1
|
Zai X, Cordovez V, Zhu F, Zhao M, Diao X, Zhang F, Raaijmakers JM, Song C. C4 cereal and biofuel crop microbiomes. Trends Microbiol 2024; 32:1119-1131. [PMID: 38772810 DOI: 10.1016/j.tim.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/23/2024]
Abstract
Microbiomes provide multiple life-support functions for plants, including nutrient acquisition and tolerance to abiotic and biotic stresses. Considering the importance of C4 cereal and biofuel crops for food security under climate change conditions, more attention has been given recently to C4 plant microbiome assembly and functions. Here, we review the current status of C4 cereal and biofuel crop microbiome research with a focus on beneficial microbial traits for crop growth and health. We highlight the importance of environmental factors and plant genetics in C4 crop microbiome assembly and pinpoint current knowledge gaps. Finally, we discuss the potential of foxtail millet as a C4 model species and outline future perspectives of C4 plant microbiome research.
Collapse
Affiliation(s)
- Xiaoyu Zai
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
| | - Feng Zhu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 050021 Shijiazhuang, China
| | - Meicheng Zhao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 050021 Shijiazhuang, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands; Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Chunxu Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China.
| |
Collapse
|
2
|
Wang C, Wang T, Liu M, Zhang S, Wu C. Small peptide SiDVL/RTFLs from foxtail millet inhibit root growth through repressing auxin signaling in transgenic Arabidopsis. PLANT CELL REPORTS 2024; 43:268. [PMID: 39433684 DOI: 10.1007/s00299-024-03360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
KEY MESSAGE SiDVLs inhibit auxin signaling to regulate root growth by enhancing the expression of Aux/IAAs and reducing the protein accumulation of PINs. The DEVIL/ ROTUNDIFOLIA (DVL/RTFL), a small polypeptide family, is conserved in seed plants and important in regulating plant growth and development. However, the molecular mechanisms remain largely unknown. Here, 27 SiDVLs were identified in foxtail millet genome. Overexpression of three SiDVLs in Arabidopsis (Arabidopsis thaliana) strongly repressed the plant growth, especially the root growth. We demonstrate that overexpression of SiDVLs enhances Auxin/Indole-3-Acetic Acids (Aux/IAAs) transcription, thereby weakening auxin signaling in the roots. Furthermore, SiDVLs reduced the protein levels of the auxin transporters PIN-formed 1 (PIN1), PIN2, and PIN7 in the roots. The impaired auxin signaling reduces the cell division and elongation. In conclusion, SiDVLs suppress cell division and elongation in root by inhibiting auxin signaling and transport, which lead to the reduced root growth.
Collapse
Affiliation(s)
- Chunyan Wang
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Tongtong Wang
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Miao Liu
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Shizhong Zhang
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Changai Wu
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
3
|
Chang X, Zhang S, Cao C, Zhou J, Wang X, Zhang D, Xiang J. Transcriptome analysis and characteristics of drought resistance related genes in four varieties of foxtail millet [ Setaria italica]. Heliyon 2024; 10:e38083. [PMID: 39364255 PMCID: PMC11447331 DOI: 10.1016/j.heliyon.2024.e38083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
Foxtail millet [Setaria italica] plays a crucial role as a multigrain crop in agricultural production. However, due to future extreme weather conditions, drought remains the main abiotic stress that limits foxtail millet yield, it is highly significant to screen for drought-tolerant varieties throughout the entire growth period and identify the regulatory genes associated with drought resistance in foxtail millet breeding. We identified 217 foxtail millet seed resources for drought resistance during the maturity stage in the field, and subsequently categorized them into different levels of drought resistance. Two cultivars with extremely strong drought resistance during the maturity stage in the field, JKH4 (Chi 5422) and JKH6 (Chigu 26), as well as two cultivars with extremely weak drought resistance during the maturity stage in the field, JRK3 (17M1309) and JRK6 (Canggu 9), were selected for physiological comparison and transcriptome sequencing before and after drought treatment. Transcriptome analysis at the seedling stage revealed that JRK3 and JRK6 cultivar primarily regulated phenylpropanoid biosynthesis, MAPK signaling pathogen-plant, and plant hormone signal transduction pathway in response to drought stress. On the other hand, the fatty acid elongation pathway of JKH4 and JKH6 variety was found to be more significant. Furthermore, 22 drought resistance related genes were screened through transcriptome analysis of four foxtail millet varieties. These findings could offer valuable theoretical guidance for breeding foxtail millet with enhanced drought resistance and potentially facilitate the development of genetically engineered drought-resistant foxtail millet varieties.
Collapse
Affiliation(s)
- Xiling Chang
- College of Biological Sciences and Technology, Yili Normal University, Yili, 830500, Xinjiang, China
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shanxi, China
| | - Shuangxing Zhang
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shanxi, China
| | - Changyu Cao
- College of Biological Sciences and Technology, Yili Normal University, Yili, 830500, Xinjiang, China
| | - Jianfei Zhou
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shanxi, China
| | - Xiaoxing Wang
- College of Biological Sciences and Technology, Yili Normal University, Yili, 830500, Xinjiang, China
| | - Dingguo Zhang
- College of Biological Sciences and Technology, Yili Normal University, Yili, 830500, Xinjiang, China
| | - Jishan Xiang
- College of Biological Sciences and Technology, Yili Normal University, Yili, 830500, Xinjiang, China
- Chi Feng University, Chifeng, 024000, China
| |
Collapse
|
4
|
Zhang H, Luo Y, Wang Y, Zhao J, Wang Y, Li Y, Pu Y, Wang X, Ren X, Zhao B. Genome-Wide Identification and Characterization of Alternative Oxidase ( AOX) Genes in Foxtail Millet ( Setaria italica): Insights into Their Abiotic Stress Response. PLANTS (BASEL, SWITZERLAND) 2024; 13:2565. [PMID: 39339540 PMCID: PMC11434880 DOI: 10.3390/plants13182565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Alternative oxidase (AOX) serves as a critical terminal oxidase within the plant respiratory pathway, playing a significant role in cellular responses to various stresses. Foxtail millet (Setaria italica), a crop extensively cultivated across Asia, is renowned for its remarkable tolerance to abiotic stresses and minimal requirement for fertilizer. In this study, we conducted a comprehensive genome-wide identification of AOX genes in foxtail millet genome, discovering a total of five SiAOX genes. Phylogenetic analysis categorized these SiAOX members into two subgroups. Prediction of cis-elements within the promoter regions, coupled with co-expression network analysis, intimated that SiAOX proteins are likely involved in the plant's adaptive response to abiotic stresses. Employing RNA sequencing (RNA-seq) and real-time quantitative PCR (RT-qPCR), we scrutinized the expression patterns of the SiAOX genes across a variety of tissues and under multiple abiotic stress conditions. Specifically, our analysis uncovered that SiAOX1, SiAOX2, SiAOX4, and SiAOX5 display distinct tissue-specific expression profiles. Furthermore, SiAOX2, SiAOX3, SiAOX4, and SiAOX5 exhibit responsive expression patterns under abiotic stress conditions, with significant differences in expression levels observed between the shoot and root tissues of foxtail millet seedlings. Haplotype analysis of SiAOX4 and SiAOX5 revealed that these genes are in linkage disequilibrium, with Hap_2 being the superior haplotype for both, potentially conferring enhanced cold stress tolerance in the cultivar group. These findings suggest that both SiAOX4 and SiAOX5 may be targeted for selection in future breeding programs aimed at improving foxtail millet's resilience to cold stress.
Collapse
Affiliation(s)
- Hui Zhang
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yidan Luo
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yujing Wang
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Juan Zhao
- Department of Basic Sciences, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yueyue Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yajun Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yihao Pu
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xingchun Wang
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xuemei Ren
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Bo Zhao
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
5
|
Zheng J, Ma Y, Liang Y, Zhang T, Chen C, Amo A, Wang W, Ma F, Han Y, Li H, Hou S, Yang Y. An integration of genome-wide survey, homologous comparison and gene expression analysis provides a basic framework for the ZRT, IRT-like protein (ZIP) in foxtail millet. FRONTIERS IN PLANT SCIENCE 2024; 15:1467015. [PMID: 39301166 PMCID: PMC11410603 DOI: 10.3389/fpls.2024.1467015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Essential mineral elements such as zinc and iron play a crucial role in maintaining crop growth and development, as well as ensuring human health. Foxtail millet is an ancient food crop rich in mineral elements and constitutes an important dietary supplement for nutrient-deficient populations. The ZIP (ZRT, IRT-like protein) transporters are primarily responsible for the absorption, transportation and accumulation of Zn, Fe and other metal ions in plants. Here, we identified 14 ZIP transporters in foxtail millet (SiZIP) and systematically characterized their phylogenetic relationships, expression characteristics, sequence variations, and responses to various abiotic stresses. As a result, SiZIPs display rich spatiotemporal expression characteristics in foxtail millet. Multiple SiZIPs demonstrated significant responses to Fe, Cd, Na, and K metal ions, as well as drought and cold stresses. Based on homologous comparisons, expression characteristics and previous studies, the functions of SiZIPs were predicted as being classified into several categories: absorption/efflux, transport/distribution and accumulation of metal ions. Simultaneously, a schematic diagram of SiZIP was drawn. In general, SiZIPs have diverse functions and extensively involve in the transport of metal ions and osmotic regulation under abiotic stresses. This work provides a fundamental framework for the transport and accumulation of mineral elements and will facilitate the quality improvement of foxtail millet.
Collapse
Affiliation(s)
- Jie Zheng
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yunxiao Ma
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yu Liang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Tianhan Zhang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Chang Chen
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Aduragbemi Amo
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Wenyu Wang
- Xinjiang Research Institute, Join Hope Seed Co., Ltd, Changji, Xinjiang, China
| | - Fangfang Ma
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Hongying Li
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Siyu Hou
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yang Yang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Mazumder S, Bhattacharya D, Lahiri D, Nag M. Milletomics: a metabolomics centered integrated omics approach toward genetic progression. Funct Integr Genomics 2024; 24:149. [PMID: 39218822 DOI: 10.1007/s10142-024-01430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Producing alternative staple foods like millet will be essential to feeding ten billion people by 2050. The increased demand for millet is driving researchers to improve its genetic variation. Millets include protein, dietary fiber, phenolic substances, and flavonoid components. Its climate resilience makes millet an appealing crop for agronomic sustainability. Integrative omics technologies could potentially identify and develop millets with desirable phenotypes that may have high agronomic value. Millets' salinity and drought tolerance have been enhanced using transcriptomics. In foxtail, finger, and pearl millet, proteomics has discovered salt-tolerant protein, phytohormone-focused protein, and drought tolerance. Metabolomics studies have revealed that certain metabolic pathways including those involving lignin, flavonoids, phenylpropanoid, and lysophospholipids are critical for many processes, including seed germination, photosynthesis, energy metabolism, and the synthesis of bioactive chemicals necessary for drought tolerance. Metabolomics integration with other omics revealed metabolome engineering and trait-specific metabolite creation. Integrated metabolomics and ionomics are still in the development stage, but they could potentially assist in comprehending the pathway of ionomers to control nutrient levels and biofortify millet. Epigenomic analysis has shown alterations in DNA methylation patterns and chromatin structure in foxtail and pearl millets in response to abiotic stress. Whole-genome sequencing utilizing next-generation sequencing is the most proficient method for finding stress-induced phytoconstituent genes. New genome sequencing enables novel biotechnological interventions including genome-wide association, mutation-based research, and other omics approaches. Millets can breed more effectively by employing next-generation sequencing and genotyping by sequencing, which may mitigate climate change. Millet marker-assisted breeding has advanced with high-throughput markers and combined genotyping technologies.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata, West Bengal, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata University of Engineering and Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India.
