1
|
Liu N, Zhang B, Lin N. Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved. Chem Biol Interact 2025; 406:111356. [PMID: 39701490 DOI: 10.1016/j.cbi.2024.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking. The diverse and complex properties of NPs further complicate the understanding of their toxicological mechanisms. Autophagy, a fundamental cellular process, exhibits dual functions-both pro-survival and pro-death. This review offers an updated perspective on the dual roles of autophagy in nanotoxicity and examines the factors influencing autophagic responses. However, no definitive framework exists for predicting NPs-induced autophagy. Beyond the conventional autophagy pathways, the review highlights specific transcription factors activated by NPs and explores metabolic reprogramming. Particular attention is given to NPs-induced selective autophagy, including mitophagy, ER-phagy, ferritinophagy, lysophagy, and lipophagy. Additionally, the review investigates autophagy's involvement in NPs-mediated biological processes such as ferroptosis, inflammation, macrophage polarization, epithelial-mesenchymal transition, tumor cell proliferation and drug resistance, as well as liver and kidney injury, neurotoxicity, and other diseases. In summary, this review presents a novel update on selective autophagy-mediated nanotoxicity and elucidates the broader interactions of autophagy in NPs-induced biological processes. Collectively, these insights offer valuable strategies for mitigating nanotoxicity through autophagy modulation and advancing the development of NPs in biomedical applications.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Huang KT, Tsai WH, Chen CW, Hwang YS, Cheng HC, Yeh CW, Lin YH, Cheng AJ, Chang HC, Lin SJ, Yen MC, Chang WT. Hyperoxia induces autophagy in pulmonary epithelial cells: insights from in vivo and in vitro experiments. Free Radic Res 2025:1-14. [PMID: 39714274 DOI: 10.1080/10715762.2024.2446321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/14/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
Patients with hypoxemia require high-concentration oxygen therapy. However, prolonged exposure to oxygen concentrations 21% higher than physiological concentrations (hyperoxia) may cause oxidative cellular damage. Pulmonary alveolar epithelial cells are major targets for hyperoxia-induced oxidative stress. In this study, we evaluated the therapeutic potential of the antioxidant N-acetyl-L-cysteine (NAC) for preventing hyperoxia-induced cell death. In vitro experiments were performed using the human lung cancer cell line A549. In brief, NAC-treated and untreated cells were exposed to various concentrations of oxygen (hyperoxia) for different durations. The results indicated that hyperoxia inhibited proliferation and caused cell cycle arrest in A549 cells. It also induced necrosis and autophagy. Furthermore, hyperoxia increased intracellular reactive oxygen species levels and altered mitochondrial membrane potential. Co-treatment with NAC improved the survival of cells exposed to 95% oxygen for 24 h. Experiments performed using a neonatal rat model of acute lung injury confirmed that hyperoxia induced an autophagic response. This study provides evidence for hyperoxia-induced autophagy both in vitro and in vivo. NAC can protect A549 cells from death induced by short-term hyperoxia. Our findings may inform protective strategies against hyperoxia-induced injury in developing lungs-for example, bronchopulmonary dysplasia in premature infants.
Collapse
Affiliation(s)
- Kuo-Tsang Huang
- Section of Neurosurgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Wen-Hui Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Graduate Institute of Medical Sciences, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Wei Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
- Department of Occupational Safety and Health/Institute of Industrial Safety and Disaster Prevention, College of Sustainable Environment, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yea-Shwu Hwang
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Wei Yeh
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Ho Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - An-Jie Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chun Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shio-Jean Lin
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Tsan Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Chen L, Chen M, Xie Y, Zhang Y, Mo S, He Y, Liang T, Liao Y, Huang R, Huang G, Han C, Pham TTH. 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione mediates the effect of ROS-enhanced PI3K/Akt/mTOR pathway on autophagy in breast cancer. FEBS Open Bio 2024. [PMID: 39648951 DOI: 10.1002/2211-5463.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024] Open
Abstract
Several studies have suggested a potential antitumor effect of 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD). To further understand the mechanism of action of this compound, we investigated its effect on the phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. We show that DMDD application significantly inhibited the proliferation of breast cancer cell lines MDA-MB-231 and ER-α positive MCF-7. Furthermore, DMDD application resulted in increased intracellular reactive oxygen species (ROS) levels, apoptosis and autophagy, whereas it downregulated the expression of PI3K, Akt and mTOR mRNA and proteins, and increased the expression of LC3II/I and p62 proteins. In a mouse breast cancer xenograft model, DMDD inhibited tumor growth. Expression analyses suggest that ROS levels were higher in DMDD treated tumor tissues, whereas immunohistochemical analyses suggest that apoptotic cells were more prevalent in the DMDD treated group compared to the control group. Taken together, our results suggest that the molecular mechanism of action of DMDD may involve the enhancement of breast cancer autophagy through the PI3K/Akt/mTOR signaling pathway by mediating ROS expression.
Collapse
Affiliation(s)
- Linqian Chen
- Guangxi Medical University School of Pharmacy, Nanning, China
| | - Meifeng Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Xie
- Guangxi Medical University School of Pharmacy, Nanning, China
| | - Yuyan Zhang
- Guilin Medical College School of Pharmacy, Guilin, China
| | - Shutian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongfei He
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tianyi Liang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Renbin Huang
- Guangxi Medical University School of Pharmacy, Nanning, China
| | - Guodong Huang
- Zhuang & Yao Medicine Research and Development Center, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Thi Thai Hoa Pham
- Zhuang & Yao Medicine Research and Development Center, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
4
|
Cao X, Xie B, Xu M, Li J, Dai X, Tian Y, Zhang J, Chen Y, Yan L, Zhang B, Shi W, Ren L. Toxicity study of silica nanoparticles following 94-day repeated oral administration in Sprague Dawley rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03639-x. [PMID: 39601819 DOI: 10.1007/s00210-024-03639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
This study was designed to investigate the toxic response of Sprague Dawley (SD) rats following oral administration of different doses of silica nanoparticles (SiNPs) for 94 consecutive days, as well as the recovery after 30 days of withdrawal. Rats were orally administered SiNPs at dosages of 0, 125, 250, and 500 mg/kg /day once a day for 94 continuous days. By the end of the study, there were no fatalities in any of the experimental animals that received SiNPs orally. Under the tested doses, no adverse effects related to SiNPs treatment were observed in a comprehensive assessment of several dimensions, including clinical signs, body weight changes, food consumption, hematological parameters, blood biochemical indices, urinalysis, organ weights and coefficients, and gross and histopathology. Based on the current study results, the No Observed Adverse Effect Level (NOAEL) for repeated oral administration of SiNPs in rats for 94 consecutive days was designated as 500 mg/kg/day.
Collapse
Affiliation(s)
- Xiqian Cao
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316004, China
| | - Bin Xie
- School of Basic Medicine, Anhui Medical University, Anhui, 230032, China
| | - Mingxiao Xu
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai, 200433, China
| | - Jinfeng Li
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, No. 800, Xiangyin Road, Yangpu District, Shanghai, 200433, China
| | - Xiaoyu Dai
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, No. 800, Xiangyin Road, Yangpu District, Shanghai, 200433, China
| | - Yijun Tian
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, No. 800, Xiangyin Road, Yangpu District, Shanghai, 200433, China
| | - Jiqianzhu Zhang
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, No. 800, Xiangyin Road, Yangpu District, Shanghai, 200433, China
| | - Yun Chen
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, No. 800, Xiangyin Road, Yangpu District, Shanghai, 200433, China
| | - Lang Yan
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, No. 800, Xiangyin Road, Yangpu District, Shanghai, 200433, China
| | - Bin Zhang
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, No. 800, Xiangyin Road, Yangpu District, Shanghai, 200433, China
| | - Wenjing Shi
- Department of Naval Nutrition and Food Hygiene, College of Naval Medicine, Naval Medical University, No. 800, Xiangyin Road, Yangpu District, Shanghai, 200433, China
| | - Lijun Ren
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, No. 800, Xiangyin Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
5
|
Li Y, Yao Q, Xu H, Ren J, Zhu Y, Guo C, Li Y. Lung Single-Cell Transcriptomics Offers Insights into the Pulmonary Interstitial Toxicity Caused by Silica Nanoparticles. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:786-801. [PMID: 39568699 PMCID: PMC11574632 DOI: 10.1021/envhealth.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 11/22/2024]
Abstract
The adverse respiratory outcomes motivated by silica nanoparticles (SiNPs) exposure have received increasing attention. Herein, we aim to elucidate the interplay of diverse cell populations in the lungs and key contributors in triggering lung injuries caused by SiNPs. We conducted a subchronic respiratory exposure model of SiNPs via intratracheal instillation in Wistar rats, where rats were administered with 1.5, 3.0, or 6.0 mg/kg body weight SiNPs once a week for 12 times in total. We revealed that SiNPs caused pulmonary interstitial injury in rats by histopathological examination and pulmonary hydroxyproline determination. Further, a single-cell RNA-Seq via screening 10 457 cells in the rat lungs disclosed cell-specific responses to SiNPs and cell-to-cell interactions within the alveolar macrophages, epithelial cells, and fibroblasts from rat lungs. These disturbed responses were principally related to the dysregulation of protein homeostasis (proteostasis), accompanied by an inflammatory response in macrophages, cell death in epithelial, proliferation, and extracellular matrix deposition in fibroblast. These cell-specific responses may serve a synergistic role in the pathogenesis of pulmonary interstitial disease triggered by SiNPs. In particular, the analyses of gene interaction networks and gene-disease associations filtered out heat shock proteins (Hsps) family genes crucial to the observed pulmonary lesions caused by SiNPs. Of note, both GEO database analysis and our experiments' validation indicated that Hsps, especially Hspd1, may be a key contributor to pulmonary interstitial injury, possibly through triggering oxidative stress, immune response, and disrupting protein homeostasis. Taken together, our study provides insights into pulmonary toxic effects and underlying molecular mechanisms of SiNPs from a single-cell perspective.
Collapse
Affiliation(s)
- Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qing Yao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaze Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yurou Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Lv S, Li Y, Li X, Zhu L, Zhu Y, Guo C, Li Y. Silica nanoparticles triggered epithelial ferroptosis via miR-21-5p/GCLM signaling to contribute to fibrogenesis in the lungs. Chem Biol Interact 2024; 399:111121. [PMID: 38944326 DOI: 10.1016/j.cbi.2024.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
The toxicity of silica nanoparticles (SiNPs) to lung is known. We previously demonstrated that exposure to SiNPs promoted pulmonary impairments, but the precise pathogenesis remains elucidated. Ferroptosis has now been identified as a unique form of oxidative cell death, but whether it participated in SiNPs-induced lung injury remains unclear. In this work, we established a rat model with sub-chronic inhalation exposure of SiNPs via intratracheal instillation, and conducted histopathological examination, iron detection, and ferroptosis-related lipid peroxidation and protein assays. Moreover, we evaluated the effect of SiNPs on epithelial ferroptosis, possible mechanisms using in vitro-cultured human bronchial epithelial cells (16HBE), and also assessed the ensuing impact on fibroblast activation for fibrogenesis. Consequently, fibrotic lesions occurred in the rat lungs, concomitantly by enhanced lipid peroxidation, iron overload, and ferroptosis. Consistently, the in vitro data showed SiNPs triggered oxidative stress and caused the accumulation of lipid peroxides, resulting in ferroptosis. Importantly, the mechanistic investigation revealed miR-21-5p as a key player in the epithelial ferroptotic process induced by SiNPs via targeting GCLM for GSH depletion. Of note, ferrostatin-1 could greatly suppress ferroptosis and alleviate epithelial injury and ensuing fibroblast activation by SiNPs. In conclusion, our findings first revealed SiNPs triggered epithelial ferroptosis through miR-21-5p/GCLM signaling and thereby promoted fibroblast activation for fibrotic lesions, and highlighted the therapeutic potential of inhibiting ferroptosis against lung impairments upon SiNPs exposure.
