1
|
Niu X, Gao X, Zhang M, Dang J, Sun J, Lang Y, Wang W, Wei Y, Cheng J, Han S, Zhang Y. Static and dynamic changes of intrinsic brain local connectivity in internet gaming disorder. BMC Psychiatry 2023; 23:578. [PMID: 37558974 PMCID: PMC10410779 DOI: 10.1186/s12888-023-05009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Studies have revealed that intrinsic neural activity varies over time. However, the temporal variability of brain local connectivity in internet gaming disorder (IGD) remains unknown. The purpose of this study was to explore the alterations of static and dynamic intrinsic brain local connectivity in IGD and whether the changes were associated with clinical characteristics of IGD. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed on 36 individuals with IGD (IGDs) and 44 healthy controls (HCs) matched for age, gender and years of education. The static regional homogeneity (sReHo) and dynamic ReHo (dReHo) were calculated and compared between two groups to detect the alterations of intrinsic brain local connectivity in IGD. The Internet Addiction Test (IAT) and the Pittsburgh Sleep Quality Index (PSQI) were used to evaluate the severity of online gaming addiction and sleep quality, respectively. Pearson correlation analysis was used to evaluate the relationship between brain regions with altered sReHo and dReHo and IAT and PSQI scores. Receiver operating characteristic (ROC) curve analysis was used to reveal the potential capacity of the sReHo and dReHo metrics to distinguish IGDs from HCs. RESULTS Compared with HCs, IGDs showed both increased static and dynamic intrinsic local connectivity in bilateral medial superior frontal gyrus (mSFG), superior frontal gyrus (SFG), and supplementary motor area (SMA). Increased dReHo in the left putamen, pallidum, caudate nucleus and bilateral thalamus were also observed. ROC curve analysis showed that the brain regions with altered sReHo and dReHo could distinguish individuals with IGD from HCs. Moreover, the sReHo values in the left mSFG and SMA as well as dReHo values in the left SMA were positively correlated with IAT scores. The dReHo values in the left caudate nucleus were negatively correlated with PSQI scores. CONCLUSIONS These results showed impaired intrinsic local connectivity in frontostriatothalamic circuitry in individuals with IGD, which may provide new insights into the underlying neuropathological mechanisms of IGD. Besides, dynamic changes of intrinsic local connectivity in caudate nucleus may be a potential neurobiological marker linking IGD and sleep quality.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for functional magnetic resonance imaging and molecular imaging of Henan Province, Henan Province, China
| | - Xinyu Gao
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for functional magnetic resonance imaging and molecular imaging of Henan Province, Henan Province, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for functional magnetic resonance imaging and molecular imaging of Henan Province, Henan Province, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for functional magnetic resonance imaging and molecular imaging of Henan Province, Henan Province, China
| | - Jieping Sun
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for functional magnetic resonance imaging and molecular imaging of Henan Province, Henan Province, China
| | - Yan Lang
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for functional magnetic resonance imaging and molecular imaging of Henan Province, Henan Province, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for functional magnetic resonance imaging and molecular imaging of Henan Province, Henan Province, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Laboratory for functional magnetic resonance imaging and molecular imaging of Henan Province, Henan Province, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Laboratory for functional magnetic resonance imaging and molecular imaging of Henan Province, Henan Province, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Laboratory for functional magnetic resonance imaging and molecular imaging of Henan Province, Henan Province, China.
| |
Collapse
|
2
|
Shine JM. Neuromodulatory control of complex adaptive dynamics in the brain. Interface Focus 2023; 13:20220079. [PMID: 37065268 PMCID: PMC10102735 DOI: 10.1098/rsfs.2022.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 04/18/2023] Open
Abstract
How is the massive dimensionality and complexity of the microscopic constituents of the nervous system brought under sufficiently tight control so as to coordinate adaptive behaviour? A powerful means for striking this balance is to poise neurons close to the critical point of a phase transition, at which a small change in neuronal excitability can manifest a nonlinear augmentation in neuronal activity. How the brain could mediate this critical transition is a key open question in neuroscience. Here, I propose that the different arms of the ascending arousal system provide the brain with a diverse set of heterogeneous control parameters that can be used to modulate the excitability and receptivity of target neurons-in other words, to act as control parameters for mediating critical neuronal order. Through a series of worked examples, I demonstrate how the neuromodulatory arousal system can interact with the inherent topological complexity of neuronal subsystems in the brain to mediate complex adaptive behaviour.
Collapse
Affiliation(s)
- James M. Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Pérez-Santos I, García-Cabezas MÁ, Cavada C. Mapping the primate thalamus: systematic approach to analyze the distribution of subcortical neuromodulatory afferents. Brain Struct Funct 2023:10.1007/s00429-023-02619-w. [PMID: 36890350 DOI: 10.1007/s00429-023-02619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Neuromodulatory afferents to thalamic nuclei are key for information transmission and thus play critical roles in sensory, motor, and limbic processes. Over the course of the last decades, diverse attempts have been made to map and describe subcortical neuromodulatory afferents to the primate thalamus, including axons using acetylcholine, serotonin, dopamine, noradrenaline, adrenaline, and histamine. Our group has been actively involved in this endeavor. The published descriptions on neuromodulatory afferents to the primate thalamus have been made in different laboratories and are not fully comparable due to methodological divergences (for example, fixation procedures, planes of cutting, techniques used to detect the afferents, different criteria for identification of thalamic nuclei…). Such variation affects the results obtained. Therefore, systematic methodological and analytical approaches are much needed. The present article proposes reproducible methodological and terminological frameworks for primate thalamic mapping. We suggest the use of standard stereotaxic planes to produce and present maps of the primate thalamus, as well as the use of the Anglo-American school terminology (vs. the German school terminology) for identification of thalamic nuclei. Finally, a public repository of the data collected under agreed-on frameworks would be a useful tool for looking up and comparing data on the structure and connections of primate thalamic nuclei. Important and agreed-on efforts are required to create, manage, and fund a unified and homogeneous resource of data on the primate thalamus. Likewise, a firm commitment of the institutions to preserve experimental brain material is much needed because neuroscience work with non-human primates is becoming increasingly rare, making earlier material still more valuable.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain
| | - Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.,Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain. .,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.
| |
Collapse
|
4
|
Gao C, Gohel CA, Leng Y, Ma J, Goldman D, Levine AJ, Penzo MA. Molecular and spatial profiling of the paraventricular nucleus of the thalamus. eLife 2023; 12:81818. [PMID: 36867023 PMCID: PMC10014079 DOI: 10.7554/elife.81818] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/02/2023] [Indexed: 03/04/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is known to regulate various cognitive and behavioral processes. However, while functional diversity among PVT circuits has often been linked to cellular differences, the molecular identity and spatial distribution of PVT cell types remain unclear. To address this gap, here we used single nucleus RNA sequencing (snRNA-seq) and identified five molecularly distinct PVT neuronal subtypes in the mouse brain. Additionally, multiplex fluorescent in situ hybridization of top marker genes revealed that PVT subtypes are organized by a combination of previously unidentified molecular gradients. Lastly, comparing our dataset with a recently published single-cell sequencing atlas of the thalamus yielded novel insight into the PVT's connectivity with the cortex, including unexpected innervation of auditory and visual areas. This comparison also revealed that our data contains a largely non-overlapping transcriptomic map of multiple midline thalamic nuclei. Collectively, our findings uncover previously unknown features of the molecular diversity and anatomical organization of the PVT and provide a valuable resource for future investigations.
Collapse
Affiliation(s)
- Claire Gao
- National Institute of Mental HealthBethesdaUnited States
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Chiraag A Gohel
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Yan Leng
- National Institute of Mental HealthBethesdaUnited States
| | - Jun Ma
- National Institute of Mental HealthBethesdaUnited States
| | - David Goldman
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Ariel J Levine
- National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Mario A Penzo
- National Institute of Mental HealthBethesdaUnited States
| |
Collapse
|
5
|
Dumont C, Li G, Castel J, Luquet S, Gangarossa G. Hindbrain catecholaminergic inputs to the paraventricular thalamus scale feeding and metabolic efficiency in stress-related contexts. J Physiol 2022; 600:2877-2895. [PMID: 35648134 DOI: 10.1113/jp282996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
The regulation of food intake and energy balance relies on the dynamic integration of exteroceptive and interoceptive signals monitoring nutritional, metabolic, cognitive, and emotional states. The paraventricular thalamus (PVT) is a central hub that, by integrating sensory, metabolic, and emotional states, may contribute to the regulation of feeding and homeostatic/allostatic processes. However, the underlying PVT circuits still remain elusive. Here, we aimed at unravelling the role of catecholaminergic (CA) inputs to the PVT in scaling feeding and metabolic efficiency. First, using region-specific retrograde disruption of CA projections, we show that PVT CA inputs mainly arise from the hindbrain, notably the locus coeruleus (LC) and the nucleus tractus solitarius. Second, taking advantage of integrative calorimetric measurements of metabolic efficiency, we reveal that CA inputs to the PVT scale adaptive feeding and metabolic responses in environmental, behavioural, physiological, and metabolic stress-like contexts. Third, we show that hindbrainTH →PVT inputs contribute to modulating the activity of PVT as well as lateral and dorsomedial hypothalamic neurons. In conclusion, the present study, by assessing the key role of CA inputs to the PVT in scaling homeostatic/allostatic regulations of feeding patterns, reveals the integrative and converging hindbrainTH →PVT paths that contribute to whole-body metabolic adaptations in stress-like contexts. KEY POINTS: The paraventricular thalamus (PVT) is known to receive projections from the hindbrain. Here, we confirm and further extend current knowledge on the existence of hindbrainTH →PVT catecholaminergic inputs, notably from the locus coeruleus and the nucleus tractus solitarius, with the nucleus tractus solitarius representing the main source. Disruption of hindbrainTH →PVT inputs contributes to the modulation of PVT neuron activity. HindbrainTH →PVT inputs scale feeding strategies in environmental, behavioural, physiological, and metabolic stress-like contexts. HindbrainTH →PVT inputs participate in regulating metabolic efficiency and nutrient partitioning in stress-like contexts. HindbrainTH →PVT inputs, directly and/or indirectly, contribute to modulating the downstream activity of lateral and dorsomedial hypothalamic neurons.