| |
Collapse
|
7
|
Liu Y, Cheng Z, Chen W, Wu C, Chen J, Sui Y. Establishment of genome-editing system and assembly of a near-complete genome in broomcorn millet. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1688-1702. [PMID: 38695644 DOI: 10.1111/jipb.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 08/17/2024]
Abstract
The ancient crop broomcorn millet (Panicum miliaceum L.) is an indispensable orphan crop in semi-arid regions due to its short life cycle and excellent abiotic stress tolerance. These advantages make it an important alternative crop to increase food security and achieve the goal of zero hunger, particularly in light of the uncertainty of global climate change. However, functional genomic and biotechnological research in broomcorn millet has been hampered due to a lack of genetic tools such as transformation and genome-editing techniques. Here, we successfully performed genome editing of broomcorn millet. We identified an elite variety, Hongmi, that produces embryogenic callus and has high shoot regeneration ability in in vitro culture. We established an Agrobacterium tumefaciens-mediated genetic transformation protocol and a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome-editing system for Hongmi. Using these techniques, we produced herbicide-resistant transgenic plants and edited phytoene desaturase (PmPDS), which is involved in chlorophyll biosynthesis. To facilitate the rapid adoption of Hongmi as a model line for broomcorn millet research, we assembled a near-complete genome sequence of Hongmi and comprehensively annotated its genome. Together, our results open the door to improving broomcorn millet using biotechnology.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Zixiang Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiyao Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, the Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanyin Wu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Sui
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
8
|
Liu H, Zhang X, Shang Y, Zhao S, Li Y, Zhou X, Huo X, Qiao P, Wang X, Dai K, Li H, Guo J, Shi W. Genome-wide association study reveals genetic loci for ten trace elements in foxtail millet (Setaria italica). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:186. [PMID: 39017920 DOI: 10.1007/s00122-024-04690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
KEY MESSAGE One hundred and fifty-five QTL for trace element concentrations in foxtail millet were identified using a genome-wide association study, and a candidate gene associated with Ni-Co-Cr concentrations was detected. Foxtail millet (Setaria italica) is an important regional crop known for its rich mineral nutrient content, which has beneficial effects on human health. We assessed the concentrations of ten trace elements (Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn) in the grain of 408 foxtail millet accessions. Significant differences in the concentrations of five elements (Ba, Co, Ni, Sr, and Zn) were observed between two subpopulations of spring- and summer-sown foxtail millet varieties. Moreover, 84.4% of the element pairs exhibited significant correlations. To identify the genetic factors influencing trace element accumulation, a comprehensive genome-wide association study was conducted, identifying 155 quantitative trait locus (QTL) for the ten trace elements across three different environments. Among them, ten QTL were consistently detected in multiple environments, including qZn2.1, qZn4.4, qCr4.1, qFe6.3, qFe6.5, qCo6.1, qPb7.3, qPb7.5, qBa9.1, and qNi9.1. Thirteen QTL clusters were detected for multiple elements, which partially explained the correlations between elements. Additionally, the different concentrations of five elements between foxtail millet subpopulations were caused by the different frequencies of high-concentration alleles associated with important marker-trait associations. Haplotype analysis identified a candidate gene SETIT_036676mg associated with Ni accumulation, with the GG haplotype significantly increasing Ni-Co-Cr concentrations in foxtail millet. A cleaved amplified polymorphic sequence marker (cNi6676) based on the two haplotypes of SETIT_036676mg was developed and validated. Results of this study provide valuable reference information for the genetic research and improvement of trace element content in foxtail millet.
Collapse
Affiliation(s)
- Hanxiao Liu
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xin Zhang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yuping Shang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Shaoxing Zhao
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yingjia Li
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xutao Zhou
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xiaoyu Huo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Pengfei Qiao
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xin Wang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Keli Dai
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Huixia Li
- Millet Research Institute, Shanxi Agricultural University, Changzhi, 046000, China
| | - Jie Guo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Weiping Shi
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China.
| |
Collapse
|
9
|
Liu X, Zhang N, Sun Y, Fu Z, Han Y, Yang Y, Jia J, Hou S, Zhang B. QTL mapping of downy mildew resistance in foxtail millet by SLAF‑seq and BSR-seq analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:168. [PMID: 38909331 DOI: 10.1007/s00122-024-04673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/03/2024] [Indexed: 06/24/2024]
Abstract
KEY MESSAGE Key message Three major QTLs for resistance to downy mildew were located within an 0.78 Mb interval on chromosome 8 in foxtail millet. Downy mildew, a disease caused by Sclerospora graminicola, is a serious problem that jeopardizes the yield and quality of foxtail millet. Breeding resistant varieties represents one of the most economical and effective solutions, yet there is a lack of molecular markers related to the resistance. Here, a mapping population comprising of 158 F6:7 recombinant inbred lines (RILs) was constructed from the crossing of G1 and JG21. Based on the specific locus amplified fragment sequencing results, a high-density linkage map of foxtail millet with 1031 bin markers, spanning 1041.66 cM was constructed. Based on the high-density linkage map and the phenotype data in four environments, a total of nine quantitative trait loci (QTL) associated with resistance to downy mildew were identified. Further BSR-seq confirmed the genomic regions containing the potential candidate genes related to downy mildew resistance. Interestingly, a 0.78-Mb interval between C8M257 and C8M268 on chromosome 8 was highlighted because of its presence in three major QTL, qDM8_1, qDM8_2, and qDM8_4, which contains 10 NBS-LRR genes. Haplotype analysis in RILs and natural population suggest that 9 SNP loci on Seita8G.199800, Seita8G.195900, Seita8G.198300, and Seita.8G199300 genes were significantly correlated with disease resistance. Furthermore, we found that those genes were taxon-specific by collinearity analysis of pearl millet and foxtail millet genomes. The identification of these new resistance QTL and the prediction of resistance genes against downy mildew will be useful in breeding for resistant varieties and the study of genetic mechanisms of downy mildew disease resistance in foxtail millet.
Collapse
Affiliation(s)
- Xu Liu
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Nuo Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Yurong Sun
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Zhenxin Fu
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Yang Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Jichun Jia
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Siyu Hou
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China.
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China.
| | - Baojun Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China.
| |
Collapse
|
10
|
Zhang J, Liu G, Wei J. Assembly and comparative analysis of the first complete mitochondrial genome of Setaria italica. PLANTA 2024; 260:23. [PMID: 38850310 DOI: 10.1007/s00425-024-04386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/10/2024] [Indexed: 06/10/2024]
Abstract
MAIN CONCLUSION In this study, we assembled the first complete mitochondrial genome of Setaria italica and confirmed the multi-branched architecture. The foxtail millet (Setaria italica) holds significant agricultural importance, particularly in arid and semi-arid regions. It plays a pivotal role in diversifying dietary patterns and shaping planting strategies. Although the chloroplast genome of S. italica has been elucidated in recent studies, the complete mitochondrial genome remains largely unexplored. In this study, we employed PacBio HiFi sequencing platforms to sequence and assemble the complete mitochondrial genome. The mitochondrial genome spans a total length of 446,614 base pairs and harbors a comprehensive set of genetic elements, including 33 unique protein-coding genes (PCGs), encompassing 24 unique mitochondrial core genes and 9 variable genes, along with 20 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our analysis of mitochondrial PCGs revealed a pronounced codon usage preference. For instance, the termination codon exhibits a marked preference for UAA, while alanine (Ala) exhibits a preference for GCU, and glutamine (Gln) favors CAA. Notably, the maximum Relative Synonymous Codon Usage (RSCU) values for cysteine (Cys) and phenylalanine (Phe) are both below 1.2, indicating a lack of strong codon usage preference for these amino acids. Phylogenetic analyses consistently place S. italica in close evolutionary proximity to Chrysopogon zizanioides, relative to other Panicoideae plants. Collinearity analysis showed that a total of 39 fragments were identified to display homology with both the mitochondrial and chloroplast genomes. A total of 417 potential RNA-editing sites were discovered across the 33 mitochondrial PCGs. Notably, all these editing events involved the conversion of cytosine (C) to uracil (U). Through the employment of PCR validation coupled with Sanger sequencing for the anticipated editing sites of these codons, RNA-editing events were conclusively identified at two specific loci: nad4L-2 and atp6-1030. The results of this study provide a pivotal foundation for advanced genomic breeding research in foxtail millet. Furthermore, they impart essential insights that will be instrumental for forthcoming investigations into the evolutionary and molecular dynamics of Panicoideae species.
Collapse
Affiliation(s)
- Jiewei Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
11
|
Chen H, Liu F, Chen J, Ji K, Cui Y, Ge W, Wang Z. Identification, molecular evolution, codon bias, and expansion analysis of NLP transcription factor family in foxtail millet ( Setaria italica L.) and closely related crops. Front Genet 2024; 15:1395224. [PMID: 38836039 PMCID: PMC11148446 DOI: 10.3389/fgene.2024.1395224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
The NODULE-INCEPTION-like protein (NLP) family is a plant-specific transcription factor (TF) family involved in nitrate transport and assimilation in plants, which are essential for improving plant nitrogen use efficiency. Currently, the molecular nature and evolutionary trajectory of NLP genes in the C4 model crop foxtail millet are unknown. Therefore, we performed a comprehensive analysis of NLP and molecular evolution in foxtail millet by scanning the genomes of foxtail millet and representative species of the plant kingdom. We identified seven NLP genes in the foxtail millet genome, all of which are individually and separately distributed on different chromosomes. They were not structurally identical to each other and were mainly expressed on root tissues. We unearthed two key genes (Si5G004100.1 and Si6G248300.1) with a variety of excellent characteristics. Regarding its molecular evolution, we found that NLP genes in Gramineae mainly underwent dispersed duplication, but maize NLP genes were mainly generated via WGD events. Other factors such as base mutations and natural selection have combined to promote the evolution of NLP genes. Intriguingly, the family in plants showed a gradual expansion during evolution with more duplications than losses, contrary to most gene families. In conclusion, this study advances the use of NLP genetic resources and the understanding of molecular evolution in cereals.
Collapse
Affiliation(s)
- Huilong Chen
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Fang Liu
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Chen
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Kexin Ji
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yutong Cui
- College of Management, North China University of Science and Technology, Tangshan, Hebei, China
| | - Weina Ge
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhenyi Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
12
|
Liu X, Zheng S, Tian S, Si Y, Ma S, Ling HQ, Niu J. Natural variant of Rht27, a dwarfing gene, enhances yield potential in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:128. [PMID: 38733405 DOI: 10.1007/s00122-024-04636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
KEY MESSAGE Discovery of Rht27, a dwarf gene in wheat, showed potential in enhancing grain yield by reducing plant height. Plant height plays a crucial role in crop architecture and grain yield, and semi-dwarf Reduced Height (Rht) alleles contribute to lodging resistance and were important in "Green Revolution." However, the use of these alleles is associated with some negative side effects in some environments, such as reduced coleoptile length, low nitrogen use efficiency, and reduced yield. Therefore, novel dwarf gene resources are needed to pave an alternative route to overcome these side effects. In this study, a super-dwarf mutant rht27 was obtained by the mutagenesis of G1812 (Triticum urartu, the progenitor of the A sub-genome of common wheat). Genetic analysis revealed that the dwarf phenotype was regulated by a single recessive genetic factor. The candidate region for Rht27 was narrowed to a 1.55 Mb region on chromosome 3, within which we found two potential candidate genes that showed polymorphisms between the mutant and non-mutagenized G1812. Furthermore, the natural variants and elite haplotypes of the two candidates were investigated in a natural population of common wheat. The results showed that the natural variants affect grain yield components, and the dwarf haplotypes show the potential in improving agronomic traits and grain yield. Although the mutation in Rht27 results in severe dwarf phenotype in T. urartu, the natural variants in common wheat showed desirable phenotype, which suggests that Rht27 has the potential to improve wheat yield by utilizing its weak allelic mutation or fine-tuning its expression level.
