1
|
Li J, Zheng M, Wang Z, Liu Y, Niu Q, Zhou H, Wang D, Song J, Bi H, Guo B, Yu G, Cai C. Anti-tumor and anti-metastasis of water-soluble sulfated β-glucan derivatives from Saccharomyces cerevisiae. Carbohydr Polym 2024; 344:122466. [PMID: 39218533 DOI: 10.1016/j.carbpol.2024.122466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
Traditional fungi β-glucan commonly possesses high molecular weight with poor water solubility, which remains significant challenge in the drug development and medical application. Water-soluble β-glucan with high molecular weight (dHSCG) of 560 kDa, low molecular weight (dLSCG) of 60 kDa, and sulfated derivative (SCGS) with a molecular weight of 146 kDa and sulfate degree at 2.04 were obtained through well-controlled degradation and sulfated modification from Saccharomyces cerevisiae in this study. The structural characteristics were confirmed as β-1,3/6-glucan by FT-IR and NMR spectroscopy. Carbohydrate microarrays and surface plasmon resonance revealed distinct and contrasting binding affinities between the natural β-glucans and sulfated derivatives. SCGS exhibited strong binding to FGF and VEGF, while natural β-glucan showed no response, suggesting its potential as a novel antitumor agent. Moreover, SCGS significantly inhibited the migration rate of the highly metastatic melanoma (B16F10) cells. The lung metastasis mouse model also demonstrated that SCGS significantly reduced and eliminated the nodules, achieving an inhibition rate of 86.7% in vivo, with a dramatic improvement in IFN-α, TNF-α, and IL-1β levels. Through analysis of protein content and distribution in lung tissues, the anti-tumor and anti-metastasis mechanism of SCGS involves the regulation of degrading enzymes to protect extracellular matrix (ECM), as well as the reduction of angiogenic factor release. These findings provide a foundation for exploring the potential of SCGS in the development of new anti-tumor and anti-metastasis drugs and open up a new field in cancer research.
Collapse
Affiliation(s)
- Jia Li
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Mengmeng Zheng
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Zhe Wang
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yang Liu
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qingfeng Niu
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Han Zhou
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Depeng Wang
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jike Song
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hongsheng Bi
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China.
| | - Bin Guo
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
2
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
3
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
4
|
Nava E, Singh A, Williams LO, Arango JC, Nagubandi KA, Pintro CJ, Claridge SA. Sub-10 μm Soft Interlayers Integrating Patterned Multivalent Biomolecular Binding Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44152-44163. [PMID: 39133196 PMCID: PMC11346468 DOI: 10.1021/acsami.4c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Designing surfaces that enable controlled presentation of multivalent ligand clusters (e.g., for rapid screening of biomolecular binding constants or design of artificial extracellular matrices) is a cross-cutting challenge in materials and interfacial chemistry. Existing approaches frequently rely on complex building blocks or scaffolds and are often specific to individual substrate chemistries. Thus, an interlayer chemistry that enabled efficient nanometer-scale patterning on a transferrable layer and subsequent integration with other classes of materials could substantially broaden the scope of surfaces available for sensors and wearable electronics. Recently, we have shown that it is possible to assemble nanometer-resolution chemical patterns on substrates including graphite, use diacetylene polymerization to lock the molecular pattern together, and then covalently transfer the pattern to amorphous materials (e.g., polydimethylsiloxane, PDMS), which would not natively enable high degrees of control over ligand presentation. Here, we develop a low-viscosity PDMS formulation that generates very thin films (<10 μm) with dense cross-linking, enabling high-efficiency surface functionalization with polydiacetylene arrays displaying carbohydrates and other functional groups (up to 10-fold greater than other soft materials we have used previously) on very thin films that can be integrated with other materials (e.g., glass and soft materials) to enable a highly controlled multivalent ligand display. We use swelling and other characterization methods to relate surface functionalization efficiency to the average distance between cross-links in the PDMS, developing design principles that can be used to create even thinner transfer layers. In the context of this work, we apply this approach using precision glycopolymers presenting structured arrays of N-acetyl glucosamine ligands for lectin binding assays. More broadly, this interlayer approach lays groundwork for designing surface layers for the presentation of ligand clusters on soft materials for applications including wearable electronics and artificial extracellular matrix.
Collapse
Affiliation(s)
- Emmanuel
K. Nava
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Laura O. Williams
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | | | - Chris J. Pintro
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana, 47907
| |
Collapse
|
5
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
6
|
Liu Y, Yang T, Rong J, Yuan J, Man L, Wei M, Fan J, Lan Y, Liu Y, Gong G, Lu Y, Song X, Wang Z, Huang L. Integrated analysis of natural glycans using a versatile pyrazolone-type heterobifunctional tag ANPMP. Carbohydr Polym 2024; 327:121617. [PMID: 38171699 DOI: 10.1016/j.carbpol.2023.121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
Glycans mediate various biological processes through carbohydrate-protein interactions, and glycan microarrays have become indispensable tools for understanding these mechanisms. However, advances in functional glycomics are hindered by the absence of convenient and universal methods for obtaining natural glycan libraries with diverse structures from glycoconjugates. To address this challenge, we have developed an integrative approach that enables one-pot release and simultaneously capture, separation, structural characterization, and functional analysis of N/O-glycans. Using this approach, glycoconjugates are incubated with a pyrazolone-type heterobifunctional tag-ANPMP to obtain glycan-2ANPMP conjugates, which are then converted to glycan-AEPMP conjugates. We prepared a tagged glycan library from porcine gastric mucin, soy protein, human milk oligosaccharides, etc. Following derivatization by N-acetylation and permethylation, glycans were subjected to detailed structural characterization by ESI-MSn analysis, which revealed >83 highly pure glycan-AEPMPs containing various natural glycan epitopes. A shotgun microarray is constructed to study the fine details of glycan-bindings by proteins and antisera.
Collapse
Affiliation(s)
- Yuxia Liu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Tong Yang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jinqiao Rong
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jinhang Yuan
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Lijuan Man
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Ming Wei
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jiangbo Fan
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Yao Lan
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Yinchuan Liu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Guiping Gong
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Yu Lu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Zhongfu Wang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China.
| | - Linjuan Huang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China.
| |
Collapse
|
7
|
Roy R. Cancer cells and viruses share common glycoepitopes: exciting opportunities toward combined treatments. Front Immunol 2024; 15:1292588. [PMID: 38495885 PMCID: PMC10940920 DOI: 10.3389/fimmu.2024.1292588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Aberrant glycosylation patterns of glycoproteins and glycolipids have long been recognized as one the major hallmarks of cancer cells that has led to numerous glycoconjugate vaccine attempts. These abnormal glycosylation profiles mostly originate from the lack of key glycosyltransferases activities, mutations, over expressions, or modifications of the requisite chaperone for functional folding. Due to their relative structural simplicity, O-linked glycans of the altered mucin family of glycoproteins have been particularly attractive in the design of tumor associated carbohydrate-based vaccines. Several such glycoconjugate vaccine formulations have generated potent monoclonal anti-carbohydrate antibodies useful as diagnostic and immunotherapies in the fight against cancer. Paradoxically, glycoproteins related to enveloped viruses also express analogous N- and O-linked glycosylation patterns. However, due to the fact that viruses are not equipped with the appropriate glycosyl enzyme machinery, they need to hijack that of the infected host cells. Although the resulting N-linked glycans are very similar to those of normal cells, some of their O-linked glycan patterns often share the common structural simplicity to those identified on tumor cells. Consequently, given that both cancer cells and viral glycoproteins share both common N- and O-linked glycoepitopes, glycoconjugate vaccines could be highly attractive to generate potent immune responses to target both conditions.
Collapse
Affiliation(s)
- René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Nagao M, Masuda T, Takai M, Miura Y. Preparation of cellular membrane-mimicking glycopolymer interfaces by a solvent-assisted method on QCM-D sensor chips and their molecular recognition. J Mater Chem B 2024; 12:1782-1787. [PMID: 38314931 DOI: 10.1039/d3tb02663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Carbohydrate-based membranes that show molecular recognition ability are interesting mimics of biointerfaces. Herein, we prepared glycopolymer membranes on QCM-D sensor chips using a solvent-assisted method and investigated their interactions with a target lectin. The membrane containing the glycopolymer with a random arrangement of the carbohydrate units adsorbed more lectin than that containing the glycopolymer with an organized block of carbohydrate units.