Collapse
Affiliation(s)
- Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Lingnan Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yurou Zhu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
7
|
Gupta G, Wang Z, Kissling VM, Gogos A, Wick P, Buerki-Thurnherr T. Boron Nitride Nanosheets Induce Lipid Accumulation and Autophagy in Human Alveolar Lung Epithelial Cells Cultivated at Air-Liquid Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308148. [PMID: 38290809 DOI: 10.1002/smll.202308148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/29/2023] [Indexed: 02/01/2024]
Abstract
Hexagonal boron nitride (hBN) is an emerging 2D material attracting significant attention due to its superior electrical, chemical, and therapeutic properties. However, inhalation toxicity mechanisms of hBN in human lung cells are poorly understood. Here, cellular interaction and effects of hBN nanosheets is investigated in alveolar epithelial cells cultured on porous inserts and exposed under air-liquid interface conditions for 24 h. hBN is taken up by the cells as determined in a label-free manner via RAMAN-confocal microscopy, ICP-MS, TEM, and SEM-EDX. No significant (p > 0.05) effects are observed on cell membrane integrity (LDH release), epithelial barrier integrity (TEER), interleukin-8 cytokine production or reactive oxygen production at tested dose ranges (1, 5, and 10 µg cm-2). However, it is observed that an enhanced accumulation of lipid granules in cells indicating the effect of hBN on lipid metabolism. In addition, it is observed that a significant (p < 0.05) and dose-dependent (5 and 10 µg cm-2) induction of autophagy in cells after exposure to hBN, potentially associated with the downstream processing and breakdown of excess lipid granules to maintain lipid homeostasis. Indeed, lysosomal co-localization of lipid granules supporting this argument is observed. Overall, the results suggest that the continuous presence of excess intracellular lipids may provoke adverse outcomes in the lungs.
Collapse
Affiliation(s)
- Govind Gupta
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Ziting Wang
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Vera M Kissling
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| |
Collapse
|
8
|
Li Y, Xu H, Wang Y, Zhu Y, Xu K, Yang Z, Li Y, Guo C. Epithelium-derived exosomes promote silica nanoparticles-induced pulmonary fibroblast activation and collagen deposition via modulating fibrotic signaling pathways and their epigenetic regulations. J Nanobiotechnology 2024; 22:331. [PMID: 38867284 PMCID: PMC11170844 DOI: 10.1186/s12951-024-02609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND In the context of increasing exposure to silica nanoparticles (SiNPs) and ensuing respiratory health risks, emerging evidence has suggested that SiNPs can cause a series of pathological lung injuries, including fibrotic lesions. However, the underlying mediators in the lung fibrogenesis caused by SiNPs have not yet been elucidated. RESULTS The in vivo investigation verified that long-term inhalation exposure to SiNPs induced fibroblast activation and collagen deposition in the rat lungs. In vitro, the uptake of exosomes derived from SiNPs-stimulated lung epithelial cells (BEAS-2B) by fibroblasts (MRC-5) enhanced its proliferation, adhesion, and activation. In particular, the mechanistic investigation revealed SiNPs stimulated an increase of epithelium-secreted exosomal miR-494-3p and thereby disrupted the TGF-β/BMPR2/Smad pathway in fibroblasts via targeting bone morphogenetic protein receptor 2 (BMPR2), ultimately resulting in fibroblast activation and collagen deposition. Conversely, the inhibitor of exosomes, GW4869, can abolish the induction of upregulated miR-494-3p and fibroblast activation in MRC-5 cells by the SiNPs-treated supernatants of BEAS-2B. Besides, inhibiting miR-494-3p or overexpression of BMPR2 could ameliorate fibroblast activation by interfering with the TGF-β/BMPR2/Smad pathway. CONCLUSIONS Our data suggested pulmonary epithelium-derived exosomes serve an essential role in fibroblast activation and collagen deposition in the lungs upon SiNPs stimuli, in particular, attributing to exosomal miR-494-3p targeting BMPR2 to modulate TGF-β/BMPR2/Smad pathway. Hence, strategies targeting exosomes could be a new avenue in developing therapeutics against lung injury elicited by SiNPs.
Collapse
Affiliation(s)
- Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Ying Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yurou Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
9
|
Huang K, Zhang Q, Ruan H, Guo C, Wu S, Liu Q, Zhang D, Long S, Wang W, Wu Z, Tian L, Gao S, Zhao H, Gu X, Yin H, Yang C. Pazopanib attenuated bleomycin-induced pulmonary fibrosis via suppressing TGF-β1 signaling pathway. J Thorac Dis 2024; 16:2244-2258. [PMID: 38738240 PMCID: PMC11087596 DOI: 10.21037/jtd-23-1349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/05/2024] [Indexed: 05/14/2024]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease with a high mortality rate and limited treatment efficacy. Nintedanib, a tyrosine kinase inhibitor, is clinically used to treat pulmonary fibrosis. At present, only nintedanib is on the market for the treatment of pulmonary fibrosis. Pazopanib is a drug for the treatment of renal cell carcinoma and advanced soft tissue sarcoma. Methods In this study, we explored whether pazopanib can attenuate bleomycin (BLM)-induced pulmonary fibrosis and explored its antifibrotic mechanism. In vivo and in vitro investigations were carried out to investigate the efficacy and mechanism of action of pazopanib in pulmonary fibrosis. Results In vivo experiments showed that pazopanib can alleviate pulmonary fibrosis caused by BLM, reduce the degree of collagen deposition and improve lung function. In vitro experiments showed that pazopanib suppressed transforming growth factor-β1 (TGF-β1)-induced myofibroblast activation and promoted apoptosis and autophagy in myofibroblasts. Further mechanistic studies demonstrated that pazopanib inhibited the TGF-β1/Smad and non-Smad signaling pathways during fibroblast activation. Conclusions In conclusion, pazopanib attenuated BLM-induced pulmonary fibrosis by suppressing the TGF-β1 signaling pathway. Pazopanib inhibits myofibroblast activation, migration, autophagy, apoptosis, and extracellular matrix (ECM) buildup by downregulating the TGF-β1/Smad signal route and the TGF-β1/non-Smad signal pathway. It has the same target as nintedanib and is a tyrosine kinase inhibitor.
Collapse
Affiliation(s)
- Kai Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qianyi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Hao Ruan
- China Resources Biopharmaceutical Co., Ltd., Beijing, China
| | - Chunyu Guo
- China Resources Biopharmaceutical Co., Ltd., Beijing, China
| | - Shuyang Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qinyi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Deqiang Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shida Long
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Wenrui Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Zhou Wu
- China Resources Biopharmaceutical Co., Ltd., Beijing, China
| | - Li Tian
- China Resources Biopharmaceutical Co., Ltd., Beijing, China
| | - Shuangyan Gao
- China Resources Biopharmaceutical Co., Ltd., Beijing, China
| | - Huanan Zhao
- China Resources Biopharmaceutical Co., Ltd., Beijing, China
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Huijun Yin
- China Resources Biopharmaceutical Co., Ltd., Beijing, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Florance I, Cordani M, Pashootan P, Moosavi MA, Zarrabi A, Chandrasekaran N. The impact of nanomaterials on autophagy across health and disease conditions. Cell Mol Life Sci 2024; 81:184. [PMID: 38630152 PMCID: PMC11024050 DOI: 10.1007/s00018-024-05199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.
Collapse
Affiliation(s)
- Ida Florance
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Parya Pashootan
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
11
|
Ao LH, Wei YG, Tian HR, Zhao H, Li J, Ban JQ. Advances in the study of silica nanoparticles in lung diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169352. [PMID: 38110102 DOI: 10.1016/j.scitotenv.2023.169352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Silicon dioxide nanoparticles (SiNPs) are one of the major forms of silicon dioxide and are composed of the most-abundant compounds on earth. Based on their excellent properties, SiNPs are widely used in food production, synthetic processes, medical diagnostics, drug delivery, and other fields. The mass production and wide application of SiNPs increases the risk of human exposure to SiNPs. In the workplace and environment, SiNPs mainly enter the human body through the respiratory tract and reach the lungs; therefore, the lungs are the most important and most toxicologically affected target organ of SiNPs. An increasing number of studies have shown that SiNP exposure can cause severe lung toxicity. However, studies on the toxicity of SiNPs in ex vivo and in vivo settings are still in the exploratory phase. The molecular mechanisms underlying the lung toxicity of SiNPs are varied and not yet fully understood. As a result, this review summarizes the possible mechanisms of SiNP-induced lung toxicity, such as oxidative stress, endoplasmic reticulum stress, mitochondrial damage, and cell death. Moreover, this study provides a summary of the progression of diseases caused by SiNPs, thereby establishing a theoretical basis for future studies on the mechanisms of SiNP-induced lung toxicity.
Collapse
Affiliation(s)
- Li-Hong Ao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yun-Geng Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong-Ru Tian
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hua Zhao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jun Li
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jia-Qi Ban
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
12
|
Li X, Zhang J, Wang M, Du C, Zhang W, Jiang Y, Zhang W, Jiang X, Ren D, Wang H, Zhang X, Zheng Y, Tang J. Pulmonary Surfactant Homeostasis Dysfunction Mediates Multiwalled Carbon Nanotubes Induced Lung Fibrosis via Elevating Surface Tension. ACS NANO 2024; 18:2828-2840. [PMID: 38101421 DOI: 10.1021/acsnano.3c05956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Multiwalled carbon nanotubes (MWCNTs) have been widely used in many disciplines and raised great concerns about their negative health impacts, especially environmental and occupational exposure. MWCNTs have been reported to induce fibrotic responses; however, the underlying mechanisms remain largely veiled. Here, we reported that MWCNTs inhalation induced lung fibrosis together with decreased lung compliance, increased elastance in the mice model, and elevated surface tension in vitro. Specifically, MWCNTs increased surface tension by impairing the function of the pulmonary surfactant. Mechanistically, MWCNTs induced lamellar body (LB) dysfunction through autophagy dysfunction, which then leads to surface tension elevated by pulmonary surfactant dysfunction in the context of lung fibrosis. This is a study to investigate the molecular mechanism of MWCNTs-induced lung fibrosis and focus on surface tension. A direct mechanistic link among impaired LBs, surface tension, and fibrosis has been established. This finding elucidates the detailed molecular mechanisms of lung fibrosis induced by MWCNTs. It also highlights that pulmonary surfactants are expected to be potential therapeutic targets for the prevention and treatment of lung fibrosis induced by MWCNTs.
