1
|
Wang B, Zhang F, Wu X, Ji M. TBK1 is paradoxical in tumor development: a focus on the pathway mediating IFN-I expression. Front Immunol 2024; 15:1433321. [PMID: 39161768 PMCID: PMC11330819 DOI: 10.3389/fimmu.2024.1433321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
TANK-binding kinase 1 (TBK1) is a member of the IKK family and plays a crucial role in the activation of non-canonical NF-κB signaling and type I interferon responses. The aberrant activation of TBK1 contributes to the proliferation and survival of various types of tumor cells, particularly in specific mutational or tumorous contexts. Inhibitors targeting TBK1 are under development and application in both in vivo and in vitro settings, yet their clinical efficacy remains limited. Numerous literatures have shown that TBK1 can exhibit both tumor promoting and tumor inhibiting effects. TBK1 acts as a pivotal node within the innate immune pathway, mediating anti-tumor immunity through the activation of innate immune responses. Facilitating interferon-I (IFN-I) production represents a critical mechanism through which TBK1 bridges these processes. IFN has been shown to exert both beneficial and detrimental effects on tumor progression. Hence, the paradoxical role of TBK1 in tumor development may necessitate acknowledgment in light of its downstream IFN-I signaling cascade. In this paper, we review the signaling pathways mediated by TBK1 in various tumor contexts and summarize the dual roles of TBK1 and the TBK1-IFN pathways in both promoting and inhibiting tumor progression. Additionally, we highlight the significance of the TBK1-IFN pathway in clinical therapy, particularly in the context of immune response. We anticipate further advancements in the development of TBK1 inhibitors as part of novel cancer treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
2
|
Li X, Cheng K, Shang MD, Yang Y, Hu B, Wang X, Wei XD, Han YC, Zhang XG, Dong MH, Yang ZL, Wang JQ. MARCH1 negatively regulates TBK1-mTOR signaling pathway by ubiquitinating TBK1. BMC Cancer 2024; 24:902. [PMID: 39061024 PMCID: PMC11282859 DOI: 10.1186/s12885-024-12667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND TBK1 positively regulates the growth factor-mediated mTOR signaling pathway by phosphorylating mTOR. However, it remains unclear how the TBK1-mTOR signaling pathway is regulated. Considering that STING not only interacts with TBK1 but also with MARCH1, we speculated that MARCH1 might regulate the mTOR signaling pathway by targeting TBK1. The aim of this study was to determine whether MARCH1 regulates the mTOR signaling pathway by targeting TBK1. METHODS The co-immunoprecipitation (Co-IP) assay was used to verify the interaction between MARCH1 with STING or TBK1. The ubiquitination of STING or TBK1 was analyzed using denatured co-immunoprecipitation. The level of proteins detected in the co-immunoprecipitation or denatured co-immunoprecipitation samples were determined by Western blotting. Stable knocked-down cells were constructed by infecting lentivirus bearing the related shRNA sequences. Scratch wound healing and clonogenic cell survival assays were used to detect the migration and proliferation of breast cancer cells. RESULTS We showed that MARCH1 played an important role in growth factor-induced the TBK1- mTOR signaling pathway. MARCH1 overexpression attenuated the growth factor-induced activation of mTOR signaling pathway, whereas its deficiency resulted in the opposite effect. Mechanistically, MARCH1 interacted with and promoted the K63-linked ubiquitination of TBK1. This ubiquitination of TBK1 then attenuated its interaction with mTOR, thereby inhibiting the growth factor-induced mTOR signaling pathway. Importantly, faster proliferation induced by MARCH1 deficiency was weakened by mTOR, STING, or TBK1 inhibition. CONCLUSION MARCH1 suppressed growth factors mediated the mTOR signaling pathway by targeting the STING-TBK1-mTOR axis.
Collapse
Affiliation(s)
- Xiao Li
- The Second Clinical Medical College , Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Kai Cheng
- The Second Clinical Medical College , Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Meng-Di Shang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Yong Yang
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China
| | - Bin Hu
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China
| | - Xi Wang
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xiao-Dan Wei
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Yan-Chun Han
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xiao-Gang Zhang
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Meng-Hua Dong
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| | - Zhen-Lin Yang
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China.
| | - Jiu-Qiang Wang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| |
Collapse
|
3
|
Park JH, Mortaja M, Son HG, Zhao X, Sloat LM, Azin M, Wang J, Collier MR, Tummala KS, Mandinova A, Bardeesy N, Semenov YR, Mino-Kenudson M, Demehri S. Statin prevents cancer development in chronic inflammation by blocking interleukin 33 expression. Nat Commun 2024; 15:4099. [PMID: 38816352 PMCID: PMC11139893 DOI: 10.1038/s41467-024-48441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.
Collapse
Affiliation(s)
- Jong Ho Park
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Mahsa Mortaja
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heehwa G Son
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xutu Zhao
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren M Sloat
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Wang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael R Collier
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Krishna S Tummala
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Quantitative Biosciences, Merck Research Laboratories, Boston, MA, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yevgeniy R Semenov
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Duscher AA, Vroom MM, Foster JS. Impact of modeled microgravity stress on innate immunity in a beneficial animal-microbe symbiosis. Sci Rep 2024; 14:2912. [PMID: 38316910 PMCID: PMC10844198 DOI: 10.1038/s41598-024-53477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The innate immune response is the first line of defense for all animals to not only detect invading microbes and toxins but also sense and interface with the environment. One such environment that can significantly affect innate immunity is spaceflight. In this study, we explored the impact of microgravity stress on key elements of the NFκB innate immune pathway. The symbiosis between the bobtail squid Euprymna scolopes and its beneficial symbiont Vibrio fischeri was used as a model system under a simulated microgravity environment. The expression of genes associated with the NFκB pathway was monitored over time as the symbiosis progressed. Results revealed that although the onset of the symbiosis was the major driver in the differential expression of NFκB signaling, the stress of simulated low-shear microgravity also caused a dysregulation of expression. Several genes were expressed at earlier time points suggesting that elements of the E. scolopes NFκB pathway are stress-inducible, whereas expression of other pathway components was delayed. The results provide new insights into the role of NFκB signaling in the squid-vibrio symbiosis, and how the stress of microgravity negatively impacts the host immune response. Together, these results provide a foundation to develop mitigation strategies to maintain host-microbe homeostasis during spaceflight.
Collapse
Affiliation(s)
- Alexandrea A Duscher
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
- Chesapeake Bay Governor's School, Warsaw, VA, 22572, USA
| | - Madeline M Vroom
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
- Vaxxinity, Space Life Sciences Lab, Merritt Island, FL, 32953, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA.
| |
Collapse
|
5
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
6
|
Park JH, Mortaja M, Son H, Azin M, Wang J, Collier M, Mandinova A, Semenov Y, Mino-Kenudson M, Demehri S. Statin prevents cancer development in chronic inflammation by blocking interleukin 33 expression. RESEARCH SQUARE 2023:rs.3.rs-2318750. [PMID: 36711701 PMCID: PMC9882616 DOI: 10.21203/rs.3.rs-2318750/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by the environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas. FDA-approved drug library screen identified pitavastatin as an effective IL-33 inhibitor by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevented chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. IRF3-IL-33 axis was highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlated with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3 signaling pathway suppresses IL-33 expression and cancer-prone chronic inflammation. Statins present a safe and effective therapeutic strategy to prevent chronic inflammation and its cancer sequela.
Collapse
|
7
|
Uchida T, Akasaki Y, Sueishi T, Kurakazu I, Toya M, Kuwahara M, Hirose R, Hyodo Y, Tsushima H, Lotz MK, Nakashima Y. Promotion of Knee Cartilage Degradation by IκB Kinase ε in the Pathogenesis of Osteoarthritis in Human and Murine Models. Arthritis Rheumatol 2022; 75:937-949. [PMID: 36530063 DOI: 10.1002/art.42421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 11/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE NF-κB signaling is an important modulator in osteoarthritis (OA), and IκB kinase ε (IKKε) regulates the NF-κB pathway. This study was undertaken to identify the functional involvement of IKKε in the pathogenesis of OA and the effectiveness of IKKε inhibition as a modulatory treatment. METHODS IKKε expression in normal and OA human knee joints was analyzed immunohistochemically. Gain- or loss-of-function experiments were performed using human chondrocytes. Furthermore, OA was surgically induced in mice, followed by intraarticular injection of BAY-985, an IKKε/TANK-binding kinase 1 inhibitor, into the left knee joint every 5 days for 8 weeks. Mice were subsequently examined for histologic features of cartilage damage and inflammation. RESULTS IKKε protein expression was increased in human OA cartilage. In vitro, expression levels of OA-related factors were down-regulated following knockdown of IKKε with the use of small interfering RNA in human OA chondrocytes or following treatment with BAY-985. Conversely, IKKε overexpression significantly increased the expression of OA-related catabolic mediators. In Western blot analysis of human chondrocytes, IKKε overexpression increased the phosphorylation of IκBα and p65. In vivo, intraarticular injection of BAY-985 into the knee joints of mice attenuated OA-related cartilage degradation and hyperalgesia via NF-κB signaling. CONCLUSION These results suggest that IKKε regulates cartilage degradation through a catabolic response mediated by NF-κB signaling, and this could represent a potential target for OA treatment. Furthermore, BAY-985 may serve as a major disease-modifying compound among the drugs developed for OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Martin K Lotz
- The Scripps Research Institute, La Jolla, California
| | | |
Collapse
|
8
|
Khatoon F, Kumar V, Anjum F, Shafie A, Adnan M, Hassan MI. Frustration analysis of TBK1 missense mutations reported in ALS/FTD and cancer patients. 3 Biotech 2022; 12:174. [PMID: 35845111 PMCID: PMC9283588 DOI: 10.1007/s13205-022-03240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Tank-binding kinase 1 (TBK1) is a multifunctional kinase having essential roles in cellular processes, autophagy/mitophagy, and selective clearance of damaged proteins. More than 90 mutations in the TBK1 gene are linked with multiple cancer types, amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Some of these missense mutations disrupt the abilities of TBK1 to dimerize, associate with the mitophagy receptor optineurin (OPTN), autoactivate, or catalyze phosphorylation. Some mutations may cause severe dysregulation of the pathway, while others induce a limited disruption. Here, we have studied those mutations reported in cancer, ALS and FTD, and subsequently investigated the effect of missense mutations on the structure and function of TBK1 for localized residual frustration change. Out of 33 ALS/FTD causing mutations and 28 oncogenic mutations, 10 mutations and 12 oncogenic mutations showed significant change in the residual frustration. The local frustration plays an important role in the conformation of protein structure in active and inactive kinases. Our analysis reports the change in residual frustration state, conformational change and effect on active and inactive TBK1 function due to ALS/FTD causing and oncogenic missense mutations. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03240-0.