Collapse
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tsukuru Masuda
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Madoka Takai
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
9
|
Kim Y, Li H, Choi J, Boo J, Jo H, Hyun JY, Shin I. Glycosidase-targeting small molecules for biological and therapeutic applications. Chem Soc Rev 2023; 52:7036-7070. [PMID: 37671645 DOI: 10.1039/d3cs00032j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Glycosidases are ubiquitous enzymes that catalyze the hydrolysis of glycosidic linkages in oligosaccharides and glycoconjugates. These enzymes play a vital role in a wide variety of biological events, such as digestion of nutritional carbohydrates, lysosomal catabolism of glycoconjugates, and posttranslational modifications of glycoproteins. Abnormal glycosidase activities are associated with a variety of diseases, particularly cancer and lysosomal storage disorders. Owing to the physiological and pathological significance of glycosidases, the development of small molecules that target these enzymes is an active area in glycoscience and medicinal chemistry. Research efforts carried out thus far have led to the discovery of numerous glycosidase-targeting small molecules that have been utilized to elucidate biological processes as well as to develop effective chemotherapeutic agents. In this review, we describe the results of research studies reported since 2018, giving particular emphasis to the use of fluorescent probes for detection and imaging of glycosidases, activity-based probes for covalent labelling of these enzymes, glycosidase inhibitors, and glycosidase-activatable prodrugs.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Joohee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Jihyeon Boo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hyemi Jo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
10
|
Lin CL, Sojitra M, Carpenter EJ, Hayhoe ES, Sarkar S, Volker EA, Wang C, Bui DT, Yang L, Klassen JS, Wu P, Macauley MS, Lowary TL, Derda R. Chemoenzymatic synthesis of genetically-encoded multivalent liquid N-glycan arrays. Nat Commun 2023; 14:5237. [PMID: 37640713 PMCID: PMC10462762 DOI: 10.1038/s41467-023-40900-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Cellular glycosylation is characterized by chemical complexity and heterogeneity, which is challenging to reproduce synthetically. Here we show chemoenzymatic synthesis on phage to produce a genetically-encoded liquid glycan array (LiGA) of complex type N-glycans. Implementing the approach involved by ligating an azide-containing sialylglycosyl-asparagine to phage functionalized with 50-1000 copies of dibenzocyclooctyne. The resulting intermediate can be trimmed by glycosidases and extended by glycosyltransferases yielding a phage library with different N-glycans. Post-reaction analysis by MALDI-TOF MS allows rigorous characterization of N-glycan structure and mean density, which are both encoded in the phage DNA. Use of this LiGA with fifteen glycan-binding proteins, including CD22 or DC-SIGN on cells, reveals optimal structure/density combinations for recognition. Injection of the LiGA into mice identifies glycoconjugates with structures and avidity necessary for enrichment in specific organs. This work provides a quantitative evaluation of the interaction of complex N-glycans with GBPs in vitro and in vivo.
Collapse
Affiliation(s)
- Chih-Lan Lin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ellen S Hayhoe
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Elizabeth A Volker
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Loretta Yang
- Lectenz Bio, 111 Riverbend Rd, Athens, GA, 30602, USA
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
11
|
Kundalia PH, Pažitná L, Kianičková K, Jáné E, Lorencová L, Katrlík J. A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics. SENSORS (BASEL, SWITZERLAND) 2023; 23:5362. [PMID: 37420529 DOI: 10.3390/s23125362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 07/09/2023]
Abstract
Protein-carbohydrate interactions happen to be a crucial facet of biology, discharging a myriad of functions. Microarrays have become a premier choice to discern the selectivity, sensitivity and breadth of these interactions in a high-throughput manner. The precise recognition of target glycan ligands among the plethora of others is central for any glycan-targeting probe being tested by microarray analyses. Ever since the introduction of the microarray as an elemental tool for high-throughput glycoprofiling, numerous distinct array platforms possessing different customizations and assemblies have been developed. Accompanying these customizations are various factors ushering variances across array platforms. In this primer, we investigate the influence of various extrinsic factors, namely printing parameters, incubation procedures, analyses and array storage conditions on the protein-carbohydrate interactions and evaluate these factors for the optimal performance of microarray glycomics analysis. We hereby propose a 4D approach (Design-Dispense-Detect-Deduce) to minimize the effect of these extrinsic factors on glycomics microarray analyses and thereby streamline cross-platform analyses and comparisons. This work will aid in optimizing microarray analyses for glycomics, minimize cross-platform disparities and bolster the further development of this technology.
Collapse
Affiliation(s)
- Paras H Kundalia
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Lucia Pažitná
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Kristína Kianičková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Eduard Jáné
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Lenka Lorencová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Jaroslav Katrlík
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| |
Collapse
|
12
|
Gillmann KM, Temme JS, Marglous S, Brown CE, Gildersleeve JC. Anti-glycan monoclonal antibodies: Basic research and clinical applications. Curr Opin Chem Biol 2023; 74:102281. [PMID: 36905763 PMCID: PMC10732169 DOI: 10.1016/j.cbpa.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 03/12/2023]
Abstract
Anti-glycan monoclonal antibodies have important applications in human health and basic research. Therapeutic antibodies that recognize cancer- or pathogen-associated glycans have been investigated in numerous clinical trials, resulting in two FDA-approved biopharmaceuticals. Anti-glycan antibodies are also utilized to diagnose, prognosticate, and monitor disease progression, as well as to study the biological roles and expression of glycans. High-quality anti-glycan mAbs are still in limited supply, highlighting the need for new technologies for anti-glycan antibody discovery. This review discusses anti-glycan monoclonal antibodies with applications to basic research, diagnostics, and therapeutics, focusing on recent advances in mAbs targeting cancer- and infectious disease-associated glycans.
Collapse
Affiliation(s)
- Kara M Gillmann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Samantha Marglous
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Claire E Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
13
|
Bose P, Jaiswal MK, Singh SK, Singh RK, Tiwari VK. Growing impact of sialic acid-containing glycans in future drug discovery. Carbohydr Res 2023; 527:108804. [PMID: 37031650 DOI: 10.1016/j.carres.2023.108804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In nature, almost all cells are covered with a complex array of glycan chain namely sialic acids or nuraminic acids, a negatively charged nine carbon sugars which is considered for their great therapeutic importance since long back. Owing to its presence at the terminal end of lipid bilayer (commonly known as terminal sugars), the well-defined sialosides or sialoconjugates have served pivotal role on the cell surfaces and thus, the sialic acid-containing glycans can modulate and mediate a number of imperative cellular interactions. Understanding of the sialo-protein interaction and their roles in vertebrates in regard of normal physiology, pathological variance, and evolution has indeed a noteworthy journey in medicine. In this tutorial review, we present a concise overview about the structure, linkages in chemical diversity, biological significance followed by chemical and enzymatic modification/synthesis of sialic acid containing glycans. A more focus is attempted about the recent advances, opportunity, and more over growing impact of sialosides and sialoconjugates in future drug discovery and development.
Collapse
|
14
|
Gerling-Driessen UIM, Hoffmann M, Schmidt S, Snyder NL, Hartmann L. Glycopolymers against pathogen infection. Chem Soc Rev 2023; 52:2617-2642. [PMID: 36820794 DOI: 10.1039/d2cs00912a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens including viruses, bacteria, fungi, and parasites continue to shape our lives in profound ways every day. As we have learned to live in parallel with pathogens, we have gained a better understanding of the rules of engagement for how they bind, adhere, and invade host cells. One such mechanism involves the exploitation of host cell surface glycans for attachment/adhesion, one of the first steps of infection. This knowledge has led to the development of glycan-based diagnostics and therapeutics for the treatment and prevention of infection. One class of compounds that has become increasingly important are the glycopolymers. Glycopolymers are macromolecules composed of a synthetic scaffold presenting carbohydrates as side chain motifs. Glycopolymers are particularly attractive because their properties can be tuned by careful choice of the scaffold, carbohydrate/glycan, and overall presentation. In this review, we highlight studies over the past ten years that have examined the role of glycopolymers in pathogen adhesion and host cell infection, biofilm formation and removal, and drug delivery with the aim of examining the direct effects of these macromolecules on pathogen engagement. In addition, we also examine the role of glycopolymers as diagnostics for the detection and monitoring of pathogens.
