-Saharan Africa because of mortalities and morbidities caused to humans and livestock. PURPOSE There are growing concerns that trypanosomes are expanding their reservoirs among wild animals, which habours the parasites, withstand the infection, and from which tsetse flies transmit the parasites back to humans and livestock. This study was designed to investigate the potentials of the African hedgehog serving as reservoir for African animal trypanosomes. METHODS Five adult hedgehogs alongside five laboratory mice were intraperitoneally inoculated with 106 and 104 of Trypanosoma congolense cells, respectively, and monitored for parasitemia and survival. Serum from twenty hedgehogs was subjected to trypanocidal activity-guided fractionation by successive ion-exchange and gel-filtration chromatographies, followed by characterization with Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE). RESULTS Hedgehogs were resistant to the infection as no parasite was detected and none died even after 60 days, while all the mice died within 12 days. Both the serum and plasma prepared from hedgehogs demonstrated trypanocidal activity- rapidly killed trypanosomes even when diluted 1000 times. The trypanolytic factor was identified to be proteinaceous with an estimated molecular weight of 115-kDa. CONCLUSION For the first time, it is here demonstrated that hedgehog blood has significant trypanolytic activity against T. congolense. The potential application of the hedgehog protein for the breeding of trypanosomosis-resistant livestock in tsetse fly belt is discussed.
Collapse
|
12
|
Scales SJ, Gupta N, De Mazière AM, Posthuma G, Chiu CP, Pierce AA, Hötzel K, Tao J, Foreman O, Koukos G, Oltrabella F, Klumperman J, Lin W, Peterson AS. Apolipoprotein L1-Specific Antibodies Detect Endogenous APOL1 inside the Endoplasmic Reticulum and on the Plasma Membrane of Podocytes. J Am Soc Nephrol 2020; 31:2044-2064. [PMID: 32764142 DOI: 10.1681/asn.2019080829] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/10/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND APOL1 is found in human kidney podocytes and endothelia. Variants G1 and G2 of the APOL1 gene account for the high frequency of nondiabetic CKD among African Americans. Proposed mechanisms of kidney podocyte cytotoxicity resulting from APOL1 variant overexpression implicate different subcellular compartments. It is unclear where endogenous podocyte APOL1 resides, because previous immunolocalization studies utilized overexpressed protein or commercially available antibodies that crossreact with APOL2. This study describes and distinguishes the locations of both APOLs. METHODS Immunohistochemistry, confocal and immunoelectron microscopy, and podocyte fractionation localized endogenous and transfected APOL1 using a large panel of novel APOL1-specific mouse and rabbit monoclonal antibodies. RESULTS Both endogenous podocyte and transfected APOL1 isoforms vA and vB1 (and a little of isoform vC) localize to the luminal face of the endoplasmic reticulum (ER) and to the cell surface, but not to mitochondria, endosomes, or lipid droplets. In contrast, APOL2, isoform vB3, and most vC of APOL1 localize to the cytoplasmic face of the ER and are consequently absent from the cell surface. APOL1 knockout podocytes do not stain for APOL1, attesting to the APOL1-specificity of the antibodies. Stable re-transfection of knockout podocytes with inducible APOL1-G0, -G1, and -G2 showed no differences in localization among variants. CONCLUSIONS APOL1 is found in the ER and plasma membrane, consistent with either the ER stress or surface cation channel models of APOL1-mediated cytotoxicity. The surface localization of APOL1 variants potentially opens new therapeutic targeting avenues.
Collapse
Affiliation(s)
- Suzie J Scales
- Department of Molecular Biology, Genentech, South San Francisco, California .,Department of Immunology, Genentech, South San Francisco, California
| | - Nidhi Gupta
- Department of Molecular Biology, Genentech, South San Francisco, California.,Department of Immunology, Genentech, South San Francisco, California
| | - Ann M De Mazière
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - George Posthuma
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cecilia P Chiu
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Andrew A Pierce
- Department of Pathology, Genentech, South San Francisco, California
| | - Kathy Hötzel
- Department of Pathology, Genentech, South San Francisco, California
| | - Jianhua Tao
- Department of Pathology, Genentech, South San Francisco, California
| | - Oded Foreman
- Department of Pathology, Genentech, South San Francisco, California
| | - Georgios Koukos
- Department of Molecular Biology, Genentech, South San Francisco, California
| | | | - Judith Klumperman
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - WeiYu Lin
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Andrew S Peterson
- Department of Molecular Biology, Genentech, South San Francisco, California
| |
Collapse
|
13
|
Gupta N, Wang X, Wen X, Moran P, Paluch M, Hass PE, Heidersbach A, Haley B, Kirchhofer D, Brezski RJ, Peterson AS, Scales SJ. Domain-Specific Antibodies Reveal Differences in the Membrane Topologies of Apolipoprotein L1 in Serum and Podocytes. J Am Soc Nephrol 2020; 31:2065-2082. [PMID: 32764138 DOI: 10.1681/asn.2019080830] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Circulating APOL1 lyses trypanosomes, protecting against human sleeping sickness. Two common African gene variants of APOL1, G1 and G2, protect against infection by species of trypanosomes that resist wild-type APOL1. At the same time, the protection predisposes humans to CKD, an elegant example of balanced polymorphism. However, the exact mechanism of APOL1-mediated podocyte damage is not clear, including APOL1's subcellular localization, topology, and whether the damage is related to trypanolysis. METHODS APOL1 topology in serum (HDL particles) and in kidney podocytes was mapped with flow cytometry, immunoprecipitation, and trypanolysis assays that tracked 170 APOL1 domain-specific monoclonal antibodies. APOL1 knockout podocytes confirmed antibody specificity. RESULTS APOL1 localizes to the surface of podocytes, with most of the pore-forming domain (PFD) and C terminus of the Serum Resistance Associated-interacting domain (SRA-ID), but not the membrane-addressing domain (MAD), being exposed. In contrast, differential trypanolytic blocking activity reveals that the MAD is exposed in serum APOL1, with less of the PFD accessible. Low pH did not detectably alter the gross topology of APOL1, as determined by antibody accessibility, in serum or on podocytes. CONCLUSIONS Our antibodies highlighted different conformations of native APOL1 topology in serum (HDL particles) and at the podocyte surface. Our findings support the surface ion channel model for APOL1 risk variant-mediated podocyte injury, as well as providing domain accessibility information for designing APOL1-targeted therapeutics.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Molecular Biology, Genentech, South San Francisco, California.,Department of Immunology, Genentech, South San Francisco, California
| | - Xinhua Wang
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Xiaohui Wen
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Paul Moran
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Maciej Paluch
- Department of Protein Chemistry, Genentech, South San Francisco, California
| | - Philip E Hass
- Department of Protein Chemistry, Genentech, South San Francisco, California
| | - Amy Heidersbach
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Randall J Brezski
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Andrew S Peterson
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Suzie J Scales
- Department of Molecular Biology, Genentech, South San Francisco, California .,Department of Immunology, Genentech, South San Francisco, California
| |
Collapse
|
14
|
Abstract
Apolipoprotein L1 (APOL1) is a protein encoded by the APOL1 gene, found only in humans and several primates. Two variants encoding two different isoforms exist for APOL1, namely G1 and G2. These variants confer increased protection against trypanosome infection, and subsequent African sleeping sickness, and also increase the likelihood of renal disease in individuals of African ancestry. APOL1 mutations are associated with increased risk of chronic kidney disease, inflammation, and exacerbation of systemic lupus erythematosus-associated renal dysfunction. This review serves to outline the structure and function of APOL1, as well as its role in several disease outcomes.
Collapse
Affiliation(s)
- Shanel Raghubeer
- Biomedical Sciences, Cape Peninsula University of Technology-Bellville Campus, Cape Town, Western Cape, South Africa
| | - Tahir S Pillay
- Department of Chemical Pathology, University of Pretoria Faculty of Health Sciences, Pretoria, Gauteng, South Africa.,Division of Chemical Pathology, University of Cape Town, Rondebosch, Western Cape, South Africa
| | - Tandi Edith Matsha
- Biomedical Sciences, Cape Peninsula University of Technology-Bellville Campus, Cape Town, Western Cape, South Africa
| |
Collapse
|
15
|
Kariuki CK, Stijlemans B, Magez S. The Trypanosomal Transferrin Receptor of Trypanosoma Brucei-A Review. Trop Med Infect Dis 2019; 4:tropicalmed4040126. [PMID: 31581506 PMCID: PMC6958415 DOI: 10.3390/tropicalmed4040126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for life. Its uptake and utility requires a careful balancing with its toxic capacity, with mammals evolving a safe and bio-viable means of its transport and storage. This transport and storage is also utilized as part of the iron-sequestration arsenal employed by the mammalian hosts’ ‘nutritional immunity’ against parasites. Interestingly, a key element of iron transport, i.e., serum transferrin (Tf), is an essential growth factor for parasitic haemo-protozoans of the genus Trypanosoma. These are major mammalian parasites causing the diseases human African trypanosomosis (HAT) and animal trypanosomosis (AT). Using components of their well-characterized immune evasion system, bloodstream Trypanosoma brucei parasites adapt and scavenge for the mammalian host serum transferrin within their broad host range. The expression site associated genes (ESAG6 and 7) are utilized to construct a heterodimeric serum Tf binding complex which, within its niche in the flagellar pocket, and coupled to the trypanosomes’ fast endocytic rate, allows receptor-mediated acquisition of essential iron from their environment. This review summarizes current knowledge of the trypanosomal transferrin receptor (TfR), with emphasis on the structure and function of the receptor, both in physiological conditions as well as in conditions where the iron supply to parasites is being limited. Potential applications using current knowledge of the parasite receptor are also briefly discussed, primarily focused on potential therapeutic interventions.
