1
|
Sleight E, Stringer MS, Clancy U, Arteaga-Reyes C, Jaime Garcia D, Jochems ACC, Wiseman S, Valdes Hernandez M, Chappell FM, Doubal FN, Marshall I, Thrippleton MJ, Wardlaw JM. Association of Cerebrovascular Reactivity With 1-Year Imaging and Clinical Outcomes in Small Vessel Disease: An Observational Cohort Study. Neurology 2024; 103:e210008. [PMID: 39499872 PMCID: PMC11540458 DOI: 10.1212/wnl.0000000000210008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES In patients with cerebral small vessel disease (SVD), impaired cerebrovascular reactivity (CVR) is related to worse concurrent SVD burden, but less is known about cerebrovascular reactivity and long-term SVD lesion progression and clinical outcomes. We investigated associations between cerebrovascular reactivity and 1-year progression of SVD features and clinical outcomes. METHODS Between 2018 and 2021, we recruited patients from the Edinburgh/Lothian stroke services presenting with minor ischemic stroke and SVD features as part of the Mild Stroke Study 3, a prospective observational cohort study (ISRCTN 12113543). We acquired 3T brain MRI at baseline and 1 year. At baseline, we measured cerebrovascular reactivity to 6% inhaled CO2 in subcortical gray matter, normal-appearing white matter, and white matter hyperintensities (WMH). At baseline and 1 year, we quantified SVD MRI features, incident infarcts, assessed stroke severity (NIH Stroke Scale), recurrent stroke, functional outcome (modified Rankin Scale), and cognition (Montreal Cognitive Assessment). We performed linear and logistic regressions adjusted for age, sex, and vascular risk factors, reporting the regression coefficients and odds ratios with 95% CIs. RESULTS We recruited 208 patients of whom 163 (mean age and SD: 65.8 ± 11.2 years, 32% female) had adequate baseline CVR and completed the follow-up structural MRI. The median increase in WMH volume was 0.32 mL with (Q1, Q3) = (-0.48, 1.78) mL; 29% had a recurrent stroke or incident infarct on MRI. At 1 year, patients with lower baseline cerebrovascular reactivity in normal-appearing tissues had increased WMH (regression coefficient: B = -1.14 [-2.13, -0.14] log10 (%ICV) per %/mm Hg) and perivascular space volumes (B = -1.90 [-3.21, -0.60] log10 (%ROIV) per %/mm Hg), with a similar trend in WMH. CVR was not associated with clinical outcomes at 1 year. DISCUSSION Lower baseline cerebrovascular reactivity predicted an increase in WMH and perivascular space volumes after 1 year. CVR should be considered in SVD future research and intervention studies.
Collapse
Affiliation(s)
- Emilie Sleight
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Michael S Stringer
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Una Clancy
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Carmen Arteaga-Reyes
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Daniela Jaime Garcia
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Angela C C Jochems
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Stewart Wiseman
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Maria Valdes Hernandez
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Francesca M Chappell
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Fergus N Doubal
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Ian Marshall
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Michael J Thrippleton
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| |
Collapse
|
2
|
Libecap TJ, Pappas CA, Bauer CE, Zachariou V, Raslau FD, Gold BT. Enlarged perivascular space burden predicts declines in cognitive and functional performance. J Neurol Sci 2024; 466:123232. [PMID: 39298972 PMCID: PMC11563846 DOI: 10.1016/j.jns.2024.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION We evaluated the relationship between baseline enlarged perivascular space (ePVS) burden and later cognitive decline. METHODS 83 community-dwelling, older adults (aged 56-86) completed three annual cognitive assessments that included the Clinical Dementia Rating (CDR®) Dementia Staging Instrument Sum of Boxes (CDR-SB) and composite measures of executive function and episodic memory. An MRI scan at baseline was used to count ePVS in the basal ganglia and centrum semiovale. Mixed effects models were run with ePVS as the predictor variable and cognitive measures as the dependent variable. Covariates included age, sex, education, cerebral small vessel disease (cSVD) risk factors, and cSVD neuroimaging biomarkers. RESULTS At baseline, high basal ganglia ePVS counts were associated with lower executive function scores and episodic memory scores. Moreover, baseline basal ganglia ePVS predicted worse longitudinal CDR-SB scores over the study period. DISCUSSION Basal ganglia ePVS burden is a promising biomarker for cSVD-related cognitive and functional decline.
Collapse
Affiliation(s)
- T J Libecap
- MD/PhD Program, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Colleen A Pappas
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Christopher E Bauer
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Valentinos Zachariou
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Flavius D Raslau
- Department of Radiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Brian T Gold
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Radiology, University of Kentucky College of Medicine, Lexington, KY, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Mentink LJ, van Osch MJP, Bakker LJ, Olde Rikkert MGM, Beckmann CF, Claassen JAHR, Haak KV. Functional and vascular neuroimaging in maritime pilots with long-term sleep disruption. GeroScience 2024:10.1007/s11357-024-01417-4. [PMID: 39531187 DOI: 10.1007/s11357-024-01417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanism underlying the possible causal association between long-term sleep disruption and Alzheimer's disease remains unclear Musiek et al. 2015. A hypothesised pathway through increased brain amyloid load was not confirmed in previous work in our cohort of maritime pilots with long-term work-related sleep disruption Thomas et al. Alzheimer's Res Ther 2020;12:101. Here, using functional MRI, T2-FLAIR, and arterial spin labeling MRI scans, we explored alternative neuroimaging biomarkers related to both sleep disruption and AD: resting-state network co-activation and between-network connectivity of the default mode network (DMN), salience network (SAL) and frontoparietal network (FPN), vascular damage and cerebral blood flow (CBF). We acquired data of 16 maritime pilots (56 ± 2.3 years old) with work-related long-term sleep disruption (23 ± 4.8 working years) and 16 healthy controls (59 ± 3.3 years old), with normal sleep patterns (Pittsburgh Sleep Quality Index ≤ 5). Maritime pilots did not show altered co-activation in either the DMN, FPN, or SAL and no differences in between-network connectivity. We did not detect increased markers of vascular damage in maritime pilots, and additionally, maritime pilots did not show altered CBF-patterns compared to healthy controls. In summary, maritime pilots with long-term sleep disruption did not show neuroimaging markers indicative of preclinical AD compared to healthy controls. These findings do not resemble those of short-term sleep deprivation studies. This could be due to resiliency to sleep disruption or selection bias, as participants have already been exposed to and were able to deal with sleep disruption for multiple years, or to compensatory mechanisms Mentink et al. PLoS ONE. 2021;15(12):e0237622. This suggests the relationship between sleep disruption and AD is not as strong as previously implied in studies on short-term sleep deprivation, which would be beneficial for all shift workers suffering from work-related sleep disruptions.
Collapse
Affiliation(s)
- Lara J Mentink
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Cognitive Science and Artificial Intelligence, School of Humanity and Digital Sciences, Tilburg University, Tilburg, The Netherlands.
| | | | - Leanne J Bakker
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel G M Olde Rikkert
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cognitive Science and Artificial Intelligence, School of Humanity and Digital Sciences, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
4
|
Wu J, Hong G, Zheng L, Zhao J, Yu L, Jing C, Zhang Q, Wang C, Yuan X, Lin Q, Wang Z, Ma Q, Fang J. Correlation of enlarged perivascular spaces in basal ganglion and cancer-associated stroke: a case-control study in China. Stroke Vasc Neurol 2024:svn-2024-003287. [PMID: 39532461 DOI: 10.1136/svn-2024-003287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION The incidence of cancer-associated ischaemic stroke (IS) is increasingly prevalent. This study aimed to assess the levels of enlarged perivascular spaces in basal ganglion (BG-EPVS) in cancer-associated patients who had a stroke compared with the control group, and to investigate the diagnostic utility of BG-EPVS in the context of cancer-associated stroke. METHOD A matched case-control study was conducted in Xiamen, China. A total of 184 IS patients (cancer vs control=1:1) were recruited. The severity of BG-EPVS was graded using high-resolution MRI. Patients' gender, age, clinical risk factors, other imaging changes and laboratory findings information at admission were collected. Logistic regression models were constructed and subgroup analysis by cancer treatment. RESULT Overall, 65.22% of the 184 subjects were male, with a mean (SD) age of 68.83±10.52 years. BG-EPVS had a significant influence on cancer-associated stroke (OR=1.85 (95% CI 1.29, 2.71), p=0.001) after adjusting for gender, age, clinical risk factors, other imaging changes and laboratory findings. The area under the curve of the diagnosis model that combined BG-EPVS and other factors was 0.848 (95% CI 0.787, 0.896), significantly higher than the other three models. Subgroup analysis suggested a heightened association between BG-EPVS and cancer-associated stroke within the cancer treatment group. CONCLUSION In conclusion, this is the first study to assess the diagnosis values of BG-EPVS on cancer-associated stroke and helps us understand the pathogenesis of cancer-associated stroke. Our findings demonstrate the effectiveness of BG-EPVS in diagnosing IS patients who may carry underlying cancer.
Collapse
Affiliation(s)
- Jielong Wu
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Ganji Hong
- Cerebrovascular Interventional Department, Zhangzhou Hospital of Fujian Province, Zhangzhou, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Liangcheng Zheng
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Jiedong Zhao
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Lu Yu
- Department of Neurology, Xiamen Susong Hospital, Xiamen, China
| | - Chuya Jing
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Qiuhong Zhang
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Chen Wang
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Xiaodong Yuan
- Department of Gynecology of Xiamen Maternal and Child Health Care Hospital, Xiamen, China
- The Graduate School of Fujian Medical University, Fuzhou, China
| | - Qing Lin
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Zhanxiang Wang
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
- Department of Neurosurgery and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qilin Ma
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
- The Graduate School of Fujian Medical University, Fuzhou, China
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jie Fang
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
- The Graduate School of Fujian Medical University, Fuzhou, China
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
5
|
van der Thiel MM, van de Sande N, Meeusen A, Drenthen GS, Postma AA, Nuijts RMMA, van der Knaap N, Ramakers IHGB, Webers CAB, Backes WH, Gijs M, Jansen JFA. Linking human cerebral and ocular waste clearance: Insights from tear fluid and ultra-high field MRI. Neurobiol Dis 2024; 203:106730. [PMID: 39521099 DOI: 10.1016/j.nbd.2024.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Impaired cerebral waste clearance (i.e., glymphatics) is evident in aging and neurodegenerative disorders, such as Alzheimer's disease, where an impaired waste clearance system could be related to the accumulation of pathological proteins (e.g., tau). One marker of impaired cerebral clearance is the abundance of enlarged perivascular spaces (PVS). Preclinical studies propose a similar clearance system in the eye, driven by intraocular pressure (IOP). This cross-sectional pilot study explores the link between ocular and cerebral waste clearance by examining the association between MRI-visible PVS, tear fluid total-tau, and IOP. Thirty cognitively healthy participants, all aged over 55 years, underwent 7 Tesla MRI, with PVS visually rated in the centrum semiovale (CSO) and basal ganglia. Tear fluid was collected using paper Schirmer's strips and analyzed for total-tau using enzyme-linked immunosorbent assay. IOP was measured using non-contact tonometry. Partial Spearman's correlation coefficients of eye and brain markers were calculated, adjusted for age, sex, tear fluid-wetting length, and hemispheric region of interest volume. Higher CSO PVS scores in the left and right hemisphere were associated with higher levels of tear fluid total-tau. Higher CSO PVS scores in both hemispheres were related to lower ipsilateral IOP. The exploratory results suggest that higher tear fluid total-tau and a reduced driving force of ocular waste clearance are connected to impaired cerebral waste clearance in cognitive healthy individuals. This study connects the potential ocular glymphatic system to the cerebral waste clearance system. Clarifying waste clearance biology and validating eye biomarkers for cerebral waste clearance could provide treatment targets and diagnostic opportunities for neurological diseases.
Collapse
Affiliation(s)
- Merel M van der Thiel
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Nienke van de Sande
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University Eye Clinic, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Anouk Meeusen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Gerhard S Drenthen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Alida A Postma
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Rudy M M A Nuijts
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University Eye Clinic, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Noa van der Knaap
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Intensive Care, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Inez H G B Ramakers
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Carroll A B Webers
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University Eye Clinic, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Marlies Gijs
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University Eye Clinic, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
6
|
Yang Y, Yuan T, Panaitescu C, Li R, Wu K, Zhou Y, Pokrajac D, Dini D, Zhan W. Exploring Tissue Permeability of Brain Tumours in Different Grades: Insights from Pore-scale Fluid Dynamics Analysis. Acta Biomater 2024:S1742-7061(24)00656-1. [PMID: 39522625 DOI: 10.1016/j.actbio.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Interstitial fluid (ISF) flow is identified as an essential physiological process that plays an important role in the development and progression of brain tumours. However, the relationship between the permeability of the tumour tissue, a complex porous medium, and the interstitial fluid flow around the tumour cells at the microscale is not well understood. To shed light on this issue, and in the absence of experimental techniques that can provide direct measurements, we develop a computational model to predict the tissue permeability of brain tumours in different grades by analysing the ISF flow at the pore scale. The 3-D geometrical models of tissue extracellular spaces are digitally reconstructed for each grade tumour based on their morphological properties measured from microscopic images. The predictive accuracy of the framework is validated by experimental results reported in the literature. Our results indicate that high-grade brain tumours are less permeable despite their higher porosity, whereas necrotic areas of glioblastoma are more permeable than the viable tumour areas. This implies that tissue permeability is primarily governed by both tissue porosity and the deposition of hyaluronic acid (HA), a key component of the extracellular matrix, while the HA deposition can have a greater effect than macro-level porosity. Parametric studies show that tissue permeability falls exponentially with increasing HA concentration in all grades of brain tumours, and this can be captured using an empirically derived relationship in a quantitative manner. These findings provide an improved understanding of the hydraulic properties of brain tumours and their intrinsic links to tumour microstructure. This work can be used to reveal the intratumoural physiochemical processes that rely on fluid flow and offer a powerful tool to tune textured and porous biomaterials for desired transport properties. STATEMENT OF SIGNIFICANCE: Interstitial fluid flow in the extracellular space of brain tumours plays a crucial role in their progression, development, and response to drug treatments. However, the mechanisms of interstitial fluid transport around tumour cells and the characterization of these microscale transports at the tissue scale to meet clinical requirements are largely unknown. In the absence of advanced experimental techniques to capture these pore-scale transport phenomena, we have developed and validated a computational framework to successfully reveal these phenomena across all grades of brain tumours. For the first time, we have quantitatively determined the tissue permeability of all grades of brain tumours as a function of the concentration of hyaluronic acid, a key component of the extracellular matrix. This framework will enhance our ability to capture the intratumoural physicochemical processes in brain tumours and correlate them with tumour tissue-scale behaviours.