Collapse
|
9
|
Xiao QA, He Q, Li L, Song Y, Chen YR, Zeng J, Xia X. Role of IKKε in the Metabolic Diseases: Physiology, Pathophysiology, and Pharmacology. Front Pharmacol 2022; 13:888588. [PMID: 35662709 PMCID: PMC9162805 DOI: 10.3389/fphar.2022.888588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
IKKε (inhibitor of nuclear factor kappa-B kinase ε) is a member of the noncanonical NF-κB pathway. It participates in the inflammatory response and innate immunity against bacteria. In recent decades, IKKε has been closely associated with metabolic regulation. Inhibition of the IKKε pathway can improve fat deposition in the liver, reduce subcutaneous fat inflammation, and improve liver gluconeogenesis in obesity. IKKε is expected to be a new therapeutic target for metabolic diseases such as nonalcoholic fatty liver disease, diabetes, and obesity. Herein, we summarize the structural characterization, physiological function, and pathological role of IKKε in metabolic diseases and small molecule inhibitors of IKKε.
Collapse
Affiliation(s)
- Qing-Ao Xiao
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, China.,Third-grade Pharmacological Laboratory on Traditional Chinese MedicineState Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Qian He
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, China.,National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lun Li
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, China.,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, China
| | - Yinhong Song
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, China.,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, China
| | - Yue-Ran Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese MedicineState Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Department of Physiology and Pathophysiology, Medical College, China Three Gorges University, Yichang, China
| | - Jun Zeng
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, China
| | - Xuan Xia
- Third-grade Pharmacological Laboratory on Traditional Chinese MedicineState Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Department of Physiology and Pathophysiology, Medical College, China Three Gorges University, Yichang, China
| |
Collapse
|
10
|
Sun Y, Tang H, Wang X, Feng F, Fan T, Zhao D, Xiong B, Xie H, Liu T. Identification of 1 H-pyrazolo[3,4-b]pyridine derivatives as novel and potent TBK1 inhibitors: design, synthesis, biological evaluation, and molecular docking study. J Enzyme Inhib Med Chem 2022; 37:1411-1425. [PMID: 35587686 PMCID: PMC9132415 DOI: 10.1080/14756366.2022.2076674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
TANK-binding kinase 1 (TBK1), a noncanonical member of the inhibitor-kappaB kinases (IKKs) family, plays a vital role in coordinating the signalling pathways of innate immunity, involving in the process of neuroinflammation, autophagy, and oncogenesis. In current study, based on rational drug design strategy, we discovered a series of 1H-pyrazolo[3,4-b]pyridine derivatives as potent TBK1 inhibitors and dissected the structure–activity relationships (SARs). Through the several rounds of optimisation, compound 15y stood out as a potent inhibitor on TBK1 with an IC50 value of 0.2 nM and also displayed good selectivity. The mRNA detection of TBK1 downstream genes showed that compound 15y effectively inhibited TBK1 downstream IFN signalling in stimulated THP-1 and RAW264.7 cells. Meanwhile, compound 15y exhibited a micromolar antiproliferation effect on A172, U87MG, A375, A2058, and Panc0504 cell lines. Together, current results provided a promising TBK1 inhibitor 15y as lead compound for immune- and cancer-related drug discovery.
Collapse
Affiliation(s)
- Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Haotian Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Fang Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tiantian Fan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Bing Xiong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hua Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tongchao Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
11
|
Therapeutic targeting of TANK-binding kinase signaling towards anticancer drug development: Challenges and opportunities. Int J Biol Macromol 2022; 207:1022-1037. [PMID: 35358582 DOI: 10.1016/j.ijbiomac.2022.03.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
TANK-binding kinase 1 (TBK1) plays a fundamental role in regulating the cellular responses and controlling several signaling cascades. It regulates inflammatory, interferon, NF-κB, autophagy, and Akt pathways. Post-translational modifications (PTM) of TBK1 control its action and subsequent cellular signaling. The dysregulation of the TBK1 pathway is correlated to many pathophysiological conditions, including cancer, that implicates the promising therapeutic advantage for targeting TBK1. The present study summarizes current updates on the molecular mechanisms and cancer-inducing roles of TBK1. Designed inhibitors of TBK1 are considered a potential therapeutic agent for several diseases, including cancer. Data from pre-clinical tumor models recommend that the targeting of TBK1 could be an attractive strategy for anti-tumor therapy. This review further highlighted the therapeutic potential of potent and selective TBK1 inhibitors, including Amlexanox, Compound II, BX795, MRT67307, SR8185 AZ13102909, CYT387, GSK8612, BAY985, and Domainex. These inhibitors may be implicated to facilitate therapeutic management of cancer and TBK1-associated diseases in the future.
Collapse
|
12
|
Liu C, Sun W, Yang K, Xia B. Knockdown of TRIM65 suppressed the proliferation and invasiveness of gastric cancer cells by restricting the ubiquitin degradation of PPM1A. Exp Cell Res 2022; 416:113154. [PMID: 35421368 DOI: 10.1016/j.yexcr.2022.113154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
Gastric cancer is a type of serious malignant tumors all around the world. TCGA data showed that the expression of TRIM65 (E3 ubiquitin ligase) was enhanced in the gastric cancer tissues. The role of TRIM65 in the tumorigenesis of gastric cancer remains unclear. In this study, we successfully established TRIM65-knockdown gastric cancer cells. Next, CCK-8, colony formation assays and transwell assays were performed to detect the cell proliferation and invasion. The results showed that suppression of TRIM65 inhibited the proliferation and invasion of gastric cancer cells. Interestingly, the Western blot assay confirmed that downregulation of TRIM65 increased the level of PPM1A and decreased the level of p-TBK1 in gastric cancer cells. Mechanistically, immunoprecipitation assay revealed that knockdown of TRIM65 inhibited the ubiquitin degradation of PPM1A. In rescue experiments, suppression of PPM1A promoted the proliferation and invasion of gastric cancer cells transfected with sh-TRIM65. Therefore, our results suggested that knockdown of TRIM65 inhibited the proliferation and invasion of gastric cancer cells by suppressing the ubiquitin degradation of PPM1A and phosphorylation of TBK1.
Collapse
Affiliation(s)
- Chang Liu
- Department of Gastrointestinal Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Weiping Sun
- Department of Gastrointestinal Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Kui Yang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Boning Xia
- Department of Gastrointestinal Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
13
|
Runde AP, Mack R, S J PB, Zhang J. The role of TBK1 in cancer pathogenesis and anticancer immunity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:135. [PMID: 35395857 PMCID: PMC8994244 DOI: 10.1186/s13046-022-02352-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
The TANK-binding kinase 1 (TBK1) is a serine/threonine kinase belonging to the non-canonical inhibitor of nuclear factor-κB (IκB) kinase (IKK) family. TBK1 can be activated by pathogen-associated molecular patterns (PAMPs), inflammatory cytokines, and oncogenic kinases, including activated K-RAS/N-RAS mutants. TBK1 primarily mediates IRF3/7 activation and NF-κB signaling to regulate inflammatory cytokine production and the activation of innate immunity. TBK1 is also involved in the regulation of several other cellular activities, including autophagy, mitochondrial metabolism, and cellular proliferation. Although TBK1 mutations have not been reported in human cancers, aberrant TBK1 activation has been implicated in the oncogenesis of several types of cancer, including leukemia and solid tumors with KRAS-activating mutations. As such, TBK1 has been proposed to be a feasible target for pharmacological treatment of these types of cancer. Studies suggest that TBK1 inhibition suppresses cancer development not only by directly suppressing the proliferation and survival of cancer cells but also by activating antitumor T-cell immunity. Several small molecule inhibitors of TBK1 have been identified and interrogated. However, to this point, only momelotinib (MMB)/CYT387 has been evaluated as a cancer therapy in clinical trials, while amlexanox (AMX) has been evaluated clinically for treatment of type II diabetes, nonalcoholic fatty liver disease, and obesity. In this review, we summarize advances in research into TBK1 signaling pathways and regulation, as well as recent studies on TBK1 in cancer pathogenesis. We also discuss the potential molecular mechanisms of targeting TBK1 for cancer treatment. We hope that our effort can help to stimulate the development of novel strategies for targeting TBK1 signaling in future approaches to cancer therapy.
Collapse
Affiliation(s)
- Austin P Runde
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
14
|
Pardeshi J, McCormack N, Gu L, Ryan CS, Schröder M. DDX3X functionally and physically interacts with Estrogen Receptor-alpha. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194787. [PMID: 35121200 DOI: 10.1016/j.bbagrm.2022.194787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/19/2022]
Abstract
DEAD-box protein 3X (DDX3X) is a human DEAD-box protein with conventional roles in RNA metabolism and unconventional functions in signalling pathways that do not require its enzymatic activity. For example, DDX3X acts as a multifunctional adaptor molecule in anti-viral innate immune signalling pathways, where it interacts with and regulates the kinase IKB-kinase-epsilon (IIKKε). Interestingly, both DDX3X and IKKɛ have also independently been shown to act as breast cancer oncogenes. IKKɛ's oncogenic functions are likely multifactorial, but it was suggested to phosphorylate the transcription factor Estrogen receptor alpha (ERα) at Serine 167, which drives expression of Erα target genes in an estrogen-independent manner. In this study, we identified a novel physical interaction between DDX3X and ERα that positively regulates ERα activation. DDX3X knockdown in ER+ breast cancer cell lines resulted in reduced ERα phosphorylation, reduced Estrogen Response Element (ERE)-controlled reporter gene expression, decreased expression of ERα target genes, and decreased cell proliferation. Vice versa, overexpression of DDX3X resulted in enhanced ERα phosphorylation and activity. Furthermore, we provide evidence that DDX3X physically binds to ERα from co-immunoprecipitation and pulldown experiments. Based on our data, we propose that DDX3X acts as an adaptor to facilitate IKKε-mediated ERα activation, akin to the mechanism we previously elucidated for IKKε-mediated Interferon Regulatory factor 3 (IRF3) activation in innate immune signalling. In conclusion, our research provides a novel molecular mechanism that might contribute to the oncogenic effect of DDX3X in breast cancer, potentially linking it to the development of resistance against endocrine therapy.
Collapse
Affiliation(s)
- Jyotsna Pardeshi
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Niamh McCormack
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Lili Gu
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Cathal S Ryan
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Martina Schröder
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
15
|
Chen S, Ni M, Hu T, Gu Y, Feng C, Pan C, Zhang S, Wen S, Zhao N, Wang W, Dai L, Wang J. TANK-binding kinase 1 inhibitor GSK8612 enhances daunorubicin sensitivity in acute myeloid leukemia cells via the AKT-CDK2 pathway. Am J Transl Res 2021; 13:13640-13653. [PMID: 35035703 PMCID: PMC8748083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE It has been established in previous studies that TANK-binding kinase 1 (TBK1) is upregulated in malignant tumors and is therefore associated with poor prognosis. However, the role of TBK1 in acute myeloid leukemia (AML) remains unclear. In this study, we investigated the expression levels and the function of TBK1 in AML. METHODS First, TBK1 expression was detected and analyzed using Western blot and qRT-PCR. Then, GSK8612, a novel TBK1 inhibitor, and TBK1-specific siRNA (si-TBK1) were used to inhibit TBK1 function and expression. The effects of TBK1 inhibition on AML were investigated first through a cell counting kit (CCK-8) assay, followed by trypan blue staining to assess cell apoptosis and cell cycle progression in vitro. Finally, the signaling pathway activities in HL-60 and Kasumi-1 cells and patients' mononuclear cells (MNCs) were explored using western blot. RESULTS We found a significantly higher TBK1 expression in AML patients with poor prognoses. GSK8612 successfully inhibited TBK1 expression, resulting in the increased sensitivity of AML cells to daunorubicin. Mechanistically, TBK1 inhibition (by GSK8612 and si-TBK1) regulated cyclin-dependent kinase 2 (CDK2) levels in AML cells via the AKT pathway. Moreover, it was observed that the inhibition of protein kinase B (AKT) activity also resulted in the increased sensitivity of AML cell lines to daunorubicin, validating the relationship between TBK1 and the AKT-CDK2 pathway. Similar results were obtained in MNCs from patients with AML. CONCLUSION TBK1 is a potential prognostic factor for AML, and its inhibition may improve the sensitivity of AML cells to daunorubicin. This regulatory effect is predicted to involve the TBK1-AKT-CDK2 pathway.
