1
|
Rakhmetullina A, Zielenkiewicz P, Odolczyk N. Peptide-Based Inhibitors of Protein-Protein Interactions (PPIs): A Case Study on the Interaction Between SARS-CoV-2 Spike Protein and Human Angiotensin-Converting Enzyme 2 (hACE2). Biomedicines 2024; 12:2361. [PMID: 39457672 PMCID: PMC11504900 DOI: 10.3390/biomedicines12102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many critical biological processes and are crucial in mediating essential cellular functions across diverse organisms, including bacteria, parasites, and viruses. A notable example is the interaction between the SARS-CoV-2 spike (S) protein and the human angiotensin-converting enzyme 2 (hACE2), which initiates a series of events leading to viral replication. Interrupting this interaction offers a promising strategy for blocking or significantly reducing infection, highlighting its potential as a target for anti-SARS-CoV-2 therapies. This review focuses on the hACE2 and SARS-CoV-2 spike protein interaction, exemplifying the latest advancements in peptide-based strategies for developing PPI inhibitors. We discuss various approaches for creating peptide-based inhibitors that target this critical interaction, aiming to provide potential treatments for COVID-19.
Collapse
Affiliation(s)
- Aizhan Rakhmetullina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.R.); (P.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.R.); (P.Z.)
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Norbert Odolczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.R.); (P.Z.)
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
2
|
Bobone S, Storti C, Fulci C, Damiani A, Innamorati C, Roversi D, Calligari P, Pannone L, Martinelli S, Tartaglia M, Bocchinfuso G, Formaggio F, Peggion C, Biondi B, Stella L. Fluorescent Labeling Can Significantly Perturb Measured Binding Affinity and Selectivity of Peptide-Protein Interactions. J Phys Chem Lett 2024; 15:10252-10257. [PMID: 39360979 DOI: 10.1021/acs.jpclett.4c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Peptide-based drugs are powerful inhibitors of therapeutically relevant protein-protein interactions. Their affinity and selectivity for target proteins are commonly assessed using fluorescence-based assays such as anisotropy/polarization or quantitative microarrays. This study reveals that labeling can perturb peptide/protein binding by more than 1 order of magnitude. We have recently developed inhibitors targeted to the N-terminal Src homology 2 (SH2) domain of oncogenic phosphatase SHP2. Despite their high activity and selectivity, these molecules demonstrated an undesired interaction with the SH2 domain of another protein, known as APS, in a fluorescence microarray assay. Fluorescence anisotropy measurement in solution showed that the dissociation constant was significantly influenced by labeling (∼10 times), and the effect depended on the specific fluorophore and SH2 domain. Notably, displacement assays performed with unlabeled peptides were successfully used to eliminate these artifacts, demonstrating that the inhibitors' affinity for their target is over 1,000 times higher than for APS.
Collapse
Affiliation(s)
- Sara Bobone
- Tor Vergata University of Rome, 00133 Rome, Italy
| | - Claudia Storti
- Tor Vergata University of Rome, 00133 Rome, Italy
- University of Padova, 35131 Padova, Italy
| | - Chiara Fulci
- Tor Vergata University of Rome, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | | |
Collapse
|
3
|
Pal S, Gordijenko I, Schmeing S, Biswas S, Akbulut Y, Gasper R, 't Hart P. Stapled Peptides as Inhibitors of mRNA Deadenylation. Angew Chem Int Ed Engl 2024:e202413911. [PMID: 39319385 DOI: 10.1002/anie.202413911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Therapeutic intervention targeting mRNA typically aims at reducing the levels of disease-causing sequences. Achieving the opposite effect of blocking the destruction of beneficial mRNA remains underexplored. The degradation of mRNA starts with the removal of poly(A) tails, reducing their stability and translational activity, which is mainly regulated by the CCR4-NOT complex. The subunit NOT9 binds various RNA binding proteins, that recruit mRNA in a sequence-specific manner to the CCR4-NOT complex to promote their deadenylation. These RNA binding proteins interact with NOT9 through a helical NOT9 binding motif, which we used as a starting point for development of the hydrocarbon stapled peptide NIP-2. The peptide (KD=60.4 nM) was able to inhibit RNA-binding (IC50=333 nM) as well as the deadenylation activity of the CCR4-NOT complex in vitro while being cell-permeable (cell-permeability EC50=2.44 μM). A co-crystal structure of NIP-2 bound to NOT9 allowed further optimization of the peptide through point mutation leading to NIP-2-H27A-N3 (KD=122 nM) with high cell permeability (cell-permeability EC50=0.34 μM). The optimized peptide was able to inhibit deadenylation of target mRNAs when used in HeLa cells at a concentration of 100 μM, demonstrating the feasibility of increasing mRNA stability.
Collapse
Affiliation(s)
- Sunit Pal
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Ilja Gordijenko
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Stefan Schmeing
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Somarghya Biswas
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Yasemin Akbulut
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Raphael Gasper
- Crystallography and Biophysics Unit, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Peter 't Hart
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| |
Collapse
|
4
|
Alfonso I. Supramolecular chemical biology: designed receptors and dynamic chemical systems. Chem Commun (Camb) 2024; 60:9692-9703. [PMID: 39129537 DOI: 10.1039/d4cc03163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Supramolecular chemistry focuses on the study of species joined by non-covalent interactions, and therefore on dynamic and relatively ill-defined structures. Despite being a well-developed field, it has to face important challenges when dealing with the selective recognition of biomolecules in highly competitive biomimetic media. However, supramolecular interactions reside at the core of chemical biology systems, since many processes in nature are governed by weak, non-covalent, strongly dynamic contacts. Therefore, there is a natural connection between these two research fields, which are not frequently related or share interests. In this feature article, I will highlight our most recent results in the molecular recognition of biologically relevant species, following different conceptual approaches from the most conventional design of elaborated receptors to the less popular dynamic combinatorial chemistry methodology. Selected illustrative examples from other groups will be also included. The discussion has been focused mainly on systems with potential biomedical applications.