Collapse
Affiliation(s)
- Yi Yang
- School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK.
| | - Tian Yuan
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Rui Li
- School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Kejian Wu
- School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Yingfang Zhou
- School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Dubravka Pokrajac
- School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK.
| |
Collapse
|
7
|
Zhang X, Pei X, Shi Y, Yang Y, Bai X, Chen T, Zhao Y, Yang Q, Ye J, Leng X, Yang Q, Bai R, Wang Y, Sui B. Unveiling connections between venous disruption and cerebral small vessel disease using diffusion tensor image analysis along perivascular space (DTI-ALPS): A 7-T MRI study. Int J Stroke 2024:17474930241293966. [PMID: 39402900 DOI: 10.1177/17474930241293966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
BACKGROUND Cerebral venous disruption is one of the characteristic findings in cerebral small vessel disease (CSVD), and its disruption may impede perivascular glymphatic drainage. And lower diffusivity along perivascular space (DTI-ALPS) index has been suggested to be with the presence and severity of CSVD. However, the relationships between venous disruption, DTI-ALPS index, and CSVD neuroimaging features remain unclear. AIMS To investigate the association between venous integrity and perivascular diffusion activity, and explore the mediating role of DTI-ALPS index between venous disruption and CSVD imaging features. METHODS In this cross-sectional study, 31 patients (mean age, 59.0 ± 9.9 years) were prospectively enrolled and underwent 7-T magnetic resonance (MR) imaging. DTI-ALPS index was measured to quantify the perivascular diffusivity. The visibility and continuity of deep medullary veins (DMVs) were evaluated based on a brain region-based visual score on high-resolution susceptibility-weighted imaging. White matter hyperintensity (WMH) and perivascular space (PVS) were assessed using qualitative and quantitative methods. Linear regression and mediation analysis were performed to analyze the relationships among DMV scores, DTI-ALPS index, and CSVD features. RESULTS The DTI-ALPS index was significantly associated with the parietal DMV score (β = -0.573, p corrected = 0.004). Parietal DMV score was associated with WMH volume (β = 0.463, p corrected = 0.013) and PVS volume in basal ganglia (β = 0.415, p corrected = 0.028). Mediation analyses showed that DTI-ALPS index manifested a full mediating effect on the association between parietal DMV score and WMH (indirect effect = 0.115, Pm = 43.1%), as well as between parietal DMV score and PVS volume in basal ganglia (indirect effect = 0.161, Pm = 42.8%). CONCLUSION Cerebral venous disruption is associated with glymphatic activity, and with WMH and PVS volumes. Our results suggest cerebral venous integrity may play a critical role in preserving perivascular glymphatic activity; while disruption of small veins may impair the perivascular diffusivity, thereby contributing to the development of WMH and PVS enlargement.
Collapse
Affiliation(s)
- Xue Zhang
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xun Pei
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yulu Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingying Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tong Chen
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanbin Zhao
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianqian Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Ye
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyi Leng
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Lab of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Ruiliang Bai
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Physical Medicine and Rehabilitation, School of Medicine of the Affiliated Sir Run Shumen Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Binbin Sui
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Ha J, Lee S, Kim S, Lee JS, Ahn JH, Cho JW, Fasano A, Youn J. The "Hedgehog-Halo Sign" Is Associated with Gait Symptom Severity and Tap Response in Normal Pressure Hydrocephalus. Mov Disord Clin Pract 2024. [PMID: 39503269 DOI: 10.1002/mdc3.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Reduced cerebrospinal fluid (CSF) clearance may play a vital role in the pathogenesis of normal pressure hydrocephalus (NPH), but the radiologic marker is yet to be elucidated. OBJECTIVES This open-label study presents two novel neuroimaging biomarkers based on enlarged perivascular spaces (ePVS) of the sub-insular territory: the Hedgehog and Hedgehog-Halo (H-H) sign, designed to predict gait symptom severity and tap response in NPH. METHODS We retrospectively reviewed 203 patients with possible NPH with baseline magnetic resonance imaging and gait analyses before and after lumbar puncture (LP). The Hedgehog/H-H sign was scored using T2-weighted images. The clinical severity at baseline and post-tap gait improvement was compared in patients with and without Hedgehog/H-H sign. The association between Hedgehog/H-H sign and post-tap gait outcomes was assessed using multivariate regression. The diagnostic performance of Hedgehog/H-H sign was compared with conventional radiological markers. RESULTS Patients with H-H showed higher global disability and more severe gait impairment than those without any signs. Following LP, patients with Hedgehog/H-H sign significantly improved in various gait parameters, unlike those with neither sign. Additionally, sub-insular ePVS was significantly associated with post-tap gait improvement after adjusting covariates. Finally, the Hedgehog/H-H sign showed a higher performance than conventional markers in predicting post-tap gait response. CONCLUSIONS The Hedgehog/H-H sign is a useful neuroimaging biomarker related to the severity and tap response in NPH. This biomarker can be readily applied in clinical practice before undergoing LP, independent of conventional radiological signs. Further research is warranted to determine applicability in predicting post-shunt gait response.
Collapse
Affiliation(s)
- Jongmok Ha
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Neurology, Emory School of Medicine, Atlanta, Georgia, USA
| | - Suin Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Seongmi Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jun Seok Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jong Hyeon Ahn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Neuroscience, Toronto, Ontario, Canada
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
9
|
Groh J, Simons M. White matter aging and its impact on brain function. Neuron 2024:S0896-6273(24)00767-0. [PMID: 39541972 DOI: 10.1016/j.neuron.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Aging has a detrimental impact on white matter, resulting in reduced volume, compromised structural integrity of myelinated axons, and an increase in white matter hyperintensities. These changes are closely linked to cognitive decline and neurological disabilities. The deterioration of myelin and its diminished ability to regenerate as we age further contribute to the progression of neurodegenerative disorders. Understanding these changes is crucial for devising effective disease prevention strategies. Here, we will discuss the structural alterations in white matter that occur with aging and examine the cellular and molecular mechanisms driving these aging-related transformations. We highlight how the progressive disruption of white matter may initiate a self-perpetuating cycle of inflammation and neural damage.
Collapse
Affiliation(s)
- Janos Groh
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
10
|
Oltmer J, Mattern H, Beck J, Yakupov R, Greenberg SM, Zwanenburg JJM, Arts T, Düzel E, van Veluw SJ, Schreiber S, Perosa V. Enlarged perivascular spaces in the basal ganglia are associated with arteries not veins. J Cereb Blood Flow Metab 2024; 44:1362-1377. [PMID: 38863151 PMCID: PMC11542128 DOI: 10.1177/0271678x241260629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
Enlarged perivascular spaces (EPVS) are common in cerebral small vessel disease (CSVD) and have been identified as a marker of dysfunctional brain clearance. However, it remains unknown if the enlargement occurs predominantly around arteries or veins. We combined in vivo ultra-high-resolution MRI and histopathology to investigate the spatial relationship of veins and arteries with EPVS within the basal ganglia (BG). Furthermore, we assessed the relationship between the EPVS and measures of blood-flow (blood-flow velocity, pulsatility index) in the small arteries of the BG. Twenty-four healthy controls, twelve non-CAA CSVD patients, and five probable CAA patients underwent a 3 tesla [T] and 7T MRI-scan, and EPVS, arteries, and veins within the BG were manually segmented. Furthermore, the scans were co-registered. Six autopsy-cases were also assessed. In the BG, EPVS were significantly closer to and overlapped more frequently with arteries than with veins. Histological analysis showed a higher proportion of BG EPVS surrounding arteries than veins. Finally, the pulsatility index of BG arteries correlated with EPVS volume. Our results are in line with previous works and establish a pathophysiological relationship between arteries and EPVS, contributing to elucidating perivascular clearance routes in the human brain.
Collapse
Affiliation(s)
- Jan Oltmer
- Athinoula A. Martinos Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Digital Health & Innovation, Vivantes Netzwerk für Gesundheit GmbH, Berlin, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Biomedical Magnetic Resonance (BMMR), Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Julia Beck
- Department of Neurology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Steven M Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaco JM Zwanenburg
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tine Arts
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Neurology, Otto-Von-Guericke University, Magdeburg, Germany
- Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Valentina Perosa
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Menze I, Bernal J, Kaya P, Aki Ç, Pfister M, Geisendörfer J, Yakupov R, Coello RD, Valdés-Hernández MDC, Heneka MT, Brosseron F, Schmid MC, Glanz W, Incesoy EI, Butryn M, Rostamzadeh A, Meiberth D, Peters O, Preis L, Lammerding D, Gref D, Priller J, Spruth EJ, Altenstein S, Lohse A, Hetzer S, Schneider A, Fliessbach K, Kimmich O, Vogt IR, Wiltfang J, Bartels C, Schott BH, Hansen N, Dechent P, Buerger K, Janowitz D, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Sanzenbacher C, Hinderer P, Scheffler K, Spottke A, Roy-Kluth N, Lüsebrink F, Neumann K, Wardlaw J, Jessen F, Schreiber S, Düzel E, Ziegler G. Perivascular space enlargement accelerates in ageing and Alzheimer's disease pathology: evidence from a three-year longitudinal multicentre study. Alzheimers Res Ther 2024; 16:242. [PMID: 39482759 PMCID: PMC11526621 DOI: 10.1186/s13195-024-01603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Perivascular space (PVS) enlargement in ageing and Alzheimer's disease (AD) and the drivers of such a structural change in humans require longitudinal investigation. Elucidating the effects of demographic factors, hypertension, cerebrovascular dysfunction, and AD pathology on PVS dynamics could inform the role of PVS in brain health function as well as the complex pathophysiology of AD. METHODS We studied PVS in centrum semiovale (CSO) and basal ganglia (BG) computationally over three to four annual visits in 503 participants (255 females; meanage = 70.78 ± 5.78) of the ongoing observational multicentre "DZNE Longitudinal Cognitive Impairment and Dementia Study" (DELCODE) cohort. We analysed data from subjects who were cognitively unimpaired (n = 401), had amnestic mild cognitive impairment (n = 71), or had AD (n = 31). We used linear mixed-effects modelling to test for changes of PVS volumes in relation to cross-sectional and longitudinal age, as well as sex, years of education, hypertension, white matter hyperintensities, AD diagnosis, and cerebrospinal-fluid-derived amyloid (A) and tau (T) status (available for 46.71%; A-T-/A + T-/A + T + n = 143/48/39). RESULTS PVS volumes increased significantly over follow-ups (CSO: B = 0.03 [0.02, 0.05], p < 0.001; BG: B = 0.05 [0.03, 0.07], p < 0.001). PVS enlargement rates varied substantially across subjects and depended on the participant's age, white matter hyperintensities volumes, and amyloid and tau status. PVS volumes were higher across elderly participants, regardless of region of interest (CSO: B = 0.12 [0.02, 0.21], p = 0.017; BG: B = 0.19 [0.09, 0.28], p < 0.001). Faster BG-PVS enlargement related to lower baseline white matter hyperintensities volumes (ρspearman = -0.17, pFDR = 0.001) and was more pronounced in individuals who presented with combined amyloid and tau positivity versus negativity (A + T + > A-T-, pFDR = 0.004) or who were amyloid positive but tau negative (A + T + > A + T-, pFDR = 0.07). CSO-PVS volumes increased at a faster rate with amyloid positivity as compared to amyloid negativity (A + T-/A + T + > A-T-, pFDR = 0.021). CONCLUSION Our longitudinal evidence supports the relevance of PVS enlargement in presumably healthy ageing as well as in AD pathology. We further discuss the region-specific involvement of white matter hyperintensities and neurotoxic waste accumulation in PVS enlargement and the possibility of additional factors contributing to PVS progression. A comprehensive understanding of PVS dynamics could facilitate the understanding of pathological cascades and might inform targeted treatment strategies. TRIAL REGISTRATION German Clinical Trials Register DRKS00007966. Registered 04.05.2015 - retrospectively registered, https://drks.de/search/en/trial/DRKS00007966 .
Collapse
Affiliation(s)
- Inga Menze
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany.
| | - Jose Bernal
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Pinar Kaya
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Çağla Aki
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Malte Pfister
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Jonas Geisendörfer
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Renat Yakupov
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Maria D C Valdés-Hernández
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 6 Avenue du Swing 4367 , Esch-Belval, Luxembourg
| | - Frederic Brosseron
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Matthias C Schmid
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Wenzel Glanz
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Enise I Incesoy
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Michaela Butryn
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany
| | - Dix Meiberth
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany
| | - Oliver Peters
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Lukas Preis
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Dominik Lammerding
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Daria Gref
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Josef Priller
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
- School of Medicine, Department of Psychiatry and Psychotherapy, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Eike J Spruth
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Slawek Altenstein
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Andrea Lohse
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Anja Schneider
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Klaus Fliessbach
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Okka Kimmich
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Ina R Vogt
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Jens Wiltfang
- German Centre for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
| | - Björn H Schott
- German Centre for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
- Leibniz Institute for Neurobiology, Brenneckestraße 6, Magdeburg, 39118, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
| | - Peter Dechent
- Department of Cognitive Neurology, MR-Research in Neurosciences, Georg-August-University Goettingen, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Katharina Buerger
- German Centre for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich, 81377, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, Munich, 81377, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, Munich, 81377, Germany
| | - Robert Perneczky
- German Centre for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich, 81377, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, Munich, München, 80336 , Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, Munich, 81377, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, London, W6 8RP, UK
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, Munich, München, 80336 , Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Rd, Sheffield, Broomhall, Sheffield, S10 2HQ, UK
- Department of Neuroradiology, University Hospital LMU, Marchioninistr. 15, Munich, 81377, Germany
| | - Stefan Teipel
- German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Ingo Kilimann
- German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Doreen Goerss
- German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Christoph Laske
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Osianderstraße 24, Tübingen, 72076, Germany
| | - Matthias H Munk
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Osianderstraße 24, Tübingen, 72076 , Germany
| | - Carolin Sanzenbacher
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
| | - Petra Hinderer
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Straße 51, Tübingen, 72076, Germany
| | - Annika Spottke
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Neurology, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Nina Roy-Kluth
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Falk Lüsebrink
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Katja Neumann
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Frank Jessen
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany
- Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Stefanie Schreiber
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Emrah Düzel
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Gabriel Ziegler
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| |
Collapse
|
12
|
Custer RM, Lynch KM, Barisano G, Herting MM, Åkerstedt T, Nilsonne G, Ahmadi H, Choupan J. Effects of one-night partial sleep deprivation on perivascular space volume fraction: Findings from the Stockholm Sleepy Brain Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620382. [PMID: 39484474 PMCID: PMC11527350 DOI: 10.1101/2024.10.26.620382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Increased waste clearance in the brain is thought to occur most readily during late-stage sleep (stage N3). Sleep deprivation disrupts time spent in deeper sleep stages, fragmenting the clearance process. Here, we have utilized the publicly available Stockholm Sleepy Brain Study to investigate whether various sleep-related measures are associated with changes in perivascular space (PVS) volume fraction following a late-night short-sleep experiment. Our sample consisted of 60 participants divided into old (65-75 years) and young (20-30 years) age groups. We found that partial sleep deprivation was not significantly associated with major PVS changes. In the centrum semiovale, we observed an interaction between percentage of total sleep time spent in N3 and sleep deprivation status on PVS volume fraction. In the basal ganglia, we saw an interaction between N2 (both percentage of total sleep time and absolute time in minutes) and sleep deprivation status. However, the significance of these findings did not survive multiple comparisons corrections. This work highlights the need for future longitudinal studies of PVS and sleep, allowing for quantification of within-subject morphological changes occurring in PVS due to patterns of poor sleep. Our findings here provide insight on the impacts that a single night of late-night short-sleep has on the perivascular waste clearance system.
