1
|
Avitabile E, Menotti L, Croatti V, Giordani B, Parolin C, Vitali B. Protective Mechanisms of Vaginal Lactobacilli against Sexually Transmitted Viral Infections. Int J Mol Sci 2024; 25:9168. [PMID: 39273118 PMCID: PMC11395631 DOI: 10.3390/ijms25179168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The healthy cervicovaginal microbiota is dominated by various Lactobacillus species, which support a condition of eubiosis. Among their many functions, vaginal lactobacilli contribute to the maintenance of an acidic pH, produce antimicrobial compounds, and modulate the host immune response to protect against vaginal bacterial and fungal infections. Increasing evidence suggests that these beneficial bacteria may also confer protection against sexually transmitted infections (STIs) caused by viruses such as human papillomavirus (HPV), human immunodeficiency virus (HIV) and herpes simplex virus (HSV). Viral STIs pose a substantial public health burden globally, causing a range of infectious diseases with potentially severe consequences. Understanding the molecular mechanisms by which lactobacilli exert their protective effects against viral STIs is paramount for the development of novel preventive and therapeutic strategies. This review aims to provide more recent insights into the intricate interactions between lactobacilli and viral STIs, exploring their impact on the vaginal microenvironment, host immune response, viral infectivity and pathogenesis, and highlighting their potential implications for public health interventions and clinical management strategies.
Collapse
Affiliation(s)
- Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Vanessa Croatti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
2
|
Armstrong E, Hemmerling A, Miller S, Huibner S, Kulikova M, Liu R, Crawford E, Castañeda GR, Coburn B, Cohen CR, Kaul R. Vaginal fungi are associated with treatment-induced shifts in the vaginal microbiota and with a distinct genital immune profile. Microbiol Spectr 2024; 12:e0350123. [PMID: 38912808 PMCID: PMC11302301 DOI: 10.1128/spectrum.03501-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
Vaginal colonization by fungi may elicit genital inflammation and enhance the risk of adverse reproductive health outcomes, such as HIV acquisition. Cross-sectional studies have linked fungi with an absence of bacterial vaginosis (BV), but it is unclear whether shifts in vaginal bacteria alter the abundance of vaginal fungi. Vaginal swabs collected following topical metronidazole treatment for BV during the phase 2b, placebo-controlled trial of LACTIN-V, a Lactobacillus crispatus-based live biotherapeutic, were assayed with semi-quantitative PCR for the relative quantitation of fungi and key bacterial species and multiplex immunoassay for immune factors. Vaginal fungi increased immediately following metronidazole treatment for BV (adjusted P = 0.0006), with most of this increase attributable to Candida albicans. Vaginal fungi were independently linked to elevated levels of the proinflammatory cytokine interleukin (IL) 17A, although this association did not remain significant after correcting for multiple comparisons. Fungal relative abundance by semi-quantitative PCR returned to baseline levels within 1 month of metronidazole treatment and was not affected by LACTIN-V or placebo administration. Fungal abundance was positively associated with Lactobacillus species, negatively associated with BV-associated bacteria, and positively associated with a variety of proinflammatory cytokines and chemokines, including IL-17A, during and after study product administration. Antibiotic treatment for BV resulted in a transient expanded abundance of vaginal fungi in a subset of women which was unaffected by subsequent administration of LACTIN-V. Vaginal fungi were positively associated with Lactobacillus species and IL-17A and negatively associated with BV-associated bacteria; these associations were most pronounced in the longer-term outcomes.IMPORTANCEVaginal colonization by fungi can enhance the risk of adverse reproductive health outcomes and HIV acquisition, potentially by eliciting genital mucosal inflammation. We show that standard antibiotic treatment for bacterial vaginosis (BV) results in a transient increase in the absolute abundance of vaginal fungi, most of which was identified as Candida albicans. Vaginal fungi were positively associated with proinflammatory immune factors and negatively associated with BV-associated bacteria. These findings improve our understanding of how shifts in the bacterial composition of the vaginal microbiota may enhance proliferation by proinflammatory vaginal fungi, which may have important implications for risk of adverse reproductive health outcomes among women.
Collapse
Affiliation(s)
- Eric Armstrong
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Anke Hemmerling
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Steve Miller
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
- Delve Bio, San Francisco, California, USA
| | - Sanja Huibner
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Maria Kulikova
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Rachel Liu
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Emily Crawford
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | | | - Bryan Coburn
- Department of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Medicine, University Health Network, Toronto, Canada
| | - Craig R. Cohen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Medicine, University Health Network, Toronto, Canada
| |
Collapse
|
3
|
Commichaux S, Luan T, Muralidharan HS, Pop M. Database size positively correlates with the loss of species-level taxonomic resolution for the 16S rRNA and other prokaryotic marker genes. PLoS Comput Biol 2024; 20:e1012343. [PMID: 39102435 PMCID: PMC11326629 DOI: 10.1371/journal.pcbi.1012343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
For decades, the 16S rRNA gene has been used to taxonomically classify prokaryotic species and to taxonomically profile microbial communities. However, the 16S rRNA gene has been criticized for being too conserved to differentiate between distinct species. We argue that the inability to differentiate between species is not a unique feature of the 16S rRNA gene. Rather, we observe the gradual loss of species-level resolution for other nearly-universal prokaryotic marker genes as the number of gene sequences increases in reference databases. This trend was strongly correlated with how represented a taxonomic group was in the database and indicates that, at the gene-level, the boundaries between many species might be fuzzy. Through our study, we argue that any approach that relies on a single marker to distinguish bacterial taxa is fraught even if some markers appear to be discriminative in current databases.
Collapse
Affiliation(s)
- Seth Commichaux
- Center for Food Safety and Nutrition, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Tu Luan
- Department of Computer Science, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Harihara Subrahmaniam Muralidharan
- Department of Computer Science, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Mihai Pop
- Department of Computer Science, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
4
|
Huang L, Guo R, Li S, Wu X, Zhang Y, Guo S, Lv Y, Xiao Z, Kang J, Meng J, Zhou P, Ma J, You W, Zhang Y, Yu H, Zhao J, Huang G, Duan Z, Yan Q, Sun W. A multi-kingdom collection of 33,804 reference genomes for the human vaginal microbiome. Nat Microbiol 2024; 9:2185-2200. [PMID: 38907008 PMCID: PMC11306104 DOI: 10.1038/s41564-024-01751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/01/2024] [Indexed: 06/23/2024]
Abstract
The human vagina harbours diverse microorganisms-bacteria, viruses and fungi-with profound implications for women's health. Genome-level analysis of the vaginal microbiome across multiple kingdoms remains limited. Here we utilize metagenomic sequencing data and fungal cultivation to establish the Vaginal Microbial Genome Collection (VMGC), comprising 33,804 microbial genomes spanning 786 prokaryotic species, 11 fungal species and 4,263 viral operational taxonomic units. Notably, over 25% of prokaryotic species and 85% of viral operational taxonomic units remain uncultured. This collection significantly enriches genomic diversity, especially for prevalent vaginal pathogens such as BVAB1 (an uncultured bacterial vaginosis-associated bacterium) and Amygdalobacter spp. (BVAB2 and related species). Leveraging VMGC, we characterize functional traits of prokaryotes, notably Saccharofermentanales (an underexplored yet prevalent order), along with prokaryotic and eukaryotic viruses, offering insights into their niche adaptation and potential roles in the vagina. VMGC serves as a valuable resource for studying vaginal microbiota and its impact on vaginal health.
Collapse
Affiliation(s)
- Liansha Huang
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | | | - Shenghui Li
- Puensum Genetech Institute, Wuhan, China.
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Xiaoling Wu
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Shumin Guo
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ying Lv
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhen Xiao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jian Kang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | | | - Peng Zhou
- Department of Acupuncture, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jie Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei You
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hailong Yu
- Puensum Genetech Institute, Wuhan, China
| | - Jixin Zhao
- Puensum Genetech Institute, Wuhan, China
| | - Guangrong Huang
- Department of Gynecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zuzhen Duan
- Department of Gynecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Wen Sun
- Centre for Translational Medicine, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China.
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Wang C, Wei W, Wu L, Wang Y, Dai X, Ni BJ. A Novel Sustainable and Self-Sufficient Biotechnological Strategy for Directly Transforming Sewage Sludge into High-Value Liquid Biochemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12520-12531. [PMID: 38953238 DOI: 10.1021/acs.est.4c03165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Sewage sludge, as a carbon-rich byproduct of wastewater treatment, holds significant untapped potential as a renewable resource. Upcycling this troublesome waste stream represents great promise in addressing global escalating energy demands through its wide practice of biochemical recovery concurrently. Here, we propose a biotechnological concept to gain value-added liquid bioproducts from sewage sludge in a self-sufficient manner by directly transforming sludge into medium-chain fatty acids (MCFAs). Our findings suggest that yeast, a cheap and readily available commercial powder, would involve ethanol-type fermentation in chain elongation to achieve abundant MCFA production from sewage sludge using electron donors (i.e., ethanol) and acceptors (i.e., short-chain fatty acids) produced in situ. The enhanced abundance and transcriptional activity of genes related to key enzymes, such as butyryl-CoA dehydrogenase and alcohol dehydrogenase, affirm the robust capacity for the self-sustained production of MCFAs. This is indicative of an effective metabolic network established between yeast and anaerobic microorganisms within this innovative sludge fermentation framework. Furthermore, life cycle assessment and techno-economic analysis evidence the sustainability and economic competitiveness of this biotechnological strategy. Overall, this work provides insights into sewage sludge upgrading independent of additional carbon input, which can be applied in existing anaerobic sludge fermentation infrastructure as well as to develop new applications in a diverse range of industries.
Collapse
Affiliation(s)
- Chen Wang
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
6
|
Atkins H, Sabharwal B, Boger L, Stegman N, Kula A, Wolfe AJ, Banerjee S, Putonti C. Evidence of Lactobacillus strains shared between the female urinary and vaginal microbiota. Microb Genom 2024; 10:001267. [PMID: 38949867 PMCID: PMC11316553 DOI: 10.1099/mgen.0.001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Lactobacillus species are common inhabitants of the 'healthy' female urinary and vaginal communities, often associated with a lack of symptoms in both anatomical sites. Given identification by prior studies of similar bacterial species in both communities, it has been hypothesized that the two microbiotas are in fact connected. Here, we carried out whole-genome sequencing of 49 Lactobacillus strains, including 16 paired urogenital samples from the same participant. These strains represent five different Lactobacillus species: L. crispatus, L. gasseri, L. iners, L. jensenii, and L. paragasseri. Average nucleotide identity (ANI), alignment, single-nucleotide polymorphism (SNP), and CRISPR comparisons between strains from the same participant were performed. We conducted simulations of genome assemblies and ANI comparisons and present a statistical method to distinguish between unrelated, related, and identical strains. We found that 50 % of the paired samples have identical strains, evidence that the urinary and vaginal communities are connected. Additionally, we found evidence of strains sharing a common ancestor. These results establish that microbial sharing between the urinary tract and vagina is not limited to uropathogens. Knowledge that these two anatomical sites can share lactobacilli in females can inform future clinical approaches.
Collapse
Affiliation(s)
- Haley Atkins
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
| | - Baani Sabharwal
- Department of Molecular Environmental Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Leah Boger
- Data Science Program, Loyola University Chicago, Chicago, IL, USA
| | - Natalie Stegman
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
| | - Alexander Kula
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Swarnali Banerjee
- Data Science Program, Loyola University Chicago, Chicago, IL, USA
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
7
|
Armstrong E, Hemmerling A, Miller S, Huibner S, Kulikova M, Crawford E, Castañeda GR, Coburn B, Cohen CR, Kaul R. Vaginal Lactobacillus crispatus persistence following application of a live biotherapeutic product: colonization phenotypes and genital immune impact. MICROBIOME 2024; 12:110. [PMID: 38907268 PMCID: PMC11191164 DOI: 10.1186/s40168-024-01828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 05/02/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Bacterial vaginosis (BV) increases HIV acquisition risk, potentially by eliciting genital inflammation. After BV treatment, the vaginal administration of LACTIN-V, a live biotherapeutic containing the Lactobacillus crispatus strain CTV-05, reduced BV recurrence and vaginal inflammation; however, 3 months after product cessation, CTV-05 colonization was only sustained in 48% of participants. RESULTS This nested sub-study in 32 participants receiving LACTIN-V finds that 72% (23/32) demonstrate clinically relevant colonization (CTV-05 absolute abundance > 106 CFU/mL) during at least one visit while 28% (9/32) of women demonstrate colonization resistance, even during product administration. Immediately prior to LACTIN-V administration, the colonization-resistant group exhibited elevated vaginal microbiota diversity. During LACTIN-V administration, colonization resistance was associated with elevated vaginal markers of epithelial disruption and reduced chemokines, possibly due to elevated absolute abundance of BV-associated species and reduced L. crispatus. Colonization permissive women were stratified into sustained and transient colonization groups (31% and 41% of participants, respectively) based on CTV-05 colonization after cessation of product administration. These groups also exhibited distinct genital immune profiles during LACTIN-V administration. CONCLUSIONS The genital immune impact of LACTIN-V may be contingent on the CTV-05 colonization phenotype, which is in turn partially dependent on the success of BV clearance prior to LACTIN-V administration.