Collapse
Affiliation(s)
- Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), The Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
5
|
Yeste-Vázquez A, Paulussen FM, Wendt M, Klintrot R, Schulte C, Wallraven K, van Gijzel L, Simeonov B, van der Gaag M, Gerber A, Maric HM, Hennig S, Grossmann TN. Structure-Based Design of Bicyclic Helical Peptides That Target the Oncogene β-Catenin. Angew Chem Int Ed Engl 2024:e202411749. [PMID: 39167026 DOI: 10.1002/anie.202411749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
The inhibition of intracellular protein-protein interactions is challenging, in particular, when involved interfaces lack pronounced cavities. The transcriptional co-activator protein and oncogene β-catenin is a prime example of such a challenging target. Despite extensive targeting efforts, available high-affinity binders comprise only large molecular weight inhibitors. This hampers the further development of therapeutically useful compounds. Herein, we report the design of a considerably smaller peptidomimetic scaffold derived from the α-helical β-catenin-binding motif of Axin. Sequence maturation and bicyclization provided a stitched peptide with an unprecedented crosslink architecture. The binding mode and site were confirmed by a crystal structure. Further derivatization yielded a β-catenin inhibitor with single-digit micromolar activity in a cell-based assay. This study sheds light on how to design helix mimetics with reduced molecular weight thereby improving their biological activity.
Collapse
Affiliation(s)
- Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Felix M Paulussen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Rasmus Klintrot
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Clemens Schulte
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of, Wuerzburg, Germany
| | - Kerstin Wallraven
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Lieke van Gijzel
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Boris Simeonov
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maurice van der Gaag
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of, Wuerzburg, Germany
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Krishna Sudhakar H, Yau JTK, Alcock LJ, Lau YH. Accessing diverse bicyclic peptide conformations using 1,2,3-TBMB as a linker. Org Biomol Chem 2024. [PMID: 39007293 DOI: 10.1039/d4ob00901k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Bicyclic peptides are a powerful modality for engaging challenging drug targets such as protein-protein interactions. Here, we use 1,2,3-tris(bromomethyl)benzene (1,2,3-TBMB) to access bicyclic peptides with diverse conformations that differ from conventional bicyclisation products formed with 1,3,5-TBMB. Bicyclisation at cysteine residues under aqueous buffer conditions proceeds efficiently, with broad substrate scope, compatibility with high-throughput screening, and clean conversion (>90%) for 96 of the 115 peptides tested. We envisage that the 1,2,3-TBMB linker will be applicable to a variety of peptide screening techniques in drug discovery.
Collapse
Affiliation(s)
| | - Jackie Tsz Ki Yau
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Lisa J Alcock
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
7
|
Cawood EE, Baker E, Edwards TA, Woolfson DN, Karamanos TK, Wilson AJ. Understanding β-strand mediated protein-protein interactions: tuning binding behaviour of intrinsically disordered sequences by backbone modification. Chem Sci 2024; 15:10237-10245. [PMID: 38966365 PMCID: PMC11220606 DOI: 10.1039/d4sc02240h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024] Open
Abstract
A significant challenge in chemical biology is to understand and modulate protein-protein interactions (PPIs). Given that many PPIs involve a folded protein domain and a peptide sequence that is intrinsically disordered in isolation, peptides represent powerful tools to understand PPIs. Using the interaction between small ubiquitin-like modifier (SUMO) and SUMO-interacting motifs (SIMs), here we show that N-methylation of the peptide backbone can effectively restrict accessible peptide conformations, predisposing them for protein recognition. Backbone N-methylation in appropriate locations results in faster target binding, and thus higher affinity, as shown by relaxation-based NMR experiments and computational analysis. We show that such higher affinities occur as a consequence of an increase in the energy of the unbound state, and a reduction in the entropic contribution to the binding and activation energies. Thus, backbone N-methylation may represent a useful modification within the peptidomimetic toolbox to probe β-strand mediated interactions.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Emily Baker
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- College of Biomedical Sciences, Larkin University 18301 N Miami Ave #1 Miami FL 33169 USA
| | - Derek N Woolfson
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
8
|
Zheng D, Guo J, Liang Z, Jin Y, Ding Y, Liu J, Qi C, Shi K, Xie L, Zhu M, Wang L, Hu Z, Yang Z, Liu Q, Li X, Ning W, Gao J. Supramolecular Nanofibers Ameliorate Bleomycin-Induced Pulmonary Fibrosis by Restoring Autophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401327. [PMID: 38725147 PMCID: PMC11267363 DOI: 10.1002/advs.202401327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Indexed: 07/25/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease, with limited therapeutic options available. Impaired autophagy resulting from aberrant TRB3/p62 protein-protein interactions (PPIs) contributes to the progression of IPF. Restoration of autophagy by modulating the TRB3/p62 PPIs has rarely been reported for the treatment of IPF. Herein, peptide nanofibers are developed that specifically bind to TRB3 protein and explored their potential as a therapeutic approach for IPF. By conjugating with the self-assembling fragment (Ac-GFFY), a TRB3-binding peptide motif A2 allows for the formation of nanofibers with a stable α-helix secondary structure. The resulting peptide (Ac-GFFY-A2) nanofibers exhibit specific high-affinity binding to TRB3 protein in saline buffer and better capacity of cellular uptake to A2 peptide. Furthermore, the TRB3-targeting peptide nanofibers efficiently interfere with the aberrant TRB3/p62 PPIs in activated fibroblasts and fibrotic lung tissue of mice, thereby restoring autophagy dysfunction. The TRB3-targeting peptide nanofibers inhibit myofibroblast differentiation, collagen production, and fibroblast migration in vitro is demonstrated, as well as bleomycin-induced pulmonary fibrosis in vivo. This study provides a supramolecular method to modulate PPIs and highlights a promising strategy for treating IPF diseases by restoring autophagy.