Collapse
Affiliation(s)
- Rachel M. Custer
- Laboratory of Neuro Imaging (LONI), Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirsten M. Lynch
- Laboratory of Neuro Imaging (LONI), Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Megan M. Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Torbjörn Åkerstedt
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Gustav Nilsonne
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging (LONI), Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- NeuroScope Inc., Scarsdale, New York, USA
| |
Collapse
|
13
|
Werring DJ, Ozkan H. The Expanding Clinical Impact of Cerebral Small Vessel Diseases: Tiny but Mighty. Neurology 2024; 103:e209975. [PMID: 39321405 DOI: 10.1212/wnl.0000000000209975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Affiliation(s)
- David J Werring
- From the Stroke Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Hatice Ozkan
- From the Stroke Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
14
|
Morozova A, Španiel F, Škoch A, Brabec M, Zolotarov G, Musil V, Zach P. Enlarged brain perivascular spaces correlate with blood plasma osmolality in the healthy population: A longitudinal study. Neuroimage 2024; 300:120871. [PMID: 39341473 DOI: 10.1016/j.neuroimage.2024.120871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Enlarged perivascular spaces (EPVS) are increasingly recognized as an MRI detectable feature of neuroinflammatory processes and age-related neurodegenerative changes. Understanding perivascular characteristics in healthy individuals is crucial for their applicability as a reference for pathological changes. Limited data exists on the EPVS load and interhemispheric asymmetry in distribution among young healthy subjects. Despite the known impact of hydration on brain morphometric studies, blood plasma osmolality's effect on EPVS remains unexplored. This study investigated the influence of age, total intracranial volume (TIV), and blood plasma osmolality on EPVS characteristics in 59 healthy adults, each undergoing MRI and osmolality assessment twice within 14.8 months (mean ± 4 months). EPVS analysis was conducted in the centrum semiovale using high-resolution automated segmentation, followed by an optimization algorithm to enhance EPVS segmentation accuracy. Linear Mixed Effects model was used for the statistical analysis, which unveiled significant inter-individual variability in EPVS load and inter-hemispheric asymmetry. EPVS volume increased with age, higher TIV and lower blood plasma osmolality levels. Our findings offer valuable insights into EPVS characteristics among the healthy population, establishing a foundation to further explore age-related and pathological changes.
Collapse
Affiliation(s)
- Alexandra Morozova
- Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czechia; National Institute of Mental Health, Klecany, Czechia.
| | - Filip Španiel
- National Institute of Mental Health, Klecany, Czechia
| | - Antonín Škoch
- National Institute of Mental Health, Klecany, Czechia
| | - Marek Brabec
- Department of Statistical Modeling, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Grygoriy Zolotarov
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain
| | - Vladimir Musil
- Centre of Scientific Information, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Petr Zach
- Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czechia; National Institute of Mental Health, Klecany, Czechia
| |
Collapse
|
15
|
Yamamoto EA, Bagley JH, Geltzeiler M, Sanusi OR, Dogan A, Liu JJ, Piantino J. The perivascular space is a conduit for cerebrospinal fluid flow in humans: A proof-of-principle report. Proc Natl Acad Sci U S A 2024; 121:e2407246121. [PMID: 39374384 PMCID: PMC11494350 DOI: 10.1073/pnas.2407246121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/04/2024] [Indexed: 10/09/2024] Open
Abstract
The glymphatic pathway was defined in rodents as a network of perivascular spaces (PVSs) that facilitates organized distribution of cerebrospinal fluid (CSF) into the brain parenchyma. To date, perivascular CSF and cerebral interstitial fluid exchange has not been shown in humans. Using intrathecal gadolinium contrast-enhanced MRI, we show that contrast-enhanced CSF moves through the PVS into the parenchyma, supporting the existence of a glymphatic pathway in humans.
Collapse
Affiliation(s)
- Erin A. Yamamoto
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR97239
| | - Jacob H. Bagley
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR97239
- Department of Neurosurgery, Aurora St. Luke’s Medical Center, Milwaukee, WI53215
| | - Mathew Geltzeiler
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health & Science University, Portland, OR97239
| | - Olabisi R. Sanusi
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR97239
| | - Aclan Dogan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR97239
| | - Jesse J. Liu
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR97239
| | - Juan Piantino
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children’s Hospital, Oregon Health and Science University, Portland, OR97239
| |
Collapse
|
16
|
Amano R, Sunouchi A, Yokota Y, Mochizuki K. Case report: An autopsy report of patient with metastatic brain tumor and carcinomatous meningitis mimicking paraneoplastic neurological syndrome. Front Neurol 2024; 15:1471668. [PMID: 39463789 PMCID: PMC11512452 DOI: 10.3389/fneur.2024.1471668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Differential diagnosis of metastatic brain tumor, carcinomatous meningitis, and paraneoplastic neurological syndrome (PNS) can be challenging in atypical cases. When examining patient with increased T2 fluid-attenuated inversion recovery (FLAIR) hyperintensities in the temporal polar white matter, autoimmune encephalitis, including PNS, should be considered. Herein, we report the case of an 85-year-old man with carcinomatous meningitis due to lung large cell carcinoma. He showed disturbance of consciousness, abnormal behavior, incomprehensible speech, and apathy, which suggested brain dysfunction. Magnetic resonance imaging revealed high intensities on the whole cerebellum on a diffusion-weighted image and bilateral T2 FLAIR hyperintensities in the temporal polar white matter. Cerebrospinal fluid analysis and cytology showed elevated total protein levels, pleocytosis, and atypical cells with nuclear enlargement, hyperchromasia, and irregular shape. Autopsy revealed lung large cell carcinoma and its brain metastasis. Tumor cells were disseminated to the central nervous system along the subarachnoid space. Furthermore, plenty of carcinoma cells and peritumoral enlarged perivascular space were observed in the temporal poles. To our knowledge, this is the first report of bilateral T2 FLAIR hyperintensities in the temporal polar white matter caused by carcinomatous meningitis with pathological confirmation. In patient with carcinomatous meningitis, abnormal T2 FLAIR hyperintensities may not be derived from ischemia or tumor invasion to parenchyma.
Collapse
Affiliation(s)
- Ryota Amano
- Department of Neurology, Fujiyoshida Municipal Medical Center, Yamanashi, Japan
| | - Azusa Sunouchi
- Department of Neurology, Fujiyoshida Municipal Medical Center, Yamanashi, Japan
| | - Yuka Yokota
- Department of Pathology, University of Yamanashi, Yamanashi, Japan
| | - Kunio Mochizuki
- Department of Pathology, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
17
|
Liu J, Binding L, Puntambekar I, Patodia S, Lim YM, Mryzyglod A, Xiao F, Pan S, Mito R, de Tisi J, Duncan JS, Baxendale S, Koepp M, Thom M. Microangiopathy in temporal lobe epilepsy with diffusion MRI alterations and cognitive decline. Acta Neuropathol 2024; 148:49. [PMID: 39377933 PMCID: PMC11461556 DOI: 10.1007/s00401-024-02809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
White matter microvascular alterations in temporal lobe epilepsy (TLE) may be relevant to acquired neurodegenerative processes and cognitive impairments associated with this condition. We quantified microvascular changes, myelin, axonal, glial and extracellular-matrix labelling in the gyral core and deep temporal lobe white matter regions in surgical resections from 44 TLE patients with or without hippocampal sclerosis. We compared this pathology data with in vivo pre-operative MRI diffusion measurements in co-registered regions and neuropsychological measures of cognitive impairment and decline. In resections, increased arteriolosclerosis was observed in TLE compared to non-epilepsy controls (greater sclerotic index, p < 0.001), independent of age. Microvascular changes included increased vascular densities in some regions but uniformly reduced mean vascular size (quantified with collagen-4, p < 0.05-0.0001), and increased pericyte coverage of small vessels and capillaries particularly in deep white matter (quantified with platelet-derived growth factor receptorβ and smooth muscle actin, p < 0.01) which was more marked the longer the duration of epilepsy (p < 0.05). We noted increased glial numbers (Olig2, Iba1) but reduced myelin (MAG, PLP) in TLE compared to controls, particularly prominent in deep white matter. Gene expression analysis showed a greater reduction of myelination genes in HS than non-HS cases and with age and correlation with diffusion MRI alterations. Glial densities and vascular size were increased with increased MRI diffusivity and vascular density with white matter abnormality quantified using fixel-based analysis. Increased perivascular space was associated with reduced fractional anisotropy as well as age-accelerated cognitive decline prior to surgery (p < 0.05). In summary, likely acquired microangiopathic changes in TLE, including vascular sclerosis, increased pericyte coverage and reduced small vessel size, may indicate a functional alteration in contractility of small vessels and haemodynamics that could impact on tissue perfusion. These morphological features correlate with white matter diffusion MRI alterations and might explain cognitive decline in TLE.
Collapse
Affiliation(s)
- Joan Liu
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Neuroscience, University of Westminster, London, UK
| | - Lawrence Binding
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Isha Puntambekar
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Smriti Patodia
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Yau Mun Lim
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alicja Mryzyglod
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Shengning Pan
- Department of Statistical Science, University College London, Gower St., London, UK
| | - Remika Mito
- Department of Neuroscience and Mental Health, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
18
|
Satyanarayanan SK, Han Z, Xiao J, Yuan Q, Yung WH, Ke Y, Chang RCC, Zhu MH, Su H, Su KP, Qin D, Lee SMY. Frontiers of Neurodegenerative Disease Treatment: Targeting Immune Cells in Brain Border Regions. Brain Behav Immun 2024; 123:483-499. [PMID: 39378973 DOI: 10.1016/j.bbi.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Neurodegenerative diseases (NDs) demonstrate a complex interaction with the immune system, challenging the traditional view of the brain as an "immune-privileged" organ. Microglia were once considered the sole guardians of the brain's immune response. However, recent research has revealed the critical role of peripheral immune cells located in key brain regions like the meninges, choroid plexus, and perivascular spaces. These previously overlooked cells are now recognized as contributors to the development and progression of NDs. This newfound understanding opens doors for pioneering therapeutic strategies. By targeting these peripheral immune cells, we may be able to modulate the brain's immune environment, offering an alternative approach to treat NDs and circumvent the challenges posed by the blood-brain barrier. This comprehensive review will scrutinize the latest findings on the complex interactions between these peripheral immune cells and NDs. It will also critically assess the prospects of targeting these cells as a ground-breaking therapeutic avenue for these debilitating disorders.
Collapse
Affiliation(s)
- Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Zixu Han
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Jingwei Xiao
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Faculty of Medicine Building, Hong Kong, China
| | - Maria Huachen Zhu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Hong Kong, China
| | - Kuan-Pin Su
- An-Nan Hospital, China Medical University, Tainan, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Suki Man Yan Lee
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Agarwal N, Frigerio G, Rizzato G, Ciceri T, Mani E, Lanteri F, Molteni M, Carare RO, Losa L, Peruzzo D. Parasagittal dural volume correlates with cerebrospinal fluid volume and developmental delay in children with autism spectrum disorder. COMMUNICATIONS MEDICINE 2024; 4:191. [PMID: 39367270 PMCID: PMC11452566 DOI: 10.1038/s43856-024-00622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND The parasagittal dura, a tissue that lines the walls of the superior sagittal sinus, acts as an active site for immune-surveillance, promotes the reabsorption of cerebrospinal fluid, and facilitates the removal of metabolic waste products from the brain. Cerebrospinal fluid is important for the distribution of growth factors that signal immature neurons to proliferate and migrate. Autism spectrum disorder is characterized by altered cerebrospinal fluid dynamics. METHODS In this retrospective study, we investigated potential correlations between parasagittal dura volume, brain structure volumes, and clinical severity scales in young children with autism spectrum disorder. We employed a semi-supervised two step pipeline to extract parasagittal dura volume from 3D-T2 Fluid Attenuated Inversion Recovery sequences, based on U-Net followed by manual refinement of the extracted parasagittal dura masks. RESULTS Here we show that the parasagittal dura volume does not change with age but is significantly correlated with cerebrospinal fluid (p-value = 0.002), extra-axial cerebrospinal fluid volume (p-value = 0.0003) and severity of developmental delay (p-value = 0.024). CONCLUSIONS These findings suggest that autism spectrum disorder children with severe developmental delay may have a maldeveloped parasagittal dura that potentially perturbs cerebrospinal fluid dynamics.
Collapse
Affiliation(s)
- Nivedita Agarwal
- Diagnostic Imaging and Neuroradiology Unit, IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco LC, Italy.
| | - Giulia Frigerio
- Diagnostic Imaging and Neuroradiology Unit, IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco LC, Italy
| | - Gloria Rizzato
- Diagnostic Imaging and Neuroradiology Unit, IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco LC, Italy
| | - Tommaso Ciceri
- Neuroimaging Unit, IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco LC, Italy
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Elisa Mani
- Child Psychopathology Unit, IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco LC, Italy
| | - Fabiola Lanteri
- Child Psychopathology Unit, IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco LC, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco LC, Italy
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, UK
- University of Medicine, Pharmacy, Science, and Technology, Targu-Mures, Romania
| | - Letizia Losa
- Diagnostic Imaging and Neuroradiology Unit, IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco LC, Italy
| | - Denis Peruzzo
- Neuroimaging Unit, IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco LC, Italy
| |
Collapse
|
20
|
Liu C, Jing J, Jiang J, Wen W, Zhu W, Li Z, Pan Y, Cai X, Liu H, Zhou Y, Meng X, Zhang J, Wang Y, Li H, Jiang Y, Zheng H, Wang S, Niu H, Kochan N, Brodaty H, Wei T, Sachdev P, Liu T, Wang Y. Relationships between brain structure-function coupling in normal aging and cognition: A cross-ethnicity population-based study. Neuroimage 2024; 299:120847. [PMID: 39265959 DOI: 10.1016/j.neuroimage.2024.120847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Increased efforts in neuroscience seek to understand how macro-anatomical and physiological connectomes cooperatively work to generate cognitive behaviors. However, the structure-function coupling characteristics in normal aging individuals remain unclear. Here, we developed an index, the Coupling in Brain Structural connectome and Functional connectome (C-BSF) index, to quantify regional structure-function coupling in a large community-based cohort. C-BSF used diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (fMRI) data from the Polyvascular Evaluation for Cognitive Impairment and Vascular Events study (PRECISE) cohort (2007 individuals, age: 61.15 ± 6.49 years) and the Sydney Memory and Ageing Study (MAS) cohort (254 individuals, age: 83.45 ± 4.33 years). We observed that structure-function coupling was the strongest in the visual network and the weakest in the ventral attention network. We also observed that the weaker structure-function coupling was associated with increased age and worse cognitive level of the participant. Meanwhile, the structure-function coupling in the visual network was associated with the visuospatial performance and partially mediated the connections between age and the visuospatial function. This work contributes to our understanding of the underlying brain mechanisms by which aging affects cognition and also help establish early diagnosis and treatment approaches for neurological diseases in the elderly.