Collapse
Affiliation(s)
- Eric Armstrong
- Department of Medicine, University of Toronto, Toronto, Canada.
| | - Anke Hemmerling
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, USA
| | - Steve Miller
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, USA
| | - Sanja Huibner
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Maria Kulikova
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Emily Crawford
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, USA
| | | | - Bryan Coburn
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Medicine, University Health Network, Toronto, Canada
| | - Craig R Cohen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, USA
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Medicine, University Health Network, Toronto, Canada
| |
Collapse
|
8
|
Berman HL, Goltsman DSA, Anderson M, Relman DA, Callahan BJ. Gardnerella diversity and ecology in pregnancy and preterm birth. mSystems 2024; 9:e0133923. [PMID: 38752784 PMCID: PMC11338264 DOI: 10.1128/msystems.01339-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/08/2024] [Indexed: 06/19/2024] Open
Abstract
The vaginal microbiome has been linked to negative health outcomes including preterm birth. Specific taxa, including Gardnerella spp., have been identified as risk factors for these conditions. Historically, microbiome analysis methods have treated all Gardnerella spp. as one species, but the broad diversity of Gardnerella has become more apparent. We explore the diversity of Gardnerella clades and genomic species in the vaginal microbiome of pregnant women and their associations with microbiome composition and preterm birth. Relative abundance of Gardnerella clades and genomic species and other taxa was quantified in shotgun metagenomic sequencing data from three distinct cohorts of pregnant women. We also assessed the diversity and abundance of Gardnerella variants in 16S rRNA gene amplicon sequencing data from seven previously conducted studies in differing populations. Individual microbiomes often contained multiple Gardnerella variants, and the number of clades was associated with increased microbial load, or the ratio of non-human reads to human reads. Taxon co-occurrence patterns were largely consistent across Gardnerella clades and among cohorts. Some variants previously described as rare were prevalent in other cohorts, highlighting the importance of surveying a diverse set of populations to fully capture the diversity of Gardnerella. The diversity of Gardnerella both across populations and within individual vaginal microbiomes has long been unappreciated, as has been the intra-species diversity of many other members of the vaginal microbiome. The broad genomic diversity of Gardnerella has led to its reclassification as multiple species; here we demonstrate the diversity of Gardnerella found within and between vaginal microbiomes.IMPORTANCEThe present study shows that single microbiomes can contain all currently known species of Gardnerella and that multiple similar species can exist within the same environment. Furthermore, surveys of demographically distinct populations suggest that some species appear more commonly in certain populations. Further studies in broad and diverse populations will be necessary to fully understand the ecological roles of each Gardnerella sp., how they can co-exist, and their distinct impacts on microbial communities, preterm birth, and other health outcomes.
Collapse
Affiliation(s)
- Hanna L. Berman
- Department of
Population Health and Pathobiology, North Carolina State
University, Raleigh,
North Carolina, USA
| | - Daniela S. Aliaga Goltsman
- Department of
Microbiology and Immunology, Stanford University School of
Medicine, Stanford,
California, USA
- Department of
Medicine, Stanford University School of
Medicine, Stanford,
California, USA
| | - Megan Anderson
- Department of
Population Health and Pathobiology, North Carolina State
University, Raleigh,
North Carolina, USA
| | - David A. Relman
- Department of
Microbiology and Immunology, Stanford University School of
Medicine, Stanford,
California, USA
- Department of
Medicine, Stanford University School of
Medicine, Stanford,
California, USA
- Infectious Diseases
Section, Veterans Affairs Palo Alto Health Care
System, Palo Alto,
California, USA
| | - Benjamin J. Callahan
- Department of
Population Health and Pathobiology, North Carolina State
University, Raleigh,
North Carolina, USA
- Bioinformatics
Research Center, North Carolina State
University, Raleigh,
North Carolina, USA
| |
Collapse
|
9
|
Izadifar Z, Cotton J, Chen S, Horvath V, Stejskalova A, Gulati A, LoGrande NT, Budnik B, Shahriar S, Doherty ER, Xie Y, To T, Gilpin SE, Sesay AM, Goyal G, Lebrilla CB, Ingber DE. Mucus production, host-microbiome interactions, hormone sensitivity, and innate immune responses modeled in human cervix chips. Nat Commun 2024; 15:4578. [PMID: 38811586 PMCID: PMC11137093 DOI: 10.1038/s41467-024-48910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/22/2024] [Indexed: 05/31/2024] Open
Abstract
Modulation of the cervix by steroid hormones and commensal microbiome play a central role in the health of the female reproductive tract. Here we describe organ-on-a-chip (Organ Chip) models that recreate the human cervical epithelial-stromal interface with a functional epithelial barrier and production of mucus with biochemical and hormone-responsive properties similar to living cervix. When Cervix Chips are populated with optimal healthy versus dysbiotic microbial communities (dominated by Lactobacillus crispatus and Gardnerella vaginalis, respectively), significant differences in tissue innate immune responses, barrier function, cell viability, proteome, and mucus composition are observed that are similar to those seen in vivo. Thus, human Cervix Organ Chips represent physiologically relevant in vitro models to study cervix physiology and host-microbiome interactions, and hence may be used as a preclinical testbed for development of therapeutic interventions to enhance women's health.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Urology Department, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Justin Cotton
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Siyu Chen
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Viktor Horvath
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sanjid Shahriar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Erin R Doherty
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Yixuan Xie
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Tania To
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA.
- Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02134, USA.
| |
Collapse
|
10
|
Ma ZS. Towards a unified medical microbiome ecology of the OMU for metagenomes and the OTU for microbes. BMC Bioinformatics 2024; 25:137. [PMID: 38553666 PMCID: PMC10979563 DOI: 10.1186/s12859-023-05591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/30/2023] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Metagenomic sequencing technologies offered unprecedented opportunities and also challenges to microbiology and microbial ecology particularly. The technology has revolutionized the studies of microbes and enabled the high-profile human microbiome and earth microbiome projects. The terminology-change from microbes to microbiomes signals that our capability to count and classify microbes (microbiomes) has achieved the same or similar level as we can for the biomes (macrobiomes) of plants and animals (macrobes). While the traditional investigations of macrobiomes have usually been conducted through naturalists' (Linnaeus & Darwin) naked eyes, and aerial and satellite images (remote-sensing), the large-scale investigations of microbiomes have been made possible by DNA-sequencing-based metagenomic technologies. Two major types of metagenomic sequencing technologies-amplicon sequencing and whole-genome (shotgun sequencing)-respectively generate two contrastingly different categories of metagenomic reads (data)-OTU (operational taxonomic unit) tables representing microorganisms and OMU (operational metagenomic unit), a new term coined in this article to represent various cluster units of metagenomic genes. RESULTS The ecological science of microbiomes based on the OTU representing microbes has been unified with the classic ecology of macrobes (macrobiomes), but the unification based on OMU representing metagenomes has been rather limited. In a previous series of studies, we have demonstrated the applications of several classic ecological theories (diversity, composition, heterogeneity, and biogeography) to the studies of metagenomes. Here I push the envelope for the unification of OTU and OMU again by demonstrating the applications of metacommunity assembly and ecological networks to the metagenomes of human gut microbiomes. Specifically, the neutral theory of biodiversity (Sloan's near neutral model), Ning et al.stochasticity framework, core-periphery network, high-salience skeleton network, special trio-motif, and positive-to-negative ratio are applied to analyze the OMU tables from whole-genome sequencing technologies, and demonstrated with seven human gut metagenome datasets from the human microbiome project. CONCLUSIONS All of the ecological theories demonstrated previously and in this article, including diversity, composition, heterogeneity, stochasticity, and complex network analyses, are equally applicable to OMU metagenomic analyses, just as to OTU analyses. Consequently, I strongly advocate the unification of OTU/OMU (microbiomes) with classic ecology of plants and animals (macrobiomes) in the context of medical ecology.
Collapse
Affiliation(s)
- Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Lab of Genetic Resources and Evolution, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Microbiome Medicine and Advanced AI Lab, Cambridge, MA, 02138, USA.
- Faculty of Arts and Science, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
11
|
Carter KA, France MT, Rutt L, Bilski L, Martinez-Greiwe S, Regan M, Brotman RM, Ravel J. Sexual transmission of urogenital bacteria: whole metagenome sequencing evidence from a sexual network study. mSphere 2024; 9:e0003024. [PMID: 38358269 PMCID: PMC10964427 DOI: 10.1128/msphere.00030-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/16/2024] Open
Abstract
Sexual transmission of the urogenital microbiota may contribute to adverse sexual and reproductive health outcomes. The extent of sexual transmission of the urogenital microbiota is unclear as prior studies largely investigated specific pathogens. We used epidemiologic data and whole metagenome sequencing to characterize urogenital microbiota strain concordance between participants of a sexual network study. Individuals who screened positive for genital Chlamydia trachomatis were enrolled and referred their sexual contacts from the prior 60-180 days. Snowball recruitment of sexual contacts continued for up to four waves. Vaginal swabs and penile urethral swabs were collected for whole metagenome sequencing. We evaluated bacterial strain concordance using inStrain and network analysis. We defined concordance as ≥99.99% average nucleotide identity over ≥50% shared coverage; we defined putative sexual transmission as concordance between sexual contacts with <5 single-nucleotide polymorphisms per megabase. Of 138 participants, 74 (54%) were female; 120 (87%) had genital chlamydia; and 43 (31%) were recruited contacts. We identified 115 strain-concordance events among 54 participants representing 25 bacterial species. Seven events (6%) were between sexual contacts including putative heterosexual transmission of Fannyhessea vaginae, Gardnerella leopoldii, Prevotella amnii, Sneathia sanguinegens, and Sneathia vaginalis (one strain each), and putative sexual transmission of Lactobacillus iners between female contacts. Most concordance events (108, 94%) were between non-contacts, including eight female participants connected through 18 Lactobacillus crispatus and 3 Lactobacillus jensenii concordant strains, and 14 female and 2 male participants densely interconnected through 52 Gardnerella swidsinskii concordance events.IMPORTANCEEpidemiologic evidence consistently indicates bacterial vaginosis (BV) is sexually associated and may be sexually transmitted, though sexual transmission remains subject to debate. This study is not capable of demonstrating BV sexual transmission; however, we do provide strain-level metagenomic evidence that strongly supports heterosexual transmission of BV-associated species. These findings strengthen the evidence base that supports ongoing investigations of concurrent male partner treatment for reducing BV recurrence. Our data suggest that measuring the impact of male partner treatment on F. vaginae, G. leopoldii, P. amnii, S. sanguinegens, and S. vaginalis may provide insight into why a regimen does or does not perform well. We also observed a high degree of strain concordance between non-sexual-contact female participants. We posit that this may reflect limited dispersal capacity of vaginal bacteria coupled with individuals' comembership in regional transmission networks where transmission may occur between parent and child at birth, cohabiting individuals, or sexual contacts.
Collapse
Affiliation(s)
- Kayla A. Carter
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael T. France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lindsay Rutt
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa Bilski
- School of Nursing, University of Maryland, Baltimore, Maryland, USA
| | | | - Mary Regan
- School of Nursing, University of Maryland, Baltimore, Maryland, USA
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Li C, Jin S, Lv O, Wang G, Zhang Y, Li S, Zhang W, Long F, Shen Z, Bai S, Zhaxi D, Kong F, Yan Q, Xiao Z. Comparative analysis of the vaginal bacteriome and virome in healthy women living in high-altitude and sea-level areas. Eur J Med Res 2024; 29:157. [PMID: 38454476 PMCID: PMC10918948 DOI: 10.1186/s40001-023-01391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 03/09/2024] Open
Abstract
The vaginal microbiota plays an important role in the health of the female reproductive tract and is closely associated with various pregnancy outcomes and sexually transmitted diseases. Plenty of internal and external factors have strong influence on the changes in a woman's vaginal microbiome. However, the effect of a high-altitude on female vaginal microbiota has not been described. In this study, we characterized the vaginal bacteriome and virome of 13 and 34 healthy women living in high-altitude and sea-level areas, using whole-metagenome shotgun sequencing of their vaginal mucus samples. The results revealed that the vaginal bacteriomes of high-altitude individuals are featured by a significant increase of species diversity, depletion of Lactobacillus crispatus, and more abundant of some anaerobic bacteria, such as Chlamydia trachomatis, Mageeibacillus indolicus, Dialister micraerophilus, and Sneathia amnii). In addition, the vagina samples of sea-level subjects harbor more Lactobacillus strains, whereas the anaerobic bacteroidetes strains mostly appeared in high-altitude subjects. Identified and assembled 191 virus operational taxonomic units (vOTUs), there were significant differences in the abundance of 107 vOTUs between the two groups. Together, the results of this study raised the understanding of bacteriome and virome in the vagina of women at different elevations, and demonstrated that the vaginal microbiome is related to the high-altitude geographic adaptation.
Collapse
Affiliation(s)
- Chaoran Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Song Jin
- Operating Room, First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Oingbo Lv
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Wei Zhang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Fang Long
- Department of Obstetrics and Gynecology, People's Hospital of Naqu, Naqu, Tibet, 852000, China
| | - Zhuowei Shen
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Siqi Bai
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Duoii Zhaxi
- Institute of High Altitude Medicine, People's Hospital of Naqu, Naqu, Tibet, 852000, China
| | - Fandou Kong
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China.