Collapse
Affiliation(s)
- Christopher K. Kariuki
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), 00502 Nairobi, Kenya
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| | - Benoit Stijlemans
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, 9052 Gent, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon 219220, Korea
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| |
Collapse
|
16
|
Akazue PI, Ebiloma GU, Ajibola O, Isaac C, Onyekwelu K, Ezeh CO, Eze AA. Sustainable Elimination (Zero Cases) of Sleeping Sickness: How Far Are We from Achieving This Goal? Pathogens 2019; 8:E135. [PMID: 31470522 PMCID: PMC6789789 DOI: 10.3390/pathogens8030135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 01/02/2023] Open
Abstract
The recent massive reduction in the numbers of fresh Human African Trypanosomiasis (HAT) infection has presented an opportunity for the global elimination of this disease. To prevent a possible resurgence, as was the case after the reduced transmission of the 1960s, surveillance needs to be sustained and the necessary tools for detection and treatment of cases need to be made available at the points of care. In this review, we examine the available resources and make recommendations for improvement to ensure the sustenance of the already achieved gains to keep the trend moving towards elimination.
Collapse
Affiliation(s)
- Pearl Ihuoma Akazue
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City 300283, Nigeria
| | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Olumide Ajibola
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul PO Box 273, The Gambia
| | - Clement Isaac
- Department of Zoology, Faculty of Life Sciences, Ambrose Alli University, Ekpoma 310101, Nigeria
| | - Kenechukwu Onyekwelu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Charles O Ezeh
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Anthonius Anayochukwu Eze
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria.
| |
Collapse
|
17
|
Riella C, Siemens TA, Wang M, Campos RP, Moraes TP, Riella LV, Friedman DJ, Riella MC, Pollak MR. APOL1-Associated Kidney Disease in Brazil. Kidney Int Rep 2019; 4:923-929. [PMID: 31317114 PMCID: PMC6611925 DOI: 10.1016/j.ekir.2019.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 01/13/2023] Open
Abstract
Introduction Coding variants in apolipoprotein L-1 (APOL1) are associated with an increased risk of end-stage kidney disease (ESRD) in African American individuals under a recessive model of inheritance. The effect of the APOL1 risk alleles on kidney disease has been observed in studies in African American and African populations. Despite the 130 million individuals of recent African ancestry in South America, the impact of APOL1 has not been explored. Methods In this case-control study, we tested APOL1 genotype in 106 Brazilian HD (hemodialysis) patients with African ancestry and compared risk allele frequency with 106 healthy first-degree relatives. The association of risk alleles and ESRD was calculated with a linear mixed model and was adjusted for relatedness and additional confounders. In a broader survey, the age of dialysis initiation and APOL1 variants were analyzed in 274 HD patients. Results Two APOL1 risk alleles were 10 times more common in patients with ESRD than in controls (9.4% vs. 0.9%; odds ratio [OR]: 10.95, SE = 1.49, P = 0.0017). Carriers of 2 risk alleles initiated dialysis 12 years earlier than patients with zero risk alleles. Conclusion The APOL1 risk variants were less frequent in dialysis patients of African ancestry in Brazil than in the United States. Nonetheless, carriers of 2 risk variants had 10-fold higher odds of ESRD. Age of dialysis initiation was markedly lower in 2-risk allele carriers, suggesting a more aggressive disease phenotype. The Brazilian population represents an opportunity to identify different sets of genetic modifiers or environmental triggers that might be present in more extensively studied populations.
Collapse
Affiliation(s)
- Cristian Riella
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Minxian Wang
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | | | - Thyago P Moraes
- Pontifícia Universidade Católica do Paraná Medical School, Curitiba, Brazil
| | - Leonardo V Riella
- Schuster Transplantation Research Center, Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David J Friedman
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Miguel C Riella
- Pontifícia Universidade Católica do Paraná Medical School, Curitiba, Brazil.,Division of Nephrology, Evangelic School of Medicine, Curitiba, Brazil
| | - Martin R Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Ofon E, Noyes H, Ebo’o Eyanga V, Njiokou F, Koffi M, Fogue P, Hertz-Fowler C, MacLeod A, Matovu E, Simo G. Association between IL1 gene polymorphism and human African trypanosomiasis in populations of sleeping sickness foci of southern Cameroon. PLoS Negl Trop Dis 2019; 13:e0007283. [PMID: 30908482 PMCID: PMC6448947 DOI: 10.1371/journal.pntd.0007283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/04/2019] [Accepted: 03/07/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human African Trypanosomiasis (HAT) is a neglected tropical disease caused by infections due to Trypanosoma brucei subspecies. In addition to the well-established environmental and behavioural risks of becoming infected, there is evidence for a genetic component to the response to trypanosome infection. We undertook a candidate gene case-control study to investigate genetic associations further. METHODOLOGY We genotyped one polymorphism in each of seven genes (IL1A, IL1RN, IL4RN, IL6, HP, HPR, and HLA-G) in 73 cases and 250 controls collected from 19 ethno-linguistic subgroups stratified into three major ethno-linguistic groups, 2 pooled ethno-linguistic groups and 11 ethno-linguistic subgroups from three Cameroonian HAT foci. The seven polymorphic loci tested consisted of three SNPs, three variable numbers of tandem repeat (VNTR) and one INDEL. RESULTS We found that the genotype (TT) and minor allele (T) of IL1A gene as well as the genotype 1A3A of IL1RN were associated with an increased risk of getting Trypanosoma brucei gambiense and develop HAT when all data were analysed together and also when stratified by the three major ethno-linguistic groups, 2 pooled ethno-linguistic subgroups and 11 ethno-linguistic subgroups. CONCLUSION This study revealed that one SNP rs1800794 of IL1A and one VNTR rs2234663 of IL1RN were associated with the increased risk to be infected by Trypanosoma brucei gambiense and develop sleeping sickness in southern Cameroon. The minor allele T and the genotype TT of SNP rs1800794 in IL1A as well as the genotype 1A3A of IL1RN rs2234663 VNTR seem to increase the risk of getting Trypanosoma brucei gambiense infections and develop sleeping sickness in southern Cameroon.
Collapse
Affiliation(s)
- Elvis Ofon
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Vincent Ebo’o Eyanga
- MINSANTE, Divisional Centre for Diseases, PNLTHA, Ministry of Public Health, Yaoundé, Cameroon
| | - Flobert Njiokou
- Laboratory of Molecular Biology, Department of Animal Biology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Mathurin Koffi
- Université Jean Lorougnon Guédé (UJLoG), UFR Environnement-Santé, Laboratoire des Interactions Hôte- Microorganismes-Environnement et Evolution (LIHME) Daloa, Côte d’Ivoire
| | - Pythagore Fogue
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | | - Annette MacLeod
- Wellcome Centre for Molecular Parasitology, University Place, Glasgow, United Kingdom
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Bio-security, Makerere University, Kampala, Uganda
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | |
Collapse
|
19
|
An P, Kirk GD, Limou S, Binns-Roemer E, Kopp JB, Winkler CA. Impact of APOL1 Genetic Variants on HIV-1 Infection and Disease Progression. Front Immunol 2019; 10:53. [PMID: 30733721 PMCID: PMC6353846 DOI: 10.3389/fimmu.2019.00053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/09/2019] [Indexed: 01/03/2023] Open
Abstract
Apolipoprotein L1 (APOL1) has broad innate immune functions and has been shown to restrict HIV replication in vitro by multiple mechanisms. Coding variants in APOL1 are strongly associated with HIV-associated nephropathy (HIVAN) in persons with untreated HIV infection; however, the mechanism by which APOL1 variant protein potentiates renal injury in the presence of high viral load is not resolved. Little is known about the association of APOL1 genotypes with HIV viral load, HIV acquisition, or progression to AIDS. We assessed the role of APOL1 coding variants on HIV-1 acquisition using the conditional logistic regression test, on viral load using the t-test or ANOVA, and on progression to AIDS using Cox proportional hazards models among African Americans enrolled in the ALIVE HIV natural history cohort (n = 775). APOL1 variants were not associated with susceptibility to HIV-1 acquisition by comparing genotype frequencies between HIV-1 positive and exposed or at-risk HIV-1 uninfected groups (recessive model, 12.8 vs. 12.5%, respectively; OR 1.02, 95% CI 0.62-1.70). Similar null results were observed for dominant and additive models. APOL1 variants were not associated with HIV-1 viral load or with risk of progression to AIDS [Relative hazards (RH) 1.33, 95% CI 0.30-5.89 and 0.96, 95% CI 0.49-1.88, for recessive and additive models, respectively]. In summary, we found no evidence that APOL1 variants are associated with host susceptibility to HIV-1 acquisition, set-point HIV-1 viral load or time to incident AIDS. These results suggest that APOL1 variants are unlikely to influence HIV infection or progression among individuals of African ancestry.
