1
|
Khili F, Omrani AD. Preparation of nanocellulose/reduced graphene oxide matrix loaded with cuprous oxide nanoparticles for efficient catalytic reduction of 4-nitrophenol. Biopolymers 2024; 115:e23608. [PMID: 38923469 DOI: 10.1002/bip.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The paper reports on the preparation of cellulose nanocrystals/reduced graphene oxide matrix loaded with cuprous oxide nanoparticles (CNC/rGO-Cu2O) through a simple solvothermal method and its application for 4-nitrophenol reduction to 4-aminophenol using sodium borohydride. The CNC/rGO-Cu2O nanocomposite was formed chemically by first mixing CNC and graphene oxide (GO) followed by complexation of the negatively charged functional groups of CNC/GO with Cu2+ ions and subsequent heating at 100°C. This resulted in the simultaneous reduction of GO to rGO and the formation of Cu2O nanoparticles. The as-elaborated nanocomposite was firstly characterized using different techniques such as atomic force microscopy, scanning electron microscopy, transmission electron microscopy, UV-Vis spectrophotometry, Raman spectroscopy and x-ray photoelectron spectroscopy. Then, it was successfully applied for efficient catalytic reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride: the reduction was completed in about 6 min. After eight times use, the catalyst still maintained good catalytic performance. Compared to CNC/rGO, rGO/Cu2O and free Cu2O nanoparticles, the CNC/rGO-Cu2O nanocomposite exhibits higher catalytic activity even at lower copper loading.
Collapse
Affiliation(s)
- Faouzia Khili
- Laboratory of Resources, Materials & Ecosystem (RME), Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
- CNRS, Centrale Lille, ISEN, Univ. Valenciennes, University of Lille, Lille, France
| | - Amel Dakhlaoui Omrani
- Laboratory of Composite Materials and Clay Minerals, National Center of Researches in Material Sciences (CNRSM), Technopole Borj Cedria, Tunisia
| |
Collapse
|
2
|
Abdeta AB, Wedajo F, Wu Q, Kuo DH, Li P, Zhang H, Huang T, Lin J, Chen X. B and N Codoped Cellulose-Supported Ag-/Bi-Doped Mo(S,O) 3 Trimetallic Sulfo-Oxide Catalyst for Photocatalytic H 2 Evolution Reaction and 4-Nitrophenol Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12987-13000. [PMID: 38869190 DOI: 10.1021/acs.langmuir.4c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Cellulose plays a significant role in designing efficient and stable cellulose-based metallic catalysts, owing to its surface functionalities. Its hydroxyl groups are used as anchor sites for the nucleation and growth of metallic nanoparticles and, as a result, improve the stability and catalytic activity. Meanwhile, cellulose is also amenable to surface modifications to be more suitable for incorporating and stabilizing metallic nanoparticles. Herein, the Ag-/Bi-doped Mo(S,O)3 trimetallic sulfo-oxide anchored on B and N codoped cellulose (B-N-C) synthesized by a facile approach showed excellent stability and catalytic activity for PHER at 573.28 μmol/h H2 with 25 mg of catalyst under visible light, and 92.3% of the 4-nitrophenol (4-NP) reduction was achieved within 135 min by in situ-generated protons. In addition to B and N codoping, our use of the calcination method for B-N-C preparation further increases the structural disorders and defects, which act as anchoring sites for Ag-/Bi-doped Mo(S,O)3 nanoparticles. The Ag-/Bi-doped Mo(S,O)3@B-N-C surface active site also stimulates H2O molecule adsorption and activation kinetics and reduces the photogenerated charge carrier's recombination rate. The Mo4+ → Mo6+ electron hopping transport and the O 2p and Bi 6s orbital overlap facilitate the fast electron transfer by enhancing the electron's lifetime and photoinduced charge carrier mobility, respectively. In addition to acting as a support, B-N-C provides a highly conductive network that enhances charge transport, and the relocated electron in B-N-C activates the H2O molecule, which enables Ag-/Bi-doped Mo(S,O)3@B-N-C to have appreciable PHER performance.
Collapse
Affiliation(s)
- Adugna Boke Abdeta
- Department of Chemistry, College of Natural Science, Jimma University, 378 Jimma, Ethiopia
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feyisa Wedajo
- Department of Chemistry, College of Natural Science, Jimma University, 378 Jimma, Ethiopia
| | - Qinhan Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong-Hau Kuo
- Departments of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ping Li
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanya Zhang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinguo Lin
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyun Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Zhang Y, Kobayashi K, Kusumi R, Kimura S, Kim UJ, Wada M. Catalytic activity of Cu 2O nanoparticles supported on cellulose beads prepared by emulsion-gelation using cellulose/LiBr solution and vegetable oil. Int J Biol Macromol 2024; 265:130571. [PMID: 38467226 DOI: 10.1016/j.ijbiomac.2024.130571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Nanocatalysts tend to aggregate and are difficult to recycle, limiting their practical applications. In this study, an environmentally friendly method was developed to produce cellulose beads for use as supporting materials for Cu-based nanocatalysts. Cellulose beads were synthesized from a water-in-oil emulsion using cellulose dissolved in an LiBr solution as the water phase and vegetable oil as the oil phase. Upon cooling, the gelation of the cellulose solution produced spherical cellulose beads, which were then oxidized to introduce surface carboxyl groups. These beads (diameter: 95-105 μm; specific surface area: 165-225 m2 g-1) have a three-dimensional network of nanofibers (width: 20-30 nm). Furthermore, the Cu2O nanoparticles were loaded onto oxidized cellulose beads before testing their catalytic activity in the reduction of 4-nitrophenol using NaBH4. The apparent reaction rate constant increased with increasing loading of Cu2O nanoparticles and the conversion efficiency was >90 %. The turnover frequency was 376.2 h-1 for the oxidized cellulose beads with the lowest Cu2O loading, indicating a higher catalytic activity compared to those of other Cu-based nanoparticle-loaded materials. In addition to their high catalytic activity, the cellulose beads are reusable and exhibit excellent stability.
Collapse
Affiliation(s)
- Yangyang Zhang
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kayoko Kobayashi
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Ryosuke Kusumi
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan; Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan.