Collapse
Affiliation(s)
- Xiaolin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuiquan Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaoqi Si
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengwei Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, Hainan, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, Hainan, China.
| | - Jianqing Niu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, Hainan, China.
| |
Collapse
|
13
|
Shen J, Xiao X, Zhong D, Lian H. Potassium humate supplementation improves photosynthesis and agronomic and yield traits of foxtail millet. Sci Rep 2024; 14:9508. [PMID: 38664476 PMCID: PMC11045805 DOI: 10.1038/s41598-024-57354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Foxtail millet is a highly nutritious crop, which is widely cultivated in arid and semi-arid areas worldwide. Humic acid (HA), as a common plant growth regulator, is used as an organic fertilizer and feed additive in agricultural production. However, the impact of potassium humate KH on the photosynthetic rate and yield of foxtail millet has not yet been studied. We explored the effects of KH application on the morphology, photosynthetic ability, carbon and nitrogen metabolism, and yield of foxtail millet. A field experiment was performed using six concentrations of KH (0, 20, 40, 80, 160, and 320 kg ha-1) supplied foliarly at the booting stage in Zhangza 10 cultivar (a widely grown high-yield variety). The results showed that KH treatment increased growth, chlorophyll content (SPAD), photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs). In addition, soluble protein content, sugar content, and nitrate reductase activity increased in KH-treated plants. With increased KH concentration, the effects became more evident and the peak values of each factor were achieved at 80 kg ha-1. Photosynthetic rate showed significant correlation with SPAD, Tr, Gs, and soluble protein content, but was negatively correlated with intercellular CO2 concentration. Compared to that of the control, the yield of foxtail millet under the T2, T3, T4, and T5 (40, 80, 160, and 320 kg ha-1 of KH) treatments significantly increased by 6.0%, 12.7%, 10.5%, and 8.6%, respectively. Yield exhibited a significant positive correlation with Tr, Pn, and Gs. Overall, KH enhances photosynthetic rate and yield of foxtail millet, therefore it may be conducive to stable millet production. These findings may provide a theoretical basis for the green and efficient production of millet fields.
Collapse
Affiliation(s)
- Jie Shen
- Department of Life Sciences, Changzhi University, Changzhi, 046011, China
| | - Xiaolu Xiao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Dandan Zhong
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Huida Lian
- Department of Life Sciences, Changzhi University, Changzhi, 046011, China.
| |
Collapse
|
14
|
Liu Q, Xiong G, Wang Z, Wu Y, Tu T, Schwarzacher T, Heslop-Harrison JS. Chromosome-level genome assembly of the diploid oat species Avena longiglumis. Sci Data 2024; 11:412. [PMID: 38649380 PMCID: PMC11035610 DOI: 10.1038/s41597-024-03248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Diploid wild oat Avena longiglumis has nutritional and adaptive traits which are valuable for common oat (A. sativa) breeding. The combination of Illumina, Nanopore and Hi-C data allowed us to assemble a high-quality chromosome-level genome of A. longiglumis (ALO), evidenced by contig N50 of 12.68 Mb with 99% BUSCO completeness for the assembly size of 3,960.97 Mb. A total of 40,845 protein-coding genes were annotated. The assembled genome was composed of 87.04% repetitive DNA sequences. Dotplots of the genome assembly (PI657387) with two published ALO genomes were compared to indicate the conservation of gene order and equal expansion of all syntenic blocks among three genome assemblies. Two recent whole-genome duplication events were characterized in genomes of diploid Avena species. These findings provide new knowledge for the genomic features of A. longiglumis, give information about the species diversity, and will accelerate the functional genomics and breeding studies in oat and related cereal crops.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, China.
| | - Gui Xiong
- State Key Laboratory of Plant Diversity and Specialty Crops / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziwei Wang
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Yongxing Wu
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tieyao Tu
- State Key Laboratory of Plant Diversity and Specialty Crops / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, China
| | - Trude Schwarzacher
- State Key Laboratory of Plant Diversity and Specialty Crops / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, China
- University of Leicester, Department of Genetics and Genome Biology, Institute for Environmental Futures, Leicester, UK
| | - John Seymour Heslop-Harrison
- State Key Laboratory of Plant Diversity and Specialty Crops / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, China.
- University of Leicester, Department of Genetics and Genome Biology, Institute for Environmental Futures, Leicester, UK.
| |
Collapse
|
15
|
Meng HX, Wang YZ, Yao XL, Xie XR, Dong S, Yuan X, Li X, Gao L, Yang G, Chu X, Wang JG. Reactive oxygen species (ROS) modulate nitrogen signaling using temporal transcriptome analysis in foxtail millet. PLANT MOLECULAR BIOLOGY 2024; 114:37. [PMID: 38602592 DOI: 10.1007/s11103-024-01435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.
Collapse
Affiliation(s)
- Hui-Xin Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yu-Ze Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xin-Li Yao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xin-Ran Xie
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Jia-Gang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
16
|
Nan L, Li Y, Ma C, Meng X, Han Y, Li H, Huang M, Qin Y, Ren X. Identification and Expression Analysis of the WOX Transcription Factor Family in Foxtail Millet ( Setaria italica L.). Genes (Basel) 2024; 15:476. [PMID: 38674410 PMCID: PMC11050393 DOI: 10.3390/genes15040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors are unique to plants and play pivotal roles in plant development and stress responses. In this investigation, we acquired protein sequences of foxtail millet WOX gene family members through homologous sequence alignment and a hidden Markov model (HMM) search. Utilizing conserved domain prediction, we identified 13 foxtail millet WOX genes, which were classified into ancient, intermediate, and modern clades. Multiple sequence alignment results revealed that all WOX proteins possess a homeodomain (HD). The SiWOX genes, clustered together in the phylogenetic tree, exhibited analogous protein spatial structures, gene structures, and conserved motifs. The foxtail millet WOX genes are distributed across 7 chromosomes, featuring 3 pairs of tandem repeats: SiWOX1 and SiWOX13, SiWOX4 and SiWOX5, and SiWOX11 and SiWOX12. Collinearity analysis demonstrated that WOX genes in foxtail millet exhibit the highest collinearity with green foxtail, followed by maize. The SiWOX genes primarily harbor two categories of cis-acting regulatory elements: Stress response and plant hormone response. Notably, prominent hormones triggering responses include methyl jasmonate, abscisic acid, gibberellin, auxin, and salicylic acid. Analysis of SiWOX expression patterns and hormone responses unveiled potential functional diversity among different SiWOX genes in foxtail millet. These findings lay a solid foundation for further elucidating the functions and evolution of SiWOX genes.
Collapse
Affiliation(s)
- Lizhang Nan
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yajun Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Cui Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Xiaowei Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Hongying Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Mingjing Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yingying Qin
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Xuemei Ren
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| |
Collapse
|
17
|
Prusty A, Panchal A, Singh RK, Prasad M. Major transcription factor families at the nexus of regulating abiotic stress response in millets: a comprehensive review. PLANTA 2024; 259:118. [PMID: 38592589 DOI: 10.1007/s00425-024-04394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Millets stand out as a sustainable crop with the potential to address the issues of food insecurity and malnutrition. These small-seeded, drought-resistant cereals have adapted to survive a broad spectrum of abiotic stresses. Researchers are keen on unravelling the regulatory mechanisms that empower millets to withstand environmental adversities. The aim is to leverage these identified genetic determinants from millets for enhancing the stress tolerance of major cereal crops through genetic engineering or breeding. This review sheds light on transcription factors (TFs) that govern diverse abiotic stress responses and play role in conferring tolerance to various abiotic stresses in millets. Specifically, the molecular functions and expression patterns of investigated TFs from various families, including bHLH, bZIP, DREB, HSF, MYB, NAC, NF-Y and WRKY, are comprehensively discussed. It also explores the potential of TFs in developing stress-tolerant crops, presenting a comprehensive discussion on diverse strategies for their integration.
Collapse
Affiliation(s)
- Ankita Prusty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- Department of Botany, Mahishadal Raj College, Purba Medinipur, Garh Kamalpur, West Bengal, 721628, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Genetics, University of Delhi, South Campus, Benito-Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
18
|
Zhen X, Liu C, Guo Y, Yu Z, Han Y, Zhang B, Liang Y. Leaf Senescence Regulation Mechanism Based on Comparative Transcriptome Analysis in Foxtail Millet. Int J Mol Sci 2024; 25:3905. [PMID: 38612713 PMCID: PMC11011800 DOI: 10.3390/ijms25073905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Leaf senescence, a pivotal process in plants, directly influences both crop yield and nutritional quality. Foxtail millet (Setaria italica) is a C4 model crop renowned for its exceptional nutritional value and stress tolerance characteristics. However, there is a lack of research on the identification of senescence-associated genes (SAGs) and the underlying molecular regulatory mechanisms governing this process. In this study, a dark-induced senescence (DIS) experimental system was applied to investigate the extensive physiological and transcriptomic changes in two foxtail millet varieties with different degrees of leaf senescence. The physiological and biochemical indices revealed that the light senescence (LS) variety exhibited a delayed senescence phenotype, whereas the severe senescence (SS) variety exhibited an accelerated senescence phenotype. The most evident differences in gene expression profiles between these two varieties during DIS included photosynthesis, chlorophyll, and lipid metabolism. Comparative transcriptome analysis further revealed a significant up-regulation of genes related to polysaccharide and calcium ion binding, nitrogen utilization, defense response, and malate metabolism in LS. In contrast, the expression of genes associated with redox homeostasis, carbohydrate metabolism, lipid homeostasis, and hormone signaling was significantly altered in SS. Through WGCNA and RT-qPCR analyses, we identified three SAGs that exhibit potential negative regulation towards dark-induced leaf senescence in foxtail millet. This study establishes the foundation for a further comprehensive examination of the regulatory network governing leaf senescence and provides potential genetic resources for manipulating senescence in foxtail millet.
Collapse
Affiliation(s)
| | | | | | | | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (X.Z.); (C.L.); (Y.G.); (Z.Y.); (B.Z.)
| | | | - Yinpei Liang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (X.Z.); (C.L.); (Y.G.); (Z.Y.); (B.Z.)
| |
Collapse
|
19
|
Wen Y, Zhao Z, Cheng L, Zhou S, An M, Zhao J, Dong S, Yuan X, Yin M. Genome-wide identification and expression profiling of the ABI5 gene family in foxtail millet (Setaria italica). BMC PLANT BIOLOGY 2024; 24:164. [PMID: 38431546 PMCID: PMC10908088 DOI: 10.1186/s12870-024-04865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that crucially influences plant growth, development, and stress response. However, there is minimal research on the ABI5 family in foxtail millet. RESULTS In this study, 16 ABI5 genes were identified in foxtail millet, and their sequence composition, gene structures, cis-acting elements, chromosome positions, and gene replication events were analyzed. To more thoroughly evaluate the developmental mechanisms of the SiABI5 family during evolution, we selected three dicotyledons (S. lycopersicum, A. thaliana, F. tataricum) and three (Z. mays, O. sativa, S. bicolor) specific representative monocotyledons associated with foxtail millet for comparative homology mapping. The results showed that foxtail millet ABI5 genes had the best homology with maize. A promoter sequence analysis showed that the SiABI5s contain numerous cis-acting elements related to hormone and stress responses, indicating that the regulation of SiABI5 expression was complex. The expression responses of 16 genes in different tissues, seed germination, and ear development were analyzed. A total of six representative genes were targeted from five subfamilies to characterize their gene expression responses to four different abiotic stresses. Overexpression of SiABI5.12 confers tolerance to osmotic stress in transgenic Arabidopsis thaliana, which demonstrated the function of SiABI5 responded to abiotic stress. CONCLUSIONS In summary, our research results comprehensively characterized the SiABI5 family and can provide a valuable reference for demonstrating the role of SiABI5s in regulating abiotic stress responses in foxtail millet.