Collapse
Affiliation(s)
- Xin Li
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jianzhong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Mingyue Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chao Du
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wenjing Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yingying Jiang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wanjun Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xinmin Jiang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Dunqiang Ren
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao 266021, China
| | - Hongmei Wang
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao 266021, China
| | - Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuxin Zheng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinglong Tang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
13
|
Zhou S, Wang Z, Gao L, Chen M, Duan Y, Zhou P, Liu Z, Wu C, Zhang J, Zhu Q. C5a/C5aR1 axis as a key driver promotes epithelial-to-mesenchymal transition in airway epithelial cells in silica nanoparticles-induced pulmonary fibrosis. Int Immunopharmacol 2023; 125:111112. [PMID: 37948857 DOI: 10.1016/j.intimp.2023.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Previous studies have shown that silica nanoparticles (SiNPs) exposure can affect the respiratory, cardiovascular, reproductive and other systems, with the lung being the primary target organ for the direct effect, causing damage with a central feature of pulmonary inflammation and fibrosis. However, the underlying mechanisms of pulmonary fibrosis due to SiNPs are not fully understood. The aim of the study was to investigate the role of complement anaphylatoxin C5a in SiNPs-induced pulmonary fibrosis. A mouse model of SiNPs-induced pulmonary fibrosis was established, and pulmonary fibrosis-related indicators, epithelial-to-mesenchymal transition (EMT), C5a/C5aR1 and high mobility group protein B1 (HMGB1) proteins were measured. An in vitro study using the human lung epithelial cell line BEAS-2B investigated whether C5a leads to epithelial-to-mesenchymal trans-differentiation. In vivo studies revealed that SiNPs-induced pulmonary fibrosis mainly manifested as EMT trans-differentiation in airway epithelial cells, which subsequently led to excessive deposition of extracellular matrix (ECM). Furthermore, we found that C5a and C5aR1 proteins were also increased in SiNPs-induced pulmonary fibrosis tissue. In vitro studies also showed that C5a directly activated HMGB1/RAGE signaling and induced EMT in BEAS-2B cells. Finally, treatment of SiNPs-exposed mice with the C5aR1 inhibitor PMX205 effectively reduced C5aR1 levels and inhibited the activation of HMGB1/RAGE signaling and the expression of EMT-related proteins, culminating in a significant alleviation of pulmonary fibrosis. Taken together, our results suggest that C5a/C5aR1 is the main signaling pathway for SiNPs-induced pulmonary fibrosis, which induces EMT in airway epithelial cells via the HMGB1/RAGE axis.
Collapse
Affiliation(s)
- Sifan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhoujian Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Lei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Muyue Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuansheng Duan
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Pengcheng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhibing Liu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
14
|
Janjua TI, Cao Y, Kleitz F, Linden M, Yu C, Popat A. Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Adv Drug Deliv Rev 2023; 203:115115. [PMID: 37844843 DOI: 10.1016/j.addr.2023.115115] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Silica nanoparticles (SNP) have gained tremendous attention in the recent decades. They have been used in many different biomedical fields including diagnosis, biosensing and drug delivery. Medical uses of SNP for anti-cancer, anti-microbial and theranostic applications are especially prominent due to their exceptional performance to deliver many different small molecules and recently biologics (mRNA, siRNA, antigens, antibodies, proteins, and peptides) at targeted sites. The physical and chemical properties of SNP such as large specific surface area, tuneable particle size and porosity, excellent biodegradability and biocompatibility make them an ideal drug delivery and diagnostic platform. Based on the available data and the pre-clinical performance of SNP, recent interest has driven these innovative materials towards clinical application with many of the formulations already in Phase I and Phase II trials. Herein, the progress of SNP in biomedical field is reviewed, and their safety aspects are analysed. Importantly, we critically evaluate the key structural characteristics of SNP to overcome different biological barriers including the blood-brain barrier (BBB), skin, tumour barrier and mucosal barrier. Future directions, potential pathways, and target areas towards rapid clinical translation of SNP are also recommended.
Collapse
Affiliation(s)
- Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Mika Linden
- Institute of Inorganic Chemistry II, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Ding R, Li Y, Yu Y, Sun Z, Duan J. Prospects and hazards of silica nanoparticles: Biological impacts and implicated mechanisms. Biotechnol Adv 2023; 69:108277. [PMID: 37923235 DOI: 10.1016/j.biotechadv.2023.108277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the thrive of nanotechnology, silica nanoparticles (SiNPs) have been extensively adopted in the agriculture, food, cosmetic, and even biomedical industries. Due to the mass production and use, SiNPs inevitably entered the environment, resulting in ecological toxicity and even posing a threat to human health. Although considerable investigations have been conducted to assess the toxicity of SiNPs, the correlation between SiNPs exposure and consequent health risks remains ambiguous. Since the biological impacts of SiNPs can differ from their design and application, the toxicity assessment for SiNPs may be extremely difficult. This review discussed the application of SiNPs in different fields, especially their biomedical use, and documented their potential release pathways into the environment. Meanwhile, the current process of assessing SiNPs-related toxicity on various model organisms and cell lines was also detailed, thus estimating the health threats posed by SiNPs exposure. Finally, the potential toxic mechanisms of SiNPs were also elaborated based on results obtained from both in vivo and in vitro trials. This review generally summarizes the biological effects of SiNPs, which will build up a comprehensive perspective of the application and toxicity of SiNPs.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
16
|
Arnst J, Jing Z, Cohen C, Ha SW, Viggeswarapu M, Beck GR. Bioactive silica nanoparticles target autophagy, NF-κB, and MAPK pathways to inhibit osteoclastogenesis. Biomaterials 2023; 301:122238. [PMID: 37441901 PMCID: PMC10530178 DOI: 10.1016/j.biomaterials.2023.122238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
Spherical 50 nm silica-based nanoparticles (SiNPs) promote healthy bone homeostasis and maintenance by supporting bone forming osteoblast lineage cells while simultaneously inhibiting the differentiation of bone resorbing osteoclasts. Previous work demonstrated that an intraperitoneal injection of SiNPs in healthy mice - both young and old - increased bone density and quality, suggesting the possibility that SiNPs represent a dual action therapeutic. However, the underlying mechanisms governing the osteoclast response to SiNPs have yet to be fully explored and defined. Therefore, the goals of this study were to investigate the cellular and molecular mechanisms by which SiNPs inhibit osteoclastogenesis. SiNPs strongly inhibited RANKL-induced osteoclast differentiation within the first hours and concomitantly inhibited early transcriptional regulators such as Nfatc1. SiNPs simultaneously stimulated expression of autophagy related genes p62 and LC3β dependent on ERK1/2 signaling pathway. Intriguingly, SiNPs were found to stimulate autophagosome formation while inhibiting the autophagic flux necessary for RANKL-stimulated osteoclast differentiation, resulting in the inhibition of both the canonical and non-canonical NF-κB signaling pathways and stabilizing TRAF3. These results suggest a model in which SiNPs inhibit osteoclastogenesis by inhibiting the autophagic machinery and RANKL-dependent functionality. This mechanism of action defines a novel therapeutic strategy for inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- Jamie Arnst
- Emory University, Department of Medicine, Division of Endocrinology, Atlanta, GA, 30322, USA
| | - Zhaocheng Jing
- Emory University, Department of Medicine, Division of Endocrinology, Atlanta, GA, 30322, USA; The Second Hospital of Shandong University, Department of Orthopedics, Jinan, Shandong, 250033, China
| | - Cameron Cohen
- Emory University, Department of Medicine, Division of Endocrinology, Atlanta, GA, 30322, USA
| | - Shin-Woo Ha
- Emory University, Department of Medicine, Division of Endocrinology, Atlanta, GA, 30322, USA
| | - Manjula Viggeswarapu
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - George R Beck
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, 30033, USA; Emory University, Department of Medicine, Division of Endocrinology, Atlanta, GA, 30322, USA; The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
17
|
Chen JL, Wu X, Yin D, Jia XH, Chen X, Gu ZY, Zhu XM. Autophagy inhibitors for cancer therapy: Small molecules and nanomedicines. Pharmacol Ther 2023; 249:108485. [PMID: 37406740 DOI: 10.1016/j.pharmthera.2023.108485] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Autophagy is a conserved process in which the cytosolic materials are degraded and eventually recycled for cellular metabolism to maintain homeostasis. The dichotomous role of autophagy in pathogenesis is complicated. Accumulating reports have suggested that cytoprotective autophagy is responsible for tumor growth and progression. Autophagy inhibitors, such as chloroquine (CQ) and hydroxychloroquine (HCQ), are promising for treating malignancies or overcoming drug resistance in chemotherapy. With the rapid development of nanotechnology, nanomaterials also show autophagy-inhibitory effects or are reported as the carriers delivering autophagy inhibitors. In this review, we summarize the small-molecule compounds and nanomaterials inhibiting autophagic flux as well as the mechanisms involved. The nanocarrier-based drug delivery systems for autophagy inhibitors and their distinct advantages are also described. The progress of autophagy inhibitors for clinical applications is finally introduced, and their future perspectives are discussed.
Collapse
Affiliation(s)
- Jian-Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Dan Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Hui Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Ze-Yun Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China.
| |
Collapse
|
18
|
Taghavizadeh Yazdi ME, Qayoomian M, Beigoli S, Boskabady MH. Recent advances in nanoparticle applications in respiratory disorders: a review. Front Pharmacol 2023; 14:1059343. [PMID: 37538179 PMCID: PMC10395100 DOI: 10.3389/fphar.2023.1059343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
Various nanoparticles are used in the discovery of new nanomedicine to overcome the shortages of conventional drugs. Therefore, this article presents a comprehensive and up-to-date review of the effects of nanoparticle-based drugs in the treatment of respiratory disorders, including both basic and clinical studies. Databases, including PubMed, Web of Knowledge, and Scopus, were searched until the end of August 2022 regarding the effect of nanoparticles on respiratory diseases. As a new tool, nanomedicine offered promising applications for the treatment of pulmonary diseases. The basic composition and intrinsic characteristics of nanomaterials showed their effectiveness in treating pulmonary diseases. The efficiency of different nanomedicines has been demonstrated in experimental animal models of asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer, lung infection, and other lung disorders, confirming their function in the improvement of respiratory disorders. Various types of nanomaterials, such as carbon nanotubes, dendrimers, polymeric nanomaterials, liposomes, quantum dots, and metal and metal oxide nanoparticles, have demonstrated therapeutic effects on respiratory disorders, which may lead to new possible remedies for various respiratory illnesses that could increase drug efficacy and decrease side effects.
Collapse
Affiliation(s)
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Beigoli
- Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Yang X, Zhang J, Xiong M, Yang Y, Yang P, Li N, Shi F, Zhu Y, Guo K, Jin Y. NF-κB pathway affects silica nanoparticle-induced fibrosis via inhibited inflammatory response and epithelial-mesenchymal transition in 3D co-culture. Toxicol Lett 2023; 383:141-151. [PMID: 37394155 DOI: 10.1016/j.toxlet.2023.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Long-term inhalation of silica nanoparticles (SiNPs) can induce pulmonary fibrosis (PF), nevertheless, the potential mechanisms remain elusive. Herein, we constructed a three-dimensional (3D) co-culture model by using Matrigel to investigate the interaction among different cells and potential regulatory mechanisms after SiNPs exposure. Methodologically, we dynamically observed the changes in cell morphology and migration after exposure to SiNPs by co-culturing mouse monocytic macrophages (RAW264.7), human non-small cell lung cancer cells (A549), and medical research council cell strain-5 (MRC-5) in Matrigel for 24 h. Subsequently, we detected the expression of nuclear factor kappa B (NF-κB), inflammatory factor and epithelial-mesenchymal transition (EMT) markers. The results showed that SiNPs produced toxic effects on cells. In the 3D co-culture state, the cell's movement velocity and displacement increased, and the cell migration ability was enhanced. Meanwhile, the expression of inflammatory factor tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) were upregulated, the epithelial marker E-cadherin (E-cad) was downregulated, the mesenchymal marker N-cadherin (N-cad) and myofibroblast marker alpha-smooth muscle actin (α-SMA) expression were upregulated, while NF-κB expression was also upregulated after SiNPs exposure. We further found that cells were more prone to transdifferentiate into myofibroblasts in the 3D co-culture state. Conversely, utilizing the NF-κB-specific inhibitor BAY 11-7082 effectively downregulated the expression of TNF-α, IL-6, interleukin-1β (IL-1β), N-cad, α-SMA, collagen-I (COL I), and fibronectin (FN), the expression of E-cad was upregulated. These findings suggest that NF-κB is involved in regulating SiNPs-induced inflammatory, EMT, and fibrosis in the 3D co-culture state.