Collapse
Affiliation(s)
- Ping An
- Molecular Genetic Epidemiology Section, Basic Science Program, Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Gregory D Kirk
- Departments of Epidemiology and Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Sophie Limou
- Molecular Genetic Epidemiology Section, Basic Science Program, Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States.,CRTI UMR1064, Inserm, Université de Nantes & ITUN, CHU Nantes, Nantes, France.,Ecole Centrale de Nantes, Nantes, France
| | - Elizabeth Binns-Roemer
- Molecular Genetic Epidemiology Section, Basic Science Program, Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, United States
| | - Cheryl A Winkler
- Molecular Genetic Epidemiology Section, Basic Science Program, Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
20
|
Wang Z, Zhang Y, Cao B, Ji Z, Luo W, Zhai S, Zhang D, Wang W, Xing D, Hu X. Explosible nanocapsules excited by pulsed microwaves for efficient thermoacoustic-chemo combination therapy. NANOSCALE 2019; 11:1710-1719. [PMID: 30623943 DOI: 10.1039/c8nr08498j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microwave irradiation is a powerful non-invasive approach for treating deep-seated diseases in a clinical setting. Pulsed microwave-induced thermoacoustic cavitation allows precise cancer treatment with microwave-absorbing materials. This differs from the traditional continuous microwave-induced thermotherapy which may be harmful to off-target tissues. Here we first report the integration of thermocavitation and cytoplasmic drug release into highly explosible cell-penetrating nanocapsules for effective tumor inhibition under pulsed microwave irradiation. The nanocapsules were formulated from arginine-tethered reduction-responsive copolymers, P(ArgMA-co-DMA)-b-PPOPMA, microwave-absorbing AB and chemotherapeutic DOX using a double-emulsion method. The nanocapsules were internalized by cancer cells rapidly via major energy-independent pathways. Upon pulsed microwave irradiation, AB absorbed energy to generate a giant thermoacoustic shockwave, simultaneously decomposing into carbon dioxide and ammonia which enforced the cavitation damage effect. The thermoacoustic shockwave and gas burst also mechanically disrupted the intracellular organelles resulting in high-ratio cell necrosis and promoted the cytosolic release of DOX into the nucleus to initiate cell death. Importantly, in vivo results demonstrated significantly suppressed tumor growth by the pulsed microwave-triggered thermocavitation and drug release, and minimal systemic toxicity from the microwave treatment. Therefore, our study provides a new strategy for effectively engineering pulsed microwave-responsive nanomaterials for smart cancer therapy.
Collapse
Affiliation(s)
- Zhixiong Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ong YC, Roy S, Andrews PC, Gasser G. Metal Compounds against Neglected Tropical Diseases. Chem Rev 2018; 119:730-796. [DOI: 10.1021/acs.chemrev.8b00338] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yih Ching Ong
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Saonli Roy
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philip C. Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
22
|
Okamoto K, Rausch JW, Wakashin H, Fu Y, Chung JY, Dummer PD, Shin MK, Chandra P, Suzuki K, Shrivastav S, Rosenberg AZ, Hewitt SM, Ray PE, Noiri E, Le Grice SFJ, Hoek M, Han Z, Winkler CA, Kopp JB. APOL1 risk allele RNA contributes to renal toxicity by activating protein kinase R. Commun Biol 2018; 1:188. [PMID: 30417125 PMCID: PMC6220249 DOI: 10.1038/s42003-018-0188-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023] Open
Abstract
APOL1 risk alleles associate with chronic kidney disease in African Americans, but the mechanisms remain to be fully understood. We show that APOL1 risk alleles activate protein kinase R (PKR) in cultured cells and transgenic mice. This effect is preserved when a premature stop codon is introduced to APOL1 risk alleles, suggesting that APOL1 RNA but not protein is required for the effect. Podocyte expression of APOL1 risk allele RNA, but not protein, in transgenic mice induces glomerular injury and proteinuria. Structural analysis of the APOL1 RNA shows that the risk variants possess secondary structure serving as a scaffold for tandem PKR binding and activation. These findings provide a mechanism by which APOL1 variants damage podocytes and suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Koji Okamoto
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Department of Nephrology, Endocrinology, Hemodialysis & Apheresis, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-8655, Japan
| | - Jason W Rausch
- Reverse Transcriptase Biochemistry Section, Basic Research Program, Frederick National Laboratory for Cancer Research, 1050 Boyle Street, Frederick, MD, 21702, USA
| | - Hidefumi Wakashin
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Yulong Fu
- Children's National Health System, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Joon-Yong Chung
- Experimental Pathology Lab, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Patrick D Dummer
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Myung K Shin
- Merck Research Laboratories, Merck and Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Preeti Chandra
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Kosuke Suzuki
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shashi Shrivastav
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD, 21287, USA
| | - Stephen M Hewitt
- Experimental Pathology Lab, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Patricio E Ray
- Children's National Health System, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Eisei Noiri
- Department of Nephrology, Endocrinology, Hemodialysis & Apheresis, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-8655, Japan
| | - Stuart F J Le Grice
- Reverse Transcriptase Biochemistry Section, Basic Research Program, Frederick National Laboratory for Cancer Research, 1050 Boyle Street, Frederick, MD, 21702, USA
| | - Maarten Hoek
- Merck Research Laboratories, Merck and Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Zhe Han
- Children's National Health System, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Cheryl A Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Frederick National Laboratory, 8560 Progress Dr., Frederick, MD, 21702, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
23
|
Kaboré J, Camara O, Koffi M, Sanou D, Ilboudo H, Sakandé H, Camara M, De Meeûs T, Ravel S, Belem AMG, MacLeod A, Bucheton B, Jamonneau V, Thévenon S. Differences in pathogenicity and virulence of Trypanosoma brucei gambiense field isolates in experimentally infected Balb/C mice. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 63:269-276. [PMID: 29807131 DOI: 10.1016/j.meegid.2018.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/29/2022]
Abstract
Trypanosoma brucei gambiense (T. b. gambiense) is the major causative agent of human African trypanosomiasis (HAT). A great variety of clinical outcomes have been observed in West African foci, probably due to complex host-parasite interactions. In order to separate the roles of parasite genetic diversity and host variability, we have chosen to precisely characterize the pathogenicity and virulence of T. b. gambiense field isolates in a mouse model. Thirteen T. b. gambiense strains were studied in experimental infections, with 20 Balb/C infected mice per isolate. Mice were monitored for 30 days, in which mortality, parasitemia, anemia, and weight were recorded. Mortality rate, prepatent period, and maximum parasitemia were estimated, and a survival analysis was performed to compare strain pathogenicity. Mixed models were used to assess parasitemia dynamics, weight, and changes in Packed Cell Volume (PCV). Finally, a multivariate analysis was performed to infer relationships between all variables. A large phenotypic diversity was observed. Pathogenicity was highly variable, ranging from strains that kill their host within 9 days to a non-pathogenic strain (no deaths during the experiment). Virulence was also variable, with maximum parasitemia values ranging from 42 million to 1 billion trypanosomes/ml. Reduced PCV and weight occurred in the first two weeks of the infection, with the exception of two strains. Finally, the global analysis highlighted three groups of strains: a first group with highly pathogenic strains showing an early mortality associated with a short prepatent period; a second group of highly virulent strains with intermediate pathogenicity; and a third group of isolates characterized by low pathogenicity and virulence patterns. Such biological differences could be related to the observed clinical diversity in HAT. A better understanding of the biological pathways underlying the observed phenotypic diversity could thus help to clarify the complex nature of the host-parasite interactions that determine the resistance/susceptibility status to T. brucei gambiense.
Collapse
Affiliation(s)
- Jacques Kaboré
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso; Université NAZI BONI de Bobo-Dioulasso, UFR Sciences et Techniques, 01 BP 1091, Bobo-Dioulasso 01, Burkina Faso.
| | - Oumou Camara
- Programme National de Lutte contre la THA, BP 851, Conakry, Guinea.
| | - Mathurin Koffi
- Université Jean Lorougnon Guédé, UFR Environnement, BP 150, Daloa, Côte d'Ivoire.
| | - Djénéba Sanou
- Université NAZI BONI de Bobo-Dioulasso, UFR Sciences et Techniques, 01 BP 1091, Bobo-Dioulasso 01, Burkina Faso.
| | - Hamidou Ilboudo
- Programme National de Lutte contre la THA, BP 851, Conakry, Guinea.
| | - Hassane Sakandé
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso.
| | - Mamadou Camara
- Programme National de Lutte contre la THA, BP 851, Conakry, Guinea.
| | | | - Sophie Ravel
- INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | - Adrien Marie Gaston Belem
- Université NAZI BONI de Bobo-Dioulasso, UFR Sciences et Techniques, 01 BP 1091, Bobo-Dioulasso 01, Burkina Faso.
| | - Annette MacLeod
- Wellcome Center for Molecular Parasitology, University of Glasgow, 464 Bearsden Road, Glasgow G60 1QH, UK.
| | - Bruno Bucheton
- INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | | | | |
Collapse
|
24
|
Estrella MM, Parekh RS. The Expanding Role of APOL1 Risk in Chronic Kidney Disease and Cardiovascular Disease. Semin Nephrol 2018; 37:520-529. [PMID: 29110759 DOI: 10.1016/j.semnephrol.2017.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Variants of the APOL1 gene, found primarily in individuals of African descent, are associated with various forms of kidney disease and kidney disease progression. Recent studies evaluating the association of APOL1 with cardiovascular disease have yielded conflicting results, and the potential role in cardiovascular disease remains unclear. In this review, we summarize the observational studies linking the APOL1 risk variants with chronic kidney and cardiovascular disease among persons of African descent.
Collapse
Affiliation(s)
- Michelle M Estrella
- Kidney Health Research Collaborative, Department of Medicine, University of California San Francisco, San Francisco, CA; Department of Medicine, San Francisco VA Medical Center, San Francisco, CA
| | - Rulan S Parekh
- Division of Nephrology, Departments of Pediatrics and Medicine, The Hospital for Sick Children, SickKids Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Abstract
Apolipoprotein L1 (APOL1) protein is the human serum factor that protect human beings against Trypanosoma brucei brucei, the cause of trypanosomiasis. Subspecies of T b brucei that cause human sleeping sickness-T b gambiense and T b rhodesiense evolved molecular mechanisms that enabled them to evade killing by APOL1. Sequence changes (termed G1 and G2) in the APOL1 gene that restored its ability to kill T b rhodesiense also increase the risk of developing glomerular diseases and accelerate progression to end-stage kidney disease. To lyse trypanosome parasites, APOL1 forms pores in the trypanosome endolysosomal and mitochondrial membranes, resulting in rapid membrane depolarization. However, the molecular mechanism underlying APOL1 nephropathy is unknown. Recent experimental evidence has shown that aberrant efflux of intracellular potassium is an early event in APOL1-induced death of human embryonic kidney cells. Here, we discuss the possibility that abnormal efflux of cellular potassium or other cations may be relevant to the pathogenesis of APOL1 nephropathy.