Collapse
Affiliation(s)
- Yinyuan Wen
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Zeya Zhao
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Liuna Cheng
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Shixue Zhou
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Mengyao An
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Juan Zhao
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China.
| | - Meiqiang Yin
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
20
|
Hosogoe Y, Nguyen-Sy T, Tang S, Bimantara PO, Sekikawa Y, Kautsar V, Kimani SM, Xu X, Tawaraya K, Cheng W. Five-year vegetation conversion from pasture to C 3 and C 4 plants affects dynamics of SOC and TN and their natural stable C and N isotopes via mediating C input and N leaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169481. [PMID: 38142001 DOI: 10.1016/j.scitotenv.2023.169481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Understanding the effects of land-use change on stock and composition of soil organic carbon (SOC) and nitrogen (N) is pivotal for sustainable agriculture and climate change adaption. However, previous studies have often overlooked the specific vegetation type in land-use changes. Therefore, a five-year lysimeter block experiment was conducted, involving non-vegetation, eulalia (C4 plant), and clover (C3 plant) to investigate the impacts of vegetation conversion from pasture on SOC and N dynamics and their natural stable isotopes. Non-vegetation caused 26.21 % and 25.88 % decreases in SOC and total N (TN) contents. Five-year eulalia and clover cultivation maintained stable SOC content, with clover exhibiting higher soil TN content. Eulalia-derived soil C was 1.64-7.58 g C kg-1 and SOC loss in eulalia treatment was 1.86-7.90 g C kg-1. Soil δ13C in eulalia increased at a rate of 0.90 ‰ year-1, significantly surpassing clover and non-vegetation treatments. Conversely, soil δ15N decreased over time, showing insignificant difference among all treatments. Eulalia exhibited significantly higher dry weight and δ13C but lower TN content compared with clover. However, no significant differences were observed in total C and δ15N between the two vegetation treatments. Non-vegetation exhibited higher dissolved organic C concentration than two vegetation treatments in 2017, decreasing over time. Dissolved TN and nitrate concentrations in leachate followed the order clover> non-vegetation> eulalia, with nitrate being the predominant form of N leaching from leachate. Our findings reveal that vegetation conversion affects soil C and N contents, and alters their natural isotopes as well as the leaching of labile soluble nutrients. Notably, non-vegetation consistently reduced SOC and TN contents, whereas eulalia cultivation maintained SOC content, improved C/N ratio and δ13C, and reduced N leaching compared with clover cultivation. These results highlight the potential of eulalia as a candidate plant for enhancing C sequestration and reducing N leaching in cold regions of Japan.
Collapse
Affiliation(s)
- Yuka Hosogoe
- Graduate School of Agricultural Sciences, Yamagata University, Tsuruoka 997-8555, Japan
| | - Toan Nguyen-Sy
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; Faculty of Chemical Technology-Environment, University of Technology and Education-The University of Da Nang, Da Nang 550000, Viet Nam
| | - Shuirong Tang
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan; School of Tropical Agricultural and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, China.
| | - Putu Oki Bimantara
- Graduate School of Agricultural Sciences, Yamagata University, Tsuruoka 997-8555, Japan
| | - Yuka Sekikawa
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Valensi Kautsar
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| | - Samuel Munyaka Kimani
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| | - Xingkai Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keitaro Tawaraya
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Weiguo Cheng
- Graduate School of Agricultural Sciences, Yamagata University, Tsuruoka 997-8555, Japan; The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| |
Collapse
|
21
|
Zhou X, Li Y, Wang J, Zhao Y, Wang H, Han Y, Lin X. Genome-wide identification of U-box gene family and expression analysis in response to saline-alkali stress in foxtail millet ( Setaria italica L. Beauv). Front Genet 2024; 15:1356807. [PMID: 38435060 PMCID: PMC10904469 DOI: 10.3389/fgene.2024.1356807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
E3 ubiquitin ligases are central modifiers of plant signaling pathways that regulate protein function, localization, degradation, and other biological processes by linking ubiquitin to target proteins. E3 ubiquitin ligases include proteins with the U-box domain. However, there has been no report about the foxtail millet (Setaria italica L. Beauv) U-box gene family (SiPUB) to date. To explore the function of SiPUBs, this study performed genome-wide identification of SiPUBs and expression analysis of them in response to saline-alkali stress. A total of 70 SiPUBs were identified, which were unevenly distributed on eight chromosomes. Phylogenetic and conserved motif analysis demonstrated that SiPUBs could be clustered into six subfamilies (I-VI), and most SiPUBs were closely related to the homologues in rice. Twenty-eight types of cis-acting elements were identified in SiPUBs, most of which contained many light-responsive elements and plant hormone-responsive elements. Foxtail millet had 19, 78, 85, 18, and 89 collinear U-box gene pairs with Arabidopsis, rice, sorghum, tomato, and maize, respectively. Tissue specific expression analysis revealed great variations in SiPUB expression among different tissues, and most SiPUBs were relatively highly expressed in roots, indicating that SiPUBs may play important roles in root development or other growth and development processes of foxtail millet. Furthermore, the responses of 15 SiPUBs to saline-alkali stress were detected by qRT-PCR. The results showed that saline-alkali stress led to significantly differential expression of these 15 SiPUBs, and SiPUB20/48/70 may play important roles in the response mechanism against saline-alkali stress. Overall, this study provides important information for further exploration of the biological function of U-box genes.
Collapse
Affiliation(s)
- Xiaoke Zhou
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yun Li
- Research Center of Rural Vitalization, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jian Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuxue Zhao
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Huimin Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yucui Han
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaohu Lin
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
22
|
Wang H, Li Y, Guo Z, Zhou X, Zhao Y, Han Y, Lin X. Genome-wide identification of AAAP gene family and expression analysis in response to saline-alkali stress in foxtail millet (Setaria italica L.). Sci Rep 2024; 14:3106. [PMID: 38326447 PMCID: PMC10850487 DOI: 10.1038/s41598-024-53242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
Amino acid/auxin permease (AAAP) genes encode a large family of protein transporters that play important roles in various aspects of plant growth and development. Here, we performed genome-wide identification of members in the foxtail millet (Setaria italica L.) AAAP family (SiAAAP) and their saline-alkali stress-induced expression patterns, resulting in the identification of 65 SiAAAP genes, which could be divided into eight subfamilies. Except for SiAAAP65, the remaining 64 genes were located on nine chromosomes of foxtail millet. Gene structure and conserved motif analyses indicated that the members in the same subfamily are highly conserved. Gene duplication event analysis suggested that tandem duplication may be the main factor driving the expansion of this gene family, and Ka/Ks analysis indicated that all the duplicated genes have undergone purifying selection. Transcriptome analysis showed differential expression of SiAAAPs in roots, stems, leaves, and tassel inflorescence. Analysis of cis-acting elements in the promoter indicated that SiAAAPs contain stress-responsive cis-acting elements. Under saline-alkali stress, qRT-PCR analysis showed that SiAAP3, SiLHT2, and SiAAP16 were differentially expressed between salt-alkali tolerant millet variety JK3 and salt-alkali sensitive millet variety B175. These results suggest that these genes may be involved in or regulate the response to saline-alkali stress, providing a theoretical basis for further studying the function of SiAAAPs.
Collapse
Affiliation(s)
- Huimin Wang
- College of Agronomy and Biotechnology/Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
| | - Yun Li
- Research Center of Rural Vitalization, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
| | - Zhenqing Guo
- College of Agronomy and Biotechnology/Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
| | - Xiaoke Zhou
- College of Agronomy and Biotechnology/Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
| | - Yuxue Zhao
- College of Agronomy and Biotechnology/Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
| | - Yucui Han
- College of Agronomy and Biotechnology/Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China.
| | - Xiaohu Lin
- College of Agronomy and Biotechnology/Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China.
| |
Collapse
|
23
|
Wu S, Gao Y, Zhang Q, Liu F, Hu W. Application of Multi-Omics Technologies to the Study of Phytochromes in Plants. Antioxidants (Basel) 2024; 13:99. [PMID: 38247523 PMCID: PMC10812741 DOI: 10.3390/antiox13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Phytochromes (phy) are distributed in various plant organs, and their physiological effects influence plant germination, flowering, fruiting, and senescence, as well as regulate morphogenesis throughout the plant life cycle. Reactive oxygen species (ROS) are a key regulatory factor in plant systemic responses to environmental stimuli, with an attractive regulatory relationship with phytochromes. With the development of high-throughput sequencing technology, omics techniques have become powerful tools, and researchers have used omics techniques to facilitate the big data revolution. For an in-depth analysis of phytochrome-mediated signaling pathways, integrated multi-omics (transcriptomics, proteomics, and metabolomics) approaches may provide the answer from a global perspective. This article comprehensively elaborates on applying multi-omics techniques in studying phytochromes. We describe the current research status and future directions on transcriptome-, proteome-, and metabolome-related network components mediated by phytochromes when cells are subjected to various stimulation. We emphasize the importance of multi-omics technologies in exploring the effects of phytochromes on cells and their molecular mechanisms. Additionally, we provide methods and ideas for future crop improvement.
Collapse
Affiliation(s)
- Shumei Wu
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Yue Gao
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Qi Zhang
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
24
|
Liang Y, Han Y. Pan-genome brings opportunities to revitalize the ancient crop foxtail millet. PLANT COMMUNICATIONS 2024; 5:100735. [PMID: 37864332 PMCID: PMC10811366 DOI: 10.1016/j.xplc.2023.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Affiliation(s)
- Yinpei Liang
- College of Agriculture, Shanxi Agricultural University, Taigu 030810, China; Joint Key Laboratory of Sustainable Dryland Agriculture of MOARA (with Shanxi Province), Shanxi Agricultural University, Taigu 030810, China.
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu 030810, China; Joint Key Laboratory of Sustainable Dryland Agriculture of MOARA (with Shanxi Province), Shanxi Agricultural University, Taigu 030810, China; Houji Laboratory, Shanxi Agricultural University, Taiyuan 030810, China.
| |
Collapse
|
25
|
Luo W, Tang Y, Li S, Zhang L, Liu Y, Zhang R, Diao X, Yu J. The m 6 A reader SiYTH1 enhances drought tolerance by affecting the messenger RNA stability of genes related to stomatal closure and reactive oxygen species scavenging in Setaria italica. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2569-2586. [PMID: 37861067 DOI: 10.1111/jipb.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Foxtail millet (Setaria italica), a vital drought-resistant crop, plays a significant role in ensuring food and nutritional security. However, its drought resistance mechanism is not fully understood. N6 -methyladenosine (m6 A) modification of RNA, a prevalent epi-transcriptomic modification in eukaryotes, provides a binding site for m6 A readers and affects plant growth and stress responses by regulating RNA metabolism. In this study, we unveiled that the YT521-B homology (YTH) family gene SiYTH1 positively regulated the drought tolerance of foxtail millet. Notably, the siyth1 mutant exhibited reduced stomatal closure and augmented accumulation of excessive H2 O2 under drought stress. Further investigations demonstrated that SiYTH1 positively regulated the transcripts harboring m6 A modification related to stomatal closure and reactive oxygen species (ROS) scavenging under drought stress. SiYTH1 was uniformly distributed in the cytoplasm of SiYTH1-GFP transgenic foxtail millet. It formed dynamic liquid-like SiYTH1 cytosol condensates in response to drought stress. Moreover, the cytoplasmic protein SiYTH1 was identified as a distinct m6 A reader, facilitating the stabilization of its directly bound SiARDP and ROS scavenging-related transcripts under drought stress. Furthermore, natural variation analysis revealed SiYTH1AGTG as the dominant allele responsible for drought tolerance in foxtail millet. Collectively, this study provides novel insights into the intricate mechanism of m6 A reader-mediated drought tolerance and presents a valuable genetic resource for improving drought tolerance in foxtail millet breeding.
Collapse
Affiliation(s)
- Weiwei Luo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuxiang Tang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shenglan Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Linlin Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuwei Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Renliang Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingjuan Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
26
|
Chen E, Qin L, Li F, Yang Y, Liu Z, Wang R, Yu X, Niu J, Zhang H, Wang H, Liu B, Guan Y. Physiological and Transcriptomic Analysis Provides Insights into Low Nitrogen Stress in Foxtail Millet ( Setaria italica L.). Int J Mol Sci 2023; 24:16321. [PMID: 38003509 PMCID: PMC10671652 DOI: 10.3390/ijms242216321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv) is an important food and forage crop that is well adapted to nutrient-poor soils. However, our understanding of how different LN-tolerant foxtail millet varieties adapt to long-term low nitrogen (LN) stress at the physiological and molecular levels remains limited. In this study, two foxtail millet varieties with contrasting LN tolerance properties were investigated through analyses of physiological parameters and transcriptomics. The physiological results indicate that JG20 (high tolerance to LN) exhibited superior biomass accumulation both in its shoots and roots, and higher nitrogen content, soluble sugar concentration, soluble protein concentration, zeatin concentration in shoot, and lower soluble sugar and soluble protein concentration in its roots compared to JG22 (sensitive to LN) under LN, this indicated that the LN-tolerant foxtail millet variety can allocate more functional substance to its shoots to sustain aboveground growth and maintain high root activity by utilizing low soluble sugar and protein under LN conditions. In the transcriptomics analysis, JG20 exhibited a greater number of differentially expressed genes (DEGs) compared to JG22 in both its shoots and roots in response to LN stress. These LN-responsive genes were enriched in glycolysis metabolism, photosynthesis, hormone metabolism, and nitrogen metabolism. Furthermore, in the shoots, the glutamine synthetase gene SiGS5, chlorophyll apoprotein of photosystem II gene SiPsbQ, ATP synthase subunit gene Sib, zeatin synthesis genes SiAHP1, and aldose 1-epimerase gene SiAEP, and, in the roots, the high-affinity nitrate transporter genes SiNRT2.3, SiNRT2.4, glutamate synthase gene SiGOGAT2, fructose-bisphosphate aldolase gene SiFBA5, were important genes involved in the LN tolerance of the foxtail millet variety. Hence, our study implies that the identified genes and metabolic pathways contribute valuable insights into the mechanisms underlying LN tolerance in foxtail millet.