Collapse
Affiliation(s)
- Ulla I M Gerling-Driessen
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Miriam Hoffmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany. .,Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, USA
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
15
|
Singh A, Arango JC, Shi A, d’Aliberti JB, Claridge SA. Surface-Templated Glycopolymer Nanopatterns Transferred to Hydrogels for Designed Multivalent Carbohydrate-Lectin Interactions across Length Scales. J Am Chem Soc 2023; 145:1668-1677. [PMID: 36640106 PMCID: PMC9881003 DOI: 10.1021/jacs.2c09937] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Multivalent interactions between carbohydrates and proteins enable a broad range of selective chemical processes of critical biological importance. Such interactions can extend from the macromolecular scale (1-10 nm) up to much larger scales across a cell or tissue, placing substantial demands on chemically patterned materials aiming to leverage similar interactions in vitro. Here, we show that diyne amphiphiles with carbohydrate headgroups can be assembled on highly oriented pyrolytic graphite (HOPG) to generate nanometer-resolution carbohydrate patterns, with individual linear carbohydrate assemblies up to nearly 1 μm, and microscale geometric patterns. These are then photopolymerized and covalently transferred to the surfaces of hydrogels. This strategy suspends carbohydrate patterns on a relatively rigid polydiacetylene (persistence length ∼ 16 nm), exposed at the top surface of the hydrogel above the bulk pore structure. Transferred patterns of appropriate carbohydrates (e.g., N-acetyl-d-glucosamine, GlcNAc) enable selective, multivalent interactions (KD ∼ 40 nM) with wheat germ agglutinin (WGA), a model lectin that exhibits multivalent binding with appropriately spaced GlcNAc moieties. WGA binding affinity can be further improved (KD ∼ 10 nM) using diacetylenes that shift the polymer backbone closer to the displayed carbohydrate, suggesting that this strategy can be used to modulate carbohydrate presentation at interfaces. Conversely, GlcNAc-patterned surfaces do not induce specific binding of concanavalin A, and surfaces patterned with glucuronic acid, or with simple carboxylic acid or hydroxyl groups, do not induce WGA binding. More broadly, this approach may have utility in designing synthetic glycan-mimetic interfaces with features from molecular to mesoscopic scales, including soft scaffolds for cells.
Collapse
Affiliation(s)
- Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Anni Shi
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Joseph B. d’Aliberti
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States,Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana47907, United States,. Phone: 765-494-6070
| |
Collapse
|
16
|
Abstract
Through their specific interactions with proteins, cellular glycans play key roles in a wide range of physiological and pathological processes. One of the main goals of research in the areas of glycobiology and glycomedicine is to understand glycan-protein interactions at the molecular level. Over the past two decades, glycan microarrays have become powerful tools for the rapid evaluation of interactions between glycans and proteins. In this review, we briefly describe methods used for the preparation of glycan probes and the construction of glycan microarrays. Next, we highlight applications of glycan microarrays to rapid profiling of glycan-binding patterns of plant, animal and pathogenic lectins, as well as other proteins. Finally, we discuss other important uses of glycan microarrays, including the rapid analysis of substrate specificities of carbohydrate-active enzymes, the quantitative determination of glycan-protein interactions, discovering high-affinity or selective ligands for lectins, and identifying functional glycans within cells. We anticipate that this review will encourage researchers to employ glycan microarrays in diverse glycan-related studies.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
17
|
Isono T, Komaki R, Kawakami N, Chen K, Chen HL, Lee C, Suzuki K, Ree BJ, Mamiya H, Yamamoto T, Borsali R, Tajima K, Satoh T. Tailored Solid-State Carbohydrate Nanostructures Based on Star-Shaped Discrete Block Co-Oligomers. Biomacromolecules 2022; 23:3978-3989. [PMID: 36039560 DOI: 10.1021/acs.biomac.2c00813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbohydrates are key building blocks for advanced functional materials owing to their biological functions and unique material properties. Here, we propose a star-shaped discrete block co-oligomer (BCO) platform to access carbohydrate nanostructures in bulk and thin-film states via the microphase separation of immiscible carbohydrate and hydrophobic blocks (maltooligosaccharides with 1-4 glucose units and solanesol, respectively). BCOs with various star-shaped architectures and saccharide volume fractions were synthesized using a modular approach. In the bulk, the BCOs self-assembled into common lamellar, cylindrical, and spherical carbohydrate microdomains as well as double gyroid, hexagonally perforated lamellar, and Fddd network morphologies with domain spacings of ∼7 nm. In thin films, long-range-ordered periodic carbohydrate microdomains were fabricated via spin coating. Such controlled spatial arrangements of functional carbohydrate moieties on the nanoscale have great application potential in biomedical and nanofabrication fields.
Collapse
Affiliation(s)
- Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Ryoya Komaki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Nao Kawakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kai Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chaehun Lee
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kazushige Suzuki
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Brian J Ree
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Hiroaki Mamiya
- National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Takuya Yamamoto
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | | | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
18
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
19
|
Carpenter EJ, Seth S, Yue N, Greiner R, Derda R. GlyNet: a multi-task neural network for predicting protein-glycan interactions. Chem Sci 2022; 13:6669-6686. [PMID: 35756507 PMCID: PMC9172296 DOI: 10.1039/d1sc05681f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Advances in diagnostics, therapeutics, vaccines, transfusion, and organ transplantation build on a fundamental understanding of glycan-protein interactions. To aid this, we developed GlyNet, a model that accurately predicts interactions (relative binding strengths) between mammalian glycans and 352 glycan-binding proteins, many at multiple concentrations. For each glycan input, our model produces 1257 outputs, each representing the relative interaction strength between the input glycan and a particular protein sample. GlyNet learns these continuous values using relative fluorescence units (RFUs) measured on 599 glycans in the Consortium for Functional Glycomics glycan arrays and extrapolates these to RFUs from additional, untested glycans. GlyNet's output of continuous values provides more detailed results than the standard binary classification models. After incorporating a simple threshold to transform such continuous outputs the resulting GlyNet classifier outperforms those standard classifiers. GlyNet is the first multi-output regression model for predicting protein-glycan interactions and serves as an important benchmark, facilitating development of quantitative computational glycobiology.
Collapse
Affiliation(s)
- Eric J Carpenter
- Department of Chemistry, University of Alberta Edmonton Alberta Canada
| | - Shaurya Seth
- Department of Chemistry, University of Alberta Edmonton Alberta Canada
| | - Noel Yue
- Department of Chemistry, University of Alberta Edmonton Alberta Canada
| | - Russell Greiner
- Department of Computing Science, University of Alberta Edmonton Alberta Canada
- Alberta Machine Intelligence Institute (AMII) Edmonton Alberta Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta Edmonton Alberta Canada
| |
Collapse
|
20
|
Temme JS, Gildersleeve JC. General Strategies for Glycan Microarray Data Processing and Analysis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2460:67-87. [PMID: 34972931 DOI: 10.1007/978-1-0716-2148-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Glycan microarrays provide a high-throughput technology for rapidly profiling interactions between carbohydrates and glycan-binding proteins (GBPs). Use of glycan microarrays involves several general steps, including construction of the microarray, carrying out the assay, detection of binding events, and analysis of the results. While multiple platforms have been developed to construct microarrays, most utilize fluorescence for detection of binding events. This chapter describes methods to acquire and process microarray images, including generating GAL files, imaging of the slide, aligning the grid, detecting problematic spots, and evaluating the quality of the data. The chapter focuses on processing our neoglycoprotein microarrays, but many of the lessons we have learned are applicable to other array formats.