Collapse
Affiliation(s)
- Chang Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Jing
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Jiyang Jiang
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Wei Wen
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia; Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW Medicine, Sydney NSW 2052, Australia
| | - Wanlin Zhu
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuesong Pan
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueli Cai
- Department of Neurology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, Zhejiang, China
| | - Hao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yijun Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jicong Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yilong Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huaguang Zheng
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Suying Wang
- Cerebrovascular Research Lab, Lishui Hospital, Zhejiang University School of Medicine, Lishui, Zhejiang, China
| | - Haijun Niu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Nicole Kochan
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia; Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW Medicine, Sydney NSW 2052, Australia
| | - Henry Brodaty
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia; Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW Medicine, Sydney NSW 2052, Australia
| | - Tiemin Wei
- Department of Cardiology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, Zhejiang, China
| | - Perminder Sachdev
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia; Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW Medicine, Sydney NSW 2052, Australia
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Liu H, Meng L, Wang J, Qin C, Feng R, Chen Y, Chen P, Zhu Q, Ma M, Teng J, Ding X. Enlarged perivascular spaces in alcohol-related brain damage induced by dyslipidemia. J Cereb Blood Flow Metab 2024; 44:1867-1880. [PMID: 38700501 PMCID: PMC11494831 DOI: 10.1177/0271678x241251570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Perivascular spaces (PVSs) as the anatomical basis of the glymphatic system, are increasingly recognized as potential imaging biomarkers of neurological conditions. However, it is not clear whether enlarged PVSs are associated with alcohol-related brain damage (ARBD). We aimed to investigate the effect of long-term alcohol exposure on dyslipidemia and the glymphatic system in ARBD. We found that patients with ARBD exhibited significantly enlargement of PVSs in the frontal cortex and basal ganglia, as well as a notable increased levels of total cholesterol (TC) and triglycerides (TG). The anatomical changes of the glymphatic drainage system mentioned above were positively associated with TC and TG. To further explore whether enlarged PVSs affects the function of the glymphatic system in ARBD, we constructed long alcohol exposure and high fat diet mice models. The mouse model of long alcohol exposure exhibited increased levels of TC and TG, enlarged PVSs, the loss of aquaporin-4 polarity caused by reactive astrocytes and impaired glymphatic drainage function which ultimately caused cognitive deficits, in a similar way as high fat diet leading to impairment in glymphatic drainage. Our study highlights the contribution of dyslipidemia due to long-term alcohol abuse in the impairment of the glymphatic drainage system.
Collapse
Affiliation(s)
- Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Henan 450052, China
| | - Lin Meng
- Department of Neurology, Zhengzhou Central Hospital, Zhengzhou, Henan 450000, China
| | - Jiuqi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Henan 450052, China
| | - Chi Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Henan 450052, China
| | - Renyi Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Henan 450052, China
| | - Yongkang Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Henan 450052, China
| | - Pei Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Henan 450052, China
| | - Qingyong Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Henan 450052, China
| | - Mingming Ma
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, Henan 450000, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Henan 450052, China
| | - Xuebing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Henan 450052, China
| |
Collapse
|
22
|
Strobel S, Sian-Hulsmann J, Tappe D, Jellinger K, Riederer P, Monoranu CM. Postencephalitic Parkinsonism: Unique Pathological and Clinical Features-Preliminary Data. Cells 2024; 13:1511. [PMID: 39329695 PMCID: PMC11430219 DOI: 10.3390/cells13181511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Postencephalitic parkinsonism (PEP) is suggested to show a virus-induced pathology, which is different from classical idiopathic Parkinson's disease (PD) as there is no α-synuclein/Lewy body pathology. However, PEP shows a typical clinical representation of motor disturbances. In addition, compared to PD, there is no iron-induced pathology. The aim of this preliminary study was to compare PEP with PD regarding iron-induced pathology, using histochemistry methods on paraffin-embedded post-mortem brain tissue. In the PEP group, iron was not seen, except for one case with sparse perivascular depositions. Rather, PEP offers a pathology related to tau-protein/neurofibrillary tangles, with mild to moderate memory deficits only. It is assumed that this virus-induced pathology is due to immunological dysfunctions causing (neuro)inflammation-induced neuronal network disturbances as events that trigger clinical parkinsonism. The absence of iron deposits implies that PEP cannot be treated with iron chelators. The therapy with L-Dopa is also not an option, as L-Dopa only leads to an initial slight improvement in symptoms in isolated cases.
Collapse
Affiliation(s)
- Sabrina Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Jeswinder Sian-Hulsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya;
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
| | - Kurt Jellinger
- Institute of Clinical Neurobiology, A-1150 Vienna, Austria;
| | - Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, 97080 Wuerzburg, Germany;
- Department of Psychiatry, University of Southern Denmark, 5000 Odense, Denmark
| | - Camelia-Maria Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, 97080 Wuerzburg, Germany;
| |
Collapse
|
23
|
Huang P, Liu L, Zhang Y, Zhong S, Liu P, Hong H, Wang S, Xie L, Lin M, Jiaerken Y, Luo X, Li K, Zeng Q, Cui L, Li J, Chen Y, Zhang R. Development and validation of a perivascular space segmentation method in multi-center datasets. Neuroimage 2024; 298:120803. [PMID: 39181194 DOI: 10.1016/j.neuroimage.2024.120803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Perivascular spaces (PVS) visible on magnetic resonance imaging (MRI) are significant markers associated with various neurological diseases. Although quantitative analysis of PVS may enhance sensitivity and improve consistency across studies, the field lacks a universally validated method for analyzing images from multi-center studies. METHODS We annotated PVS on multi-center 3D T1-weighted (T1w) images acquired using scanners from three major vendors (Siemens, General Electric, and Philips). A neural network, mcPVS-Net (multi-center PVS segmentation network), was trained using data from 40 subjects and then tested in a separate cohort of 15 subjects. We assessed segmentation accuracy against ground truth masks tailored for each scanner vendor. Additionally, we evaluated the agreement between segmented PVS volumes and visual scores for each scanner. We also explored correlations between PVS volumes and various clinical factors such as age, hypertension, and white matter hyperintensities (WMH) in a larger sample of 1020 subjects. Furthermore, mcPVS-Net was applied to a new dataset comprising both T1w and T2-weighted (T2w) images from a United Imaging scanner to investigate if PVS volumes could discriminate between subjects with differing visual scores. We also compared the mcPVS-Net with a previously published method that segments PVS from T1 images. RESULTS In the test dataset, mcPVS-Net achieved a mean DICE coefficient of 0.80, with an average Precision of 0.81 and Recall of 0.79, indicating good specificity and sensitivity. The segmented PVS volumes were significantly associated with visual scores in both the basal ganglia (r = 0.541, p < 0.001) and white matter regions (r = 0.706, p < 0.001), and PVS volumes were significantly different among subjects with varying visual scores. Segmentation performance was consistent across different scanner vendors. PVS volumes exhibited significant associations with age, hypertension, and WMH. In the United Imaging scanner dataset, PVS volumes showed good associations with PVS visual scores evaluated on either T1w or T2w images. Compared to a previously published method, mcPVS-Net showed a higher accuracy and improved PVS segmentation in the basal ganglia region. CONCLUSION The mcPVS-Net demonstrated good accuracy for segmenting PVS from 3D T1w images. It may serve as a useful tool for future PVS research.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingyun Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyan Zhong
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Liu
- Department of Radiology, Linyi Traditional Chinese Medicine Hospital, Linyi, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linyun Xie
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Lin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Cui
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jixuan Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
24
|
Wang X, Lyu J, Duan Q, Li C, Huang J, Meng Z, Wu X, Chen W, Wang G, Niu Q, Li X, Bian Y, Han D, Guo W, Yang S, Bian X, Lan Y, Wang L, Zhang T, Duan C, Lou X. Deep medullary vein damage correlates with small vessel disease in small vessel occlusion acute ischemic stroke. Eur Radiol 2024; 34:6026-6035. [PMID: 38337069 PMCID: PMC11364723 DOI: 10.1007/s00330-024-10628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/20/2023] [Accepted: 11/11/2023] [Indexed: 02/12/2024]
Abstract
OBJECTIVES We aim to investigate whether cerebral small vessel disease (cSVD) imaging markers correlate with deep medullary vein (DMV) damage in small vessel occlusion acute ischemic stroke (SVO-AIS) patients. METHODS The DMV was divided into six segments according to the regional anatomy. The total DMV score (0-18) was calculated based on segmental continuity and visibility. The damage of DMV was grouped according to the quartiles of the total DMV score. Neuroimaging biomarkers of cSVD including white matter hyperintensity (WMH), cerebral microbleed (CMB), perivascular space (PVS), and lacune were identified. The cSVD score were further analyzed. RESULTS We included 229 SVO-AIS patients, the mean age was 63.7 ± 23.1 years, the median NIHSS score was 3 (IQR, 2-6). In the severe DMV burden group (the 4th quartile), the NIHSS score grade (6 (3-9)) was significantly higher than other groups (p < 0.01). The grade scores for basal ganglia PVS (BG-PVS) were positively correlated with the degree of DMV (R = 0.67, p < 0.01), rather than centrum semivole PVS (CS-PVS) (R = 0.17, p = 0.1). In multivariate analysis, high CMB burden (adjusted odds ratio [aOR], 25.38; 95% confidence interval [CI], 1.87-345.23) was associated with severe DMV scores. In addition, BG-PVS was related to severe DMV burden in a dose-dependent manner: when BG-PVS score was 3 and 4, the aORs of severe DMV burden were 18.5 and 12.19, respectively. CONCLUSION The DMV impairment was associated with the severity of cSVD, which suggests that DMV burden may be used for risk stratification in SVO-AIS patients. CLINICAL RELEVANCE STATEMENT The DMV damage score, based on the association between small vessel disease and the deep medullary veins impairment, is a potential new imaging biomarker for the prognosis of small vessel occlusion acute ischemic stroke, with clinical management implications. KEY POINTS • The damage to the deep medullary vein may be one mechanism of cerebral small vessel disease. • Severe burden of the basal ganglia perivascular space and cerebral microbleed is closely associated with significant impairment to the deep medullary vein. • The deep medullary vein damage score may reflect a risk of added vascular damage in small vessel occlusion acute ischemic stroke patients.
Collapse
Affiliation(s)
- Xueyang Wang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
- Department of Radiology, Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine/ Yancheng Traditional Chinese Medicine Hospital, Jiangsu, China
| | - Jinhao Lyu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Qi Duan
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Chenxi Li
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiayu Huang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Zhihua Meng
- Department of Radiology, Yuebei People's Hospital, Guangdong, China
| | - Xiaoyan Wu
- Department of Radiology, Anshan Changda Hospital, Liaoning, China
| | - Wen Chen
- Department of Radiology, Shiyan Taihe Hospital, Hubei, China
| | - Guohua Wang
- Department of Radiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Shandong, China
| | - Qingliang Niu
- Department of Radiology, WeiFang Traditional Chinese Hospital, Shandong, China
| | - Xin Li
- Department of Radiology, Jilin University Second Hospital, Shandong, China
| | - Yitong Bian
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Dan Han
- Department of Radiology, Kunming Medical University First Affiliated Hospital, Yunnan, China
| | - Weiting Guo
- Department of Radiology, Shanxi Provincial People's Hospital, Shanxi, China
| | - Shuai Yang
- Department of Radiology, Xiangya Hospital Central South University, Hunan, China
| | - Xiangbing Bian
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Yina Lan
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Liuxian Wang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Tingyang Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Caohui Duan
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
25
|
Deike K, Decker A, Scheyhing P, Harten J, Zimmermann N, Paech D, Peters O, Freiesleben SD, Schneider LS, Preis L, Priller J, Spruth E, Altenstein S, Lohse A, Fliessbach K, Kimmich O, Wiltfang J, Bartels C, Hansen N, Jessen F, Rostamzadeh A, Düzel E, Glanz W, Incesoy EI, Butryn M, Buerger K, Janowitz D, Ewers M, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Spottke A, Roy N, Wagner M, Roeske S, Heneka MT, Brosseron F, Ramirez A, Dobisch L, Wolfsgruber S, Kleineidam L, Yakupov R, Stark M, Schmid MC, Berger M, Hetzer S, Dechent P, Scheffler K, Petzold GC, Schneider A, Effland A, Radbruch A. Machine Learning-Based Perivascular Space Volumetry in Alzheimer Disease. Invest Radiol 2024; 59:667-676. [PMID: 38652067 DOI: 10.1097/rli.0000000000001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
OBJECTIVES Impaired perivascular clearance has been suggested as a contributing factor to the pathogenesis of Alzheimer disease (AD). However, it remains unresolved when the anatomy of the perivascular space (PVS) is altered during AD progression. Therefore, this study investigates the association between PVS volume and AD progression in cognitively unimpaired (CU) individuals, both with and without subjective cognitive decline (SCD), and in those clinically diagnosed with mild cognitive impairment (MCI) or mild AD. MATERIALS AND METHODS A convolutional neural network was trained using manually corrected, filter-based segmentations (n = 1000) to automatically segment the PVS in the centrum semiovale from interpolated, coronal T2-weighted magnetic resonance imaging scans (n = 894). These scans were sourced from the national German Center for Neurodegenerative Diseases Longitudinal Cognitive Impairment and Dementia Study. Convolutional neural network-based segmentations and those performed by a human rater were compared in terms of segmentation volume, identified PVS clusters, as well as Dice score. The comparison revealed good segmentation quality (Pearson correlation coefficient r = 0.70 with P < 0.0001 for PVS volume, detection rate in cluster analysis = 84.3%, and Dice score = 59.0%). Subsequent multivariate linear regression analysis, adjusted for participants' age, was performed to correlate PVS volume with clinical diagnoses, disease progression, cerebrospinal fluid biomarkers, lifestyle factors, and cognitive function. Cognitive function was assessed using the Mini-Mental State Examination, the Comprehensive Neuropsychological Test Battery, and the Cognitive Subscale of the 13-Item Alzheimer's Disease Assessment Scale. RESULTS Multivariate analysis, adjusted for age, revealed that participants with AD and MCI, but not those with SCD, had significantly higher PVS volumes compared with CU participants without SCD ( P = 0.001 for each group). Furthermore, CU participants who developed incident MCI within 4.5 years after the baseline assessment showed significantly higher PVS volumes at baseline compared with those who did not progress to MCI ( P = 0.03). Cognitive function was negatively correlated with PVS volume across all participant groups ( P ≤ 0.005 for each). No significant correlation was found between PVS volume and any of the following parameters: cerebrospinal fluid biomarkers, sleep quality, body mass index, nicotine consumption, or alcohol abuse. CONCLUSIONS The very early changes of PVS volume may suggest that alterations in PVS function are involved in the pathophysiology of AD. Overall, the volumetric assessment of centrum semiovale PVS represents a very early imaging biomarker for AD.