| | - Satoshi Kimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| | - Ung-Jin Kim
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| | - Masahisa Wada
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
4
|
Mousa H, Abd El-Hay SS, El Sheikh R, Gouda AA, El-Ghaffar SA, El-Aal MA. Development of environmentally friendly catalyst Ag-ZnO@cellulose acetate derived from discarded cigarette butts for reduction of organic dyes and its antibacterial applications. Int J Biol Macromol 2024; 258:128890. [PMID: 38134996 DOI: 10.1016/j.ijbiomac.2023.128890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
The release of harmful organic dyes from different industries besides its degradation products is a major contributor to environmental contamination. The catalytic reduction of these organic pollutants using nanocomposites based on polymeric material presents potential advantages for the environment. In this study, novel nanocomposite based on cellulose acetate (CA)-derived from discharged cigarette butts and zinc oxide nanoparticles (ZnO NPs) was prepared utilizing a very simple and low-cost solution blending method and used as support for silver nanoparticles (Ag NPs). A simple reduction method was used to anchor different percentages of Ag NPs on the ZnO@CA nanocomposite surface via utilizing sodium borohydride as a reducing agent. The Ag-ZnO@CA nanocomposite was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The TEM analysis showed spherical Ag NPs, with an average diameter of ∼17.6 nm, were uniformly anchored on the ZnO@CA nanocomposite surface. The prepared nanocomposites were evaluated as catalysts for the reduction of organic dyes in water. It was found that 10 % Ag-ZnO@CA nanocomposite showed a remarkable reduction of Rhodamine B (RhB), Rhodamine 6G (Rh6G), Methylene Blue (MB), and Sunset Yellow (SY) dyes in short time. In the presence of this nanocomposite, the rate constant, kapp values for RhB, Rh6G, MB, and SY were 0.3498 min-1, 1.51 min-1, 0.2292 min-1, and 0.733 min-1, respectively. This nanocomposite was recovered and reused in five successive cycles, with a negligible loss of its activity. Furthermore, the nanocomposites demonstrated moderate antibacterial activity toward Staphylococcus aureus and Escherichia coli. Thus, this study directed attention on recycling of waste material to a valuable nanocomposite and its applications in environmental protection.
Collapse
Affiliation(s)
- Heba Mousa
- Department of Special Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Soad S Abd El-Hay
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Ragaa El Sheikh
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ayman A Gouda
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | | | - Mohamed Abd El-Aal
- Catalysis and Surface Chemistry Lab, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
5
|
Berede HT, Andoshe DM, Gultom NS, Kuo DH, Chen X, Abdullah H, Wondimu TH, Wu YN, Zelekew OA. Photocatalytic activity of the biogenic mediated green synthesized CuO nanoparticles confined into MgAl LDH matrix. Sci Rep 2024; 14:2314. [PMID: 38281984 PMCID: PMC10822861 DOI: 10.1038/s41598-024-52547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
The global concern over water pollution caused by organic pollutants such as methylene blue (MB) and other dyes has reached a critical level. Herein, the Allium cepa L. peel extract was utilized to fabricate copper oxide (CuO) nanoparticles. The CuO was combined with MgAl-layered double hydroxides (MgAl-LDHs) via a co-precipitation method with varying weight ratios of the CuO/LDHs. The composite catalysts were characterized and tested for the degradation of MB dye. The CuO/MgAl-LDH (1:2) showed the highest photocatalytic performance and achieved 99.20% MB degradation. However, only 90.03, 85.30, 71.87, and 35.53% MB dye was degraded with CuO/MgAl-LDHs (1:1), CuO/MgAl-LDHs (2:1), CuO, and MgAl-LDHs catalysts, respectively. Furthermore, a pseudo-first-order rate constant of the CuO/MgAl-LDHs (1:2) was 0.03141 min-1 while the rate constants for CuO and MgAl-LDHs were 0.0156 and 0.0052 min-1, respectively. The results demonstrated that the composite catalysts exhibited an improved catalytic performance than the pristine CuO and MgAl-LDHs. The higher photocatalytic performances of composite catalysts may be due to the uniform distribution of CuO nanoparticles into the LDH matrix, the higher surface area, and the lower electron and hole recombination rates. Therefore, the CuO/MgAl-LDHs composite catalyst can be one of the candidates used in environmental remediation.
Collapse
Affiliation(s)
- Hildana Tesfaye Berede
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Dinsefa Mensur Andoshe
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Noto Susanto Gultom
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Xiaoyun Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hairus Abdullah
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Tadele Hunde Wondimu
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Osman Ahmed Zelekew
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia.
| |
Collapse
|
6
|
Dohendou M, Dekamin MG, Namaki D. Pd@l-asparagine-EDTA-chitosan: a highly effective and reusable bio-based and biodegradable catalyst for the Heck cross-coupling reaction under mild conditions. NANOSCALE ADVANCES 2023; 5:2621-2638. [PMID: 37143802 PMCID: PMC10153479 DOI: 10.1039/d3na00058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/17/2023] [Indexed: 05/06/2023]
Abstract
In this research, a novel supramolecular Pd(ii) catalyst supported on chitosan grafted by l-asparagine and an EDTA linker, named Pd@ASP-EDTA-CS, was prepared for the first time. The structure of the obtained multifunctional Pd@ASP-EDTA-CS nanocomposite was appropriately characterized by various spectroscopic, microscopic, and analytical techniques, including FTIR, EDX, XRD, FESEM, TGA, DRS, and BET. The Pd@ASP-EDTA-CS nanomaterial was successfully employed, as a heterogeneous catalytic system, in the Heck cross-coupling reaction (HCR) to afford various valuable biologically-active cinnamic acid derivatives in good to excellent yields. Different aryl halides containing I, Br and even Cl were used in HCR with various acrylates for the synthesis of corresponding cinnamic acid ester derivatives. The catalyst shows a variety of advantages including high catalytic activity, excellent thermal stability, easy recovery by simple filtration, more than five cycles of reusability with no significant decrease in its efficacy, biodegradability, and excellent results in the HCR using low-loaded Pd on the support. In addition, no leaching of Pd into the reaction medium and the final products was observed.
Collapse
Affiliation(s)
- Mohammad Dohendou
- Department of Chemistry, Pharmaceutical and Heterocyclic Compounds Research Laboratory, Iran University of Science and Technology Iran
| | - Mohammad G Dekamin
- Department of Chemistry, Pharmaceutical and Heterocyclic Compounds Research Laboratory, Iran University of Science and Technology Iran
| | - Danial Namaki
- Department of Chemistry, Pharmaceutical and Heterocyclic Compounds Research Laboratory, Iran University of Science and Technology Iran
| |
Collapse
|
7
|
Haider HI, Zafar I, Ain QU, Noreen A, Nazir A, Javed R, Sehgal SA, Khan AA, Rahman MM, Rashid S, Garai S, Sharma R. Synthesis and characterization of copper oxide nanoparticles: its influence on corn (Z. mays) and wheat (Triticum aestivum) plants by inoculation of Bacillus subtilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37370-37385. [PMID: 36571685 DOI: 10.1007/s11356-022-24877-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology is now playing an emerging role in green synthesis in agriculture as nanoparticles (NPs) are used for various applications in plant growth and development. Copper is a plant micronutrient; the amount of copper oxide nanoparticles (CuONPs) in the soil determines whether it has positive or adverse effects. CuONPs can be used to grow corn and wheat plants by combining Bacillus subtilis. In this research, CuONPs were synthesized by precipitation method using different precursors such as sodium hydroxide (0.1 M) and copper nitrate (Cu(NO3)2) having 0.1 M concentration with a post-annealing method. The NPs were characterized through X-ray diffraction (XRD), scanning electron microscope (SEM), and ultraviolet (UV) visible spectroscopy. Bacillus subtilis is used as a potential growth promoter for microbial inoculation due to its prototrophic nature. The JAR experiment was conducted, and the growth parameter of corn (Z. mays) and wheat (Triticum aestivum) was recorded after 5 days. The lab assay evaluated the germination in JARs with and without microbial inoculation under CuONP stress at different concentrations (25 and 50 mg). The present study aimed to synthesize CuONPs and systematically investigate the particle size effects of copper (II) oxide (CuONPs) (< 50 nm) on Triticum aestivum and Z. mays. In our results, the XRD pattern of CuONPs at 500 °C calcination temperature with monoclinic phase is observed, with XRD peak intensity slightly increasing. The XRD patterns showed that the prepared CuONPs were extremely natural, crystal-like, and nano-shaped. We used Scherrer's formula to calculate the average size of the particle, indicated as 23 nm. The X-ray diffraction spectrum of synthesized materials and SEM analysis show that the particles of CuONPs were spherical in nature. The results revealed that the synthesized CuONPs combined with Bacillus subtilis used in a field study provided an excellent result, where growth parameters of Z. Mays and Triticum aestivum such as root length, shoot length, and plant biomass was improved as compared to the control group.