Collapse
Affiliation(s)
- Siyu Chen
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| | - Ming Ni
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| | - Tianzhen Hu
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Yangguang Gu
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
| | - Cheng Feng
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| | - Chengyun Pan
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| | - Siyu Zhang
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Shuangshuang Wen
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| | - Naiqin Zhao
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| | - Weili Wang
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Lihong Dai
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
| | - Jishi Wang
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| |
Collapse
|
16
|
Umair M, Khan S, Mohammad T, Shafie A, Anjum F, Islam A, Hassan MI. Impact of single amino acid substitution on the structure and function of TANK-binding kinase-1. J Cell Biochem 2021; 122:1475-1490. [PMID: 34237165 DOI: 10.1002/jcb.30070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Tank-binding kinase 1 (TBK1) is a serine/threonine protein kinase involved in various signaling pathways and subsequently regulates cell proliferation, apoptosis, autophagy, antiviral and antitumor immunity. Dysfunction of TBK1 can cause many complex diseases, including autoimmunity, neurodegeneration, and cancer. This dysfunction of TBK1 may result from single amino acid substitutions and subsequent structural alterations. This study analyzed the effect of substituting amino acids on TBK1 structure, function, and subsequent disease using advanced computational methods and various tools. In the initial assessment, a total of 467 mutations were found to be deleterious. After that, in detailed structural and sequential analyses, 13 mutations were found to be pathogenic. Finally, based on the functional importance, two variants (K38D and S172A) of the TBK1 kinase domain were selected and studied in detail by utilizing all-atom molecular dynamics (MD) simulation for 200 ns. MD simulation, including correlation matrix and principal component analysis, helps to get deeper insights into the TBK1 structure at the atomic level. We observed a substantial change in variants' conformation, which may be possible for structural alteration and subsequent TBK1 dysfunction. However, substitution S172A shows a significant conformational change in TBK1 structure as compared to K38D. Thus, this study provides a structural basis to understand the effect of mutations on the kinase domain of TBK1 and its function associated with disease progression.
Collapse
Affiliation(s)
- Mohd Umair
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
17
|
Fafián‐Labora JA, O’Loghlen A. NF-κB/IKK activation by small extracellular vesicles within the SASP. Aging Cell 2021; 20:e13426. [PMID: 34187082 PMCID: PMC8282244 DOI: 10.1111/acel.13426] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence plays an important role in different biological and pathological conditions. Senescent cells communicate with their microenvironment through a plethora of soluble factors, metalloproteases and extracellular vesicles (EV). Although much is known about the role that soluble factors play in senescence, the downstream signalling pathways activated by EV in senescence is unknown. To address this, we performed a small molecule inhibitor screen and have identified the IκB kinases IKKε, IKKα and IKKβ as essential for senescence mediated by EV (evSASP). By using pharmacological inhibitors of IKKε, IKKα and IKKβ, in addition to CRISPR/Cas9 targeting their respective genes, we find these pathways are important in mediating senescence. In addition, we find that senescence activation is dependent on canonical NF‐κB transcription factors where siRNA targeting p65 prevent senescence. Importantly, these IKK pathways are also relevant to ageing as knockout of IKKA, IKKB and IKKE avoid the activation of senescence. Altogether, these findings open a new potential line of investigation in the field of senescence by targeting the negative effects of the evSASP independent of particular EV contents.
Collapse
Affiliation(s)
- Juan Antonio Fafián‐Labora
- Epigenetics & Cellular Senescence Group Blizard Institute Barts and The London School of Medicine and Dentistry Queen Mary University of London London UK
| | - Ana O’Loghlen
- Epigenetics & Cellular Senescence Group Blizard Institute Barts and The London School of Medicine and Dentistry Queen Mary University of London London UK
| |
Collapse
|
18
|
Alam M, Hasan GM, Hassan MI. A review on the role of TANK-binding kinase 1 signaling in cancer. Int J Biol Macromol 2021; 183:2364-2375. [PMID: 34111484 DOI: 10.1016/j.ijbiomac.2021.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
TANK-binding kinase 1 (TBK1) regulates various biological processes including, NF-κB signaling, immune response, autophagy, cell division, Ras-mediated oncogenesis, and AKT pro-survival signaling. Enhanced TBK1 activity is associated with autoimmune diseases and cancer, suggesting its role in therapeutic targeting of interferonopathies. In addition, dysregulation of TBK1 activity promotes several inflammatory disorders and oncogenesis. Structural and biochemical study reports provide the molecular process of TBK1 activation and recap the substrate selection about TBK1. This review summarizes recent findings on the molecular mechanisms by which TBK1 is involved in cancer signaling. The IKK-ε and TBK1 are together associated with inflammatory diseases by inducing type I IFNs. Furthermore, TBK1 signaling regulates radiation-induced epithelial-mesenchymal transition by controlling phosphorylation of GSK-3β and expression of Zinc finger E-box-binding homeobox 1, suggesting, TBK1 could be targeted for radiotherapy-induced metastasis therapy. Despite a considerable increase in the list of TBK1 inhibitors, only a few has potential to control cancer. Among them, a compound BX795 is considered a potent and selective inhibitor of TBK1. We discussed the therapeutic potential of small-molecule inhibitors of TBK1, particularly those with high selectivity, which will enable further exploration in the therapeutic management of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
19
|
Wang J, Luan Y, Fan EK, Scott MJ, Li Y, Billiar TR, Wilson MA, Jiang Y, Fan J. TBK1/IKKε Negatively Regulate LPS-Induced Neutrophil Necroptosis and Lung Inflammation. Shock 2021; 55:338-348. [PMID: 32925605 PMCID: PMC8183424 DOI: 10.1097/shk.0000000000001632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ABSTRACT Cell necroptosis, a form of regulated inflammatory cell death, is one of the mechanisms that controls cell release of inflammatory mediators from innate immune cells, such as polymorphonuclear neutrophils (PMNs), and critically regulates the progress of inflammation. Cell necroptosis features receptor-interacting protein (RIPK) 1 activation and necroptosome formation. This leads to loss of plasma membrane integrity, the release of cell contents into the extracellular space, and subsequent increased inflammation. Here, we report an intra-PMN mechanism of negative regulation of necroptosis mediated through TBK1/IKKε. Using an in vivo mouse model of intratracheal injection (i.t.) of LPS and in vitro LPS stimulation of mouse PMN, we found that LPS-TLR4 signaling in PMNs activates and phosphorylates TBK1 and IKKε, which in turn suppress LPS-induced formation of the RIPK1-RIPK3-MLKL (necrosome) complex. TBK1 dysfunction by knockdown or inhibitor significantly increases the phosphorylation of RIPK1 (∼67%), RIPK3 (∼68%), and MLKL (∼50%) and promotes RIPK1-RIPK3 and RIPK3-MLKL interactions and increases PMN necroptosis (∼83%) in response to LPS, with subsequent augmented lung inflammation. These findings suggest that the LPS-TLR4-TBK1 axis serves as a negative regulator for PMN necroptosis and might be a therapeutic target for modulating PMN death and inflammation.
Collapse
Affiliation(s)
- Jieyan Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yingyi Luan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing China
| | - Erica K. Fan
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark A. Wilson
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yong Jiang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Chen K, Xiao F, Hu D, Ge W, Tian M, Wang W, Pan P, Wu K, Wu J. SARS-CoV-2 Nucleocapsid Protein Interacts with RIG-I and Represses RIG-Mediated IFN-β Production. Viruses 2020; 13:E47. [PMID: 33396605 PMCID: PMC7823417 DOI: 10.3390/v13010047] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
SARS-CoV-2 is highly pathogenic in humans and poses a great threat to public health worldwide. Clinical data shows a disturbed type I interferon (IFN) response during the virus infection. In this study, we discovered that the nucleocapsid (N) protein of SARS-CoV-2 plays an important role in the inhibition of interferon beta (IFN-β) production. N protein repressed IFN-β production induced by poly(I:C) or upon Sendai virus (SeV) infection. We noted that N protein also suppressed IFN-β production, induced by several signaling molecules downstream of the retinoic acid-inducible gene I (RIG-I) pathway, which is the crucial pattern recognition receptor (PRR) responsible for identifying RNA viruses. Moreover, our data demonstrated that N protein interacted with the RIG-I protein through the DExD/H domain, which has ATPase activity and plays an important role in the binding of immunostimulatory RNAs. These results suggested that SARS-CoV-2 N protein suppresses the IFN-β response through targeting the initial step, potentially the cellular PRR-RNA-recognition step in the innate immune pathway. Therefore, we propose that the SARS-CoV-2 N protein represses IFN-β production by interfering with RIG-I.
Collapse
Affiliation(s)
- Keli Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
| | - Feng Xiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
| | - Weiwei Ge
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
| | - Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (P.P.)
| | - Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (P.P.)
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (P.P.)
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| |
Collapse
|
21
|
Maan M, Agrawal NJ, Padmanabhan J, Leitzinger CC, Rivera-Rivera Y, Saavedra HI, Chellappan SP. Tank Binding Kinase 1 modulates spindle assembly checkpoint components to regulate mitosis in breast and lung cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118929. [PMID: 33310066 DOI: 10.1016/j.bbamcr.2020.118929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022]
Abstract
Error-free progression through mitosis is critical for proper cell division and accurate distribution of the genetic material. The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase regulates the progression from metaphase to anaphase and its activation is controlled by the cofactors Cdc20 and Cdh1. Additionally, genome stability is maintained by the spindle assembly checkpoint (SAC), which monitors proper attachment of chromosomes to spindle microtubules prior to cell division. We had shown a role for Tank Binding Kinase 1 (TBK1) in microtubule dynamics and mitosis and here we describe a novel role of TBK1 in regulating SAC in breast and lung cancer cells. TBK1 interacts with and phosphorylates Cdc20 and Cdh1 and depletion of TBK1 elevates SAC components. TBK1 inhibition increases the association of Cdc20 with APC/C and BubR1 indicating inactivation of APC/C; similarly, interaction of Cdh1 with APC/C is also enhanced. TBK1 and TTK inhibition reduces cell viability and enhances centrosome amplification and micronucleation. These results indicate that alterations in TBK1 will impede mitotic progression and combining TBK1 inhibitors with other regulators of mitosis might be effective in eliminating cancer cells.