Collapse
Affiliation(s)
- Debin Zheng
- Beijing Key Laboratory of Disaster MedicineMedical Innovation Research Division of the Chinese PLA General HospitalNo. 28 Fu Xing RoadBeijing100853P. R. China
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Jiasen Guo
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Ziyi Liang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Yueyue Jin
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Yinghao Ding
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Jingfei Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Chao Qi
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Kaiwen Shi
- Beijing Key Laboratory of Disaster MedicineMedical Innovation Research Division of the Chinese PLA General HospitalNo. 28 Fu Xing RoadBeijing100853P. R. China
| | - Limin Xie
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Meiqi Zhu
- Beijing Key Laboratory of Disaster MedicineMedical Innovation Research Division of the Chinese PLA General HospitalNo. 28 Fu Xing RoadBeijing100853P. R. China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| | - Zhiwen Hu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Qian Liu
- Department of UrologyTianjin First Central HospitalTianjin300192P. R. China
| | - Xiaoxue Li
- Beijing Key Laboratory of Disaster MedicineMedical Innovation Research Division of the Chinese PLA General HospitalNo. 28 Fu Xing RoadBeijing100853P. R. China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| |
Collapse
|
9
|
Cooke SF, Wright TA, Sin YY, Ling J, Kyurkchieva E, Phanthaphol N, Mcskimming T, Herbert K, Rebus S, Biankin AV, Chang DK, Baillie GS, Blair CM. Disruption of the pro-oncogenic c-RAF-PDE8A complex represents a differentiated approach to treating KRAS-c-RAF dependent PDAC. Sci Rep 2024; 14:8998. [PMID: 38637546 PMCID: PMC11026450 DOI: 10.1038/s41598-024-59451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRASMT PDAC). Herein, we demonstrate how a novel cell-penetrating peptide disruptor (DRx-170) of the c-RAF-PDE8A protein-protein interaction (PPI) represents a differentiated approach to exploiting the c-RAF-cAMP/PKA signaling axes and treating KRAS-c-RAF dependent PDAC. Through disrupting the c-RAF-PDE8A protein complex, DRx-170 promotes the inactivation of c-RAF through an allosteric mechanism, dependent upon inactivating PKA phosphorylation. DRx-170 inhibits cell proliferation, adhesion and migration of a KRASMT PDAC cell line (PANC1), independent of ERK1/2 activity. Moreover, combining DRx-170 with afatinib significantly enhances PANC1 growth inhibition in both 2D and 3D cellular models. DRx-170 sensitivity appears to correlate with c-RAF dependency. This proof-of-concept study supports the development of DRx-170 as a novel and differentiated strategy for targeting c-RAF activity in KRAS-c-RAF dependent PDAC.
Collapse
Affiliation(s)
- Sean F Cooke
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Thomas A Wright
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Yuan Yan Sin
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Jiayue Ling
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Elka Kyurkchieva
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Nattaporn Phanthaphol
- Siriraj Centre of Research Excellence for Cancer Immunotherapy, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thomas Mcskimming
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Katharine Herbert
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Selma Rebus
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - George S Baillie
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Connor M Blair
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
10
|
Mi T, Gao Z, Mituta Z, Burgess K. Dual-Capped Helical Interface Mimics. J Am Chem Soc 2024; 146:10331-10341. [PMID: 38573124 PMCID: PMC11027154 DOI: 10.1021/jacs.3c11717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
Disruption of protein-protein interactions is medicinally important. Interface helices may be mimicked in helical probes featuring enhanced rigidities, binding to protein targets, stabilities in serum, and cell uptake. This form of mimicry is dominated by stapling between side chains of helical residues: there has been less progress on helical N-caps, and there were no generalizable C-caps. Conversely, in natural proteins, helicities are stabilized and terminated by C- and N-caps but not staples. Bicyclic caps previously introduced by us enable interface helical mimicry featuring rigid synthetic caps at both termini in this work. An unambiguously helical dual-capped system proved to be conformationally stable, binding cyclins A and E, and showed impressive cellular uptake. In addition, the dual-capped mimic was completely resistant to proteolysis in serum over an extended period when compared with "gold standard" hydrocarbon-stapled controls. Dual-capped peptidomimetics are a new, generalizable paradigm for helical interface probe design.
Collapse
Affiliation(s)
- Tianxiong Mi
- Department
of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Zhe Gao
- Department
of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Zeynep Mituta
- ZentriForce
Pharma Research GmbH, Carl-Friedrich-Gauss-Ring 5, 69124 Heidelberg, Germany
| | - Kevin Burgess
- Department
of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
11
|
Hayward D, Beekman AM. Strategies for converting turn-motif and cyclic peptides to small molecules for targeting protein-protein interactions. RSC Chem Biol 2024; 5:198-208. [PMID: 38456035 PMCID: PMC10915966 DOI: 10.1039/d3cb00222e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
The development of small molecules that interact with protein-protein interactions is an ongoing challenge. Peptides offer a starting point in the drug discovery process for targeting protein-interactions due to their larger, more flexible structure and the structurally diverse properties that allow for a greater interaction with the protein. The techniques for rapidly identifying potent cyclic peptides and turn-motif peptides are highly effective, but this potential has not yet transferred to approved drug candidates. By applying the properties of the peptide-protein interaction the development of small molecules for drug discovery has the potential to be more efficient. In this review, we discuss the methods that allow for the unique binding properties of peptides to proteins, and the methods deployed to transfer these qualities to potent small molecules.
Collapse
Affiliation(s)
- Deanne Hayward
- School of Pharmacy, University of East Anglia, Norwich Research Park Norwich Norfolk NR47TJ UK
| | - Andrew M Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park Norwich Norfolk NR47TJ UK
| |
Collapse
|
12
|
Ghazal A, Clarke D, Abdel-Rahman MA, Ribeiro A, Collie-Duguid E, Pattinson C, Burgoyne K, Muhammad T, Alfadhel S, Heidari Z, Samir R, Gerges MM, Nkene I, Colamarino RA, Hijazi K, Houssen WE. Venomous gland transcriptome and venom proteomic analysis of the scorpion Androctonus amoreuxi reveal new peptides with anti-SARS-CoV-2 activity. Peptides 2024; 173:171139. [PMID: 38142817 DOI: 10.1016/j.peptides.2023.171139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The recent COVID-19 pandemic shows the critical need for novel broad spectrum antiviral agents. Scorpion venoms are known to contain highly bioactive peptides, several of which have demonstrated strong antiviral activity against a range of viruses. We have generated the first annotated reference transcriptome for the Androctonus amoreuxi venom gland and used high performance liquid chromatography, transcriptome mining, circular dichroism and mass spectrometric analysis to purify and characterize twelve previously undescribed venom peptides. Selected peptides were tested for binding to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and inhibition of the spike RBD - human angiotensin-converting enzyme 2 (hACE2) interaction using surface plasmon resonance-based assays. Seven peptides showed dose-dependent inhibitory effects, albeit with IC50 in the high micromolar range (117-1202 µM). The most active peptide was synthesized using solid phase peptide synthesis and tested for its antiviral activity against SARS-CoV-2 (Lineage B.1.1.7). On exposure to the synthetic peptide of a human lung cell line infected with replication-competent SARS-CoV-2, we observed an IC50 of 200 nM, which was nearly 600-fold lower than that observed in the RBD - hACE2 binding inhibition assay. Our results show that scorpion venom peptides can inhibit the SARS-CoV-2 replication although unlikely through inhibition of spike RBD - hACE2 interaction as the primary mode of action. Scorpion venom peptides represent excellent scaffolds for design of novel anti-SARS-CoV-2 constrained peptides. Future studies should fully explore their antiviral mode of action as well as the structural dynamics of inhibition of target virus-host interactions.