Collapse
Affiliation(s)
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Qurat Ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Asifa Noreen
- Department of Chemistry, Riphah International University, Faisalabad Campus, , Faisalabad, Pakistan
| | - Aamna Nazir
- Department of Chemistry, University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Rida Javed
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, University of Okara, Okara, Pakistan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Somenath Garai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
8
|
Aoudi B, Boluk Y, Gamal El-Din M. Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156903. [PMID: 35753453 DOI: 10.1016/j.scitotenv.2022.156903] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, nanocellulose and its derivatives have drawn attention as promising bio-based materials for water treatment applications due to their high surface area, high strength, and renewable, biocompatible nature. The abundance of hydroxyl functional groups on the surfaces of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) enables a broad range of surface modifications which results in propitious nanocomposites with tunable characteristics. In this context, this review describes the continuously developing applications of nanocellulose-based materials in the areas of adsorption, catalysis, filtration, and flocculation, with a special emphasis on the removal of contaminants such as heavy metals, dyes, and pharmaceutical compounds from diverse water systems. Recent progresses in the diverse forms of application of nanocellulose adsorbents (suspension, hydrogel, aerogel, and membrane) are also highlighted. Finally, challenges and future perspectives on emerging nanocellulose-based materials and their possible industrial applications are presented and discussed.
Collapse
Affiliation(s)
- Bouthaina Aoudi
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Yaman Boluk
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
9
|
Shaw M, Samanta D, Bera S, Mahto MK, Salam Shaik MA, Konar S, Mondal I, Dhara D, Pathak A. Role of Surface Oxygen Vacancies and Oxygen Species on CuO Nanostructured Surfaces in Model Catalytic Oxidation and Reductions: Insight into the Structure-Activity Relationship Toward the Performance. Inorg Chem 2022; 61:14568-14581. [PMID: 35914234 DOI: 10.1021/acs.inorgchem.2c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Defect engineering, such as modification of oxygen vacancy density, has been considered as an effective approach to tailor the catalytic performance on transition-metal oxide nanostructured surfaces. The role of oxygen vacancies (OV) on the surface of the as-prepared, zinnia-shaped morphology of CuO nanostructures and their marigold forms on calcination at 800 °C has been investigated through the study of model catalytic reactions of reduction of 4-nitrophenol and aerobic oxidation of benzyl alcohol. The OV on the surfaces of different morphologies of CuO have been identified and quantified through Rietveld analysis and HRTEM, EPR, and XPS studies. The structure-activity relationships between surface oxygen vacancies (OV) and catalytic performance have been systematically investigated. The enhanced catalytic performance of the cubic CuO nanostructures compared to their as-prepared forms has been attributed to the formation of surface oxygen species on the reactive and dominant (110) surface that has low oxygen vacancy formation energy. The mechanistic role of surface oxygen species in the studied reactions has been quantitatively correlated with the catalytic activity of the different morphological forms of the CuO nanostructures.
Collapse
Affiliation(s)
- Manisha Shaw
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Dipanjan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sharmita Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Madhusudan Kr Mahto
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Md Abdus Salam Shaik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Suraj Konar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.,Department of Chemistry, R.D. & D.J. College, Munger, Bihar 811201, India
| | - Imran Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
10
|
Anžlovar A, Žagar E. Cellulose Structures as a Support or Template for Inorganic Nanostructures and Their Assemblies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1837. [PMID: 35683693 PMCID: PMC9182054 DOI: 10.3390/nano12111837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Cellulose is the most abundant natural polymer and deserves the special attention of the scientific community because it represents a sustainable source of carbon and plays an important role as a sustainable energent for replacing crude oil, coal, and natural gas in the future. Intense research and studies over the past few decades on cellulose structures have mainly focused on cellulose as a biomass for exploitation as an alternative energent or as a reinforcing material in polymer matrices. However, studies on cellulose structures have revealed more diverse potential applications by exploiting the functionalities of cellulose such as biomedical materials, biomimetic optical materials, bio-inspired mechanically adaptive materials, selective nanostructured membranes, and as a growth template for inorganic nanostructures. This article comprehensively reviews the potential of cellulose structures as a support, biotemplate, and growing vector in the formation of various complex hybrid hierarchical inorganic nanostructures with a wide scope of applications. We focus on the preparation of inorganic nanostructures by exploiting the unique properties and performances of cellulose structures. The advantages, physicochemical properties, and chemical modifications of the cellulose structures are comparatively discussed from the aspect of materials development and processing. Finally, the perspective and potential applications of cellulose-based bioinspired hierarchical functional nanomaterials in the future are outlined.
Collapse
Affiliation(s)
- Alojz Anžlovar
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia;
| | | |
Collapse
|
11
|
In situ synthesis of bimetallic γ-Fe2O3/Cu nanoparticles over pectin hydrogel obtained from biomass resource (orange peel) as a reusable green catalyst for oxidation and C-S cross-coupling reactions. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Amith Yadav HJ, Eraiah B, Nagabhushana H, Kalasad MN, Lingaraju K, Rajanaika H, Daruka Prasad B. Green synthesis of CuO nanoparticles using Mimosa pudica leaf extract for antibacterial activity. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1999976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- H. J. Amith Yadav
- Department of Studies in Physics, Davanagere University, Davangere, India
| | - B. Eraiah
- Department of Physics, Bangalore University, Bangalore, India
| | - H. Nagabhushana
- Prof C.N.R. Rao Centre for Nano Research (CNR), Tumkur University, Tumkur, India
| | - M. N. Kalasad
- Department of Studies in Physics, Davanagere University, Davangere, India
| | - K. Lingaraju
- Department of Studies and Research in Environmental Science, Tumkur University, Tumkur, Karnataka, India
| | - H. Rajanaika
- Department of Studies and Research in Environmental Science, Tumkur University, Tumkur, Karnataka, India
| | - B. Daruka Prasad
- Department of Physics, B M S Institute of Technology, VTU, Bangalore, India
| |
Collapse
|
13
|
Ahmad W, Ahmad Q, Yaseen M, Ahmad I, Hussain F, Mohamed Jan B, Ikram R, Stylianakis MM, Kenanakis G. Development of Waste Polystyrene-Based Copper Oxide/Reduced Graphene Oxide Composites and Their Mechanical, Electrical and Thermal Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2372. [PMID: 34578688 PMCID: PMC8464779 DOI: 10.3390/nano11092372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
The current study reports the effect of different wt. ratios of copper oxide nanoparticle (CuO-NPs) and reduced graphene oxide (rGO) as fillers on mechanical, electrical, and thermal properties of waste polystyrene (WPS) matrix. Firstly, thin sheets of WPS-rGO-CuO composites were prepared through solution casting method with different ratios, i.e., 2, 8, 10, 15 and 20 wt.% of CuO-NPs and rGO in WPS matrix. The synthesized composite sheets were characterized by Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). The electrical conductance and mechanical strength of the prepared composites were determined by using LCR meter and universal testing machine (UTM). These properties were dependent on the concentrations of CuO-NPs and rGO. Results display that the addition of both fillers, i.e., rGO and CuO-NPs, collectively led to remarkable increase in the mechanical properties of the composite. The incorporation of rGO-CuO: 15% WPS sample, i.e., WPS-rGO-CuO: 15%, has shown high mechanical strength with tensile strength of 25.282 MPa and Young modulus of 1951.0 MPa, respectively. Similarly, the electrical conductance of the same composite is also enhanced from 6.7 × 10-14 to 4 × 10-7 S/m in contrast to WPS at 2.0 × 106 Hz. The fabricated composites exhibited high thermal stability through TGA analysis in terms of 3.52% and 6.055% wt. loss at 250 °C as compared to WPS.