Collapse
Affiliation(s)
- Meenu Maan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Neha Jaiswal Agrawal
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Jaya Padmanabhan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Christelle Colin Leitzinger
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University/Ponce Research Institute, Ponce 00716-2348, Puerto Rico
| | - Harold I Saavedra
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University/Ponce Research Institute, Ponce 00716-2348, Puerto Rico
| | - Srikumar P Chellappan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America.
| |
Collapse
|
22
|
Malla RR, Kiran P. Tumor microenvironment pathways: Cross regulation in breast cancer metastasis. Genes Dis 2020; 9:310-324. [PMID: 35224148 PMCID: PMC8843880 DOI: 10.1016/j.gendis.2020.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment (TME) is heterogeneous and contains a multiple cell population with surrounded immune cells, which plays a major role in regulating metastasis. The multifunctional pathways, Hedgehog (Hh), Wnt, Notch, and NF-kB, cross-regulates metastasis in breast cancer. This review presents substantial evidence for cross-regulation of TME components and signaling pathways, which makes breast TME more heterogeneous and complex, promoting breast cancer progression and metastasis as a highly aggressive form. We discoursed the importance of stromal and immune cells as well as their crosstalk in bridging the metastasis. We also discussed the role of Hh and Notch pathways in the intervention between breast cancer cells and macrophages to support TME; Notch signaling in the bidirectional communication between cancer cells and components of TME; Wnt signal pathway in controlling the factors responsible for EMT and NF-κB pathway in the regulation of genes controlling the inflammatory response. We also present the role of exosomes and their miRNAs in the cross-regulation of TME cells as well as pathways in the reprogramming of breast TME to support metastasis. Finally, we examined and discussed the targeted small molecule inhibitors and natural compounds targeting developmental pathways and proposed small molecule natural compounds as potential therapeutics of TME based on the multitargeting ability. In conclusion, the understanding of the molecular basis of the cross-regulation of TME pathways and their inhibitors helps identify molecular targets for rational drug discovery to treat breast cancers.
Collapse
|
23
|
Chen J, Li B, Huang B, Yang G, Mo F, Weng T, Chen G, Xia L, Lu Y. Immunogenicity and efficacy of two DNA vaccines encoding antigenic PspA and TerD against Nocardia seriolae in hybrid snakehead. FISH & SHELLFISH IMMUNOLOGY 2020; 106:742-754. [PMID: 32846242 DOI: 10.1016/j.fsi.2020.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Fish nocardiosis is a widespread chronic granulomatous disease in aquatic environment, which was particularly caused by Nocardia seriolae. The phage shock protein A (PspA) and tellurium resistance protein D (TerD) were identified to be the immunodominant antigens of the wild-type N. seriolae strain ZJ0503 in our previous study. In an attempt to develop effective DNA vaccines against this pathogen, PspA and TerD were used as candidates to ligate with pcDNA3.1-Flag plasmids, respectively. In addition, the abilities of these two DNA vaccines to elicit various immune responses in hybrid snakehead and supply protective efficacy against artificial challenge with N. seriolae were determined in the present study. The results showed that intramuscular injection with pcDNA-PspA and pcDNA-TerD did not exhibit cytotoxic activities in hybrid snakehead via histopathological examination. Besides, hybrid snakehead immunization with pcDNA-PspA and pcDNA-TerD could increase several non-specific immune paraments in serum, including LYZ, POD, ACP, AKP and SOD activities. Meanwhile, the pcDNA-TerD DNA vaccine could induce strongly specific antibody (IgM) titer in hybrid snakehead with a relative percent of survival (RPS) value of 83.14% against N. seriolae, while that of pcDNA-PspA DNA vaccine was displayed comparably low IgM titer with RPS value of 57.83%. Furthermore, quantitative real-time PCR assays presented that the expression of immune-related genes (MHCIα, MHCIIα, CD4, CD8α, IL-1β and TNFα) were up-regulated to various degrees after vaccination with pcDNA-PspA or pcDNA-TerD, indicating that these two DNA vaccines were able to boost humoral and cell-mediated immune responses in hybrid snakehead. Taken together, both the pcDNA-PspA and pcDNA-TerD DNA vaccines were proved to be safe, immunogenic and effective in protecting hybrid snakehead against N. seriolae infection, which can promote the development and application of DNA vaccines to control fish nocardiosis in aquaculture.
Collapse
Affiliation(s)
- Jianlin Chen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Bei Li
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Biyan Huang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Guangjia Yang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Fangling Mo
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Tingting Weng
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Guoquan Chen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
24
|
Remoli AL, Sgarbanti M, Perrotti E, Acchioni M, Orsatti R, Acchioni C, Battistini A, Clarke R, Marsili G. IκB kinase-ε-mediated phosphorylation triggers IRF-1 degradation in breast cancer cells. Neoplasia 2020; 22:459-469. [PMID: 32784074 PMCID: PMC7419274 DOI: 10.1016/j.neo.2020.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022]
Abstract
Interferon Regulatory Factors (IRFs) are key regulators of immunity, cell survival and apoptosis. IRF transcriptional activity and subcellular localization are tightly regulated by posttranscriptional modifications including phosphorylation. The IκB kinase family member IKK-ε is essential in regulating antiviral innate immunity mediated by IRFs but is now also recognized as an oncoprotein amplified and overexpressed in breast cancer cell lines and patient-derived tumors. In the present study, we report that the tumor suppressor IRF-1 is a specific target of IKK-ε in breast cancer cells. IKK-ε-mediated phosphorylation of IRF-1 dramatically decreases IRF-1 protein stability, accelerating IRF-1 degradation and quenching IRF-1 transcriptional activity. Chemical inhibition of IKK-ε activity, fully restores IRF-1 levels and function and positively correlates with inhibition of cell growth and proliferation of breast cancer cells. By using a breast cancer cell line stably expressing a dominant negative version of IRF-1 we were able to demonstrate that IKK-ε preferentially exerts its oncogenic potential in breast cancer through the regulation of IRF-1 and point to the IKK-ε-mediated phosphorylation of IRF-1 as a therapeutic target to overcome IKK-ε-mediated tumorigenesis.
Collapse
Affiliation(s)
- Anna Lisa Remoli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Edvige Perrotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Orsatti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Battistini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Robert Clarke
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States; Hormel Institute, University of Minnesota, Austin, Minnesota, United States
| | - Giulia Marsili
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
25
|
Möller M, Wasel J, Schmetzer J, Weiß U, Meissner M, Schiffmann S, Weigert A, Möser CV, Niederberger E. The Specific IKKε/TBK1 Inhibitor Amlexanox Suppresses Human Melanoma by the Inhibition of Autophagy, NF-κB and MAP Kinase Pathways. Int J Mol Sci 2020; 21:E4721. [PMID: 32630674 PMCID: PMC7369692 DOI: 10.3390/ijms21134721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Inhibitor-kappaB kinase epsilon (IKKε) and TANK-binding kinase 1 (TBK1) are non-canonical IκB kinases, both described as contributors to tumor growth and metastasis in different cancer types. Several hints indicate that they are also involved in the pathogenesis of melanoma; however, the impact of their inhibition as a potential therapeutic measure in this "difficult-to-treat" cancer type has not been investigated so far. We assessed IKKε and TBK1 expression in human malignant melanoma cells, primary tumors and the metastasis of melanoma patients. Both kinases were expressed in the primary tumor and in metastasis and showed a significant overexpression in tumor cells in comparison to melanocytes. The pharmacological inhibition of IKKε/TBK1 by the approved drug amlexanox reduced cell proliferation, migration and invasion. Amlexanox did not affect the cell cycle progression nor apoptosis induction but significantly suppressed autophagy in melanoma cells. The analysis of potential functional downstream targets revealed that NF-кB and ERK pathways might be involved in kinase-mediated effects. In an in vivo xenograft model in nude mice, amlexanox treatment significantly reduced tumor growth. In conclusion, amlexanox was able to suppress tumor progression potentially by the inhibition of autophagy as well as NF-кB and MAP kinase pathways and might therefore constitute a promising candidate for melanoma therapy.
Collapse
Affiliation(s)
- Moritz Möller
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Julia Wasel
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Julia Schmetzer
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Ulrike Weiß
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany;
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Translational Medicine and Pharmacology TMP, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany;
| | - Christine V. Möser
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Ellen Niederberger
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| |
Collapse
|
26
|
Xu X, Yuan S, Zhang X, Lou H. Immune Response of Plasmacytoid Dendritic Cells Stimulated by Human Papillomavirus (HPV) E6 in an In Vitro System. Med Sci Monit 2020; 26:e919770. [PMID: 32089541 PMCID: PMC7057736 DOI: 10.12659/msm.919770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background This study aimed to analyze the changes in plasmacytoid dendritic cell (pDC) immunophenotypes when co-cultured with Caski cells and stimulated by human papillomavirus (HPV) E6 in vitro, and thus to discuss the immunoregulatory roles of pDCs in the tumorigenesis of cervical cancer. Material/Methods The immunophenotypic expression of pDCs was analyzed under stimulation of HPV E6 and co-culturing with Caski cells in vitro. Results HPV E6 infection caused significantly increased expression of CD40 in HPV16 M and HPV16 H groups MyD88 in HPV16 M,HPV16 H, and HPV18L groups; and TRAF6 in HPV16 M, HPV16 H, and HPV18L groups. pDCs co-cultured with Caski cells showed significantly lower expression of MyD88 and TRAF6 compared with the control. Conclusions The expression of MyD88 and TRAF6 might vary in different stages of HPV infection. pDCs might regulate CD40 to participate in the tumorigenesis and progression of cervical cancer, but related mechanisms still need further investigation.
Collapse
Affiliation(s)
- Xiaoxian Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Shuhui Yuan
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xiaojing Zhang
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Hanmei Lou
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
27
|
Qi J, Zhou Z, Lim CW, Kim JW, Kim B. Amlexanox ameliorates acetaminophen-induced acute liver injury by reducing oxidative stress in mice. Toxicol Appl Pharmacol 2019; 385:114767. [PMID: 31697998 DOI: 10.1016/j.taap.2019.114767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022]
Abstract
Amlexanox, a clinically approved small-molecule therapeutic presently used to treat allergic rhinitis, ulcer, and asthma, is an inhibitor of the noncanonical IkB kinase-ε (IKKε) and TANK-binding kinase 1 (TBK1). This study was to investigate the protective mechanism of amlexanox in acetaminophen (APAP)-induced acute liver injury (ALI). Mice were intraperitoneally injected with APAP (300 mg/kg, 12 h) to induce ALI and were orally administrated with amlexanox (25, 50 and 100 mg/kg) one hour after APAP treatment. Inhibition of IKKε and TBK1 by treatment of amlexanox attenuated APAP-induced ALI as confirmed by decreased serum levels of aspartate aminotransferase and alanine aminotransferase. Furthermore, amlexanox significantly decreased hepatocellular apoptosis in injured livers of mice as evidenced by histopathologic observation. Consistently, reduced oxidative stress by amlexanox was observed by increased hepatic glutathione concomitant with decreased levels of malondialdehyde. Amlexanox also enhanced expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes including heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1, and glutamate-cysteine ligase in injured livers of mice. Mechanistic insights into the mode of action of amlexanox against APAP-induced hepatotoxicity were involved in increasing phosphorylation of AMP-activated protein kinase (AMPK) and nuclear translocation of Nrf2, both in vivo and in vitro. Furthermore, the protective effects of amlexanox on APAP-induced hepatotoxicity were abolished by compound C, an AMPK inhibitor. Taken together, our findings suggest that amlexanox exerts antioxidative activities against APAP-mediated hepatotoxicity via AMPK/Nrf2 pathway.