Collapse
Affiliation(s)
- Erying Chen
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Ling Qin
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Feifei Li
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Yanbing Yang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Zhenyu Liu
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Runfeng Wang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Xiao Yu
- College of Life Science, Shandong Normal University, Jinan 250014, China; (X.Y.); (J.N.)
| | - Jiahong Niu
- College of Life Science, Shandong Normal University, Jinan 250014, China; (X.Y.); (J.N.)
| | - Huawen Zhang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Hailian Wang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Bin Liu
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Yanan Guan
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
- College of Life Science, Shandong Normal University, Jinan 250014, China; (X.Y.); (J.N.)
| |
Collapse
|
27
|
Ren X, Chen J, Chen S, Zhang H, Li L. Genome-Wide Identification and Characterization of CLAVATA3/EMBRYO SURROUNDING REGION (CLE) Gene Family in Foxtail Millet ( Setaria italica L.). Genes (Basel) 2023; 14:2046. [PMID: 38002989 PMCID: PMC10671770 DOI: 10.3390/genes14112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) genes encode signaling peptides that play important roles in various developmental and physiological processes. However, the systematic identification and characterization of CLE genes in foxtail millet (Setaria italica L.) remain limited. In this study, we identified and characterized 41 SiCLE genes in the foxtail millet genome. These genes were distributed across nine chromosomes and classified into four groups, with five pairs resulting from gene duplication events. SiCLE genes within the same phylogenetic group shared similar gene structure and motif patterns, while 34 genes were found to be single-exon genes. All SiCLE peptides harbored the conserved C-terminal CLE domain, with highly conserved positions in the CLE core sequences shared among foxtail millet, Arabidopsis, rice, and maize. The SiCLE genes contained various cis-elements, including five plant hormone-responsive elements. Notably, 34 SiCLE genes possessed more than three types of phytohormone-responsive elements on their promoters. Comparative analysis revealed higher collinearity between CLE genes in maize and foxtail millet, which may be because they are both C4 plants. Tissue-specific expression patterns were observed, with genes within the same group exhibiting similar and specific expression profiles. SiCLE32 and SiCLE41, classified in Group D, displayed relatively high expression levels in all tissues except panicles. Most SiCLE genes exhibited low expression levels in young panicles, while SiCLE6, SiCLE24, SiCLE25, and SiCLE34 showed higher expression in young panicles, with SiCLE24 down-regulated during later panicle development. Greater numbers of SiCLE genes exhibited higher expression in roots, with SiCLE7, SiCLE22, and SiCLE36 showing the highest levels and SiCLE36 significantly down-regulated after abscisic acid (ABA) treatment. Following treatments with ABA, 6-benzylaminopurine (6-BA), and gibberellic acid 3 (GA3), most SiCLE genes displayed down-regulation followed by subsequent recovery, while jasmonic acid (JA) and indole-3-acetic acid (IAA) treatments led to upregulation at 30 min in leaves. Moreover, identical hormone treatments elicited different expression patterns of the same genes in leaves and stems. This comprehensive study enhances our understanding of the SiCLE gene family and provides a foundation for further investigations into the functions and evolution of SiCLE genes in foxtail millet.
Collapse
|
28
|
Meng Q, Zhang R, Wang Y, Zhi H, Tang S, Jia G, Diao X. Genome-Wide Characterization and Haplotypic Variation Analysis of the YUC Gene Family in Foxtail Millet ( Setaria italica). Int J Mol Sci 2023; 24:15637. [PMID: 37958621 PMCID: PMC10648439 DOI: 10.3390/ijms242115637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023] Open
Abstract
Panicle development and grain production in crop species are essential breeding characteristics affected by the synthesis of auxin, which is influenced by flavin monooxygenase-encoding genes such as YUC (YUCCA) family members. In this trial, fourteen YUCs were identified and named uniformly in foxtail millet, an ancient crop species cultivated across the world. The phylogenetic analysis revealed that the SiYUCs were clustered into four subgroups; protein motif and gene structure analyses suggested that the closely clustered SiYUC genes were relatively conserved within each subgroup; while genome mapping analysis indicated that the SiYUC genes were unevenly distributed on foxtail millet chromosomes and colinear with other grass species. Transcription analysis revealed that the SiYUC genes differed greatly in expression pattern in different tissues and contained hormonal/light/stress-responding cis-elements. The haplotype characterization of SiYUC genes indicated many superior haplotypes of SiYUCs correlated with higher panicle and grain weight could be favorably selected by breeding. These results will be useful for the further study of the functional characteristics of SiYUC genes, particularly with regard to the marker-assisted pyramiding of beneficial haplotypes in foxtail millet breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (R.Z.); (Y.W.); (H.Z.); (S.T.)
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (R.Z.); (Y.W.); (H.Z.); (S.T.)
| |
Collapse
|
29
|
Gao H, Ge W, Bai L, Zhang T, Zhao L, Li J, Shen J, Xu N, Zhang H, Wang G, Lin X. Proteomic analysis of leaves and roots during drought stress and recovery in Setaria italica L. FRONTIERS IN PLANT SCIENCE 2023; 14:1240164. [PMID: 37885665 PMCID: PMC10598781 DOI: 10.3389/fpls.2023.1240164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023]
Abstract
Drought is a major environmental factor that limits agricultural crop productivity and threatens food security. Foxtail millet is a model crop with excellent abiotic stress tolerance and is consequently an important subject for obtaining a better understanding of the molecular mechanisms underlying plant responses to drought and recovery. Here the physiological and proteomic responses of foxtail millet (cultivar Yugu1) leaves and roots to drought treatments and recovery were evaluated. Drought-treated foxtail millet exhibited increased relative electrolyte leakage and decreased relative water content and chlorophyll content compared to control and rewatering plants. A global analysis of protein profiles was evaluated for drought-treated and recovery treatment leaves and roots. We also identified differentially abundant proteins in drought and recovery groups, enabling comparisons between leaf and root tissue responses to the conditions. The principal component analysis suggested a clear distinction between leaf and root proteomes for the drought-treated and recovery treatment plants. Gene Ontology enrichment and co-expression analyses indicated that the biological responses of leaves differed from those in roots after drought and drought recovery. These results provide new insights and data resources to investigate the molecular basis of tissue-specific functional responses of foxtail millet during drought and recovery, thereby significantly informing crop breeding.
Collapse
Affiliation(s)
- Hui Gao
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Weina Ge
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Lin Bai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ting Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Ling Zhao
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Jingshi Li
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Jiangjie Shen
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Ningwei Xu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
| | - Haoshan Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Genping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Xiaohu Lin
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| |
Collapse
|
30
|
Gong L, Li B, Zhu T, Xue B. Genome-wide identification and expression profiling analysis of DIR gene family in Setaria italica. FRONTIERS IN PLANT SCIENCE 2023; 14:1243806. [PMID: 37799547 PMCID: PMC10548141 DOI: 10.3389/fpls.2023.1243806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023]
Abstract
Dirigent (DIR) proteins play essential roles in regulating plant growth and development, as well as enhancing resistance to abiotic and biotic stresses. However, the whole-genome identification and expression profiling analysis of DIR gene family in millet (Setaria italica (Si)) have not been systematically understood. In this study, we conducted genome-wide identification and expression analysis of the S. italica DIR gene family, including gene structures, conserved domains, evolutionary relationship, chromosomal locations, cis-elements, duplication events, gene collinearity and expression patterns. A total of 38 SiDIR members distributed on nine chromosomes were screened and identified. SiDIR family members in the same group showed higher sequence similarity. The phylogenetic tree divided the SiDIR proteins into six subfamilies: DIR-a, DIR-b/d, DIR-c, DIR-e, DIR-f, and DIR-g. According to the tertiary structure prediction, DIR proteins (like SiDIR7/8/9) themselves may form a trimer to exert function. The result of the syntenic analysis showed that tandem duplication may play the major driving force during the evolution of SiDIRs. RNA-seq data displayed higher expression of 16 SiDIR genes in root tissues, and this implied their potential functions during root development. The results of quantitative real-time PCR (RT-qPCR) assays revealed that SiDIR genes could respond to the stress of CaCl2, CdCl, NaCl, and PEG6000. This research shed light on the functions of SiDIRs in responding to abiotic stress and demonstrated their modulational potential during root development. In addition, the membrane localization of SiDIR7/19/22 was confirmed to be consistent with the forecast. The results above will provide a foundation for further and deeper investigation of DIRs.
Collapse
Affiliation(s)
- Luping Gong
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Tao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Baoping Xue
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Chawla R, Poonia A, Samantara K, Mohapatra SR, Naik SB, Ashwath MN, Djalovic IG, Prasad PVV. Green revolution to genome revolution: driving better resilient crops against environmental instability. Front Genet 2023; 14:1204585. [PMID: 37719711 PMCID: PMC10500607 DOI: 10.3389/fgene.2023.1204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.
Collapse
Affiliation(s)
- Rukoo Chawla
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Bawal, Haryana, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - S. Balaji Naik
- Institute of Integrative Biology and Systems, University of Laval, Quebec City, QC, Canada
| | - M. N. Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, India
| | - Ivica G. Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
32
|
Xing G, Jin M, Yue P, Ren C, Hao J, Zhao Y, Zhao X, Sun Z, Hou S. Role of SiPHR1 in the Response to Low Phosphate in Foxtail Millet via Comparative Transcriptomic and Co-Expression Network Analyses. Int J Mol Sci 2023; 24:12786. [PMID: 37628968 PMCID: PMC10454940 DOI: 10.3390/ijms241612786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Enhancing the absorption and utilization of phosphorus by crops is an important aim for ensuring food security worldwide. However, the gene regulatory network underlying phosphorus use in foxtail millet remains unclear. In this study, the molecular mechanism underlying low-phosphorus (LP) responsiveness in foxtail millet was evaluated using a comparative transcriptome analysis. LP reduced the chlorophyll content in shoots, increased the anthocyanin content in roots, and up-regulated purple acid phosphatase and phytase activities as well as antioxidant systems (CAT, POD, and SOD). Finally, 13 differentially expressed genes related to LP response were identified and verified using transcriptomic data and qRT-PCR. Two gene co-expression network modules related to phosphorus responsiveness were positively correlated with POD, CAT, and PAPs. Of these, SiPHR1, functionally annotated as PHOSPHATE STARVATION RESPONSE 1, was identified as an MYB transcription factor related to phosphate responsiveness. SiPHR1 overexpression in Arabidopsis significantly modified the root architecture. LP stress caused cellular, physiological, and phenotypic changes in seedlings. SiPHR1 functioned as a positive regulator by activating downstream genes related to LP tolerance. These results improve our understanding of the molecular mechanism underlying responsiveness to LP stress, thereby laying a theoretical foundation for the genetic modification and breeding of new LP-tolerant foxtail millet varieties.