Collapse
Affiliation(s)
- Waqas Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (Q.A.); (M.Y.); (I.A.)
| | - Qaizar Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (Q.A.); (M.Y.); (I.A.)
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (Q.A.); (M.Y.); (I.A.)
| | - Imtiaz Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (Q.A.); (M.Y.); (I.A.)
| | - Fida Hussain
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Institute of Applied Science & Technology, Haripur 22621, Pakistan;
| | - Badrul Mohamed Jan
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Rabia Ikram
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Minas M. Stylianakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-700 13 Heraklion, Greece; (M.M.S.); (G.K.)
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-700 13 Heraklion, Greece; (M.M.S.); (G.K.)
| |
Collapse
|
14
|
Cai X, Tolvanen P, Virtanen P, Eränen K, Rahkila J, Leveneur S, Salmi T. Kinetic study of the carbonation of epoxidized fatty acid methyl ester catalyzed over heterogeneous catalyst HBimCl‐NbCl
5
/HCMC. INT J CHEM KINET 2021. [DOI: 10.1002/kin.21526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaoshuang Cai
- Normandie Université LSPC‐Laboratoire de Sécurité des Procédés Chimiques EA4704 INSA/Université Rouen Saint‐Etienne‐du‐Rouvray Rouen France
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Pasi Tolvanen
- Laboratory of Industrial Chemistry and Reaction Engineering Johan Gadolin Process Chemistry Centre Åbo Akademi University, Åbo Turku Finland
| | - Pasi Virtanen
- Laboratory of Industrial Chemistry and Reaction Engineering Johan Gadolin Process Chemistry Centre Åbo Akademi University, Åbo Turku Finland
| | - Kari Eränen
- Laboratory of Industrial Chemistry and Reaction Engineering Johan Gadolin Process Chemistry Centre Åbo Akademi University, Åbo Turku Finland
| | - Jani Rahkila
- Instrument Centre Åbo Akademi University, Åbo Turku Finland
| | - Sébastien Leveneur
- Normandie Université LSPC‐Laboratoire de Sécurité des Procédés Chimiques EA4704 INSA/Université Rouen Saint‐Etienne‐du‐Rouvray Rouen France
- Laboratory of Industrial Chemistry and Reaction Engineering Johan Gadolin Process Chemistry Centre Åbo Akademi University, Åbo Turku Finland
| | - Tapio Salmi
- Laboratory of Industrial Chemistry and Reaction Engineering Johan Gadolin Process Chemistry Centre Åbo Akademi University, Åbo Turku Finland
| |
Collapse
|
15
|
Copper triazine polycarboxylic acid crystalline framework materials: Synthesis, structure and multifunctional properties with the luminescent and catalytic reduction of 4-NP. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Catalytic reduction of 4-nitrophenol on the surface of copper/copper oxide nanoparticles: a kinetics study. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
|
18
|
Hou X, Li Z, Yang H, Tan S, Zhang T, Li J, Lei H, Ran X, Du G, Yang L. Synthesis of Hydroxylatopillar[6]arene-Controlled Gold Nanoparticles-Cellulose Nanocrystals and Their Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6399-6410. [PMID: 32423216 DOI: 10.1021/acs.langmuir.0c00584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, two macrocyclic hosts, named hydroxylatopillar[6]arene and dihydroxylatopillar[6]arene (HP6, 2HP6), are proposed. We found that the reduction of Au3+ to Au0 can success by using HP6 or 2HP6 as a reductant and stabilizing agent. At the end of HP6/2HP6, hydroxyl (-OH) groups were used as a reductant to reduce Au3+ to Au0. At the same time, -OH on HP6/2HP6 was oxidized to -COOH, and then the formed -COOH can be used as the stabilizer to prevent the infinite growth of AuNPs. The cellulose nanocrystals (CNCs) prepared by a clean and nonpolluting method were used as carriers to load AuNPs on them. The CNCs were applied for the adsorption of methylene blue (MB), and then the MB was catalytically degraded by HP6/2HP6-AuNPs-CNC. Besides, the HP6/2HP6-AuNPs-CNC showed remarkable catalytic performance for reducing nitro to the amino group in 4-nitrophenol. The advantages of clean and green synthesis make the HP6/2HP6-AuNPs-CNC a hybrid material and its application sustainable.