Collapse
Affiliation(s)
- Jing Qi
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Zixiong Zhou
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Jong-Won Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea.
| |
Collapse
|
28
|
Martinez MP, Al-Saleem J, Green PL. Comparative virology of HTLV-1 and HTLV-2. Retrovirology 2019; 16:21. [PMID: 31391116 PMCID: PMC6686503 DOI: 10.1186/s12977-019-0483-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) was the first discovered human retrovirus and the etiologic agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. Shortly after the discovery of HTLV-1, human T-cell leukemia virus type 2 (HTLV-2) was isolated from a patient with hairy cell leukemia. Despite possession of similar structural features to HTLV-1, HTLV-2 has not been definitively associated with lymphoproliferative disease. Since their discovery, studies have been performed with the goal of highlighting the differences between HTLV-1 and HTLV-2. A better understanding of these differences will shed light on the specific pathogenic mechanisms of HTLV-1 and lead to novel therapeutic targets. This review will compare and contrast the two oldest human retroviruses with regards to epidemiology, genomic structure, gene products, and pathobiology.
Collapse
Affiliation(s)
- Michael P Martinez
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jacob Al-Saleem
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Patrick L Green
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA. .,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
29
|
Qu H, Liu L, Liu Z, Qin H, Liao Z, Xia P, Yang Y, Li B, Gao F, Cai J. Blocking TBK1 alleviated radiation-induced pulmonary fibrosis and epithelial-mesenchymal transition through Akt-Erk inactivation. Exp Mol Med 2019; 51:1-17. [PMID: 30988282 PMCID: PMC6465273 DOI: 10.1038/s12276-019-0240-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/25/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
As a common serious complication of thoracic radiotherapy, radiation-induced pulmonary fibrosis (RIPF) severely limits radiation therapy approaches. Epithelial–mesenchymal transition (EMT) is a direct contributor to the fibroblast pool during fibrogenesis, and prevention of EMT is considered an effective strategy to inhibit tissue fibrosis. Our previous study revealed that TANK-binding kinase 1 (TBK1) regulates EMT in lung cancer cells. In the present study, we aimed to investigate the therapeutic potential of targeting TBK1 to prevent RIPF and EMT progression. We found radiation-induced EMT and pulmonary fibrosis in normal alveolar epithelial cells and lung tissues. TBK1 knockdown or inhibition significantly reversed EMT in vivo and in vitro and attenuated pulmonary fibrosis and collagen deposition. Moreover, we observed that TBK1 was elevated in a time- and dose-dependent manner by radiation. Meanwhile, radiation also induced time- and dose-dependent activation of AKT and ERK, each of whose inhibitors suppressed radiation-induced EMT. Intriguingly, silencing of TBK1 with shRNA also blocked the radiation-induced activation of AKT and ERK signaling. The ERK inhibitor did not obviously affect the expression of TBK1 or phosphorylated AKT, while AKT inhibition suppressed activation of ERK without changing the expression of TBK1. Finally, we found that a TBK1 inhibitor inhibited inflammatory cytokine expression in a RIPF model and Amlexanox protected normal cells and mice from ionizing radiation. In conclusion, our results indicate that the TBK1–AKT–ERK signaling pathway regulates radiation-induced EMT in normal alveolar epithelial cells, suggesting that TBK1 is a potential target for pulmonary fibrosis prevention during cancer radiotherapy. The risk of scarred tissues and respiratory distress during radiation treatment of lung cancer could be reduced by targeting an enzyme that alters healthy cells. Lung cancer radiotherapy often causes pulmonary fibrosis, excessive growth of fibrous tissues in the lungs, involving the transition of normal epithelial cells into an invasive form of multipotent stem cells. The development of pulmonary fibrosis limits the clinical application of radiotherapy. Hongjin Qu and co-workers at the Second Military University in Shanghai, China, previously demonstrated that the TANK-binding kinase 1 (TBK1) enzyme regulates this transition. Now, the team have shown that levels of TBK1 itself increased during radiation treatment, together with two proteins that would normally suppress alterations in healthy cells. Inhibiting TBK1, both in cell cultures and mouse models, reversed the cell transitions and prevented pulmonary fibrosis.
Collapse
Affiliation(s)
- Hongjin Qu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, 800, Xiangyin Road, 200433, Shanghai, P. R. China
| | - Lei Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, 800, Xiangyin Road, 200433, Shanghai, P. R. China
| | - Zhe Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, 800, Xiangyin Road, 200433, Shanghai, P. R. China
| | - Hongran Qin
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, 800, Xiangyin Road, 200433, Shanghai, P. R. China
| | - Zebin Liao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, 800, Xiangyin Road, 200433, Shanghai, P. R. China
| | - Penglin Xia
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, 800, Xiangyin Road, 200433, Shanghai, P. R. China
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, 800, Xiangyin Road, 200433, Shanghai, P. R. China
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, 800, Xiangyin Road, 200433, Shanghai, P. R. China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, 800, Xiangyin Road, 200433, Shanghai, P. R. China.
| | - Jianming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, 800, Xiangyin Road, 200433, Shanghai, P. R. China.
| |
Collapse
|
30
|
Cruz VH, Arner EN, Du W, Bremauntz AE, Brekken RA. Axl-mediated activation of TBK1 drives epithelial plasticity in pancreatic cancer. JCI Insight 2019; 5:126117. [PMID: 30938713 PMCID: PMC6538328 DOI: 10.1172/jci.insight.126117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/27/2019] [Indexed: 01/11/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an activating mutation in KRAS. Direct inhibition of KRAS through pharmacological means remains a challenge; however, targeting key KRAS effectors has therapeutic potential. We investigated the contribution of TANK-binding kinase 1 (TBK1), a critical downstream effector of mutant active KRAS, to PDA progression. We report that TBK1 supports the growth and metastasis of KRAS-mutant PDA by driving an epithelial plasticity program in tumor cells that enhances invasive and metastatic capacity. Further, we identify that the receptor tyrosine kinase Axl induces TBK1 activity in a Ras-RalB-dependent manner. These findings demonstrate that TBK1 is central to an Axl-driven epithelial-mesenchymal transition in KRAS-mutant PDA and suggest that interruption of the Axl-TBK1 signaling cascade above or below KRAS has potential therapeutic efficacy in this recalcitrant disease.
Collapse
Affiliation(s)
- Victoria H. Cruz
- Division of Surgical Oncology, Department of Surgery, and the Hamon Center for Therapeutic Oncology Research
| | - Emily N. Arner
- Division of Surgical Oncology, Department of Surgery, and the Hamon Center for Therapeutic Oncology Research
| | - Wenting Du
- Division of Surgical Oncology, Department of Surgery, and the Hamon Center for Therapeutic Oncology Research
| | | | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery, and the Hamon Center for Therapeutic Oncology Research
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
31
|
Identification of an IKBKE inhibitor with antitumor activity in cancer cells overexpressing IKBKE. Cytokine 2019; 116:78-87. [DOI: 10.1016/j.cyto.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/21/2022]
|
32
|
Orlova Z, Pruefer F, Castro-Oropeza R, Ordaz-Ramos A, Zampedri C, Maldonado V, Vazquez-Santillan K, Melendez-Zajgla J. IKKε regulates the breast cancer stem cell phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:598-611. [PMID: 30615901 DOI: 10.1016/j.bbamcr.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/12/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
The Inhibitor of Nuclear Factor Kappa B Kinase Subunit Epsilon (IKKε) is an oncogenic protein that is up-regulated in various types of human cancers, including breast tumors. This kinase regulates diverse processes associated with malignant progression including proliferation, invasion, and metastasis. To delve into the molecular mechanisms regulated by this kinase we performed RNA-seq and network analysis of breast cancer cells overexpressing IKKε. We found that the TNF/NF-κB cascade was clearly enriched, and in accordance, NF-κB pathway inhibition in these cells resulted in a decreased expression of IKKε target genes. Interestingly, we also found an enrichment of a mammary stemness functional pathway. Upregulation of IKKε led to an increase of a stem CD44+/CD24-/low population accompanied by a high expression of stem markers such as ALDH1A3, NANOG, and KLF4 and with an increased clonogenic ability and mammosphere formation capacity. These results were corroborated with in vivo dilution assays in zebrafish embryos which showed a significant increase in the number of Cancer Stem Cells (CSCs). Finally, we found that Triple-Negative breast tumors, which are enriched in CSCs, display higher levels of IKKε than other breast tumors, supporting the association of this kinase with the stem phenotype. In conclusion, our results highlight the role of IKKε kinase in the regulation of the stem cell phenotype in breast cancer cells, as assessed by expression, functional and in vivo assays. These results add to the potential use of this kinase as a therapeutic target in this neoplasia.
Collapse
Affiliation(s)
- Zhanna Orlova
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Franz Pruefer
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Rosario Castro-Oropeza
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Alejandro Ordaz-Ramos
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Cecilia Zampedri
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Vilma Maldonado
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Karla Vazquez-Santillan
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico.
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico.
| |
Collapse
|
33
|
Leonardi M, Perna E, Tronnolone S, Colecchia D, Chiariello M. Activated kinase screening identifies the IKBKE oncogene as a positive regulator of autophagy. Autophagy 2018; 15:312-326. [PMID: 30289335 PMCID: PMC6333447 DOI: 10.1080/15548627.2018.1517855] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Macroautophagy/autophagy is one of the major responses to stress in eukaryotic cells and is implicated in several pathological conditions such as infections, neurodegenerative diseases and cancer. Interestingly, cancer cells take full advantage of autophagy both to support tumor growth in adverse microenvironments and to oppose damages induced by anti-neoplastic therapies. Importantly, different human oncogenes are able to modulate this survival mechanism to support the transformation process, ultimately leading to 'autophagy addiction'. Still, oncogenic signaling events, impinging on the control of autophagy, are poorly characterized, limiting our possibilities to take advantage of these mechanisms for therapeutic purposes. Here, we screened a library of activated kinases for their ability to stimulate autophagy. By this approach, we identified novel potential regulators of the autophagic process and, among them, the IKBKE oncogene. Specifically, we demonstrate that this oncoprotein is able to stimulate autophagy when overexpressed, an event frequently found in breast tumors, and that its activity is strictly required for breast cancer cells to support the autophagic process. Interestingly, different oncogenic pathways typically involved in breast cancer, namely ERBB2 and PI3K-AKT-MTOR, also rely on IKBKE to control this process. Ultimately, we show that IKBKE-dependent autophagy is necessary for breast cancer cell proliferation, suggesting an important supporting role for this oncogene and autophagy in these tumors. Abbreviations: AAK1: AP2 associated kinase 1; AMPK: 5'-prime-AMP-activated protein kinase; AKT1: AKT serine/threonine kinase 1; BAF: bafilomycin A1; CA: constitutively activated; CDK17: cyclin dependent kinase 17; CDK18: cyclin dependent kinase 18; CHUK: conserved helix-loop-helix ubiquitous kinase; EGF: epidermal growth factor; ERBB2: erb-b2 receptor tyrosine kinase 2; FGF: fibroblast growth factor; FM: full medium; GALK2: galactokinase 2; IKBKB: inhibitor of nuclear factor kappa B kinase subunit beta; IKBKE: inhibitor of nuclear factor kappa B kinase subunit epsilon; IKK: IκB kinase complex; KD: kinase dead; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAPK1: mitogen-activated protein kinase 1; MAPK15: mitogen-activated protein kinase 15; MTORC1: mammalian target of rapamycin kinase complex 1; myr: myristoylation/myristoylated; NFKBIA: NFKB inhibitor alpha; PDGF: platelet derived growth factor; PFKL: phosphofructokinase, liver type; PRKAA1: protein kinase AMP-activated catalytic subunit alpha 1; PRKCD: protein kinase C delta; SQSTM1: sequestosome 1; TBK1: TANK binding kinase 1; TNBC: triple-negative breast cancer; TSC2: TSC complex subunit 2; WB: western blot; WT: wild-type.