Collapse
Affiliation(s)
- Xiaojing Yang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yushan Yang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Pan Yang
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, China
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Fan Shi
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yaxin Zhu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Keyun Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yulan Jin
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
20
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
21
|
Liang Q, Sun M, Ma Y, Wang F, Sun Z, Duan J. Adverse effects and underlying mechanism of amorphous silica nanoparticles in liver. CHEMOSPHERE 2023; 311:136955. [PMID: 36280121 DOI: 10.1016/j.chemosphere.2022.136955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Amorphous silica nanoparticles (SiNPs) have been widely used and mass-producted due to its unique properties. With the life cycle of SiNPs-based products, SiNPs are further released into the air, soil, surface water and sediment, resulting in an increasing risk to humans. SiNPs could enter into the human body through vein, respiratory tract, digestive tract or skin. Moreover, recent evidences have showed that, regardless of exposure pathways, SiNPs could even be traced in liver, which is gradually considered as one of the main organs that SiNPs accumulate. Increasing evidences supported the link between SiNPs exposure and adverse liver effects. However, the research models are diverse and the molecular mechanisms have not been well integrated. In this review, the liver-related studies of SiNPs in vivo and in vitro were screened from the PubMed database by systematic retrieval method. We explored the interaction between SiNPs and the liver, and especially proposed a framework of SiNPs-caused liver toxicity, considering AOP Wiki and existing studies. We identified increased reactive oxygen species (ROS) as a molecular initiating event (MIE), oxidative stress, endoplasmic reticulum stress, lysosome disruption and mitochondrial dysfunction as subsequent key events (KEs), which gradually led to adverse outcomes (AOs) containing liver dysfunction and liver fibrosis through a series of key events about cell inflammation and death such as hepatocyte apoptosis/pyroptosis, hepatocyte autophagy dysfuncton and hepatic macrophages pyroptosis. To our best knowledge, this is the first AOP proposed on SiNPs-related liver toxicity. In the future, more epidemiological studies need to be performed and more biomarkers need to be explored to improve the AOP framework for SiNPs-associated liver toxicity.
Collapse
Affiliation(s)
- Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China; School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Techonology, Baotou, 014040, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
22
|
Kong X, Lu L, Lin D, Chong L, Wen S, Shi Y, Lin L, Zhou L, Zhang H, Zhang H. FGF10 ameliorates lipopolysaccharide-induced acute lung injury in mice via the BMP4-autophagy pathway. Front Pharmacol 2022; 13:1019755. [PMID: 36618911 PMCID: PMC9813441 DOI: 10.3389/fphar.2022.1019755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Damage to alveolar epithelial cells caused by uncontrolled inflammation is considered to be the main pathophysiological change in acute lung injury. FGF10 plays an important role as a fibroblast growth factor in lung development and lung diseases, but its protective effect against acute lung injury is unclear. Therefore, this study aimed to investigate protective effect and mechanism of FGF10 on acute lung injury in mice. Methods: ALI was induced by intratracheal injection of LPS into 57BL/6J mice. Six hours later, lung bronchoalveolar lavage fluid (BALF) was acquired to analyse cells, protein and the determination of pro-inflammatory factor levels, and lung issues were collected for histologic examination and wet/dry (W/D) weight ratio analysis and blot analysis of protein expression. Results: We found that FGF10 can prevent the release of IL-6, TNF-α, and IL-1β, increase the expression of BMP4 and autophagy pathway, promote the regeneration of alveolar epithelial type Ⅱ cells, and improve acute lung injury. BMP4 gene knockdown decreased the protective effect of FGF10 on the lung tissue of mice. However, the activation of autophagy was reduced after BMP4 inhibition by Noggin. Additionally, the inhibition of autophagy by 3-MA also lowered the protective effect of FGF10 on alveolar epithelial cells induced by LPS. Conclusions: These data suggest that the protective effect of FGF10 is related to the activation of autophagy and regeneration of alveolar epithelial cells in an LPS-induced ALI model, and that the activation of autophagy may depend on the increase in BMP4 expression.
Collapse
Affiliation(s)
- Xiaoxia Kong
- School of Basic Medical Sciences, Institute of Hypoxia Research, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liling Lu
- Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Ultrasound, Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Daopeng Lin
- Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Nephrology, Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang, China
| | - Lei Chong
- Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shunhang Wen
- Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yaokai Shi
- Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lidan Lin
- School of Basic Medical Sciences, Institute of Hypoxia Research, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqin Zhou
- Department of Pharmacy, Zhuji People’s Hospital, The Affiliated Hospital of Wenzhou Medical University, Shaoxing, Zhejiang, China
| | - Hongyu Zhang
- Department of Pharmacy, Zhuji People’s Hospital, The Affiliated Hospital of Wenzhou Medical University, Shaoxing, Zhejiang, China,School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Hongyu Zhang, ; Hailin Zhang,
| | - Hailin Zhang
- Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Hongyu Zhang, ; Hailin Zhang,
| |
Collapse
|
23
|
Yue YL, Zhang MY, Liu JY, Fang LJ, Qu YQ. The role of autophagy in idiopathic pulmonary fibrosis: from mechanisms to therapies. Ther Adv Respir Dis 2022; 16:17534666221140972. [PMID: 36468453 PMCID: PMC9726854 DOI: 10.1177/17534666221140972] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial pulmonary disease with an extremely poor prognosis. Autophagy is a fundamental intracellular process involved in maintaining cellular homeostasis and regulating cell survival. Autophagy deficiency has been shown to play an important role in the progression of pulmonary fibrosis. This review focused on the six steps of autophagy, as well as the interplay between autophagy and other seven pulmonary fibrosis related mechanisms, which include extracellular matrix deposition, myofibroblast differentiation, epithelial-mesenchymal transition, pulmonary epithelial cell dysfunction, apoptosis, TGF-β1 pathway, and the renin-angiotensin system. In addition, this review also summarized autophagy-related signaling pathways such as mTOR, MAPK, JAK2/STAT3 signaling, p65, and Keap1/Nrf2 signaling during the development of IPF. Furthermore, this review also illustrated the commonly used autophagy detection methods, the currently approved antifibrotic drugs pirfenidone and nintedanib, and several prospective compounds targeting autophagy for the treatment of IPF.
Collapse
Affiliation(s)
- Yue-Liang Yue
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Meng-Yu Zhang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jian-Yu Liu
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Li-Jun Fang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | | |
Collapse
|
24
|
Wang X, He K, Hu Y, Tang M. A review of pulmonary toxicity of different types of quantum dots in environmental and biological systems. Chem Biol Interact 2022; 368:110247. [DOI: 10.1016/j.cbi.2022.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
25
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
26
|
Bao L, Geng Z, Wang J, He L, Kang A, Song J, Huang X, Zhang Y, Liu Q, Jiang T, Pang Y, Niu Y, Zhang R. Attenuated T cell activation and rearrangement of T cell receptor β repertoire in silica nanoparticle-induced pulmonary fibrosis of mice. ENVIRONMENTAL RESEARCH 2022; 213:113678. [PMID: 35710025 DOI: 10.1016/j.envres.2022.113678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Silica nanoparticles (SiNPs) cause pulmonary fibrosis through a complex immune response, but the underlying mechanisms by which SiNPs interact with T cells and affect their functions remain unclear. The T cell receptor (TCR) repertoire is closely related to T cell activation and proliferation and mediates innate and adaptive immunity. High-throughput sequencing of the TCR enables comprehensive monitoring of the immune microenvironment. Here, the role of the TCRβ repertoire was explored using a mouse model of SiNP-induced pulmonary fibrosis and a co-culture of RAW264.7 and CD4+ T cells. Our results demonstrated increased TCRβ expression and decreased CD25 and CD69 expression in CD4+ T cells from peripheral blood and lung collected 14 days after the induction of pulmonary fibrosis by SiNPs. Simultaneously, SiNPs significantly decreased CD25 and CD69 expression in CD4+ T cells in vitro via RAW264.7 cell presentation. Mechanistically, pLCK and pZap70 expression, involved in mediating T cell activation, were also decreased in the lung of mice with SiNP-induced pulmonary fibrosis. Furthermore, the profile of the TCRβ repertoire in mice with SiNP-induced pulmonary fibrosis showed that SiNPs markedly altered the usage of V genes, VJ gene combinations, and CDR3 amino acids in lung tissue. Collectively, our data suggested that SiNPs could interfere with T cell activation by macrophage presentation via the LCK/Zap70 pathway and rearrange the TCRβ repertoire for adaptive immunity and the pulmonary microenvironment.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Zihan Geng
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Juan Wang
- Department of Statistics, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Liyi He
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Aijuan Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Jianshi Song
- School of Basic Medical, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Xiaoyan Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yaling Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Tao Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
27
|
Li X, Li Y, Lv S, Xu H, Ma R, Sun Z, Li Y, Guo C. Long-term respiratory exposure to amorphous silica nanoparticles promoted systemic inflammation and progression of fibrosis in a susceptible mouse model. CHEMOSPHERE 2022; 300:134633. [PMID: 35439488 DOI: 10.1016/j.chemosphere.2022.134633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Exposure to amorphous silica nanoparticles (SiNPs) has increased dramatically, and concerns are growing about their potential health effects. However, their long-term systemic toxicity profile and underlying mechanisms following respiratory exposure still remains unexplored. It is well documented that the inhalation of ultrafine particles is firmly associated with adverse effects in humans. Environmental pollutants may contribute to diverse adverse effect or comorbidity in susceptible individuals. Thereby, we examined the long-term systemic effects of inhaled SiNPs using a sensitive mouse model (ApoE-/-) fed by a western diet. Male ApoE-/- mice were intratracheally instilled with SiNPs suspension at a dose of 1.5, 3.0 and 6.0 mg/kg·bw, respectively, once per week, 12 times in total. The histological analysis was conducted. The serum cytokine levels were quantified by RayBiotech antibody array. As a result, systemic histopathological alterations were noticed, mainly characterized by inflammation and fibrosis. More importantly, cytokine array analysis indicated the key role of mast cells accumulation in systemic inflammation and fibrosis progression induced by inhaled SiNPs. Collectively, our study firstly demonstrated that long-term exposure to inhaled SiNPs promoted the mast cell-dominated activation of inflammatory response, not only in the lung but also in heart, liver and kidney, etc., eventually leading to the progression of tissue fibrosis in ApoE-/- mice.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
28
|
Liu JY, Sayes CM. A toxicological profile of silica nanoparticles. Toxicol Res (Camb) 2022; 11:565-582. [PMID: 36051665 PMCID: PMC9424711 DOI: 10.1093/toxres/tfac038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 08/02/2023] Open
Abstract
Humans are regularly exposed to silica nanoparticles in environmental and occupational contexts, and these exposures have been implicated in the onset of adverse health effects. Existing reviews on silica nanoparticle toxicity are few and not comprehensive. There are natural and synthetic sources by which crystalline and amorphous silica nanoparticles are produced. These processes influence physiochemical properties, which are factors that can dictate toxicological effects. Toxicological assessment includes exposure scenario (e.g. environmental, occupational), route of exposure, toxicokinetics, and toxicodynamics. Broader considerations include pathology, risk assessment, regulation, and treatment after injury. This review aims to consolidate the most relevant and up-to-date research in these areas to provide an exhaustive toxicological profile of silica nanoparticles.