Collapse
Affiliation(s)
- Clarisse Dumont
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Guangping Li
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| |
Collapse
|
6
|
Avram M, Müller F, Rogg H, Korda A, Andreou C, Holze F, Vizeli P, Ley L, Liechti ME, Borgwardt S. Characterizing thalamocortical (dys)connectivity following d-amphetamine, LSD, and MDMA administration. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:885-894. [PMID: 35500840 DOI: 10.1016/j.bpsc.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Patients with psychotic disorders present alterations in thalamocortical intrinsic functional connectivity (iFC) as measured by resting-state functional magnetic resonance imaging (rs-fMRI). Specifically, thalamic iFC is increased with sensorimotor cortices (hyperconnectivity) and decreased with prefrontal-limbic cortices (hypoconnectivity). Intriguingly, psychedelics such as lysergic acid diethylamide (LSD) elicit similar thalamocortical-hyperconnectivity with sensorimotor areas in healthy volunteers. It is unclear whether LSD also induces thalamocortical-hypoconnectivity with prefrontal-limbic cortices as current findings are equivocal. Notably, thalamocortical-hyperconnectivity was associated with psychotic symptoms in patients and substance-induced altered states of consciousness in healthy volunteers. Thalamocortical dysconnectivity is likely evoked by altered neurotransmission, e.g., via dopaminergic excess in psychotic disorders and serotonergic agonism in psychedelic-induced states. It is unclear whether thalamocortical dysconnectivity is also elicited by amphetamine-type substances, broadly releasing monoamines (i.e., dopamine, norepinephrine) but producing fewer perceptual effects than psychedelics. METHODS We administrated LSD, d-amphetamine, and 3,4-methylenedioxymethamphetamine (MDMA) in 28 healthy volunteers and investigated their effects on thalamic iFC with two brain networks (auditory-sensorimotor (ASM) and salience (SAL) - corresponding to sensorimotor and prefrontal-limbic cortices, respectively), using a double-blind, placebo-controlled, cross-over design. RESULTS All active substances elicited ASM-thalamic-hyperconnectivity compared to placebo, despite predominantly distinct pharmacological actions and subjective effects. LSD-induced effects correlated with subjective changes in perception, indicating a link between hyperconnectivity and psychedelic-type perceptual alterations. Unlike d-amphetamine and MDMA, which induced hypoconnectivity with SAL, LSD elicited hyperconnectivity. D-amphetamine and MDMA evoked similar thalamocortical dysconnectivity patterns. CONCLUSIONS Psychedelics, empathogens, and psychostimulants evoke thalamocortical-hyperconnectivity with sensorimotor areas, akin to findings in patients with psychotic disorders.
Collapse
Affiliation(s)
- Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany.
| | - Felix Müller
- Department of Psychiatry (UPK), University of Basel, Basel, 4012, Switzerland
| | - Helena Rogg
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Alexandra Korda
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Christina Andreou
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Friederike Holze
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Laura Ley
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| |
Collapse
|
7
|
Dopamine-induced changes to thalamic GABA concentration in impulsive Parkinson disease patients. NPJ Parkinsons Dis 2022; 8:37. [PMID: 35383185 PMCID: PMC8983736 DOI: 10.1038/s41531-022-00298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/01/2022] [Indexed: 11/08/2022] Open
Abstract
Impulsivity is inherent to behavioral disorders such as substance abuse and binge eating. While the role of dopamine in impulse behavior is well established, γ-aminobutyric acid (GABA) therapies have promise for the treatment of maladaptive behaviors. In Parkinson disease (PD), dopaminergic therapies can result in the development of impulsive and compulsive behaviors, and this clinical syndrome shares similar pathophysiology to that seen in addiction, substance abuse, and binge-eating disorders. We hypothesized that impulsive PD patients have a reduced thalamic GABAergic response to dopamine therapy. To test this hypothesis, we employed GABA magnetic resonance spectroscopy, D2-like receptor PET imaging, and clinical and quantitative measures of impulsivity in PD patients (n = 33), before and after dopamine agonist administration. We find a blunted thalamic GABA response to dopamine agonists in patients with elevated impulsivity (p = 0.027). These results emphasize how dopamine treatment differentially augments thalamic GABA concentrations, which may modify behavioral impulsivity.
Collapse
|
8
|
Fridman EA, Schiff ND. Organizing a Rational Approach to Treatments of Disorders of Consciousness Using the Anterior Forebrain Mesocircuit Model. J Clin Neurophysiol 2022; 39:40-48. [PMID: 34474427 PMCID: PMC8900660 DOI: 10.1097/wnp.0000000000000729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY Organizing a rational treatment strategy for patients with multifocal structural brain injuries and disorders of consciousness (DOC) is an important and challenging clinical goal. Among potential clinical end points, restoring elements of communication to DOC patients can support improved patient care, caregiver satisfaction, and patients' quality of life. Over the past decade, several studies have considered the use of the anterior forebrain mesocircuit model to approach this problem because this model proposes a supervening circuit-level impairment arising across DOC of varying etiologies. We review both the conceptual foundation of the mesocircuit model and studies of mechanisms underlying DOC that test predictions of this model. We consider how this model can guide therapeutic interventions and discuss a proposed treatment algorithm based on these ideas. Although the approach reviewed originates in the evaluation of patients with chronic DOC, we consider some emerging implications for patients in acute and subacute settings.
Collapse
Affiliation(s)
- Esteban A Fridman
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, U.S.A
| | | |
Collapse
|
9
|
Pérez-Santos I, Palomero-Gallagher N, Zilles K, Cavada C. Distribution of the Noradrenaline Innervation and Adrenoceptors in the Macaque Monkey Thalamus. Cereb Cortex 2021; 31:4115-4139. [PMID: 34003210 PMCID: PMC8328208 DOI: 10.1093/cercor/bhab073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
Noradrenaline (NA) in the thalamus has important roles in physiological, pharmacological, and pathological neuromodulation. In this work, a complete characterization of NA axons and Alpha adrenoceptors distributions is provided. NA axons, revealed by immunohistochemistry against the synthesizing enzyme and the NA transporter, are present in all thalamic nuclei. The most densely innervated ones are the midline nuclei, intralaminar nuclei (paracentral and parafascicular), and the medial sector of the mediodorsal nucleus (MDm). The ventral motor nuclei and most somatosensory relay nuclei receive a moderate NA innervation. The pulvinar complex receives a heterogeneous innervation. The lateral geniculate nucleus (GL) has the lowest NA innervation. Alpha adrenoceptors were analyzed by in vitro quantitative autoradiography. Alpha-1 receptor densities are higher than Alpha-2 densities. Overall, axonal densities and Alpha adrenoceptor densities coincide; although some mismatches were identified. The nuclei with the highest Alpha-1 values are MDm, the parvocellular part of the ventral posterior medial nucleus, medial pulvinar, and midline nuclei. The nucleus with the lowest Alpha-1 receptor density is GL. Alpha-2 receptor densities are highest in the lateral dorsal, centromedian, medial and inferior pulvinar, and midline nuclei. These results suggest a role for NA in modulating thalamic involvement in consciousness, limbic, cognitive, and executive functions.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| | - Carmen Cavada
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
10
|
Inserra A, De Gregorio D, Rezai T, Lopez-Canul MG, Comai S, Gobbi G. Lysergic acid diethylamide differentially modulates the reticular thalamus, mediodorsal thalamus, and infralimbic prefrontal cortex: An in vivo electrophysiology study in male mice. J Psychopharmacol 2021; 35:469-482. [PMID: 33645311 PMCID: PMC8058830 DOI: 10.1177/0269881121991569] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The reticular thalamus gates thalamocortical information flow via finely tuned inhibition of thalamocortical cells in the mediodorsal thalamus. Brain imaging studies in humans show that the psychedelic lysergic acid diethylamide (LSD) modulates activity and connectivity within the cortico-striato-thalamo-cortical (CSTC) circuit, altering consciousness. However, the electrophysiological effects of LSD on the neurons in these brain areas remain elusive. METHODS We employed in vivo extracellular single-unit recordings in anesthetized adult male mice to investigate the dose-response effects of cumulative LSD doses (5-160 µg/kg, intraperitoneal) upon reticular thalamus GABAergic neurons, thalamocortical relay neurons of the mediodorsal thalamus, and pyramidal neurons of the infralimbic prefrontal cortex. RESULTS LSD decreased spontaneous firing and burst-firing activity in 50% of the recorded reticular thalamus neurons in a dose-response fashion starting at 10 µg/kg. Another population of neurons (50%) increased firing and burst-firing activity starting at 40 µg/kg. This modulation was accompanied by an increase in firing and burst-firing activity of thalamocortical neurons in the mediodorsal thalamus. On the contrary, LSD excited infralimbic prefrontal cortex pyramidal neurons only at the highest dose tested (160 µg/kg). The dopamine D2 receptor (D2) antagonist haloperidol administered after LSD increased burst-firing activity in the reticular thalamus neurons inhibited by LSD, decreased firing and burst-firing activity in the mediodorsal thalamus, and showed a trend towards further increasing the firing activity of neurons of the infralimbic prefrontal cortex. CONCLUSION LSD modulates firing and burst-firing activity of reticular thalamus neurons and disinhibits mediodorsal thalamus relay neurons at least partially in a D2-mediated fashion. These effects of LSD on thalamocortical gating could explain its consciousness-altering effects in humans.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Canada
| | - Tamim Rezai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Canada
| | | | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Canada
- IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milano, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Canada
- McGill University Health Center, Montreal, Qc, Canada
| |
Collapse
|
11
|
Abstract
ABSTRACT Thalamic dementia is an uncommon type of stroke that presents with disorientation, behavioral changes, and impairment of executive functions, with relative preservation of motor functions. It is typically caused by paramedian territory infarctions of the thalamus, most often due to ischemic insult at the tip of the basilar artery. In this report, we present a case of bilateral thalamic infarcts resulting in thalamic dementia with severe behavioral manifestations in a 64-yr-old man with no preexisting neuropsychiatric comorbidities. A trial of amantadine, a dopamine-promoting agent, in the acute rehabilitation unit in an attempt to manage his agitation led to multiple weeks of dramatic behavioral improvement and increased participation in therapies. Dopamine receptors are believed to be present at increased densities in thalamic nuclei with mesolimbic projections, suggesting that they are able to modulate limbic functions such as arousal, emotion, and memory. This case report, aimed both to increase the awareness of this uncommon stroke syndrome and describe the observed effect of amantadine, will ultimately help clinicians properly recognize thalamic dementia, minimize unnecessary investigations, and develop effective neurorehabilitation strategies in these patients.
Collapse
|
12
|
Zhou W, Zheng H, Wang M, Zheng Y, Chen S, Wang MJ, Dong GH. The imbalance between goal-directed and habitual systems in internet gaming disorder: Results from the disturbed thalamocortical communications. J Psychiatr Res 2021; 134:121-128. [PMID: 33383495 DOI: 10.1016/j.jpsychires.2020.12.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/10/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Converging evidence has identified the imbalance between goal-directed systems and habitual systems in the addiction process. The thalamocortical loop plays an important role in the habitual/goal-directed system. However, little is known about the role of the thalamus in goal-directed and habitual systems in Internet gaming disorder (IGD) patients. This study investigated whether thalamocortical circuit was disrupted and how they affected goal-directed and habitual behaviors in IGD patients. METHODS This is a functional magnetic resonance imaging (fMRI) study. Twenty-five IGD patients and 25 matched recreational game users (RGUs) were scanned when they were in a resting state and were performing an instrumental learning task to obtain behavioral data related to habitual/goal-directed behavior. We used the whole-brain seed-based functional connectivity (FC) of the four thalamic nuclei (bilateral) and correlation analyses to examine the thalamocortical loop difference and relationship with habitual/goal-directed performance. RESULTS Compared with RGUs, IGD patients demonstrated significantly increased FC between the left midline nucleus (MN) and the right postcentral gyrus (PCG), and between the pulvinar and medial frontal gyrus (MFG). Correlation results showed that within the IGD group, the correct response rates of the participants to inconsistent stimulus-result pairs were positively correlated with the FC between the pulvinar and MFG. Inhibition-control scores were negatively correlated with the FC between the left MN and the PCG. CONCLUSIONS IGD patients showed disrupted thalamocortical communication that could further result in an imbalance between the goal-directed and habitual systems in IGD patients. These findings provide more information about the involvement of the thalamus in the pathophysiology of IGD, and as potential circuit-level biomarkers of IGD patients, these circuit alterations may be useful in treatment development and in monitoring treatment outcomes.