Collapse
Affiliation(s)
- Margherita Leonardi
- a Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO) , Siena , Italy.,b Università degli Studi di Siena , Siena , Italy
| | - Eluisa Perna
- a Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO) , Siena , Italy.,c Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine , University of Leuven , Leuven , Belgium
| | - Serena Tronnolone
- a Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO) , Siena , Italy
| | - David Colecchia
- a Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO) , Siena , Italy.,d Istituto di Fisiologia Clinica , Consiglio Nazionale delle Ricerche , Siena , Italy.,e TargImmune Therapeutics , Basel , Switzerland
| | - Mario Chiariello
- a Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO) , Siena , Italy.,d Istituto di Fisiologia Clinica , Consiglio Nazionale delle Ricerche , Siena , Italy
| |
Collapse
|
34
|
Roles for the IKK-Related Kinases TBK1 and IKKε in Cancer. Cells 2018; 7:cells7090139. [PMID: 30223576 PMCID: PMC6162516 DOI: 10.3390/cells7090139] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023] Open
Abstract
While primarily studied for their roles in innate immune response, the IκB kinase (IKK)-related kinases TANK-binding kinase 1 (TBK1) and IKKε also promote the oncogenic phenotype in a variety of cancers. Additionally, several substrates of these kinases control proliferation, autophagy, cell survival, and cancer immune responses. Here we review the involvement of TBK1 and IKKε in controlling different cancers and in regulating responses to cancer immunotherapy.
Collapse
|
35
|
Cheng C, Ji Z, Sheng Y, Wang J, Sun Y, Zhao H, Li X, Wang X, He Y, Yao J, Wang L, Zhang C, Guo Y, Zhang J, Gao WQ, Zhu HH. Aphthous ulcer drug inhibits prostate tumor metastasis by targeting IKKɛ/TBK1/NF-κB signaling. Am J Cancer Res 2018; 8:4633-4648. [PMID: 30279728 PMCID: PMC6160770 DOI: 10.7150/thno.26687] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/12/2018] [Indexed: 12/25/2022] Open
Abstract
Tumor metastasis is the major cause of death for prostate cancer (PCa) patients. However, the treatment options for metastatic PCa are very limited. Epithelial-mesenchymal transition (EMT) has been reported to be an indispensable step for tumor metastasis and is suggested to associate with acquisition of cancer stem cell (CSC) attributes. We propose that small-molecule compounds that can reverse EMT or induce mesenchymal-epithelial transition (MET) of PCa cells may serve as drug candidates for anti-metastasis therapy. Methods: The promoters of CDH1 and VIM genes were sub-cloned to drive the expression of firefly and renilla luciferase reporter in a lentiviral vector. Mesenchymal-like PCa cells were infected with the luciferase reporter lentivirus and subjected to drug screening from a 1274 approved small-molecule drug library for the identification of agents to reverse EMT. The dosage-dependent effect of candidate compounds was confirmed by luciferase reporter assay and immunoblotting. Wound-healing assay, sphere formation, transwell migration assay, and in vivo intracardiac and orthotopic tumor xenograft experiments were used to evaluate the mobility, metastasis and tumor initiating capacity of PCa cells upon treatment. Possible downstream signaling pathways affected by the candidate compound treatment were analyzed by RNA sequencing and immunoblotting. Results: Drug screening identified Amlexanox, a drug used for recurrent aphthous ulcers, as a strong agent to reverse EMT. Amlexanox induced significant suppression of cell mobility, invasion, serial sphere formation and in vivo metastasis and tumor initiating capacity of PCa cells. Amlexanox treatment led to downregulation of the IKK-ɛ/ TBK1/ NF-κB signaling pathway. The effect of Amlexanox on EMT reversion and cell mobility inhibition can be mimicked by other IKK-ɛ/TBK1 inhibitors and rescued by reconstitution of dominant active NF-κB. Conclusions: Amlexanox can sufficiently suppress PCa metastasis by reversing EMT through downregulating the IKK-ɛ/TBK1/NF-κB signaling axis.
Collapse
|
36
|
Göktuna Sİ. IKBKE inhibits TSC1 to activate the mTOR/S6K pathway for oncogenic transformation. Turk J Biol 2018; 42:268-278. [PMID: 30814890 DOI: 10.3906/biy-1801-57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
IKBKE (IKKε) has emerged as a key modulator of multiple substrates, controlling oncogenic pathways in various malignancies. mTOR signaling, required for cellular growth, proliferation, and vascular angiogenesis in cancer, is potentially one of the pathways regulated by IKKε. Upon activation by various stimuli, PI3K/AKT or similar effectors can relieve the inhibitory effect of the TSC1/TSC2 complex through their phosphorylation to favor mTOR/S6K activation in the downstream. Therefore, any activity that interferes with PI3K/AKT or their downstream targets, such as TSC1/2 or GSK3α/β, may activate the mTOR/S6K pathway for oncogenic transformation in normal cells. Previous studies have shown that PI3K/AKT can be directly phosphoregulated by IKKε. Here, we propose a new regulatory function for IKKε in the mTOR/S6K pathway through its direct interaction with TSC1, leading to TSC1 phosphorylation, which is vital to suppress its inhibitory role in mTOR activation. Experimentally, upon IKKε deficiency in colorectal cancer cells, we observed that S6K activity was diminished while TSC1 levels were found to be stabilized. We hypothesized that these observations may result from direct interaction between IKKε and TSC1. Indeed, the interaction of these two proteins involves the phosphoregulation of TSC1 in various cell lines. Therefore, we propose a mechanism where IKKε, through regulating TSC1 stability in cancer cells, may create an alternative regulatory loop for the activation of mTOR signaling. These results can potentially be important for the development of novel therapeutic strategies targeting mTOR signaling.
Collapse
Affiliation(s)
- Serkan İsmail Göktuna
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University , Ankara , Turkey.,Laboratory of Medical Chemistry, Interdisciplinary Genomics and Genoproteomics Research Center (GIGA), University of Liege , Liege , Belgium.,National Nanotechnology Research Center (UNAM), Bilkent University , Ankara , Turkey
| |
Collapse
|
37
|
Yang Z, Honda T, Ueda K. vFLIP upregulates IKKε, leading to spindle morphology formation through RelA activation. Virology 2018; 522:106-121. [PMID: 30029010 DOI: 10.1016/j.virol.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/07/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022]
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) vFLIP, a latent gene of KSHV, was first identified as a FLICE-inhibitory protein (FLIP) protecting cells from apoptosis. The vFLIP protein has been shown to activate the NF-κB signaling involved in spindle morphology formation both in HUVECs infected with KSHV and Kaposi's sarcoma (KS) itself. In this study, we independently established stably vFLIP-expressing cells and showed that they exhibited upregulated NF-κB family protein expression independent of the ability of IKKs to bind vFLIP. Further, vFLIP induced upregulation of IKKε, phosphorylation of RelA at Ser468 (p-RelA S468) and nuclear localization of Re1A concomitant with spindle morphology formation, and these effects were reversed by knockdown of IKKε and treatment with Bay-11. Overexpression of IKKε alone also showed spindle morphology formation with p-RelA S468. In conclusion, the spindle cell morphology in KS should be induced by RelA activation (p-RelA S468) by IKKε upregulation in vFLIP-expressing EA hy926 cells.
Collapse
Affiliation(s)
- Zunlin Yang
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tomoyuki Honda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
38
|
Yang H, Mao W, Rodriguez-Aguayo C, Mangala LS, Bartholomeusz G, Iles LR, Jennings NB, Ahmed AA, Sood AK, Lopez-Berestein G, Lu Z, Bast RC. Paclitaxel Sensitivity of Ovarian Cancer Can be Enhanced by Knocking Down Pairs of Kinases that Regulate MAP4 Phosphorylation and Microtubule Stability. Clin Cancer Res 2018; 24:5072-5084. [PMID: 30084832 DOI: 10.1158/1078-0432.ccr-18-0504] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 01/11/2023]
Abstract
Purpose: Most patients with ovarian cancer receive paclitaxel chemotherapy, but less than half respond. Pre-treatment microtubule stability correlates with paclitaxel response in ovarian cancer cell lines. Microtubule stability can be increased by depletion of individual kinases. As microtubule stability can be regulated by phosphorylation of microtubule-associated proteins (MAPs), we reasoned that depletion of pairs of kinases that regulate phosphorylation of MAPs could induce microtubule stabilization and paclitaxel sensitization.Experimental Design: Fourteen kinases known to regulate paclitaxel sensitivity were depleted individually in 12 well-characterized ovarian cancer cell lines before measuring proliferation in the presence or absence of paclitaxel. Similar studies were performed by depleting all possible pairs of kinases in six ovarian cancer cell lines. Pairs that enhanced paclitaxel sensitivity across multiple cell lines were studied in depth in cell culture and in two xenograft models.Results: Transfection of siRNA against 10 of the 14 kinases enhanced paclitaxel sensitivity in at least six of 12 cell lines. Dual knockdown of IKBKB/STK39 or EDN2/TBK1 enhanced paclitaxel sensitivity more than silencing single kinases. Sequential knockdown was superior to concurrent knockdown. Dual silencing of IKBKB/STK39 or EDN2/TBK1 stabilized microtubules by inhibiting phosphorylation of p38 and MAP4, inducing apoptosis and blocking cell cycle more effectively than silencing individual kinases. Knockdown of IKBKB/STK39 or EDN2/TBK1 enhanced paclitaxel sensitivity in two ovarian xenograft models.Conclusions: Sequential knockdown of dual kinases increased microtubule stability by decreasing p38-mediated phosphorylation of MAP4 and enhanced response to paclitaxel in ovarian cancer cell lines and xenografts, suggesting a strategy to improve primary therapy. Clin Cancer Res; 24(20); 5072-84. ©2018 AACR.