Collapse
Affiliation(s)
- Guofang Xing
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan 030031, China
| | - Minshan Jin
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
| | - Peiyao Yue
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
| | - Chao Ren
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
| | - Jiongyu Hao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
| | - Yue Zhao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
| | - Xiongwei Zhao
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan 030031, China
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Zhaoxia Sun
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan 030031, China
| | - Siyu Hou
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
33
|
Zhao W, Li J, Sun X, Zheng Q, Liu J, Hua W, Liu J. Integrated global analysis in spider flowers illuminates features underlying the evolution and maintenance of C 4 photosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad129. [PMID: 37560018 PMCID: PMC10407600 DOI: 10.1093/hr/uhad129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/11/2023] [Indexed: 08/11/2023]
Abstract
The carbon concentrating mechanism-C4 photosynthesis-represents a classic example of convergent evolution, but how this important trait originated and evolved remains largely enigmatic. The spider flower Gynandropsis gynandra is a valuable leafy vegetable crop and medicinal plant that has also been recognized as a C4 model species. Here we present a high-quality chromosome-scale annotated genome assembly of G. gynandra through a combination of Oxford Nanopore Technology (ONT), HiFi and Hi-C technology. The 17 super-scaffolds cover 98.66% of the estimated genome (997.61 Mb), with a contig N50 of 11.43 Mb and a scaffold N50 of 51.02 Mb. Repetitive elements occupy up to 71.91% of its genome, and over half are long terminal repeat retrotransposons (LTR-RTs) derived from recent bursts, contributing to genome size expansion. Strikingly, LTR-RT explosion also played a critical role in C4 evolution by altering expression features of photosynthesis-associated genes via preferential insertion in promoters. Integrated multiomics analyses of G. gynandra and the ornamental horticulture C3 relative Tarenaya hassleriana reveal that species-specific whole-genome duplication, gene family expansion, recent LTR-RT amplification, and more recent tandem duplication events have all facilitated the evolution of C4 photosynthesis, revealing uniqueness of C4 evolution in the Cleome genus. Moreover, high leaf vein density and heat stress resilience are associated with shifted gene expression patterns. The mode of C3-to-C4 transition found here yields new insights into evolutionary convergence of a complex plant trait. The availability of this reference-grade genomic resource makes G. gynandra an ideal model system facilitating efforts toward C4-aimed crop engineering.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xingchao Sun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qiwei Zheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jing Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jun Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
34
|
Han Y, Gao X, Huang G, Chang Y, Han H, Zhu J, Zhang B. Kosakonia cowanii, a new bacterial pathogen affecting foxtail millet (Setaria italica[L.]P. Beauv.) in China. Microb Pathog 2023; 181:106201. [PMID: 37321424 DOI: 10.1016/j.micpath.2023.106201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Foxtail millet (Setaria italica [L.] P. Beauv.) is an important cereal worldwide. From 2021 to 2022, stalk rot disease of foxtail millet was identified in Shanxi province, northern China, with an 8% and 2% field incidence rate in Xinzhou (2 different locations), respectively. It caused necrosis, decay, stem lodging, and sometimes death. This study aimed to identify the causal agent of the disease through morphophysiological and molecular identification of the isolates. Stalk rot specimens were collected in Xinzhou, from foxtail millet plants exhibiting typical symptoms, and the pathogen was isolated with dilution plating. It was cultured at 28 °C for 48 h on nutrient agar, revealing circular, convex, and pale-yellow colonies, with a smooth surface and an entire edge. Scanning electron microscopy showed that the pathogen is rod shaped, round ended and has an uneven surface ranging from 0.5 to 0.7 μm in diameter and 1.2-2.7 μm in length. It is a motile gram-negative facultative anaerobic bacterium that can reduce nitrate and synthesize catalase but cannot hydrolyze starch. It also shows a negative reaction in the methyl red test and optimum growth at 37 °C. The pathogenicity test was performed on foxtail millet variety 'Jingu 21' stem to confirm Koch's postulates. The biochemical tests were done in the Biolog Gen III MicroPlate, revealing 21 positive chemical sensitivity tests, except those for minocycline and sodium bromate. Furthermore, among 71 carbon sources, the pathogen utilized 50 as the sole carbon source, including sucrose, d-maltose, α-d-lactose, d-galactose, D-sorbitol, D-mannitol, glycerol, and inositol. Finally, molecular characterization of the pathogen using 16S rRNA and rpoB gene sequencing and subsequent phylogenetic analysis identified the strain as Kosakonia cowanii. This study is the first to report K. cowanii as a stalk rot-causing pathogen in foxtail millet.
Collapse
Affiliation(s)
- Yanqing Han
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China; National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding (in preparation), Shanxi Agricultural University, Shanxi, Taiyuan, 030031, China.
| | - Xi Gao
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Guoli Huang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Yindong Chang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Haili Han
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jiao Zhu
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Baojun Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China; National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding (in preparation), Shanxi Agricultural University, Shanxi, Taiyuan, 030031, China.
| |
Collapse
|
35
|
Li X, Wang L, Li W, Zhang X, Zhang Y, Dong S, Song X, Zhao J, Chen M, Yuan X. Genome-Wide Identification and Expression Profiling of Cytochrome P450 Monooxygenase Superfamily in Foxtail Millet. Int J Mol Sci 2023; 24:11053. [PMID: 37446233 DOI: 10.3390/ijms241311053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The cytochrome P450 monooxygenases (CYP450) are the largest enzyme family in plant metabolism and widely involved in the biosynthesis of primary and secondary metabolites. Foxtail millet (Setaria italica (L.) P. Beauv) can respond to abiotic stress through a highly complex polygene regulatory network, in which the SiCYP450 family is also involved. Although the CYP450 superfamily has been systematically studied in a few species, the research on the CYP450 superfamily in foxtail millet has not been completed. In this study, three hundred and thirty-one SiCYP450 genes were identified in the foxtail millet genome by bioinformatics methods, which were divided into four groups, including forty-six subgroups. One hundred and sixteen genes were distributed in thirty-three tandem duplicated gene clusters. Chromosome mapping showed that SiCYP450 was distributed on seven chromosomes. In the SiCYP450 family of foxtail millet, 20 conserved motifs were identified. Cis-acting elements in the promoter region of SiCYP450 genes showed that hormone response elements were found in all SiCYP450 genes. Of the three hundred and thirty-one SiCYP450 genes, nine genes were colinear with the Arabidopsis thaliana genes. Two hundred SiCYP450 genes were colinear with the Setaria viridis genes, including two hundred and forty-five gene duplication events. The expression profiles of SiCYP450 genes in different organs and developmental stages showed that SiCYP450 was preferentially expressed in specific tissues, and many tissue-specific genes were identified, such as SiCYP75B6, SiCYP96A7, SiCYP71A55, SiCYP71A61, and SiCYP71A62 in the root, SiCYP78A1 and SiCYP94D9 in leaves, and SiCYP78A6 in the ear. The RT-PCR data showed that SiCYP450 could respond to abiotic stresses, ABA, and herbicides in foxtail millet. Among them, the expression levels of SiCYP709B4, SiCYP71A11, SiCYP71A14, SiCYP78A1, SiCYP94C3, and SiCYP94C4 were significantly increased under the treatment of mesotrione, florasulam, nicosulfuron, fluroxypyr, and sethoxydim, indicating that the same gene might respond to multiple herbicides. The results of this study will help reveal the biological functions of the SiCYP450 family in development regulation and stress response and provide a basis for molecular breeding of foxtail millet.
Collapse
Affiliation(s)
- Xiaorui Li
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Linlin Wang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Weidong Li
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Xin Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Yujia Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Xi'e Song
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Juan Zhao
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Mingxun Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
36
|
Zhang L, Ma K, Zhao X, Li Z, Zhang X, Li W, Meng R, Lu B, Yuan X. Development of a Comprehensive Quality Evaluation System for Foxtail Millet from Different Ecological Regions. Foods 2023; 12:2545. [PMID: 37444285 DOI: 10.3390/foods12132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Foxtail millet (Setaria italica L.) is a critical grain with high nutritional value and the potential for increased production in arid and semiarid regions. The foxtail millet value chain can be upgraded only by ensuring its comprehensive quality. Thus, samples were collected from different production areas in Shanxi province, China, and compared in terms of quality traits. We established a quality evaluation system utilizing multivariate statistical analysis. The results showed that the appearance, nutritional content, and culinary value of foxtail millet produced in different ecological regions varied substantially. Different values of amino acids (DVAACs), alkali digestion values (ADVs), and total flavone content (TFC) had the highest coefficients of variation (CVs) of 50.30%, 39.75%, and 35.39%, respectively. Based on this, a comprehensive quality evaluation system for foxtail millet was established, and the quality of foxtail millet produced in the five production areas was ranked in order from highest to lowest: Dingxiang > Zezhou > Qinxian > Xingxian > Yuci. In conclusion, the ecological conditions of Xinding Basin are favorable for ensuring the comprehensive quality of foxtail millet. .
Collapse
Affiliation(s)
- Liguang Zhang
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Ke Ma
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
- College of Agriculture, China Agricultural University, Beijing 100089, China
| | - Xiatong Zhao
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Zhong Li
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Xin Zhang
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Weidong Li
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Ru Meng
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Boyu Lu
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| |
Collapse
|
37
|
Pandey S, Singh A, Jaiswal P, Singh MK, Meena KR, Singh SK. The potentialities of omics resources for millet improvement. Funct Integr Genomics 2023; 23:210. [PMID: 37355501 DOI: 10.1007/s10142-023-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Millets are nutrient-rich (nutri-rich) cereals with climate resilience attributes. However, its full productive potential is not realized due to the lack of a focused yield improvement approach, as evidenced by the available literature. Also, the lack of well-characterized genomic resources significantly limits millet improvement. But the recent availability of genomic data and advancement in omics tools has shown its enormous potential to enhance the efficiency and precision faced by conventional breeding in millet improvement. The development of high throughput genotyping platforms based on next-generation sequencing (NGS) has provided a low-cost method for genomic information, specifically for neglected nutri-rich cereals with the availability of a limited number of reference genome sequences. NGS has created new avenues for millet biotechnological interventions such as mutation-based study, GWAS, GS, and other omics technologies. The simultaneous discovery of high-throughput markers and multiplexed genotyping platform has aggressively aided marker-assisted breeding for millet improvement. Therefore, omics technology offers excellent opportunities to explore and combine useful variations for targeted traits that could impart high nutritional value to high-yielding cultivars under changing climatic conditions. In millet improvement, an in-depth account of NGS, integrating genomics data with different biotechnology tools, is reviewed in this context.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Agricultural, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Pusa, Samastipur, Bihar, 848125, India.
| | - Priyanka Jaiswal
- Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Mithilesh Kumar Singh
- Department of Genetics and Plant Breeding, RPCAU, Pusa, Samastipur, Bihar, 848125, India
| | - Khem Raj Meena
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Rajasthan, 305817, India
| | - Satish Kumar Singh
- Department of Genetics and Plant Breeding, RPCAU, Pusa, Samastipur, Bihar, 848125, India
| |
Collapse
|
38
|
He Q, Tang S, Zhi H, Chen J, Zhang J, Liang H, Alam O, Li H, Zhang H, Xing L, Li X, Zhang W, Wang H, Shi J, Du H, Wu H, Wang L, Yang P, Xing L, Yan H, Song Z, Liu J, Wang H, Tian X, Qiao Z, Feng G, Guo R, Zhu W, Ren Y, Hao H, Li M, Zhang A, Guo E, Yan F, Li Q, Liu Y, Tian B, Zhao X, Jia R, Feng B, Zhang J, Wei J, Lai J, Jia G, Purugganan M, Diao X. A graph-based genome and pan-genome variation of the model plant Setaria. Nat Genet 2023:10.1038/s41588-023-01423-w. [PMID: 37291196 DOI: 10.1038/s41588-023-01423-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023]
Abstract
Setaria italica (foxtail millet), a founder crop of East Asian agriculture, is a model plant for C4 photosynthesis and developing approaches to adaptive breeding across multiple climates. Here we established the Setaria pan-genome by assembling 110 representative genomes from a worldwide collection. The pan-genome is composed of 73,528 gene families, of which 23.8%, 42.9%, 29.4% and 3.9% are core, soft core, dispensable and private genes, respectively; 202,884 nonredundant structural variants were also detected. The characterization of pan-genomic variants suggests their importance during foxtail millet domestication and improvement, as exemplified by the identification of the yield gene SiGW3, where a 366-bp presence/absence promoter variant accompanies gene expression variation. We developed a graph-based genome and performed large-scale genetic studies for 68 traits across 13 environments, identifying potential genes for millet improvement at different geographic sites. These can be used in marker-assisted breeding, genomic selection and genome editing to accelerate crop improvement under different climatic conditions.