Collapse
Affiliation(s)
- Ahmad Ghazal
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - David Clarke
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | | | - Antonio Ribeiro
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 3RY, UK
| | - Elaina Collie-Duguid
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 3RY, UK
| | - Craig Pattinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Kate Burgoyne
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Taj Muhammad
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591 SE-75124 Uppsala, Sweden
| | - Sanad Alfadhel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Zeynab Heidari
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 3RY, UK
| | - Reham Samir
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Mariam M Gerges
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Istifanus Nkene
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Rosa A Colamarino
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Karolin Hijazi
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Wael E Houssen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| |
Collapse
|
13
|
Yang G, Li C, Tao F, Liu Y, Zhu M, Du Y, Fei C, She Q, Chen J. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2024; 11:645-663. [PMID: 37692513 PMCID: PMC10491877 DOI: 10.1016/j.gendis.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 09/12/2023] Open
Abstract
Lysine-specific demethylase 4 A (KDM4A, also named JMJD2A, KIA0677, or JHDM3A) is a demethylase that can remove methyl groups from histones H3K9me2/3, H3K36me2/3, and H1.4K26me2/me3. Accumulating evidence suggests that KDM4A is not only involved in body homeostasis (such as cell proliferation, migration and differentiation, and tissue development) but also associated with multiple human diseases, especially cancers. Recently, an increasing number of studies have shown that pharmacological inhibition of KDM4A significantly attenuates tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. Although there are several reviews on the roles of the KDM4 subfamily in cancer development and therapy, all of them only briefly introduce the roles of KDM4A in cancer without systematically summarizing the specific mechanisms of KDM4A in various physiological and pathological processes, especially in tumorigenesis, which greatly limits advances in the understanding of the roles of KDM4A in a variety of cancers, discovering targeted selective KDM4A inhibitors, and exploring the adaptive profiles of KDM4A antagonists. Herein, we present the structure and functions of KDM4A, simply outline the functions of KDM4A in homeostasis and non-cancer diseases, summarize the role of KDM4A and its distinct target genes in the development of a variety of cancers, systematically classify KDM4A inhibitors, summarize the difficulties encountered in the research of KDM4A and the discovery of related drugs, and provide the corresponding solutions, which would contribute to understanding the recent research trends on KDM4A and advancing the progression of KDM4A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanjun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Minghui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yu Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiusheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
14
|
Grob NM, Remarcik C, Rössler SL, Wong JYK, Wang JCK, Tao J, Smith CL, Loas A, Buchwald SL, Eaton DL, López MP, Pentelute BL. Electrophile Scanning Reveals Reactivity Hotspots for the Design of Covalent Peptide Binders. ACS Chem Biol 2024; 19:101-109. [PMID: 38069818 DOI: 10.1021/acschembio.3c00538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Protein-protein interactions (PPIs) are intriguing targets in drug discovery and development. Peptides are well suited to target PPIs, which typically present with large surface areas lacking distinct features and deep binding pockets. To improve binding interactions with these topologies and advance the development of PPI-focused therapeutics, potential ligands can be equipped with electrophilic groups to enable binding through covalent mechanisms of action. We report a strategy termed electrophile scanning to identify reactivity hotspots in a known peptide ligand and demonstrate its application in a model PPI. Cysteine mutants of a known ligand are used to install protein-reactive modifiers via a palladium oxidative addition complex (Pd-OAC). Reactivity hotspots are revealed by cross-linking reactions with the target protein under physiological conditions. In a model PPI with the 9-mer peptide antigen VL9 and major histocompatibility complex (MHC) class I protein HLA-E, we identify two reactivity hotspots that afford up to 87% conversion to the protein-peptide conjugate within 4 h. The reactions are specific to the target protein in vitro and dependent on the peptide sequence. Moreover, the cross-linked peptide successfully inhibits molecular recognition of HLA-E by CD94-NKG2A possibly due to structural changes enacted at the PPI interface. The results illustrate the potential application of electrophile scanning as a tool for rapid discovery and development of covalent peptide binders.
Collapse
Affiliation(s)
- Nathalie M Grob
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Clint Remarcik
- Calico Life Sciences LLC, San Francisco, California 94080, United States of America
| | - Simon L Rössler
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Jeffrey Y K Wong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - John C K Wang
- Calico Life Sciences LLC, San Francisco, California 94080, United States of America
| | - Jason Tao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Corey L Smith
- AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States of America
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Dan L Eaton
- Calico Life Sciences LLC, San Francisco, California 94080, United States of America
| | | | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
15
|
Dawber RS, Gimenez D, Batchelor M, Miles JA, Wright MH, Bayliss R, Wilson AJ. Inhibition of Aurora-A/N-Myc Protein-Protein Interaction Using Peptidomimetics: Understanding the Role of Peptide Cyclization. Chembiochem 2024; 25:e202300649. [PMID: 37907395 PMCID: PMC10962542 DOI: 10.1002/cbic.202300649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Using N-Myc61-89 as a starting template we showcase the systematic use of truncation and maleimide constraining to develop peptidomimetic inhibitors of the N-Myc/Aurora-A protein-protein interaction (PPI); a potential anticancer drug discovery target. The most promising of these - N-Myc73-94-N85C/G89C-mal - is shown to favour a more Aurora-A compliant binding ensemble in comparison to the linear wild-type sequence as observed through fluorescence anisotropy competition assays, circular dichroism (CD) and nuclear magnetic resonance (NMR) experiments. Further in silico investigation of this peptide in its Aurora-A bound state, by molecular dynamics (MD) simulations, imply (i) the bound conformation is more stable as a consequence of the constraint, which likely suppresses dissociation and (ii) the constraint may make further stabilizing interactions with the Aurora-A surface. Taken together this work unveils the first orthosteric N-Myc/Aurora-A inhibitor and provides useful insights on the biophysical properties and thus design of constrained peptides, an attractive therapeutic modality.