Collapse
Affiliation(s)
- James Y Liu
- Department of Environmental Science, Baylor University, One Bear Place # 97266, Waco, TX 76798-7266, United States
| | - Christie M Sayes
- Corresponding author: Department of Environmental Science, Baylor University, One Bear Place # 97266, Waco, TX 76798-7266, United States.
| |
Collapse
|
29
|
Li Y, Zhu Y, Zhao B, Yao Q, Xu H, Lv S, Wang J, Sun Z, Li Y, Guo C. Amorphous silica nanoparticles caused lung injury through the induction of epithelial apoptosis via ROS/Ca 2+/DRP1-mediated mitochondrial fission signaling. Nanotoxicology 2022; 16:713-732. [PMID: 36441139 DOI: 10.1080/17435390.2022.2144774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022]
Abstract
The adverse effects of amorphous silica nanoparticles (SiNPs) exposure on the respiratory system were increasingly recognized, however, its potential pathogenesis still remains not fully elucidated. So, this study aimed to explore its effects on pulmonary injury, and to investigate related mechanisms. Histological investigations illustrated SiNPs triggered the lung injury, mainly manifested as alveolar structure destruction, collagen deposition, and mitochondrial ultrastructural injury. In particular, SiNPs greatly enhanced pulmonary ROS and TUNEL positive rate in lungs, both of which were positively correlated with lung impairments. Further, the underlying mechanisms were investigated in cultured human bronchial epithelial cells (16HBE). Consistent with the in vivo findings, SiNPs caused the impairments on mitochondrial structure, as well as the activation of ROS generation and oxidative injury. Upon SiNPs stimuli, mitochondrial respiration was greatly inhibited, while Ca2+ overload in cytosol and mitochondria owing to ER calcium release was noticed, resulting in mitochondrial-dependent epithelial apoptosis. More importantly, mitochondrial dynamics was imbalanced toward a fission type, as evidenced by upregulated DRP1 and its phosphorylation at Ser616 (DRP1s616), while downregulated DRP1s637, and also MFN1, MFN2. Mechanistic investigations revealed that the activation of ROS/Ca2+ signaling promoted DRP1-mediated mitochondrial fission by SiNPs, forming a vicious cycle, and ultimately contributing to apoptosis in 16HBE. In summary, our results disclosed SiNPs caused pulmonary injury through the induction of epithelial apoptosis via a ROS/Ca2+/DRP1-mediated mitochondrial fission axis.
Collapse
Affiliation(s)
- Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yawen Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Bosen Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qing Yao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Ji Wang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Abulikemu A, Zhao X, Qi Y, Liu Y, Wang J, Zhou W, Duan H, Li Y, Sun Z, Guo C. Lysosomal impairment-mediated autophagy dysfunction responsible for the vascular endothelial apoptosis caused by silica nanoparticle via ROS/PARP1/AIF signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119202. [PMID: 35358632 DOI: 10.1016/j.envpol.2022.119202] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Understanding the underlying interactions of nanoparticles (NPs) with cells is crucial to the nanotoxicological research. Evidences suggested lysosomes as a vital target upon the accumulation of internalized NPs, and lysosomal damage and autophagy dysfunction are emerging molecular mechanisms for NPs-elicited toxicity. Nevertheless, the interaction with lysosomes, ensuing adverse effects and the underlying mechanisms are still largely obscure, especially in NPs-induced vascular toxicity. In this study, silica nanoparticles (SiNPs) were utilized to explore the adverse effects on lysosome in vascular endothelial cells by using in vitro cultured human endothelial cells (HUVECs), and in-depth investigated the mechanisms involved. Consequently, the internalized SiNPs accumulated explicitly in the lysosomes, and caused lysosomal dysfunction, which were prominent on the increased lysosomal membrane permeability, decline in lysosomal quantity, destruction of acidic environment of lysosome, and also disruption of lysosomal enzymes activities, resulting in autophagy flux blockage and autophagy dysfunction. More importantly, mechanistic results revealed the SiNPs-caused lysosomal impairments and resultant autophagy dysfunction could promote oxidative stress, DNA damage and the eventual cell apoptosis activated by ROS/PARP1/AIF signaling pathway. These findings improved the understanding of SiNPs-induced vascular injury, and may provide novel information and warnings for SiNPs applications in the fields of nanomedicine.
Collapse
Affiliation(s)
- Alimire Abulikemu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yi Qi
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ji Wang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
31
|
Caveolin-1 scaffolding domain peptide abrogates autophagy dysregulation in pulmonary fibrosis. Sci Rep 2022; 12:11086. [PMID: 35773303 PMCID: PMC9246916 DOI: 10.1038/s41598-022-14832-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and fatal form of interstitial lung disease. IPF is characterized by irreversible scarring of the lungs leading to lung function decline. Although the etiology remains poorly understood, dysregulated autophagy in alveolar-epithelial cells (AECs) together with interplay between apoptotic-AECs and proliferative-myofibroblasts have been strongly implicated in IPF pathogenesis. Recent studies have revealed that a caveolin-1-derived 7-mer peptide, CSP7, mitigates established PF at least in part by improving AEC viability. In the present study, we aimed to determine whether and how CSP7 regulates autophagy in fibrotic-lung AECs. We found that p53 and autophagic proteins were markedly upregulated in AECs from mice with single/multi-doses of bleomycin—or silica-induced PF. This was abolished following treatment of PF-mice with CSP7. Further, CSP7 abrogated silica- or bleomycin-induced p53 and autophagy proteins in AECs. Immunoprecipitation further revealed that CSP7 abolishes the interaction of caveolin-1 with LC3BII and p62 in AECs. AEC-specific p53-knockout mice resisted silica- or bleomycin-induced changes in autophagy proteins, or CSP7 treatment. Our findings provide a novel mechanism by which CSP7 inhibits dysregulated autophagy in injured AECs and mitigates existing PF. These results affirm the potential of CSP7 for treating established PF, including IPF and silicosis.
Collapse
|
32
|
Zhang Q, Cao S, Qiu F, Kang N. Incomplete autophagy: Trouble is a friend. Med Res Rev 2022; 42:1545-1587. [PMID: 35275411 DOI: 10.1002/med.21884] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
Incomplete autophagy is an impaired self-eating process of intracellular macromolecules and organelles in which accumulated autophagosomes do not fuse with lysosomes for degradation, resulting in the blockage of autophagic flux. In this review, we summarized the literature over the past decade describing incomplete autophagy, and found that different from the double-edged sword effect of general autophagy on promoting cell survival or death, incomplete autophagy plays a crucial role in disrupting cellular homeostasis, and promotes only cell death. What matters is that incomplete autophagy is closely relevant to the pathogenesis and progression of various human diseases, which, meanwhile, intimately linking to the pharmacologic and toxicologic effects of several compounds. Here, we comprehensively reviewed the latest progress of incomplete autophagy on molecular mechanisms and signaling pathways. Moreover, implications of incomplete autophagy for pharmacotherapy are also discussed, which has great relevance for our understanding of the distinctive role of incomplete autophagy in cellular physiology and disease. Consequently, targeting incomplete autophagy may contribute to the development of novel generation therapeutic agents for diverse human diseases.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Department of Medicinal Chemistry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
33
|
Cellular Uptake of Silica and Gold Nanoparticles Induces Early Activation of Nuclear Receptor NR4A1. NANOMATERIALS 2022; 12:nano12040690. [PMID: 35215018 PMCID: PMC8877036 DOI: 10.3390/nano12040690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/07/2022]
Abstract
The approval of new nanomedicines requires a deeper understanding of the interaction between cells and nanoparticles (NPs). Silica (SiO2) and gold (Au) NPs have shown great potential in biomedical applications, such as the delivery of therapeutic agents, diagnostics, and biosensors. NP-cell interaction and internalization can trigger several cellular responses, including gene expression regulation. The identification of differentially expressed genes in response to NP uptake contributes to a better understanding of the cellular processes involved, including potential side effects. We investigated gene regulation in human macrophages and lung epithelial cells after acute exposure to spherical 60 nm SiO2 NPs. SiO2 NPs uptake did not considerably affect gene expression in epithelial cells, whereas five genes were up-regulated in macrophages. These genes are principally related to inflammation, chemotaxis, and cell adhesion. Nuclear receptor NR4A1, an important modulator of inflammation in macrophages, was found to be up-regulated. The expression of this gene was also increased upon 1 h of macrophage exposure to spherical 50 nm AuNPs and 200 nm spherical SiO2 NPs. NR4A1 can thus be an important immediate regulator of inflammation provoked by NP uptake in macrophages.
Collapse
|
34
|
Agnuside mitigates OVA-LPS induced perturbed lung homeostasis via modulating inflammatory, autophagy, apoptosis-fibrosis response and myeloid lineages in mice model of allergic asthma. Int Immunopharmacol 2022; 106:108579. [PMID: 35144202 DOI: 10.1016/j.intimp.2022.108579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
Abstract
Attributes of agnuside, a nontoxic, iridoid glycoside have been advocated for inflammatory disorders. However, information on its efficacy in alleviating allergic asthma largely remain ambiguous and yet to be deciphered. Present study aimed to assess efficacy of agnuside in targeting vicious circle of oxi-inflammation, autophagy and fibrosis, together with investigating its underlying molecular mechanism during OVA-LPS induced allergic asthma. Results revealed that agnuside showed prophylactic effect in assuaging asthmatic lung architecture impairment (p ≤ 0.01) as indicated by suppression of inflammatory cell infiltration, congestion, fibrosis, airway remodeling and alveolar collapse in OVA-LPS sensitized group. Decreased expression level (p ≤ 0.05) of allergic inflammatory mediators such as IgE, Th1/Th2, IL-4/IFN-γ, IL-4/IL-10, chemokines, endopeptidases and TGF-β, Smad2/4, Caspase9/3, connexin 43/50 observed in agnuside treatments. Analysis of redox molecular signaling cascade and autophagic proteins revealed concurrent upregulation in p-NF-κB, p-PI3K, p-Akt, p-p38, p-Stat3 activation, GATA3, LC3B expression and reduction in Bcl2/Bax, Beclin1 and p62 expression in sensitized mice (p ≤ 0.05) which were intensely counteracted by administration of agnuside. Suppression in myeloid cells activation and augmentation (p ≤ 0.001) of Tregs established modulatory attribute of agnuside for innate and adaptive immune response during allergic asthma. Collectively, these outcomes confer prophylactic attribute of agnuside and signify it as promising strategy to thwart allergic asthma.