Collapse
Affiliation(s)
- Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongkai Liang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ornob Alam
- Center for Genomics and Systems Biology, New York University, New York City, NY, USA
| | - Hongbo Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Northwest A & F University, Yangling, China
| | - Lihe Xing
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xukai Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Wei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hailong Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junpeng Shi
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Hongpo Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liwei Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Xing
- Anyang Academy of Agriculture Sciences, Anyang, China
| | - Hongshan Yan
- Anyang Academy of Agriculture Sciences, Anyang, China
| | | | - Jinrong Liu
- Anyang Academy of Agriculture Sciences, Anyang, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Xiang Tian
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Guojun Feng
- Research Institute of Cereal Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ruifeng Guo
- Institute of High Latitude Crops, Shanxi Agricultural University, Datong, China
| | - Wenjuan Zhu
- Institute of High Latitude Crops, Shanxi Agricultural University, Datong, China
| | - Yuemei Ren
- Institute of High Latitude Crops, Shanxi Agricultural University, Datong, China
| | - Hongbo Hao
- Institute of Dry-Land Farming, Hebei Academy of Agricultural and Forestry Sciences, Hengshui, China
| | - Mingzhe Li
- Institute of Dry-Land Farming, Hebei Academy of Agricultural and Forestry Sciences, Hengshui, China
| | - Aiying Zhang
- Millet Research Institute, Shanxi Agricultural University, Changzhi, China
| | - Erhu Guo
- Millet Research Institute, Shanxi Agricultural University, Changzhi, China
| | - Feng Yan
- Qiqihar Sub-Academy of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Qingquan Li
- Qiqihar Sub-Academy of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yanli Liu
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Bohong Tian
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Xiaoqin Zhao
- Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Ruiling Jia
- Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Baili Feng
- College of Agronomy, Northwest A & F University, Yangling, China
| | - Jiewei Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Michael Purugganan
- Center for Genomics and Systems Biology, New York University, New York City, NY, USA.
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
39
|
Gao H, Suo X, Zhao L, Ma X, Cheng R, Wang G, Zhang H. Molecular evolution, diversification, and expression assessment of MADS gene family in Setaria italica, Setaria viridis, and Panicum virgatum. PLANT CELL REPORTS 2023; 42:1003-1024. [PMID: 37012438 DOI: 10.1007/s00299-023-03009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE This paper sheds light on the evolution and expression patterns of MADS genes in Setaria and Panicum virgatum. SiMADS51 and SiMADS64 maybe involved in the ABA-dependent pathway of drought response. The MADS gene family is a key regulatory factor family that controls growth, reproduction, and response to abiotic stress in plants. However, the molecular evolution of this family is rarely reported. Here, a total of 265 MADS genes were identified in Setaria italica (foxtail millet), Setaria viridis (green millet), and Panicum virgatum (switchgrass) and analyzed by bioinformatics, including physicochemical characteristics, subcellular localization, chromosomal position and duplicate, motif distribution, genetic structure, genetic evolvement, and expression patterns. Phylogenetic analysis was used to categorize these genes into M and MIKC types. The distribution of motifs and gene structure were similar for the corresponding types. According to a collinearity study, the MADS genes have been mostly conserved during evolution. The principal cause of their expansion is segmental duplication. However, the MADS gene family tends to shrink in foxtail millet, green millet, and switchgrass. The MADS genes were subjected to purifying selection, but several positive selection sites were also identified in three species. And most of the promoters of MADS genes contain cis-elements related to stress and hormonal response. RNA-seq and quantitative Real-time PCR (qRT-PCR) analysis also were examined. SiMADS genes expression levels are considerably changed in reaction to various treatments, following qRT-PCR analysis. This sheds fresh light on the evolution and expansion of the MADS family in foxtail millet, green millet, and switchgrass, and lays the foundation for further research on their functions.
Collapse
Affiliation(s)
- Hui Gao
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiaoman Suo
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
| | - Ling Zhao
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xinlei Ma
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
| | - Ruhong Cheng
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
| | - Genping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
| | - Haoshan Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
- Chinese Academy of Agricultural Sciences Institute of Crop Sciences, Beijing, 100081, China.
| |
Collapse
|
40
|
Wang A, Jing Y, Cheng Q, Zhou H, Wang L, Gong W, Kou L, Liu G, Meng X, Chen M, Ma H, Shu X, Yu H, Wu D, Li J. Loss of function of SSIIIa and SSIIIb coordinately confers high RS content in cooked rice. Proc Natl Acad Sci U S A 2023; 120:e2220622120. [PMID: 37126676 PMCID: PMC10175802 DOI: 10.1073/pnas.2220622120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023] Open
Abstract
The sedentary lifestyle and refined food consumption significantly lead to obesity, type 2 diabetes, and related complications, which have become one of the major threats to global health. This incidence could be potentially reduced by daily foods rich in resistant starch (RS). However, it remains a challenge to breed high-RS rice varieties. Here, we reported a high-RS mutant rs4 with an RS content of ~10.8% in cooked rice. The genetic study revealed that the loss-of-function SSIIIb and SSIIIa together with a strong Wx allele in the background collaboratively contributed to the high-RS phenotype of the rs4 mutant. The increased RS contents in ssIIIa and ssIIIa ssIIIb mutants were associated with the increased amylose and lipid contents. SSIIIb and SSIIIa proteins were functionally redundant, whereas SSIIIb mainly functioned in leaves and SSIIIa largely in endosperm owing to their divergent tissue-specific expression patterns. Furthermore, we found that SSIII experienced duplication in different cereals, of which one SSIII paralog was mainly expressed in leaves and another in the endosperm. SSII but not SSIV showed a similar evolutionary pattern to SSIII. The copies of endosperm-expressed SSIII and SSII were associated with high total starch contents and low RS levels in the seeds of tested cereals, compared with low starch contents and high RS levels in tested dicots. These results provided critical genetic resources for breeding high-RS rice cultivars, and the evolutionary features of these genes may facilitate to generate high-RS varieties in different cereals.
Collapse
Affiliation(s)
- Anqi Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Qiao Cheng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Hongju Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Lijun Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Wanxin Gong
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agriculture Sciences, Zhejiang University, Hangzhou310029, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Haiyan Ma
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agriculture Sciences, Zhejiang University, Hangzhou310029, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agriculture Sciences, Zhejiang University, Hangzhou310029, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Yazhou Bay Laboratory, Sanya572025, China
| |
Collapse
|
41
|
Li X, Hou S, Feng M, Xia R, Li J, Tang S, Han Y, Gao J, Wang X. MDSi: Multi-omics Database for Setaria italica. BMC PLANT BIOLOGY 2023; 23:223. [PMID: 37101150 PMCID: PMC10134609 DOI: 10.1186/s12870-023-04238-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Foxtail millet (Setaria italica) harbors the small diploid genome (~ 450 Mb) and shows the high inbreeding rate and close relationship to several major foods, feed, fuel and bioenergy grasses. Previously, we created a mini foxtail millet, xiaomi, with an Arabidopsis-like life cycle. The de novo assembled genome data with high-quality and an efficient Agrobacterium-mediated genetic transformation system made xiaomi an ideal C4 model system. The mini foxtail millet has been widely shared in the research community and as a result there is a growing need for a user-friendly portal and intuitive interface to perform exploratory analysis of the data. RESULTS Here, we built a Multi-omics Database for Setaria italica (MDSi, http://sky.sxau.edu.cn/MDSi.htm ), that contains xiaomi genome of 161,844 annotations, 34,436 protein-coding genes and their expression information in 29 different tissues of xiaomi (6) and JG21 (23) samples that can be showed as an Electronic Fluorescent Pictograph (xEFP) in-situ. Moreover, the whole-genome resequencing (WGS) data of 398 germplasms, including 360 foxtail millets and 38 green foxtails and the corresponding metabolic data were available in MDSi. The SNPs and Indels of these germplasms were called in advance and can be searched and compared in an interactive manner. Common tools including BLAST, GBrowse, JBrowse, map viewer, and data downloads were implemented in MDSi. CONCLUSION The MDSi constructed in this study integrated and visualized data from three levels of genomics, transcriptomics and metabolomics, and also provides information on the variation of hundreds of germplasm resources that can satisfies the mainstream requirements and supports the corresponding research community.
Collapse
Affiliation(s)
- Xukai Li
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Siyu Hou
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mengmeng Feng
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Rui Xia
- South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Jiawei Li
- South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanhuai Han
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianhua Gao
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Xingchun Wang
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
42
|
Yang Z, Wang S, Wei L, Huang Y, Liu D, Jia Y, Luo C, Lin Y, Liang C, Hu Y, Dai C, Guo L, Zhou Y, Yang QY. BnIR: A multi-omics database with various tools for Brassica napus research and breeding. MOLECULAR PLANT 2023; 16:775-789. [PMID: 36919242 DOI: 10.1016/j.molp.2023.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
In the post-genome-wide association study era, multi-omics techniques have shown great power and potential for candidate gene mining and functional genomics research. However, due to the lack of effective data integration and multi-omics analysis platforms, such techniques have not still been applied widely in rapeseed, an important oil crop worldwide. Here, we report a rapeseed multi-omics database (BnIR; http://yanglab.hzau.edu.cn/BnIR), which provides datasets of six omics including genomics, transcriptomics, variomics, epigenetics, phenomics, and metabolomics, as well as numerous "variation-gene expression-phenotype" associations by using multiple statistical methods. In addition, a series of multi-omics search and analysis tools are integrated to facilitate the browsing and application of these datasets. BnIR is the most comprehensive multi-omics database for rapeseed so far, and two case studies demonstrated its power to mine candidate genes associated with specific traits and analyze their potential regulatory mechanisms.
Collapse
Affiliation(s)
- Zhiquan Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Shengbo Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lulu Wei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiming Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yupeng Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengfang Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuchen Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Congyuan Liang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
43
|
Choudhary P, Shukla P, Muthamilarasan M. Genetic enhancement of climate-resilient traits in small millets: A review. Heliyon 2023; 9:e14502. [PMID: 37064482 PMCID: PMC10102230 DOI: 10.1016/j.heliyon.2023.e14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/28/2023] Open
Abstract
Agriculture is facing the challenge of feeding the ever-growing population that is projected to reach ten billion by 2050. While improving crop yield and productivity can address this challenge, the increasing effects of global warming and climate change seriously threaten agricultural productivity. Thus, genomics and genome modification technologies are crucial to improving climate-resilient traits to enable sustained yield and productivity; however, significant research focuses on staple crops such as rice, wheat, and maize. Crops that are naturally climate-resilient and nutritionally superior to staple cereals, such as small millets, remain neglected and underutilized by mainstream research. The ability of small millets to grow in marginal regions having limited irrigation and poor soil fertility makes these crops a better choice for cultivation in arid and semi-arid areas. Hence, mainstreaming small millets for cultivation and using omics technologies to dissect the climate-resilient traits to identify the molecular determinants underlying these traits are imperative for addressing food and nutritional security. In this context, the review discusses the genomics and genome modification approaches for dissecting key traits in small millets and their application for improving these traits in cultivated germplasm. The review also discusses biofortification for nutritional security and machine-learning approaches for trait improvement in small millets. Altogether, the review provides a roadmap for the effective use of next-generation approaches for trait improvement in small millets. This will lead to the development of improved varieties for addressing multiple insecurities prevailing in the present climate change scenario.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Pooja Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
44
|
SiMYBS3, Encoding a Setaria italica Heterosis-Related MYB Transcription Factor, Confers Drought Tolerance in Arabidopsis. Int J Mol Sci 2023; 24:ijms24065418. [PMID: 36982494 PMCID: PMC10049516 DOI: 10.3390/ijms24065418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Drought is a major limiting factor affecting grain production. Drought-tolerant crop varieties are required to ensure future grain production. Here, 5597 DEGs were identified using transcriptome data before and after drought stress in foxtail millet (Setaria italica) hybrid Zhangza 19 and its parents. A total of 607 drought-tolerant genes were screened through WGCNA, and 286 heterotic genes were screened according to the expression level. Among them, 18 genes overlapped. One gene, Seita.9G321800, encoded MYBS3 transcription factor and showed upregulated expression after drought stress. It is highly homologous with MYBS3 in maize, rice, and sorghum and was named SiMYBS3. Subcellular localization analysis showed that the SiMYBS3 protein was located in the nucleus and cytoplasm, and transactivation assay showed SiMYBS3 had transcriptional activation activity in yeast cells. Overexpression of SiMYBS3 in Arabidopsis thaliana conferred drought tolerance, insensitivity to ABA, and earlier flowering. Our results demonstrate that SiMYBS3 is a drought-related heterotic gene and it can be used for enhancing drought resistance in agricultural crop breeding.