Collapse
Affiliation(s)
- Robert S. Dawber
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Diana Gimenez
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Jennifer A. Miles
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Megan H. Wright
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Richard Bayliss
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of BirminghamEdgbaston, BirminghamB15 2TTUK
| |
Collapse
|
16
|
Rui M, Zhang W, Mi K, Ni H, Ji W, Yu X, Qin J, Feng C. Design and evaluation of α-helix-based peptide inhibitors for blocking PD-1/PD-L1 interaction. Int J Biol Macromol 2023; 253:126811. [PMID: 37690647 DOI: 10.1016/j.ijbiomac.2023.126811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The current research in tumor immunotherapy indicates that blocking the protein-protein interaction (PPI) between PD-1 and its ligand, PD-L1, may be one of the most effective treatments for cancer patients. The α-helix is a common elements of protein secondary structure and is often involved in protein interaction. Thus, α-helix-based peptides could mimic proteins involved in such interactions and are also capable of modulating PPI in vivo. In this study, starting from a potential α-helix-rich protein, we designed a series of α-helix-based peptide candidates to block PD-1/PD-L1 interaction. These candidates were first screened using molecular docking and molecular dynamics simulations, and then their capacities to inhibit PD-1/PD-L1 interactions and to restore antitumor immune activities were investigated using the HTRF assay, SPR assay, cellular co-culture experiments and animal model experiments. Two peptides exhibited the best anti-tumor effects and the strong ability to restore the immunity of tumor-infiltrating T-cells. Further D-amino acid substitution was employed to improve the serum stability of peptide candidate, making the intravenous administration easier while maintaining the therapeutic efficacy. The resultant peptides showed promise as checkpoint inhibitors for application in tumor immunotherapy. These findings suggested that our strategy for developing peptides starting from an α-helical structure could be used in the design of bioactive inhibitors to potential block protein-protein interactions.
Collapse
Affiliation(s)
- Mengjie Rui
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Wen Zhang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Ke Mi
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Hairong Ni
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Wei Ji
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Xuefei Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Jiangjiang Qin
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, PR China
| | - Chunlai Feng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, PR China.
| |
Collapse
|
17
|
Solozabal N, Tapia L, Solà J, Pérez Y, Alfonso I. Molecular Recognition of Tyrosine-Containing Polypeptides with Pseudopeptidic Cages Unraveled by Fluorescence and NMR Spectroscopies. Bioconjug Chem 2023; 34:2345-2357. [PMID: 38078839 PMCID: PMC10859922 DOI: 10.1021/acs.bioconjchem.3c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
The molecular recognition of Tyr-containing peptide copolymers with pseudopeptidic cages has been studied using a combination of fluorescence and NMR spectroscopies. Fluorescence titrations rendered a reasonable estimation of the affinities, despite the presence of dynamic quenching masking the unambiguous detection of the supramolecular complexes. Regarding NMR, the effect of polypeptide (PP) binding on relaxation and diffusion parameters of the cages is much more reliable than the corresponding chemical shift perturbations. To that, purification of the commercial PPs is mandatory to obtain biopolymers with lower polydispersity. Thus, the relaxation/diffusion-filtered 1H spectra of the cages in the absence vs presence of the PPs represent a suitable setup for the fast detection of the noncovalent interactions. Additional key intermolecular NOE cross-peaks supported by molecular models allow the proposal of a structure of the supramolecular species, stabilized by the Tyr encapsulation within the cage cavity and additional attractive polar interactions between the side chains of cage and PP, thus defining a binding epitope with a potential for implementing sequence selectivity. Accordingly, the cages bearing positive/negative residues prefer to bind the peptides having complementary negative/positive side chains close to the target Tyr, suggesting an electrostatic contribution to the interaction. Overall, our results show that both techniques represent a powerful and complementary combination for studying cage-to-PP molecular recognition processes.
Collapse
Affiliation(s)
- Naiara Solozabal
- NMR
Facility, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Lucía Tapia
- Department
of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Jordi Solà
- Department
of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Yolanda Pérez
- NMR
Facility, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Ignacio Alfonso
- Department
of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| |
Collapse
|
18
|
Worm D, Grabe GJ, de Castro GV, Rabinovich S, Warm I, Isherwood K, Helaine S, Barnard A. Stapled Phd Peptides Inhibit Doc Toxin Induced Growth Arrest in Salmonella. ACS Chem Biol 2023; 18:2485-2494. [PMID: 38098459 PMCID: PMC10728895 DOI: 10.1021/acschembio.3c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023]
Abstract
Bacterial toxin inhibition is a promising approach to overcoming antibiotic failure. InSalmonella, knockout of the toxin Doc has been shown to significantly reduce the formation of antibiotic-tolerant persisters. Doc is a kinase that is inhibited in nontolerant cells by its cognate antitoxin, Phd. In this work, we have developed first-in-class stapled peptide antitoxin mimetics based on the Doc inhibitory sequence of Phd. After making a series of substitutions to improve bacterial uptake, we identified a lead stapled Phd peptide that is able to counteract Doc toxicity in Salmonella. This provides an exciting starting point for the further development of therapeutic peptides capable of reducing antibiotic persistence in pathogenic bacteria.
Collapse
Affiliation(s)
- Dennis
J. Worm
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Grzegorz J. Grabe
- Department
of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Guilherme V. de Castro
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Sofya Rabinovich
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Ian Warm
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Kira Isherwood
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Sophie Helaine
- Department
of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Anna Barnard
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| |
Collapse
|
19
|
Paquette AR, Boddy CN. Double Stranded DNA Binding Stapled Peptides: An Emerging Tool for Transcriptional Regulation. Chembiochem 2023; 24:e202300594. [PMID: 37750576 DOI: 10.1002/cbic.202300594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
Stapled peptides have rapidly established themselves as a powerful technique to mimic α-helical interactions with a short peptide sequence. There are many examples of stapled peptides that successfully disrupt α-helix-mediated protein-protein interactions, with an example currently in clinical trials. DNA-protein interactions are also often mediated by α-helices and are involved in all transcriptional regulation processes. Unlike DNA-binding small molecules, which typically lack DNA sequence selectivity, DNA-binding proteins bind with high affinity and high selectivity. These are ideal candidates for the design DNA-binding stapled peptides. Despite the parallel to protein-protein interaction disrupting stapled peptides and the need for sequence specific DNA binders, there are very few DNA-binding stapled peptides. In this review we examine all the known DNA-binding stapled peptides. Their design concepts are compared to stapled peptides that disrupt protein-protein interactions and based on the few examples in the literature, DNA-binding stapled peptide trends are discussed.