Collapse
Affiliation(s)
- Opeyemi A Olabisi
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - John F Heneghan
- Harvard Medical School, Boston, MA; Division of Nephrology, Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA; Surgical Immunotherapy at Roger Williams Medical Center, Providence, RI
| |
Collapse
|
26
|
Abstract
Sleeping sickness is a neglected tropical disease caused by Trypanosoma brucei parasites, affecting the poorest communities in sub-Saharan Africa. The great efforts done by the scientific community, local governments, and non-governmental organizations (NGOs) via active patients' screening, vector control, and introduction of improved treatment regimens have significantly contributed to the reduction of human African trypanosomiasis (HAT) incidence during the last 15 years. Consequently, the WHO has announced the objective of HAT elimination as a public health problem by 2020. Studies at both parasite and host levels have improved our understanding of the parasite biology and the mechanisms of parasite interaction with its mammalian host. In this review, the impact that 'omics studies have had on sleeping sickness by revealing novel properties of parasite's subcellular organelles are summarized, by highlighting changes induced in the host during the infection and by proposing potential disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Natalia Tiberti
- Translational Biomarker Group, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
27
|
Sacks FM, Jensen MK. From High-Density Lipoprotein Cholesterol to Measurements of Function: Prospects for the Development of Tests for High-Density Lipoprotein Functionality in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2018; 38:487-499. [PMID: 29371248 DOI: 10.1161/atvbaha.117.307025] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/05/2018] [Indexed: 01/13/2023]
Abstract
The evidence is strong that biological functions contained in high-density lipoproteins (HDL) are antiatherogenic. These functions may track with HDL cholesterol or apolipoprotein A1 concentration to explain the strongly inverse risk curve for cardiovascular disease. Moreover, there are harmful as well as protective HDL subspecies in regard to cardiovascular disease, which could be responsible for paradoxical responses to HDL-directed treatments. Recent metabolic studies show that apolipoprotein A1-containing HDL is secreted into the circulation as mostly spherical cholesterol ester-rich lipoproteins that span the HDL size range. Most of the flux of apolipoprotein A1 HDL into and out of the circulation occurs in these spherical cholesterol-replete particles. Discoidal cholesterol-poor HDL comprises a minority of HDL secretion. We propose that much cholesterol in reverse cholesterol transport enters and exits medium and large size HDL without changing a size category, and its flux may be estimated provisionally from holoparticle clearance of cholesterol ester-rich HDL. An accurate framework for metabolism of HDL is essential to finding steady-state biomarkers that reflect HDL function in vivo. Whereas cholesterol efflux from cells to mainly discoidal HDL, mediated by ABCA1 (ATP-binding cassette transporter ABCA1), predicts cardiovascular disease, cholesterol transfers to spherical HDL also can be measured and may be relevant to protection against atherosclerosis. We propose several investigative paths on which human HDL biology may be investigated leading to convenient biomarkers of HDL quality and function having potential not only to improve risk prediction but also to more accurately target drug treatments.
Collapse
Affiliation(s)
- Frank M Sacks
- From the Departments of Nutrition and Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA.
| | - Majken K Jensen
- From the Departments of Nutrition and Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
28
|
Currier RB, Cooper A, Burrell-Saward H, MacLeod A, Alsford S. Decoding the network of Trypanosoma brucei proteins that determines sensitivity to apolipoprotein-L1. PLoS Pathog 2018; 14:e1006855. [PMID: 29346416 PMCID: PMC5790291 DOI: 10.1371/journal.ppat.1006855] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/30/2018] [Accepted: 01/05/2018] [Indexed: 12/27/2022] Open
Abstract
In contrast to Trypanosoma brucei gambiense and T. b. rhodesiense (the causative agents of human African trypanosomiasis), T. b. brucei is lysed by apolipoprotein-L1 (apoL1)-containing human serum trypanolytic factors (TLF), rendering it non-infectious to humans. While the mechanisms of TLF1 uptake, apoL1 membrane integration, and T. b. gambiense and T. b. rhodesiense apoL1-resistance have been extensively characterised, our understanding of the range of factors that drive apoL1 action in T. b. brucei is limited. Selecting our bloodstream-form T. b. brucei RNAi library with recombinant apoL1 identified an array of factors that supports the trypanocidal action of apoL1, including six putative ubiquitin modifiers and several proteins putatively involved in membrane trafficking; we also identified the known apoL1 sensitivity determinants, TbKIFC1 and the V-ATPase. Most prominent amongst the novel apoL1 sensitivity determinants was a putative ubiquitin ligase. Intriguingly, while loss of this ubiquitin ligase reduces parasite sensitivity to apoL1, its loss enhances parasite sensitivity to TLF1-dominated normal human serum, indicating that free and TLF1-bound apoL1 have contrasting modes-of-action. Indeed, loss of the known human serum sensitivity determinants, p67 (lysosomal associated membrane protein) and the cathepsin-L regulator, 'inhibitor of cysteine peptidase', had no effect on sensitivity to free apoL1. Our findings highlight a complex network of proteins that influences apoL1 action, with implications for our understanding of the anti-trypanosomal action of human serum.
Collapse
Affiliation(s)
- Rachel B. Currier
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Anneli Cooper
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Annette MacLeod
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
29
|
Breyer MD, Kretzler M. Novel avenues for drug discovery in diabetic kidney disease. Expert Opin Drug Discov 2017; 13:65-74. [DOI: 10.1080/17460441.2018.1398731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Matthew D. Breyer
- Lead Generation, Biotechnology Discovery Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Kruzel-Davila E, Wasser WG, Skorecki K. APOL1 Nephropathy: A Population Genetics and Evolutionary Medicine Detective Story. Semin Nephrol 2017; 37:490-507. [PMID: 29110756 DOI: 10.1016/j.semnephrol.2017.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Common DNA sequence variants rarely have a high-risk association with a common disease. When such associations do occur, evolutionary forces must be sought, such as in the association of apolipoprotein L1 (APOL1) gene risk variants with nondiabetic kidney diseases in populations of African ancestry. The variants originated in West Africa and provided pathogenic resistance in the heterozygous state that led to high allele frequencies owing to an adaptive evolutionary selective sweep. However, the homozygous state is disadvantageous and is associated with a markedly increased risk of a spectrum of kidney diseases encompassing hypertension-attributed kidney disease, focal segmental glomerulosclerosis, human immunodeficiency virus nephropathy, sickle cell nephropathy, and progressive lupus nephritis. This scientific success story emerged with the help of the tools developed over the past 2 decades in human genome sequencing and population genomic databases. In this introductory article to a timely issue dedicated to illuminating progress in this area, we describe this unique population genetics and evolutionary medicine detective story. We emphasize the paradox of the inheritance mode, the missing heritability, and unresolved associations, including cardiovascular risk and diabetic nephropathy. We also highlight how genetic epidemiology elucidates mechanisms and how the principles of evolution can be used to unravel conserved pathways affected by APOL1 that may lead to novel therapies. The APOL1 gene provides a compelling example of a common variant association with common forms of nondiabetic kidney disease occurring in a continental population isolate with subsequent global admixture. Scientific collaboration using multiple experimental model systems and approaches should further clarify pathomechanisms further, leading to novel therapies.
Collapse
Affiliation(s)
| | - Walter G Wasser
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel; Department of Nephrology, Mayanei HaYeshua Medical Center, Bnei Brak, Israel
| | - Karl Skorecki
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel; Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine and Research Institute Technion-Israel Institute of Technology, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
31
|
Ahouty B, Koffi M, Ilboudo H, Simo G, Matovu E, Mulindwa J, Hertz-Fowler C, Bucheton B, Sidibé I, Jamonneau V, MacLeod A, Noyes H, N’Guetta SP. Candidate genes-based investigation of susceptibility to Human African Trypanosomiasis in Côte d'Ivoire. PLoS Negl Trop Dis 2017; 11:e0005992. [PMID: 29059176 PMCID: PMC5695625 DOI: 10.1371/journal.pntd.0005992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/02/2017] [Accepted: 09/25/2017] [Indexed: 01/31/2023] Open
Abstract
Human African Trypanosomiasis (HAT) or sleeping sickness is a Neglected Tropical Disease. Long regarded as an invariably fatal disease, there is increasing evidence that infection by T. b. gambiense can result in a wide range of clinical outcomes, including latent infections, which are long lasting infections with no parasites detectable by microscopy. The determinants of this clinical diversity are not well understood but could be due in part to parasite or host genetic diversity in multiple genes, or their interactions. A candidate gene association study was conducted in Côte d’Ivoire using a case-control design which included a total of 233 subjects (100 active HAT cases, 100 controls and 33 latent infections). All three possible pairwise comparisons between the three phenotypes were tested using 96 SNPs in16 candidate genes (IL1, IL4, IL4R, IL6, IL8, IL10, IL12, IL12R, TNFA, INFG, MIF, APOL1, HPR, CFH, HLA-A and HLA-G). Data from 77 SNPs passed quality control. There were suggestive associations at three loci in IL6 and TNFA in the comparison between active cases and controls, one SNP in each of APOL1, MIF and IL6 in the comparison between latent infections and active cases and seven SNP in IL4, HLA-G and TNFA between latent infections and controls. No associations remained significant after Bonferroni correction, but the Benjamini Hochberg false discovery rate test indicated that there were strong probabilities that at least some of the associations were genuine. The excess of associations with latent infections despite the small number of samples available suggests that these subjects form a distinct genetic cluster different from active HAT cases and controls, although no clustering by phenotype was observed by principle component analysis. This underlines the complexity of the interactions existing between host genetic polymorphisms and parasite diversity. Since it was first identified, human African trypanosomiasis (HAT) or sleeping sickness has been described as invariably fatal. Recent data however suggest that infection by T. b. gambiense can result in a wide range of clinical outcomes in its human host including long lasting infections, that can be detected by the presence of antibodies, but in which parasites cannot be seen by microscopy; these cases are known as latent infections. While the factors determining, this varied response have not been clearly characterized, the effectors of the immune responses have been partially implicated as key players. We collected samples from people with active HAT, latent infections and controls in endemic foci in the Côte d’Ivoire. We tested the role of single nucleotide polymorphisms (SNPs) in 16 genes on susceptibility/resistance to HAT by means of a candidate gene association study. There was some evidence that variants of the genes for IL4, IL6, APOL1, HLAG, MIF and TNFA modified the risk of developing HAT. These proteins regulate the inflammatory response to many infections or are directly involved in killing the parasites. In this study, the results were statistically weak and would be inconclusive on their own, however other studies have also found associations in these genes, increasing the chance that the variants that we have identified play a genuine role in the response to trypanosome infection in Côte D’Ivoire.