Collapse
|
45
|
Wang L, Fu H, Zhao J, Wang J, Dong S, Yuan X, Li X, Chen M. Genome-Wide Identification and Expression Profiling of Glutathione S-Transferase Gene Family in Foxtail Millet ( Setaria italica L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1138. [PMID: 36904001 PMCID: PMC10005783 DOI: 10.3390/plants12051138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Glutathione S-transferases (GSTs) are a critical superfamily of multifunctional enzymes in plants. As a ligand or binding protein, GSTs regulate plant growth and development and detoxification. Foxtail millet (Setaria italica (L.) P. Beauv) could respond to abiotic stresses through a highly complex multi-gene regulatory network in which the GST family is also involved. However, GST genes have been scarcely studied in foxtail millet. Genome-wide identification and expression characteristics analysis of the foxtail millet GST gene family were conducted by biological information technology. The results showed that 73 GST genes (SiGSTs) were identified in the foxtail millet genome and were divided into seven classes. The chromosome localization results showed uneven distribution of GSTs on the seven chromosomes. There were 30 tandem duplication gene pairs belonging to 11 clusters. Only one pair of SiGSTU1 and SiGSTU23 were identified as fragment duplication genes. A total of ten conserved motifs were identified in the GST family of foxtail millet. The gene structure of SiGSTs is relatively conservative, but the number and length of exons of each gene are still different. The cis-acting elements in the promoter region of 73 SiGST genes showed that 94.5% of SiGST genes possessed defense and stress-responsive elements. The expression profiles of 37 SiGST genes covering 21 tissues suggested that most SiGST genes were expressed in multiple organs and were highly expressed in roots and leaves. By qPCR analysis, we found that 21 SiGST genes were responsive to abiotic stresses and abscisic acid (ABA). Taken together, this study provides a theoretical basis for identifying foxtail millet GST family information and improving their responses to different stresses.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Hongbo Fu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661100, China
| | - Juan Zhao
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jiagang Wang
- National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding (in preparation), Shanxi Agricultural University, Taiyuan 030031, China
| | - Shuqi Dong
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiangyang Yuan
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaorui Li
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Mingxun Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
46
|
Li X, Shi Z, Gao J, Wang X, Guo K. CandiHap: a haplotype analysis toolkit for natural variation study. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:21. [PMID: 37313297 PMCID: PMC10248607 DOI: 10.1007/s11032-023-01366-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/22/2023] [Indexed: 06/15/2023]
Abstract
Haplotype blocks greatly assist association-based mapping of casual candidate genes by significantly reducing genotyping effort. The gene haplotype could be used to evaluate variants of affected traits captured from the gene region. While there is a rising interest in gene haplotypes, much of the corresponding analysis was carried out manually. CandiHap allows rapid and robust haplotype analysis and candidate identification preselection of candidate causal single-nucleotide polymorphisms and InDels from Sanger or next-generation sequencing data. Investigators can use CandiHap to specify a gene or linkage sites based on genome-wide association studies and explore favorable haplotypes of candidate genes for target traits. CandiHap can be run on computers with Windows, Mac, or UNIX platforms in a graphical user interface or command line, and applied to any species, such as plant, animal, and microbial. The CandiHap software, user manual, and example datasets are freely available at BioCode (https://ngdc.cncb.ac.cn/biocode/tools/BT007080) or GitHub (https://github.com/xukaili/CandiHap). Supplementary information The online version contains supplementary material available at 10.1007/s11032-023-01366-4.
Collapse
Affiliation(s)
- Xukai Li
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030031 China
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801 China
| | - Zhiyong Shi
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801 China
| | - Jianhua Gao
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030031 China
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801 China
| | - Xingchun Wang
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030031 China
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801 China
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
47
|
Large-scale metabolome analysis reveals dynamic changes of metabolites during foxtail millet grain filling. Food Res Int 2023; 165:112516. [PMID: 36869517 DOI: 10.1016/j.foodres.2023.112516] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Compared with traditional staple crops, foxtail millet grain is rich in nutrition and beneficial to human health. Foxtail millet is also tolerance to various abiotic stresses, including drought, making it a good plant for growing in barren land. The study on the composition of metabolites and its dynamics changes during grain development is helpful to understand the process of foxtail millet grain formation. In our study, metabolic and transcriptional analysis were used to uncover the metabolic processes that could influence grain filling in foxtail millet. A total of 2104 known metabolites, belonging to 14 categories, were identified during grain filling. Functional analysis of DAMs and DEGs revealed a stage-specific metabolic properties in foxtail millet grain filling. Some important metabolic processes, such as flavonoid biosynthesis, glutathione metabolism, linoleic acid metabolism, starch and sucrose metabolism and valine, leucine and isoleucine biosynthesis were co-mapped for DEGs and DAMs. Thus, we constructed a gene-metabolite regulatory network of these metabolic pathways to explain their potential functions during grain filling. Our study showed the important metabolic processes during grain filling and focused on the dynamic changes of related metabolites and genes at different stages, which provided a reference for us to better understand and improve foxtail millet grain development and yield.
Collapse
|
48
|
Zhang Y, He Z, Qi X, Li M, Liu J, Le S, Chen K, Wang C, Zhou Y, Xu Z, Chen J, Guo C, Tang W, Ma Y, Chen M. Overexpression of MYB-like transcription factor SiMYB30 from foxtail millet (Setaria italica L.) confers tolerance to low nitrogen stress in transgenic rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:731-738. [PMID: 36822026 DOI: 10.1016/j.plaphy.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen fertilizers significantly increase crop yield; however, the negative impact of excessive nitrogen use on the environment and soil requires urgent attention. Improving crop nitrogen use efficiency (NUE) is crucial to increase yields and protect the environment. Foxtail millet (Setaria italica L.), a gramineous crop with significant tolerance to barren croplands, is an ideal model crop for studying abiotic stress resistance in gramineous crops. However, knowledge of the regulatory network for NUE in foxtail millet is fragmentary. Herein, we identified an R2R3-like MYB transcription factor in foxtail millet, SiMYB30, which belongs to MYB subfamily 17. The expression of SiMYB30 is responsive to low nitrogen (LN) concentration. Compared with wildtype Kitaake, seedlings of rice lines overexpressing SiMYB30 showed significantly increased shoot fresh and dry weights, plant height, and root area under LN treatment indoors. Consistently, overexpression of SiMYB30 in field experiments significantly increased grain and stem nitrogen contents, grain yield per plant, and stem weight in rice. Furthermore, qRT-PCR revealed that SiMYB30 effectively activated the expression of nitrogen uptake-related genes-OsNRT1, OsNRT1.1B, and OsNPF2.4-and nitrogen assimilation-related genes-OsGOGAT1, OsGOGAT2, and OsNIA2. Notably, SiMYB30 directly bound to the promoter of OsGOGAT2 and regulated its expression. These results highlight the novel and pivotal role of SiMYB30 in improving crop NUE.
Collapse
Affiliation(s)
- Yuewei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhang He
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Xin Qi
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300112, China.
| | - Maomao Li
- Research Center of Jiangxi Crop Germplasm Resources, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Jin Liu
- Research Center of Jiangxi Crop Germplasm Resources, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Si Le
- Research Center of Jiangxi Crop Germplasm Resources, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Kai Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunxiao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongbin Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhaoshi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Wensi Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Youzhi Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Ming Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
49
|
Zhang J, Si Z, Chen R, Liu W, Shi Y, Shi Z, Mei H, Hu Y, Fang L, Zhang T. A new model system for cotton indoor genetic and genomic research. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2259-x. [PMID: 36738433 DOI: 10.1007/s11427-022-2259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/06/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Jun Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Rui Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Wangshu Liu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Yue Shi
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Zhuolin Shi
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Huan Mei
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
50
|
Ramesh P, Juturu VN, Yugandhar P, Pedersen S, Hemasundar A, Yolcu S, Chandra Obul Reddy P, Chandra Mohan Reddy CV, Veerabramha Chari P, Mohan R, Chandra Sekhar A. Molecular genetics and phenotypic assessment of foxtail millet ( Setaria italica (L.) P. Beauv.) landraces revealed remarkable variability of morpho-physiological, yield, and yield-related traits. Front Genet 2023; 14:1052575. [PMID: 36760993 PMCID: PMC9905688 DOI: 10.3389/fgene.2023.1052575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv.) is highly valued for nutritional traits, stress tolerance and sustainability in resource-poor dryland agriculture. However, the low productivity of this crop in semi-arid regions of Southern India, is further threatened by climate stress. Landraces are valuable genetic resources, regionally adapted in form of novel alleles that are responsible for cope up the adverse conditions used by local farmers. In recent years, there is an erosion of genetic diversity. We have hypothesized that plant genetic resources collected from the semi-arid climatic zone would serve as a source of novel alleles for the development of climate resilience foxtail millet lines with enhanced yield. Keeping in view, there is an urgent need for conservation of genetic resources. To explore the genetic diversity, to identify superior genotypes and novel alleles, we collected a heterogeneous mixture of foxtail millet landraces from farmer fields. In an extensive multi-year study, we developed twenty genetically fixed foxtail millet landraces by single seed descent method. These landraces characterized along with four released cultivars with agro-morphological, physiological, yield and yield-related traits assessed genetic diversity and population structure. The landraces showed significant diversity in all the studied traits. We identified landraces S3G5, Red, Black and S1C1 that showed outstanding grain yield with earlier flowering, and maturity as compared to released cultivars. Diversity analysis using 67 simple sequence repeat microsatellite and other markers detected 127 alleles including 11 rare alleles, averaging 1.89 alleles per locus, expected heterozygosity of 0.26 and an average polymorphism information content of 0.23, collectively indicating a moderate genetic diversity in the landrace populations. Euclidean Ward's clustering, based on the molecular markers, principal coordinate analysis and structure analysis concordantly distinguished the genotypes into two to three sub-populations. A significant phenotypic and genotypic diversity observed in the landraces indicates a diverse gene pool that can be utilized for sustainable foxtail millet crop improvement.
Collapse
Affiliation(s)
- Palakurthi Ramesh
- Molecular Genetics and Functional Genomics Laboratory, Department of Biotechnology, School of Life Sciences, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Vijaya Naresh Juturu
- Molecular Genetics and Functional Genomics Laboratory, Department of Biotechnology, School of Life Sciences, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Poli Yugandhar
- Plant Molecular Biology Laboratory, Indian Institute of Rice Research, Hyderabad, Telangana, India
| | - Sydney Pedersen
- Department of Biology, Mercyhurst University, Erie, PA, United States
| | - Alavilli Hemasundar
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| | - Seher Yolcu
- Department of Life Sciences, Sogang University, Seoul, South Korea
| | - Puli Chandra Obul Reddy
- Plant Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | | | - P. Veerabramha Chari
- Department of Biotechnology, Krishna University, Machilipatnam, Andhra Pradesh, India
| | - Rajinikanth Mohan
- Department of Biology, Mercyhurst University, Erie, PA, United States,*Correspondence: Akila Chandra Sekhar, , ; Rajinikanth Mohan,
| | - Akila Chandra Sekhar
- Molecular Genetics and Functional Genomics Laboratory, Department of Biotechnology, School of Life Sciences, Yogi Vemana University, Kadapa, Andhra Pradesh, India,*Correspondence: Akila Chandra Sekhar, , ; Rajinikanth Mohan,
| |
Collapse
|