Collapse
Affiliation(s)
- J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
21
|
DeLaitsch AT, Pridgen JR, Tytla A, Peach ML, Hu R, Farnsworth DW, McMillan AK, Flanagan N, Temme JS, Nicklaus MC, Gildersleeve JC. Selective Recognition of Carbohydrate Antigens by Germline Antibodies Isolated from AID Knockout Mice. J Am Chem Soc 2022; 144:4925-4941. [PMID: 35282679 PMCID: PMC10506689 DOI: 10.1021/jacs.1c12745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Germline antibodies, the initial set of antibodies produced by the immune system, are critical for host defense, and information about their binding properties can be useful for designing vaccines, understanding the origins of autoantibodies, and developing monoclonal antibodies. Numerous studies have found that germline antibodies are polyreactive with malleable, flexible binding pockets. While insightful, it remains unclear how broadly this model applies, as there are many families of antibodies that have not yet been studied. In addition, the methods used to obtain germline antibodies typically rely on assumptions and do not work well for many antibodies. Herein, we present a distinct approach for isolating germline antibodies that involves immunizing activation-induced cytidine deaminase (AID) knockout mice. This strategy amplifies antigen-specific B cells, but somatic hypermutation does not occur because AID is absent. Using synthetic haptens, glycoproteins, and whole cells, we obtained germline antibodies to an assortment of clinically important tumor-associated carbohydrate antigens, including Lewis Y, the Tn antigen, sialyl Lewis C, and Lewis X (CD15/SSEA-1). Through glycan microarray profiling and cell binding, we demonstrate that all but one of these germline antibodies had high selectivity for their glycan targets. Using molecular dynamics simulations, we provide insights into the structural basis of glycan recognition. The results have important implications for designing carbohydrate-based vaccines, developing anti-glycan monoclonal antibodies, and understanding antibody evolution within the immune system.
Collapse
Affiliation(s)
- Andrew T DeLaitsch
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jacey R Pridgen
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Avery Tytla
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Megan L Peach
- Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Rayleen Hu
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - David W Farnsworth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Aislinn K McMillan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Natalie Flanagan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marc C Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
22
|
Small tools for sweet challenges: advances in microfluidic technologies for glycan synthesis. Anal Bioanal Chem 2022; 414:5139-5163. [PMID: 35199190 DOI: 10.1007/s00216-022-03948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/01/2022]
Abstract
Glycans, including oligosaccharides and glycoconjugates, play an integral role in modulating the biological functions of macromolecules. Many physiological and pathological processes are mediated by interactions between glycans, which has led to the use of glycans as biosensors for pathogen and biomarker detection. Elucidating the relationship between glycan structure and biological function is critical for advancing our understanding of the impact glycans have on human health and disease and for expanding the repertoire of glycans available for bioanalysis, especially for diagnostics. Such efforts have been limited by the difficulty in obtaining sufficient quantities of homogenous glycan samples needed to resolve the exact relationships between glycan structure and their structural or modulatory functions on a given glycoconjugate. Synthetic strategies offer a viable route for overcoming these technical hurdles. In recent years, microfluidics have emerged as powerful tools for realizing high-throughput and reproducible syntheses of homogenous glycans for the potential use in functional studies. This critical review provides readers with an overview of the microfluidic technologies that have been developed for chemical and enzymatic glycan synthesis. The advantages and limitations associated with using microreactor platforms to improve the scalability, productivity, and selectivity of glycosylation reactions will be discussed, as well as suggested future work that can address certain pitfalls.
Collapse
|
23
|
Klyamer D, Shutilov R, Basova T. Recent Advances in Phthalocyanine and Porphyrin-Based Materials as Active Layers for Nitric Oxide Chemical Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:895. [PMID: 35161641 PMCID: PMC8840409 DOI: 10.3390/s22030895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Nitric oxide (NO) is a highly reactive toxic gas that forms as an intermediate compound during the oxidation of ammonia and is used for the manufacture of hydroxylamine in the chemical industry. Moreover, NO is a signaling molecule in many physiological and pathological processes in mammals, as well as a biomarker indicating the course of inflammatory processes in the respiratory tract. For this reason, the detection of NO both in the gas phase and in the aqueous media is an important task. This review analyzes the state of research over the past ten years in the field of applications of phthalocyanines, porphyrins and their hybrid materials as active layers of chemical sensors for the detection of NO, with a primary focus on chemiresistive and electrochemical ones. The first part of the review is devoted to the study of phthalocyanines and porphyrins, as well as their hybrids for the NO detection in aqueous solutions and biological media. The second part presents an analysis of works describing the latest achievements in the field of studied materials as active layers of sensors for the determination of gaseous NO. It is expected that this review will further increase the interest of researchers who are engaged in the current level of evaluation and selection of modern materials for use in the chemical sensing of nitric oxide.
Collapse
Affiliation(s)
| | | | - Tamara Basova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (D.K.); (R.S.)
| |
Collapse
|
24
|
Liu C, Yang L, Niu Q, Yu G, Li G. Carbohydrate microarrays fabricated on poly(2-methylacrylic acid)-based substrates for analysis of carbohydrate–protein interactions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05758h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrate microarrays were fabricated on poly(2-methylacrylic acid) (pMAA)-based substrates. They were used for investigating the specific interactions of polysaccharides and SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Chanjuan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Luyao Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qingfeng Niu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| |
Collapse
|
25
|
Rapp MA, Baudendistel OR, Steiner UE, Wittmann V. Rapid glycoconjugation with glycosyl amines. Chem Sci 2021; 12:14901-14906. [PMID: 34820106 PMCID: PMC8597863 DOI: 10.1039/d1sc05008g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
Conjugation of unprotected carbohydrates to surfaces or probes by chemoselective ligation reactions is indispensable for the elucidation of their numerous biological functions. In particular, the reaction with oxyamines leading to the formation of carbohydrate oximes which are in equilibrium with cyclic N-glycosides (oxyamine ligation) has an enormous impact in the field. Although highly chemoselective, the reaction is rather slow. Here, we report that the oxyamine ligation is significantly accelerated without the need for a catalyst when starting with glycosyl amines. Reaction rates are increased up to 500-fold compared to the reaction of the reducing carbohydrate. For comparison, aniline-catalyzed oxyamine ligation is only increased 3.8-fold under the same conditions. Glycosyl amines from mono- and oligosaccharides are easily accessible from reducing carbohydrates via the corresponding azides by using Shoda's reagent (2-chloro-1,3-dimethylimidazolinium chloride, DMC) and subsequent reduction. Furthermore, glycosyl amines are readily obtained by enzymatic release from N-glycoproteins making the method suited for glycomic analysis of these glycoconjugates which we demonstrate employing RNase B. Oxyamine ligation of glycosyl amines can be carried out at close to neutral conditions which makes the procedure especially valuable for acid-sensitive oligosaccharides. A new method for carbohydrate-oxyamine ligation starting from glycosyl amines 1 instead of the commonly used reducing sugars 2 results in tremendously increased ligation rates without the need for a catalyst, such as aniline.![]()
Collapse
Affiliation(s)
- Mareike A Rapp
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10 78457 Konstanz Germany
| | - Oliver R Baudendistel
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10 78457 Konstanz Germany
| | - Ulrich E Steiner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10 78457 Konstanz Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
26
|
Abstract
Carbohydrate recognition is crucial for biological processes ranging from development to immune system function to host-pathogen interactions. The proteins that bind glycans are faced with a daunting task: to coax these hydrophilic species out of water and into a binding site. Here, we examine the forces underlying glycan recognition by proteins. Our previous bioinformatic study of glycan-binding sites indicated that the most overrepresented side chains are electron-rich aromatic residues, including tyrosine and tryptophan. These findings point to the importance of CH-π interactions for glycan binding. Studies of CH-π interactions show a strong dependence on the presence of an electron-rich π system, and the data indicate binding is enhanced by complementary electronic interactions between the electron-rich aromatic ring and the partial positive charge of the carbohydrate C-H protons. This electronic dependence means that carbohydrate residues with multiple aligned highly polarized C-H bonds, such as β-galactose, form strong CH-π interactions, whereas less polarized residues such as α-mannose do not. This information can guide the design of proteins to recognize sugars and the generation of ligands for proteins, small molecules, or catalysts that bind sugars.