Collapse
|
19
|
|
20
|
Jin T, Kurdyla D, Hrapovic S, Leung ACW, Régnier S, Liu Y, Moores A, Lam E. Carboxylated Chitosan Nanocrystals: A Synthetic Route and Application as Superior Support for Gold-Catalyzed Reactions. Biomacromolecules 2020; 21:2236-2245. [DOI: 10.1021/acs.biomac.0c00201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tony Jin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Davis Kurdyla
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Sabahudin Hrapovic
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Alfred C. W. Leung
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Sophie Régnier
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Yali Liu
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Audrey Moores
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Edmond Lam
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
21
|
Dwivedi LM, Shukla N, Baranwal K, Gupta S, Siddique S, Singh V. Gum Acacia Modified Ni Doped CuO Nanoparticles: An Excellent Antibacterial Material. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01779-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Khan SA, Khan N, Irum U, Farooq A, Asiri AM, Bakhsh EM, Khan SB. Cellulose acetate-Ce/Zr@Cu 0 catalyst for the degradation of organic pollutant. Int J Biol Macromol 2020; 153:806-816. [PMID: 32145236 DOI: 10.1016/j.ijbiomac.2020.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/29/2023]
Abstract
In the present work, Cu nanoparticles were stabilized on ceria/zirconia (Ce/Zr@Cu0), cellulose acetate (CA@Cu0), and a thin film of cellulose acetate embedded ceria/zirconia (CA-Ce/Zr) designated as CA-Ce/Zr@Cu0. In the presence of a reducing agent, all the catalysts revealed excellent catalytic efficiency in aqueous media for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and degradation of cationic dyes methylene blue (MB) and rhodamine B (RB). Different order of equations were applied to determine the adjacent R2 value and rate constant. Adjacent R2 values for MB are 9.470, 9.422 and 9.050 and its kapp values per minutes are 1.7 × 10-1, 8.3 × 10-2, and 6. 7 × 10-1 with Ce/Zr@Cu0, CA@Cu0, and CA-Ce/Zr@Cu0 derived from the pseudo 1st order kinetics, while in the absence of catalyst the R2 and kapp for MB degradation in the presence of NaBH4 is 0.8643 and 3.4 × 10-3 respectively. Furthermore, regression models, ANOVA and correlation coefficients suggested that all the data are highly significant. The synthesized catalysts were applied for the simultaneous reduction/degradation of mixture of 4-NP-MB, 4-NP-RB and 4-NP-MB-RB mixture to check the practical applicability. Catalytic recyclability of CA-Ce/Zr@Cu0 catalyst dropped till 5th cycle which is due to the leaching of Cu0 NPs.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Noureen Khan
- Department of Chemistry, Sardar Bahadur Khan University, Quetta, Balochistan, Pakistan
| | - Uzma Irum
- Department of Chemistry, Sardar Bahadur Khan University, Quetta, Balochistan, Pakistan
| | - Aliya Farooq
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Pakistan
| | - Abdullah M Asiri
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
23
|
Mayakrishnan G, Elayappan V, Kim IS, Chung IM. Sea-Island-Like Morphology of CuNi Bimetallic Nanoparticles Uniformly Anchored on Single Layer Graphene Oxide as a Highly Efficient and Noble-Metal-Free Catalyst for Cyanation of Aryl Halides. Sci Rep 2020; 10:677. [PMID: 31959850 PMCID: PMC6971289 DOI: 10.1038/s41598-020-57483-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/28/2019] [Indexed: 11/09/2022] Open
Abstract
Aryl nitriles are versatile compounds that can be synthesized via transition-metal-mediated cyanation of aryl halides. Most of the supported-heterogeneous catalysts are noble-metals based and there are very limited numbers of efficient non-noble metal based catalysts demonstrated for the cyanation of aryl halides. Herein, bimetallic CuNi-oxide nanoparticles supported graphene oxide nanocatalyst (CuNi/GO-I and CuNi/GO-II) has been demonstrated as highly efficient system for the cyanation of aryl halides with K4[Fe(CN)6] as a cyanating agent. Metal-support interaction, defect ratio and synergistic effect with the bimetallic nanocatalyst were investigated. To our delight, the CuNi/GO-I system activity transformed a wide range of substrates such as aryl iodides, aryl bromides, aryl chlorides and heteroaryl compounds (Yields: 95-71%, TON/TOF: 50-38/2 h-1). Moreover, enhanced catalytic performance of CuNi/GO-I and CuNi/GO-II in reduction of 4-nitropehnol with NaBH4 was also confirmed (kapp = 18.2 × 10-3 s-1 with 0.1 mg of CuNi/GO-I). Possible mechanism has been proposed for the CuNi/GO-I catalyzed cyanation and reduction reactions. Reusability, heterogeneity and stability of the CuNi/GO-I are also found to be good.
Collapse
Affiliation(s)
- Gopiraman Mayakrishnan
- Department of Crop Science, College of Sanghur Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Vijayakumar Elayappan
- Department of Materials Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano Prefecture, 386-8567, Japan
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghur Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
24
|
Kapoor S, Sheoran A, Riyaz M, Agarwal J, Goel N, Singhal S. Enhanced catalytic performance of Cu/Cu2O nanoparticles via introduction of graphene as support for reduction of nitrophenols and ring opening of epoxides with amines established by experimental and theoretical investigations. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Akhtar K, Ali F, Sohni S, Kamal T, Asiri AM, Bakhsh EM, Khan SB. Lignocellulosic biomass supported metal nanoparticles for the catalytic reduction of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:823-836. [PMID: 31811610 DOI: 10.1007/s11356-019-06908-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/28/2019] [Indexed: 05/13/2023]
Abstract
Lignocellulosic biomass waste is a cheap, eco-friendly, and sustainable raw material for a wide array of applications. In the present study, an easy, fast, and economically feasible route has been proposed for the preparation of different zero-valent metal nanoparticles (ZV-MNPs) based on Cu, Co, Ag, and Ni NPs using empty fruit bunch (EFB) biomass residue as support material. The catalytic efficiency of ZV-MNPs/EFB catalyst was investigated against five model pollutants, such as methyl orange (MO), congo red (CR), methylene blue (MB), acridine orange (AO), and 4-nitrophenol (4-NP) using NaBH4 as a source of hydrogen and electron. Comparative study revealed that among as-prepared ZV-MNPs/EFB catalysts, Cu-NPs immobilized onto EFB (Cu/EFB) exhibited maximum catalytic efficiency towards pollutant abasement. Degradation reactions were highly efficient, and were completed within a short time (4 min) in case of MO, CR, and MB, whilst AO and 4-NP were reduced in less than 15 min. Kinetic investigation revealed that the degradation rate of model pollutants accorded with pseudo-first order model. Furthermore, supported catalysts were easily recovered after the completion of experiment by simply pulling the catalyst from reaction system. Recyclability tests performed on Cu/EFB revealed that more than 97% of the reduction was achieved in case of MO dye for four successive cycles of reuse. The as-prepared heterostructure showed multifunctional properties, such as enhanced uptake of contaminants, high catalytic efficiency, and easy recovery, hence, offers great prospects in wastewater purification.
Collapse
Affiliation(s)
- Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, Abbottabad University of Science and Technology, Havelian, Abbottabad, KPK, Pakistan
| | - Saima Sohni
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Tahseen Kamal
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
26
|
Sahu K, Singhal R, Mohapatra S. Morphology Controlled CuO Nanostructures for Efficient Catalytic Reduction of 4-Nitrophenol. Catal Letters 2019. [DOI: 10.1007/s10562-019-03009-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Thanaraj C, Priya Dharsini G, Ananthan N, Velladurai R. Facile route for the synthesis and cytotoxic effect of 2-amino-4H-benzo[b]pyran derivatives in aqueous media using copper oxide nanoparticles decorated on cellulose nanocrystals as heterogeneous catalyst. INORG NANO-MET CHEM 2019. [DOI: 10.1080/24701556.2019.1661459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Clarina Thanaraj
- Department of Chemistry, Sarah Tucker College, Manonmaniam Sundaranar University, Tirunelveli, India
| | - G.R. Priya Dharsini
- Department of Chemistry, Sarah Tucker College, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Neela Ananthan
- Department of Chemistry, Sarah Tucker College, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Rama Velladurai
- Department of Chemistry, Sarah Tucker College, Manonmaniam Sundaranar University, Tirunelveli, India
| |
Collapse
|
28
|
Ayodhya D, Veerabhadram G. Synthesis and characterization of g-C3N4 nanosheets decorated Ag2S composites for investigation of catalytic reduction of 4-nitrophenol, antioxidant and antimicrobial activities. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Oun AA, Shankar S, Rhim JW. Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Crit Rev Food Sci Nutr 2019; 60:435-460. [PMID: 31131614 DOI: 10.1080/10408398.2018.1536966] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nanocellulose materials are derived from cellulose, the most abundant biopolymer on the earth. Nanocellulose have been extensively used in the field of food packaging materials, wastewater treatment, drug delivery, tissue engineering, hydrogels, aerogels, sensors, pharmaceuticals, and electronic sectors due to their unique chemical structure and excellent mechanical properties. On the other hand, metal and metal oxide nanoparticles (NP) such as Ag NP, ZnO NP, CuO NP, and Fe3O4 NP have a variety of functional properties such as UV-barrier, antimicrobial, and magnetic properties. Recently, nanocelluloses materials have been used as a green template for producing metal or metal oxide nanoparticles. As a result, multifunctional nanocellulose/metal or metal oxide hybrid nanomaterials with high antibacterial properties, ultraviolet barrier properties, and mechanical properties were prepared. This review emphasized recent information on the synthesis, properties, and potential applications of multifunctional nanocellulose-based hybrid nanomaterials with metal or metal oxides such as Ag NP, ZnO NP, CuO NP, and Fe3O4 NP. The nanocellulose-based hybrid nanomaterials have huge potential applications in the area of food packaging, biopharmaceuticals, biomedical, and cosmetics.