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Zhen Xiao
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China.
- Department of Obstetrics and Gynecology, People's Hospital of Naqu, Naqu, Tibet, 852000, China.
- Institute of High Altitude Medicine, People's Hospital of Naqu, Naqu, Tibet, 852000, China.
| |
Collapse
|
13
|
Bommana S, Hu YJ, Kama M, Wang R, Kodimerla R, Jijakli K, Read TD, Dean D. Unique microbial diversity, community composition, and networks among Pacific Islander endocervical and vaginal microbiomes with and without Chlamydia trachomatis infection in Fiji. mBio 2024; 15:e0306323. [PMID: 38117091 PMCID: PMC10790706 DOI: 10.1128/mbio.03063-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterium globally. Endocervical and vaginal microbiome interactions are rarely examined within the context of Ct or among vulnerable populations. We evaluated 258 vaginal and 92 paired endocervical samples from Fijian women using metagenomic shotgun sequencing. Over 37% of the microbiomes could not be classified into sub-community state types (subCSTs). We, therefore, developed subCSTs IV-D0, IV-D1, IV-D2, and IV-E-dominated primarily by Gardnerella vaginalis-to improve classification. Among paired microbiomes, the endocervix had a significantly higher alpha diversity and, independently, higher diversity for high-risk human papilloma virus (HPV) genotypes compared to low-risk and no HPV. Ct-infected endocervical networks had smaller clusters without interactions with potentially beneficial Lactobacillus spp. Overall, these data suggest that G. vaginalis may generate polymicrobial biofilms that predispose to and/or promote Ct and possibly HPV persistence and pathogenicity. Our findings expand on the existing repertoire of endocervical and vaginal microbiomes and fill in knowledge gaps regarding Pacific Islanders.
Collapse
Affiliation(s)
- Sankhya Bommana
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - Mike Kama
- Ministry of Health and Medical Services, Suva, Fiji
| | - Ruohong Wang
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
| | - Reshma Kodimerla
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
| | - Kenan Jijakli
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Timothy D. Read
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deborah Dean
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Bioengineering, Joint Graduate Program, University of California San Francisco and University of California Berkeley, San Francisco, California, USA
- Bixby Center for Global Reproductive Health, University of California San Francisco, San Francisco, California, USA
- University of California San Francisco, Benioff Center for Microbiome Medicine, San Francisco, California, USA
| |
Collapse
|
14
|
Holm JB, France MT, Gajer P, Ma B, Brotman RM, Shardell M, Forney L, Ravel J. Integrating compositional and functional content to describe vaginal microbiomes in health and disease. MICROBIOME 2023; 11:259. [PMID: 38031142 PMCID: PMC10688475 DOI: 10.1186/s40168-023-01692-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/07/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND A Lactobacillus-dominated vaginal microbiome provides the first line of defense against adverse genital tract health outcomes. However, there is limited understanding of the mechanisms by which the vaginal microbiome modulates protection, as prior work mostly described its composition through morphologic assessment and marker gene sequencing methods that do not capture functional information. To address this gap, we developed metagenomic community state types (mgCSTs) which use metagenomic sequences to describe and define vaginal microbiomes based on both composition and functional potential. RESULTS MgCSTs are categories of microbiomes classified using taxonomy and the functional potential encoded in their metagenomes. MgCSTs reflect unique combinations of metagenomic subspecies (mgSs), which are assemblages of bacterial strains of the same species, within a microbiome. We demonstrate that mgCSTs are associated with demographics such as age and race, as well as vaginal pH and Gram stain assessment of vaginal smears. Importantly, these associations varied between mgCSTs predominated by the same bacterial species. A subset of mgCSTs, including three of the six predominated by Gardnerella vaginalis mgSs, as well as mgSs of L. iners, were associated with a greater likelihood of bacterial vaginosis diagnosed by Amsel clinical criteria. This L. iners mgSs, among other functional features, encoded enhanced genetic capabilities for epithelial cell attachment that could facilitate cytotoxin-mediated cell lysis. Finally, we report a mgSs and mgCST classifier for which source code is provided and may be adapted for use by the microbiome research community. CONCLUSIONS MgCSTs are a novel and easily implemented approach to reduce the dimension of complex metagenomic datasets while maintaining their functional uniqueness. MgCSTs enable the investigation of multiple strains of the same species and the functional diversity in that species. Future investigations of functional diversity may be key to unraveling the pathways by which the vaginal microbiome modulates the protection of the genital tract. Importantly, our findings support the hypothesis that functional differences between vaginal microbiomes, including those that may look compositionally similar, are critical considerations in vaginal health. Ultimately, mgCSTs may lead to novel hypotheses concerning the role of the vaginal microbiome in promoting health and disease, and identify targets for novel prognostic, diagnostic, and therapeutic strategies to improve women's genital health. Video Abstract.
Collapse
Affiliation(s)
- Johanna B Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael T France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle Shardell
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Larry Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Werneburg GT, Adler A, Khooblall P, Wood HM, Gill BC, Vij SC, Angermeier KW, Lundy SD, Miller AW, Bajic P. Penile prostheses harbor biofilms driven by individual variability and manufacturer even in the absence of clinical infection. J Sex Med 2023; 20:1431-1439. [PMID: 37837552 DOI: 10.1093/jsxmed/qdad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Culture-based studies have shown that penile prostheses harbor biofilms in the presence and absence of infection, but these findings have not been adequately validated using contemporary microbiome analytic techniques. AIM The study sought to characterize microbial biofilms of indwelling penile prosthesis devices according to patient factors, device components, manufacturer, and infection status. METHODS Upon penile prostheses surgical explantation, device biofilms were extracted, sonicated, and characterized using shotgun metagenomics and culture-based approaches. Device components were also analyzed using scanning electron microscopy. OUTCOMES Outcomes included the presence or absence of biofilms, alpha and beta diversity, specific microbes identified and the presence of biofilm, and antibiotic resistance genes on each prosthesis component. RESULTS The average age of participants from whom devices were explanted was 61 ± 11 years, and 9 (45%) of 20 had a diagnosis of diabetes mellitus. Seventeen devices were noninfected, and 3 were associated with clinical infection. Mean device indwelling time prior to explant was 5.1 ± 5.1 years. All analyzed components from 20 devices had detectable microbial biofilms, both in the presence and absence of infection. Scanning electron microscopy corroborated the presence of biofilms across device components. Significant differences between viruses, prokaryotes, and metabolic pathways were identified between individual patients, device manufacturers, and infection status. Mobiluncus curtisii was enriched in manufacturer A device biofilms relative to manufacturer B device biofilms. Bordetella bronchialis, Methylomicrobium alcaliphilum, Pseudoxanthomonas suwonensis, and Porphyrobacter sp. were enriched in manufacturer B devices relative to manufacturer A devices. The most abundant bacterial phyla were the Proteobacteria, Actinobacteria, and Firmicutes. Glycogenesis, the process of glycogen synthesis, was among the predominant metabolic pathways detected across device components. Beta diversity of bacteria, viruses, protozoa, and pathways did not differ among device components. CLINICAL IMPLICATIONS All components of all penile prostheses removed from infected and noninfected patients have biofilms. The significance of biofilms on noninfected devices remains unknown and merits further investigation. STRENGTHS AND LIMITATIONS Strengths include the multipronged approach to characterize biofilms and being the first study to include all components of penile prostheses in tandem. Limitations include the relatively few number of infected devices in the series, a relatively small subset of devices included in shotgun metagenomics analysis, and the lack of anaerobic and other expanded conditions for culture. CONCLUSION Penile prosthesis biofilms are apparent in the presence and absence of infection, and the composition of biofilms was driven primarily by device manufacturer, individual variability, and infection, while being less impacted by device component.
Collapse
Affiliation(s)
- Glenn T Werneburg
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Ava Adler
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Prajit Khooblall
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Hadley M Wood
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Bradley C Gill
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Sarah C Vij
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Kenneth W Angermeier
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Scott D Lundy
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Aaron W Miller
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Petar Bajic
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| |
Collapse
|
16
|
Lantz AM, Cottrell ML, Corbett AH, Chinula L, Kourtis AP, Nelson JAE, Tegha G, Hurst S, Gajer P, Ravel J, Haddad LB, Tang JH, Nicol MR. Vaginal microbiome, antiretroviral concentrations, and HIV genital shedding in the setting of hormonal contraception initiation in Malawi. AIDS 2023; 37:2185-2190. [PMID: 37877275 PMCID: PMC10605758 DOI: 10.1097/qad.0000000000003686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
OBJECTIVE The aim of this study was to understand how vaginal microbiota composition affects antiretroviral concentrations in the setting of hormonal contraception initiation. METHODS Cervicovaginal fluid (CVF) concentrations of tenofovir, lamivudine, and efavirenz from 73 Malawian women with HIV were compared before and after initiation of depot-medroxyprogesterone acetate (DMPA) or levonorgestrel implant. We evaluated antiretroviral concentrations and vaginal microbiota composition/structure in the context of contraception initiation and predicted genital shedding using multivariable repeated measurements models fit by generalized estimating equations. RESULTS Mean lamivudine CVF concentrations decreased 37% 1 month after contraception initiation. Subgroup analyses revealed a 41% decrease in women 1 month after initiating levonorgestrel implant, but no significant difference was observed in DMPA group alone. Tenofovir, lamivudine, and efavirenz CVF concentrations were positively correlated with anaerobic bacteria associated with nonoptimal vaginal microbiota. Risk of genital HIV shedding was not significantly associated with tenofovir or lamivudine CVF concentrations [tenofovir relative risk (RR): 0.098, P = 0.75; lamivudine RR: 0.142, P = 0.54]. Lack of association between genital HIV shedding and efavirenz CVF concentrations did not change when adjusting for vaginal microbiota composition and lamivudine/tenofovir CVF concentrations (RR: 1.33, P = 0.531). CONCLUSION No effect of hormone initiation on genital shedding provides confidence that women with HIV on either DMPA or levonorgestrel implant contraception will not have compromised ART efficacy. The unexpected positive correlation between antiretroviral CVF concentrations and certain bacterial taxa relative abundance requires further work to understand the mechanism and clinical relevance.
Collapse
Affiliation(s)
- Alyssa M Lantz
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis
| | | | - Amanda H Corbett
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy
| | - Lameck Chinula
- Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Project Malawi, Lilongwe, Malawi
| | - Athena P Kourtis
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Julie A E Nelson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Stacey Hurst
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Pawel Gajer
- Institute for Genome Sciences
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jacques Ravel
- Institute for Genome Sciences
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lisa B Haddad
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Jennifer H Tang
- Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Project Malawi, Lilongwe, Malawi
| | - Melanie R Nicol
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis
| |
Collapse
|
17
|
Borgogna JLC, Grace SG, Holm JB, Aviles Zuniga T, Kadriu H, He X, McCoski SR, Ravel J, Brotman RM, Yeoman CJ. Investigating the impact of condomless vaginal intercourse and lubricant use on the vaginal metabolome: a pre-post observational study. Sex Transm Infect 2023; 99:489-496. [PMID: 37258272 PMCID: PMC11174154 DOI: 10.1136/sextrans-2022-055667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/06/2023] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVE The vaginal metabolome is a significant factor in the vaginal microenvironment, and data are emerging on its independent role in urogenital health. Condomless vaginal intercourse and personal lubricant use are common practices that may affect the vaginal metabolome. The aim of the present study is to describe the associations between condomless intercourse and lubricant use on the vaginal metabolome. METHODS This study used archived mid-vaginal swabs from a 10-week observational cohort of reproductive age women who self-collected samples and recorded behavioural diaries daily. Cases and controls were defined as participants who self-reported condomless vaginal intercourse with or without lubricant use, respectively. Samples were drawn prior to and following condomless vaginal intercourse. Twenty-two case participants were race/ethnicity matched to 22 control participants. Mid-vaginal swabs were subjected to 16S rRNA gene amplicon sequencing and untargeted ultrahigh performance liquid chromatography tandem mass spectroscopy metabolomics. Bayesian mixed-effects regression (unadjusted and adjusted for the vaginal microbiota) was used to evaluate differences in metabolite concentration associated with vaginal intercourse and lubricant use. RESULTS Both condomless penile-vaginal intercourse and lubricant use were independently associated with higher (up to 8.3-fold) concentrations of metabolites indicative of epithelial damage (eg, sarcosine) and many host-produced antioxidants. Lubricant use was significantly associated with increases in lipids related to cellular damage, host-produced sphingolipids (antimicrobials), antioxidants and salicylate, a cooling agent common to lubricants, in a study design which controls for the independent effect of intercourse. Metabolites involved in oxidative stress and salicylate were strongly correlated with several molecular bacterial vaginosis-associated bacteria. CONCLUSIONS This study provides important foundational data on how condomless vaginal-penile intercourse and lubricant use affect the vaginal metabolome and may affect the protective mechanisms in the vaginal microenvironment.