Collapse
Affiliation(s)
- Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Roger C. Diehl
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Zheng M, Zheng M, Epstein S, Harnagel AP, Kim H, Lupoli TJ. Chemical Biology Tools for Modulating and Visualizing Gram-Negative Bacterial Surface Polysaccharides. ACS Chem Biol 2021; 16:1841-1865. [PMID: 34569792 DOI: 10.1021/acschembio.1c00341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Samuel Epstein
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Alexa P. Harnagel
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Hanee Kim
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, 10003 New York, United States
| |
Collapse
|
28
|
Morelli L, Lay L, Santana-Mederos D, Valdes-Balbin Y, Verez Bencomo V, van Diepen A, Hokke CH, Chiodo F, Compostella F. Glycan Array Evaluation of Synthetic Epitopes between the Capsular Polysaccharides from Streptococcus pneumoniae 19F and 19A. ACS Chem Biol 2021; 16:1671-1679. [PMID: 34469105 PMCID: PMC8453487 DOI: 10.1021/acschembio.1c00347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Vaccination represents
the most effective way to prevent invasive
pneumococcal diseases. The glycoconjugate vaccines licensed so far
are obtained from capsular polysaccharides (CPSs) of the most virulent
serotypes. Protection is largely limited to the specific vaccine serotypes,
and the continuous need for broader coverage to control the outbreak
of emerging serotypes is pushing the development of new vaccine candidates.
Indeed, the development of efficacious vaccine formulation is complicated
by the high number of bacterial serotypes with different CPSs. In
this context, to simplify vaccine composition, we propose the design
of new saccharide fragments containing chemical structures shared
by different serotypes as cross-reactive and potentially cross-protective
common antigens. In particular, we focused on Streptococcus
pneumoniae (Sp) 19A and 19F. The CPS repeating units of Sp
19F and 19A are very similar and share a common structure, the disaccharide
ManNAc-β-(1→4)-Glc (A-B). Herein, we describe the synthesis
of a small library of compounds containing different combinations
of the common 19F/19A disaccharide. The six new compounds were tested
with a glycan array to evaluate their recognition by antibodies in
reference group 19 antisera and factor reference antisera (reacting
against 19F or 19A). The disaccharide A-B, phosphorylated at the upstream
end, emerged as a hit from the glycan array screening because it is
strongly recognized by the group 19 antisera and by the 19F and 19A
factor antisera, with similar intensity compared with the CPSs used
as controls. Our data give a strong indication that the phosphorylated
disaccharide A-B can be considered a common epitope among different
Sp 19 serotypes.
Collapse
Affiliation(s)
- Laura Morelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milano, Italy
| | - Luigi Lay
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | | | | | | | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Fabrizio Chiodo
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Italian National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milano, Italy
| |
Collapse
|
29
|
Berni F, Kalfopoulou E, Gimeno Cardells AM, Carboni F, van der Es D, Romero-Saavedra F, Laverde D, Miklic K, Malic S, Rovis TL, Jonjic S, Ali S, Overkleeft HS, Hokke CH, van Diepen A, Adamo R, Jiménez-Barbero J, van der Marel GA, Huebner J, Codée JDC. Epitope Recognition of a Monoclonal Antibody Raised against a Synthetic Glycerol Phosphate Based Teichoic Acid. ACS Chem Biol 2021; 16:1344-1349. [PMID: 34255482 PMCID: PMC8389533 DOI: 10.1021/acschembio.1c00422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Glycerol phosphate (GroP)-based teichoic acids (TAs) are antigenic cell-wall components found in both enterococcus and staphylococcus species. Their immunogenicity has been explored using both native and synthetic structures, but no details have yet been reported on the structural basis of their interaction with antibodies. This work represents the first case study in which a monoclonal antibody, generated against a synthetic TA, was developed and employed for molecular-level binding analysis using TA microarrays, ELISA, SPR-analyses, and STD-NMR spectroscopy. Our findings show that the number and the chirality of the GroP residues are crucial for interaction and that the sugar appendage contributes to the presentation of the backbone to the binding site of the antibody.
Collapse
Affiliation(s)
- Francesca Berni
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Ermioni Kalfopoulou
- Division
of Pediatric Infectious Diseases, Dr. von Hauner Children’s
Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
- Institute
for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Ana M. Gimeno Cardells
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), Bizkaia
Technology Park, 48160 Derio, Spain
- Ikerbasque, Basque
Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Filippo Carboni
- Research
and Development Centre, GlaxoSmithKline
(GSK), 53100 Siena, Italy
| | - Daan van der Es
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Felipe Romero-Saavedra
- Division
of Pediatric Infectious Diseases, Dr. von Hauner Children’s
Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Diana Laverde
- Division
of Pediatric Infectious Diseases, Dr. von Hauner Children’s
Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Karmela Miklic
- Centre
for Proteomics, Faculty of Medicine, University
of Rijeka, 51000 Rijeka, Croatia
| | - Suzana Malic
- Centre
for Proteomics, Faculty of Medicine, University
of Rijeka, 51000 Rijeka, Croatia
| | - Tihana L. Rovis
- Centre
for Proteomics, Faculty of Medicine, University
of Rijeka, 51000 Rijeka, Croatia
| | - Stipan Jonjic
- Centre
for Proteomics, Faculty of Medicine, University
of Rijeka, 51000 Rijeka, Croatia
| | - Sara Ali
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Cornelis H. Hokke
- Department
of Parasitology, Leiden University Medical
Center, Albinusdreef
2, 2333 ZA Leiden, The Netherlands
| | - Angela van Diepen
- Department
of Parasitology, Leiden University Medical
Center, Albinusdreef
2, 2333 ZA Leiden, The Netherlands
| | - Roberto Adamo
- Research
and Development Centre, GlaxoSmithKline
(GSK), 53100 Siena, Italy
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), Bizkaia
Technology Park, 48160 Derio, Spain
- Ikerbasque, Basque
Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | | | - Johannes Huebner
- Division
of Pediatric Infectious Diseases, Dr. von Hauner Children’s
Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| |
Collapse
|
30
|
Cheewawisuttichai T, Brichacek M. Development of a multifunctional neoglycoside auxiliary for applications in glycomics research. Org Biomol Chem 2021; 19:6613-6617. [PMID: 34264248 DOI: 10.1039/d1ob00941a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, multifunctional, tetrazine-containing neoglycoside auxiliary has been synthesized in three steps and 28% overall yield. The oxyamine was conjugated with unprotected carbohydrates under aqueous conditions (pH = 4.7), with DMF as a cosolvent, to provide neoglycosides in yields ranging between 51% and 68%. This auxiliary displayed broad advantages in the isolation and purification of complex carbohydrate mixtures, compatibility during extension by glycosyltransferases, and direct conjugation to chemical probes. Furthermore, the auxiliary can be removed in 96% yield under acidic conditions (0.25% TFA in H2O) that leave glycosidic linkages intact. Thereby, the tetrazine-containing neoglycoside auxiliary can serve to facilitate future glycomics investigations.