Collapse
Affiliation(s)
- Ahmed A Oun
- Food Engineering and Packaging Department, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Shiv Shankar
- Center for Humanities and Sciences, BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Whan Rhim
- Center for Humanities and Sciences, BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Sahu K, Satpati B, Mohapatra S. Facile Synthesis and Phase-Dependent Catalytic Activity of Cabbage-Type Copper Oxide Nanostructures for Highly Efficient Reduction of 4-Nitrophenol. Catal Letters 2019. [DOI: 10.1007/s10562-019-02817-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Appl Microbiol Biotechnol 2019; 103:1989-2006. [PMID: 30637497 DOI: 10.1007/s00253-018-09602-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
Abstract
The bacterial infections have always a serious problem to public health. Scientists are developing new antibacterial materials to overcome this problem. Polysaccharides are promising biopolymers due to their diverse biological functions, low toxicity, and high biodegradability. Chitin and chitosan have antibacterial properties due to their cationic nature, while cellulose/bacterial cellulose does not possess any antibacterial activity. Moreover, the insolubility of chitin in common solvents, the poor solubility of chitosan in water, and the low mechanical properties of chitosan have restricted their biomedical applications. In order to solve these problems, chemical modifications such as quaternization, carboxymethylation, cationization, or surface modification of these polymers with different antimicrobial agents, including metal and metal oxide nanoparticles, are carried out to obtain new materials with improved physiochemical and biological properties. This mini review describes the recent progress in such derivatives and composites with potential antibacterial applications.
Collapse
|
32
|
Xie Y, Liu B, Li Y, Chen Z, Cao Y, Jia D. Cu/Cu2O/rGO nanocomposites: solid-state self-reduction synthesis and catalytic activity for p-nitrophenol reduction. NEW J CHEM 2019. [DOI: 10.1039/c9nj02768h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu/Cu2O/rGO nanocomposites were produced via a solid-state self-reduction route with high catalytic performance for 4-NP reduction.
Collapse
Affiliation(s)
- Yuehong Xie
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education, Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
| | - Baolin Liu
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education, Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
| | - Yizhao Li
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education, Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
| | - Zixi Chen
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education, Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education, Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education, Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
| |
Collapse
|
33
|
Goswami M, Das AM. Synthesis of cellulose impregnated copper nanoparticles as an efficient heterogeneous catalyst for C N coupling reactions under mild conditions. Carbohydr Polym 2018; 195:189-198. [DOI: 10.1016/j.carbpol.2018.04.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/20/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
|
34
|
Li DD, Zhang JW, Cai C. Pd Nanoparticles Supported on Cellulose as a Catalyst for Vanillin Conversion in Aqueous Media. J Org Chem 2018; 83:7534-7538. [DOI: 10.1021/acs.joc.8b00246] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dan-dan Li
- Chemical Engineering College, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Jia-wei Zhang
- Chemical Engineering College, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Chun Cai
- Chemical Engineering College, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| |
Collapse
|
35
|
Ali F, Khan SB, Kamal T, Alamry KA, Asiri AM. Chitosan-titanium oxide fibers supported zero-valent nanoparticles: Highly efficient and easily retrievable catalyst for the removal of organic pollutants. Sci Rep 2018; 8:6260. [PMID: 29674721 PMCID: PMC5908960 DOI: 10.1038/s41598-018-24311-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
Different chitosan-titanium oxide (CS-TiO2-x, with x = TiO2 loadings of 1, 5, 10,15 and 20 wt%) nanocomposite fibers were prepared and kept separately in each salt solution of CuSO4, CoNO3, AgNO3 and NiSO4 to adsorb Cu2+, Co2+, Ag+, and Ni+ ions, respectively. The metal ions loaded onto CS-TiO2 fibers were reduced to their respective zero-valent metal nanoparticles (ZV-MNPs) like Cu0, Co0, Ag0 and Ni0 by treating with NaBH4. The CS-TiO2 fibers templated with various ZV-MNPs were characterized and investigated for their catalytic efficiency. Among all prepared ZV-MNPs, Cu0 nanoparticles templated on CS-TiO2-15 fibers exhibited high catalytic efficiency for the reduction of dyes (methyl orange (MO), congo red (CR), methylene blue (MB) and acridine orange (AO)) and nitrophenols (4-nitrohphenol (4-NP), 2-nitrophenol (2-NP), 3-nitrophenol (3-NP) and 2,6-dinitrophenol (2,6-DNP)). Besides the good catalytic activities of Cu/CS-TiO2-15 fibers, it could be easily recovered by simply pulling the fiber from the reaction medium.
Collapse
Affiliation(s)
- Fayaz Ali
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.,Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.,Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Khalid A Alamry
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.,Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
36
|
Zhu L, Guo X, Liu Y, Chen Z, Zhang W, Yin K, Li L, Zhang Y, Wang Z, Sun L, Zhao Y. High-performance Cu nanoparticles/three-dimensional graphene/Ni foam hybrid for catalytic and sensing applications. NANOTECHNOLOGY 2018; 29:145703. [PMID: 29372893 DOI: 10.1088/1361-6528/aaaac6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel hybrid of Cu nanoparticles/three-dimensional graphene/Ni foam (Cu NPs/3DGr/NiF) was prepared by chemical vapor deposition, followed by a galvanic displacement reaction in Ni- and Cu-ion-containing salt solution through a one-step reaction. The as-prepared Cu NPs/3DGr/NiF hybrid is uniform, stable, recyclable and exhibits an extraordinarily high catalytic efficiency for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with a reduction rate constant K = 0.056 15 s-1, required time ∼30 s and excellent sensing properties for the non-enzymatic amperometric hydrogen peroxide (H2O2) with a linear range ∼50 μM-9.65 mM, response time ∼3 s, detection limit ∼1 μM. The results indicate that the as-prepared Cu NPs/3DGr/NiF hybrid can be used to replace expensive noble metals in catalysis and sensing applications.