Collapse
Affiliation(s)
- Joanna-Lynn C Borgogna
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Savannah G Grace
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Johanna B Holm
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tadeo Aviles Zuniga
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Herlin Kadriu
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Xin He
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Sarah R McCoski
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Carl J Yeoman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
18
|
Lebeer S, Ahannach S, Gehrmann T, Wittouck S, Eilers T, Oerlemans E, Condori S, Dillen J, Spacova I, Vander Donck L, Masquillier C, Allonsius CN, Bron PA, Van Beeck W, De Backer C, Donders G, Verhoeven V. A citizen-science-enabled catalogue of the vaginal microbiome and associated factors. Nat Microbiol 2023; 8:2183-2195. [PMID: 37884815 PMCID: PMC10627828 DOI: 10.1038/s41564-023-01500-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/13/2023] [Indexed: 10/28/2023]
Abstract
Understanding the composition and function of the vaginal microbiome is crucial for reproductive and overall health. Here we established the Isala citizen-science project to analyse the vaginal microbiomes of 3,345 women in Belgium (18-98 years) through self-sampling, 16S amplicon sequencing and extensive questionnaires. The overall vaginal microbiome composition was strongly tied to age, childbirth and menstrual cycle phase. Lactobacillus species dominated 78% of the vaginal samples. Specific bacterial taxa also showed to co-occur in modules based on network correlation analysis. Notably, the module containing Lactobacillus crispatus, Lactobacillus jensenii and Limosilactobacillus taxa was positively linked to oestrogen levels and contraceptive use and negatively linked to childbirth and breastfeeding. Other modules, named after abundant taxa (Gardnerella, Prevotella and Bacteroides), correlated with multiple partners, menopause, menstrual hygiene and contraceptive use. With this resource-rich vaginal microbiome map and associated health, life-course, lifestyle and dietary factors, we provide unique data and insights for follow-up clinical and mechanistic research.
Collapse
Affiliation(s)
- Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium.
| | - Sarah Ahannach
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Thies Gehrmann
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Tom Eilers
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Eline Oerlemans
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Sandra Condori
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Jelle Dillen
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Leonore Vander Donck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Caroline Masquillier
- Department of Sociology, Center for Population, Family and Health, University of Antwerp, Antwerp, Belgium
| | - Camille Nina Allonsius
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Peter A Bron
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Wannes Van Beeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | | | - Gilbert Donders
- Department of Obstetrics and Gynaecology, University Hospital Antwerp, Edegem, Belgium
- Regional Hospital Heilig Hart, Tienen, Belgium
- Femicare Clinical Research for Women, Tienen, Belgium
| | - Veronique Verhoeven
- Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Jenkins DJ, Woolston BM, Hood-Pishchany MI, Pelayo P, Konopaski AN, Quinn Peters M, France MT, Ravel J, Mitchell CM, Rakoff-Nahoum S, Whidbey C, Balskus EP. Bacterial amylases enable glycogen degradation by the vaginal microbiome. Nat Microbiol 2023; 8:1641-1652. [PMID: 37563289 PMCID: PMC10465358 DOI: 10.1038/s41564-023-01447-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
The human vaginal microbiota is frequently dominated by lactobacilli and transition to a more diverse community of anaerobic microbes is associated with health risks. Glycogen released by lysed epithelial cells is believed to be an important nutrient source in the vagina. However, the mechanism by which vaginal bacteria metabolize glycogen is unclear, with evidence implicating both bacterial and human enzymes. Here we biochemically characterize six glycogen-degrading enzymes (GDEs), all of which are pullanases (PulA homologues), from vaginal bacteria that support the growth of amylase-deficient Lactobacillus crispatus on glycogen. We reveal variations in their pH tolerance, substrate preferences, breakdown products and susceptibility to inhibition. Analysis of vaginal microbiome datasets shows that these enzymes are expressed in all community state types. Finally, we confirm the presence and activity of bacterial and human GDEs in cervicovaginal fluid. This work establishes that bacterial GDEs can participate in the breakdown of glycogen, providing insight into metabolism that may shape the vaginal microbiota.
Collapse
Affiliation(s)
- Dominick J Jenkins
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Benjamin M Woolston
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - M Indriati Hood-Pishchany
- Division of Infectious Diseases and Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Paula Pelayo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - M Quinn Peters
- Department of Chemistry, Seattle University, Seattle, WA, USA
| | - Michael T France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Caroline M Mitchell
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Seth Rakoff-Nahoum
- Division of Infectious Diseases and Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | | | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
20
|
Salas-Espejo E, Terrón-Camero LC, Ruiz JL, Molina NM, Andrés-León E. Exploring the Microbiome in Human Reproductive Tract: High-Throughput Methods for the Taxonomic Characterization of Microorganisms. Semin Reprod Med 2023; 41:125-143. [PMID: 38320576 DOI: 10.1055/s-0044-1779025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Microorganisms are important due to their widespread presence and multifaceted roles across various domains of life, ecology, and industries. In humans, they underlie the proper functioning of multiple systems crucial to well-being, including immunological and metabolic functions. Emerging research addressing the presence and roles of microorganisms within human reproduction is increasingly relevant. Studies implementing new methodologies (e.g., to investigate vaginal, uterine, and semen microenvironments) can now provide relevant insights into fertility, reproductive health, or pregnancy outcomes. In that sense, cutting-edge sequencing techniques, as well as others such as meta-metabolomics, culturomics, and meta-proteomics, are becoming more popular and accessible worldwide, allowing the characterization of microbiomes at unprecedented resolution. However, they frequently involve rather complex laboratory protocols and bioinformatics analyses, for which researchers may lack the required expertise. A suitable pipeline would successfully enable both taxonomic classification and functional profiling of the microbiome, providing easy-to-understand biological interpretations. However, the selection of an appropriate methodology would be crucial, as it directly impacts the reproducibility, accuracy, and quality of the results and observations. This review focuses on the different current microbiome-related techniques in the context of human reproduction, encompassing niches like vagina, endometrium, and seminal fluid. The most standard and reliable methods are 16S rRNA gene sequencing, metagenomics, and meta-transcriptomics, together with complementary approaches including meta-proteomics, meta-metabolomics, and culturomics. Finally, we also offer case examples and general recommendations about the most appropriate methods and workflows and discuss strengths and shortcomings for each technique.
Collapse
Affiliation(s)
- Eduardo Salas-Espejo
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura C Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - José L Ruiz
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - Nerea M Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| |
Collapse
|
21
|
Ojala T, Häkkinen AE, Kankuri E, Kankainen M. Current concepts, advances, and challenges in deciphering the human microbiota with metatranscriptomics. Trends Genet 2023; 39:686-702. [PMID: 37365103 DOI: 10.1016/j.tig.2023.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Metatranscriptomics refers to the analysis of the collective microbial transcriptome of a sample. Its increased utilization for the characterization of human-associated microbial communities has enabled the discovery of many disease-state related microbial activities. Here, we review the principles of metatranscriptomics-based analysis of human-associated microbial samples. We describe strengths and weaknesses of popular sample preparation, sequencing, and bioinformatics approaches and summarize strategies for their use. We then discuss how human-associated microbial communities have recently been examined and how their characterization may change. We conclude that metatranscriptomics insights into human microbiotas under health and disease have not only expanded our knowledge on human health, but also opened avenues for rational antimicrobial drug use and disease management.
Collapse
Affiliation(s)
- Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit, University of Helsinki, Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland.
| |
Collapse
|
22
|
Elnaggar JH, Lammons JW, Taylor CM, Toh E, Ardizzone CM, Dong A, Aaron KJ, Luo M, Tamhane A, Lefkowitz EJ, Quayle AJ, Nelson DE, Muzny CA. Characterization of Vaginal Microbial Community Dynamics in the Pathogenesis of Incident Bacterial Vaginosis, a Pilot Study. Sex Transm Dis 2023; 50:523-530. [PMID: 37074327 PMCID: PMC10512881 DOI: 10.1097/olq.0000000000001821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
BACKGROUND Despite more than 60 years of research, the etiology of bacterial vaginosis (BV) remains controversial. In this pilot study, we used shotgun metagenomic sequencing to characterize vaginal microbial community changes before the development of incident BV (iBV). METHODS A cohort of African American women with a baseline healthy vaginal microbiome (no Amsel criteria, Nugent score 0-3 with no Gardnerella vaginalis morphotypes) were followed for 90 days with daily self-collected vaginal specimens for iBV (≥2 consecutive days of a Nugent score of 7-10). Shotgun metagenomic sequencing was performed on select vaginal specimens from 4 women, every other day for 12 days before iBV diagnosis. Sequencing data were analyzed through Kraken2 and bioBakery 3 workflows, and specimens were classified into community state types. Quantitative polymerase chain reaction was performed to compare the correlation of read counts with bacterial abundance. RESULTS Common BV-associated bacteria such as G. vaginalis , Prevotella bivia , and Fannyhessea vaginae were increasingly identified in the participants before iBV. Linear modeling indicated significant increases in G. vaginalis and F . vaginae relative abundance before iBV, whereas the relative abundance of Lactobacillus species declined over time. The Lactobacillus species decline correlated with the presence of Lactobacillus phages. We observed enrichment in bacterial adhesion factor genes on days before iBV. There were also significant correlations between bacterial read counts and abundances measured by quantitative polymerase chain reaction. CONCLUSIONS This pilot study characterizes vaginal community dynamics before iBV and identifies key bacterial taxa and mechanisms potentially involved in the pathogenesis of iBV.
Collapse
Affiliation(s)
- Jacob H Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center; New Orleans, LA, USA
| | - John W Lammons
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center; New Orleans, LA, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center; New Orleans, LA, USA
| | - Evelyn Toh
- Department of Microbiology, Indiana University School of Medicine; Indianapolis, IN, USA
| | - Caleb M Ardizzone
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center; New Orleans, LA, USA
| | - Amy Dong
- Department of Microbiology, Indiana University School of Medicine; Indianapolis, IN, USA
| | - Kristal J Aaron
- Division of Infectious Diseases, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center; New Orleans, LA, USA
| | - Ashutosh Tamhane
- Division of Nephrology and 4Center for Clinical and Translational Sciences, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Elliot J Lefkowitz
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham; Birmingham, AL, USA
- Department of Microbiology, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Alison J Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center; New Orleans, LA, USA
| | - David E Nelson
- Department of Microbiology, Indiana University School of Medicine; Indianapolis, IN, USA
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham; Birmingham, AL, USA
| |
Collapse
|
23
|
Navarro S, Abla H, Delgado B, Colmer-Hamood JA, Ventolini G, Hamood AN. Glycogen availability and pH variation in a medium simulating vaginal fluid influence the growth of vaginal Lactobacillus species and Gardnerella vaginalis. BMC Microbiol 2023; 23:186. [PMID: 37442975 PMCID: PMC10339506 DOI: 10.1186/s12866-023-02916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Glycogen metabolism by Lactobacillus spp. that dominate the healthy vaginal microbiome contributes to a low vaginal pH (3.5-4.5). During bacterial vaginosis (BV), strict and facultative anaerobes including Gardnerella vaginalis become predominant, leading to an increase in the vaginal pH (> 4.5). BV enhances the risk of obstetrical complications, acquisition of sexually transmitted infections, and cervical cancer. Factors critical for the maintenance of the healthy vaginal microbiome or the transition to the BV microbiome are not well defined. Vaginal pH may affect glycogen metabolism by the vaginal microflora, thus influencing the shift in the vaginal microbiome. RESULTS The medium simulating vaginal fluid (MSVF) supported growth of L. jensenii 62G, L. gasseri 63 AM, and L. crispatus JV-V01, and G. vaginalis JCP8151A at specific initial pH conditions for 30 d. L. jensenii at all three starting pH levels (pH 4.0, 4.5, and 5.0), G. vaginalis at pH 4.5 and 5.0, and L. gasseri at pH 5.0 exhibited the long-term stationary phase when grown in MSVF. L. gasseri at pH 4.5 and L. crispatus at pH 5.0 displayed an extended lag phase over 30 d suggesting inefficient glycogen metabolism. Glycogen was essential for the growth of L. jensenii, L. crispatus, and G. vaginalis; only L. gasseri was able to survive in MSVF without glycogen, and only at pH 5.0, where it used glucose. All four species were able to survive for 15 d in MSVF with half the glycogen content but only at specific starting pH levels - pH 4.5 and 5.0 for L. jensenii, L. gasseri, and G. vaginalis and pH 5.0 for L. crispatus. CONCLUSIONS These results suggest that variations in the vaginal pH critically influence the colonization of the vaginal tract by lactobacilli and G. vaginalis JCP8151A by affecting their ability to metabolize glycogen. Further, we found that L. jensenii 62G is capable of glycogen metabolism over a broader pH range (4.0-5.0) while L. crispatus JV-V01 glycogen utilization is pH sensitive (only functional at pH 5.0). Finally, our results showed that G. vaginalis JCP8151A can colonize the vaginal tract for an extended period as long as the pH remains at 4.5 or above.