Collapse
|
31
|
Kim Y, Hyun JY, Shin I. Multivalent glycans for biological and biomedical applications. Chem Soc Rev 2021; 50:10567-10593. [PMID: 34346405 DOI: 10.1039/d0cs01606c] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recognition of glycans by proteins plays a crucial role in a variety of physiological processes in cells and living organisms. In addition, interactions of glycans with proteins are involved in the development of diverse diseases, such as pathogen infection, inflammation and tumor metastasis. It is well-known that multivalent glycans bind to proteins much more strongly than do their monomeric counterparts. Owing to this property, numerous multivalent glycans have been utilized to elucidate glycan-mediated biological processes and to discover glycan-based biomedical agents. In this review, we discuss recent advances (2014-2020) made in the development and biological and biomedical applications of synthetic multivalent glycans, including neoglycopeptides, neoglycoproteins, glycodendrimers, glycopolymers, glyconanoparticles and glycoliposomes. We hope this review assists researchers in the design and development of novel multivalent glycans with predictable activities.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
32
|
Sojitra M, Sarkar S, Maghera J, Rodrigues E, Carpenter EJ, Seth S, Ferrer Vinals D, Bennett NJ, Reddy R, Khalil A, Xue X, Bell MR, Zheng RB, Zhang P, Nycholat C, Bailey JJ, Ling CC, Lowary TL, Paulson JC, Macauley MS, Derda R. Genetically encoded multivalent liquid glycan array displayed on M13 bacteriophage. Nat Chem Biol 2021; 17:806-816. [PMID: 33958792 PMCID: PMC8380037 DOI: 10.1038/s41589-021-00788-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
The central dogma of biology does not allow for the study of glycans using DNA sequencing. We report a liquid glycan array (LiGA) platform comprising a library of DNA 'barcoded' M13 virions that display 30-1,500 copies of glycans per phage. A LiGA is synthesized by acylation of the phage pVIII protein with a dibenzocyclooctyne, followed by ligation of azido-modified glycans. Pulldown of the LiGA with lectins followed by deep sequencing of the barcodes in the bound phage decodes the optimal structure and density of the recognized glycans. The LiGA is target agnostic and can measure the glycan-binding profile of lectins, such as CD22, on cells in vitro and immune cells in a live mouse. From a mixture of multivalent glycan probes, LiGAs identify the glycoconjugates with optimal avidity necessary for binding to lectins on living cells in vitro and in vivo.
Collapse
Affiliation(s)
- Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jasmine Maghera
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Emily Rodrigues
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shaurya Seth
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Nicholas J Bennett
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Revathi Reddy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amira Khalil
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El Sherouk, Egypt
| | - Xiaochao Xue
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael R Bell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ping Zhang
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Corwin Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Justin J Bailey
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Da'an, Taipei, Taiwan
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
33
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
34
|
Chidzwondo F, Mutapi F. Challenge of diagnosing acute infections in poor resource settings in Africa. AAS Open Res 2021. [DOI: 10.12688/aasopenres.13234.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Frequent disease outbreaks and acute infections occur in rural and low-income urban areas of Africa, with many health systems unprepared to diagnose and control diseases that are recurrent, endemic or have extended their geographic zone. In this review, we focus on acute infections that can be characterized by sudden onset, rapid progression, severe symptoms and poor prognosis. Consequently, these infections require early diagnosis and intervention. While effective vaccines have been developed against some of these diseases, lack of compliance and accessibility, and the need for repeated or multiple vaccinations mean large populations can remain vulnerable to infection. It follows that there is a need for enhancement of national surveillance and diagnostic capacity to avert morbidity and mortality from acute infections. We discuss the limitations of traditional diagnostic methods and explore the relative merits and applicability of protein-, carbohydrate- and nucleic acid-based rapid diagnostic tests that have been trialled for some infectious diseases. We also discuss the utility and limitations of antibody-based serological diagnostics and explore how systems biology approaches can better inform diagnosis. Lastly, given the complexity and high cost associated with after-service support of emerging technologies, we propose that, for resource-limited settings in Africa, multiplex point-of-care diagnostic tools be tailor-made to detect both recurrent acute infections and endemic infections.
Collapse
|
35
|
Mousavifar L, Roy R. Design, Synthetic Strategies, and Therapeutic Applications of Heterofunctional Glycodendrimers. Molecules 2021; 26:2428. [PMID: 33921945 PMCID: PMC8122629 DOI: 10.3390/molecules26092428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Glycodendrimers have attracted considerable interest in the field of dendrimer sciences owing to their plethora of implications in biomedical applications. This is primarily due to the fact that cell surfaces expose a wide range of highly diversified glycan architectures varying by the nature of the sugars, their number, and their natural multiantennary structures. This particular situation has led to cancer cell metastasis, pathogen recognition and adhesion, and immune cell communications that are implicated in vaccine development. The diverse nature and complexity of multivalent carbohydrate-protein interactions have been the impetus toward the syntheses of glycodendrimers. Since their inception in 1993, chemical strategies toward glycodendrimers have constantly evolved into highly sophisticated methodologies. This review constitutes the first part of a series of papers dedicated to the design, synthesis, and biological applications of heterofunctional glycodendrimers. Herein, we highlight the most common synthetic approaches toward these complex molecular architectures and present modern applications in nanomolecular therapeutics and synthetic vaccines.
Collapse
Affiliation(s)
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada;
| |
Collapse
|
36
|
Anti-glycan antibodies: roles in human disease. Biochem J 2021; 478:1485-1509. [PMID: 33881487 DOI: 10.1042/bcj20200610] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Carbohydrate-binding antibodies play diverse and critical roles in human health. Endogenous carbohydrate-binding antibodies that recognize bacterial, fungal, and other microbial carbohydrates prevent systemic infections and help maintain microbiome homeostasis. Anti-glycan antibodies can have both beneficial and detrimental effects. For example, alloantibodies to ABO blood group carbohydrates can help reduce the spread of some infectious diseases, but they also impose limitations for blood transfusions. Antibodies that recognize self-glycans can contribute to autoimmune diseases, such as Guillain-Barre syndrome. In addition to endogenous antibodies that arise through natural processes, a variety of vaccines induce anti-glycan antibodies as a primary mechanism of protection. Some examples of approved carbohydrate-based vaccines that have had a major impact on human health are against pneumococcus, Haemophilus influeanza type b, and Neisseria meningitidis. Monoclonal antibodies specifically targeting pathogen associated or tumor associated carbohydrate antigens (TACAs) are used clinically for both diagnostic and therapeutic purposes. This review aims to highlight some of the well-studied and critically important applications of anti-carbohydrate antibodies.
Collapse
|
37
|
Valles DJ, Zholdassov YS, Braunschweig AB. Evolution and applications of polymer brush hypersurface photolithography. Polym Chem 2021. [DOI: 10.1039/d1py01073e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypersurface photolithography creates arbitrary polymer brush patterns with independent control over feature diameter, height, and spacing between features, while controlling composition along a polymer chain and between features.
Collapse
Affiliation(s)
- Daniel J. Valles
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Yerzhan S. Zholdassov
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Adam B. Braunschweig
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
- PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
38
|
Ravinder M, Liao KS, Cheng YY, Pawar S, Lin TL, Wang JT, Wu CY. A Synthetic Carbohydrate-Protein Conjugate Vaccine Candidate against Klebsiella pneumoniae Serotype K2. J Org Chem 2020; 85:15964-15997. [PMID: 33108196 DOI: 10.1021/acs.joc.0c01404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Klebsiella pneumoniae causes pneumonia and liver abscesses in humans worldwide and contains virulence factor capsular polysaccharides and lipopolysaccharides linked to the cell wall. Although capsular polysaccharides are good antigens for vaccine production and capsular oligosaccharides conjugate vaccines are proven effective against infections caused by encapsulated pathogens, there is still no Klebsiella pneumoniae vaccine available. One obstacle is that the capsular polysaccharide of a dominated Klebsiella pneumoniae serotype K2 is difficult to synthesize chemically due to the three 1,2-cis linkages in its structure. In this study, we successfully synthesized K2 capsular polysaccharides from tetra- to octasaccharides in highly a stereoselective manner. Subsequently, three synthesized glycans were conjugated to DT protein to provide glycoconjugate vaccine candidates (DT-Hexa, DT-Hepta, and DT-Octa) that were used in in vivo immunization experiments in mice. The results of immunized studies showed all three glycoconjugates elicited antibodies that recognized all of the synthetic glycans at 1:200-fold dilution. Particularly, the DT-Hepta conjugate elicited a higher level of antibodies that can recognize longer glycan (octasaccharide) even at 1:12800-fold dilution and exhibited good bactericidal activity. Our results concluded that heptasaccharide is the minimal epitope and a potential candidate for the vaccine against the K2 sero group of Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Mettu Ravinder
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei 11529, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei 11529, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Sujeet Pawar
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei 11529, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, No. 1 Jen Ai Road, Section 1, Zhonzheng District, Taipei 10051, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, No. 1 Jen Ai Road, Section 1, Zhonzheng District, Taipei 10051, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei 11529, Taiwan
| |
Collapse
|
39
|
Antunez EE, Mahon CS, Tong Z, Voelcker NH, Müllner M. A Regenerable Biosensing Platform for Bacterial Toxins. Biomacromolecules 2020; 22:441-453. [PMID: 33320642 DOI: 10.1021/acs.biomac.0c01318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Waterborne diarrheal diseases such as travelers' diarrhea and cholera remain a threat to public health in many countries. Rapid diagnosis of an infectious disease is critical in preventing the escalation of a disease outbreak into an epidemic. Many of the diagnostic tools for infectious diseases employed today are time-consuming and require specialized laboratory settings and trained personnel. There is hence a pressing need for fit-for-purpose point-of-care diagnostic tools with emphasis in sensitivity, specificity, portability, and low cost. We report work toward thermally reversible biosensors for detection of the carbohydrate-binding domain of the Escherichia coli heat-labile enterotoxin (LTB), a toxin produced by enterotoxigenic E. coli strains, which causes travelers' diarrhea. The biosensing platform is a hybrid of two materials, combining the optical properties of porous silicon (pSi) interferometric transducers and a thermoresponsive multivalent glycopolymer, to enable recognition of LTB. Analytical performance of our biosensors allows us to detect, using a label-free format, sub-micromolar concentrations of LTB in solution as low as 0.135 μM. Furthermore, our platform shows a temperature-mediated "catch-and-release" behavior, an exciting feature with potential for selective protein capture, multiple readouts, and regeneration of the sensor over consecutive cycles of use.