Collapse
Affiliation(s)
- Long Zhu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang D, Astruc D. The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chem Soc Rev 2018; 46:816-854. [PMID: 28101543 DOI: 10.1039/c6cs00629a] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Whereas noble metal compounds have long been central in catalysis, Earth-abundant metal-based catalysts have in the same time remained undeveloped. Yet the efficacy of Earth-abundant metal catalysts was already shown at the very beginning of the 20th century with the Fe-catalyzed Haber-Bosch process of ammonia synthesis and later in the Fischer-Tropsch reaction. Nanoscience has revolutionized the world of catalysis since it was observed that very small Au nanoparticles (NPs) and other noble metal NPs are extraordinarily efficient. Therefore the development of Earth-abundant metals NPs is more recent, but it has appeared necessary due to their "greenness". This review highlights catalysis by NPs of Earth-abundant transition metals that include Mn, Fe, Co, Ni, Cu, early transition metals (Ti, V, Cr, Zr, Nb and W) and their nanocomposites with emphasis on basic principles and literature reported during the last 5 years. A very large spectrum of catalytic reactions has been successfully disclosed, and catalysis has been examined for each metal starting with zero-valent metal NPs followed by oxides and other nanocomposites. The last section highlights the catalytic activities of bi- and trimetallic NPs. Indeed this later family is very promising and simultaneously benefits from increased stability, efficiency and selectivity, compared to monometallic NPs, due to synergistic substrate activation.
Collapse
Affiliation(s)
- Dong Wang
- ISM, UMR CNRS 5255, Univ. Bordeaux, 33405 Talence Cedex, France.
| | - Didier Astruc
- ISM, UMR CNRS 5255, Univ. Bordeaux, 33405 Talence Cedex, France.
| |
Collapse
|
38
|
Zhang Z, Sèbe G, Wang X, Tam KC. Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts. Carbohydr Polym 2018; 182:61-68. [DOI: 10.1016/j.carbpol.2017.10.094] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/17/2017] [Accepted: 10/29/2017] [Indexed: 11/15/2022]
|
39
|
Bakhsh EM, Khan SA, Marwani HM, Danish EY, Asiri AM, Khan SB. Performance of cellulose acetate-ferric oxide nanocomposite supported metal catalysts toward the reduction of environmental pollutants. Int J Biol Macromol 2018; 107:668-677. [DOI: 10.1016/j.ijbiomac.2017.09.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/27/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
|
40
|
Ali F, Khan SB, Kamal T, Anwar Y, Alamry KA, Asiri AM. Bactericidal and catalytic performance of green nanocomposite based-on chitosan/carbon black fiber supported monometallic and bimetallic nanoparticles. CHEMOSPHERE 2017; 188:588-598. [PMID: 28917211 DOI: 10.1016/j.chemosphere.2017.08.118] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Nanoparticles were synthesized on the surface of green nanocomposite based on carbon black dispersed in chitosan (CB-CS) fibres. The nanoparticles were monometallic Co, Ag and Cu and bimetallic Co + Cu and Co + Ag. The CB-CS fibres were prepared and introduced into separate metal salt solutions containing Co2+, Ag+ and Cu2+ and mixed Co2++Cu2+ and Co2++Ag+ ions. The metal ions immobilized on the surface of CB-CS were reduced using sodium borohydride (NaBH4) as reducing agent to synthesize the corresponding zero-valent metal nanoparticles-loaded CB-CS fibres. All the nanoparticles-loaded CB-CS samples were characterized using field emission-scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. When tested as catalysts, the nanoparticles-loaded CB-CS showed excellent catalytic ability for the reduction of toxic and environmentally unwanted pollutants of para-nitrophenol, congo red and methyl orange dyes. Afterwards, the antimicrobial activities of virgin and metal-loaded CB-CS fibres were tested and the metal-loaded CB-CS fibres were found to be effective against Escherichia coli. In addition, the catalyst can be recovered easily by simply removing the fibres from the reaction mixture and can be recycled several times while maintaining high catalytic efficiency.
Collapse
Affiliation(s)
- Fayaz Ali
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P. O. Box. 80203, Jeddah, 21589, Saudi Arabia
| | - Khalid A Alamry
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
41
|
Khan FU, Asimullah, Khan SB, Kamal T, Asiri AM, Khan IU, Akhtar K. Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitro phenol. Int J Biol Macromol 2017; 102:868-877. [DOI: 10.1016/j.ijbiomac.2017.04.062] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
|
42
|
Prathap KJ, Wu Q, Olsson RT, Dinér P. Catalytic Reductions and Tandem Reactions of Nitro Compounds Using in Situ Prepared Nickel Boride Catalyst in Nanocellulose Solution. Org Lett 2017; 19:4746-4749. [PMID: 28858520 DOI: 10.1021/acs.orglett.7b02090] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A mild and efficient method for the in situ reduction of a wide range of nitroarenes and aliphatic nitrocompounds to amines in excellent yields using nickel chloride/sodium borohydride in a solution of TEMPO-oxidized nanocellulose in water (0.01 wt %) is described. The nanocellulose has a stabilizing effect on the catalyst, which increases the turnover number and enables low loading of nickel catalyst (0.1-0.25 mol % NiCl2). In addition, two tandem protocols were developed in which the in situ formed amines were either Boc-protected to carbamates or further reacted with an epoxide to yield β-amino alcohols in excellent yields.
Collapse
Affiliation(s)
- Kaniraj Jeya Prathap
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology , Teknikringen 30, 10044 Stockholm, Sweden
| | - Qiong Wu
- Department of Fiber and Polymer Technology, Polymeric Materials, KTH Royal Institute of Technology , Teknikringen 58, 10044 Stockholm, Sweden
| | - Richard T Olsson
- Department of Fiber and Polymer Technology, Polymeric Materials, KTH Royal Institute of Technology , Teknikringen 58, 10044 Stockholm, Sweden
| | - Peter Dinér
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology , Teknikringen 30, 10044 Stockholm, Sweden
| |
Collapse
|
43
|
Kamal T, Ahmad I, Khan SB, Asiri AM. Synthesis and catalytic properties of silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers. Carbohydr Polym 2017; 157:294-302. [DOI: 10.1016/j.carbpol.2016.09.078] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/09/2016] [Accepted: 09/25/2016] [Indexed: 12/23/2022]
|
44
|
Abstract
This review presents the recent remarkable developments of efficient Earth-abundant transition-metal nanocatalysts.
Collapse
Affiliation(s)
- Dong Wang
- ISM
- UMR CNRS 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| | - Didier Astruc
- ISM
- UMR CNRS 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| |
Collapse
|
45
|
Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles. Eur J Med Chem 2016; 126:944-953. [PMID: 28011424 DOI: 10.1016/j.ejmech.2016.11.030] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 12/11/2022]
Abstract
A series of chalcone linked-1,2,3-triazoles was synthesized via cellulose supported copper nanoparticle catalyzed click reaction in water. The structures of all the compounds were analyzed by IR, NMR and Mass spectral techniques. All the synthesized products were subjected to 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay against a panel of four human cancer cell lines (MCF-7, MIA-Pa-Ca-2, A549, HepG2) to check their anticancer potential. Compound 6h was found to be most active against all the tested cancer cell lines with IC50 values in the range of 4-11 μM and showed better or comparable activity to the reference drug against all the tested cell lines. Cell cycle analysis revealed that compound 6h induces apoptosis and G2/S arrest in MIA-Pa-Ca-2 cells. Compound 6h triggers mitochondrial potential loss in pancreatic cancer MIA-Pa-Ca-2 cells. Further, Compound 6h also triggers caspase-3 and PARP-1 cleavage, which increases in dose dependent manner.