Collapse
Affiliation(s)
- Katerina Deike
- From the German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany (K.D., A.D., K.F., O.K., F.J., Annika Spottke, N.R., M.W., S.R., M.T.H., F.B., Alfredo Ramirez, S.W., L.K., M.S., M.C.S., G.C.P., Anja Schneider, Alexander Radbruch); Department of Neuroradiology, University Hospital, Bonn, Germany (K.D., P.S., D.P., Alexander Radbruch); Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University Hospital Bonn, Bonn, Germany (J.H., N.Z., K.F., M.W., Alfredo Ramirez, S.W., L.K., Anja Schneider); Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (D.P.); German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany (O.P., S.D.F., J.P., E.S., S.A.); Institute of Psychiatry and Psychotherapy, Charité-Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (O.P., S.D.F., L.-S.S., L.P.); Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany (J.P., E.S., S.A., A.L.); Department of Psychiatry and Psychotherapy, School of Medicine, Munich, Germany (J.P.); University of Edinburgh and UK DRI, Edinburgh, United Kingdom (J.P.); German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany (J.W.); Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Germany (J.W., C.B., N.H.); Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal (J.W.); Department of Psychiatry, University of Cologne, Cologne, Germany (F.J., Ayda Rostamzadeh); Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany (F.J., Alfredo Ramirez); German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany (E.D., W.G., E.I.I., Michaela Butryn, L.D., R.Y.); Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany (E.D., W.G., E.I.I., Michaela Butryn); Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, Magdeburg, Germany (E.I.I.); German Center for Neurodegenerative Diseases (DZNE), Munich, Germany (K.B., M.E., R.P.); Institute for Stroke and Dementia Research, LMU Munich, Germany (K.B., D.J., M.E.); Department of Psychiatry and Psychotherapy, LMU Munich, Germany (R.P., B.-S.R.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (R.P.); Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom (R.P.); Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom (R.P., B.-S.R.); Department of Neuroradiology, University Hospital Munich, Munich, Germany (B.-S.R.); German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany (S.T., I.K., D.G.); Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany (S.T., I.K., D.G.); German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany (C.L., M.H.M.); Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, Tübingen, Germany (C.L.); Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen Germany (M.H.M.); Department of Neurology, University of Bonn, Bonn, Germany (Annika Spottke); Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Cologne, Germany (Alfredo Ramirez); Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX (Alfredo Ramirez); Institute for Medical Biometry, Informatics, and Epidemiology, University Hospital Bonn, Bonn, Germany (M.C.S., Moritz Berger); Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin, Berlin, Germany (S.H.); MR-Research in Neurosciences, Department of Cognitive Neurology, Göttingen, Germany (P.D.); Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany (K.S.); Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany (G.C.P.); and Institute for Applied Mathematics, University of Bonn, Bonn, Germany (A.E.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li Y, Lu S, Zhang Z, Li X, Li Y, Li X, Xiong L. Fluorescent Pdots Facilitate High-Resolution Mapping of the Intact Meningeal Vascular Network and Eye-Brain Connections. ACS NANO 2024; 18:22080-22094. [PMID: 39102350 DOI: 10.1021/acsnano.4c05333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Meningeal vascular network is significant in neurology and neurosurgery. However, high-resolution imaging of intact meningeal vascular network is lacking. In this work, we develop a practical experimental method to ensure that the intact meninges are morphologically unfolded and fixed in an agarose gel. With the help of high-brightness polymer dots (Pdots) as probe, macroscopic and detailed imaging of the vascular network on the intact dorsal meninges can be performed. Meningeal vessels are symmetrically distributed along the superior sagittal sinus, and the distribution of meningeal vessels had a certain degree of hierarchy. The meninges are thicker blood vessels and capillary networks from the outside to the inside. Moreover, the diameter of the capillaries is 3.96 ± 0.89 μm. Interestingly, meningeal primo vessels in the central nervous system of mice is imaged with the diameter of 4.18 ± 1.18 μm, which has not been reported previously. It is worth mentioning that we found that orthotopic xenografts of brain tumors caused the appearance of corneal neovascularization and morphological changes in optic nerve microvessels. In conclusion, our work provides an effective Pdots-based imaging method for follow-up research on meningeal vascular-related diseases, and illustrates that the eye can serve as a window for the prevention and diagnosis of brain diseases.
Collapse
Affiliation(s)
- Yuqiao Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Shuting Lu
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Zhuang Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Xiaoyan Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Yankun Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Xiaowei Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| |
Collapse
|
27
|
Sacchi L, D'Agata F, Campisi C, Arcaro M, Carandini T, Örzsik B, Dal Maschio VP, Fenoglio C, Pietroboni AM, Ghezzi L, Serpente M, Pintus M, Conte G, Triulzi F, Lopiano L, Galimberti D, Cercignani M, Bozzali M, Arighi A. A "glympse" into neurodegeneration: Diffusion MRI and cerebrospinal fluid aquaporin-4 for the assessment of glymphatic system in Alzheimer's disease and other dementias. Hum Brain Mapp 2024; 45:e26805. [PMID: 39185685 PMCID: PMC11345637 DOI: 10.1002/hbm.26805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
The glymphatic system (GS) is a whole-brain perivascular network, consisting of three compartments: the periarterial and perivenous spaces and the interposed brain parenchyma. GS dysfunction has been implicated in neurodegenerative diseases, particularly Alzheimer's disease (AD). So far, comprehensive research on GS in humans has been limited by the absence of easily accessible biomarkers. Recently, promising non-invasive methods based on magnetic resonance imaging (MRI) along with aquaporin-4 (AQP4) quantification in the cerebrospinal fluid (CSF) were introduced for an indirect assessment of each of the three GS compartments. We recruited 111 consecutive subjects presenting with symptoms suggestive of degenerative cognitive decline, who underwent 3 T MRI scanning including multi-shell diffusion-weighted images. Forty nine out of 111 also underwent CSF examination with quantification of CSF-AQP4. CSF-AQP4 levels and MRI measures-including perivascular spaces (PVS) counts and volume fraction (PVSVF), white matter free water fraction (FW-WM) and mean kurtosis (MK-WM), diffusion tensor imaging analysis along the perivascular spaces (DTI-ALPS) (mean, left and right)-were compared among patients with AD (n = 47) and other neurodegenerative diseases (nAD = 24), patients with stable mild cognitive impairment (MCI = 17) and cognitively unimpaired (CU = 23) elderly people. Two runs of analysis were conducted, the first including all patients; the second after dividing both nAD and AD patients into two subgroups based on gray matter atrophy as a proxy of disease stage. Age, sex, years of education, and scanning time were included as confounding factors in the analyses. Considering the whole cohort, patients with AD showed significantly higher levels of CSF-AQP4 (exp(b) = 2.05, p = .005) and FW-WM FW-WM (exp(b) = 1.06, p = .043) than CU. AQP4 levels were also significantly higher in nAD in respect to CU (exp(b) = 2.98, p < .001). CSF-AQP4 and FW-WM were significantly higher in both less atrophic AD (exp(b) = 2.20, p = .006; exp(b) = 1.08, p = .019, respectively) and nAD patients (exp(b) = 2.66, p = .002; exp(b) = 1.10, p = .019, respectively) compared to CU subjects. Higher total (exp(b) = 1.59, p = .013) and centrum semiovale PVS counts (exp(b) = 1.89, p = .016), total (exp(b) = 1.50, p = .036) and WM PVSVF (exp(b) = 1.89, p = .005) together with lower MK-WM (exp(b) = 0.94, p = .006), mean and left ALPS (exp(b) = 0.91, p = .043; exp(b) = 0.88, p = .010 respectively) were observed in more atrophic AD patients in respect to CU. In addition, more atrophic nAD patients exhibited higher levels of AQP4 (exp(b) = 3.39, p = .002) than CU. Our results indicate significant changes in putative MRI biomarkers of GS and CSF-AQP4 levels in AD and in other neurodegenerative dementias, suggesting a close interaction between glymphatic dysfunction and neurodegeneration, particularly in the case of AD. However, the usefulness of some of these biomarkers as indirect and standalone indices of glymphatic activity may be hindered by their dependence on disease stage and structural brain damage.
Collapse
Affiliation(s)
- Luca Sacchi
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | - Federico D'Agata
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
| | - Corrado Campisi
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
| | - Marina Arcaro
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Balázs Örzsik
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Vera Pacoova Dal Maschio
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
- Neurology 2 Unit, A.O.U. Città della Salute e Della Scienza di TorinoTurinItaly
| | - Chiara Fenoglio
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | | | - Laura Ghezzi
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | - Maria Serpente
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Manuela Pintus
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Giorgio Conte
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Fabio Triulzi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Leonardo Lopiano
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
- Neurology 2 Unit, A.O.U. Città della Salute e Della Scienza di TorinoTurinItaly
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | | | - Marco Bozzali
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
- Neurology 2 Unit, A.O.U. Città della Salute e Della Scienza di TorinoTurinItaly
| | - Andrea Arighi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
28
|
Waymont JMJ, Valdés Hernández MDC, Bernal J, Duarte Coello R, Brown R, Chappell FM, Ballerini L, Wardlaw JM. Systematic review and meta-analysis of automated methods for quantifying enlarged perivascular spaces in the brain. Neuroimage 2024; 297:120685. [PMID: 38914212 DOI: 10.1016/j.neuroimage.2024.120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Research into magnetic resonance imaging (MRI)-visible perivascular spaces (PVS) has recently increased, as results from studies in different diseases and populations are cementing their association with sleep, disease phenotypes, and overall health indicators. With the establishment of worldwide consortia and the availability of large databases, computational methods that allow to automatically process all this wealth of information are becoming increasingly relevant. Several computational approaches have been proposed to assess PVS from MRI, and efforts have been made to summarise and appraise the most widely applied ones. We systematically reviewed and meta-analysed all publications available up to September 2023 describing the development, improvement, or application of computational PVS quantification methods from MRI. We analysed 67 approaches and 60 applications of their implementation, from 112 publications. The two most widely applied were the use of a morphological filter to enhance PVS-like structures, with Frangi being the choice preferred by most, and the use of a U-Net configuration with or without residual connections. Older adults or population studies comprising adults from 18 years old onwards were, overall, more frequent than studies using clinical samples. PVS were mainly assessed from T2-weighted MRI acquired in 1.5T and/or 3T scanners, although combinations using it with T1-weighted and FLAIR images were also abundant. Common associations researched included age, sex, hypertension, diabetes, white matter hyperintensities, sleep and cognition, with occupation-related, ethnicity, and genetic/hereditable traits being also explored. Despite promising improvements to overcome barriers such as noise and differentiation from other confounds, a need for joined efforts for a wider testing and increasing availability of the most promising methods is now paramount.
Collapse
Affiliation(s)
- Jennifer M J Waymont
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK.
| | - José Bernal
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK; German Centre for Neurodegenerative Diseases (DZNE), Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Francesca M Chappell
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | | | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| |
Collapse
|
29
|
Godefroy O, Aarabi A, Béjot Y, Biessels GJ, Glize B, Mok VC, Schotten MTD, Sibon I, Chabriat H, Roussel M. Are we ready to cure post-stroke cognitive impairment? Many key prerequisites can be achieved quickly and easily. Eur Stroke J 2024:23969873241271651. [PMID: 39129252 DOI: 10.1177/23969873241271651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
PURPOSE Post-stroke (PS) cognitive impairment (CI) is frequent and its devastating functional and vital consequences are well known. Despite recent guidelines, they are still largely neglected. A large number of recent studies have re-examined the epidemiology, diagnosis, imaging determinants and management of PSCI. The aim of this update is to determine whether these new data answer the questions that are essential to reducing PSCI, the unmet needs, and steps still to be taken. METHODS Literature review of stroke unit-era studies examining key steps in the management of PSCI: epidemiology and risk factors, diagnosis (cognitive profile and assessments), imaging determinants (quantitative measures, voxelwise localization, the disconnectome and associated Alzheimer's disease [AD]) and treatment (secondary prevention, symptomatic drugs, rehabilitation and noninvasive brain stimulation) of PSCI. FINDINGS (1) the prevalence of PSCI of approximately 50% is probably underestimated; (2) the sensitivity of screening tests should be improved to detect mild PSCI; (3) comprehensive assessment is now well-defined and should include apathy; (4) easily available factors can identify patients at high risk of PSCI; (5) key imaging determinants are the location and volume of the lesion and the resulting disconnection, associated AD and brain atrophy; WMH, ePVS, microhemorrhages, hemosiderosis, and cortical microinfarcts may contribute to cognitive impairment but are more likely to be markers of brain vulnerability or associated AD that reduce PS recovery; (6) remote and online assessment is a promising approach for selected patients; (7) secondary stroke prevention has not been proven to prevent PSCI; (8) symptomatic drugs are ineffective in treating PSCI and apathy; (9) in addition to cognitive rehabilitation, the benefits of training platforms and computerized training are yet to be documented; (10) the results and the magnitude of improvement of noninvasive brain stimulation, while very promising, need to be substantiated by large, high-quality, sham-controlled RCTs. DISCUSSION AND CONCLUSION These major advances pave the way for the reduction of PSCI. They include (1) the development of more sensitive screening tests applicable to all patients and (2) online remote assessment; crossvalidation of (3) clinical and (4) imaging factors to (5) identify patients at risk, as well as (6) factors that prompt a search for associated AD; (7) the inclusion of cognitive outcome as a secondary endpoint in acute and secondary stroke prevention trials; and (8) the validation of the benefit of noninvasive brain stimulation through high-quality, randomized, sham-controlled trials. Many of these objectives can be rapidly and easily attained.
Collapse
Affiliation(s)
- Olivier Godefroy
- Departments of Neurology, Amiens University Hospital, France
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France
| | - Ardalan Aarabi
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France
| | - Yannick Béjot
- Department of Neurology, Dijon University Hospital, France
- Dijon Stroke Registry, EA7460, University of Burgundy, France
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Bertrand Glize
- Department of Rehabilitation, University Hospital, Bordeaux, France
| | - Vincent Ct Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodegeneratives-UMR 5293 CNRS CEA University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory Sorbonne Universities Paris, France
| | - Igor Sibon
- Department of Neurology, University Hospital, Bordeaux, France
| | - Hugues Chabriat
- Department of Neurology, Lariboisière Hospital, and INSERM NeuroDiderot UMR 1141, Paris, France
| | - Martine Roussel
- Departments of Neurology, Amiens University Hospital, France
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
30
|
Mitchell CL, Kurouski D. Novel strategies in Parkinson's disease treatment: a review. Front Mol Neurosci 2024; 17:1431079. [PMID: 39183754 PMCID: PMC11341544 DOI: 10.3389/fnmol.2024.1431079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
An unprecedented extension of life expectancy observed during the past century drastically increased the number of patients diagnosed with Parkinson's diseases (PD) worldwide. Estimated costs of PD alone reached $52 billion per year, making effective neuroprotective treatments an urgent and unmet need. Current treatments of both AD and PD focus on mitigating the symptoms associated with these pathologies and are not neuroprotective. In this review, we discuss the most advanced therapeutic strategies that can be used to treat PD. We also critically review the shift of the therapeutic paradigm from a small molecule-based inhibition of protein aggregation to the utilization of natural degradation pathways and immune cells that are capable of degrading toxic amyloid deposits in the brain of PD patients.