Collapse
|
35
|
Tirpude NV, Sharma A, Kumari M, Bhardwaj N. Vitexin restores lung homeostasis by targeting vicious loop between inflammatory aggravation and autophagy mediated via multiple redox cascade and myeloid cells alteration in experimental allergic asthma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153902. [PMID: 35026520 DOI: 10.1016/j.phymed.2021.153902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Allergic asthma is one of the leading respiratory diseases with complex pathology. Attributes of vitexin, a trihydroxyflavone, has been studied to alleviate Th2 cytokines response in allergic asthma. However, its efficacy and underlying mechanism in mitigating allergic asthma particularly mediated by oxi-inflammatory stress, autophagy and apoptosis, yet to be delineated. PURPOSE Present study aimed to decipher efficacy and governing molecular mechanism of vitexin in mitigating allergic asthma particularly mediated by vicious loop of oxi-inflammatory stress, autophagy and apoptosis. METHODS To ascertain this, OVA-LPS induced mice model was used and protective attributes of vitexin for different mediators, pathological facets and sensing pathways of allergic asthma were evaluated. RESULTS Vitexin treatment remarkably inhibited OVA-LPS induced inflammatory cell infiltration, mast cell activation, alveolar collapse, congestion, fibrosis in lung architecture. These results were accompanied by suppression of immune cells hyperactivation, mucus secretion, goblet cell proliferation, persistent inflammation which were affirmed by alleviation in levels of IgE, Th1/Th2/Th17, IL-4/IFN-γ, chemokines, endopeptidases (MMP-1, MMP-13), oxidative effectors with concomitant increase in IL-15, IL-10, MMP-9 and MMP-3. Additionally, noticeable decline in p-connexin 43, p-c-Fos, TGF-β, Smad2/3/4, Caspase9/3, LC3A/B expression and upregulation in beclin-1, p62 co-localization and Bcl2/Bax indicate reversal of lung vascular permeability, mast cell degranulation, fibrosis, apoptosis, autophagosome impairment. Subsequent allergic inflammatory cascades analysis revealed p-NF-κB, p-PI3K, p-Akt, p-p38, p-Stat3, GATA3 upregulation and p-PTEN downregulation in sensitized mice, which were decisively counteracted by vitexin. In silico studies signified target specificity of vitexin with these proteins. Suppression in myeloid cells activation and enhancements of Tregs demonstrated immunomodulatory potential of vitexin in allergic airways. CONCLUSION Collectively, to our knowledge, this is the first report that confers vitexin meditated multi-faceted protective attribute in mitigation of allergic asthma that could be linked to its suppressive effects on vicious cycle of pathological process particularly regulated via oxi-inflammation, autophagy and apoptosis. Thus, signify vitexin as safe therapeutic strategy.
Collapse
Affiliation(s)
- Narendra Vijay Tirpude
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., India; Academy of Scientific and Innovative Research, Ghaziabad, U.P. India.
| | - Anamika Sharma
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., India
| | - Monika Kumari
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., India
| | - Neha Bhardwaj
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., India
| |
Collapse
|
36
|
Pei X, Zheng F, Li Y, Lin Z, Han X, Feng Y, Tian Z, Ren D, Cao K, Li C. Niclosamide Ethanolamine Salt Alleviates Idiopathic Pulmonary Fibrosis by Modulating the PI3K-mTORC1 Pathway. Cells 2022; 11:cells11030346. [PMID: 35159160 PMCID: PMC8834116 DOI: 10.3390/cells11030346] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial pneumonia characterized by chronic progressive fibrosis, ultimately leading to respiratory failure and early mortality. Although not fully explored, the major causative factors in IPF pathogenesis are dysregulated fibroblast proliferation and excessive accumulation of extracellular matrix (ECM) deposited by myofibroblasts differentiated from pulmonary fibroblasts. More signalling pathways, including the PI3K-Akt-mTOR and autophagy pathways, are involved in IPF pathogenesis. Niclosamide ethanolamine salt (NEN) is a highly effective multitarget small-molecule inhibitor reported in antitumor studies. Here, we reported that in an IPF animal model treated with NEN for 14 days, attractive relief of pulmonary function and hydroxyproline content were observed. To further explore, the therapeutic effect of NEN in IPF and pathological changes in bleomycin-challenged mouse lung sections were assessed. Additionally, the effects of NEN on abnormal proliferation and ECM production in IPF cell models established with TGF-β1-stimulated A549 cells or DHLF-IPF cells were studied. In nonclinical studies, NEN ameliorated lung function and histopathological changes in bleomycin-challenged mice, and the lung hydroxyproline content was significantly diminished with NEN treatment. In vitro, NEN inhibited PI3K-mTORC1 signalling and arrested the cell cycle to prevent uncontrolled fibroblast proliferation. Additionally, NEN inhibited TGF-β1-induced epithelial–mesenchymal transition (EMT) and ECM accumulation via the mTORC1-4EBP1 axis. Furthermore, NEN-activated noncanonical autophagy resensitized fibroblasts to apoptosis. The above findings demonstrated the potential antifibrotic effect of NEN mediated via modulation of the PI3K-mTORC1 and autophagy pathways. These data provide strong evidence for a therapeutic role for NEN in IPF.
Collapse
Affiliation(s)
- Xiaolin Pei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Fangxu Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Ya Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Zhenhuan Tian
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730, China;
| | - Dunqiang Ren
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China;
| | - Ke Cao
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121001, China
- Correspondence: (K.C.); (C.L.)
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
- Correspondence: (K.C.); (C.L.)
| |
Collapse
|
37
|
Omran B, Baek KH. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules 2021; 26:7031. [PMID: 34834124 PMCID: PMC8624789 DOI: 10.3390/molecules26227031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Free radicals are generated as byproducts of normal metabolic processes as well as due to exposure to several environmental pollutants. They are highly reactive species, causing cellular damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antioxidants can control autoxidation by interfering with free radical propagation or inhibiting free radical formation, reducing oxidative stress, improving immune function, and increasing health longevity. Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic, and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxidant properties of nanomaterials are dependent on their tunable configuration, physico-chemical properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating. Nanoantioxidants have several advantages over conventional antioxidants, involving increased bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This review overviews the antioxidant potential of biologically synthesized nanomaterials, which have emerged as significant alternatives due to their biocompatibility and high stability. The promising nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers, and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of nanoantioxidant applications are discussed.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
- Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Cairo 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
38
|
Lv Z, Sun H, Du W, Li R, Mao H, Kopittke PM. Interaction of different-sized ZnO nanoparticles with maize (Zea mays): Accumulation, biotransformation and phytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148927. [PMID: 34271385 DOI: 10.1016/j.scitotenv.2021.148927] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 05/27/2023]
Abstract
This study aimed to investigate the biotransformation of ZnO nanoparticles (NPs) in maize grown in hydroponics for ecotoxicity assessment. Maize seedlings grown for 14 days were exposed to a solution of 9 nm ZnO NPs, 40 nm ZnO NPs, and ZnSO4 at a Zn concentration of 300 mg L-1 for 1, 3, and 7 days, respectively. The results of in-situ Zn distribution in maize (Zea mays) showed that 9 nm ZnO NPs could quickly enter the roots of maize and reach the center column transport system of the stem. The results of transmission electron microscopy combined with energy dispersive X-ray spectroscopy revealed that ZnO NPs were accumulated in the vacuoles of the roots, and then transformed and transported through vesicles. Simulated studies showed that low pH (5.6) played a critical role in the transformation of ZnO NPs, and organic acids (Kf = 1011.4) could promote particle dissolution. Visual MINTEQ software simulated the species of Zn after the entry of ZnO NPs or Zn2+ into plants and found that the species of Zn was mainly Zn2+ when the Zn content of plants reached 200-300 ppm. Considering that the lowest Zn content of the roots in treatments was 1920 mg kg-1, combination of the result analysis of root effects showed that the toxicity of roots in most treatments had a direct relationship with Zn2+. However, treatment with 9 nm ZnO NPs exhibited significantly higher toxicity than ZnSO4 treatment on day 1 when the Zn2+ concentration difference was not significant, which was mainly due to the large amount of ZnO NPs deposited in the roots. To the authors' knowledge, this study was the first to confirm the process of biotransformation and explore the factors affecting the toxicity of ZnO NPs in depth.
Collapse
Affiliation(s)
- Zhiyuan Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Hongda Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ruoyi Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
39
|
Abstract
Autophagy is an evolutionarily conserved process where long-lived and damaged organelles are degraded. Autophagy has been widely associated with several ageing-process as well in diseases such as neurodegeneration, cancer and fibrosis, and is now being utilised as a target in these diseases. Idiopathic pulmonary fibrosis (IPF) is a progressive, interstitial lung disease with limited treatment options available. It is characterised by abnormal extracellular matrix (ECM) deposition by activated myofibroblasts. It is understood that repetitive micro-injuries to aged-alveolar epithelium combined with genetic factors drive the disease. Several groups have demonstrated that autophagy is altered in IPF although whether autophagy has a protective effect or not is yet to be determined. Autophagy has also been shown to influence many other processes including epithelial-mesenchymal transition (EMT) and endothelial-mesenchymal transition (EndMT) which are known to be key in the pathogenesis of IPF. In this review, we summarise the findings of evidence of altered autophagy in IPF lungs, as well as examine its roles within lung fibrosis. Given these findings, together with the growing use of autophagy manipulation in a clinical setting, this is an exciting area for further research in the study of lung fibrosis.