Collapse
|
46
|
Yalcinkaya EE, Puglia D, Fortunati E, Bertoglio F, Bruni G, Visai L, Kenny JM. Cellulose nanocrystals as templates for cetyltrimethylammonium bromide mediated synthesis of Ag nanoparticles and their novel use in PLA films. Carbohydr Polym 2016; 157:1557-1567. [PMID: 27987868 DOI: 10.1016/j.carbpol.2016.11.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/02/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
Abstract
In the present paper, we reported how cellulose nanocrystals (CNC) from microcrystalline cellulose have the capacity to assist in the synthesis of metallic nanoparticles chains. A cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as modifier for CNC surface. Silver nanoparticles were synthesized on CNC, and nanoparticle density and size were optimized by varying concentrations of nitrate and reducing agents, and the reduction time. The experimental conditions were optimized for the synthesis and the resulting Ag grafted CNC (Ag-g-CNC) were characterized by means of TGA, SEM, FTIR and XRD, and then introduced in PLA matrix. PLA nanocomposite containing silver grafted cellulose nanocrystals (PLA/0.5Ag-g-1CNC) was characterized by optical and thermal analyses and the obtained data were compared with results from PLA nanocomposites containing 1% wt. of CNC (PLA/1CNC), 0.5% wt. of silver nanoparticles (PLA/0.5Ag) and hybrid system containing CNC and silver in the same amount (PLA/1CNC/0.5Ag). The results demonstrated that grafting of silver nanoparticles on CNC positively affected the thermal degradation process and cold crystallization processes of PLA matrix. Finally, the antibacterial activity of the different systems was studied at various incubation times and temperatures, showing the best performance for PLA/1CNC/0.5Ag based nanocomposite.
Collapse
Affiliation(s)
- E E Yalcinkaya
- Ege University Faculty of Science Chemistry Department, 35100 Bornova, Izmir, Turkey; University of Perugia, Civil and Environmental Engineering Department, UdR INSTM, Strada di Pentima 4, Italy
| | - D Puglia
- University of Perugia, Civil and Environmental Engineering Department, UdR INSTM, Strada di Pentima 4, Italy.
| | - E Fortunati
- University of Perugia, Civil and Environmental Engineering Department, UdR INSTM, Strada di Pentima 4, Italy
| | - F Bertoglio
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT),UdR INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy; Scuola Universitaria Superiore IUSS, 27100 Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A., IRCCS, Via S. Boezio, 28, 27100 Pavia, Italy
| | - G Bruni
- Department of Chemistry, Physical-Chemistry Section, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy
| | - L Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT),UdR INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A., IRCCS, Via S. Boezio, 28, 27100 Pavia, Italy
| | - J M Kenny
- University of Perugia, Civil and Environmental Engineering Department, UdR INSTM, Strada di Pentima 4, Italy
| |
Collapse
|
47
|
Kamal T, Khan SB, Asiri AM. Nickel nanoparticles-chitosan composite coated cellulose filter paper: An efficient and easily recoverable dip-catalyst for pollutants degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:625-633. [PMID: 27481647 DOI: 10.1016/j.envpol.2016.07.046] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/05/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
In this report, we used cellulose filter paper (FP) as high surface area catalyst supporting green substrate for the synthesis of nickel (Ni) nanoparticles in thin chitosan (CS) coating layer and their easy separation was demonstrated for next use. In this work, FP was coated with a 1 wt% CS solution onto cellulose FP to prepare CS-FP as an economical and environment friendly host material. CS-FP was put into 0.2 M NiCl2 aqueous solution for the adsorption of Ni2+ ions by CS coating layer. The Ni2+ adsorbed CS-FP was treated with 0.1 M NaBH4 aqueous solution to convert the ions into nanoparticles. Thus, we achieved Ni nanoparticles-CS composite through water based in-situ preparation process. Successful Ni nanoparticles formations was assessed by FESEM and EDX analyses. FTIR used to track the interactions between nanoparticles and host material. Furthermore, we demonstrated that the nanocomposite displays an excellent catalytic activity and reusability in three reduction reactions of toxic compounds i.e. conversion of 4-nitrophenol to 4-aminophenol, 2-nitrophenol to 2-aminophenol, and methyl orange dye reduction by NaBH4. Such a fabrication process of Ni/CS-FP may be applicable for the immobilization of other metal nanoparticles onto FP for various applications in catalysis, sensing, and environmental sciences.
Collapse
Affiliation(s)
- Tahseen Kamal
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O Box 80203, Jeddah 21589, Saudi Arabia.
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
48
|
Doubtsof L, Bonnet P, Jouffret L, Guérin K. The Influence of Sacrificial Carbonaceous Supports on the Synthesis of Anhydrous NiF 2Nanoparticles. ChemistrySelect 2016. [DOI: 10.1002/slct.201601306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Léa Doubtsof
- Université Clermont Auvergne, Université Blaise Pascal; Institut de Chimie de Clermont-Ferrand, BP 10448, F-; 63000 CLERMONT-FERRAND France
- CNRS; UMR 6296, ICCF, F-; 63171 Aubière France
| | - Pierre Bonnet
- Université Clermont Auvergne, Université Blaise Pascal; Institut de Chimie de Clermont-Ferrand, BP 10448, F-; 63000 CLERMONT-FERRAND France
- CNRS; UMR 6296, ICCF, F-; 63171 Aubière France
| | - Laurent Jouffret
- Université Clermont Auvergne, Université Blaise Pascal; Institut de Chimie de Clermont-Ferrand, BP 10448, F-; 63000 CLERMONT-FERRAND France
- CNRS; UMR 6296, ICCF, F-; 63171 Aubière France
| | - Katia Guérin
- Université Clermont Auvergne, Université Blaise Pascal; Institut de Chimie de Clermont-Ferrand, BP 10448, F-; 63000 CLERMONT-FERRAND France
- CNRS; UMR 6296, ICCF, F-; 63171 Aubière France
| |
Collapse
|
49
|
Buesch C, Smith SW, Eschbach P, Conley JF, Simonsen J. The Microstructure of Cellulose Nanocrystal Aerogels as Revealed by Transmission Electron Microscope Tomography. Biomacromolecules 2016; 17:2956-62. [DOI: 10.1021/acs.biomac.6b00764] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christian Buesch
- Oregon State University, Wood Science and Engineering, 119 Richardson Hall, Corvallis, Oregon 97331, United States
| | - Sean W. Smith
- Oregon State University, School of Electrical Engineering
and Computer Science, 1148 Kelley Engineering Center, Corvallis, Oregon 97331, United States
| | - Peter Eschbach
- Oregon State University, Electron Microscopy Facility, 145 Linus Pauling Science Center, Corvallis, Oregon 97331, United States
| | - John F. Conley
- Oregon State University, School of Electrical Engineering
and Computer Science, 1148 Kelley Engineering Center, Corvallis, Oregon 97331, United States
| | - John Simonsen
- Oregon State University, Wood Science and Engineering, 119 Richardson Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
50
|
Konar S, Kalita H, Puvvada N, Tantubay S, Mahto MK, Biswas S, Pathak A. Shape-dependent catalytic activity of CuO nanostructures. J Catal 2016. [DOI: 10.1016/j.jcat.2015.12.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|