Collapse
Affiliation(s)
- Weiran Zhou
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, PR China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Min Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, PR China
| | - Yanbin Zheng
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, PR China
| | - Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Meng-Jing Wang
- Southeast University - Monash University Joint Graduate School, Southeast University, PR China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
13
|
Khlghatyan J, Quintana C, Parent M, Beaulieu JM. High Sensitivity Mapping of Cortical Dopamine D2 Receptor Expressing Neurons. Cereb Cortex 2020; 29:3813-3827. [PMID: 30295716 DOI: 10.1093/cercor/bhy261] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Cortical D2 dopamine receptor (Drd2) have mostly been examined in the context of cognitive function regulation and neurotransmission modulation of medial prefrontal cortex by principal neurons and parvalbumin positive, fast-spiking, interneurons in schizophrenia. Early studies suggested the presence of D2 receptors in several cortical areas, albeit with major technical limitations. We used combinations of transgenic reporter systems, recombinase activated viral vectors, quantitative translatome analysis, and high sensitivity in situ hybridization to identify D2 receptor expressing cells and establish a map of their respective projections. Our results identified previously uncharacterized clusters of D2 expressing neurons in limbic and sensory regions of the adult mouse brain cortex. Characterization of these clusters by translatome analysis and cell type specific labeling revealed highly heterogeneous expression of D2 receptors in principal neurons and various populations of interneurons across cortical areas. Transcript enrichment analysis also demonstrated variable levels of D2 receptor expression and several orphan G-protein-coupled receptors coexpression in different neuronal clusters, thus suggesting strategies for genetic and therapeutic targeting of D2 expressing neurons in specific cortical areas. These results pave the way for a thorough re-examination of cortical D2 receptor functions, which could provide information about neuronal circuits involved in psychotic and mood disorders.
Collapse
Affiliation(s)
- Jivan Khlghatyan
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec-City, Quebec, Canada
| | - Clémentine Quintana
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec-City, Quebec, Canada
| | - Jean-Martin Beaulieu
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec-City, Quebec, Canada
| |
Collapse
|
14
|
Wang C, Wang S, Shen Z, Qian W, Jiaerken Y, Luo X, Li K, Zeng Q, Gu Q, Yang Y, Huang P, Zhang M. Increased thalamic volume and decreased thalamo-precuneus functional connectivity are associated with smoking relapse. NEUROIMAGE-CLINICAL 2020; 28:102451. [PMID: 33022581 PMCID: PMC7548987 DOI: 10.1016/j.nicl.2020.102451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/03/2022]
Abstract
The thalamus, with the highest density of nicotinic acetylcholine receptor (nAChR) in the brain, plays a central role in thalamo-cortical circuits that are implicated in nicotine addiction. However, little is known about whether the thalamo-cortical circuits are potentially predictive of smoking relapse. In the current study, a total of 125 participants (84 treatment-seeking male smokers and 41 age-matched male nonsmokers) were recruited. Structural and functional magnetic resonance images (MRI) were acquired from all participants. After a 12-week smoking cessation treatment with varenicline, the smokers were then divided into relapsers (n = 54) and nonrelapsers (n = 30). Then, we compared thalamic volume and seed-based thalamo-cortical resting state functional connectivity (rsFC) prior to the cessation treatment among relapsers, nonrelapsers and nonsmokers to investigate the associations between thalamic structure/function and smoking relapse. Increased thalamic volume was detected in smokers relative to nonsmokers, and in relapsers relative to nonrelapsers, especially on the left side. Moreover, decreased left thalamo-precuneus rsFC was detected in relapsers relative to nonrelapsers. Additionally, a logistic regression analysis showed that the thalamic volume and thalamo-precuneus rsFC predicted smoking relapse with an accuracy of 75.7%. These novel findings indicate that increased thalamic volume and decreased thalamo-precuneus rsFC are associated with smoking relapse, and these thalamic measures may be used to predict treatment efficacy of nicotine addiction and serve as a potential biomarker for personalized medicine.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Qian
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Fridman EA, Osborne JR, Mozley PD, Victor JD, Schiff ND. Presynaptic dopamine deficit in minimally conscious state patients following traumatic brain injury. Brain 2020; 142:1887-1893. [PMID: 31505542 DOI: 10.1093/brain/awz118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Dopaminergic stimulation has been proposed as a treatment strategy for post-traumatic brain injured patients in minimally conscious state based on a clinical trial using amantadine, a weak dopamine transporter blocker. However, a specific contribution of dopaminergic neuromodulation in minimally conscious state is undemonstrated. In a phase 0 clinical trial, we evaluated 13 normal volunteers and seven post-traumatic minimally conscious state patients using 11C-raclopride PET to estimate dopamine 2-like receptors occupancy in the striatum and central thalamus before and after dopamine transporter blockade with dextroamphetamine. If a presynaptic deficit was observed, a third and a fourth 11C-raclopride PET were acquired to evaluate changes in dopamine release induced by l-DOPA and l-DOPA+dextroamphetamine. Permutation analysis showed a significant reduction of dopamine release in patients, demonstrating a presynaptic deficit in the striatum and central thalamus that could not be reversed by blocking the dopamine transporter. However, administration of the dopamine precursor l-DOPA reversed the presynaptic deficit by restoring the biosynthesis of dopamine from both ventral tegmentum and substantia nigra. The advantages of alternative pharmacodynamic approaches in post-traumatic minimally conscious state patients should be tested in clinical trials, as patients currently refractory to amantadine might benefit from them.
Collapse
Affiliation(s)
- Esteban A Fridman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Joseph R Osborne
- Radiology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Paul D Mozley
- Radiology Department, Weill Cornell Medical College New York, NY, USA
| | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
16
|
Gao C, Leng Y, Ma J, Rooke V, Rodriguez-Gonzalez S, Ramakrishnan C, Deisseroth K, Penzo MA. Two genetically, anatomically and functionally distinct cell types segregate across anteroposterior axis of paraventricular thalamus. Nat Neurosci 2020; 23:217-228. [PMID: 31932767 PMCID: PMC7007348 DOI: 10.1038/s41593-019-0572-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
Abstract
Unlike the sensory thalamus, studies on the functional organization of the midline and intralaminar nuclei are scarce, and this has hindered the establishment of conceptual models of the function of this brain region. We investigated the functional organization of the paraventricular nucleus of the thalamus (PVT), a midline thalamic structure that is increasingly being recognized as a critical node in the control of diverse processes such as arousal, stress, emotional memory and motivation, in mice. We identify two major classes of PVT neurons-termed type I and type II-that differ in terms of gene expression, anatomy and function. In addition, we demonstrate that type II neurons belong to a previously neglected class of PVT neurons that convey arousal-related information to corticothalamic neurons of the infralimbic cortex. Our results uncover the existence of an arousal-modulated thalamo-corticothalamic loop that links the PVT and the ventromedial prefrontal cortex.
Collapse
Affiliation(s)
- Claire Gao
- National Institute of Mental Health, Bethesda, MD, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Yan Leng
- National Institute of Mental Health, Bethesda, MD, USA
| | - Jun Ma
- National Institute of Mental Health, Bethesda, MD, USA
| | | | | | | | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mario A Penzo
- National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Russo M, Carrarini C, Dono F, Rispoli MG, Di Pietro M, Di Stefano V, Ferri L, Bonanni L, Sensi SL, Onofrj M. The Pharmacology of Visual Hallucinations in Synucleinopathies. Front Pharmacol 2019; 10:1379. [PMID: 31920635 PMCID: PMC6913661 DOI: 10.3389/fphar.2019.01379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Visual hallucinations (VH) are commonly found in the course of synucleinopathies like Parkinson's disease and dementia with Lewy bodies. The incidence of VH in these conditions is so high that the absence of VH in the course of the disease should raise questions about the diagnosis. VH may take the form of early and simple phenomena or appear with late and complex presentations that include hallucinatory production and delusions. VH are an unmet treatment need. The review analyzes the past and recent hypotheses that are related to the underlying mechanisms of VH and then discusses their pharmacological modulation. Recent models for VH have been centered on the role played by the decoupling of the default mode network (DMN) when is released from the control of the fronto-parietal and salience networks. According to the proposed model, the process results in the perception of priors that are stored in the unconscious memory and the uncontrolled emergence of intrinsic narrative produced by the DMN. This DMN activity is triggered by the altered functioning of the thalamus and involves the dysregulated activity of the brain neurotransmitters. Historically, dopamine has been indicated as a major driver for the production of VH in synucleinopathies. In that context, nigrostriatal dysfunctions have been associated with the VH onset. The efficacy of antipsychotic compounds in VH treatment has further supported the notion of major involvement of dopamine in the production of the hallucinatory phenomena. However, more recent studies and growing evidence are also pointing toward an important role played by serotonergic and cholinergic dysfunctions. In that respect, in vivo and post-mortem studies have now proved that serotonergic impairment is often an early event in synucleinopathies. The prominent cholinergic impairment in DLB is also well established. Finally, glutamatergic and gamma aminobutyric acid (GABA)ergic modulations and changes in the overall balance between excitatory and inhibitory signaling are also contributing factors. The review provides an extensive overview of the pharmacology of VH and offers an up to date analysis of treatment options.