Collapse
|
40
|
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo‐San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo M, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen E, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jäättelä M, Johansen T, Juhász G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez‐Otin C, Macleod KF, Madeo F, Martinez J, Meléndez A, Mizushima N, Münz C, Penninger JM, Perera R, Piacentini M, Reggiori F, Rubinsztein DC, Ryan K, Sadoshima J, Santambrogio L, Scorrano L, Simon H, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F. Autophagy in major human diseases. EMBO J 2021; 40:e108863. [PMID: 34459017 PMCID: PMC8488577 DOI: 10.15252/embj.2021108863] [Citation(s) in RCA: 804] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Collapse
Affiliation(s)
| | - Giulia Petroni
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
| | - Ravi K Amaravadi
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Andrea Ballabio
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesSection of PediatricsFederico II UniversityNaplesItaly
- Department of Molecular and Human GeneticsBaylor College of Medicine, and Jan and Dan Duncan Neurological Research InstituteTexas Children HospitalHoustonTXUSA
| | - Patricia Boya
- Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - José Manuel Bravo‐San Pedro
- Faculty of MedicineDepartment Section of PhysiologyComplutense University of MadridMadridSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of MicrobiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineNew York University Langone HealthNew YorkNYUSA
| | - Francesco Cecconi
- Cell Stress and Survival UnitCenter for Autophagy, Recycling and Disease (CARD)Danish Cancer Society Research CenterCopenhagenDenmark
- Department of Pediatric Onco‐Hematology and Cell and Gene TherapyIRCCS Bambino Gesù Children's HospitalRomeItaly
- Department of BiologyUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care MedicineJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
| | - Mary E Choi
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
- Division of Nephrology and HypertensionJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Charleen T Chu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Patrice Codogno
- Institut Necker‐Enfants MaladesINSERM U1151‐CNRS UMR 8253ParisFrance
- Université de ParisParisFrance
| | - Maria Isabel Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia‐Instituto de Histología y Embriología (IHEM)‐Universidad Nacional de CuyoCONICET‐ Facultad de Ciencias MédicasMendozaArgentina
| | - Ana Maria Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNYUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineBronxNYUSA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism (AIMCenter of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Ivan Dikic
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Zvulun Elazar
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | | | - Gian Maria Fimia
- Department of Molecular MedicineSapienza University of RomeRomeItaly
- Department of EpidemiologyPreclinical Research, and Advanced DiagnosticsNational Institute for Infectious Diseases ‘L. Spallanzani’ IRCCSRomeItaly
| | - David A Gewirtz
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Douglas R Green
- Department of ImmunologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery InstituteProgram of DevelopmentAging, and RegenerationLa JollaCAUSA
| | - Marja Jäättelä
- Cell Death and MetabolismCenter for Autophagy, Recycling & DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
- Department of Cellular and Molecular MedicineFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Terje Johansen
- Department of Medical BiologyMolecular Cancer Research GroupUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Gábor Juhász
- Institute of GeneticsBiological Research CenterSzegedHungary
- Department of Anatomy, Cell and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | | | - Claudine Kraft
- Institute of Biochemistry and Molecular BiologyZBMZFaculty of MedicineUniversity of FreiburgFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Guido Kroemer
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéInserm U1138Institut Universitaire de FranceParisFrance
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Pôle de BiologieHôpital Européen Georges PompidouAP‐HPParisFrance
- Suzhou Institute for Systems MedicineChinese Academy of Medical SciencesSuzhouChina
- Karolinska InstituteDepartment of Women's and Children's HealthKarolinska University HospitalStockholmSweden
| | | | - Sharad Kumar
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSAAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Carlos Lopez‐Otin
- Departamento de Bioquímica y Biología MolecularFacultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Kay F Macleod
- The Ben May Department for Cancer ResearchThe Gordon Center for Integrative SciencesW‐338The University of ChicagoChicagoILUSA
- The University of ChicagoChicagoILUSA
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Jennifer Martinez
- Immunity, Inflammation and Disease LaboratoryNational Institute of Environmental Health SciencesNIHResearch Triangle ParkNCUSA
| | - Alicia Meléndez
- Biology Department, Queens CollegeCity University of New YorkFlushingNYUSA
- The Graduate Center Biology and Biochemistry PhD Programs of the City University of New YorkNew YorkNYUSA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Christian Münz
- Viral ImmunobiologyInstitute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Department of Medical GeneticsLife Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Rushika M Perera
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of PathologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Mauro Piacentini
- Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Laboratory of Molecular MedicineInstitute of Cytology Russian Academy of ScienceSaint PetersburgRussia
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & SystemsMolecular Cell Biology SectionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - David C Rubinsztein
- Department of Medical GeneticsCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeUK
| | - Kevin M Ryan
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular MedicineCardiovascular Research InstituteRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Laura Santambrogio
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
| | - Luca Scorrano
- Istituto Veneto di Medicina MolecolarePadovaItaly
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Hans‐Uwe Simon
- Institute of PharmacologyUniversity of BernBernSwitzerland
- Department of Clinical Immunology and AllergologySechenov UniversityMoscowRussia
- Laboratory of Molecular ImmunologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussia
| | | | - Anne Simonsen
- Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Centre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University Hospital MontebelloOsloNorway
| | - Alexandra Stolz
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklion, CreteGreece
- Department of Basic SciencesSchool of MedicineUniversity of CreteHeraklion, CreteGreece
| | - Sharon A Tooze
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| | - Tamotsu Yoshimori
- Department of GeneticsGraduate School of MedicineOsaka UniversitySuitaJapan
- Department of Intracellular Membrane DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Zhenyu Yue
- Department of NeurologyFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationDepartment of PathophysiologyShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Lorenzo Galluzzi
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
- Department of DermatologyYale School of MedicineNew HavenCTUSA
- Université de ParisParisFrance
| | | |
Collapse
|
41
|
Zhang Y, Huang S, Tan S, Chen M, Yang S, Chen S. 3-methyadenine inhibits lipopolysaccharides-induced pulmonary inflammation at the early stage of silicosis via blocking NF-κB signaling pathway. Toxicol Ind Health 2021; 37:662-673. [PMID: 34565256 DOI: 10.1177/07482337211039426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Occupational exposure to silica dust is related to pulmonary inflammation and silicosis. Lipopolysaccharides (LPSs) could aggravate apoptosis in alveolar macrophages (AMs) of human silicosis through autophagy, yet how the reduction of autophagy attenuated LPS-induced lung injury and the related mechanisms need to be investigated. In the study, we aim to understand the role of 3-methyladenine (3-MA), an inhibitor of autophagy, in LPS-mediated inflammatory responses and fibrosis. We collected AMs from observers/silicosis patients. The results showed that LPS induced NF-κB-related pulmonary inflammation in observers and silicosis patients, as confirmed by an increase in the expression of IL-1β, IL-6, TNF-α, and p65, which could be inhibited by 3-MA treatment. In mice models, at the early stage (7d) of silicosis, but not the late (28d) stage, blocking autophagy reversed the increased levels of IL-1β, IL-6, TNF-α, and p65 caused by LPS. Mechanism study revealed that LPS triggered the expression of LC3 II, p62, and cleaved caspase-3 at the early stage exposed to silica, which could be restored by 3-MA, while there was no difference in the expression of LAMP1 either at the early or late stage of silicosis in different groups. Similarly, 3-MA treatment did not prevent fibrosis characterized by destroyed alveoli, collagen deposition, and increased expression of α-SMA and Col-1 induced by LPS at the late stage of silicosis. The results suggested that 3-MA has a role in the protection of lung injury at the early stage of silicosis and provided an experimental basis for preventive strategies of pulmonary inflammation and silicosis.
Collapse
Affiliation(s)
- Yujing Zhang
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Shuai Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Shiyi Tan
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Mingke Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Shang Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Shi Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
42
|
Liu Q, Luo Y, Zhao Y, Xiang P, Zhu J, Jing W, Jin W, Chen M, Tang R, Yu H. Nano-hydroxyapatite accelerates vascular calcification via lysosome impairment and autophagy dysfunction in smooth muscle cells. Bioact Mater 2021; 8:478-493. [PMID: 34541414 PMCID: PMC8429627 DOI: 10.1016/j.bioactmat.2021.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
Vascular calcification (VC) is a common characteristic of aging, diabetes, chronic renal failure, and atherosclerosis. The basic component of VC is hydroxyapatite (HAp). Nano-sized HAp (nHAp) has been identified to play an essential role in the development of pathological calcification of vasculature. However, whether nHAp can induce calcification in vivo and the mechanism of nHAp in the progression of VC remains unclear. We discovered that nHAp existed both in vascular smooth muscle cells (VSMCs) and their extracellular matrix (ECM) in the calcified arteries from patients. Synthetic nHAp had similar morphological and chemical properties as natural nHAp recovered from calcified artery. nHAp stimulated osteogenic differentiation and accelerated mineralization of VSMCs in vitro. Synthetic nHAp could also directly induce VC in vivo. Mechanistically, nHAp was internalized into lysosome, which impaired lysosome vacuolar H+-ATPase for its acidification, therefore blocked autophagic flux in VSMCs. Lysosomal re-acidification by cyclic-3′,5′-adenosine monophosphate (cAMP) significantly enhanced autophagic degradation and attenuated nHAp-induced calcification. The accumulated autophagosomes and autolysosomes were converted into calcium-containing exosomes which were secreted into ECM and accelerated vascular calcium deposit. Inhibition of exosome release in VSMCs decreased calcium deposition. Altogether, our results demonstrated a repressive effect of nHAp on lysosomal acidification, which inhibited autophagic degradation and promoted a conversion of the accumulated autophagic vacuoles into exosomes that were loaded with undissolved nHAp, Ca2+, Pi and ALP. These exosomes bud off the plasma membrane, deposit within ECM, and form calcium nodules. Vascular calcification was thus accelerated by nHAP through blockage of autophagic flux in VSMCs. We first demonstrated that nHAp was internalized into the vascular cell in human calcified aorta. Nano-HAp impairs lysosomal acidification and degradation, and causesblockage of autophagy flux in VSMCs. The accumulated autophagosomes and autolysosomes induced by nHAp in VSMCs are converted into exosomes which promote calcification development.
Collapse
Affiliation(s)
- Qi Liu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Yi Luo
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Yun Zhao
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, Shandong Province, 266071, China.,Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Pingping Xiang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Jinyun Zhu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Wangwei Jing
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Wenjing Jin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Mingyao Chen
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Hong Yu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| |
Collapse
|
43
|
miR-138 inhibits epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by regulating ZEB2. Toxicology 2021; 461:152925. [PMID: 34481903 DOI: 10.1016/j.tox.2021.152925] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
Silica dust is a common pollutant in the occupational environment, such as coal mines. Inhalation of silica dust can cause progressive pulmonary fibrosis and then silicosis. Silicosis is still one of the most harmful occupational diseases in the world, so the study of its pathogenesis is necessary for the treatment of silicosis. In this study, we constructed a mouse model of pulmonary fibrosis via intratracheal instillation of silica particles and identified the decreased expression of miR-138 in fibrotic lung tissues of mice. Moreover, the overexpression of miR-138 retarded the process of epithelial-mesenchymal transition (EMT) in a mouse model of silica particles exposure and epithelial cells stimulated by silica particles. Further studies showed that ZEB2 was one of the potential targets of miR-138, and the up-regulation of miR-138 reduced ZEB2 levels in mouse lung tissues and in epithelial cells. We next found that the expression levels of ɑ-SMA and Vimentin were significantly increased and E-cadherin levels were decreased after transfection with miR-138 inhibitor in epithelial cells. However, these effects were abated by the knockdown of ZEB2. Consistently, the increased migration ability of epithelial cells by miR-138 inhibitor transfection was also reversed by the knockdown of ZEB2. Collectively, we revealed that miR-138 significantly targeted ZEB2, thus inhibited the EMT process and mitigated the development of pulmonary fibrosis. miR-138 may be a potential target for the treatment of pulmonary fibrosis.
Collapse
|
44
|
Li SX, Li C, Pang XR, Zhang J, Yu GC, Yeo AJ, Lavin MF, Shao H, Jia Q, Peng C. Metformin Attenuates Silica-Induced Pulmonary Fibrosis by Activating Autophagy via the AMPK-mTOR Signaling Pathway. Front Pharmacol 2021; 12:719589. [PMID: 34434111 PMCID: PMC8381252 DOI: 10.3389/fphar.2021.719589] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Long-term exposure to crystalline silica particles leads to silicosis characterized by persistent inflammation and progressive fibrosis in the lung. So far, there is no specific treatment to cure the disease other than supportive care. In this study, we examined the effects of metformin, a prescribed drug for type || diabetes on silicosis and explored the possible mechanisms in an established rat silicosis model in vivo, and an in vitro co-cultured model containing human macrophages cells (THP-1) and human bronchial epithelial cells (HBEC). Our results showed that metformin significantly alleviated the inflammation and fibrosis of lung tissues of rats exposed to silica particles. Metformin significantly reduced silica particle-induced inflammatory cytokines including transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in rat lung tissue and HBEC culture supernatant. The protein levels of Vimentin and α-smooth muscle actin (α-SMA) were significantly decreased by metfomin while expression level of E-cadherin (E-Cad) increased. Besides, metformin increased the expression levels of phosphorylated adenosine 5′-monophosphate (AMP)-activated protein kinase (p-AMPK), microtubule-associated protein (MAP) light chain 3B (LC3B) and Beclin1 proteins, and reduced levels of phosphorylated mammalian target of rapamycin (p-mTOR) and p62 proteins in vivo and in vitro. These results suggest that metformin could inhibit silica-induced pulmonary fibrosis by activating autophagy through the AMPK-mTOR pathway.