Collapse
Affiliation(s)
- Bernardin Ahouty
- Laboratoire de Génétique, Félix Houphouët Boigny University, Abidjan, Côte d’Ivoire
| | - Mathurin Koffi
- Unité de Recherche en Génétique et Epidémiology Moléculaire, Jean Lorougnon Guédé University, Daloa, Côte d’Ivoire
- * E-mail:
| | - Hamidou Ilboudo
- Unité Maladies à Vecteurs et Biodiversité, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Gustave Simo
- Department of Biochemistry, University of Dchang, Dchang, Cameroon
| | - Enock Matovu
- School of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Julius Mulindwa
- School of Veterinary Medicine, Makerere University, Kampala, Uganda
| | | | - Bruno Bucheton
- Unité Mixte de Recherche 177 IRD-CIRAD, Institut de Recherche pour le Développement, Montpellier, France
| | - Issa Sidibé
- Unité Maladies à Vecteurs et Biodiversité, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Vincent Jamonneau
- Unité Mixte de Recherche 177 IRD-CIRAD, Institut de Recherche pour le Développement, Montpellier, France
- Unité de Recherche Glossines et Trypanosomes, Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Annette MacLeod
- Wellcome Center for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
32
|
Fontaine F, Lecordier L, Vanwalleghem G, Uzureau P, Van Reet N, Fontaine M, Tebabi P, Vanhollebeke B, Büscher P, Pérez-Morga D, Pays E. APOLs with low pH dependence can kill all African trypanosomes. Nat Microbiol 2017; 2:1500-1506. [PMID: 28924146 PMCID: PMC5660622 DOI: 10.1038/s41564-017-0034-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/24/2017] [Indexed: 02/02/2023]
Abstract
The primate-specific serum protein apolipoprotein L1 (APOL1) is the only secreted member of a family of cell death promoting proteins 1-4 . APOL1 kills the bloodstream parasite Trypanosoma brucei brucei, but not the human sleeping sickness agents T.b. rhodesiense and T.b. gambiense 3 . We considered the possibility that intracellular members of the APOL1 family, against which extracellular trypanosomes could not have evolved resistance, could kill pathogenic T. brucei subspecies. Here we show that recombinant APOL3 (rAPOL3) kills all African trypanosomes, including T.b. rhodesiense, T.b. gambiense and the animal pathogens Trypanosoma evansi, Trypanosoma congolense and Trypanosoma vivax. However, rAPOL3 did not kill more distant trypanosomes such as Trypanosoma theileri or Trypanosoma cruzi. This trypanolytic potential was partially shared by rAPOL1 from Papio papio (rPpAPOL1). The differential killing ability of rAPOL3 and rAPOL1 was associated with a distinct dependence on acidic pH for activity. Due both to its instability and toxicity when injected into mice, rAPOL3 cannot be used for the treatment of infection, but an experimental rPpAPOL1 mutant inspired by APOL3 exhibited enhanced trypanolytic activity in vitro and the ability to completely inhibit T.b. gambiense infection in mice. We conclude that pH dependence influences the trypanolytic potential of rAPOLs.
Collapse
Affiliation(s)
- Frédéric Fontaine
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium
| | - Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium
| | - Gilles Vanwalleghem
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium.,School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Pierrick Uzureau
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium.,Laboratoire de Médecine Expérimentale (ULB222), Hôpital André Vésale, Université Libre de Bruxelles, 706, route de Gozée, B-6110, Montigny le Tilleul, Belgium
| | - Nick Van Reet
- Unit of Parasite Diagnostics, Institute of Tropical Medicine, 155, Nationalestraat, B-2000, Antwerpen, Belgium
| | - Martina Fontaine
- Laboratory of Immunobiology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium
| | - Patricia Tebabi
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium
| | - Benoit Vanhollebeke
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium
| | - Philippe Büscher
- Unit of Parasite Diagnostics, Institute of Tropical Medicine, 155, Nationalestraat, B-2000, Antwerpen, Belgium
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium.
| |
Collapse
|
33
|
Madhavan SM, O'Toole JF, Konieczkowski M, Barisoni L, Thomas DB, Ganesan S, Bruggeman LA, Buck M, Sedor JR. APOL1 variants change C-terminal conformational dynamics and binding to SNARE protein VAMP8. JCI Insight 2017; 2:92581. [PMID: 28724794 DOI: 10.1172/jci.insight.92581] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
APOL1 variants in African populations mediate resistance to trypanosomal infection but increase risk for kidney diseases through unknown mechanisms. APOL1 is expressed in glomerular podocytes and does not vary with underlying kidney disease diagnoses or APOL1 genotypes, suggesting that the kidney disease-associated variants dysregulate its function rather than its localization or abundance. Structural homology searches identified vesicle-associated membrane protein 8 (VAMP8) as an APOL1 protein interactor. VAMP8 colocalizes with APOL1 in the podocyte, and the APOL1:VAMP8 interaction was confirmed biochemically and with surface plasmon resonance. APOL1 variants attenuate this interaction. Computational modeling of APOL1's 3-dimensional structure, followed by molecular dynamics simulations, revealed increased motion of the C-terminal domain of reference APOL1 compared with either variant, suggesting that the variants stabilize a closed or autoinhibited state that diminishes protein interactions with VAMP8. Changes in ellipticity with increasing urea concentrations, as assessed by circular dichroism spectroscopy, showed higher conformational stability of the C-terminal helix of the variants compared with the reference protein. These results suggest that reference APOL1 interacts with VAMP8-coated vesicles, a process attenuated by variant-induced reduction in local dynamics of the C-terminal. Disordered vesicular trafficking in the podocyte may cause injury and progressive chronic kidney diseases in susceptible African Americans subjects.
Collapse
Affiliation(s)
- Sethu M Madhavan
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth System Campus, and
| | - John F O'Toole
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth System Campus, and
| | - Martha Konieczkowski
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth System Campus, and
| | - Laura Barisoni
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - David B Thomas
- Department of Pathology, University of Miami, Miami, Florida, USA
| | | | - Leslie A Bruggeman
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth System Campus, and
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - John R Sedor
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth System Campus, and.,Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Granado D, Müller D, Krausel V, Kruzel-Davila E, Schuberth C, Eschborn M, Wedlich-Söldner R, Skorecki K, Pavenstädt H, Michgehl U, Weide T. Intracellular APOL1 Risk Variants Cause Cytotoxicity Accompanied by Energy Depletion. J Am Soc Nephrol 2017; 28:3227-3238. [PMID: 28696248 DOI: 10.1681/asn.2016111220] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/24/2017] [Indexed: 12/17/2022] Open
Abstract
Population genetic approaches have uncovered a strong association between kidney diseases and two sequence variants of the APOL1 gene, called APOL1 risk variant G1 and variant G2, compared with the nonrisk G0 allele. However, the mechanism whereby these variants lead to disease manifestation and, in particular, whether this involves an intracellular or extracellular pool of APOL1 remains unclear. Herein, we show a predominantly intracellular localization of APOL1 G0 and the renal risk variants, which localized to membranes of the endoplasmic reticulum in podocyte cell lines. This localization did not depend on the N-terminal signal peptide that mediates APOL1 secretion into the circulation. Additionally, a fraction of these proteins localized to structures surrounding mitochondria. In vitro overexpression of G1 or G2 lacking the signal peptide inhibited cell viability, triggered phosphorylation of stress-induced kinases, increased the phosphorylation of AMP-activated protein kinase, reduced intracellular potassium levels, and reduced mitochondrial respiration rates. These findings indicate that functions at intracellular membranes, specifically those of the endoplasmic reticulum and mitochondria, are crucial factors in APOL1 renal risk variant-mediated cell injury.