Collapse
Affiliation(s)
- Stephany Navarro
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Habib Abla
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Betsaida Delgado
- Honors College, Texas Tech University, Lubbock, TX USA
- Woody L. Hunt School of Dental Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Jane A. Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Gary Ventolini
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center Permian Basin, Odessa, TX USA
| | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX USA
| |
Collapse
|
24
|
Baud A, Hillion KH, Plainvert C, Tessier V, Tazi A, Mandelbrot L, Poyart C, Kennedy SP. Microbial diversity in the vaginal microbiota and its link to pregnancy outcomes. Sci Rep 2023; 13:9061. [PMID: 37271782 PMCID: PMC10239749 DOI: 10.1038/s41598-023-36126-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023] Open
Abstract
The vaginal microbiota refers to the microorganisms that reside in the vagina. These microorganisms contribute significantly to a woman's reproductive and general health. A healthy vaginal microbiota is typically a low-diversity environment with a predominance of lactic acid-producing Lactobacillus species. Factors such as antibiotic use, sexual activity, and hormonal changes can disrupt the balance of the vaginal microbiota, leading to conditions such as bacterial vaginosis. The composition of the vaginal microbiota changes and takes on added importance during pregnancy, serving as a barrier against infection for both mother and fetus. Despite the importance of the microorganisms that colonize the vagina, details of how changes in composition and diversity can impact pregnancy outcomes is poorly understood. This is especially true for woman with a high prevalence of Gardnerella vaginalis. Here we report on a diverse cohort of 749 women, enrolled in the InSPIRe cohort, during their final trimester of pregnancy. We show that Lactobacilli, including L. crispatus are important in maintaining low diversity, and that depletion in this critical community is linked with preterm delivery. We further demonstrate that it is overall diversity of the vaginal microbiota, not specific species, which provides the best indicator of risk.
Collapse
Affiliation(s)
- Agnes Baud
- Institut Pasteur, Université Paris Cité, Département de biologie computationnelle, F-75015, Paris, France
| | - Kenzo-Hugo Hillion
- Institut Pasteur, Université Paris Cité, Département de biologie computationnelle, F-75015, Paris, France
| | - Céline Plainvert
- AP-HP Centre-Université Paris Cité, FHU PREMA, Centre national de référence des streptocoques, Paris, France
| | | | - Asmaa Tazi
- AP-HP Centre-Université Paris Cité, FHU PREMA, Centre national de référence des streptocoques, Paris, France
| | - Laurent Mandelbrot
- Service de gynécologie-obstétrique, Hôpital Louis Mourier, AP-HP, Université de PARIS, IAME INSERM U1137, Paris, France
| | - Claire Poyart
- AP-HP Centre-Université Paris Cité, FHU PREMA, Centre national de référence des streptocoques, Paris, France
- Université de Paris, INSERM, Institut Cochin 1016, Paris, France
| | - Sean P Kennedy
- Institut Pasteur, Université Paris Cité, Département de biologie computationnelle, F-75015, Paris, France.
| |
Collapse
|
25
|
Carter KA, Fodor AA, Balkus JE, Zhang A, Serrano MG, Buck GA, Engel SM, Wu MC, Sun S. Vaginal Microbiome Metagenome Inference Accuracy: Differential Measurement Error according to Community Composition. mSystems 2023; 8:e0100322. [PMID: 36975801 PMCID: PMC10134888 DOI: 10.1128/msystems.01003-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Several studies have compared metagenome inference performance in different human body sites; however, none specifically reported on the vaginal microbiome. Findings from other body sites cannot easily be generalized to the vaginal microbiome due to unique features of vaginal microbial ecology, and investigators seeking to use metagenome inference in vaginal microbiome research are "flying blind" with respect to potential bias these methods may introduce into analyses. We compared the performance of PICRUSt2 and Tax4Fun2 using paired 16S rRNA gene amplicon sequencing and whole-metagenome sequencing data from vaginal samples from 72 pregnant individuals enrolled in the Pregnancy, Infection, and Nutrition (PIN) cohort. Participants were selected from those with known birth outcomes and adequate 16S rRNA gene amplicon sequencing data in a case-control design. Cases experienced early preterm birth (<32 weeks of gestation), and controls experienced term birth (37 to 41 weeks of gestation). PICRUSt2 and Tax4Fun2 performed modestly overall (median Spearman correlation coefficients between observed and predicted KEGG ortholog [KO] relative abundances of 0.20 and 0.22, respectively). Both methods performed best among Lactobacillus crispatus-dominated vaginal microbiotas (median Spearman correlation coefficients of 0.24 and 0.25, respectively) and worst among Lactobacillus iners-dominated microbiotas (median Spearman correlation coefficients of 0.06 and 0.11, respectively). The same pattern was observed when evaluating correlations between univariable hypothesis test P values generated with observed and predicted metagenome data. Differential metagenome inference performance across vaginal microbiota community types can be considered differential measurement error, which often causes differential misclassification. As such, metagenome inference will introduce hard-to-predict bias (toward or away from the null) in vaginal microbiome research. IMPORTANCE Compared to taxonomic composition, the functional potential within a bacterial community is more relevant to establishing mechanistic understandings and causal relationships between the microbiome and health outcomes. Metagenome inference attempts to bridge the gap between 16S rRNA gene amplicon sequencing and whole-metagenome sequencing by predicting a microbiome's gene content based on its taxonomic composition and annotated genome sequences of its members. Metagenome inference methods have been evaluated primarily among gut samples, where they appear to perform fairly well. Here, we show that metagenome inference performance is markedly worse for the vaginal microbiome and that performance varies across common vaginal microbiome community types. Because these community types are associated with sexual and reproductive outcomes, differential metagenome inference performance will bias vaginal microbiome studies, obscuring relationships of interest. Results from such studies should be interpreted with substantial caution and the understanding that they may over- or underestimate associations with metagenome content.
Collapse
Affiliation(s)
- Kayla A. Carter
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Jennifer E. Balkus
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Angela Zhang
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Myrna G. Serrano
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Gregory A. Buck
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Stephanie M. Engel
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael C. Wu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
26
|
Pedro NA, Fontebasso G, Pinto SN, Alves M, Mira NP. Acetate modulates the inhibitory effect of Lactobacillus gasseri against the pathogenic yeasts Candida albicans and Candida glabrata. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:88-102. [PMID: 37009625 PMCID: PMC10054710 DOI: 10.15698/mic2023.04.795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
The exploration of the interference prompted by commensal bacteria over fungal pathogens is an interesting alternative to develop new therapies. In this work we scrutinized how the presence of the poorly studied vaginal species Lactobacillus gasseri affects relevant pathophysiological traits of Candida albicans and Candida glabrata. L. gasseri was found to form mixed biofilms with C. albicans and C. glabrata resulting in pronounced death of the yeast cells, while bacterial viability was not affected. Reduced viability of the two yeasts was also observed upon co-cultivation with L. gasseri under planktonic conditions. Either in planktonic cultures or in biofilms, the anti-Candida effect of L. gasseri was augmented by acetate in a concentration-dependent manner. During planktonic co-cultivation the two Candida species counteracted the acidification prompted by L. gasseri thus impacting the balance between dissociated and undissociated organic acids. This feature couldn't be phenocopied in single-cultures of L. gasseri resulting in a broth enriched in acetic acid, while in the co-culture the non-toxic acetate prevailed. Altogether the results herein described advance the design of new anti-Candida therapies based on probiotics, in particular, those based on vaginal lactobacilli species, helping to reduce the significant burden that infections caused by Candida have today in human health.
Collapse
Affiliation(s)
- Nuno A. Pedro
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Gabriela Fontebasso
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N. Pinto
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta Alves
- CQE-Centro Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nuno P. Mira
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- * Corresponding Author: Nuno P Mira, Instituto Superior Técnico, Department of Bioengineering, University of Lisbon, Portugal; E-mail:
| |
Collapse
|
27
|
Holm JB, Carter KA, Ravel J, Brotman RM. Lactobacillus iners and genital health: molecular clues to an enigmatic vaginal species. Curr Infect Dis Rep 2023; 25:67-75. [PMID: 37234911 PMCID: PMC10209668 DOI: 10.1007/s11908-023-00798-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 03/09/2023]
Abstract
Purpose of review Vaginal lactobacilli are recognized as important drivers of genital health including protection against bacterial vaginosis and sexually transmitted infections. Lactobacillus iners is distinct from L. crispatus, L. gasseri, and L. jensenii by its high global prevalence in vaginal microbiomes, relatively small genome, production of only L-lactic acid, and inconsistent associations with genital health outcomes. In this review, we summarize our current understanding of the role of L. iners in the vaginal microbiome, highlight the importance of strain-level consideration for this species, and explain that while marker gene-based characterization of the composition of the vaginal microbiota does not capture strain-level resolution, whole metagenome sequencing can aid in expanding our understanding of this species in genital health. Recent findings L. iners exists in the vaginal microbiome as a unique combination of strains. The functional repertoires of these strain combinations are likely wide and contribute to the survival of this species in a variety of vaginal microenvironments. In published studies to date, strain-specific effects are aggregated and may yield imprecise estimates of risk associated with this species. Summary The worldwide high prevalence of Lactobacillus iners warrants more research into its functional roles in the vaginal microbiome and how it may directly impact susceptibility to infections. By incorporating strain-level resolution into future research endeavors, we may begin to appreciate L. iners more thoroughly and identify novel therapeutic targets for a variety of genital health challenges.
Collapse
Affiliation(s)
- Johanna B. Holm
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Kayla A. Carter
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of
Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Edfeldt G, Kaldhusdal V, Czarnewski P, Bradley F, Bergström S, Lajoie J, Xu J, Månberg A, Kimani J, Oyugi J, Nilsson P, Tjernlund A, Fowke KR, Kwon DS, Broliden K. Distinct cervical tissue-adherent and luminal microbiome communities correlate with mucosal host gene expression and protein levels in Kenyan sex workers. MICROBIOME 2023; 11:67. [PMID: 37004130 PMCID: PMC10064689 DOI: 10.1186/s40168-023-01502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The majority of studies characterizing female genital tract microbiota have focused on luminal organisms, while the presence and impact of tissue-adherent ectocervical microbiota remain incompletely understood. Studies of luminal and tissue-associated bacteria in the gastrointestinal tract suggest that these communities may have distinct roles in health and disease. Here, we performed a multi-omics characterization of paired luminal and tissue samples collected from a cohort of Kenyan female sex workers. RESULTS We identified a tissue-adherent bacterial microbiome, with a higher alpha diversity than the luminal microbiome, in which dominant genera overall included Gardnerella and Lactobacillus, followed by Prevotella, Atopobium, and Sneathia. About half of the L. iners-dominated luminal samples had a corresponding Gardnerella-dominated tissue microbiome. Broadly, the tissue-adherent microbiome was associated with fewer differentially expressed host genes than the luminal microbiome. Gene set enrichment analysis revealed that L. crispatus-dominated tissue-adherent communities were associated with protein translation and antimicrobial activity, whereas a highly diverse microbial community was associated with epithelial remodeling and pro-inflammatory pathways. Tissue-adherent communities dominated by L. iners and Gardnerella were associated with lower host transcriptional activity. Tissue-adherent microbiomes dominated by Lactobacillus and Gardnerella correlated with host protein profiles associated with epithelial barrier stability, although with a more pro-inflammatory profile for the Gardnerella-dominated microbiome group. Tissue samples with a highly diverse composition had a protein profile representing cell proliferation and pro-inflammatory activity. CONCLUSION We identified ectocervical tissue-adherent bacterial communities in all study participants of a female sex worker cohort. These communities were distinct from cervicovaginal luminal microbiota in a significant proportion of individuals. We further revealed that bacterial communities at both sites correlated with distinct host gene expression and protein levels. The tissue-adherent bacterial community could possibly act as a reservoir that seed the lumen with less optimal, non-Lactobacillus, bacteria. Video Abstract.
Collapse
Affiliation(s)
- Gabriella Edfeldt
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, J7:20, S-171 76, Stockholm, Sweden
| | - Vilde Kaldhusdal
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, J7:20, S-171 76, Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, SciLifeLab, Stockholm University, Solna, Sweden
| | - Frideborg Bradley
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, J7:20, S-171 76, Stockholm, Sweden
| | - Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Jiawu Xu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Julius Oyugi
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Annelie Tjernlund
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, J7:20, S-171 76, Stockholm, Sweden
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, J7:20, S-171 76, Stockholm, Sweden.
| |
Collapse
|
29
|
Holm JB, France MT, Gajer P, Ma B, Brotman RM, Shardell M, Forney L, Ravel J. High-resolution functional description of vaginal microbiomes in health and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.533147. [PMID: 36993583 PMCID: PMC10055360 DOI: 10.1101/2023.03.24.533147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background A Lactobacillus-dominated vaginal microbiome provides the first line of defense against numerous adverse genital tract health outcomes. However, there is limited understanding of the mechanisms by which the vaginal microbiome modulates protection, as prior work mostly described its composition through morphologic assessment and marker gene sequencing methods that do not capture functional information. To address this limitation, we developed metagenomic community state types (mgCSTs) which uses metagenomic sequences to describe and define vaginal microbiomes based on both composition and function. Results MgCSTs are categories of microbiomes classified using taxonomy and the functional potential encoded in their metagenomes. MgCSTs reflect unique combinations of metagenomic subspecies (mgSs), which are assemblages of bacterial strains of the same species, within a microbiome. We demonstrate that mgCSTs are associated with demographics such as age and race, as well as vaginal pH and Gram stain assessment of vaginal smears. Importantly, these associations varied between mgCSTs predominated by the same bacterial species. A subset of mgCSTs, including three of the six predominated by Gardnerella mgSs, as well as a mgSs of L. iners, were associated with a greater likelihood of Amsel bacterial vaginosis diagnosis. This L. iners mgSs, among other functional features, encoded enhanced genetic capabilities for epithelial cell attachment that could facilitate cytotoxin-mediated cell lysis. Finally, we report a mgSs and mgCST classifier as an easily applied, standardized method for use by the microbiome research community. Conclusions MgCSTs are a novel and easily implemented approach to reducing the dimension of complex metagenomic datasets, while maintaining their functional uniqueness. MgCSTs enable investigation of multiple strains of the same species and the functional diversity in that species. Future investigations of functional diversity may be key to unraveling the pathways by which the vaginal microbiome modulates protection to the genital tract. Importantly, our findings support the hypothesis that functional differences between vaginal microbiomes, including those that may look compositionally similar, are critical considerations in vaginal health. Ultimately, mgCSTs may lead to novel hypotheses concerning the role of the vaginal microbiome in promoting health and disease, and identify targets for novel prognostic, diagnostic, and therapeutic strategies to improve women's genital health.