Collapse
Affiliation(s)
- André R Paquette
- Department of Chemistry and Biomolecular Sciences, The University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, The University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
20
|
Cheng J, Zhou J, Kong L, Wang H, Zhang Y, Wang X, Liu G, Chu Q. Stabilized cyclic peptides as modulators of protein-protein interactions: promising strategies and biological evaluation. RSC Med Chem 2023; 14:2496-2508. [PMID: 38107173 PMCID: PMC10718590 DOI: 10.1039/d3md00487b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 12/19/2023] Open
Abstract
Protein-protein interactions (PPIs) control many essential biological pathways which are often misregulated in disease. As such, selective PPI modulators are desirable to unravel complex functions of PPIs and thus expand the repertoire of therapeutic targets. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets for conventional drug modalities, rendering most PPIs "undruggable". Therefore, there is a growing need to discover innovative molecules that are able to modulate crucial PPIs. Peptides are ideal candidates to deliver such therapeutics attributed to their ability to closely mimic structural features of protein interfaces. However, their inherently poor proteolysis resistance and cell permeability inevitably hamper their biomedical applications. The introduction of a constraint (i.e., peptide cyclization) to stabilize peptides' secondary structure is a promising strategy to address this problem as witnessed by the rapid development of cyclic peptide drugs in the past two decades. Here, we comprehensively review the recent progress on stabilized cyclic peptides in targeting challenging PPIs. Technological advancements and emerging chemical approaches for stabilizing active peptide conformations are categorized in terms of α-helix stapling, β-hairpin mimetics and macrocyclization. To discover potent and selective ligands, cyclic peptide library technologies were updated based on genetic, biochemical or synthetic methodologies. Moreover, several advances to improve the permeability and oral bioavailability of biologically active cyclic peptides enable the de novo development of cyclic peptide ligands with pharmacological properties. In summary, the development of cyclic peptide-based PPI modulators carries tremendous promise for the next generation of therapeutic agents to target historically "intractable" PPI systems.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Junlong Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Lingyan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
21
|
Liu XY, Cai W, Ronceray N, Radenovic A, Fierz B, Waser J. Synthesis of Fluorescent Cyclic Peptides via Gold(I)-Catalyzed Macrocyclization. J Am Chem Soc 2023; 145:26525-26531. [PMID: 38035635 PMCID: PMC10722513 DOI: 10.1021/jacs.3c09261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Rapid and efficient cyclization methods that form structurally novel peptidic macrocycles are of high importance for medicinal chemistry. Herein, we report the first gold(I)-catalyzed macrocyclization of peptide-EBXs (ethynylbenziodoxolones) via C2-Trp C-H activation. This reaction was carried out in the presence of protecting group free peptide sequences and is enabled by a simple commercial gold catalyst (AuCl·Me2S). The method displayed a rapid reaction rate (within 10 min), wide functional group tolerance (27 unprotected peptides were cyclized), and up to 86% isolated yield. The obtained highly conjugated cyclic peptide linker, formed through C-H alkynylation, can be directly applied to live-cell imaging as a fluorescent probe without further attachment of fluorophores.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory
of Catalysis and Organic Synthesis, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, 1015 Lausanne, Switzerland
| | - Wei Cai
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering, École Polytechnique
Fédérale de Lausanne, EPFL SB ISIC LCBM, 1015 Lausanne, Switzerland
| | - Nathan Ronceray
- Laboratory
of Nanoscale Biology, School of Engineering, Institute of Bioengineering, EPFL STI IBI LBEN, 1015 Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory
of Nanoscale Biology, School of Engineering, Institute of Bioengineering, EPFL STI IBI LBEN, 1015 Lausanne, Switzerland
| | - Beat Fierz
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering, École Polytechnique
Fédérale de Lausanne, EPFL SB ISIC LCBM, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory
of Catalysis and Organic Synthesis, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, 1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Matsuura K, Inaba H. Photoresponsive peptide materials: Spatiotemporal control of self-assembly and biological functions. BIOPHYSICS REVIEWS 2023; 4:041303. [PMID: 38505425 PMCID: PMC10903425 DOI: 10.1063/5.0179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Peptides work as both functional molecules to modulate various biological phenomena and self-assembling artificial materials. The introduction of photoresponsive units to peptides allows the spatiotemporal remote control of their structure and function upon light irradiation. This article overviews the photoresponsive peptide design, interaction with biomolecules, and applications in self-assembling materials over the last 30 years. Peptides modified with photochromic (photoisomerizable) molecules, such as azobenzene and spiropyran, reversibly photo-controlled the binding to biomolecules and nanostructure formation through self-assembly. Photocleavable molecular units irreversibly control the functions of peptides through cleavage of the main chain and deprotection by light. Photocrosslinking between peptides or between peptides and other biomolecules enhances the structural stability of peptide assemblies and complexes. These photoresponsive peptides spatiotemporally controlled the formation and dissociation of peptide assemblies, gene expressions, protein-drug interactions, protein-protein interactions, liposome deformation and motility, cytoskeleton structure and stability, and cell functions by appropriate light irradiation. These molecular systems can be applied to photo-control biological functions, molecular robots, artificial cells, and next-generation smart drug delivery materials.
Collapse
|
23
|
Tang X, Kokot J, Waibl F, Fernández-Quintero ML, Kamenik AS, Liedl KR. Addressing Challenges of Macrocyclic Conformational Sampling in Polar and Apolar Solvents: Lessons for Chameleonicity. J Chem Inf Model 2023; 63:7107-7123. [PMID: 37943023 PMCID: PMC10685455 DOI: 10.1021/acs.jcim.3c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
We evaluated a workflow to reliably sample the conformational space of a set of 47 peptidic macrocycles. Starting from SMILES strings, we use accelerated molecular dynamics simulations to overcome high energy barriers, in particular, the cis-trans isomerization of peptide bonds. We find that our approach performs very well in polar solvents like water and dimethyl sulfoxide. Interestingly, the protonation state of a secondary amine in the ring only slightly influences the conformational ensembles of our test systems. For several of the macrocycles, determining the conformational distribution in chloroform turns out to be considerably more challenging. Especially, the choice of partial charges crucially influences the ensembles in chloroform. We address these challenges by modifying initial structures and the choice of partial charges. Our results suggest that special care has to be taken to understand the configurational distribution in apolar solvents, which is a key step toward a reliable prediction of membrane permeation of macrocycles and their chameleonic properties.