Collapse
Affiliation(s)
| | | | | | | | - Christian Schuberth
- Institute of Cell Dynamics and Imaging, and Cells in Motion (CiM) Cluster of Excellence (EXC1003), University of Münster, Münster, Germany; and
| | - Melanie Eschborn
- Department of Neurology, University Hospital of Münster, Münster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, and Cells in Motion (CiM) Cluster of Excellence (EXC1003), University of Münster, Münster, Germany; and
| | - Karl Skorecki
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel.,Departments of Genetics and Developmental Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
35
|
A co-evolutionary arms race: trypanosomes shaping the human genome, humans shaping the trypanosome genome. Parasitology 2017; 142 Suppl 1:S108-19. [PMID: 25656360 PMCID: PMC4413828 DOI: 10.1017/s0031182014000602] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Trypanosoma brucei is the causative agent of African sleeping sickness in humans and one of several pathogens that cause the related veterinary disease Nagana. A complex co-evolution has occurred between these parasites and primates that led to the emergence of trypanosome-specific defences and counter-measures. The first line of defence in humans and several other catarrhine primates is the trypanolytic protein apolipoprotein-L1 (APOL1) found within two serum protein complexes, trypanosome lytic factor 1 and 2 (TLF-1 and TLF-2). Two sub-species of T. brucei have evolved specific mechanisms to overcome this innate resistance, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. In T. b. rhodesiense, the presence of the serum resistance associated (SRA) gene, a truncated variable surface glycoprotein (VSG), is sufficient to confer resistance to lysis. The resistance mechanism of T. b. gambiense is more complex, involving multiple components: reduction in binding affinity of a receptor for TLF, increased cysteine protease activity and the presence of the truncated VSG, T. b. gambiense-specific glycoprotein (TgsGP). In a striking example of co-evolution, evidence is emerging that primates are responding to challenge by T. b. gambiense and T. b. rhodesiense, with several populations of humans and primates displaying resistance to infection by these two sub-species.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is a common disease with an estimated prevalence of 10-12%. There are pronounced differences between ethnicities with a 3-fold to 4-fold higher lifetime risk for end-stage kidney disease in African Americans compared to European Americans. The purpose of this review was to discuss recent findings on two apolipoproteins (apolipoprotein L1 and A-IV) in the context of kidney disease and kidney function. RECENT FINDINGS The observation that certain apolipoprotein L1 risk genotypes that are only present in African Americans might explain a major fraction of the ethnic differences for nondiabetic CKD has set the stage for this otherwise under-researched apolipoprotein. These risk genotypes on the one hand protect African Americans against African sleeping sickness but cause on the other hand several types of nondiabetic CKD. We are currently beginning to understand the mechanisms how apolipoprotein L1 is involved in the modification of lysosomal and cytoplasmic membranes. The second protein, apolipoprotein A-IV (apoA-IV), turned out to be an early marker of kidney impairment not only in patients with primary CKD but also in individuals from the general population. Genetic studies provided strong support of a causal effect of kidney function on apoA-IV concentrations. SUMMARY These two apolipoproteins have very distinct properties. Apolipoprotein L1 is causally involved in the development of nondiabetic CKD in African Americans. In contrast, apoA-IV is an early marker for kidney impairment.
Collapse
Affiliation(s)
- Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria
| |
Collapse
|
37
|
Higgins MK, Lane-Serff H, MacGregor P, Carrington M. A Receptor's Tale: An Eon in the Life of a Trypanosome Receptor. PLoS Pathog 2017; 13:e1006055. [PMID: 28125726 PMCID: PMC5268388 DOI: 10.1371/journal.ppat.1006055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African trypanosomes have complex life cycles comprising at least ten developmental forms, variously adapted to different niches in their tsetse fly vector and their mammalian hosts. Unlike many other protozoan pathogens, they are always extracellular and have evolved intricate surface coats that allow them to obtain nutrients while also protecting them from the immune defenses of either insects or mammals. The acquisition of macromolecular nutrients requires receptors that function within the context of these surface coats. The best understood of these is the haptoglobin-hemoglobin receptor (HpHbR) of Trypanosoma brucei, which is used by the mammalian bloodstream form of the parasite, allowing heme acquisition. However, in some primates it also provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. Recent studies have shown that during the evolution of African trypanosome species the receptor has diversified in function from a hemoglobin receptor predominantly expressed in the tsetse fly to a haptoglobin-hemoglobin receptor predominantly expressed in the mammalian bloodstream. Structural and functional studies of homologous receptors from different trypanosome species have allowed us to propose an evolutionary history for how one receptor has adapted to different roles in different trypanosome species. They also highlight the challenges that a receptor faces in operating on the complex trypanosome surface and show how these challenges can be met.
Collapse
Affiliation(s)
- Matthew K. Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Harriet Lane-Serff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
38
|
Cooper A, Capewell P, Clucas C, Veitch N, Weir W, Thomson R, Raper J, MacLeod A. A Primate APOL1 Variant That Kills Trypanosoma brucei gambiense. PLoS Negl Trop Dis 2016; 10:e0004903. [PMID: 27494254 PMCID: PMC4975595 DOI: 10.1371/journal.pntd.0004903] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/14/2016] [Indexed: 01/19/2023] Open
Abstract
Humans are protected against infection from most African trypanosomes by lipoprotein complexes present in serum that contain the trypanolytic pore-forming protein, Apolipoprotein L1 (APOL1). The human-infective trypanosomes, Trypanosoma brucei rhodesiense in East Africa and T. b. gambiense in West Africa have separately evolved mechanisms that allow them to resist APOL1-mediated lysis and cause human African trypanosomiasis, or sleeping sickness, in man. Recently, APOL1 variants were identified from a subset of Old World monkeys, that are able to lyse East African T. b. rhodesiense, by virtue of C-terminal polymorphisms in the APOL1 protein that hinder that parasite’s resistance mechanism. Such variants have been proposed as candidates for developing therapeutic alternatives to the unsatisfactory anti-trypanosomal drugs currently in use. Here we demonstrate the in vitro lytic ability of serum and purified recombinant protein of an APOL1 ortholog from the West African Guinea baboon (Papio papio), which is able to lyse examples of all sub-species of T. brucei including T. b. gambiense group 1 parasites, the most common agent of human African trypanosomiasis. The identification of a variant of APOL1 with trypanolytic ability for both human-infective T. brucei sub-species could be a candidate for universal APOL1-based therapeutic strategies, targeted against all pathogenic African trypanosomes. African trypanosomes are protozoan parasites that affect both humans and animals in poor rural areas of sub-Saharan Africa, and are a major constraint on health and agricultural development. Disease control is principally dependent on the administration of drugs, which are old and largely unsatisfactory. Humans are naturally resistant to infection by most African trypanosomes species because of a lytic protein component in their blood, called APOL1. However, human-infective trypanosomes, T. b. rhodesiense in East Africa, and T. b. gambiense in West Africa, have evolved separate mechanisms to disarm this lytic protein and cause disease. Recently, variants of APOL1 were discovered in some primates that are able to kill the East African human disease-causing sub-species. These APOL1 variants form the basis of current attempts to create novel therapeutic interventions that can kill both animal and human-infective trypanosomes. In this study, we show that another variant of the same protein from a West African baboon species is able to kill, not only East African human-infective trypanosomes, but also the West African parasites, which causes the majority of human African trypanosomiasis cases. This new APOL1 variant could be a potential candidate for anti-trypanosomal therapies targeted at all pathogenic trypanosome species.
Collapse
Affiliation(s)
- Anneli Cooper
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Paul Capewell
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Caroline Clucas
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nicola Veitch
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - William Weir
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Russell Thomson
- Department of Medical Parasitology, Langone School of Medicine, New York University, New York, New York, United States of America
| | - Jayne Raper
- Department of Medical Parasitology, Langone School of Medicine, New York University, New York, New York, United States of America
| | - Annette MacLeod
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Dummer PD, Limou S, Rosenberg AZ, Heymann J, Nelson G, Winkler CA, Kopp JB. APOL1 Kidney Disease Risk Variants: An Evolving Landscape. Semin Nephrol 2016. [PMID: 26215860 DOI: 10.1016/j.semnephrol.2015.04.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Apolipoprotein L1 (APOL1) genetic variants account for much of the excess risk of chronic and end-stage kidney disease, which results in a significant global health disparity for persons of African ancestry. We estimate the lifetime risk of kidney disease in APOL1 dual-risk allele individuals to be at least 15%. Experimental evidence suggests a direct role of APOL1 in pore formation, cellular injury, and programmed cell death in renal injury. The APOL1 BH3 motif, often associated with cell death, is unlikely to play a role in APOL1-induced cytotoxicity because it is not conserved within the APOL family and is dispensable for cell death in vitro. We discuss two models for APOL1 trypanolytic activity: one involving lysosome permeabilization and another involving colloid-osmotic swelling of the cell body, as well as their relevance to human pathophysiology. Experimental evidence from human cell culture models suggests that both mechanisms may be operative. A systems biology approach whereby APOL1-associated perturbations in gene and protein expression in affected individuals are correlated with molecular pathways may be productive to elucidate APOL1 function in vivo.
Collapse
Affiliation(s)
- Patrick D Dummer
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Sophie Limou
- Molecular Epidemiology Genetics Section, Center for Cancer Research, National Cancer Institute, Frederick MD
| | - Avi Z Rosenberg
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Department of Pathology Johns Hopkins University, Baltimore, MD
| | - Jurgen Heymann
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - George Nelson
- Molecular Epidemiology Genetics Section, Center for Cancer Research, National Cancer Institute, Frederick MD
| | - Cheryl A Winkler
- Molecular Epidemiology Genetics Section, Center for Cancer Research, National Cancer Institute, Frederick MD
| | - Jeffrey B Kopp
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
40
|
Kotb AM, Simon O, Blumenthal A, Vogelgesang S, Dombrowski F, Amann K, Zimmermann U, Endlich K, Endlich N. Knockdown of ApoL1 in Zebrafish Larvae Affects the Glomerular Filtration Barrier and the Expression of Nephrin. PLoS One 2016; 11:e0153768. [PMID: 27138898 PMCID: PMC4854397 DOI: 10.1371/journal.pone.0153768] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/04/2016] [Indexed: 12/28/2022] Open
Abstract
APOL1, a secreted high-density lipoprotein, is expressed in different human tissues. Genetic variants of APOL1 are described to be associated with the development of end stage renal diseases in African Americans. In human kidney, APOL1 is mainly expressed in podocytes that are responsible for proper blood filtration. Since mice do not express ApoL1, the zebrafish is an ideal model to study the role of ApoL1. Injection of morpholinos against zApoL1 into zebrafish eggs and larvae, respectively, induces severe edema indicating a leakage of the filtration barrier. This was demonstrated in zApoL1 knockdown larvae by intravascular injection of fluorescently-labeled 10- and 500-kDa dextrans and by clearance of the vitamin D-binding protein from the circulation. Immunohistochemistry and RT-PCR revealed the reduction of nephrin, a podocyte-specific protein essential for blood filtration. Coinjection of human nephrin mRNA rescued the zApoL1 knockdown induced phenotype. Reduced APOL1 and nephrin levels were also found in biopsies of patients suffering from end stage renal diseases. Our results demonstrate that zApoL1 is essential for proper blood filtration in the zebrafish glomerulus and that zApoL1 affects the expression of nephrin.