Collapse
Affiliation(s)
- Johanna B. Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael T. France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle Shardell
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Larry Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Ojala T, Kankuri E, Kankainen M. Understanding human health through metatranscriptomics. Trends Mol Med 2023; 29:376-389. [PMID: 36842848 DOI: 10.1016/j.molmed.2023.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/27/2023]
Abstract
Metatranscriptomics has revolutionized our ability to explore and understand transcriptional programs in microbial communities. Moreover, it has enabled us to gain deeper and more specific insight into the microbial activities in human gut, respiratory, oral, and vaginal communities. Perhaps the most important contribution of metatranscriptomics arises, however, from the analyses of disease-associated communities. We review the advantages and disadvantages of metatranscriptomics analyses in understanding human health and disease. We focus on human tissues low in microbial biomass and conditions associated with dysbiotic microbiota. We conclude that a more widespread use of metatranscriptomics and increased knowledge on microbe activities will uncover critical interactions between microbes and host in human health and provide diagnostic basis for culturing-independent, direct functional pathogen identification.
Collapse
Affiliation(s)
- Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland; Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
31
|
Armstrong E, Hemmerling A, Joag V, Huibner S, Kulikova M, Crawford E, Castañeda GR, Anzala O, Obila O, Shahabi K, Ravel J, Coburn B, Cohen CR, Kaul R. Treatment Success Following Standard Antibiotic Treatment for Bacterial Vaginosis Is Not Associated With Pretreatment Genital Immune or Microbial Parameters. Open Forum Infect Dis 2023; 10:ofad007. [PMID: 36726539 PMCID: PMC9887266 DOI: 10.1093/ofid/ofad007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Background Bacterial vaginosis (BV) is a proinflammatory genital condition associated with adverse reproductive health outcomes, including increased HIV incidence. However, BV recurrence rates are high after standard antibiotic treatment. While the composition of the vaginal microbiota before BV treatment may be linked to BV recurrence, it is unclear whether the preceding genital immune milieu is predictive of treatment success. Methods Here we assessed whether baseline vaginal soluble immune factors or the composition of the vaginal microbiota predicted treatment success 1 month after metronidazole treatment in 2 separate cohorts of women with BV, 1 in the United States and 1 in Kenya; samples within 48 hours of BV treatment were also available for the US cohort. Results Neither soluble immune factors nor the composition of the vaginal microbiota before BV treatment was associated with treatment response in either cohort. In the US cohort, although the absolute abundances of key vaginal bacterial taxa pretreatment were not associated with treatment response, participants with sustained BV clearance had a more pronounced reduction in the absolute abundance of Gardnerella vaginalis immediately after treatment. Conclusions Pretreatment immune and microbial parameters were not predictive of BV treatment success in these clinical cohorts.
Collapse
Affiliation(s)
- Eric Armstrong
- Correspondence: Eric Armstrong, BSc, 1 King’s College Circle, Room 6356 Toronto, ON, Canada M5S 1A8 (); or Rupert Kaul, MD, PhD, 1 King’s College Circle, Room 6356, Toronto, ON, Canada M5S 1A8 ()
| | - Anke Hemmerling
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Vineet Joag
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sanja Huibner
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maria Kulikova
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Emily Crawford
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | | | - Omu Anzala
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Onyango Obila
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Kamnoosh Shahabi
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bryan Coburn
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada,Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Craig R Cohen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Rupert Kaul
- Correspondence: Eric Armstrong, BSc, 1 King’s College Circle, Room 6356 Toronto, ON, Canada M5S 1A8 (); or Rupert Kaul, MD, PhD, 1 King’s College Circle, Room 6356, Toronto, ON, Canada M5S 1A8 ()
| |
Collapse
|
32
|
Zhu B, Tao Z, Edupuganti L, Serrano MG, Buck GA. Roles of the Microbiota of the Female Reproductive Tract in Gynecological and Reproductive Health. Microbiol Mol Biol Rev 2022; 86:e0018121. [PMID: 36222685 PMCID: PMC9769908 DOI: 10.1128/mmbr.00181-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The microbiome of the female reproductive tract defies the convention that high biodiversity is a hallmark of an optimal ecosystem. Although not universally true, a homogeneous vaginal microbiome composed of species of Lactobacillus is generally associated with health, whereas vaginal microbiomes consisting of other taxa are generally associated with dysbiosis and a higher risk of disease. The past decade has seen a rapid advancement in our understanding of these unique biosystems. Of particular interest, substantial effort has been devoted to deciphering how members of the microbiome of the female reproductive tract impact pregnancy, with a focus on adverse outcomes, including but not limited to preterm birth. Herein, we review recent research efforts that are revealing the mechanisms by which these microorganisms of the female reproductive tract influence gynecologic and reproductive health of the female reproductive tract.
Collapse
Affiliation(s)
- Bin Zhu
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhi Tao
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Laahirie Edupuganti
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Myrna G. Serrano
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Gregory A. Buck
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
33
|
Persistence and In Vivo Evolution of Vaginal Bacterial Strains over a Multiyear Time Period. mSystems 2022; 7:e0089322. [PMID: 36413016 PMCID: PMC9764964 DOI: 10.1128/msystems.00893-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It is not clear whether the bacterial strains that comprise our microbiota are mostly long-term colonizers or transient residents. Studies have demonstrated decades-long persistence of bacterial strains within the gut, but persistence at other body sites has yet to be determined. The vaginal microbiota (VMB) is often dominated by Lactobacillus, although it is also commonly comprised of a more diverse set of other facultative and obligate anaerobes. Longitudinal studies have demonstrated that these communities can be stable over several menstrual cycles or can fluctuate temporally in species composition. We sought to determine whether the bacterial strains that comprise the VMB were capable of persisting over longer time periods. We performed shotgun metagenomics on paired samples from 10 participants collected 1 and 2 years apart. The resulting sequences were de novo assembled and binned into high-quality metagenome assembled genomes. Persistent strains were identified based on the sequence similarity between the genomes present at the two time points and were found in the VMB of six of the participants, three of which had multiple persistent strains. The VMB of the remaining four participants was similar in species composition at the two time points but was comprised of different strains. For the persistent strains, we were able to identify the mutations that were fixed in the populations over the observed time period, giving insight into the evolution of these bacteria. These results indicate that bacterial strains can persist in the vagina for extended periods of time, providing an opportunity for them to evolve in the host microenvironment. IMPORTANCE The stability of strains within the vaginal microbiota is largely uncharacterized. Should these strains be capable of persisting for extended periods of time, they could evolve within their host in response to selective pressures exerted by the host or by other members of the community. Here, we present preliminary findings demonstrating that bacterial strains can persist in the vagina for at least 1 year. We further characterized in vivo evolution of the persistent strains. Several participants were also found to not have persistent strains, despite having a vaginal microbiota (VMB) with similar species composition at the two time points. Our observations motivate future studies that collect samples from more participants, at more time points, and over even longer periods of time. Understanding which strains persist, what factors drive their persistence, and what selective pressures they face will inform the development and delivery of rationally designed live biotherapeutics for the vagina.
Collapse
|
34
|
Mahajan G, Doherty E, To T, Sutherland A, Grant J, Junaid A, Gulati A, LoGrande N, Izadifar Z, Timilsina SS, Horváth V, Plebani R, France M, Hood-Pishchany I, Rakoff-Nahoum S, Kwon DS, Goyal G, Prantil-Baun R, Ravel J, Ingber DE. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. MICROBIOME 2022; 10:201. [PMID: 36434666 PMCID: PMC9701078 DOI: 10.1186/s40168-022-01400-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 10/24/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND A dominance of non-iners Lactobacillus species in the vaginal microbiome is optimal and strongly associated with gynecological and obstetric health, while the presence of diverse obligate or facultative anaerobic bacteria and a paucity in Lactobacillus species, similar to communities found in bacterial vaginosis (BV), is considered non-optimal and associated with adverse health outcomes. Various therapeutic strategies are being explored to modulate the composition of the vaginal microbiome; however, there is no human model that faithfully reproduces the vaginal epithelial microenvironment for preclinical validation of potential therapeutics or testing hypotheses about vaginal epithelium-microbiome interactions. RESULTS Here, we describe an organ-on-a-chip (organ chip) microfluidic culture model of the human vaginal mucosa (vagina chip) that is lined by hormone-sensitive, primary vaginal epithelium interfaced with underlying stromal fibroblasts, which sustains a low physiological oxygen concentration in the epithelial lumen. We show that the Vagina Chip can be used to assess colonization by optimal L. crispatus consortia as well as non-optimal Gardnerella vaginalis-containing consortia, and to measure associated host innate immune responses. Co-culture and growth of the L. crispatus consortia on-chip was accompanied by maintenance of epithelial cell viability, accumulation of D- and L-lactic acid, maintenance of a physiologically relevant low pH, and down regulation of proinflammatory cytokines. In contrast, co-culture of G. vaginalis-containing consortia in the vagina chip resulted in epithelial cell injury, a rise in pH, and upregulation of proinflammatory cytokines. CONCLUSION This study demonstrates the potential of applying human organ chip technology to create a preclinical model of the human vaginal mucosa that can be used to better understand interactions between the vaginal microbiome and host tissues, as well as to evaluate the safety and efficacy of live biotherapeutics products. Video Abstract.
Collapse
Affiliation(s)
- Gautam Mahajan
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Present address: Emulate, Inc, 27 Drydock Ave, Boston, MA, 02210, USA
| | - Erin Doherty
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Tania To
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Arlene Sutherland
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Jennifer Grant
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Nina LoGrande
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Sanjay Sharma Timilsina
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Viktor Horváth
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Roberto Plebani
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Present address: Center on Advanced Studies and Technology, Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio, University of Chieti-Pescara, Chieti, Italy
| | - Michael France
- Institute for Genome Sciences and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Indriati Hood-Pishchany
- Division of Infectious Diseases and Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | - Seth Rakoff-Nahoum
- Division of Infectious Diseases and Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02139, USA.
| |
Collapse
|
35
|
France MT, Brown SE, Rompalo AM, Brotman RM, Ravel J. Identification of shared bacterial strains in the vaginal microbiota of related and unrelated reproductive-age mothers and daughters using genome-resolved metagenomics. PLoS One 2022; 17:e0275908. [PMID: 36288274 PMCID: PMC9604009 DOI: 10.1371/journal.pone.0275908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
It has been suggested that the human microbiome might be vertically transmitted from mother to offspring and that early colonizers may play a critical role in development of the immune system. Studies have shown limited support for the vertical transmission of the intestinal microbiota but the derivation of the vaginal microbiota remains largely unknown. Although the vaginal microbiota of children and reproductive age women differ in composition, the vaginal microbiota could be vertically transmitted. To determine whether there was any support for this hypothesis, we examined the vaginal microbiota of daughter-mother pairs from the Baltimore metropolitan area (ages 14-27, 32-51; n = 39). We assessed whether the daughter's microbiota was similar in composition to their mother's using metataxonomics. Permutation tests revealed that while some pairs did have similar vaginal microbiota, the degree of similarity did not exceed that expected by chance. Genome-resolved metagenomics was used to identify shared bacterial strains in a subset of the families (n = 22). We found a small number of bacterial strains that were shared between mother-daughter pairs but identified more shared strains between individuals from different families, indicating that vaginal bacteria may display biogeographic patterns. Earlier-in-life studies are needed to demonstrate vertical transmission of the vaginal microbiota.
Collapse
Affiliation(s)
- Michael T. France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah E. Brown
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anne M. Rompalo
- Division of Infectious Diseases, John Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
36
|
Dai W, Gui L, Du H, Li S, Wu R. The association of cervicovaginal Langerhans cells with clearance of human papillomavirus. Front Immunol 2022; 13:918190. [PMID: 36311788 PMCID: PMC9596771 DOI: 10.3389/fimmu.2022.918190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
Human papillomavirus (HPV) clearance is important in eliminating cervical cancer which contributes to high morbidity and mortality in women. Nevertheless, it remains largely unknown about key players in clearing pre-existing HPV infections. HPV antigens can be detected by the most important cervical antigen-presenting cells (Langerhans cells, LCs), of which the activities can be affected by cervicovaginal microbiota. In this review, we first introduce persistent HPV infections and then describe HPV-suppressed LCs activities, including but not limited to antigen uptake and presentation. Given specific transcriptional profiling of LCs in cervical epithelium, we also discuss the impact of cervicovaginal microbiota on LCs activation as well as the promise of exploring key microbial players in activating LCs and HPV-specific cellular immunity.