Collapse
Affiliation(s)
- Hailing Yang
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Weiqun Mao
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Lingegowda S Mangala
- Center for RNA Interference and Non-Coding RNA, University of Texas, M.D. Anderson Cancer Center, Houston, Texas.,Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Geoffrey Bartholomeusz
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Lakesla R Iles
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Nicholas B Jennings
- Center for RNA Interference and Non-Coding RNA, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, United Kingdom.,Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Anil K Sood
- Center for RNA Interference and Non-Coding RNA, University of Texas, M.D. Anderson Cancer Center, Houston, Texas.,Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Zhen Lu
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
39
|
House CD, Grajales V, Ozaki M, Jordan E, Wubneh H, Kimble DC, James JM, Kim MK, Annunziata CM. IΚΚε cooperates with either MEK or non-canonical NF-kB driving growth of triple-negative breast cancer cells in different contexts. BMC Cancer 2018; 18:595. [PMID: 29801480 PMCID: PMC5970439 DOI: 10.1186/s12885-018-4507-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Metastatic breast cancer carries a poor prognosis despite the success of newly targeted therapies. Treatment options remain especially limited for the subtype of triple negative breast cancer (TNBC). Several signaling pathways, including NF-κB, are altered in TNBC, and the complexity of this disease implies multi-faceted pathway interactions. Given that IKKε behaves as an oncogene in breast cancer, we hypothesized that IKKε regulates NF-κB signaling to control diverse oncogenic functions in TNBC. METHODS Vector expression and RNA interference were used to investigate the functional role of IKKε in triple-negative breast cancer cells. Viability, protein expression, NF-κB binding activity, invasion, anoikis, and spheroid formation were examined in cells expressing high or low levels of IKKε, in conjunction with p52 RNA interference or MEK inhibition. RESULTS This study found that non-canonical NF-κB p52 levels are inversely proportional to ΙΚΚε, and growth of TNBC cells in anchorage supportive, high-attachment conditions requires IKKε and activated MEK. Growth of these cells in anchorage resistant conditions requires IKKε and activated MEK or p52. In this model, IKKε and MEK cooperate to support overall viability whereas the p52 transcription factor is only required for viability in low attachment conditions, underscoring the contrasting roles of these proteins. CONCLUSIONS This study illustrates the diverse functions of IKKε in TNBC and highlights the adaptability of NF-κB signaling in maintaining cancer cell survival under different growth conditions. A better understanding of the diversity of NF-κB signaling may ultimately improve the development of novel therapeutic regimens for TNBC.
Collapse
Affiliation(s)
- Carrie D House
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Valentina Grajales
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Michelle Ozaki
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Elizabeth Jordan
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Helmae Wubneh
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Danielle C Kimble
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Jana M James
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Marianne K Kim
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
40
|
Oliveira LB, Haga IR, Villa LL. Human papillomavirus (HPV) 16 E6 oncoprotein targets the Toll-like receptor pathway. J Gen Virol 2018; 99:667-675. [PMID: 29595418 DOI: 10.1099/jgv.0.001057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cervical cancer is one of the leading causes of death in women worldwide and is etiologically linked to human papillomavirus (HPV) infection. Viral early proteins E6 and E7 manipulate cellular functions to promote the virus life cycle and are essential to the cellular transformation process. The innate immune system plays a pivotal role in the natural history of HPV infection. Among the various proteins that mediate the innate immune response, Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) and initiate the immune response. The objective of this study was to identify HPV E6 protein interaction partners in the TLR signalling pathway that may play a role in the immune response against HPV. Six TLR pathway proteins were shown to interact with HPV16 E6: myeloid differentiation primary response protein (MyD88), TIR domain-containing adapter molecule 1 (TRIF), interleukin-1 receptor-associated kinase-like (IRAK) 2, TNF receptor-associated factor (TRAF) 6, I-κB kinase beta (IKKβ) and I-κB kinase epsilon (IKKε). The interaction site of IKKε with E6 is located in the region containing the enzyme catalytic site, suggesting an influence of E6 on the activation of IKKε target proteins. HPV16 E6 potentiated the activation of NF-κB by various TLR pathway members. These results suggest that HPV16 has the ability to interfere with components of the immune response, contributing to HPV carcinogenesis.
Collapse
Affiliation(s)
- Lucas Boeno Oliveira
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | | | - Luisa Lina Villa
- Centre of Translational Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil.,Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Lork M, Kreike M, Staal J, Beyaert R. Importance of Validating Antibodies and Small Compound Inhibitors Using Genetic Knockout Studies-T Cell Receptor-Induced CYLD Phosphorylation by IKKε/TBK1 as a Case Study. Front Cell Dev Biol 2018; 6:40. [PMID: 29755980 PMCID: PMC5932415 DOI: 10.3389/fcell.2018.00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
CYLD is a deubiquitinating enzyme that plays a crucial role in immunity and inflammation as a negative regulator of NF-κB transcription factor and JNK kinase signaling. Defects in either of these pathways contribute to the progression of numerous inflammatory and autoimmune disorders. Therefore, we set out to unravel molecular mechanisms that control CYLD activity in the context of T cell receptor (TCR) signaling. More specifically, we focused on CYLD phosphorylation at Ser418, which can be detected upon immunoblotting of cell extracts with phospho(Ser418)-CYLD specific antibodies. Jurkat T cells stimulated with either anti-CD3/anti-CD28 or PMA/Ionomycin (to mimic TCR signaling) were used as a model system. The role of specific kinases was analyzed using pharmacological as well as genetic approaches. Our initial data indicated that CYLD is directly phosphorylated by the noncanonical IκB kinases (IKKs) IKKε and TANK Binding Kinase 1 (TBK1) at Ser418 upon TCR stimulation. Treatment with MRT67307, a small compound inhibitor for IKKε and TBK1, inhibited TCR-induced CYLD phosphorylation. However, the phospho(Ser418)-CYLD immunoreactive band was still present in CRISPR/Cas9 generated IKKε/TBK1 double knockout cell lines, where it could still be prevented by MRT67307, indicating that the initially observed inhibitory effect of MRT67307 on TCR-induced CYLD phosphorylation is IKKε/TBK1-independent. Most surprisingly, the phospho(Ser418)-CYLD immunoreactive band was still detectable upon immunoblotting of cell extracts obtained from CYLD deficient cells. These data demonstrate the non-specificity of MRT67307 and phospho(Ser418)-CYLD specific antibodies, implying that previously published results based on these tools may also have led to wrong conclusions. We therefore advise to use genetic knockout studies or alternative approaches for a better validation of antibodies and small compound inhibitors. Interestingly, immunoprecipitation with the phospho(Ser418)-CYLD antibody, followed by immunoblotting with anti-CYLD, revealed that CYLD is phosphorylated by IKKε/TBK1 at Ser418 upon T cell stimulation, but that its direct detection with the phospho(Ser418)-CYLD-specific antibody in a western blot is masked by another inducible protein of the same size that is recognized by the same antibody.
Collapse
Affiliation(s)
- Marie Lork
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Marja Kreike
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| |
Collapse
|
42
|
Fochi S, Mutascio S, Bertazzoni U, Zipeto D, Romanelli MG. HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role. Front Microbiol 2018; 9:285. [PMID: 29515558 PMCID: PMC5826390 DOI: 10.3389/fmicb.2018.00285] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/07/2018] [Indexed: 12/31/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4+/CD25+ T-cell malignancy and of a severe neurodegenerative disease, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The chronic activation or deregulation of the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways play a crucial role in tumorigenesis. The HTLV-1 Tax-1 oncoprotein is a potent activator of the NF-κB transcription factors and the NF-κB response is required for promoting the development of HTLV-1 transformed cell lines. The homologous retrovirus HTLV-2, which also expresses a Tax-2 transforming protein, is not associated with ATL. In this review, we provide an updated synopsis of the role of Tax-1 in the deregulation of the NF-κB pathway, highlighting the differences with the homologous Tax-2. Special emphasis is directed toward the understanding of the molecular mechanisms involved in NF-κB activation resulting from Tax interaction with host factors affecting several cellular processes, such as cell cycle, apoptosis, senescence, cell proliferation, autophagy, and post-translational modifications. We also discuss the current knowledge on the role of the antisense viral protein HBZ in down-regulating the NF-κB activation induced by Tax, and its implication in cellular senescence. In addition, we review the recent studies on the mechanism of HBZ-mediated inhibition of NF-κB activity as compared to that exerted by the HTLV-2 antisense protein, APH-2. Finally, we discuss recent advances aimed at understanding the role exerted in the development of ATL by the perturbation of NF-κB pathway by viral regulatory proteins.
Collapse
Affiliation(s)
| | | | | | | | - Maria G. Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
43
|
Bodur C, Kazyken D, Huang K, Ekim Ustunel B, Siroky KA, Tooley AS, Gonzalez IE, Foley DH, Acosta-Jaquez HA, Barnes TM, Steinl GK, Cho KW, Lumeng CN, Riddle SM, Myers MG, Fingar DC. The IKK-related kinase TBK1 activates mTORC1 directly in response to growth factors and innate immune agonists. EMBO J 2018; 37:19-38. [PMID: 29150432 PMCID: PMC5753041 DOI: 10.15252/embj.201696164] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/15/2023] Open
Abstract
The innate immune kinase TBK1 initiates inflammatory responses to combat infectious pathogens by driving production of type I interferons. TBK1 also controls metabolic processes and promotes oncogene-induced cell proliferation and survival. Here, we demonstrate that TBK1 activates mTOR complex 1 (mTORC1) directly. In cultured cells, TBK1 associates with and activates mTORC1 through site-specific mTOR phosphorylation (on S2159) in response to certain growth factor receptors (i.e., EGF-receptor but not insulin receptor) and pathogen recognition receptors (PRRs) (i.e., TLR3; TLR4), revealing a stimulus-selective role for TBK1 in mTORC1 regulation. By studying cultured macrophages and those isolated from genome edited mTOR S2159A knock-in mice, we show that mTOR S2159 phosphorylation promotes mTORC1 signaling, IRF3 nuclear translocation, and IFN-β production. These data demonstrate a direct mechanistic link between TBK1 and mTORC1 function as well as physiologic significance of the TBK1-mTORC1 axis in control of innate immune function. These data unveil TBK1 as a direct mTORC1 activator and suggest unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity, tumorigenesis, and disorders linked to chronic inflammation.
Collapse
Affiliation(s)
- Cagri Bodur
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kezhen Huang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bilgen Ekim Ustunel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kate A Siroky
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aaron Seth Tooley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ian E Gonzalez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel H Foley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hugo A Acosta-Jaquez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tammy M Barnes
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabrielle K Steinl
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kae-Won Cho
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Martin G Myers
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Diane C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Yu Z, Song H, Jia M, Zhang J, Wang W, Li Q, Zhang L, Zhao W. USP1-UAF1 deubiquitinase complex stabilizes TBK1 and enhances antiviral responses. J Exp Med 2017; 214:3553-3563. [PMID: 29138248 PMCID: PMC5716033 DOI: 10.1084/jem.20170180] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/27/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
TBK1 is a critical kinase required for the induction of type I IFNs and subsequent cellular antiviral responses. Yu et al. show that USP1–UAF1 deubiquitinase complex removes K48-linked polyubiquitination of TBK1, stabilizes its expression, and thus enhances antiviral responses. Optimal activation of TANK-binding kinase 1 (TBK1) is crucial for initiation of innate antiviral immunity and maintenance of immune homeostasis. Although several E3 ubiquitin ligases have been reported to regulate TBK1 activation by mediating its polyubiquitination, the functions of deubiquitinase on TBK1 activity remain largely unclear. Here, we identified a deubiquitinase complex, which is formed by ubiquitin specific peptidase 1 (USP1) and USP1-associated factor 1 (UAF1), as a viral infection–induced physiological enhancer of TBK1 expression. USP1–UAF1 complex enhanced TLR3/4 and RIG-I–induced IFN regulatory factor 3 (IRF3) activation and subsequent IFN-β secretion. Mechanistically, USP1 and UAF1 bound to TBK1, removed its K48-linked polyubiquitination, and then reversed the degradation process of TBK1. Furthermore, we found that ML323, a specific USP1–UAF1 inhibitor, attenuated IFN-β expression and enhanced viral replication both in vitro and in vivo. Therefore, our results outline a novel mechanism for the control of TBK1 activity and suggest USP1–UAF1 complex as a potential target for the prevention of viral diseases.