Collapse
Affiliation(s)
- Ahmed M Kotb
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ole Simon
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Antje Blumenthal
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Silke Vogelgesang
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Frank Dombrowski
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Uwe Zimmermann
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Karlhans Endlich
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
41
|
Friedman DJ, Pollak MR. Apolipoprotein L1 and Kidney Disease in African Americans. Trends Endocrinol Metab 2016; 27:204-215. [PMID: 26947522 PMCID: PMC4811340 DOI: 10.1016/j.tem.2016.02.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 02/06/2023]
Abstract
Genetic variants in the Apolipoprotein L1 (APOL1) gene cause high rates of kidney disease in African Americans. These variants, found only in individuals with recent African ancestry, confer enhanced innate immunity against African trypanosomes. Although they are among the most powerful disease-causing common variants discovered to date, we are just beginning to understand how they promote kidney injury. Since APOL1 is present in only a few primate species, much of our current knowledge has come from natural experiments in humans and in vitro studies while awaiting the development of transgenic animal models. Understanding more about the function of ApoL1 and how the high-risk variants behave differently from other ApoL1 molecules is a high priority in kidney disease research.
Collapse
Affiliation(s)
- David J. Friedman
- Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, RN301, Boston, MA. 02215, 617 667 0253
| | - Martin R. Pollak
- Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, RN325E, Boston, MA. 02215, 617 667 0461
| |
Collapse
|
42
|
Sharma AK, Friedman DJ, Pollak MR, Alper SL. Structural characterization of the C-terminal coiled-coil domains of wild-type and kidney disease-associated mutants of apolipoprotein L1. FEBS J 2016; 283:1846-62. [PMID: 26945671 DOI: 10.1111/febs.13706] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/25/2016] [Accepted: 03/02/2016] [Indexed: 01/08/2023]
Abstract
Trypanosomes that cause sleeping sickness endocytose apolipoprotein L1 (APOL1)-containing trypanolytic factors from human serum, leading to trypanolytic death through generation of APOL1-associated lytic pores in trypanosomal membranes. The trypanosome Trypanosoma brucei rhodesiense counteracts trypanolysis by expressing the surface protein serum response-associated (SRA), which can bind APOL1 common variant G0 to block its trypanolytic activity. However, two missense variants in the C terminal predicted coiled-coil (CC) domains of human APOL1 G1 (S342G/I384M) and G2 (ΔN388Y389) decrease or abrogate APOL1 binding to T. brucei rhodesiense SRA, thus preserving APOL1 trypanolytic activity. These evolutionarily selected APOL1 missense variants, found at a high frequency in some populations of African descent, also confer elevated risk of kidney disease. Understanding the SRA-APOL1 interaction and the role of APOL1 G1 and G2 variants in kidney disease demands structural characterization of the APOL1 CC domain. Using CD, heteronuclear NMR, and molecular dynamics (MD) simulation on structural homology models, we report here unique and dynamic solution conformations of nephropathy variants G1 and G2 as compared with the common variant G0. Conformational plasticity in G1 and G2 CC domains led to interhelical α1-α2 approximation coupled with secondary structural changes and delimited motional properties absent in the G0 CC domain. The G1 substitutions conferred local structural changes principally along helix α1, whereas the G2 deletion altered the structure of both helix α2 and helix α1. These dynamic features of APOL1 CC variants likely reflect their intrinsic structural properties, and should help interpret future APOL1 structural studies and define the contribution of APOL1 risk variants to kidney disease.
Collapse
Affiliation(s)
- Alok K Sharma
- Nephrology Division, Harvard Medical School, Boston, MA, USA.,Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David J Friedman
- Nephrology Division, Harvard Medical School, Boston, MA, USA.,Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Martin R Pollak
- Nephrology Division, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Seth L Alper
- Nephrology Division, Harvard Medical School, Boston, MA, USA.,Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Mukamal KJ, Tremaglio J, Friedman DJ, Ix JH, Kuller LH, Tracy RP, Pollak MR. APOL1 Genotype, Kidney and Cardiovascular Disease, and Death in Older Adults. Arterioscler Thromb Vasc Biol 2015; 36:398-403. [PMID: 26634651 DOI: 10.1161/atvbaha.115.305970] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/29/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE We sought to evaluate the cardiovascular impact of coding variants in the apolipoprotein L1 gene APOL1 that protect against trypanosome infection but have been associated with kidney disease among African Americans. APPROACH AND RESULTS As part of the Cardiovascular Health Study, a population-based cohort of Americans aged ≥65 years, we genotyped APOL1 polymorphisms rs73885319 and rs71785153 and examined kidney function, subclinical atherosclerosis, and incident cardiovascular disease and death over 13 years of follow-up among 91 African Americans with 2 risk alleles, 707 other African Americans, and 4964 white participants. The high-risk genotype with 2 risk alleles was associated with 2-fold higher levels of albuminuria and lower ankle-brachial indices but similar carotid intima-media thickness among African Americans. Median survival among high-risk African Americans was 9.9 years (95% confidence interval [CI], 8.7-11.9), compared with 13.6 years (95% CI, 12.5-14.3) among other African Americans and 13.3 years (95% CI, 13.0-13.6) among whites (P=0.03). The high-risk genotype was also associated with increased risk for incident myocardial infarction (adjusted hazard ratio 1.8; 95% CI, 1.1-3.0) and mortality (adjusted hazard ratio 1.3; 95% CI 1.0-1.7). Albuminuria and risk for myocardial infarction and mortality were nearly identical between African Americans with 0 to 1 risk alleles and whites. CONCLUSIONS APOL1 genotype is associated with albuminuria, subclinical atherosclerosis, incident myocardial infarction, and mortality in older African Americans. African Americans without 2 risk alleles do not differ significantly in risk of myocardial infarction or mortality from whites. APOL1 trypanolytic variants may account for a substantial proportion of the excess risk of chronic disease in African Americans.
Collapse
Affiliation(s)
- Kenneth J Mukamal
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (K.J.M., J.T., D.J.F., M.R.P.); Veterans Affairs San Diego Healthcare System and Division of Nephrology-Hypertension, University of California San Diego School of Medicine (J.H.I.); Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA (L.H.K.); and Department of Pathology and Laboratory Medicine, University of Vermont, Burlington (R.P.T.).
| | - Joseph Tremaglio
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (K.J.M., J.T., D.J.F., M.R.P.); Veterans Affairs San Diego Healthcare System and Division of Nephrology-Hypertension, University of California San Diego School of Medicine (J.H.I.); Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA (L.H.K.); and Department of Pathology and Laboratory Medicine, University of Vermont, Burlington (R.P.T.)
| | - David J Friedman
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (K.J.M., J.T., D.J.F., M.R.P.); Veterans Affairs San Diego Healthcare System and Division of Nephrology-Hypertension, University of California San Diego School of Medicine (J.H.I.); Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA (L.H.K.); and Department of Pathology and Laboratory Medicine, University of Vermont, Burlington (R.P.T.)
| | - Joachim H Ix
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (K.J.M., J.T., D.J.F., M.R.P.); Veterans Affairs San Diego Healthcare System and Division of Nephrology-Hypertension, University of California San Diego School of Medicine (J.H.I.); Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA (L.H.K.); and Department of Pathology and Laboratory Medicine, University of Vermont, Burlington (R.P.T.)
| | - Lewis H Kuller
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (K.J.M., J.T., D.J.F., M.R.P.); Veterans Affairs San Diego Healthcare System and Division of Nephrology-Hypertension, University of California San Diego School of Medicine (J.H.I.); Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA (L.H.K.); and Department of Pathology and Laboratory Medicine, University of Vermont, Burlington (R.P.T.)
| | - Russell P Tracy
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (K.J.M., J.T., D.J.F., M.R.P.); Veterans Affairs San Diego Healthcare System and Division of Nephrology-Hypertension, University of California San Diego School of Medicine (J.H.I.); Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA (L.H.K.); and Department of Pathology and Laboratory Medicine, University of Vermont, Burlington (R.P.T.)
| | - Martin R Pollak
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (K.J.M., J.T., D.J.F., M.R.P.); Veterans Affairs San Diego Healthcare System and Division of Nephrology-Hypertension, University of California San Diego School of Medicine (J.H.I.); Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA (L.H.K.); and Department of Pathology and Laboratory Medicine, University of Vermont, Burlington (R.P.T.)
| |
Collapse
|
44
|
Weckerle A, Snipes JA, Cheng D, Gebre AK, Reisz JA, Murea M, Shelness GS, Hawkins GA, Furdui CM, Freedman BI, Parks JS, Ma L. Characterization of circulating APOL1 protein complexes in African Americans. J Lipid Res 2015; 57:120-30. [PMID: 26586272 DOI: 10.1194/jlr.m063453] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 11/20/2022] Open
Abstract
APOL1 gene renal-risk variants are associated with nephropathy and CVD in African Americans; however, little is known about the circulating APOL1 variant proteins which reportedly bind to HDL. We examined whether APOL1 G1 and G2 renal-risk variant serum concentrations or lipoprotein distributions differed from nonrisk G0 APOL1 in African Americans without nephropathy. Serum APOL1 protein concentrations were similar regardless of APOL1 genotype. In addition, serum APOL1 protein was bound to protein complexes in two nonoverlapping peaks, herein referred to as APOL1 complex A (12.2 nm diameter) and complex B (20.0 nm diameter). Neither of these protein complexes associated with HDL or LDL. Proteomic analysis revealed that complex A was composed of APOA1, haptoglobin-related protein (HPR), and complement C3, whereas complex B contained APOA1, HPR, IgM, and fibronectin. Serum HPR was less abundant on complex B in individuals with G1 and G2 renal-risk variant genotypes, relative to G0 (P = 0.0002-0.037). These circulating complexes may play roles in HDL metabolism and susceptibility to CVD.