Collapse
Affiliation(s)
- Wenkui Dai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Liming Gui
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui Du
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Shuaicheng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ruifang Wu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
- *Correspondence: Ruifang Wu,
| |
Collapse
|
37
|
Jiang S, Chen Y, Han S, Lv L, Li L. Next-Generation Sequencing Applications for the Study of Fungal Pathogens. Microorganisms 2022; 10:microorganisms10101882. [PMID: 36296159 PMCID: PMC9609632 DOI: 10.3390/microorganisms10101882] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing (NGS) has become a widely used technology in biological research. NGS applications for clinical pathogen detection have become vital technologies. It is increasingly common to perform fast, accurate, and specific detection of clinical specimens using NGS. Pathogenic fungi with high virulence and drug resistance cause life-threatening clinical infections. NGS has had a significant biotechnological impact on detecting bacteria and viruses but is not equally applicable to fungi. There is a particularly urgent clinical need to use NGS to help identify fungi causing infections and prevent negative impacts. This review summarizes current research on NGS applications for fungi and offers a visual method of fungal detection. With the development of NGS and solutions for overcoming sequencing limitations, we suggest clinicians test specimens as soon as possible when encountering infections of unknown cause, suspected infections in vital organs, or rapidly progressive disease.
Collapse
Affiliation(s)
- Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Correspondence: ; Tel.: +86-0571-8723-6458
| |
Collapse
|
38
|
Hu H, Tan Y, Li C, Chen J, Kou Y, Xu ZZ, Liu Y, Tan Y, Dai L. StrainPanDA: Linked reconstruction of strain composition and gene content profiles via pangenome-based decomposition of metagenomic data. IMETA 2022; 1:e41. [PMID: 38868710 PMCID: PMC10989911 DOI: 10.1002/imt2.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 06/28/2022] [Indexed: 06/14/2024]
Abstract
Microbial strains of variable functional capacities coexist in microbiomes. Current bioinformatics methods of strain analysis cannot provide the direct linkage between strain composition and their gene contents from metagenomic data. Here we present Strain-level Pangenome Decomposition Analysis (StrainPanDA), a novel method that uses the pangenome coverage profile of multiple metagenomic samples to simultaneously reconstruct the composition and gene content variation of coexisting strains in microbial communities. We systematically validate the accuracy and robustness of StrainPanDA using synthetic data sets. To demonstrate the power of gene-centric strain profiling, we then apply StrainPanDA to analyze the gut microbiome samples of infants, as well as patients treated with fecal microbiota transplantation. We show that the linked reconstruction of strain composition and gene content profiles is critical for understanding the relationship between microbial adaptation and strain-specific functions (e.g., nutrient utilization and pathogenicity). Finally, StrainPanDA has minimal requirements for computing resources and can be scaled to process multiple species in a community in parallel. In short, StrainPanDA can be applied to metagenomic data sets to detect the association between molecular functions and microbial/host phenotypes to formulate testable hypotheses and gain novel biological insights at the strain or subspecies level.
Collapse
Affiliation(s)
- Han Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Bioinformatics DepartmentXbiome, Scientific Research Building, Tsinghua High‐Tech ParkShenzhenChina
| | - Yuxiang Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Chenhao Li
- Center for Computational and Integrative BiologyMassachusetts General Hospital and Harvard Medical School, Richard B. Simches Research CenterBostonMassachusettsUSA
| | - Junyu Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Yan Kou
- Bioinformatics DepartmentXbiome, Scientific Research Building, Tsinghua High‐Tech ParkShenzhenChina
| | - Zhenjiang Zech Xu
- Department of Food Science and Technology, State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
| | - Yang‐Yu Liu
- Channing Division of Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yan Tan
- Bioinformatics DepartmentXbiome, Scientific Research Building, Tsinghua High‐Tech ParkShenzhenChina
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
39
|
Guo C, Dai W, Zhou Q, Gui L, Cai H, Wu D, Hou J, Li C, Li S, Du H, Wu R. Cervicovaginal microbiota significantly changed for HPV-positive women with high-grade squamous intraepithelial lesion. Front Cell Infect Microbiol 2022; 12:973875. [PMID: 35992171 PMCID: PMC9386141 DOI: 10.3389/fcimb.2022.973875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Lower female genital tract is colonized by a variety of microbes (cervicovaginal microbiota, CVM) which associate with the risk of genital infection. This study characterized CVM for 149 Chinese women with different status of human papillomavirus (HPV) infection and squamous intraepithelial lesion (SIL): no HPV infection (HPV-), HPV infection without significant SIL (HPV+NoSIL), HPV infection with low-grade SIL (HPV+LSIL) and HPV infection with high-grade SIL (HPV+HSIL). Analysis results showed CVM has dramatically changed in HPV+HSIL group when compared to HPV+LSIL group, but it exhibited no significant differences between HPV- and HPV+NoSIL groups as well as between HPV+NoSIL and HPV+LSIL groups. In consistence, random forest analysis found more notable differences in HPV+HSIL vs HPV+LSIL comparison than in other comparisons. In addition, depletion of Lactobacillus in CVM was more to be frequently identified in SIL-positive women as compared to SIL-negative individuals. Our findings suggested that significant CVM differences occurred when SIL developed to HSIL which was caused by persistent HPV infection.
Collapse
Affiliation(s)
- Chunlei Guo
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Wenkui Dai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Qian Zhou
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liming Gui
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Han Cai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jun Hou
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hui Du
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
- *Correspondence: Ruifang Wu, ; Hui Du,
| | - Ruifang Wu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
- *Correspondence: Ruifang Wu, ; Hui Du,
| |
Collapse
|
40
|
Complete Genome Sequences of Ezakiella coagulans C0061C1 and Fenollaria massiliensis C0061C2. Microbiol Resour Announc 2022; 11:e0044422. [PMID: 35861554 PMCID: PMC9302094 DOI: 10.1128/mra.00444-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ezakiella coagulans and Fenollaria massiliensis are two obligate anaerobic bacteria in the family Peptoniphilaceae and are both uncommon members of the human vaginal microbiota. We isolated a strain of each bacterium from the same vaginal swab specimen and here report the first complete genome sequences of the two species.
Collapse
|
41
|
Bommana S, Richards G, Kama M, Kodimerla R, Jijakli K, Read TD, Dean D. Metagenomic Shotgun Sequencing of Endocervical, Vaginal, and Rectal Samples among Fijian Women with and without Chlamydia trachomatis Reveals Disparate Microbial Populations and Function across Anatomic Sites: a Pilot Study. Microbiol Spectr 2022; 10:e0010522. [PMID: 35579443 PMCID: PMC9241848 DOI: 10.1128/spectrum.00105-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is a sexually transmitted pathogen and a global public health concern. Little is known about the microbial composition and function across endocervical, vaginal, and rectal microbiomes in the context of C. trachomatis infection. We evaluated the microbiomes of 10 age-matched high-risk Fijian women with and without C. trachomatis using metagenomic shotgun sequencing (MSS). Lactobacillus iners and Lactobacillus crispatus dominated the vagina and endocervix of uninfected women. Species often found in higher relative abundance in bacterial vaginosis (BV)-Mageeibacillus indolicus, Prevotella spp., Sneathia spp., Gardnerella vaginalis, and Veillonellaceae spp.-were dominant in C. trachomatis-infected women. This combination of BV pathogens was unique to Pacific Islanders compared to previously studied groups. The C. trachomatis-infected endocervix had a higher diversity of microbiota and microbial profiles that were somewhat different from those of the vagina. However, community state type III (CST-III) and CST-IV predominated, reflecting pathogenic microbiota regardless of C. trachomatis infection status. Rectal microbiomes were dominated by Prevotella and Bacteroides, although four women had unique microbiomes with Gardnerella, Akkermansia, Bifidobacterium, and Brachyspira. A high level of microbial similarity across microbiomes in two C. trachomatis-infected women suggested intragenitorectal transmission. A number of metabolic pathways in the endocervix, driven by BV pathogens and C. trachomatis to meet nutritional requirements for survival/growth, 5-fold higher than that in the vagina indicated that endocervical microbial functions are likely more diverse and complex than those in the vagina. Our novel findings provide the impetus for larger prospective studies to interrogate microbial/microbiome interactions that promote C. trachomatis infection and better define the unique genitorectal microbiomes of Pacific Islanders. IMPORTANCE Chlamydia trachomatis is the primary cause of bacterial sexually transmitted infections worldwide, with a disturbing increase in annual rates. While there is a plethora of data on healthy and pathogenic vaginal microbiomes-defining microbial profiles and associations with sexually transmitted infections (STIs)-far fewer studies have similarly examined the endocervix or rectum. Further, vulnerable populations, such as Pacific Islanders, remain underrepresented in research. We investigated the microbial composition, structure, and function of these anatomic microbiomes using metagenomic shotgun sequencing among a Fijian cohort. We found, primarily among C. trachomatis-infected women, unique microbial profiles in endocervical, vaginal, and rectal microbiomes with an increased diversity and more complex microbial pathways in endocervical than vaginal microbiomes. Similarities in microbiome composition across sites for some women suggested intragenitorectal transmission. These novel insights into genitorectal microbiomes and their purported function require prospective studies to better define Pacific Islander microbiomes and microbial/microbiome interactions that promote C. trachomatis infection.
Collapse
Affiliation(s)
- Sankhya Bommana
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
| | - Gracie Richards
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
| | - Mike Kama
- Ministry of Health and Medical Services, Suva, Fiji
| | - Reshma Kodimerla
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
| | - Kenan Jijakli
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Timothy D. Read
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deborah Dean
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Bioengineering, Joint Graduate Program, University of California San Francisco and University of California Berkeley, San Francisco, California, USA
- Bixby Center for Global Reproductive Health, University of California San Francisco, San Francisco, California, USA
- Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
42
|
Ma B, Sundararajan S, Nadimpalli G, France M, McComb E, Rutt L, Lemme-Dumit JM, Janofsky E, Roskes LS, Gajer P, Fu L, Yang H, Humphrys M, Tallon LJ, Sadzewicz L, Pasetti MF, Ravel J, Viscardi RM. Highly Specialized Carbohydrate Metabolism Capability in Bifidobacterium Strains Associated with Intestinal Barrier Maturation in Early Preterm Infants. mBio 2022; 13:e0129922. [PMID: 35695455 PMCID: PMC9239261 DOI: 10.1128/mbio.01299-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
Abstract
"Leaky gut," or high intestinal barrier permeability, is common in preterm newborns. The role of the microbiota in this process remains largely uncharacterized. We employed both short- and long-read sequencing of the 16S rRNA gene and metagenomes to characterize the intestinal microbiome of a longitudinal cohort of 113 preterm infants born between 240/7 and 326/7 weeks of gestation. Enabled by enhanced taxonomic resolution, we found that a significantly increased abundance of Bifidobacterium breve and a diet rich in mother's breastmilk were associated with intestinal barrier maturation during the first week of life. We combined these factors using genome-resolved metagenomics and identified a highly specialized genetic capability of the Bifidobacterium strains to assimilate human milk oligosaccharides and host-derived glycoproteins. Our study proposes mechanistic roles of breastmilk feeding and intestinal microbial colonization in postnatal intestinal barrier maturation; these observations are critical toward advancing therapeutics to prevent and treat hyperpermeable gut-associated conditions, including necrotizing enterocolitis (NEC). IMPORTANCE Despite improvements in neonatal intensive care, necrotizing enterocolitis (NEC) remains a leading cause of morbidity and mortality. "Leaky gut," or intestinal barrier immaturity with elevated intestinal permeability, is the proximate cause of susceptibility to NEC. Early detection and intervention to prevent leaky gut in "at-risk" preterm neonates are critical for decreasing the risk of potentially life-threatening complications like NEC. However, the complex interactions between the developing gut microbial community, nutrition, and intestinal barrier function remain largely uncharacterized. In this study, we reveal the critical role of a sufficient breastmilk feeding volume and the specialized carbohydrate metabolism capability of Bifidobacterium in the coordinated postnatal improvement of the intestinal barrier. Determining the clinical and microbial biomarkers that drive the intestinal developmental disparity will inform early detection and novel therapeutic strategies to promote appropriate intestinal barrier maturation and prevent NEC and other adverse health conditions in preterm infants.