Collapse
Affiliation(s)
- Shu-Xian Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xin-Ru Pang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Gong-Chang Yu
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Abrey J Yeo
- University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD, Australia
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Cheng Peng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
45
|
Qian Q, Ma Q, Wang B, Qian Q, Zhao C, Feng F, Dong X. MicroRNA-205-5p targets E2F1 to promote autophagy and inhibit pulmonary fibrosis in silicosis through impairing SKP2-mediated Beclin1 ubiquitination. J Cell Mol Med 2021; 25:9214-9227. [PMID: 34428336 PMCID: PMC8500965 DOI: 10.1111/jcmm.16825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/20/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Silicosis is an occupational disease characterized by extensive pulmonary fibrosis, and the underlying pathological process remains uncertain. Herein, we explored the molecular mechanism by which microRNA‐205‐5p (miR‐205‐5p) affects the autophagy of alveolar macrophages (AMs) and pulmonary fibrosis in mice with silicosis through the E2F transcription factor 1 (E2F1)/S‐phase kinase‐associated protein 2 (SKP2)/Beclin1 axis. Alveolar macrophages (MH‐S cells) were exposed to crystalline silica (CS) to develop an in vitro model, and mice were treated with CS to establish an in vivo model. Decreased Beclin1 and increased SKP2 and E2F1 were identified in mice with silicosis. We silenced or overexpressed miR‐205‐5p, E2F1, SKP2 and Beclin1 to investigate their potential roles in pulmonary fibrosis in vivo and autophagy in vitro. Recombinant adenovirus mRFP‐GFP‐LC3 was transduced into the MH‐S cells to assay autophagic flow. Knocking down Beclin1 promoted pulmonary fibrosis and suppressed the autophagy. Co‐immunoprecipitation and ubiquitination assays suggested that SKP2 induced K48‐linked ubiquitination of Beclin1. Furthermore, chromatin immunoprecipitation‐PCR revealed the site where E2F1 bound to the SKP2 promoter between 1638 bp and 1645 bp. As shown by dual‐luciferase reporter gene assay, the transfection with miR‐205‐5p mimic inhibited the luciferase activity of the wild‐type E2F1 3′untranslated region, suggesting that miR‐205‐5p targeted E2F1. Additionally, miR‐205‐5p overexpression increased autophagy and reduced the pulmonary fibrosis, while overexpression of E2F1 or SKP2 or inhibition of Beclin1 could annul this effect. The current study elucidated that miR‐205‐5p targeted E2F1, thereby inhibiting SKP2‐mediated Beclin1 ubiquitination to promote macrophage autophagy and inhibit pulmonary fibrosis in mice with silicosis.
Collapse
Affiliation(s)
- Qingzeng Qian
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Qinghua Ma
- Department of Preventive Health, The Third People's Hospital of Xiangcheng District in Suzhou, Suzhou, China
| | - Bin Wang
- Department of Pediatrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Qingqiang Qian
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Changsong Zhao
- Department of Emergency, Tangshan Hospital of Traditional Chinese Medicine, Tangshan, China
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaona Dong
- Department of Respiratory Medicine, Tangshan People's Hospital, Tangshan, China
| |
Collapse
|
46
|
Xiaoli F, Yaqing Z, Ruhui L, Xuan L, Aijie C, Yanli Z, Chen H, Lili C, Longquan S. Graphene oxide disrupted mitochondrial homeostasis through inducing intracellular redox deviation and autophagy-lysosomal network dysfunction in SH-SY5Y cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126158. [PMID: 34492938 DOI: 10.1016/j.jhazmat.2021.126158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/05/2021] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Graphene oxide (GO) nanomaterials have significant advantages for drug delivery and electrode materials in neural science, however, their exposure risks to the central nervous system (CNS) and toxicity concerns are also increased. The current studies of GO-induced neurotoxicity remain still ambiguous, let alone the mechanism of how complicated GO chemistry affects its biological behavior with neural cells. In this study, we characterized the commercially available GO in detail and investigated its biological adverse effects using cultured SH-SY5Y cells. We found that ultrasonic processing in medium changed the oxidation status and surface reactivity on the planar surface of GO due to its hydration activity, causing lipid peroxidation and cell membrane damage. Subsequently, ROS-disrupted mitochondrial homeostasis, resulting from the activation of NOX2 signaling, was observed following GO internalization. The autophagy-lysosomal network was initiated as a defensive reaction to obliterate oxidative damaged mitochondria and foreign nanomaterials, which was ineffective due to reduced lysosomal degradation capacity. These sequential cellular responses exacerbated mitochondrial stress, leading to apoptotic cell death. These data highlight the importance of the structure-related activity of GO on its biological properties and provide an in-depth understanding of how GO-derived cellular redox signaling induces mitochondrion-related cascades that modulate cell functionality and survival.
Collapse
Affiliation(s)
- Feng Xiaoli
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Zhang Yaqing
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Luo Ruhui
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lai Xuan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Aijie
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhang Yanli
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hu Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Lili
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shao Longquan
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
47
|
Li J, Tian J, Yin H, Peng Y, Liu S, Yao S, Zhang L. Chemical conjugation of FITC to track silica nanoparticles in vivo and in vitro: An emerging method to assess the reproductive toxicity of industrial nanomaterials. ENVIRONMENT INTERNATIONAL 2021; 152:106497. [PMID: 33714870 DOI: 10.1016/j.envint.2021.106497] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Previous studies have demonstrated that silica nanoparticle (SiNP) exposure induces pulmonary and cardiovascular diseases, yet their transportation and degradation in vivo have not been fully elucidated. From the perspective of reproduction, this study was implemented to examine the uterine accumulation of SiNP and explore its reproductive toxicity and pathogenic mechanisms. First, we coupled FITC onto SiNPs and intratracheally instilled them into pregnant mice on the fifth gestational day, and the toxic effect of SiNP was evaluated in vitro and in vivo. It was found that SiNP penetrated the trophoblast membrane, leading to apoptosis and suppression of cell proliferation, tube formation, and invasion in a dose-dependent manner. Mechanistically, SiNP dysregulated the expression of Scd1, Slc27a1, and Cpt1a, and induced over synthesis and efflux obstruction of fatty acid through the PPARγ signaling pathway. The downregulation of Caspase-3 triggered apoptosis of trophoblast, which was causally associated with intracellular fatty acid accumulation as revealed by the correlation analysis. Besides, SiNP induced uterine inflammation in vivo, which aggravated with the observation prolongation within 24 h. Overall, SiNPs were visualized by coupling with FITC, and the uterine accumulation of SiNP induced fatty acid metabolic disorder, biological dysfunction, and trophoblast apoptosis, which were mediated in part by the PPARγ signaling pathway. These findings would contribute to understanding the environmental impacts of SiNP better, as well as the development of control measures for environmental pollution.
Collapse
Affiliation(s)
- Junxia Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Jiaqi Tian
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Haoyu Yin
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Yanjie Peng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Song Liu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang 453000, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China.
| |
Collapse
|
48
|
Cui G, Li Z, Cao F, Li P, Jin M, Hou S, Yang X, Mu Y, Peng C, Shao H, Du Z. Activation of Nrf2/HO-1 signaling pathway attenuates ROS-mediated autophagy induced by silica nanoparticles in H9c2 cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1389-1401. [PMID: 33764603 DOI: 10.1002/tox.23134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Silica nanoparticles (SiNPs) as one of the most productive nano-powder, has been extensively applied in various fields. There has been increasing concern about the adverse effects of SiNPs on the health of ecological organisms and human. The potential cardiovascular toxicity of SiNPs and involved mechanisms remain elusive. Hence, in this study, we investigated the cardiovascular toxicity of SiNPs (60 nm) and explored the underlying mechanisms using H9c2 cardiomyocytes. Results showed that SiNPs induced oxidative stress and activated the Nrf2/HO-1 antioxidant pathway. Autophagy was also activated by SiNPs. Interestingly, N-acetyl-L-cysteine (NAC)attenuated autophagy after inhibiting reactive oxygen species (ROS). Meanwhile, down-regulation of Nrf2 enhanced autophagy. In summary, these data indicated that SiNPs induce autophagy in H9c2 cardiomyocytes through oxidative stress, and the Nrf2/HO-1 pathway has a negative regulatory effect on autophagy. This study provides new evidence for the cardiovascular toxicity of SiNPs and provides a reference for the safe use of nanomaterials in the future.
Collapse
Affiliation(s)
- Guanqun Cui
- Department of Respiratory Medicine, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Ziyuan Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
| | - Feifei Cao
- Department of Infection Prevention and Control, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Peng Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
| | - Minghua Jin
- School of Public Health Jilin University, Changchun, China
| | - Shanshan Hou
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
- School of Public Health Jilin University, Changchun, China
| | - Xu Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
| | - Yingwen Mu
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
| | - Cheng Peng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
| | - Zhongjun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
| |
Collapse
|
49
|
Silicon dioxide nanoparticles induced neurobehavioral impairments by disrupting microbiota-gut-brain axis. J Nanobiotechnology 2021; 19:174. [PMID: 34112173 PMCID: PMC8194163 DOI: 10.1186/s12951-021-00916-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Background Silicon dioxide nanoparticles (SiO2NPs) are widely used as additive in the food industry with controversial health risk. Gut microbiota is a new and hot topic in the field of nanotoxicity. It also contributes a novel and insightful view to understand the potential health risk of food-grade SiO2NPs in children, who are susceptible to the toxic effects of nanoparticles. Methods In current study, the young mice were orally administrated with vehicle or SiO2NPs solution for 28 days. The effects of SiO2NPs on the gut microbiota were detected by 16S ribosomal RNA (rRNA) gene sequencing, and the neurobehavioral functions were evaluated by open field test and Morris water maze. The level of inflammation, tissue integrity of gut and the classical indicators involved in gut–brain, gut–liver and gut–lung axis were all assessed. Results Our results demonstrated that SiO2NPs significantly caused the spatial learning and memory impairments and locomotor inhibition. Although SiO2NPs did not trigger evident intestinal or neuronal inflammation, they remarkably damaged the tissue integrity. The microbial diversity within the gut was unexpectedly enhanced in SiO2NPs-treated mice, mainly manifested by the increased abundances of Firmicutes and Patescibacteria. Intriguingly, we demonstrated for the first time that the neurobehavioral impairments and brain damages induced by SiO2NPs might be distinctively associated with the disruption of gut–brain axis by specific chemical substances originated from gut, such as Vipr1 and Sstr2. Unapparent changes in liver or lung tissues further suggested the absence of gut–liver axis or gut–lung axis regulation upon oral SiO2NPs exposure. Conclusion This study provides a novel idea that the SiO2NPs induced neurotoxic effects may occur through distinctive gut–brain axis, showing no significant impact on either gut–lung axis or gut–liver axis. These findings raise the exciting prospect that maintenance and coordination of gastrointestinal functions may be critical for protection against the neurotoxicity of infant foodborne SiO2NPs. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00916-2.
Collapse
|
50
|
Zhan H, Chang X, Wang X, Yang M, Gao Q, Liu H, Li C, Li S, Sun Y. LncRNA MEG3 mediates nickel oxide nanoparticles-induced pulmonary fibrosis via suppressing TGF-β1 expression and epithelial-mesenchymal transition process. ENVIRONMENTAL TOXICOLOGY 2021; 36:1099-1110. [PMID: 33547861 DOI: 10.1002/tox.23109] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Nickel oxide nanoparticles (NiO NPs) causes pulmonary fibrosis via activating transforming growth factor-β1 (TGF-β1) in rats, but its upstream regulatory mechanisms are unknown. This study aimed to explore the role of long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) in NiO NPs-induced collagen deposition. Male Wistar rats were intratracheally instilled with NiO NPs (0.015, 0.06, and 0.24 mg/kg b.w.) twice a week for 9 weeks. Human lung adenocarcinoma epithelial cells (A549 cells) were cultured with NiO NPs (25, 50, and 100 μg/ml) to establish collagen deposition model. We discovered that NiO NPs-induced rat pulmonary fibrosis was accompanied by the epithelial-mesenchymal transition (EMT) occurrence and MEG3 down-regulation in rat lung tissues. In cell collagen deposition model, NiO NPs also evoked EMT and decreased MEG3 expression in a dose-dependent manner in A549 cells. By overexpressing MEG3 in A549 cells, we found that MEG3 inhibited the level of TGF-β1, EMT process and collagen formation. Moreover, our data showed that SB431542 (TGF-β1 inhibitor) had an inhibitory effect on NiO NPs-induced EMT and collagen formation. Our results indicated that MEG3 inhibited NiO NPs-induced collagen deposition by regulating TGF-β1-mediated EMT process, which may provide some clues for insighting into the mechanisms of NiO NPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|