Collapse
Affiliation(s)
- Charles L. Mitchell
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Dmitry Kurouski
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
31
|
Zhuo J, Raghavan P, Li J, Roys S, Njonkou Tchoquessi RL, Chen H, Wickwire EM, Parikh GY, Schwartzbauer GT, Grattan LM, Wang Z, Gullapalli RP, Badjatia N. Longitudinal assessment of glymphatic changes following mild traumatic brain injury: Insights from perivascular space burden and DTI-ALPS imaging. Front Neurol 2024; 15:1443496. [PMID: 39170078 PMCID: PMC11335690 DOI: 10.3389/fneur.2024.1443496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Traumatic brain injury (TBI) even in the mild form may result in long-lasting post-concussion symptoms. TBI is also a known risk to late-life neurodegeneration. Recent studies suggest that dysfunction in the glymphatic system, responsible for clearing protein waste from the brain, may play a pivotal role in the development of dementia following TBI. Given the diverse nature of TBI, longitudinal investigations are essential to comprehending the dynamic changes in the glymphatic system and its implications for recovery. Methods In this prospective study, we evaluated two promising glymphatic imaging markers, namely the enlarged perivascular space (ePVS) burden and Diffusion Tensor Imaging-based ALPS index, in 44 patients with mTBI at two early post-injury time points: approximately 14 days (14Day) and 6-12 months (6-12Mon) post-injury, while also examining their associations with post-concussion symptoms. Additionally, 37 controls, comprising both orthopedic patients and healthy individuals, were included for comparative analysis. Results Our key findings include: (1) White matter ePVS burden (WM-ePVS) and ALPS index exhibit significant correlations with age. (2) Elevated WM-ePVS burden in acute mTBI (14Day) is significantly linked to a higher number of post-concussion symptoms, particularly memory problems. (3) The increase in the ALPS index from acute (14Day) to the chronic (6-12Mon) phases in mTBI patients correlates with improvement in sleep measures. Furthermore, incorporating WM-ePVS burden and the ALPS index from acute phase enhances the prediction of chronic memory problems beyond socio-demographic and basic clinical information. Conclusion ePVS burden and ALPS index offers distinct values in assessing glymphatic structure and activity. Early evaluation of glymphatic function could be crucial for understanding TBI recovery and developing targeted interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Jiachen Zhuo
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Prashant Raghavan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jiang Li
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Steven Roys
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rosy Linda Njonkou Tchoquessi
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Hegang Chen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Emerson M. Wickwire
- Department of Psychiatry and Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gunjan Y. Parikh
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gary T. Schwartzbauer
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lynn M. Grattan
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ze Wang
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rao P. Gullapalli
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neeraj Badjatia
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
32
|
Li W, Su C, Wang Z, Xu X, Zheng D. Cingulate sulcus sign: a descriptive analysis in a cerebral small vessel disease population. Front Aging Neurosci 2024; 16:1438796. [PMID: 39165838 PMCID: PMC11333361 DOI: 10.3389/fnagi.2024.1438796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Objective The cingulate sulcus sign (CSS) has been observed in patients with idiopathic normal pressure hydrocephalus (iNPH), suggesting potential disruptions in cerebrospinal fluid circulation and compromised glymphatic system. Although there are similarities in the underlying mechanisms between cerebral small vessel disease (CSVD) and iNPH, the relationship between CSS and CSVD remains unclear. This study aimed to investigate the prevalence and potential mechanisms of CSS in patients with CSVD. Methods Data from patients diagnosed with CSVD at Shengjing Hospital of China Medical University between January 2020 and October 2022 were retrospectively collected, including general information, global cognitive function [assessed by measuring Mini-Mental State Examination (MMSE)], and four CSVD magnetic resonance imaging (MRI) markers [(white matter hyperintensity (WMH), cerebral microbleeds (CMBs), lacunes, and enlarged perivascular spaces (EPVS)], CSS and the Evan's index (EI). Results A total of 308 patients were included, and CSS was detected in 80 patients (26%). Univariate analysis revealed that MMSE scores in the CSS group were significantly lower compared to the non-CSS group (p < 0.001). Multivariable analysis showed an independent correlation between CSS and the presence of lacunes (odds ratio [OR] 0.358, 95% confidence interval [CI] 0.193-0.663, p = 0.001), presence of lobar dominant CMBs (OR 2.683, 95%CI 1.385-5.195, p = 0.003), periventricular WMH Fazekas score (OR 1.693, 95% CI 1.133-2.529, p = 0.01), and EI (OR 1.276, 95% CI 1.146-1.420, p < 0.001). Conclusion This preliminary study showed that CSS can be observed in some patients with CSVD. The presence of CSS may represent different mechanisms of CSVD pathogenesis and reflect differences in the degree of cerebrospinal fluid (CSF)/interstitial fluid (ISF) stasis.
Collapse
Affiliation(s)
| | | | | | | | - Dongming Zheng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
33
|
Rizor EJ, Babenko V, Dundon NM, Beverly‐Aylwin R, Stump A, Hayes M, Herschenfeld‐Catalan L, Jacobs EG, Grafton ST. Menstrual cycle-driven hormone concentrations co-fluctuate with white and gray matter architecture changes across the whole brain. Hum Brain Mapp 2024; 45:e26785. [PMID: 39031470 PMCID: PMC11258887 DOI: 10.1002/hbm.26785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
Cyclic fluctuations in hypothalamic-pituitary-gonadal axis (HPG-axis) hormones exert powerful behavioral, structural, and functional effects through actions on the mammalian central nervous system. Yet, very little is known about how these fluctuations alter the structural nodes and information highways of the human brain. In a study of 30 naturally cycling women, we employed multidimensional diffusion and T1-weighted imaging during three estimated menstrual cycle phases (menses, ovulation, and mid-luteal) to investigate whether HPG-axis hormone concentrations co-fluctuate with alterations in white matter (WM) microstructure, cortical thickness (CT), and brain volume. Across the whole brain, 17β-estradiol and luteinizing hormone (LH) concentrations were directly proportional to diffusion anisotropy (μFA; 17β-estradiol: β1 = 0.145, highest density interval (HDI) = [0.211, 0.4]; LH: β1 = 0.111, HDI = [0.157, 0.364]), while follicle-stimulating hormone (FSH) was directly proportional to CT (β1 = 0 .162, HDI = [0.115, 0.678]). Within several individual regions, FSH and progesterone demonstrated opposing relationships with mean diffusivity (Diso) and CT. These regions mainly reside within the temporal and occipital lobes, with functional implications for the limbic and visual systems. Finally, progesterone was associated with increased tissue (β1 = 0.66, HDI = [0.607, 15.845]) and decreased cerebrospinal fluid (CSF; β1 = -0.749, HDI = [-11.604, -0.903]) volumes, with total brain volume remaining unchanged. These results are the first to report simultaneous brain-wide changes in human WM microstructure and CT coinciding with menstrual cycle-driven hormone rhythms. Effects were observed in both classically known HPG-axis receptor-dense regions (medial temporal lobe, prefrontal cortex) and in other regions located across frontal, occipital, temporal, and parietal lobes. Our results suggest that HPG-axis hormone fluctuations may have significant structural impacts across the entire brain.
Collapse
Affiliation(s)
- Elizabeth J. Rizor
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Institute for Collaborative BiotechnologiesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Viktoriya Babenko
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- BIOPAC Systems, IncGoletaCaliforniaUSA
| | - Neil M. Dundon
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Institute for Collaborative BiotechnologiesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Department of Child and Adolescent Psychiatry, Psychotherapy and PsychosomaticsUniversity of FreiburgFreiburgGermany
| | - Renee Beverly‐Aylwin
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Alexandra Stump
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Margaret Hayes
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | | | - Emily G. Jacobs
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Neuroscience Research InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Scott T. Grafton
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Institute for Collaborative BiotechnologiesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| |
Collapse
|
34
|
Bergs J, Morr AS, Silva RV, Infante‐Duarte C, Sack I. The Networking Brain: How Extracellular Matrix, Cellular Networks, and Vasculature Shape the In Vivo Mechanical Properties of the Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402338. [PMID: 38874205 PMCID: PMC11336943 DOI: 10.1002/advs.202402338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Mechanically, the brain is characterized by both solid and fluid properties. The resulting unique material behavior fosters proliferation, differentiation, and repair of cellular and vascular networks, and optimally protects them from damaging shear forces. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that maps the mechanical properties of the brain in vivo. MRE studies have shown that abnormal processes such as neuronal degeneration, demyelination, inflammation, and vascular leakage lead to tissue softening. In contrast, neuronal proliferation, cellular network formation, and higher vascular pressure result in brain stiffening. In addition, brain viscosity has been reported to change with normal blood perfusion variability and brain maturation as well as disease conditions such as tumor invasion. In this article, the contributions of the neuronal, glial, extracellular, and vascular networks are discussed to the coarse-grained parameters determined by MRE. This reductionist multi-network model of brain mechanics helps to explain many MRE observations in terms of microanatomical changes and suggests that cerebral viscoelasticity is a suitable imaging marker for brain disease.
Collapse
Affiliation(s)
- Judith Bergs
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Anna S. Morr
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Rafaela V. Silva
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Carmen Infante‐Duarte
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Ingolf Sack
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| |
Collapse
|
35
|
Pang H, Wang J, Yu Z, Yu H, Li X, Bu S, Zhao M, Jiang Y, Liu Y, Fan G. Glymphatic function from diffusion-tensor MRI to predict conversion from mild cognitive impairment to dementia in Parkinson's disease. J Neurol 2024; 271:5598-5609. [PMID: 38913186 PMCID: PMC11319419 DOI: 10.1007/s00415-024-12525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Although brain glymphatic dysfunction is a contributing factor to the cognitive deficits in Parkinson's disease (PD), its role in the longitudinal progression of cognitive dysfunction remains unknown. OBJECTIVE To investigate the glymphatic function in PD with mild cognitive impairment (MCI) that progresses to dementia (PDD) and to determine its predictive value in identifying individuals at high risk for developing dementia. METHODS We included 64 patients with PD meeting criteria for MCI and categorized them as either progressed to PDD (converters) (n = 29) or did not progress to PDD (nonconverters) (n = 35), depending on whether they developed dementia during follow-up. Meanwhile, 35 age- and gender-matched healthy controls (HC) were included. Bilateral diffusion-tensor imaging analysis along the perivascular space (DTI-ALPS) indices and enlarged perivascular spaces (EPVS) volume fraction in bilateral centrum semiovale, basal ganglia (BG), and midbrain were compared among the three groups. Correlations among the DTI-ALPS index and EPVS, as well as cognitive performance were analyzed. Additionally, we investigated the mediation effect of EPVS on DTI-ALPS and cognitive function. RESULTS PDD converters had lower cognitive composites scores in the executive domains than did nonconverters (P < 0.001). Besides, PDD converters had a significantly lower DTI-ALPS index in the left hemisphere (P < 0.001) and a larger volume fraction of BG-PVS (P = 0.03) compared to HC and PDD nonconverters. Lower DTI-ALPS index and increased BG-PVS volume fraction were associated with worse performance in the global cognitive performance and executive function. However, there was no significant mediating effect. Receiver operating characteristic analysis revealed that the DTI-ALPS could effectively identify PDD converters with an area under the curve (AUC) of 0.850. CONCLUSION The reduction of glymphatic activity, measured by the DTI-ALPS, could potentially be used as a non-invasive indicator in forecasting high risk of dementia conversion before the onset of dementia in PD patients.
Collapse
Affiliation(s)
- Huize Pang
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Juzhou Wang
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyang Yu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hongmei Yu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaolu Li
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuting Bu
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengwan Zhao
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yueluan Jiang
- MR Research Collaboration, Siemens Healthineers, Beijing, China
| | - Yu Liu
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guoguang Fan
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
36
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
37
|
Latzer IT, Yang E, Afacan O, Arning E, Rotenberg A, Lee HHC, Roullet JB, Pearl PL. Glymphatic dysfunction coincides with lower GABA levels and sleep disturbances in succinic semialdehyde dehydrogenase deficiency. J Sleep Res 2024; 33:e14105. [PMID: 38148273 PMCID: PMC11199373 DOI: 10.1111/jsr.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 12/28/2023]
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is an inherited metabolic disorder of γ-aminobutyrate (GABA) catabolism. Cerebral waste clearance along glymphatic perivascular spaces depends on aquaporin 4 (AQP4) water channels, the function of which was shown to be influenced by GABA. Sleep disturbances are associated independently with SSADHD and glymphatic dysfunction. This study aimed to determine whether indices of the hyperGABAergic state characteristic of SSADHD coincide with glymphatic dysfunction and sleep disturbances and to explicate the modulatory effect that GABA may have on the glymphatic system. The study included 42 individuals (21 with SSADHD; 21 healthy controls) who underwent brain MRIs and magnetic resonance spectroscopy (MRS) for assessment of glymphatic dysfunction and cortical GABA, plasma GABA measurements, and circadian clock gene expression. The SSADHD subjects responded to an additional Children's Sleep Habits Questionnaire (CSHQ). Compared with the control group, SSADHD subjects did not differ in sex and age but had a higher severity of enlarged perivascular spaces in the centrum semiovale (p < 0.001), basal ganglia (p = 0.01), and midbrain (p = 0.001), as well as a higher MRS-derived GABA/NAA peak (p < 0.001). Within the SSADHD group, the severity of glymphatic dysfunction was specific for a lower MRS-derived GABA/NAA (p = 0.04) and lower plasma GABA (p = 0.004). Additionally, the degree of their glymphatic dysfunction correlated with the CSHQ-estimated sleep disturbances scores (R = 5.18, p = 0.03). In the control group, EPVS burden did not correlate with age or cerebral and plasma GABA values. The modulatory effect that GABA may exert on the glymphatic system has therapeutic implications for sleep-related disorders and neurodegenerative conditions associated with glymphatic dysfunction.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Edward Yang
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Onur Afacan
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Henry H C Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, MA 02115, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Phillip L. Pearl
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Jung LB, Wiegand TLT, Tuz-Zahra F, Tripodis Y, Iliff JJ, Piantino J, Arciniega H, Kim CL, Pankatz L, Bouix S, Lin AP, Alosco ML, Daneshvar DH, Mez J, Sepehrband F, Rathi Y, Pasternak O, Coleman MJ, Adler CH, Bernick C, Balcer L, Cummings JL, Reiman EM, Stern RA, Shenton ME, Koerte IK. Repetitive Head Impacts and Perivascular Space Volume in Former American Football Players. JAMA Netw Open 2024; 7:e2428687. [PMID: 39186275 DOI: 10.1001/jamanetworkopen.2024.28687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Importance Exposure to repetitive head impacts (RHI) is associated with increased risk for neurodegeneration. Accumulation of toxic proteins due to impaired brain clearance is suspected to play a role. Objective To investigate whether perivascular space (PVS) volume is associated with lifetime exposure to RHI in individuals at risk for RHI-associated neurodegeneration. Design, Setting, and Participants This cross-sectional study was part of the Diagnostics, Imaging, and Genetics Network for the Objective Study and Evaluation of Chronic Traumatic Encephalopathy (DIAGNOSE CTE) Research Project, a 7-year multicenter study consisting of 4 US study sites. Data were collected from September 2016 to February 2020 and analyses were performed between May 2021 and October 2023. After controlling for magnetic resonance image (MRI) and processing quality, former American football players and unexposed asymptomatic control participants were included in analyses. Exposure Prior exposure to RHI while participating in American football was estimated using the 3 cumulative head impact indices (CHII-G, linear acceleration; CHII-R, rotational acceleration; and CHII, number of head impacts). Main Outcomes and Measures Individual PVS volume was calculated in the white matter of structural MRI. Cognitive impairment was based on neuropsychological assessment. Linear regression models were used to assess associations of PVS volume with neuropsychological assessments in former American football players. All analyses were adjusted for confounders associated with PVS volume. Results Analyses included 224 participants (median [IQR] age, 57 [51-65] years), with 170 male former football players (114 former professional athletes, 56 former collegiate athletes) and 54 male unexposed control participants. Former football players had larger PVS volume compared with the unexposed group (mean difference, 0.28 [95% CI, 0.00-0.56]; P = .05). Within the football group, PVS volume was associated with higher CHII-R (β = 2.71 × 10-8 [95% CI, 0.50 × 10-8 to 4.93 × 10-8]; P = .03) and CHII-G (β = 2.24 × 10-6 [95% CI, 0.35 × 10-6 to 4.13 × 10-6]; P = .03). Larger PVS volume was also associated with worse performance on cognitive functioning in former American football players (β = -0.74 [95% CI, -1.35 to -0.13]; P = .04). Conclusions and Relevance These findings suggest that impaired perivascular brain clearance, as indicated by larger PVS volume, may contribute to the association observed between RHI exposure and neurodegeneration.