Collapse
Affiliation(s)
- Xuechen Tang
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Janik Kokot
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Franz Waibl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | | | - Anna S. Kamenik
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
24
|
Xiang H, Zhou M, Li Y, Zhou L, Wang R. Drug discovery by targeting the protein-protein interactions involved in autophagy. Acta Pharm Sin B 2023; 13:4373-4390. [PMID: 37969735 PMCID: PMC10638514 DOI: 10.1016/j.apsb.2023.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/31/2023] [Accepted: 07/10/2023] [Indexed: 11/17/2023] Open
Abstract
Autophagy is a cellular process in which proteins and organelles are engulfed in autophagosomal vesicles and transported to the lysosome/vacuole for degradation. Protein-protein interactions (PPIs) play a crucial role at many stages of autophagy, which present formidable but attainable targets for autophagy regulation. Moreover, selective regulation of PPIs tends to have a lower risk in causing undesired off-target effects in the context of a complicated biological network. Thus, small-molecule regulators, including peptides and peptidomimetics, targeting the critical PPIs involved in autophagy provide a new opportunity for innovative drug discovery. This article provides general background knowledge of the critical PPIs involved in autophagy and reviews a range of successful attempts on discovering regulators targeting those PPIs. Successful strategies and existing limitations in this field are also discussed.
Collapse
Affiliation(s)
- Honggang Xiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
25
|
He F, Chai Y, Zeng Z, Lu F, Chen H, Zhu J, Fang Y, Cheng K, Miclet E, Alezra V, Wan Y. Rapid Formation of Intramolecular Disulfide Bridges using Light: An Efficient Method to Control the Conformation and Function of Bioactive Peptides. J Am Chem Soc 2023; 145:22639-22648. [PMID: 37788450 DOI: 10.1021/jacs.3c07795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Disulfide bonds are widely found in natural peptides and play a pivotal role in stabilizing their secondary structures, which are highly associated with their biological functions. Herein, we introduce a light-mediated strategy to effectively control the formation of disulfides. Our strategy is based on 2-nitroveratryl (oNv), a widely used photolabile motif, which serves both as a photocaging group and an oxidant (after photolysis). We demonstrated that irradiation of oNv-caged thiols with UV light could release free thiols that are rapidly oxidized by locally released byproduct nitrosoarene, leading to a "break-to-bond" fashion. This strategy is highlighted by the in situ restoration of the antimicrobial peptide tachyplesin I (TPI) from its external disulfide-caged analogue TPI-1. TPI-1 exhibits a distorted structure and a diminished function. However, upon irradiation, the β-hairpin structure and membrane activity of TPI were largely restored via rapid intramolecular disulfide formation. Our study proposes a powerful method to regulate the conformation and function of peptides in a spatiotemporal manner, which has significant potential for the design of disulfide-centered light-responsive systems.
Collapse
Affiliation(s)
- Feng He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Yu Chai
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Zizhen Zeng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Fangling Lu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Huanwen Chen
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Jinhua Zhu
- Institute of TCM, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Keguang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Emeric Miclet
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Valérie Alezra
- Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques, ICMMO, Université Paris-Saclay, Orsay 91400, France
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| |
Collapse
|
26
|
Sitthiyotha T, Treewattanawong W, Chunsrivirot S. Designing peptides predicted to bind to the omicron variant better than ACE2 via computational protein design and molecular dynamics. PLoS One 2023; 18:e0292589. [PMID: 37816037 PMCID: PMC10564162 DOI: 10.1371/journal.pone.0292589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Brought about by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease (COVID-19) pandemic has resulted in large numbers of worldwide deaths and cases. Several SARS-CoV-2 variants have evolved, and Omicron (B.1.1.529) was one of the important variants of concern. It gets inside human cells by using its S1 subunit's receptor-binding domain (SARS-CoV-2-RBD) to bind to Angiotensin-converting enzyme 2 receptor's peptidase domain (ACE2-PD). Using peptides to inhibit binding interactions (BIs) between ACE2-PD and SARS-CoV-2-RBD is one of promising COVID-19 therapies. Employing computational protein design (CPD) as well as molecular dynamics (MD), this study used ACE2-PD's α1 helix to generate novel 25-mer peptide binders (SPB25) of Omicron RBD that have predicted binding affinities (ΔGbind (MM‑GBSA)) better than ACE2 by increasing favorable BIs between SPB25 and the conserved residues of RBD. Results from MD and the MM-GBSA method identified two best designed peptides (SPB25T7L/K11A and SPB25T7L/K11L with ΔGbind (MM‑GBSA) of -92.4 ± 0.4 and -95.7 ± 0.5 kcal/mol, respectively) that have better ΔGbind (MM‑GBSA) to Omicron RBD than ACE2 (-87.9 ± 0.5 kcal/mol) and SPB25 (-71.6 ± 0.5 kcal/mol). Additionally, they were predicted to have slightly higher stabilities, based on their percent helicities in water, than SBP1 (the experimentally proven inhibitor of SARS-CoV-2-RBD). Our two best designed SPB25s are promising candidates as omicron variant inhibitors.
Collapse
Affiliation(s)
- Thassanai Sitthiyotha
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Wantanee Treewattanawong
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Surasak Chunsrivirot
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
27
|
Qing X, Wang Q, Xu H, Liu P, Lai L. Designing Cyclic-Constrained Peptides to Inhibit Human Phosphoglycerate Dehydrogenase. Molecules 2023; 28:6430. [PMID: 37687259 PMCID: PMC10563079 DOI: 10.3390/molecules28176430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Although loop epitopes at protein-protein binding interfaces often play key roles in mediating oligomer formation and interaction specificity, their binding sites are underexplored as drug targets owing to their high flexibility, relatively few hot spots, and solvent accessibility. Prior attempts to develop molecules that mimic loop epitopes to disrupt protein oligomers have had limited success. In this study, we used structure-based approaches to design and optimize cyclic-constrained peptides based on loop epitopes at the human phosphoglycerate dehydrogenase (PHGDH) dimer interface, which is an obligate homo-dimer with activity strongly dependent on the oligomeric state. The experimental validations showed that these cyclic peptides inhibit PHGDH activity by directly binding to the dimer interface and disrupting the obligate homo-oligomer formation. Our results demonstrate that loop epitope derived cyclic peptides with rationally designed affinity-enhancing substitutions can modulate obligate protein homo-oligomers, which can be used to design peptide inhibitors for other seemingly intractable oligomeric proteins.