Collapse
Affiliation(s)
- E Eduardo Antunez
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Clare S Mahon
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia.,The University of Sydney Nano Institute (Sydney Nano), Sydney 2006, New South Wales, Australia
| |
Collapse
|
40
|
Maeda Y, Sawada T, Takahashi T, Yuasa H, Mihara H. Affinity Control of Monosaccharide Conjugated Peptides against Lectins with a Set of Amino Acid Substitutions on α-Helical Structures. Bioconjug Chem 2020; 31:2533-2540. [PMID: 33078924 DOI: 10.1021/acs.bioconjchem.0c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saccharides are well-known to play important roles in various biological events through specific interactions with target molecules such as carbohydrate-binding proteins (so-called lectins). Although characterization and identification of lectin molecules with saccharides are essential to understand biological events, they are still difficult due to weak interactions of saccharides, especially with monosaccharides. Herein, we demonstrate enhancement and control of monosaccharide affinity toward lectin proteins using chemical conjugation of monosaccharides with structurally regulated peptide and amino acid substitution. Thermodynamic analyses of the interactions by isothermal calorimetry measurements were performed to characterize the interactions between monosaccharide-conjugated peptide and the lectin molecules in detail. Conjugation with α-helical 16-mer short peptides drastically enhanced the affinity to lectins as compared with peptides with random coil structures, indicating that the α-helical peptide-based scaffold cooperatively interacted with lectins through additional interactions by suitable amino acids. Furthermore, suitable arrangement of the amino acids surrounding the monosaccharides on the α-helix afforded the conjugated peptides with varied affinities for two types of lectins. Our results indicate that the affinity of monosaccharide-conjugated peptides toward lectins is generally designable by appropriate conjugation of a simple monosaccharide with designed peptides, leading to the construction of a monosaccharide-modified peptide microarray toward high-throughput identification and/or screening of lectins in various biological events.
Collapse
Affiliation(s)
- Yusuke Maeda
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Toshiki Sawada
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Tsuyoshi Takahashi
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Hideya Yuasa
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Hisakazu Mihara
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
41
|
Kim CH, Kim TH. Graphene Hybrid Materials for Controlling Cellular Microenvironments. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4008. [PMID: 32927729 PMCID: PMC7559936 DOI: 10.3390/ma13184008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Cellular microenvironments are known as key factors controlling various cell functions, including adhesion, growth, migration, differentiation, and apoptosis. Many materials, including proteins, polymers, and metal hybrid composites, are reportedly effective in regulating cellular microenvironments, mostly via reshaping and manipulating cell morphologies, which ultimately affect cytoskeletal dynamics and related genetic behaviors. Recently, graphene and its derivatives have emerged as promising materials in biomedical research owing to their biocompatible properties as well as unique physicochemical characteristics. In this review, we will highlight and discuss recent studies reporting the regulation of the cellular microenvironment, with particular focus on the use of graphene derivatives or graphene hybrid materials to effectively control stem cell differentiation and cancer cell functions and behaviors. We hope that this review will accelerate research on the use of graphene derivatives to regulate various cellular microenvironments, which will ultimately be useful for both cancer therapy and stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Cheol-Hwi Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea;
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea;
- Integrative Research Centre for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
42
|
Otto DP, de Villiers MM. Layer-By-Layer Nanocoating of Antiviral Polysaccharides on Surfaces to Prevent Coronavirus Infections. Molecules 2020; 25:E3415. [PMID: 32731428 PMCID: PMC7435837 DOI: 10.3390/molecules25153415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022] Open
Abstract
In 2020, the world is being ravaged by the coronavirus, SARS-CoV-2, which causes a severe respiratory disease, Covid-19. Hundreds of thousands of people have succumbed to the disease. Efforts at curing the disease are aimed at finding a vaccine and/or developing antiviral drugs. Despite these efforts, the WHO warned that the virus might never be eradicated. Countries around the world have instated non-pharmaceutical interventions such as social distancing and wearing of masks in public to curb the spreading of the disease. Antiviral polysaccharides provide the ideal opportunity to combat the pathogen via pharmacotherapeutic applications. However, a layer-by-layer nanocoating approach is also envisioned to coat surfaces to which humans are exposed that could harbor pathogenic coronaviruses. By coating masks, clothing, and work surfaces in wet markets among others, these antiviral polysaccharides can ensure passive prevention of the spreading of the virus. It poses a so-called "eradicate-in-place" measure against the virus. Antiviral polysaccharides also provide a green chemistry pathway to virus eradication since these molecules are primarily of biological origin and can be modified by minimal synthetic approaches. They are biocompatible as well as biodegradable. This surface passivation approach could provide a powerful measure against the spreading of coronaviruses.
Collapse
Affiliation(s)
- Daniel P. Otto
- Research Focus Area for Chemical Resource Beneficiation, Laboratory for Analytical Services, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa
| | - Melgardt M. de Villiers
- Division of Pharmaceutical Sciences–Drug Delivery, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA;
| |
Collapse
|
43
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
44
|
Mende M, Bordoni V, Tsouka A, Loeffler FF, Delbianco M, Seeberger PH. Multivalent glycan arrays. Faraday Discuss 2020; 219:9-32. [PMID: 31298252 DOI: 10.1039/c9fd00080a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycan microarrays have become a powerful technology to study biological processes, such as cell-cell interaction, inflammation, and infections. Yet, several challenges, especially in multivalent display, remain. In this introductory lecture we discuss the state-of-the-art glycan microarray technology, with emphasis on novel approaches to access collections of pure glycans and their immobilization on surfaces. Future directions to mimic the natural glycan presentation on an array format, as well as in situ generation of combinatorial glycan collections, are discussed.