Collapse
Affiliation(s)
- Leonard B Jung
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tim L T Wiegand
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Jeffrey J Iliff
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle
- Department of Neurology, University of Washington School of Medicine, Seattle
- VISN 20 Northwest Network Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Juan Piantino
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, Portland
| | - Hector Arciniega
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, New York
| | - Cara L Kim
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Lara Pankatz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Département de génie logiciel et TI, École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Alexander P Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Farshid Sepehrband
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona Scottsdale, Arizona
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
| | - Laura Balcer
- Department of Neurology, NYU Grossman School of Medicine, New York, New York
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
39
|
Soares B, Ong J, Waisberg E, Sarker P, Zaman N, Tavakkoli A, Lee AG. Imaging in spaceflight associated neuro-ocular syndrome (SANS): Current technology and future directions in modalities. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:40-46. [PMID: 39067989 DOI: 10.1016/j.lssr.2024.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 07/30/2024]
Abstract
With plans for future long-duration crewed exploration, NASA has identified several high priority potential health risks to astronauts in space. One such risk is a collection of neurologic and ophthalmic findings termed spaceflight associated neuro-ocular syndrome (SANS). The findings of SANS include optic disc edema, globe flattening, retinal nerve fiber layer thickening, chorioretinal folds, hyperopic shifts, and cotton-wool spots. The cause of SANS was initially thought to be a cephalad fluid shift in microgravity leading to increased intracranial pressure, venous stasis and impaired CSF outflow, but the precise etiology of SANS remains ill defined. Recent studies have explored multiple possible pathogenic mechanisms for SANS including genetic and hormonal factors; a cephalad shift of fluid into the orbit and brain in microgravity; and disruption to the brain glymphatic system. Orbital, ocular, and cranial imaging, both on Earth and in space has been critical in the diagnosis and monitoring of SANS (e.g., fundus photography, optical coherence tomography (OCT), magnetic resonance imaging (MRI), and orbital/cranial ultrasound). In addition, we highlight near-infrared spectroscopy and diffusion tensor imaging, two newer modalities with potential use in future studies of SANS. In this manuscript we provide a review of these modalities, outline their current and potential use in space and on Earth, and review the reported major imaging findings in SANS.
Collapse
Affiliation(s)
- Benjamin Soares
- Boston University Chobanian & Avedisian School of Medicine, Boston, United States.
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, United Kingdom
| | - Prithul Sarker
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, Nevada, United States
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, Nevada, United States
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, Nevada, United States
| | - Andrew G Lee
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, Nevada, United States; Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, 6560 Fannin St #450, Houston, Texas 77030, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, Texas, United States; University of Texas MD Anderson Cancer Center, Houston, Texas, United States; Texas A&M School of Medicine, Bryan, Texas, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States.
| |
Collapse
|
40
|
Yao Y, Chen Y, Tomer R, Silver R. Capillary connections between sensory circumventricular organs and adjacent parenchyma enable local volume transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605849. [PMID: 39211092 PMCID: PMC11361043 DOI: 10.1101/2024.07.30.605849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins (Dorland 2020). Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain. The first was discovered almost a century ago and connects the median eminence to the anterior pituitary gland (Popa & Fielding 1930). The second was discovered a few years ago, and links the suprachiasmatic nucleus to the organum vasculosum of the lamina terminalis, a sensory circumventricular organ (CVO) (Yao et al. 2021). Sensory CVOs bear neuronal receptors for sensing signals in the fluid milieu (McKinley et al. 2003). They line the surface of brain ventricles and bear fenestrated capillaries, thereby lacking blood brain barriers. It is not known whether the other sensory CVOs, namely the subfornical organ (SFO), and area postrema (AP) form portal neurovascular connections with nearby parenchymal tissue. This has been difficult to establish as the structures lie at the midline and protrude into the ventricular space. To preserve the integrity of the vasculature of CVOs and their adjacent neuropil, we combined iDISCO clearing and light-sheet microscopy to acquire volumetric images of blood vessels. The results indicate that there is a portal pathway linking the capillary vessels of the SFO and the posterior septal nuclei, namely the septofimbrial nucleus and the triangular nucleus of the septum. Unlike the latter arrangement, the AP and the nucleus of the solitary tract share their capillary beds. Taken together, the results reveal that all three sensory circumventricular organs bear specialized capillary connections to adjacent neuropil, providing a direct route for diffusible signals to travel from their source to their targets.
Collapse
|
41
|
Javierre-Petit C, Kontzialis M, Leurgans SE, Bennett DA, Schneider JA, Arfanakis K. Quantitative assessment of enlarged perivascular spaces via deep-learning in community-based older adults reveals independent associations with vascular neuropathologies, vascular risk factors and cognition. Brain Commun 2024; 6:fcae252. [PMID: 39130513 PMCID: PMC11316207 DOI: 10.1093/braincomms/fcae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024] Open
Abstract
Enlarged perivascular spaces (EPVS) are common in older adults, but their neuropathologic correlates are unclear mainly because most work to date has relied on visual rating scales and/or clinical cohorts. The present study first developed a deep-learning model for automatic segmentation, localization and quantification of EPVS in ex vivo brain MRI, and then used this model to investigate the neuropathologic, clinical and cognitive correlates of EPVS in 817 community-based older adults that underwent autopsy. The new method exhibited high sensitivity in detecting EPVS as small as 3 mm3, good segmentation accuracy and consistency. Most EPVS were located in the frontal lobe, but the highest density was observed in the basal ganglia. EPVS in the cerebrum and specifically in the frontal lobe were associated with infarcts independent of other neuropathologies, while temporal and occipital EPVS were associated with cerebral amyloid angiopathy. EPVS in most brain lobes were also associated with diabetes mellitus independently of neuropathologies, while basal ganglia EPVS were independently associated with hypertension, supporting the notion of independent pathways from diabetes and hypertension to EPVS. Finally, EPVS were associated with lower cognitive performance independently of neuropathologies and clinical variables, suggesting that EPVS represent additional abnormalities contributing to lower cognition.
Collapse
Affiliation(s)
- Carles Javierre-Petit
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Marinos Kontzialis
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sue E Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
42
|
Lei H, Wu X, Ambler G, Werring D, Fang S, Lin H, Huang H, Liu N, Du H. Association between Perivascular Spaces Burden and Future Stroke Risk in Ischemic Stroke and Transient Ischemic Attack: A Systematic Review and Meta-Analysis. Eur Neurol 2024; 87:130-139. [PMID: 38981445 DOI: 10.1159/000539730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION This meta-analysis aimed to explore the association of perivascular spaces (PVS) burden with the risks of future stroke events and mortality in patients with ischemic stroke and transient ischemic attack (TIA). METHODS We systematically searched PubMed, Embase, and Cochrane database from inception to December 31, 2023. We included eligible studies that reported adjusted estimated effects for future intracranial hemorrhage (ICH), ischemic stroke, and mortality with baseline PVS burden in patients with ischemic stroke and TIA. Data were pooled using an inverse-variance method for the fixed effects (FE) model and a restricted maximum likelihood method for the random effects (RE) model. RESULTS Thirteen observational studies (5 prospective, 8 retrospective) were included, comprising 20,256 patients. Compared to 0-10 PVS at basal ganglia (BG-PVS), a higher burden (>10) of BG-PVS was significantly associated with an increased risk of future ICH (adjusted hazards ratio [aHR] 2.79, 95% confidence interval [CI]: 1.16-6.73, RE model; aHR 2.14, 95% CI: 1.34-3.41, FE model; I2 = 64%, n = 17,084 from four studies) followed up for at least 1 year. There was no significant association between >10 BG-PVS and ICH within 7 days after reperfusion therapy (adjusted odds ratio [aOR] 1.69, 95% CI: 0.74-3.88, RE model; aOR 1.43, 95% CI: 0.89-2.88, FE model; I2 = 67%, n = 1,176 from four studies). We did not detect a significant association of recurrent ischemic stroke, mortality, or disability with BG-PVS burden. Neither >10 PVS at centrum semiovale (CSO-PVS) nor increasing CSO-PVS burden was significantly associated with the risk of future intracranial hemorrhage or ischemic stroke recurrence. CONCLUSIONS Current evidence suggests that a higher BG-PVS burden may be associated with an increased risk of future ICH in patients with ischemic stroke and TIA.
Collapse
Affiliation(s)
- Hanhan Lei
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou, China
| | - Xiaomin Wu
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou, China
| | - Gareth Ambler
- Department of Statistical Science, University College London, London, UK
| | - David Werring
- Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology, London, UK
| | - Shuangfang Fang
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou, China
| | - Huiyin Lin
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou, China
| | - Huapin Huang
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Houwei Du
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou, China
| |
Collapse
|
43
|
Chen Y, Hong H, Nazeri A, Markus HS, Luo X. Cerebrospinal fluid-based spatial statistics: towards quantitative analysis of cerebrospinal fluid pseudodiffusivity. Fluids Barriers CNS 2024; 21:59. [PMID: 39026214 PMCID: PMC11256588 DOI: 10.1186/s12987-024-00559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) circulation is essential in removing metabolic wastes from the brain and is an integral component of the glymphatic system. Abnormal CSF circulation is implicated in neurodegenerative diseases. Low b-value magnetic resonance imaging quantifies the variance of CSF motion, or pseudodiffusivity. However, few studies have investigated the relationship between the spatial patterns of CSF pseudodiffusivity and cognition. METHODS We introduced a novel technique, CSF-based spatial statistics (CBSS), to automatically quantify CSF pseudodiffusivity in each sulcus, cistern and ventricle. Using cortical regions as landmarks, we segmented each CSF region. We retrospectively analyzed a cohort of 93 participants with varying degrees of cognitive impairment. RESULTS We identified two groups of CSF regions whose pseudodiffusivity profiles were correlated with each other: one group displaying higher pseudodiffusivity and near large arteries and the other group displaying lower pseudodiffusivity and away from the large arteries. The pseudodiffusivity in the third ventricle positively correlated with short-term memory (standardized slope of linear regression = 0.38, adjusted p < 0.001) and long-term memory (slope = 0.37, adjusted p = 0.005). Fine mapping along the ventricles revealed that the pseudodiffusivity in the region closest to the start of the third ventricle demonstrated the highest correlation with cognitive performance. CONCLUSIONS CBSS enabled quantitative spatial analysis of CSF pseudodiffusivity and suggested the third ventricle pseudodiffusivity as a potential biomarker of cognitive impairment.
Collapse
Affiliation(s)
- Yutong Chen
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Hui Hong
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hugh S Markus
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
44
|
Zeng S, Ma L, Mao H, Shi Y, Xu M, Gao Q, Kaidong C, Li M, Ding Y, Ji Y, Hu X, Feng W, Fang X. Dynamic functional network connectivity in patients with a mismatch between white matter hyperintensity and cognitive function. Front Aging Neurosci 2024; 16:1418173. [PMID: 39086757 PMCID: PMC11288916 DOI: 10.3389/fnagi.2024.1418173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Objective White matter hyperintensity (WMH) in patients with cerebral small vessel disease (CSVD) is strongly associated with cognitive impairment. However, the severity of WMH does not coincide fully with cognitive impairment. This study aims to explore the differences in the dynamic functional network connectivity (dFNC) of WMH with cognitively matched and mismatched patients, to better understand the underlying mechanisms from a quantitative perspective. Methods The resting-state functional magnetic resonance imaging (rs-fMRI) and cognitive function scale assessment of the patients were acquired. Preprocessing of the rs-fMRI data was performed, and this was followed by dFNC analysis to obtain the dFNC metrics. Compared the dFNC and dFNC metrics within different states between mismatch and match group, we analyzed the correlation between dFNC metrics and cognitive function. Finally, to analyze the reasons for the differences between the mismatch and match groups, the CSVD imaging features of each patient were quantified with the assistance of the uAI Discover system. Results The 149 CSVD patients included 20 cases of "Type I mismatch," 51 cases of Type I match, 38 cases of "Type II mismatch," and 40 cases of "Type II match." Using dFNC analysis, we found that the fraction time (FT) and mean dwell time (MDT) of State 2 differed significantly between "Type I match" and "Type I mismatch"; the FT of States 1 and 4 differed significantly between "Type II match" and "Type II mismatch." Correlation analysis revealed that dFNC metrics in CSVD patients correlated with executive function and information processing speed among the various cognitive functions. Through quantitative analysis, we found that the number of perivascular spaces and bilateral medial temporal lobe atrophy (MTA) scores differed significantly between "Type I match" and "Type I mismatch," while the left MTA score differed between "Type II match" and "Type II mismatch." Conclusion Different mechanisms were implicated in these two types of mismatch: Type I affected higher-order networks, and may be related to the number of perivascular spaces and brain atrophy, whereas Type II affected the primary networks, and may be related to brain atrophy and the years of education.