Collapse
Affiliation(s)
- Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marianna Gabriella Rispoli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Martina Di Pietro
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Di Stefano
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Ferri
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Luca Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Behavioral Neurology and Molecular Neurology Units, Center of Excellence on Aging and Translational Medicine—CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders—iMIND, University of California, Irvine, Irvine, CA, United States
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
18
|
L'Estrade ET, Erlandsson M, Edgar FG, Ohlsson T, Knudsen GM, Herth MM. Towards selective CNS PET imaging of the 5-HT 7 receptor system: Past, present and future. Neuropharmacology 2019; 172:107830. [PMID: 31669129 DOI: 10.1016/j.neuropharm.2019.107830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/24/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022]
Abstract
Since its discovery in 1993, the serotonin receptor subtype 7 (5-HT7) has attracted significant attention as a potential drug target; due to its elucidated roles in conditions such as insomnia, schizophrenia, and more. Therefore, it is unsurprising that there has been relatively early efforts undertaken to develop a positron emission tomography (PET) imaging agent for said receptor system. PET can be clinically used to probe receptor systems in vivo, permitting information such as a drug's occupancy against this system to be investigated. This review focuses on the efforts towards the development of a 5-HT7R selective PET CNS tracer over the last 20 years, critically reflecting on applied strategies and commonly employed chemical frameworks and suggests future considerations that are needed to successfully develop a PET tracer for this clinically relevant target. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Elina T L'Estrade
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetesparken 2, 2100, Copenhagen, Denmark; Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42, Lund, Sweden
| | - Maria Erlandsson
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42, Lund, Sweden
| | - Fraser G Edgar
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetesparken 2, 2100, Copenhagen, Denmark
| | - Tomas Ohlsson
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42, Lund, Sweden
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Matthias M Herth
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetesparken 2, 2100, Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
19
|
Esmaeeli S, Murphy K, Swords GM, Ibrahim BA, Brown JW, Llano DA. Visual hallucinations, thalamocortical physiology and Lewy body disease: A review. Neurosci Biobehav Rev 2019; 103:337-351. [PMID: 31195000 DOI: 10.1016/j.neubiorev.2019.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 12/22/2022]
Abstract
One of the core diagnostic criteria for Dementia with Lewy Bodies (DLB) is the presence of visual hallucinations. The presence of hallucinations, along with fluctuations in the level of arousal and sleep disturbance, point to potential pathological mechanisms at the level of the thalamus. However, the potential role of thalamic dysfunction in DLB, particularly as it relates to the presence of formed visual hallucinations is not known. Here, we review the literature on the pathophysiology of DLB with respect to modern theories of thalamocortical function and attempt to derive an understanding of how such hallucinations arise. Based on the available literature, we propose that combined thalamic-thalamic reticular nucleus and thalamocortical pathology may explain the phenomenology of visual hallucinations in DLB. In particular, diminished α7 cholinergic activity in the thalamic reticular nucleus may critically disinhibit thalamocortical activity. Further, concentrated pathological changes within the posterior regions of the thalamus may explain the predilection for the hallucinations to be visual in nature.
Collapse
Affiliation(s)
- Shooka Esmaeeli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kathleen Murphy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gabriel M Swords
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Baher A Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jeffrey W Brown
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carle Neuroscience Institute, Urbana, IL, United States.
| |
Collapse
|
20
|
Aceves Buendia JDJ, Tiroshi L, Chiu W, Goldberg JA. Selective remodeling of glutamatergic transmission to striatal cholinergic interneurons after dopamine depletion. Eur J Neurosci 2019; 49:824-833. [PMID: 28922504 PMCID: PMC6519226 DOI: 10.1111/ejn.13715] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 01/12/2023]
Abstract
The widely held view that the pathophysiology of Parkinson's disease arises from an under-activation of the direct pathway striatal spiny neurons (dSPNs) has gained support from a recently described weakening of the glutamatergic projection from the parafascicular nucleus (PfN) to dSPNs in experimental parkinsonism. However, the impact of the remodeling of the thalamostriatal projection cannot be fully appreciated without considering its impact on cholinergic interneurons (ChIs) that themselves preferentially activate indirect pathway spiny neurons (iSPNs). To study this thalamostriatal projection, we virally transfected with Cre-dependent channelrhodopsin-2 (ChR2) the PfN of Vglut2-Cre mice that were dopamine-depleted with 6-hydroxydopamine (6-OHDA). In parallel, we studied the corticostriatal projection to ChIs in 6-OHDA-treated transgenic mice expressing ChR2 under the Thy1 promoter. We found the 6-OHDA lesions failed to affect short-term synaptic plasticity or the size of unitary responses evoked optogenetically in either of these projections. However, we found that NMDA-to-AMPA ratios at PfN synapses-that were significantly larger than NMDA-to-AMPA ratios at cortical synapses-were reduced by 6-OHDA treatment, thereby impairing synaptic integration at PfN synapses onto ChIs. Finally, we found that application of an agonist of the D5 dopamine receptors on ChIs potentiated NMDA currents without affecting AMPA currents or short-term plasticity selectively at PfN synapses. We propose that dopamine depletion leads to an effective de-potentiation of NMDA currents at PfN synapses onto ChIs which degrades synaptic integration. This selective remodeling of NMDA currents at PfN synapses may counter the selective weakening of PfN synapses onto dSPNs in parkinsonism.
Collapse
Affiliation(s)
- Jose de Jesus Aceves Buendia
- Department of Medical NeurobiologyInstitute of Medical Research Israel – CanadaThe Faculty of MedicineThe Hebrew University of Jerusalem9112102JerusalemIsrael
| | - Lior Tiroshi
- Department of Medical NeurobiologyInstitute of Medical Research Israel – CanadaThe Faculty of MedicineThe Hebrew University of Jerusalem9112102JerusalemIsrael
| | - Wei‐Hua Chiu
- Department of Medical NeurobiologyInstitute of Medical Research Israel – CanadaThe Faculty of MedicineThe Hebrew University of Jerusalem9112102JerusalemIsrael
| | - Joshua A. Goldberg
- Department of Medical NeurobiologyInstitute of Medical Research Israel – CanadaThe Faculty of MedicineThe Hebrew University of Jerusalem9112102JerusalemIsrael
| |
Collapse
|
21
|
Tan Y, Chen J, Liao W, Qian Z. Brain Function Network and Young Adult Smokers: A Graph Theory Analysis Study. Front Psychiatry 2019; 10:590. [PMID: 31543831 PMCID: PMC6728894 DOI: 10.3389/fpsyt.2019.00590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/25/2019] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoking is associated with abnormalities in the widespread inter-regional functional connectivity of the brain. However, few studies focused on the abnormalities in the topological organization of brain functional networks in young smokers. In the current study, resting-state functional magnetic resonance images were acquired from 30 young male smokers and 32 age-, gender-, and education-matched healthy male nonsmokers. A functional network was constructed by calculating the Pearson correlation coefficients among 246 subregions in the human Brainnetome Atlas. The topological parameters were compared between smokers and nonsmokers. The results showed that the functional network of both young smokers and nonsmokers had small-world topology. Compared to nonsmokers, young smokers exhibited a decreased clustering coefficient (Cp) and local network efficiency (Elocal). Cp and Elocal were negatively correlated with the duration of cigarette use. In addition, increased nodal efficiency (Enodal) was mainly located in the prefrontal cortex (PFC), cingulate gyrus, insula, and caudate. Decreased connectivities among the PFC, cingulate gyrus, insula, basal ganglia (of specific node), and thalamus were also observed. In sum, we revealed the abnormal topological organization of brain functional networks in young smokers, which may improve our understanding of the neural mechanism of young smokers from a brain functional network topological organization perspective.
Collapse
Affiliation(s)
- Ying Tan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Liao
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoxin Qian
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Li L, Wang Y, Ye L, Chen W, Huang X, Cui Q, He Z, Liu D, Chen H. Altered Brain Signal Variability in Patients With Generalized Anxiety Disorder. Front Psychiatry 2019; 10:84. [PMID: 30886589 PMCID: PMC6409298 DOI: 10.3389/fpsyt.2019.00084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/06/2019] [Indexed: 11/24/2022] Open
Abstract
Generalized anxiety disorder (GAD) is characterized by a chronic, continuous symptom of worry and exaggerated startle response. Although functional abnormality in GAD has been widely studied using functional magnetic resonance imaging (fMRI), the dynamic signatures of GAD are not fully understood. As a vital index of brain function, brain signal variability (BSV) reflects the capacity of state transition of neural activities. In this study, we recruited 47 patients with GAD and 38 healthy controls (HCs) to investigate whether or not BSV is altered in patients with GAD by measuring the standard deviation of fMRI signal of each voxel. We found that patients with GAD exhibited decreased BSV in widespread regions including the visual network, sensorimotor network, frontoparietal network, limbic system, and thalamus, indicating an inflexible brain state transfer pattern in these systems. Furthermore, the correlation between BSV and trait anxiety score was prone to be positive in patients with GAD but negative in HCs. The opposite relationships between BSV and anxiety level in the two groups indicate that the brain with moderate anxiety level may stay in the most stable rather than in the flexible state. As the first study of BSV in GAD, we revealed extensively decreased BSV in patients with GAD similar to that in other mental disorders but with a non-linear relationship between BSV and anxiety level indicating a novel neurodynamic mechanism of the anxious brain.
Collapse
Affiliation(s)
- Liyuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - YiFeng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liangkai Ye
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wang Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinju Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China.,Mental Health Center, The Fourth People's Hospital of Chengdu, Sichuan, China
| | - Dongfeng Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
23
|
Stark AJ, Smith CT, Petersen KJ, Trujillo P, van Wouwe NC, Donahue MJ, Kessler RM, Deutch AY, Zald DH, Claassen DO. [ 18F]fallypride characterization of striatal and extrastriatal D 2/3 receptors in Parkinson's disease. Neuroimage Clin 2018; 18:433-442. [PMID: 29541577 PMCID: PMC5849871 DOI: 10.1016/j.nicl.2018.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/15/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D2/3 receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D2/3 receptors can improve motor and non-motor symptoms. However, data regarding the combined pattern of D2/3 receptor binding in both striatal and extrastriatal regions in PD are limited. We studied 35 PD patients off-medication and 31 age- and sex-matched healthy controls (HCs) using PET imaging with [18F]fallypride, a high affinity D2/3 receptor ligand, to measure striatal and extrastriatal D2/3 nondisplaceable binding potential (BPND). PD patients completed PET imaging in the off medication state, and motor severity was concurrently assessed. Voxel-wise evaluation between groups revealed significant BPND reductions in PD patients in striatal and several extrastriatal regions, including the locus coeruleus and mesotemporal cortex. A region-of-interest (ROI) based approach quantified differences in dopamine D2/3 receptors, where reduced BPND was noted in the globus pallidus, caudate, amygdala, hippocampus, ventral midbrain, and thalamus of PD patients relative to HC subjects. Motor severity positively correlated with D2/3 receptor density in the putamen and globus pallidus. These findings support the hypothesis that abnormal D2/3 expression occurs in regions related to both the motor and non-motor symptoms of PD, including areas richly invested with noradrenergic neurons.
Collapse
Affiliation(s)
- Adam J Stark
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Kalen J Petersen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paula Trujillo
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nelleke C van Wouwe
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Manus J Donahue
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert M Kessler
- Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ariel Y Deutch
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - David H Zald
- Psychology, Vanderbilt University, Nashville, TN, United States; Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Daniel O Claassen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
24
|
Increased dopaminergic function in the thalamus is associated with excessive daytime sleepiness. Sleep Med 2017; 43:25-30. [PMID: 29482807 DOI: 10.1016/j.sleep.2017.11.1137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVES/BACKGROUND Excessive daytime sleepiness (EDS) is a common disorder, which can manifest in isolation or in combination with other neurological or psychiatric disorders. We know relatively little about the mechanisms underlying the development of EDS and the clinical management of patients with EDS remains an unmet need. In this study, we hypothesised that thalamic dopaminergic function would be altered in subjects with EDS and we sought to investigate this by assessing [123I]FP-CIT Single Photon Emission Computed Tomography (SPECT) data, which is a molecular imaging marker of dopamine transporter (DAT). PATIENTS/METHODS We performed a case-control study using people registered as healthy subjects in the Parkinson's Progression Markers Initiative database. We assessed and compared semi-quantified [123I]FP-CIT-SPECT in two groups of 21 healthy subjects with and without EDS, who were matched for age, gender, years of education and Rapid eyemovement (REM) sleep behaviour disorder (RBD) Questionnaire scores. RESULTS Our findings show increased thalamic DAT binding in people with EDS compared to matched healthy subjects without EDS. Higher thalamic DAT binding also correlated with worse EDS scores. CONCLUSION Our findings provide evidence that increased dopaminergic function in the thalamus may mediate excessive daytime sleepiness in humans.