Collapse
Affiliation(s)
- Allison Weckerle
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - James A Snipes
- Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Dongmei Cheng
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Abraham K Gebre
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Julie A Reisz
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Mariana Murea
- Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Gregory S Shelness
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Gregory A Hawkins
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Cristina M Furdui
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Barry I Freedman
- Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - John S Parks
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Lijun Ma
- Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
45
|
Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, Nelson RP, Orange JS, Routes JM, Shearer WT, Sorensen RU, Verbsky JW, Bernstein DI, Blessing-Moore J, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Randolph CR, Schuller D, Spector SL, Tilles S, Wallace D. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 2015; 136:1186-205.e1-78. [PMID: 26371839 DOI: 10.1016/j.jaci.2015.04.049] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023]
Abstract
The American Academy of Allergy, Asthma & Immunology (AAAAI) and the American College of Allergy, Asthma & Immunology (ACAAI) have jointly accepted responsibility for establishing the "Practice parameter for the diagnosis and management of primary immunodeficiency." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion.
Collapse
|
46
|
Lecordier L, Uzureau P, Tebabi P, Brauner J, Benghiat FS, Vanhollebeke B, Pays E. Adaptation of Trypanosoma rhodesiense to hypohaptoglobinaemic serum requires transcription of the APOL1 resistance gene in a RNA polymerase I locus. Mol Microbiol 2015; 97:397-407. [PMID: 25899052 DOI: 10.1111/mmi.13036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 02/02/2023]
Abstract
Human apolipoprotein L1 (APOL1) kills African trypanosomes except Trypanosoma rhodesiense and Trypanosoma gambiense, the parasites causing sleeping sickness. APOL1 uptake into trypanosomes is favoured by its association with the haptoglobin-related protein-haemoglobin complex, which binds to the parasite surface receptor for haptoglobin-haemoglobin. As haptoglobin-haemoglobin can saturate the receptor, APOL1 uptake is increased in haptoglobin-poor (hypohaptoglobinaemic) serum (HyHS). While T. rhodesiense resists APOL1 by RNA polymerase I (pol-I)-mediated expression of the serum resistance-associated (SRA) protein, T. gambiense resists by pol-II-mediated expression of the T. gambiense-specific glycoprotein (TgsGP). Moreover, in T. gambiense resistance to HyHS is linked to haptoglobin-haemoglobin receptor inactivation by mutation. We report that unlike T. gambiense, T. rhodesiense possesses a functional haptoglobin-haemoglobin receptor, and that like T. gambiense experimentally provided with active receptor, this parasite is killed in HyHS because of receptor-mediated APOL1 uptake. However, T. rhodesiense could adapt to low haptoglobin by increasing transcription of SRA. When assayed in Trypanosoma brucei, resistance to HyHS occurred with pol-I-, but not with pol-II-mediated SRA expression. Similarly, T. gambiense provided with active receptor acquired resistance to HyHS only when TgsGP was moved to a pol-I locus. Thus, transcription by pol-I favours adaptive gene regulation, explaining the presence of SRA in a pol-I locus.
Collapse
Affiliation(s)
- Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B6041, Gosselies, Belgium
| | - Pierrick Uzureau
- Laboratoire de Médecine Expérimentale (ULB222), Hôpital André Vésale, Université Libre de Bruxelles, 706, route de Gozée, B6110, Montigny le Tilleul, Belgium
| | - Patricia Tebabi
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B6041, Gosselies, Belgium
| | - Jonathan Brauner
- Department of Clinical Chemistry, Hôpital Erasme, Université Libre de Bruxelles, 808, route de Lennik, B1070, Brussels, Belgium
| | - Fleur Samantha Benghiat
- Department of Hematology, Hôpital Erasme, Université Libre de Bruxelles, 808, route de Lennik, B1070, Brussels, Belgium
| | - Benoit Vanhollebeke
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B6041, Gosselies, Belgium
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B6041, Gosselies, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Liège, Belgium
| |
Collapse
|
47
|
Kasembeli AN, Duarte R, Ramsay M, Naicker S. African origins and chronic kidney disease susceptibility in the human immunodeficiency virus era. World J Nephrol 2015; 4:295-306. [PMID: 25949944 PMCID: PMC4419140 DOI: 10.5527/wjn.v4.i2.295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/06/2015] [Accepted: 01/18/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem worldwide with the estimated incidence growing by approximately 6% annually. There are striking ethnic differences in the prevalence of CKD such that, in the United States, African Americans have the highest prevalence of CKD, four times the incidence of end stage renal disease when compared to Americans of European ancestry suggestive of genetic predisposition. Diabetes mellitus, hypertension and human immunodeficiency virus (HIV) infection are the major causes of CKD. HIV-associated nephropathy (HIVAN) is an irreversible form of CKD with considerable morbidity and mortality and is present predominantly in people of African ancestry. The APOL1 G1 and G2 alleles were more strongly associated with the risk for CKD than the previously examined MYH9 E1 risk haplotype in individuals of African ancestry. A strong association was reported in HIVAN, suggesting that 50% of African Americans with two APOL1 risk alleles, if untreated, would develop HIVAN. However these two variants are not enough to cause disease. The prevailing belief is that modifying factors or second hits (including genetic hits) underlie the pathogenesis of kidney disease. This work reviews the history of genetic susceptibility of CKD and outlines current theories regarding the role for APOL1 in CKD in the HIV era.
Collapse
|
48
|
Saab KR, Kendrick J, Yracheta JM, Lanaspa MA, Pollard M, Johnson RJ. New insights on the risk for cardiovascular disease in African Americans: the role of added sugars. J Am Soc Nephrol 2015; 26:247-57. [PMID: 25090991 PMCID: PMC4310665 DOI: 10.1681/asn.2014040393] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/30/2014] [Indexed: 12/26/2022] Open
Abstract
African Americans are at increased risk for cardiovascular and metabolic diseases, including obesity, high BP, diabetes, CKD, myocardial infarction, and stroke. Here we summarize the current risks and provide an overview of the underlying risk factors that may account for these associations. By reviewing the relationship between cardiovascular and renal diseases and the African-American population during the early 20th century, the historic and recent associations of African heritage with cardiovascular disease, and modern population genetics, it is possible to assemble strong hypotheses for the primary underlying mechanisms driving the increased frequency of disease in African Americans. Our studies suggest that underlying genetic mechanisms may be responsible for the increased frequency of high BP and kidney disease in African Americans, with particular emphasis on the role of APOL1 polymorphisms in causing kidney disease. In contrast, the Western diet, particularly the relatively high intake of fructose-containing sugars and sweetened beverages, appears to be the dominant force driving the increased risk of diabetes, obesity, and downstream complications. Given that intake of added sugars is a remediable risk factor, we recommend clinical trials to examine the reduction of sweetened beverages as a primary means for reducing cardiovascular risk in African Americans.
Collapse
Affiliation(s)
- Karim R Saab
- Renal Division, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Jessica Kendrick
- Renal Division, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Joseph M Yracheta
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington
| | - Miguel A Lanaspa
- Renal Division, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado; Colorado Research Partners LLC, Aurora, Colorado; and
| | | | - Richard J Johnson
- Renal Division, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado; Colorado Research Partners LLC, Aurora, Colorado; and
| |
Collapse
|
49
|
Beschin A, Van Den Abbeele J, De Baetselier P, Pays E. African trypanosome control in the insect vector and mammalian host. Trends Parasitol 2014; 30:538-47. [DOI: 10.1016/j.pt.2014.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022]
|
50
|
Lecordier L, Uzureau P, Tebabi P, Pérez-Morga D, Nolan D, Schumann Burkard G, Roditi I, Pays E. Identification of Trypanosoma brucei components involved in trypanolysis by normal human serum. Mol Microbiol 2014; 94:625-36. [PMID: 25256834 DOI: 10.1111/mmi.12783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2014] [Indexed: 11/27/2022]
Abstract
Normal human serum (NHS) confers human resistance to infection by the parasite Trypanosoma brucei owing to the trypanolytic activity of apolipoprotein L1 (APOL1), present in two serum complexes termed Trypanolytic Factors (TLF-1 and -2). In order to identify parasite components involved in the intracellular trafficking and activity of TLFs, an inducible RNA interference (RNAi) genomic DNA library constructed in bloodstream form T. brucei was subjected to RNAi induction and selection for resistant parasites under NHS conditions favouring either TLF-1 or TLF-2 uptake. While TLF-1 conditions readily selected the haptoglobin-haemoglobin (HP-HB) surface receptor TbHpHbR as expected, given its known ability to bind TLF-1, under TLF-2 conditions no specific receptor for TLF-2 was identified. Instead, the screen allowed the identification of five distinct factors expected to be involved in the assembly of the vacuolar proton pump V-ATPase and consecutive endosomal acidification. These data confirm that lowering the pH during endocytosis is required for APOL1 toxic activity.
Collapse
Affiliation(s)
- Laurence Lecordier
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041, Gosselies, Belgium
| | | | | | | | | | | | | | | |
Collapse
|