Collapse
Affiliation(s)
- Siyuan Zeng
- Medical Imaging Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi, China
| | - Lin Ma
- Medical Imaging Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi, China
| | - Haixia Mao
- Medical Imaging Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi, China
| | - Yachen Shi
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi, China
| | - Min Xu
- Medical Imaging Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi, China
| | - Qianqian Gao
- Medical Imaging Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi, China
| | - Chen Kaidong
- Medical Imaging Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi, China
| | - Mingyu Li
- Medical Imaging Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi, China
| | - Yuxiao Ding
- Medical Imaging Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi, China
| | - Yi Ji
- Medical Imaging Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi, China
| | - Xiaoyun Hu
- Medical Imaging Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi, China
| | - Wang Feng
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi, China
| | - Xiangming Fang
- Medical Imaging Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi, China
| |
Collapse
|
45
|
Borrelli S, Guisset F, Vanden Bulcke C, Stölting A, Bugli C, Lolli V, Du Pasquier R, van Pesch V, Absinta M, Pasi M, Maggi P. Enlarged perivascular spaces are associated with brain microangiopathy and aging in multiple sclerosis. Mult Scler 2024; 30:983-993. [PMID: 38850029 DOI: 10.1177/13524585241256881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND Growing evidence links brain-MRI enlarged perivascular spaces (EPVS) and multiple sclerosis (MS), but their role remains unclear. OBJECTIVE This study aimed to investigate the cross-sectional associations of EPVS with several neuroinflammatory and neurodegenerative features in a large multicentric-MS cohort. METHODS In total, 207 patients underwent 3T axial-T2-weighted brain-MRI for EPVS assessment (EPVS dichotomized into high/low according to ⩾ 2/< 2 rating categories). MRI biomarkers included brain-predicted age and brain-predicted age difference (brain-PAD), central vein sign (CVS)-positive lesion percentage (CVS%), paramagnetic rim and cortical lesions, T2-lesion load, and brain volumetry. The variable relative importance for EPVS-category prediction was explored using a classification random forest approach. RESULTS High EPVS patients were older (49 vs 44 years, p = 0.003), had ⩾ 1 vascular risk factors (VRFs; p = 0.005), lower CVS% (67% vs 78%, p < 0.001), reduced brain volumes (whole brain: 0.63 vs 0.73, p = 0.01; gray matter: 0.36 vs 0.40; p = 0.002), and older brain-predicted age (58 vs 50 years, p < 0.001). No differences were found for neuroinflammatory markers. After adjusting for age and VFRs (multivariate analyses), the high EPVS category correlated with lower CVS% (odds ratio (OR) = 0.98, 95% confidence interval (CI) = 0.96-0.99; p = 0.02), lower whole brain (OR = 0.01, 95% CI = 0.0003-0.5; p = 0.02), gray matter (OR = 0.0004, 95% CI = 0.0000004-0.4; p = 0.03) volumes, and higher brain-PAD (OR = 1.05, 95% CI = 1.01-1.09; p = 0.02). Random forest identified brain-PAD as the most important predictor of high EPVS. CONCLUSION EPVS in MS likely reflect microangiopathic disease rather than neuroinflammation, potentially contributing to accelerated neurodegeneration.
Collapse
Affiliation(s)
- Serena Borrelli
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium
| | - François Guisset
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Colin Vanden Bulcke
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anna Stölting
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Céline Bugli
- Plateforme technologique de Support en Méthodologie et Calcul Statistique, Université catholique de Louvain, Brussels, Belgium
| | - Valentina Lolli
- Department of Radiology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium
| | - Renaud Du Pasquier
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Vincent van Pesch
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Martina Absinta
- Vita-Salute San Raffaele University, Milan, Italy/Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marco Pasi
- Stroke Unit, Department of Neurology, CIC-IT 1415, CHRU de Tours, INSERM 1253 iBrain, Tours, France
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland/Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
46
|
Wei W, Ma D, Li L, Zhang L. Cognitive impairment in cerebral small vessel disease induced by hypertension. Neural Regen Res 2024; 19:1454-1462. [PMID: 38051887 PMCID: PMC10883517 DOI: 10.4103/1673-5374.385841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/22/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease, the most common cerebrovascular disease. However, the causal relationship between hypertension and cerebral small vessel disease remains unclear. Hypertension has substantial negative impacts on brain health and is recognized as a risk factor for cerebrovascular disease. Chronic hypertension and lifestyle factors are associated with risks for stroke and dementia, and cerebral small vessel disease can cause dementia and stroke. Hypertension is the main driver of cerebral small vessel disease, which changes the structure and function of cerebral vessels via various mechanisms and leads to lacunar infarction, leukoaraiosis, white matter lesions, and intracerebral hemorrhage, ultimately resulting in cognitive decline and demonstrating that the brain is the target organ of hypertension. This review updates our understanding of the pathogenesis of hypertension-induced cerebral small vessel disease and the resulting changes in brain structure and function and declines in cognitive ability. We also discuss drugs to treat cerebral small vessel disease and cognitive impairment.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
47
|
Wang Z, Li X, Wang J, Yang W, Dove A, Lu W, Qi X, Sindi S, Xu W. Association of past and current sleep duration with structural brain differences: A large population-based study from the UK Biobank. Sleep Med 2024; 119:179-186. [PMID: 38692219 DOI: 10.1016/j.sleep.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE This study aimed to examine the association between past/current sleep duration and macro-/micro-structural brain outcomes and explore whether hypertension or social activity plays a role in such association. METHODS Within the UK Biobank, 40 436 dementia-free participants (age 40-70 years) underwent a baseline assessment followed by a brain magnetic resonance imaging (MRI) scan 9 years later. Past (baseline) and current (MRI scans) sleep duration (hours/day) were recorded and classified as short (≤5), intermediate (6-8), and long (≥9). Brain structural volumes and diffusion markers were assessed by MRI scans. RESULTS Compared with past intermediate sleep, past short sleep was related to smaller cortex volumes (standardized β [95 % CI]: -0.04 [-0.07, -0.02]) and lower regional fractional anisotropy (FA) (-0.08 [-0.13, -0.03]), while past long sleep was related to smaller regional subcortical volumes (standardized β: -0.04 to -0.07 for thalamus, accumbens, and hippocampus). Compared to current intermediate sleep, current short sleep was associated with smaller cortex volumes (-0.03 [-0.05, -0.01]), greater white matter hyperintensities (WMH) volumes (0.04 [0.01, 0.08]), and lower regional FA (-0.07 [-0.11, -0.02]). However, current long sleep was related to smaller total brain (-0.03 [-0.05, -0.02]), grey matter (-0.05 [-0.07, -0.03]), cortex (-0.05 [-0.07, -0.03]), regional subcortical volumes [standardized β: -0.05 to -0.09 for putamen, thalamus, hippocampus, and accumbens]), greater WMH volumes (0.06 [0.03, 0.09]), as well as lower regional FA (-0.05 [-0.09, -0.02]). The association between current long sleep duration and poor brain health was stronger among people with hypertension or low frequency of social activity (all Pinteraction <0.05). CONCLUSIONS Both past and current short/long sleep are associated with smaller brain volume and poorer white matter health in the brain, especially in individuals with hypertension and low frequency of social activity. Our findings highlight the need to maintain 6-8 h' sleep duration for healthy brain aging.
Collapse
Affiliation(s)
- Zhiyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Xuerui Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Jiao Wang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wenzhe Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Abigail Dove
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Wenli Lu
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiuying Qi
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Shireen Sindi
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Weili Xu
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
48
|
Zhao M, Li Y, Han X, Li C, Wang P, Wang J, Hou T, Wang Y, Cong L, Wardlaw JM, Launer LJ, Song L, Du Y, Qiu C. Association of enlarged perivascular spaces with cognitive function in dementia-free older adults: A population-based study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12618. [PMID: 39045142 PMCID: PMC11264110 DOI: 10.1002/dad2.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
Introduction We sought to characterize cognitive profiles associated with enlarged perivascular spaces (EPVS) among Chinese older adults. Methods This population-based study included 1191 dementia-free participants (age ≥60 years) in the MIND-China MRI Substudy (2018-2020). We visually evaluated EPVS in basal ganglia (BG) and centrum semiovale (CSO), white matter hyperintensities (WMHs), lacunes, cerebral microbleeds (CMBs), and cortical superficial siderosis. We used a neuropsychological test battery to assess cognitive function. Data were analyzed using general linear models. Results Greater BG-EPVS load was associated with lower z-scores in memory, verbal fluency, and global cognition (p < 0.05); these associations became non-significant when controlling for other cerebral small vessel disease (CSVD) markers (e.g., WMHs, lacunes, and mixed CMBs). Overall, CSO-EPVS load was not associated with cognitive z-scores (p > 0.05); among apolipoprotein E (APOE) -ε4 carriers, greater CSO-EPVS load was associated with lower verbal fluency z-score, even when controlling for other CSVD markers (p < 0.05). Discussion The associations of BG-EPVS with poor cognitive function in older adults are largely attributable to other CSVD markers. HIGHLIGHTS The association of enlarged perivascular spaces (EPVS) with cognitive function in older people is poorly defined.The association of basal ganglia (BG)-EPVS with poor cognition is attributed to other cerebral small vessel disease (CSVD) markers.In apolipoprotein E (APOE) ε4 carriers, a higher centrum semiovale (CSO)-EPVS load is associated with poorer verbal fluency.
Collapse
Affiliation(s)
- Mingqing Zhao
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of NeurologyXuanwu Hospital Capital Medical University Jinan BranchJinanShandongP. R. China
| | - Yuanjing Li
- Aging Research CenterDepartment of Neurobiology, Care Sciences and SocietyKarolinska Institutet‐Stockholm UniversitySolnaSweden
| | - Xiaodong Han
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Chunyan Li
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Pin Wang
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Jiafeng Wang
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Tingting Hou
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Yongxiang Wang
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Aging Research CenterDepartment of Neurobiology, Care Sciences and SocietyKarolinska Institutet‐Stockholm UniversitySolnaSweden
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Institute of Brain Science and Brain‐Inspired ResearchShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongP. R. China
| | - Lin Cong
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Joanna M. Wardlaw
- Centre for Clinical Brain SciencesUK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research ProgramNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Lin Song
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Yifeng Du
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Institute of Brain Science and Brain‐Inspired ResearchShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongP. R. China
| | - Chengxuan Qiu
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Aging Research CenterDepartment of Neurobiology, Care Sciences and SocietyKarolinska Institutet‐Stockholm UniversitySolnaSweden
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Institute of Brain Science and Brain‐Inspired ResearchShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongP. R. China
| |
Collapse
|
49
|
Fabiani G. Enlarged Perivascular Spaces: From Incidental Findings to a New Biomarker. Neurology 2024; 102:e209601. [PMID: 38833651 DOI: 10.1212/wnl.0000000000209601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Affiliation(s)
- Giorgio Fabiani
- From the Sociedade Hospitalar Angelina Caron, Campina Grande do Sul and Hospital de Clinicas - Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
50
|
Kim S, Na HK, Sun Y, Yoon YJ, Chung SJ, Sohn YH, Lyoo CH, Lee PH. Regional Burden of Enlarged Perivascular Spaces and Cognition and Neuropsychiatric Symptoms in Drug-Naive Patients With Parkinson Disease. Neurology 2024; 102:e209483. [PMID: 38833653 DOI: 10.1212/wnl.0000000000209483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Although the potential role of enlarged perivascular spaces (EPVSs) in Parkinson disease (PD) is increasingly recognized, whether EPVSs located in different anatomical regions exert differential effects on clinical manifestation remains uncertain. We investigated the regional EPVS burden and its association with cognition and neuropsychiatric symptoms (NPSs) in newly diagnosed PD population. METHODS In this retrospective, cross-sectional study, EPVS in the temporal lobe (T-EPVS), centrum semiovale (CS-EPVS), and basal ganglia (BG-EPVS) were visually rated in drug-naive patients with PD who underwent magnetic resonance imaging, dopamine transporter (DAT) scans, neuropsychological assessments, and Neuropsychiatric Inventory Questionnaire at baseline. Cognitive performance, NPS burden, vascular risk factors, small vessel disease (SVD) imaging markers, and DAT availability were compared across groups dichotomized by their regional EPVS burden (cutoff for high-degree vs low-degree: >10 for T-EPVS/BG-EPVS and >20 for CS-EPVS). RESULTS A total of 480 patients with PD (123 without cognitive impairment, 291 with mild cognitive impairment, and 66 with dementia) were included. The proportion of high-degree T-EPVS (p for trend <0.001) and BG-EPVS (p for trend = 0.001) exhibited an increasing trend across the cognitive spectrum, corresponding to worsening cognition. Compared with the low-degree group, the high-degree BG-EPVS group showed higher SVD burden (moderate-to-severe white matter hyperintensity [14.8% vs 40.5%, p < 0.001], lacune [10.3% vs 30.7%, p < 0.001], and cerebral microbleeds [8.1% vs 22.2%, p < 0.001]), greater atrophy in cortical gray matter (40.73% ± 1.09% vs 39.96% ± 1.20% of intracranial volume, p < 0.001), and lower cognitive performance (in language [-0.22 ± 1.18 vs -0.53 ± 1.29, p = 0.013], and visual memory domains [-0.24 ± 0.97 vs -0.61 ± 0.96, p = 0.009]). The high-degree T-EPVS group presented with greater NPS burden in decreased motivation (0.61 ± 1.78 vs 1.35 ± 2.36, p = 0.007), affective dysregulation (0.88 ± 2.13 vs 2.36 ± 3.53, p < 0.001), and impulse dyscontrol (0.43 ± 1.67 vs 1.74 ± 4.29, p < 0.001), compared with the low-degree T-EPVS group. Meanwhile, the burden of CS-EPVS did not reveal any differences in cognition or NPS. DISCUSSION BG-EPVS and T-EPVS seem to exert differential effects on cognition and NPS in patients with PD. Investigating the EPVS profile in distinct anatomical regions may be useful in disentangling the heterogeneity within PD.
Collapse
Affiliation(s)
- Seokhyun Kim
- From the Department of Neurology (S.K., H.K.N., Y.S., Y.J.Y., Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System; and Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Kyu Na
- From the Department of Neurology (S.K., H.K.N., Y.S., Y.J.Y., Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System; and Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yeeun Sun
- From the Department of Neurology (S.K., H.K.N., Y.S., Y.J.Y., Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System; and Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yeo Jun Yoon
- From the Department of Neurology (S.K., H.K.N., Y.S., Y.J.Y., Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System; and Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- From the Department of Neurology (S.K., H.K.N., Y.S., Y.J.Y., Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System; and Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- From the Department of Neurology (S.K., H.K.N., Y.S., Y.J.Y., Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System; and Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul Hyoung Lyoo
- From the Department of Neurology (S.K., H.K.N., Y.S., Y.J.Y., Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System; and Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- From the Department of Neurology (S.K., H.K.N., Y.S., Y.J.Y., Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System; and Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|