Collapse
|
25
|
Dockree PM, Barnes JJ, Matthews N, Dean AJ, Abe R, Nandam LS, Kelly SP, Bellgrove MA, O'Connell RG. The Effects of Methylphenidate on the Neural Signatures of Sustained Attention. Biol Psychiatry 2017; 82:687-694. [PMID: 28599833 DOI: 10.1016/j.biopsych.2017.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although it is well established that methylphenidate (MPH) enhances sustained attention, the neural mechanisms underpinning this improvement remain unclear. We examined how MPH influenced known electrophysiological precursors of lapsing attention over different time scales. METHODS We measured the impact of MPH, compared with placebo, on behavioral and electrocortical markers while healthy adults (n = 40) performed a continuous monitoring paradigm designed to elicit attentional lapses. RESULTS MPH led to increased rates of target detection, and electrophysiological analyses were conducted to identify the mechanisms underlying these improvements. Lapses of attention were reliably preceded by progressive increases in alpha activity that emerged over periods of several seconds. MPH led to an overall suppression of alpha activity across the entire task but also diminished the frequency of these maladaptive pretarget increases through a reduction of alpha variability. A drug-related linear increase in the amplitude of the frontal P3 event-related component was also observed in the pretarget timeframe (3 or 4 seconds). Furthermore, during immediate target processing, there was a significant increase in the parietal P3 amplitude with MPH, indicative of enhanced perceptual evidence accumulation underpinning target detection. MPH-related enhancements occurred without significant changes to early visual processing (visual P1 and 25-Hz steady-state visual evoked potential). CONCLUSIONS MPH serves to reduce maladaptive electrophysiological precursors of lapsing attention by acting selectively on top-down endogenous mechanisms that support sustained attention and target detection with no significant effect on bottom-up sensory excitability. These findings offer candidate markers to monitor the therapeutic efficacy of psychostimulants or to predict therapeutic responses.
Collapse
Affiliation(s)
- Paul M Dockree
- School of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Jessica J Barnes
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Natasha Matthews
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Angela J Dean
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Rafael Abe
- School of Psychological Sciences and Monash Institute for Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| | - L Sanjay Nandam
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Simon P Kelly
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Mark A Bellgrove
- School of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; School of Psychological Sciences and Monash Institute for Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Redmond G O'Connell
- School of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; School of Psychological Sciences and Monash Institute for Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| |
Collapse
|
26
|
Clark AM, Leroy F, Martyniuk KM, Feng W, McManus E, Bailey MR, Javitch JA, Balsam PD, Kellendonk C. Dopamine D2 Receptors in the Paraventricular Thalamus Attenuate Cocaine Locomotor Sensitization. eNeuro 2017; 4:ENEURO.0227-17.2017. [PMID: 29071300 PMCID: PMC5654238 DOI: 10.1523/eneuro.0227-17.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Alterations in thalamic dopamine (DA) or DA D2 receptors (D2Rs) have been measured in drug addiction and schizophrenia, but the relevance of thalamic D2Rs for behavior is largely unknown. Using in situ hybridization and mice expressing green fluorescent protein (GFP) under the Drd2 promoter, we found that D2R expression within the thalamus is enriched in the paraventricular nucleus (PVT) as well as in more ventral midline thalamic nuclei. Within the PVT, D2Rs are inhibitory as their activation inhibits neuronal action potentials in brain slices. Using Cre-dependent anterograde and retrograde viral tracers, we further determined that PVT neurons are reciprocally interconnected with multiple areas of the limbic system including the amygdala and the nucleus accumbens (NAc). Based on these anatomical findings, we analyzed the role of D2Rs in the PVT in behaviors that are supported by these areas and that also have relevance for schizophrenia and drug addiction. Male and female mice with selective overexpression of D2Rs in the PVT showed attenuated cocaine locomotor sensitization, whereas anxiety levels, fear conditioning, sensorimotor gating, and food-motivated behaviors were not affected. These findings suggest the importance of PVT inhibition by D2Rs in modulating the sensitivity to cocaine, a finding that may have novel implications for human drug use.
Collapse
Affiliation(s)
- Abigail M. Clark
- Graduate Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Felix Leroy
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Kelly M. Martyniuk
- Graduate Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Wendy Feng
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Erika McManus
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Matthew R. Bailey
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jonathan A. Javitch
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| | - Peter D. Balsam
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Psychology, Barnard College Columbia University, New York, NY 10027
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| |
Collapse
|
27
|
Wang C, Bai J, Wang C, von Deneen KM, Yuan K, Cheng J. Altered thalamo-cortical resting state functional connectivity in smokers. Neurosci Lett 2017; 653:120-125. [DOI: 10.1016/j.neulet.2017.05.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 05/19/2017] [Accepted: 10/14/2016] [Indexed: 01/22/2023]
|
28
|
Youh J, Hong JS, Han DH, Chung US, Min KJ, Lee YS, Kim SM. Comparison of Electroencephalography (EEG) Coherence between Major Depressive Disorder (MDD) without Comorbidity and MDD Comorbid with Internet Gaming Disorder. J Korean Med Sci 2017; 32:1160-1165. [PMID: 28581274 PMCID: PMC5461321 DOI: 10.3346/jkms.2017.32.7.1160] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/16/2017] [Indexed: 11/20/2022] Open
Abstract
Internet gaming disorder (IGD) has many comorbid psychiatric problems including major depressive disorder (MDD). In the present study, we compared the neurobiological differences between MDD without comorbidity (MDD-only) and MDD comorbid with IGD (MDD+IGD) by analyzing the quantitative electroencephalogram (QEEG) findings. We recruited 14 male MDD+IGD (mean age, 20.0 ± 5.9 years) and 15 male MDD-only (mean age, 20.3 ± 5.5 years) patients. The electroencephalography (EEG) coherences were measured using a 21-channel digital EEG system and computed to assess synchrony in the frequency ranges of alpha (7.5-12.5 Hz) and beta (12.5-35.0 Hz) between the following 12 electrode site pairs: inter-hemispheric (Fp1-Fp2, F7-F8, T3-T4, and P3-P4) and intra-hemispheric (F7-T3, F8-T4, C3-P3, C4-P4, T5-O1, T6-O2, P3-O1, and P4-O2) pairs. Differences in inter- and intra-hemispheric coherence values for the frequency bands between groups were analyzed using the independent t-test. Inter-hemispheric coherence value for the alpha band between Fp1-Fp2 electrodes was significantly lower in MDD+IGD than MDD-only patients. Intra-hemispheric coherence value for the alpha band between P3-O1 electrodes was higher in MDD+IGD than MDD-only patients. Intra-hemispheric coherence values for the beta band between F8-T4, T6-O2, and P4-O2 electrodes were higher in MDD+IGD than MDD-only patients. There appears to be an association between decreased inter-hemispheric connectivity in the frontal region and vulnerability to attention problems in the MDD+IGD group. Increased intra-hemisphere connectivity in the fronto-temporo-parieto-occipital areas may result from excessive online gaming.
Collapse
Affiliation(s)
- Joohyung Youh
- Department of Psychiatry, Chung-Ang University Medical Center, Seoul, Korea
| | - Ji Sun Hong
- Department of Psychiatry, Chung-Ang University Medical Center, Seoul, Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Medical Center, Seoul, Korea
| | - Un Sun Chung
- Department of Psychiatry, Kyungpook National University School of Medicine, Daegu, Korea
- School Mental Health Resources and Research Center, Kyungpook National University Children's Hospital, Daegu, Korea
| | - Kyoung Joon Min
- Department of Psychiatry, Chung-Ang University Medical Center, Seoul, Korea
| | - Young Sik Lee
- Department of Psychiatry, Chung-Ang University Medical Center, Seoul, Korea
| | - Sun Mi Kim
- Department of Psychiatry, Chung-Ang University Medical Center, Seoul, Korea.
| |
Collapse
|
29
|
Jeong BS, Han DH, Kim SM, Lee SW, Renshaw PF. White matter connectivity and Internet gaming disorder. Addict Biol 2016; 21:732-42. [PMID: 25899390 DOI: 10.1111/adb.12246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Internet use and on-line game play stimulate corticostriatal-limbic circuitry in both healthy subjects and subjects with Internet gaming disorder (IGD). We hypothesized that increased fractional anisotropy (FA) with decreased radial diffusivity (RD) would be observed in IGD subjects, compared with healthy control subjects, and that these white matter indices would be associated with clinical variables including duration of illness and executive function. We screened 181 male patients in order to recruit a large number (n = 58) of IGD subjects without psychiatric co-morbidity as well as 26 male healthy comparison subjects. Multiple diffusion-weighted images were acquired using a 3.0 Tesla magnetic resonance imaging scanner. Tract-based spatial statistics was applied to compare group differences in diffusion tensor imaging (DTI) metrics between IGD and healthy comparison subjects. IGD subjects had increased FA values within forceps minor, right anterior thalamic radiation, right corticospinal tract, right inferior longitudinal fasciculus, right cingulum to hippocampus and right inferior fronto-occipital fasciculus (IFOF) as well as parallel decreases in RD value within forceps minor, right anterior thalamic radiation and IFOF relative to healthy control subjects. In addition, the duration of illness in IGD subjects was positively correlated with the FA values (integrity of white matter fibers) and negatively correlated with RD scores (diffusivity of axonal density) of whole brain white matter. In IGD subjects without psychiatric co-morbidity, our DTI results suggest that increased myelination (increased FA and decreased RD values) in right-sided frontal fiber tracts may be the result of extended game play.