Collapse
Affiliation(s)
- Zhongxia Yu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Hui Song
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Mutian Jia
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jintao Zhang
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Wenwen Wang
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qi Li
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China .,State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
45
|
Péant B, Gilbert S, Le Page C, Poisson A, L'Ecuyer E, Boudhraa Z, Bienz MN, Delvoye N, Saad F, Mes-Masson AM. IκB-Kinase-epsilon (IKKε) over-expression promotes the growth of prostate cancer through the C/EBP-β dependent activation of IL-6 gene expression. Oncotarget 2017; 8:14487-14501. [PMID: 27577074 PMCID: PMC5362420 DOI: 10.18632/oncotarget.11629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/20/2016] [Indexed: 01/13/2023] Open
Abstract
The inflammatory cytokine IL-6 has been shown to induce the nuclear translocation of androgen receptors in prostate cancer cells and to activate the androgen receptors in a ligand-independent manner, suggesting it may contribute to the development of a castrate-resistant phenotype. Elevated IL-6 serum levels have also been associated with metastasis-related morbidity in prostate cancer patients. We have previously established that over-expression of I-kappa-B-kinase-epsilon (IKKε also named IKKi or IκBKε) in hormone-sensitive prostate cancer cell lines induces IL-6 secretion. We have also reported that prostate cancer cell lines lacking androgen receptor expression exhibit high constitutive IKKε expression and IL-6 secretion. In the present study, we validated the impact of IKKε depletion on the in vitro proliferation of castrate-resistant prostate cancer cells, and characterized how IKKε depletion affects tumor growth and IL-6 tumor secretion in vivo through a mouse xenograft-based approach. We observed a significant growth delay in IKKε-silenced PC-3 cells injected in SCID mice fed with a doxycycline-supplemented diet in comparison with mice fed with a normal diet. We also found a decrease in IL-6 secretion levels that strongly correlated with tumor growth inhibition. Finally, using constructs with various IL-6-mutated promoters, we demonstrated that IKKε over-expression induces a NF-κB-independent stimulation of the IL-6 gene promoter through the activation and nuclear accumulation of the transcription factor C/EBP-β. Our study demonstrates the pro-proliferative role of the oncogene IKKε in castrate-resistant prostate cancer cell lines, involving the phosphorylation and nuclear translocation of C/EBP-β that initiates IL-6 gene expression.
Collapse
Affiliation(s)
- Benjamin Péant
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Sophie Gilbert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Cécile Le Page
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Alexis Poisson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Emilie L'Ecuyer
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Zied Boudhraa
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Marc Nicolas Bienz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Nathalie Delvoye
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Fred Saad
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada.,Department of Surgery, Hôpital Saint Luc (CHUM), Montreal, Canada.,Department of Surgery, Université de Montréal, Montreal, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada.,Department of Medicine, Université de Montréal, Montreal, Canada
| |
Collapse
|
46
|
Geng B, Zhang C, Wang C, Che Y, Mu X, Pan J, Xu C, Hu S, Yang J, Zhao T, Xu Y, Lv Y, Wen H, Liu Z, You Q. IκB-kinase-ε in the tumor microenvironment is essential for the progression of gastric cancer. Oncotarget 2017; 8:75298-75307. [PMID: 29088866 PMCID: PMC5650421 DOI: 10.18632/oncotarget.20778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/30/2017] [Indexed: 01/26/2023] Open
Abstract
The tumor microenvironment is critical for tumor growth and metastasis, but the underlying molecular mechanisms are poorly understood. Recent studies have shown that IκB-kinase-ε (IKKε) is involved in the proliferation and migration of certain cancers. However, the functional role of IKKε in the progression of gastric cancer (GC) remains unknown. In this study, we found that high levels of IKKε expression in GC tumors were correlated with more advanced disease and poor overall survival of patients. Silencing of IKKε effectively suppressed the migratory and invasive capabilities of human GC cells in vitro and tumorigenicity and metastasis in vivo. Further analysis revealed that IKKε was also highly expressed in tumor-infiltrating lymphocytes. Moreover, it was involved in tumor-infiltrating T-cell-mediated invasion and metastasis. Knockdown of IKKε elevated T-cell antitumor immunity. These findings suggest that IKKε may be a novel prognostic marker and a potential therapeutic target in human GCs.
Collapse
Affiliation(s)
- Biao Geng
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Chen Zhang
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Chao Wang
- Department of Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Ying Che
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xianmin Mu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Jinshun Pan
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Che Xu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Shi Hu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Jing Yang
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Ting Zhao
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yue Xu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yuanfang Lv
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Hao Wen
- Department of Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Zheng Liu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Qiang You
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Key Laboratory for Aging & Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
47
|
Begalli F, Bennett J, Capece D, Verzella D, D'Andrea D, Tornatore L, Franzoso G. Unlocking the NF-κB Conundrum: Embracing Complexity to Achieve Specificity. Biomedicines 2017; 5:E50. [PMID: 28829404 PMCID: PMC5618308 DOI: 10.3390/biomedicines5030050] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Transcription factors of the nuclear factor κB (NF-κB) family are central coordinating regulators of the host defence responses to stress, injury and infection. Aberrant NF-κB activation also contributes to the pathogenesis of some of the most common current threats to global human health, including chronic inflammatory diseases, autoimmune disorders, diabetes, vascular diseases and the majority of cancers. Accordingly, the NF-κB pathway is widely considered an attractive therapeutic target in a broad range of malignant and non-malignant diseases. Yet, despite the aggressive efforts by the pharmaceutical industry to develop a specific NF-κB inhibitor, none has been clinically approved, due to the dose-limiting toxicities associated with the global suppression of NF-κB. In this review, we summarise the main strategies historically adopted to therapeutically target the NF-κB pathway with an emphasis on oncology, and some of the emerging strategies and newer agents being developed to pharmacologically inhibit this pathway.
Collapse
Affiliation(s)
- Federica Begalli
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Daria Capece
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Daniela Verzella
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Daniel D'Andrea
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Laura Tornatore
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
48
|
Abstract
Inhibitor of kappa B kinase epsilon (IKKε) and TANK-binding kinase 1 (TBK1) are non-canonical IKKs. IKKε and TBK1 share the kinase domain and are similar in their ability to activate the nuclear factor-kappa B signaling pathway. IKKε and TBK1 are overexpressed through multiple mechanisms in various human cancers. However, the expression of IKKε and TBK1 in gastric cancer and their role in prognosis have not been studied. To investigate overexpression of the IKKε and TBK1 proteins in gastric cancer and their relationship with clinicopathologic factors, we performed immunohistochemical staining using a tissue microarray. Tissue microarray samples were obtained from 1,107 gastric cancer patients who underwent R0 gastrectomy with extensive lymph node dissection and adjuvant chemotherapy. We identified expression of IKKε in 150 (13.6%) and TBK1 in 38 (3.4%) gastric cancers. Furthermore, co-expression of IKKε and TBK1 was identified in 1.5% of cases. Co-expression of IKKε and TBK1 was associated with differentiated intestinal histology and earlier T stage. In a multivariate binary logistic regression model, intestinal histologic type by Lauren classification and early AJCC stage were significant predictors for expression of IKKε and TBK1 proteins in gastric cancer. Changes in IKKε and TBK1 expression may be involved in the development of intestinal-type gastric cancer. The overexpression of IKKε and TBK1 should be considered in selected patients with intestinal-type gastric cancer. In conclusion, this is the first large-scale study investigating the relationships between expression of IKKε and TBK1 and clinicopathologic features of gastric cancer. The role of IKKε and TBK1 in intestinal-type gastric cancer pathogenesis should be elucidated by further investigation.
Collapse
|
49
|
Chen W, Luo K, Ke Z, Kuai B, He S, Jiang W, Huang W, Cai Z. TBK1 Promote Bladder Cancer Cell Proliferation and Migration via Akt Signaling. J Cancer 2017; 8:1892-1899. [PMID: 28819387 PMCID: PMC5556653 DOI: 10.7150/jca.17638] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Bladder cancer is a challenging and fatal malignancy and the improvement in prognosis is limited over years. Deep understanding the mechanism of bladder cancer tumorigenesis and progression will help to discover novel and effective treatment strategies. In this study, we identify non-canonical IkB kinase TBK1 is up-regulated in bladder cancer tissue and cell lines. Knockdown of TBK1 markedly inhibits cell proliferation and migration. Inhibition of TBK1 kinase activity by BX795 significantly attenuates bladder cancer cell proliferation and migration. Mechanistic study shows that overexpression of TBK1 promoted the phosphorylation of Akt, whereas knockdown of TBK1 reverses this action. Taken together, our data suggest that TBK1 modulates the malignant behaviors of bladder cancer cell via Akt signaling, revealing new insights in discovering new therapy target for bladder cancer.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Kewang Luo
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Zhiyi Ke
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Bin Kuai
- HYK High-throughput Biotechnology Institute, Shenzhen 518060, China
| | - Shiyang He
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Wei Jiang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| |
Collapse
|
50
|
Uhm M, Bazuine M, Zhao P, Chiang SH, Xiong T, Karunanithi S, Chang L, Saltiel AR. Phosphorylation of the exocyst protein Exo84 by TBK1 promotes insulin-stimulated GLUT4 trafficking. Sci Signal 2017; 10:10/471/eaah5085. [PMID: 28325821 DOI: 10.1126/scisignal.aah5085] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin stimulates glucose uptake through the translocation of the glucose transporter GLUT4 to the plasma membrane. The exocyst complex tethers GLUT4-containing vesicles to the plasma membrane, a process that requires the binding of the G protein (heterotrimeric guanine nucleotide-binding protein) RalA to the exocyst complex. We report that upon activation of RalA, the protein kinase TBK1 phosphorylated the exocyst subunit Exo84. Knockdown of TBK1 blocked insulin-stimulated glucose uptake and GLUT4 translocation; knockout of TBK1 in adipocytes blocked insulin-stimulated glucose uptake; and ectopic overexpression of a kinase-inactive mutant of TBK1 reduced insulin-stimulated glucose uptake in 3T3-L1 adipocytes. The phosphorylation of Exo84 by TBK1 reduced its affinity for RalA and enabled its release from the exocyst. Overexpression of a kinase-inactive mutant of TBK1 blocked the dissociation of the TBK1/RalA/exocyst complex, and treatment of 3T3-L1 adipocytes with specific inhibitors of TBK1 reduced the rate of complex dissociation. Introduction of phosphorylation-mimicking or nonphosphorylatable mutant forms of Exo84 blocked insulin-stimulated GLUT4 translocation. Thus, these data indicate that TBK1 controls GLUT4 vesicle engagement and disengagement from the exocyst, suggesting that exocyst components not only constitute a tethering complex for the GLUT4 vesicle but also act as "gatekeepers" controlling vesicle fusion at the plasma membrane.
Collapse
Affiliation(s)
- Maeran Uhm
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Merlijn Bazuine
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peng Zhao
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Institute for Diabetes and Metabolic Health, Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shian-Huey Chiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tingting Xiong
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Louise Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan R Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA. .,Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.,Institute for Diabetes and Metabolic Health, Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|