Collapse
Affiliation(s)
- Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sripriya Sundararajan
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gita Nadimpalli
- Department of Epidemiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elias McComb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lindsay Rutt
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jose M. Lemme-Dumit
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elise Janofsky
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa S. Roskes
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Li Fu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hongqiu Yang
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mike Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Luke J. Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcela F. Pasetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rose M. Viscardi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Mohd Zaki A, Hadingham A, Flaviani F, Haque Y, Mi JD, Finucane D, Dalla Valle G, Mason AJ, Saqi M, Gibbons DL, Tribe RM. Neutrophils Dominate the Cervical Immune Cell Population in Pregnancy and Their Transcriptome Correlates With the Microbial Vaginal Environment. Front Microbiol 2022; 13:904451. [PMID: 35774454 PMCID: PMC9237529 DOI: 10.3389/fmicb.2022.904451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 01/29/2023] Open
Abstract
The cervicovaginal environment in pregnancy is proposed to influence risk of spontaneous preterm birth. The environment is shaped both by the resident microbiota and local inflammation driven by the host response (epithelia, immune cells and mucous). The contributions of the microbiota, metabolome and host defence peptides have been investigated, but less is known about the immune cell populations and how they may respond to the vaginal environment. Here we investigated the maternal immune cell populations at the cervicovaginal interface in early to mid-pregnancy (10–24 weeks of gestation, samples from N = 46 women), we confirmed neutrophils as the predominant cell type and characterised associations between the cervical neutrophil transcriptome and the cervicovaginal metagenome (N = 9 women). In this exploratory study, the neutrophil cell proportion was affected by gestation at sampling but not by birth outcome or ethnicity. Following RNA sequencing (RNA-seq) of a subset of neutrophil enriched cells, principal component analysis of the transcriptome profiles indicated that cells from seven women clustered closely together these women had a less diverse cervicovaginal microbiota than the remaining three women. Expression of genes involved in neutrophil mediated immunity, activation, degranulation, and other immune functions correlated negatively with Gardnerella vaginalis abundance and positively with Lactobacillus iners abundance; microbes previously associated with birth outcome. The finding that neutrophils are the dominant immune cell type in the cervix during pregnancy and that the cervical neutrophil transcriptome of pregnant women may be modified in response to the microbial cervicovaginal environment, or vice versa, establishes the rationale for investigating associations between the innate immune response, cervical shortening and spontaneous preterm birth and the underlying mechanisms.
Collapse
Affiliation(s)
- Amirah Mohd Zaki
- Department of Women and Children’s Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Alicia Hadingham
- Department of Women and Children’s Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Flavia Flaviani
- Department of Women and Children’s Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Yasmin Haque
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Jia Dai Mi
- Department of Women and Children’s Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Debbie Finucane
- Department of Women and Children’s Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Giorgia Dalla Valle
- Department of Women and Children’s Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - A. James Mason
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Mansoor Saqi
- NIHR Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Deena L. Gibbons
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Rachel M. Tribe
- Department of Women and Children’s Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- *Correspondence: Rachel M. Tribe,
| |
Collapse
|
44
|
Hakimjavadi H, George SH, Taub M, Dodds LV, Sanchez-Covarrubias AP, Huang M, Pearson JM, Slomovitz BM, Kobetz EN, Gharaibeh R, Sowamber R, Pinto A, Chamala S, Schlumbrecht MP. The vaginal microbiome is associated with endometrial cancer grade and histology. CANCER RESEARCH COMMUNICATIONS 2022; 2:447-455. [PMID: 35928983 PMCID: PMC9345414 DOI: 10.1158/2767-9764.crc-22-0075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The human microbiome has been strongly correlated with disease pathology and outcomes, yet remains relatively underexplored in patients with malignant endometrial disease. In this study, vaginal microbiome samples were prospectively collected at the time of hysterectomy from 61 racially and ethnically diverse patients from three disease conditions: 1) benign gynecologic disease (controls, n=11), 2) low-grade endometrial carcinoma (n=30), and 3) high-grade endometrial carcinoma (n=20). Extracted DNA underwent shotgun metagenomics sequencing, and microbial α and β diversities were calculated. Hierarchical clustering was used to describe community state types (CST), which were then compared by microbial diversity and grade. Differential abundance was calculated, and machine learning utilized to assess the predictive value of bacterial abundance to distinguish grade and histology. Both α- and β-diversity were associated with patient tumor grade. Four vaginal CST were identified that associated with grade of disease. Different histologies also demonstrated variation in CST within tumor grades. Using supervised clustering algorithms, critical microbiome markers at the species level were used to build models that predicted benign vs carcinoma, high-grade carcinoma versus benign, and high-grade versus low-grade carcinoma with high accuracy. These results confirm that the vaginal microbiome segregates not just benign disease from endometrial cancer, but is predictive of histology and grade. Further characterization of these findings in large, prospective studies is needed to elucidate their potential clinical applications.
Collapse
Affiliation(s)
- Hesamedin Hakimjavadi
- Department of Pathology, Children's Hospital of Los Angeles, Los Angeles, California
| | - Sophia H. George
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Michael Taub
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Leah V. Dodds
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Alex P. Sanchez-Covarrubias
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Marilyn Huang
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - J. Matt Pearson
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Brian M. Slomovitz
- Department of Obstetrics and Gynecology, Mount Sinai Medical Center, Miami, Florida
| | - Erin N. Kobetz
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Raad Gharaibeh
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | - Andre Pinto
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida
| | - Srikar Chamala
- Department of Pathology, Children's Hospital of Los Angeles, Los Angeles, California
| | - Matthew P. Schlumbrecht
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
45
|
Characterization of a novel type of glycogen-degrading amylopullulanase from Lactobacillus crispatus. Appl Microbiol Biotechnol 2022; 106:4053-4064. [PMID: 35612627 DOI: 10.1007/s00253-022-11975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
Glycogen is one of the major carbohydrates utilized by the human vaginal microbiota, which is commonly dominated by Lactobacillus, especially L. crispatus. An in silico analysis predicted that a type I pullulanase was involved in glycogen degradation in L. crispatus. The biochemical and genetic properties of the pullulanase still need to be determined. Here, we de novo identified the glycogen (Glg)-utilization enzyme (named GlgU) from L. crispatus through a biochemical assay. GlgU was optimally active at acidic pH, approximately 4.0 ~ 4.5, and was able to hydrolyze glycogen into low-molecular-weight malto-oligosaccharides. Actually, GlgU was a type II pullulanase (amylopullulanase) with just one catalytic domain that possessed substrate specificity toward both α-1,4 and α-1,6-glucosidic bonds. Phylogenetically, GlgU was obviously divergent from the known amylases and pullulanases (including amylopullulanases) in lactobacilli. In addition, we confirmed the catalytic activity of glgU in a nonglycogen-utilizing lactobacilli strain, demonstrating the essential role of glgU in glycogen metabolism. Overall, this study characterized a novel type of amylopullulanases, contributing to the knowledge of the glycogen utilization mechanism of the dominant species of human vaginal microbiota. KEY POINTS: • GlgU was a type II pullulanase, not a type I pullulanase predicted before. • GlgU was able to completely hydrolyze glycogen into malto-oligosaccharides. • GlgU played a key role in the metabolism of extracellular glycogen.
Collapse
|
46
|
HIV-associated vaginal microbiome and inflammation predict spontaneous preterm birth in Zambia. Sci Rep 2022; 12:8573. [PMID: 35595739 PMCID: PMC9123167 DOI: 10.1038/s41598-022-12424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022] Open
Abstract
A Lactobacillus-deficient, anaerobe-rich vaginal microbiome has been associated with local inflammation and spontaneous preterm birth (sPTB), but few studies have assessed this association in the setting of HIV. We performed metagenomic sequencing and inflammatory marker assays on vaginal swabs collected in pregnancy. We grouped samples into 7 metagenomic clusters (mgClust) using the non-redundant VIRGO catalogue, and derived inflammatory scores by factor analysis. Of 221 participants, median Shannon diversity index (SDI) was highest in HIV+ with detectable viral load (1.31, IQR: 0.85–1.66; p < 0.001) and HIV+ with undetectable virus (1.17, IQR: 0.51–1.66; p = 0.01) compared to HIV− (0.74, IQR: 0.35–1.26). Inflammatory scores positively correlated with SDI (+ 0.66, 95%CI 0.28, 1.03; p = 0.001), highest among anaerobe-rich mgClust2–mgClust6. HIV was associated with predominance of anaerobe-rich mgClust5 (17% vs. 6%; p = 0.02) and mgClust6 (27% vs. 11%; p = 0.002). Relative abundance of a novel Gardnerella metagenomic subspecies > 50% predicted sPTB (RR 2.6; 95%CI: 1.1, 6.4) and was higher in HIV+ (23% vs. 10%; p = 0.001). A novel Gardnerella metagenomic subspecies more abundant in women with HIV predicted sPTB. The risk of sPTB among women with HIV may be mediated by the vaginal microbiome and inflammation, suggesting potential targets for prevention.
Collapse
|
47
|
Genetic Elements Orchestrating Lactobacillus crispatus Glycogen Metabolism in the Vagina. Int J Mol Sci 2022; 23:ijms23105590. [PMID: 35628398 PMCID: PMC9141943 DOI: 10.3390/ijms23105590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Glycogen in the female lower reproductive tract is a major carbon source for colonization and acidification by common vaginal Lactobacillus species, such as Lactobacillus crispatus. Previously, we identified the amylopullulanase encoding gene pulA of Lactobacillus crispatus to correlate with the ability to autonomously utilize glycogen for growth. Here, we further characterize genetic variation and differential regulation of pulA affecting the presence of its gene product on the outer surface layer. We show that alpha-glucan degrading activity dissipates when Lactobacillus crispatus is grown on glucose, maltose and maltotriose, in agreement with carbon catabolite repression elements flanking the pulA gene. Proteome analysis of the S-layer confirmed that the amylopullulanase protein is highly abundant in an S-layer enriched fraction, but not in a strain with a defective amylopullulanase variant or in an amylopullulanase-sufficient strain grown on glucose. In addition, we provide evidence that Lactobacillus crispatus pulA mutants are relevant in vivo, as they are commonly observed in metagenome datasets of human vaginal microbial communities. Analysis of the largest publicly available dataset of 1507 human vaginal metagenomes indicates that among the 270 samples that contain a Lactobacillus crispatuspulA gene, 62 samples (23%) had a defective variant of this gene. Taken together, these results demonstrate that both environmental, as well as genetic factors explain the variation of Lactobacillus crispatus alpha-glucosidases in the vaginal environment.
Collapse
|
48
|
Guang SA, Adashi EY. Vaginitis in the Age of the Microbiome. J Womens Health (Larchmt) 2022; 31:459-461. [PMID: 35467442 DOI: 10.1089/jwh.2022.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stephanie A Guang
- The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Eli Y Adashi
- Depatment of Medicine and Biological Sciences, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
49
|
Lu F, Wei J, Zhong Y, Feng Y, Ma B, Xiong Y, Wei K, Tan B, Chen T. Antibiotic Therapy and Vaginal Microbiota Transplantation Reduce Endometriosis Disease Progression in Female Mice via NF-κB Signaling Pathway. Front Med (Lausanne) 2022; 9:831115. [PMID: 35433736 PMCID: PMC9005645 DOI: 10.3389/fmed.2022.831115] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/01/2022] [Indexed: 11/26/2022] Open
Abstract
Endometriosis (EMS) is a disease characterized by estrogen-dependent, chronic inflammatory, and annoying symptoms, which inflicts about 10% reproductive-age women. The diagnosis of endometriosis mainly depends on pathological examination after surgical resection while the pathogenesis of EMS is not clear enough. Surgical resection and drug therapy (including painkillers and hormone therapy, especially gonadotropin-releasing hormone analogs, GnRH-a) are widely used, but they are expensive and have many side effects. There are few studies on vaginal microorganisms in women with endometriosis. We collected vaginal secretions from women with EMS confirmed by pathology and demonstrated that they were different from that of healthy women by 16s rRNA high-throughput sequencing. Additionally, we established the EMS model in female mice by intraperitoneally injecting fragments from donor mice (3-week growth). Then, the mice were treated with mixed antibiotics (vagina) and NF-κB signaling pathway inhibitors (intraperitoneal injection), respectively. The result suggested that the ectopic lesions were inhibited. In addition, inflammatory cytokines IL-1β, IL-6, and TNF-α in peritoneal fluid, cell proliferation marker ki-67, and macrophage marker Iba-1 in ectopic lesions decreased significantly from that of mock mice. We also observed similar results as above by vaginal microbiota transplantation (VMT) and subcutaneous injection of leuprorelin acetate (LA, one of GnRH-a) for mice with EMS. These results showed that vaginal use of antibiotics or VMT is helpful to treat endometriosis in mice. However, due to the great difference between human and mouse vaginal microbiota, its mechanism and clinical transformation application still need to be further studied in the future.
Collapse
Affiliation(s)
- Feilei Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Wei
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yanying Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Feng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Ma
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yifei Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kehong Wei
- Queen Mary School, Nanchang University, Nanchang, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Buzhen Tan,
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, China
- Tingtao Chen,
| |
Collapse
|
50
|
Towards a deeper understanding of the vaginal microbiota. Nat Microbiol 2022; 7:367-378. [PMID: 35246662 DOI: 10.1038/s41564-022-01083-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/03/2022] [Indexed: 12/30/2022]
Abstract
The human vaginal microbiota is a critical determinant of vaginal health. These communities live in close association with the vaginal epithelium and rely on host tissues for resources. Although often dominated by lactobacilli, the vaginal microbiota is also frequently composed of a collection of facultative and obligate anaerobes. The prevalence of these communities with a paucity of Lactobacillus species varies among women, and epidemiological studies have associated them with an increased risk of adverse health outcomes. The mechanisms that drive these associations have yet to be described in detail, with few studies establishing causative relationships. Here, we review our current understanding of the vaginal microbiota and its connection with host health. We centre our discussion around the biology of the vaginal microbiota when Lactobacillus species are dominant versus when they are not, including host factors that are implicated in shaping these microbial communities and the resulting adverse health outcomes. We discuss current approaches to modulate the vaginal microbiota, including probiotics and vaginal microbiome transplants, and argue that new model systems of the cervicovaginal environment that incorporate the vaginal microbiota are needed to progress from association to mechanism and this will prove invaluable for future research.
Collapse
|