Collapse
Affiliation(s)
- Bum Seok Jeong
- Laboratory of Clinical Neuroscience and Development; Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology; Korea
| | - Doug Hyun Han
- Department of Psychiatry; Chung Ang University Hospital; Korea
| | - Sun Mi Kim
- Department of Psychiatry; Chung Ang University Hospital; Korea
| | - Sang Won Lee
- Laboratory of Clinical Neuroscience and Development; Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology; Korea
| | | |
Collapse
|
30
|
Cui H, Zhang J, Liu Y, Li Q, Li H, Zhang L, Hu Q, Cheng W, Luo Q, Li J, Li W, Wang J, Feng J, Li C, Northoff G. Differential alterations of resting-state functional connectivity in generalized anxiety disorder and panic disorder. Hum Brain Mapp 2016; 37:1459-73. [PMID: 26800659 DOI: 10.1002/hbm.23113] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022] Open
Abstract
Generalized anxiety disorder (GAD) and panic disorder (PD) are most common anxiety disorders with high lifetime prevalence while the pathophysiology and disease-specific alterations still remain largely unclear. Few studies have taken a whole-brain perspective in the functional connectivity (FC) analysis of these two disorders in resting state. It limits the ability to identify regionally and psychopathologically specific network abnormalities with their subsequent use as diagnostic marker and novel treatment strategy. The whole brain FC using a novel FC metric was compared, that is, scaled correlation, which they demonstrated to be a reliable FC statistics, but have higher statistical power in two-sample t-test of whole brain FC analysis. About 21 GAD and 18 PD patients were compared with 22 matched control subjects during resting-state, respectively. It was found that GAD patients demonstrated increased FC between hippocampus/parahippocampus and fusiform gyrus among the most significantly changed FC, while PD was mainly associated with greater FC between somatosensory cortex and thalamus. Besides such regional specificity, it was observed that psychopathological specificity in that the disrupted FC pattern in PD and GAD correlated with their respective symptom severity. The findings suggested that the increased FC between hippocampus/parahippocampus and fusiform gyrus in GAD were mainly associated with a fear generalization related neural circuit, while the greater FC between somatosensory cortex and thalamus in PD were more likely linked to interoceptive processing. Due to the observed regional and psychopathological specificity, their findings bear important clinical implications for the potential treatment strategy.
Collapse
Affiliation(s)
- Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jie Zhang
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China.,Department of Radiology, Jinling Hospital of Nanjing, Nanjing, People's Republic of China
| | - Yicen Liu
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| | - Hui Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lanlan Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qiang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Cheng
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Qiang Luo
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, People's Republic of China
| | - Wei Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jianfeng Feng
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China.,Department of Computer Science, University of Warwick, Coventry, CV4 7AL, United Kingdom.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Shanghai Center for Mathematical Sciences, Shanghai, People's Republic of China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.,Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, People's Republic of China.,Centre for Brain and Consciousness, Taipei Medical University (TMU), Taipei, Taiwan
| |
Collapse
|
31
|
Li S, Shi Y, Kirouac GJ. The hypothalamus and periaqueductal gray are the sources of dopamine fibers in the paraventricular nucleus of the thalamus in the rat. Front Neuroanat 2014; 8:136. [PMID: 25477789 PMCID: PMC4238322 DOI: 10.3389/fnana.2014.00136] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/03/2014] [Indexed: 11/16/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) sends a very dense projection to the nucleus accumbens. This area of the striatum plays a key role in motivation and recent experimental evidence indicates that the PVT may have a similar function. It is well known that a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus accumbens is a key regulator of motivation and reward-related behavior. Dopamine (DA) fibers have also been localized in the PVT but the source of these fibers in the rat has not been unequivocally identified. The present study was done to re-examine this question. Small iontophoretic injections of cholera toxin B (CTb) were made in the PVT to retrogradely label tyrosine hydroxylase (TH) neurons. Neurons that were double-labeled for TH/CTb were found scattered in DA cell groups of the hypothalamus (ventrorostral A10, A11, A13, A15 DA cell groups) and the midbrain (dorsocaudal A10 embedded in the periaqueductal gray). In contrast, double-labeled neurons were absent in the retrorubral field (A8), substantia nigra (A9) and VTA (A10) of the midbrain. We conclude that DA fibers in the PVT do not originate from VTA but from a heterogeneous population of DA neurons located in the hypothalamus and periaqueductal gray.
Collapse
Affiliation(s)
- Sa Li
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University Shenyang, China ; Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University Shenyang, China
| | - Gilbert J Kirouac
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada ; Department of Psychiatry, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
32
|
Neuromodulation of the conscious state following severe brain injuries. Curr Opin Neurobiol 2014; 29:172-7. [PMID: 25285395 DOI: 10.1016/j.conb.2014.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022]
Abstract
Disorders of consciousness (DOC) following severe structural brain injuries globally affect the conscious state and the expression of goal-directed behaviors. In some subjects, neuromodulation with medications or electrical stimulation can markedly improve the impaired conscious state present in DOC. We briefly review recent studies and provide an organizing framework for considering the apparently widely disparate collection of medications and approaches that may modulate the conscious state in subjects with DOC. We focus on neuromodulation of the anterior forebrain mesocircuit in DOC and briefly compare mechanisms supporting recovery from structural brain injuries to those underlying facilitated emergence from unconsciousness produced by anesthesia. We derive some general principles for approaching the problem of restoration of consciousness after severe structural brain injuries, and suggest directions for future research.
Collapse
|
33
|
Varela C. Thalamic neuromodulation and its implications for executive networks. Front Neural Circuits 2014; 8:69. [PMID: 25009467 PMCID: PMC4068295 DOI: 10.3389/fncir.2014.00069] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/07/2014] [Indexed: 01/25/2023] Open
Abstract
The thalamus is a key structure that controls the routing of information in the brain. Understanding modulation at the thalamic level is critical to understanding the flow of information to brain regions involved in cognitive functions, such as the neocortex, the hippocampus, and the basal ganglia. Modulators contribute the majority of synapses that thalamic cells receive, and the highest fraction of modulator synapses is found in thalamic nuclei interconnected with higher order cortical regions. In addition, disruption of modulators often translates into disabling disorders of executive behavior. However, modulation in thalamic nuclei such as the midline and intralaminar groups, which are interconnected with forebrain executive regions, has received little attention compared to sensory nuclei. Thalamic modulators are heterogeneous in regards to their origin, the neurotransmitter they use, and the effect on thalamic cells. Modulators also share some features, such as having small terminal boutons and activating metabotropic receptors on the cells they contact. I will review anatomical and physiological data on thalamic modulators with these goals: first, determine to what extent the evidence supports similar modulator functions across thalamic nuclei; and second, discuss the current evidence on modulation in the midline and intralaminar nuclei in relation to their role in executive function.
Collapse
Affiliation(s)
- Carmen Varela
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
34
|
Kolaj M, Zhang L, Hermes MLHJ, Renaud LP. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons. Front Behav Neurosci 2014; 8:132. [PMID: 24860449 PMCID: PMC4029024 DOI: 10.3389/fnbeh.2014.00132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/01/2014] [Indexed: 01/01/2023] Open
Abstract
Neurons in the midline and intralaminar thalamic nuclei are components of an interconnected brainstem, limbic and prefrontal cortex neural network that is engaged during arousal, vigilance, motivated and addictive behaviors, and stress. To better understand the cellular mechanisms underlying these functions, here we review some of the recently characterized electrophysiological and neuropharmacological properties of neurons in the paraventricular thalamic nucleus (PVT), derived from whole cell patch clamp recordings in acute rat brain slice preparations. PVT neurons display firing patterns and ionic conductances (IT and IH) that exhibit significant diurnal change. Their resting membrane potential (RMP) is maintained by various ionic conductances that include inward rectifier (Kir), hyperpolarization-activated nonselective cation (HCN) and TWIK-related acid sensitive (TASK) K+ channels. Firing patterns are regulated by high voltage-activated (HVA) and low voltage-activated (LVA) Ca2+ conductances. Moreover, transient receptor potential (TRP)-like nonselective cation channels together with Ca2+- and Na+-activated K+ conductances (KCa; KNa) contribute to unique slow afterhyperpolarizing potentials (sAHPs) that are generally not detectable in lateral thalamic or reticular thalamic nucleus neurons. The excitability of PVT neurons is also modulated by activation of neurotransmitter receptors associated with afferent pathways to PVT and other thalamic midline nuclei. We report on receptor-mediated actions of GABA, glutamate, monoamines and several neuropeptides: arginine vasopressin, gastrin-releasing peptide, thyrotropin releasing hormone and the orexins (hypocretins). This review represents an initial survey of intrinsic and transmitter-sensitive ionic conductances that are deemed to be unique to this population of midline thalamic neurons, information that is fundamental to an appreciation of the role these thalamic neurons may play in normal central nervous system (CNS) physiology and in CNS disorders that involve the dorsomedial thalamus.
Collapse
Affiliation(s)
- Miloslav Kolaj
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Li Zhang
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Michael L H J Hermes
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Leo P Renaud
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
35
|
Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proc Natl Acad Sci U S A 2014; 111:6473-8. [PMID: 24733913 DOI: 10.1073/pnas.1320969111] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although disorders of consciousness (DOCs) demonstrate widely varying clinical presentations and patterns of structural injury, global down-regulation and bilateral reductions in metabolism of the thalamus and frontoparietal network are consistent findings. We test the hypothesis that global reductions of background synaptic activity in DOCs will associate with changes in the pattern of metabolic activity in the central thalamus and globus pallidus. We compared 32 [(18)F]fluorodeoxyglucose PETs obtained from severely brain-injured patients (BIs) and 10 normal volunteers (NVs). We defined components of the anterior forebrain mesocircuit on high-resolution T1-MRI (ventral, associative, and sensorimotor striatum; globus pallidus; central thalamus and noncentral thalamus). Metabolic profiles for BI and NV demonstrated distinct changes in the pattern of uptake: ventral and association striatum (but not sensorimotor) were significantly reduced relative to global mean uptake after BI; a relative increase in globus pallidus metabolism was evident in BI subjects who also showed a relative reduction of metabolism in the central thalamus. The reversal of globus pallidus and central thalamus profiles across BIs and NVs supports the mesocircuit hypothesis that broad functional (or anatomic) deafferentation may combine to reduce central thalamus activity and release globus pallidus activity in DOCs. In addition, BI subjects showed broad frontoparietal metabolic down-regulation consistent with prior studies supporting the link between central thalamic/pallidal metabolism and down-regulation of the frontoparietal network. Recovery of left hemisphere frontoparietal metabolic activity was further associated with command following.