Collapse
Affiliation(s)
- Marco Mende
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Qing G, Yan J, He X, Li X, Liang X. Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Dobrochaeva K, Khasbiullina N, Shilova N, Antipova N, Obukhova P, Ovchinnikova T, Galanina O, Blixt O, Kunz H, Filatov A, Knirel Y, LePendu J, Khaidukov S, Bovin N. Specificity of human natural antibodies referred to as anti-Tn. Mol Immunol 2020; 120:74-82. [PMID: 32087569 DOI: 10.1016/j.molimm.2020.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 01/31/2023]
Abstract
To understand the role of human natural IgM known as antibodies against the carbohydrate epitope Tn, the antibodies were isolated using GalNAcα-Sepharose affinity chromatography, and their specificity was profiled using microarrays (a glycan array printed with oligosaccharides and bacterial polysaccharides, as well as a glycopeptide array), flow cytometry, and inhibition ELISA. The antibodies bound a restricted number of GalNAcα-terminated oligosaccharides better than the parent monosaccharide, e.g., 6-O-Su-GalNAcα and GalNAcα1-3Galβ1-3(4)GlcNAcβ. The binding with several bacterial polysaccharides that have no structural resemblance to the affinity ligand GalNAcα was quite unexpected. Given that GalNAcα is considered the key fragment of the Tn antigen, it is surprising that these antibodies bind weakly GalNAcα-OSer and do not bind a wide variety of GalNAcα-OSer/Thr-containing mucin glycopeptides. At the same time, we have observed specific binding to cells having Tn-positive glycoproteins containing similar glycopeptide motifs in a conformationally rigid macromolecule. Thus, specific recognition of the Tn antigen apparently requires that the naturally occurring "anti-Tn" IgM recognize a complex epitope comprising the GalNAcα as an essential component and a fairly long amino acid sequence where the amino acids adjacent to GalNAcα do not contact the antibody paratope; i.e., the antibodies recognize a spatial epitope or a molecular pattern rather than a classical continuous sequence. In addition, we have not found any increase in the binding of natural antibodies when GalNAcα residues were clustered. These results may help in further development of anticancer vaccines based on synthetic Tn constructs.
Collapse
Affiliation(s)
- Kira Dobrochaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Nailya Khasbiullina
- Semiotik LLC, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow 117997, Russian Federation; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Nadezhda Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; Semiotik LLC, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow 117997, Russian Federation
| | - Nadezhda Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya, Moscow 117198, Russian Federation; National Research University Higher School of Economics, Moscow 101000, Russian Federation
| | - Polina Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow 117997, Russian Federation
| | - Tatiana Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Oxana Galanina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Ola Blixt
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Horst Kunz
- Institut Für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Alexander Filatov
- Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, 115478, Russian Federation
| | - Yuriy Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Jacques LePendu
- University of Nantes, Inserm, U892 IRT UN, 8 Quai MonCousu, BP70721 Nantes, FR 44007, France
| | - Sergey Khaidukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation.
| |
Collapse
|
47
|
McMahon CM, Isabella CR, Windsor IW, Kosma P, Raines RT, Kiessling LL. Stereoelectronic Effects Impact Glycan Recognition. J Am Chem Soc 2020; 142:2386-2395. [PMID: 31930911 DOI: 10.1021/jacs.9b11699] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recognition of distinct glycans is central to biology, and lectins mediate this function. Lectin glycan preferences are usually centered on specific monosaccharides. In contrast, human intelectin-1 (hItln-1, also known as Omentin-1) is a soluble lectin that binds a range of microbial sugars, including β-d-galactofuranose (β-Galf), d-glycerol 1-phosphate, d-glycero-d-talo-oct-2-ulosonic acid (KO), and 3-deoxy-d-manno-oct-2-ulosonic acid (KDO). Though these saccharides differ dramatically in structure, they share a common feature-an exocyclic vicinal diol. How and whether such a small fragment is sufficient for recognition was unclear. We tested several glycans with this epitope and found that l-glycero-α-d-manno-heptose and d-glycero-α-d-manno-heptose possess the critical diol motif yet bind weakly. To better understand hItln-1 recognition, we determined the structure of the hItln-1·KO complex using X-ray crystallography, and our 1.59 Å resolution structure enabled unambiguous assignment of the bound KO conformation. This carbohydrate conformation was present in >97% of the KDO/KO structures in the Protein Data Bank. Bioinformatic analysis revealed that KO and KDO adopt a common conformation, while heptoses prefer different conformers. The preferred conformers of KO and KDO favor hItln-1 engagement, but those of the heptoses do not. Natural bond orbital (NBO) calculations suggest these observed conformations, including the side chain orientations, are stabilized by not only steric but also stereoelectronic effects. Thus, our data highlight a role for stereoelectronic effects in dictating the specificity of glycan recognition by proteins. Finally, our finding that hItln-1 avoids binding prevalent glycans with a terminal 1,2-diol (e.g., N-acetyl-neuraminic acid and l-glycero-α-d-manno-heptose) suggests the lectin has evolved to recognize distinct bacterial species.
Collapse
Affiliation(s)
- Caitlin M McMahon
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Christine R Isabella
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Ian W Windsor
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Paul Kosma
- Department of Chemistry , University of Natural Resources and Life Sciences , A-1190 Vienna , Austria
| | - Ronald T Raines
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Laura L Kiessling
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
48
|
Di Iorio D, Huskens J. Surface Modification with Control over Ligand Density for the Study of Multivalent Biological Systems. ChemistryOpen 2020; 9:53-66. [PMID: 31921546 PMCID: PMC6948118 DOI: 10.1002/open.201900290] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
In the study of multivalent interactions at interfaces, as occur for example at cell membranes, the density of the ligands or receptors displayed at the interface plays a pivotal role, affecting both the overall binding affinities and the valencies involved in the interactions. In order to control the ligand density at the interface, several approaches have been developed, and they concern the functionalization of a wide range of materials. Here, different methods employed in the modification of surfaces with controlled densities of ligands are being reviewed. Examples of such methods encompass the formation of self-assembled monolayers (SAMs), supported lipid bilayers (SLBs) and polymeric layers on surfaces. Particular emphasis is given to the methods employed in the study of different types of multivalent biological interactions occurring at the functionalized surfaces and their working principles.
Collapse
Affiliation(s)
- Daniele Di Iorio
- Molecular NanoFabrication group MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication group MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
49
|
Abstract
Carbohydrates or glycans and their conjugates are involved in a wide range of biological processes and play an important role in various diseases, including inflammation, viral and bacterial infections, and tumor progression and metastasis. Studying the biological significances of carbohydrates has been challenging due in part to their structural diversity and the limited access to complex carbohydrate-containing molecules. Conventional methods such as isothermal titration calorimetry and enzyme-linked lectin assay can be laborious and require significant amounts of time and materials. The emerging of glycan microarrays as high-throughput technology for studying carbohydrate interactions has overcome some of these challenges, and has greatly contributed to our understanding of the biological roles of carbohydrates and their glycoconjugates. In addition, glycan microarrays offer new applications in biomedical research, drug discovery and development. This chapter will focus on the biomedical applications of glycan microarrays and their potential role in drug discovery and development.
Collapse
|
50
|
Choi HK, Lee D, Singla A, Kwon JSI, Wu HJ. The influence of heteromultivalency on lectin-glycan binding behavior. Glycobiology 2019; 29:397-408. [PMID: 30824941 DOI: 10.1093/glycob/cwz010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
We recently discovered that the nature of lectin multivalency and glycolipid diffusion on cell membranes could lead to the heteromultivalent binding (i.e., a single lectin simultaneously binding to different types of glycolipid ligands). This heteromultivalent binding may even govern the lectin-glycan recognition process. To investigate this, we developed a kinetic Monte Carlo simulation, which only considers the fundamental physics/chemistry principles, to model the process of lectin binding to glycans on cell surfaces. We found that the high-affinity glycan ligands could facilitate lectin binding to other low-affinity glycan ligands, even though these low-affinity ligands are barely detectable in microarrays with immobilized glycan ligands. Such heteromultivalent binding processes significantly change lectin binding behaviors. We hypothesize that living organisms probably utilize this mechanism to regulate the downstream lectin functions. Our finding not only offers a mechanism to describe the concept that lectins are pattern recognition molecules, but also suggests that the two overlooked parameters, surface diffusion of glycan ligand and lectin binding kinetics, can play important roles in glycobiology processes. In this paper, we identified the critical parameters that influence the heteromultivalent binding process. We also discussed how our discovery can impact the current lectin-glycan analysis.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Dongheon Lee
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Akshi Singla
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Joseph Sang-Il Kwon
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| |
Collapse
|