Collapse
|
36
|
Hsu DT, Kirouac GJ, Zubieta JK, Bhatnagar S. Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood. Front Behav Neurosci 2014; 8:73. [PMID: 24653686 PMCID: PMC3949320 DOI: 10.3389/fnbeh.2014.00073] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/20/2014] [Indexed: 12/21/2022] Open
Abstract
The purpose of this review is to describe how the function and connections of the paraventricular thalamic nucleus (Pa) may play a role in the regulation of stress and negative emotional behavior. Located in the dorsal midline thalamus, the Pa is heavily innervated by serotonin, norepinephrine, dopamine (DA), corticotropin-releasing hormone, and orexins (ORX), and is the only thalamic nucleus connected to the group of structures comprising the amygdala, bed nucleus of the stria terminalis (BNST), nucleus accumbens (NAcc), and infralimbic/subgenual anterior cingulate cortex (sgACC). These neurotransmitter systems and structures are involved in regulating motivation and mood, and display abnormal functioning in several psychiatric disorders including anxiety, substance use, and major depressive disorders (MDD). Furthermore, rodent studies show that the Pa is consistently and potently activated following a variety of stressors and has a unique role in regulating responses to chronic stressors. These observations provide a compelling rationale for investigating the Pa in the link between stress and negative emotional behavior, and for including the Pa in the neural pathways of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- David T Hsu
- Department of Psychiatry and the Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Gilbert J Kirouac
- Departments of Oral Biology and Psychiatry, Faculties of Dentistry and Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Jon-Kar Zubieta
- Department of Psychiatry and the Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Seema Bhatnagar
- Department of Anesthesiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| |
Collapse
|
37
|
Pergola G, Suchan B. Associative learning beyond the medial temporal lobe: many actors on the memory stage. Front Behav Neurosci 2013; 7:162. [PMID: 24312029 PMCID: PMC3832901 DOI: 10.3389/fnbeh.2013.00162] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/28/2013] [Indexed: 12/23/2022] Open
Abstract
Decades of research have established a model that includes the medial temporal lobe, and particularly the hippocampus, as a critical node for episodic memory. Neuroimaging and clinical studies have shown the involvement of additional cortical and subcortical regions. Among these areas, the thalamus, the retrosplenial cortex, and the prefrontal cortices have been consistently related to episodic memory performance. This article provides evidences that these areas are in different forms and degrees critical for human memory function rather than playing only an ancillary role. First we briefly summarize the functional architecture of the medial temporal lobe with respect to recognition memory and recall. We then focus on the clinical and neuroimaging evidence available on thalamo-prefrontal and thalamo-retrosplenial networks. The role of these networks in episodic memory has been considered secondary, partly because disruption of these areas does not always lead to severe impairments; to account for this evidence, we discuss methodological issues related to the investigation of these regions. We propose that these networks contribute differently to recognition memory and recall, and also that the memory stage of their contribution shows specificity to encoding or retrieval in recall tasks. We note that the same mechanisms may be in force when humans perform non-episodic tasks, e.g., semantic retrieval and mental time travel. Functional disturbance of these networks is related to cognitive impairments not only in neurological disorders, but also in psychiatric medical conditions, such as schizophrenia. Finally we discuss possible mechanisms for the contribution of these areas to memory, including regulation of oscillatory rhythms and long-term potentiation. We conclude that integrity of the thalamo-frontal and the thalamo-retrosplenial networks is necessary for the manifold features of episodic memory.
Collapse
Affiliation(s)
- Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, Bari, Italy
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Boris Suchan
- Department of Neuropsychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
38
|
Distribution of monoamine oxidase proteins in human brain: implications for brain imaging studies. J Cereb Blood Flow Metab 2013; 33:863-71. [PMID: 23403377 PMCID: PMC3677103 DOI: 10.1038/jcbfm.2013.19] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Positron emission tomography (PET) imaging of monoamine oxidases (MAO-A: [(11)C]harmine, [(11)C]clorgyline, and [(11)C]befloxatone; MAO-B: [(11)C]deprenyl-D2) has been actively pursued given clinical importance of MAOs in human neuropsychiatric disorders. However, it is unknown how well PET outcome measures for the different radiotracers are quantitatively related to actual MAO protein levels. We measured regional distribution (n=38) and developmental/aging changes (21 hours to 99 years) of both MAOs by quantitative immunoblotting in autopsied normal human brain. MAO-A was more abundant than MAO-B in infants, which was reversed as MAO-B levels increased faster before 1 year and, unlike MAO-A, kept increasing steadily to senescence. In adults, regional protein levels of both MAOs were positively and proportionally correlated with literature postmortem data of MAO activities and binding densities. With the exception of [(11)C]befloxatone (binding potential (BP), r=0.61, P=0.15), correlations between regional PET outcome measures of binding in the literature and MAO protein levels were good (P<0.01) for [(11)C]harmine (distribution volume, r=0.86), [(11)C]clorgyline (λk3, r=0.82), and [(11)C]deprenyl-D2 (λk3 or modified Patlak slope, r=0.78 to 0.87), supporting validity of the latter imaging measures. However, compared with in vitro data, the latter PET measures underestimated regional contrast by ∼2-fold. Further studies are needed to address cause of the in vivo vs. in vitro nonproportionality.
Collapse
|
39
|
Central thalamic deep brain stimulation for support of forebrain arousal regulation in the minimally conscious state. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:295-306. [PMID: 24112903 DOI: 10.1016/b978-0-444-53497-2.00024-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This chapter considers the use of central thalamic deep brain stimulation (CT/DBS) to support arousal regulation mechanisms in the minimally conscious state (MCS). CT/DBS for selected patients in a MCS is first placed in the historical context of prior efforts to use thalamic electrical brain stimulation to treat the unconscious clinical conditions of coma and vegetative state. These previous studies and a proof of concept result from a single-subject study of a patient in a MCS are reviewed against the background of new population data providing benchmarks of the natural history of vegetative and MCSs. The conceptual foundations for CT/DBS in selected patients in a MCS are then presented with consideration of both circuit and cellular mechanisms underlying recovery of consciousness identified from empirical studies. Directions for developing future generalizable criteria for CT/DBS that focus on the integrity of necessary brain systems and behavioral profiles in patients in a MCS that may optimally response to support of arousal regulation mechanisms are proposed.
Collapse
|
40
|
Sun J, Xu J, Cairns NJ, Perlmutter JS, Mach RH. Dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2) and dopamine transporter (DAT) densities in aged human brain. PLoS One 2012; 7:e49483. [PMID: 23185343 PMCID: PMC3504049 DOI: 10.1371/journal.pone.0049483] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
The dopamine D(1), D(2), D(3) receptors, vesicular monoamine transporter type-2 (VMAT2), and dopamine transporter (DAT) densities were measured in 11 aged human brains (aged 77-107.8, mean: 91 years) by quantitative autoradiography. The density of D(1) receptors, VMAT2, and DAT was measured using [(3)H]SCH23390, [(3)H]dihydrotetrabenazine, and [(3)H]WIN35428, respectively. The density of D(2) and D(3) receptors was calculated using the D(3)-preferring radioligand, [(3)H]WC-10 and the D(2)-preferring radioligand [(3)H]raclopride using a mathematical model developed previously by our group. Dopamine D(1), D(2), and D(3) receptors are extensively distributed throughout striatum; the highest density of D(3) receptors occurred in the nucleus accumbens (NAc). The density of the DAT is 10-20-fold lower than that of VMAT2 in striatal regions. Dopamine D(3) receptor density exceeded D(2) receptor densities in extrastriatal regions, and thalamus contained a high level of D(3) receptors with negligible D(2) receptors. The density of dopamine D(1) linearly correlated with D(3) receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D(3) receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D(1) and D(2) receptors and DAT compared with the aged rhesus monkey brain. The differential density of D(3) and D(2) receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D(2) or D(3) receptors.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nigel J. Cairns
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joel S. Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert H. Mach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology amd Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
41
|
Dong G, DeVito E, Huang J, Du X. Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts. J Psychiatr Res 2012; 46:1212-6. [PMID: 22727905 PMCID: PMC3650484 DOI: 10.1016/j.jpsychires.2012.05.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/22/2012] [Accepted: 05/30/2012] [Indexed: 11/28/2022]
Abstract
Internet gaming addiction (IGA) is increasingly recognized as a widespread disorder with serious psychological and health consequences. Diminished white matter integrity has been demonstrated in a wide range of other addictive disorders which share clinical characteristics with IGA. Abnormal white matter integrity in addictive populations has been associated with addiction severity, treatment response and cognitive impairments. This study assessed white matter integrity in individuals with internet gaming addiction (IGA) using diffusion tensor imaging (DTI). IGA subjects (N = 16) showed higher fractional anisotropy (FA), indicating greater white matter integrity, in the thalamus and left posterior cingulate cortex (PCC) relative to healthy controls (N = 15). Higher FA in the thalamus was associated with greater severity of internet addiction. Increased regional FA in individuals with internet gaming addiction may be a pre-existing vulnerability factor for IGA, or may arise secondary to IGA, perhaps as a direct result of excessive internet game playing.
Collapse
Affiliation(s)
- Guangheng Dong
- Department of Psychology, Zhejiang Normal University, 688 of Yingbin Road, Jinhua, Zhejiang Province, PR China.
| | - Elise DeVito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jie Huang
- Department of Psychology, Zhejiang Normal University, Jinhua City, Zhejiang Province, P.R.China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai. P.R.China
| |
Collapse
|
42
|
Schiff ND. Moving toward a generalizable application of central thalamic deep brain stimulation for support of forebrain arousal regulation in the severely injured brain. Ann N Y Acad Sci 2012; 1265:56-68. [PMID: 22834729 DOI: 10.1111/j.1749-6632.2012.06712.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review considers the challenges ahead for developing a generalizable strategy for the use of central thalamic deep brain stimulation (CT/DBS) to support arousal regulation mechanisms in the severely injured brain. Historical efforts to apply CT/DBS to patients with severe brain injuries and a proof-of-concept result from a single-subject study are discussed. Circuit and cellular mechanisms underlying the recovery of consciousness are considered for their relevance to the application of CT/DBS, to improve consciousness and cognition in nonprogressive brain injuries. Finally, directions for development, and testing of generalizable criteria for CT/DBS are suggested, which aim to identify neuronal substrates and behavioral profiles that may optimally benefit from support of arousal regulation mechanisms.
Collapse
Affiliation(s)
- Nicholas D Schiff
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, USA.
| |
Collapse
|
43
|
Vukadinovic Z, Rosenzweig I. Abnormalities in thalamic neurophysiology in schizophrenia: could psychosis be a result of potassium channel dysfunction? Neurosci Biobehav Rev 2011; 36:960-8. [PMID: 22138503 DOI: 10.1016/j.neubiorev.2011.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/11/2011] [Accepted: 11/20/2011] [Indexed: 10/14/2022]
Abstract
Psychosis in schizophrenia is associated with source-monitoring deficits whereby self-initiated behaviors become attributed to outside sources. One of the proposed functions of the thalamus is to adjust sensory responsiveness in accordance with the behavioral contextual cues. The thalamus is markedly affected in schizophrenia, and thalamic dysfunction may here result in reduced ability to adjust sensory responsiveness to ongoing behavior. One of the ways in which the thalamus accomplishes the adjustment of sensory processing is by a neurophysiological shift to post-inhibitory burst firing mode prior to and during certain exploratory actions. Reduced amount of thalamic burst firing may result from increased neuronal excitability secondary to a reported potassium channel dysfunction in schizophrenia. Pharmacological agents that reduce the excitability of thalamic cells and thereby promote burst firing by and large tend to have antipsychotic effects.
Collapse
Affiliation(s)
- Zoran Vukadinovic
- Montefiore Medical Center, Albert Einstein College of Medicine, Department of Psychiatry and Behavioral Sciences, 111 E 210th Street, Bronx, NY 10467, USA.
| | | |
Collapse
|
44
|
Freudenmann RW, Kölle M, Huwe A, Luster M, Reske SN, Huber M, Lepping P, Wolf RC, Schönfeldt-Lecuona C. Delusional infestation: neural correlates and antipsychotic therapy investigated by multimodal neuroimaging. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1215-22. [PMID: 20600460 DOI: 10.1016/j.pnpbp.2010.06.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/18/2010] [Accepted: 06/24/2010] [Indexed: 12/18/2022]
Abstract
INTRODUCTION In delusional infestation (DI), as with other non-schizophrenic psychotic disorders, little is known about the neural basis and the mechanisms of antipsychotic treatment. We aimed at investigating the brain circuitry involved in DI and the role of postsynaptic D2 receptors in mediating the effects of antipsychotics by means of multimodal neuroimaging. METHODS In Case 1, a patient with DI (initially drug-induced), cerebral glucose metabolism and dopaminergic neurotransmission were studied in the untreated state (FDG-PET, FDOPA-PET, 123I-FP-CIT-SPECT, and IBZM-SPECT) and after effective aripiprazole treatment (FDG-PET and IBZM-SPECT), with negative drug screenings at both imaging sessions. In Case 2 (DI secondary to mild vascular encephalopathy) cerebral perfusion and gray matter volume changes were investigated in the untreated state and compared to N=8 [corrected] age-matched healthy controls (MRI-based CASL and VBM). RESULTS In Case 1, before treatment, glucose metabolism was left-dominant in the thalamus and the putamen. Pre- and postsynaptic dopaminergic neurotransmissions were altered in the striatum, again mainly the left putamen. Full remission to aripiprazole was associated with 63 to 78% striatal D2 receptor occupancy and glucose metabolism changes in the bilateral thalamus. In Case 2, significant perfusion and GMV changes were observed in the bilateral putamen, frontal and parietal somatosensory cortices as compared to controls. Symptoms partially remitted to ziprasidone therapy. DISCUSSION/CONCLUSION Six imaging techniques were first used to study the neural basis of DI and mechanisms of antipsychotic therapy. The study provides first low-level evidence in vivo evidence of fronto-striato-thalamo-parietal network to mediate core symptoms of DI, i.e. a priori brain regions involved in judgment (frontal cortex), sensory gating (thalamus) and body perception (dorsal striatum, thalamus and somatic cortices). This is also the first report of effective treatment with aripiprazole in drug-induced DI and with ziprasidone in organic DI, adding to existing limited evidence that SGAs are helpful in various forms of DI. Effective antipsychotic treatment seems to depend on blocking striatal D2 receptors with similar occupancy rates as in schizophrenia. Larger samples are needed to confirm our preliminary findings and further evaluate their relevance for the different forms of DI.
Collapse
Affiliation(s)
- Roland W Freudenmann
- Dept. of Psychiatry and Psychotherapy III, University of Ulm, Leimgrubenweg 12, 89075 Ulm, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
An abnormal relation between basal prolactin levels and prolactin response to 12.5 microg TRH i.v. in drug-naïve patients with first-episode schizophrenia. Schizophr Res 2010; 119:41-6. [PMID: 20347273 DOI: 10.1016/j.schres.2010.02.1074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/15/2010] [Accepted: 02/26/2010] [Indexed: 11/21/2022]
Abstract
At doses lower than those needed to stimulate prolactin release directly, TRH almost completely antagonizes the inhibitory effect of dopamine on prolactin release. We have previously reported that prolactin response to administration of 12.5 microg TRH i.v. correlates with prolactin response to 0.5 mg i.m. haloperidol and negatively with 24-h urinary excretion of HVA in normal subjects, suggesting that the response reflects dopamine activity. An association between central dopamine hyperactivity and SANS scores relating to poverty of content of speech and inattention has been suggested by studies utilizing methylphenidate administration in patients with first-episode schizophrenia. The hypothesis that small plasma prolactin responses to administration of 12.5 microg TRH i.v. (Delta prolactin) correlate with SANS scores for these symptoms was tested in 19 drug-naïve patients with first-episode schizophrenia. Significant negative correlations were found between the response and scores relating to poverty of content of speech (r = - 0.55, p = 0.014) and inattention (r = - 0.52, p = 0.022), supporting the hypothesis of increased dopamine activity in association with disorganization symptoms. A significant positive correlation between basal prolactin levels and prolactin response to stimulation by 12.5 microg TRH was also found (r = + 0.61, p = 0.0058). Our previous study in normal subjects found a similar positive correlation between basal prolactin levels and prolactin response to stimulation by 200 microg TRH i.v., but not by 12.5 microg TRH i.v. As far as we know, this is the first study to report an abnormality in TRH-induced prolactin release in acute schizophrenia.
Collapse
|
46
|
Post-traumatic stress disorder and vision. ACTA ACUST UNITED AC 2010; 81:240-52. [DOI: 10.1016/j.optm.2009.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/02/2009] [Accepted: 07/30/2009] [Indexed: 12/19/2022]
|
47
|
Zald DH, Woodward ND, Cowan RL, Riccardi P, Ansari MS, Baldwin RM, Cowan RL, Smith CE, Hakyemez H, Li R, Kessler RM. The interrelationship of dopamine D2-like receptor availability in striatal and extrastriatal brain regions in healthy humans: a principal component analysis of [18F]fallypride binding. Neuroimage 2010; 51:53-62. [PMID: 20149883 DOI: 10.1016/j.neuroimage.2010.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/31/2010] [Accepted: 02/03/2010] [Indexed: 11/27/2022] Open
Abstract
Individual differences in dopamine D2-like receptor availability arise across all brain regions expressing D2-like receptors. However, the interrelationships in receptor availability across brain regions are poorly understood. To address this issue, we examined the relationship between D2-like binding potential (BPND) across striatal and extrastriatal regions in a sample of healthy participants. PET imaging was performed with the high affinity D2/D3 ligand [18F]fallypride in 45 participants. BPND images were submitted to voxel-wise principal component analysis to determine the pattern of associations across brain regions. Individual differences in D2-like BPND were explained by three distinguishable components. A single component explained almost all of the variance within the striatum, indicating that individual differences in receptor availability vary in a homogenous manner across the caudate, putamen, and ventral striatum. Cortical BPND was only modestly related to striatal BPND and mostly loaded on a distinct component. After controlling for the general level of cortical D2-like BPND, an inverse relationship emerged between receptor availability in the striatum and the ventral temporal and ventromedial frontal cortices, suggesting possible cross-regulation of D2-like receptors in these regions. The analysis additionally revealed evidence of: (1) a distinct component involving the midbrain and limbic areas; (2) a dissociation between BPND in the medial and lateral temporal regions; and (3) a dissociation between BPND in the medial/midline and lateral thalamus. In summary, individual differences in D2-like receptor availability reflect several distinct patterns. This conclusion has significant implications for neuropsychiatric models that posit global or regionally specific relationships between dopaminergic tone and behavior.
Collapse
Affiliation(s)
- David H Zald
- Department of Psychology, Vanderbilt University, 325 Wilson Hall, 111 21st Ave. South, Nashville, TN 37212, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dopamine D2 receptor levels in striatum, thalamus, substantia nigra, limbic regions, and cortex in schizophrenic subjects. Biol Psychiatry 2009; 65:1024-31. [PMID: 19251247 PMCID: PMC2951678 DOI: 10.1016/j.biopsych.2008.12.029] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Studies in schizophrenic patients have reported dopaminergic abnormalities in striatum, substantia nigra, thalamus, anterior cingulate, hippocampus, and cortex that have been related to positive symptoms and cognitive impairments. METHODS [(18)F]fallypride positron emission tomography studies were performed in off-medication or never-medicated schizophrenic subjects (n = 11, 6 men, 5 women; mean age of 30.5 +/- 8.0 [SD] years; 4 drug-naive) and age-matched healthy subjects (n = 11, 5 men, 6 women, mean age of 31.6 +/- 9.2 [SD]) to examine dopamine D(2) receptor (DA D(2)r) levels in the caudate, putamen, ventral striatum, medial thalamus, posterior thalamus, substantia nigra, amygdala, temporal cortex, anterior cingulate, and hippocampus. RESULTS In schizophrenic subjects, increased DA D(2)r levels were seen in the substantia nigra bilaterally; decreased levels were seen in the left medial thalamus. Correlations of symptoms with ROI data demonstrated a significant correlation of disorganized thinking/nonparanoid delusions with the right temporal cortex ROI (r = .94, p = .0001), which remained significant after correction for multiple comparisons (p < .03). Correlations of symptoms with parametric images of DA D(2)r levels revealed no significant clusters of correlations with negative symptoms but significant clusters of positive correlations of total positive symptoms, delusions and bizarre behavior with the lateral and anterior temporal cortex, and hallucinations with the left ventral striatum. CONCLUSIONS The results of this study demonstrate abnormal DA D(2)r-mediated neurotransmission in the substantia nigra consistent with nigral dysfunction in schizophrenia and suggest that both temporal cortical and ventral striatal DA D(2)r mediate positive symptoms.
Collapse
|
49
|
Byne W, Hazlett EA, Buchsbaum MS, Kemether E. The thalamus and schizophrenia: current status of research. Acta Neuropathol 2009; 117:347-68. [PMID: 18604544 DOI: 10.1007/s00401-008-0404-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 12/21/2022]
Abstract
The thalamus provides a nodal link for multiple functional circuits that are impaired in schizophrenia (SZ). Despite inconsistencies in the literature, a meta analysis suggests that the volume of the thalamus relative to that of the brain is decreased in SZ. Morphometric neuroimaging studies employing deformation, voxel-based and region of interest methodologies suggest that the volume deficit preferentially affects the thalamic regions containing the anterior and mediodorsal nuclei, and the pulvinar. Postmortem design-based stereological studies have produced mixed results regarding volume and neuronal deficits in these nuclei. This review examines those aspects of thalamic circuitry and function that suggest salience to SZ. Evidence for anomalies of thalamic structure and function obtained from postmortem and neuroimaging studies is then examined and directions for further research proposed.
Collapse
Affiliation(s)
- William Byne
- Department of Psychiatry, James J Peters VA Medical Center, Research Bldg. Room 2F39, Bronx, NY 10468, USA.
| | | | | | | |
Collapse
|
50
|
Smith Y, Villalba R. Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord 2009; 23 Suppl 3:S534-47. [PMID: 18781680 DOI: 10.1002/mds.22027] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Degeneration of the nigrostriatal dopaminergic system is the characteristic neuropathological feature of Parkinson's disease and therapy is primarily based on a dopamine replacement strategy. Dopamine has long been recognized to be a key neuromodulator of basal ganglia function, essential for normal motor activity. The recent years have witnessed significant advances in our knowledge of dopamine function in the basal ganglia. Although the striatum remains the main functional target of dopamine, it is now appreciated that there is dopaminergic innervation of the pallidum, subthalamic nucleus, and substantia nigra. A new dopaminergic- thalamic system has also been uncovered, setting the stage for a direct dopamine action on thalamocortical activity. The differential distribution of D1 and D2 receptors on neurons in the direct and indirect striato-pallidal pathways has been re-emphasized, and cholinergic interneurons are recognized as an intermediary mediator of dopamine-mediated communication between the two pathways. The importance and specificity of dopamine in regulating morphological changes in striatal projection neurons provides further evidence for the complex and multifarious mechanisms through which dopamine mediates its functional effects in the basal ganglia. In this review, the role of basal ganglia dopamine and its functional relevance in normal and pathological conditions will be discussed.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, Georgia, USA.
| | | |
Collapse
|