Collapse
Affiliation(s)
- Xiaoyu Qing
- BNLMS, Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; (X.Q.); (H.X.); (P.L.)
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Hanyu Xu
- BNLMS, Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; (X.Q.); (H.X.); (P.L.)
| | - Pei Liu
- BNLMS, Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; (X.Q.); (H.X.); (P.L.)
| | - Luhua Lai
- BNLMS, Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; (X.Q.); (H.X.); (P.L.)
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Krajcovicova S, Spring DR. Tryptophan in Multicomponent Petasis Reactions for Peptide Stapling and Late-Stage Functionalisation. Angew Chem Int Ed Engl 2023; 62:e202307782. [PMID: 37389988 DOI: 10.1002/anie.202307782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/02/2023]
Abstract
Peptide stapling is a robust strategy for generating enzymatically stable, macrocyclic peptides. The incorporation of biologically relevant tags (such as cell-penetrating motifs or fluorescent dyes) into peptides, while preserving their binding interactions and enhancing their stability, is highly sought after. Despite the unique opportunities offered by tryptophan's indole scaffold for targeted functionalisation, its utilisation in peptide stapling has been limited as compared to other amino acids. Herein, we present an approach for peptide stapling using the tryptophan-mediated Petasis reaction. This method enables the synthesis of both stapled and labelled peptides and is applicable to both solution and solid-phase synthesis. Importantly, the use of the Petasis reaction in combination with tryptophan facilitates the formation of stapled peptides in a straightforward, multicomponent fashion, while circumventing the formation of undesired by-products. Furthermore, this approach allows for efficient and diverse late-stage peptide modifications, thereby enabling rapid production of numerous conjugates for biological and medicinal applications.
Collapse
Affiliation(s)
- Sona Krajcovicova
- Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
- Department of Organic Chemistry, Palacky University Olomouc, Tr. 17. Listopadu 12, 77900, Olomouc, Czech Republic
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
| |
Collapse
|
29
|
Lāce I, Bazzi S, Uranga J, Schirmacher A, Diederichsen U, Mata RA, Simeth NA. Modulating Secondary Structure Motifs Through Photo-Labile Peptide Staples. Chembiochem 2023; 24:e202300270. [PMID: 37216330 DOI: 10.1002/cbic.202300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Peptide-protein interactions (PPIs) are facilitated by the well-defined three-dimensional structure of bioactive peptides, interesting compounds for the development of new therapeutic agents. Their secondary structure and thus their propensity to engage in PPIs can be influenced by the introduction of peptide staples on the side chains. In particular, light-controlled staples based on azobenzene photoswitches and their structural influence on helical peptides have been studied extensively. In contrast, photolabile staples bearing photocages as a structural key motif, have mainly been used to block supramolecular interactions. Their influence on the secondary structure of the target peptide is under-investigated. Thus, in this study we use a combination of spectroscopic techniques and in silico simulations to systematically study a series of helical peptides with varying length of the photo-labile staple to obtain a detailed insight into the structure-property relationship in such photoresponsive biomolecules.
Collapse
Affiliation(s)
- Ilze Lāce
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Sophia Bazzi
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Jon Uranga
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Anastasiya Schirmacher
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
30
|
Yang P, Širvinskas MJ, Li B, Heller NW, Rong H, He G, Yudin AK, Chen G. Teraryl Braces in Macrocycles: Synthesis and Conformational Landscape Remodeling of Peptides. J Am Chem Soc 2023. [PMID: 37326500 DOI: 10.1021/jacs.3c03512] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The three-dimensional structure of medium-sized cyclic peptides accounts for their biological activity and other important physiochemical properties. Despite significant advances in the past few decades, chemists' ability to fine-tune the structure, in particular, the backbone conformation, of short peptides made of canonical amino acids is still quite limited. Nature has shown that cross-linking the aromatic side chains of linear peptide precursors via enzyme catalysis can generate cyclophane-braced products with unusual structures and diverse activities. However, the biosynthetic path to these natural products is challenging to replicate in the synthetic laboratory using practical chemical modifications of peptides. Herein, we report a broadly applicable strategy to remodel the structure of homodetic peptides by cross-linking the aromatic side chains of Trp, His, and Tyr residues with various aryl linkers. The aryl linkers can be easily installed via copper-catalyzed double heteroatom-arylation reactions of peptides with aryl diiodides. These aromatic side chains and aryl linkers can be combined to form a large variety of assemblies of heteroatom-linked multi-aryl units. The assemblies can serve as tension-bearable multijoint braces to modulate the backbone conformation of peptides as an entry to previously inaccessible conformational space.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | | | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Nicholas W Heller
- Department of Chemistry, University of Toronto, Toronto M5S 3H4, Canada
| | - Hua Rong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto, Toronto M5S 3H4, Canada
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
31
|
Dewis LI, Rudrakshula M, Williams C, Chiarparin E, Myers EL, Butts CP, Aggarwal VK. Conformationally Controlled sp 3 -Hydrocarbon-Based α-Helix Mimetics. Angew Chem Int Ed Engl 2023; 62:e202301209. [PMID: 37017133 PMCID: PMC10953326 DOI: 10.1002/anie.202301209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/06/2023]
Abstract
With over 60 % of protein-protein interfaces featuring an α-helix, the use of α-helix mimetics as inhibitors of these interactions is a prevalent therapeutic strategy. However, methods to control the conformation of mimetics, thus enabling maximum efficacy, can be restrictive. Alternatively, conformation can be controlled through the introduction of destabilizing syn-pentane interactions. This tactic, which is often adopted by Nature, is not a common feature of lead optimization owing to the significant synthetic effort required. Through assembly-line synthesis with NMR and computational analysis, we have shown that alternating syn-anti configured contiguously substituted hydrocarbons, by avoiding syn-pentane interactions, adopt well-defined conformations that present functional groups in an arrangement that mimics the α-helix. The design of a p53 mimetic that binds to Mdm2 with moderate to good affinity, demonstrates the therapeutic promise of these scaffolds.
Collapse
Affiliation(s)
- Lydia I. Dewis
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | | | | | - Eddie L. Myers
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- School of Biological and Chemical SciencesUniversity of GalwayUniversity RoadGalwayIreland
| | - Craig P. Butts
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
32
|
Haque M, Flack T, Singh R, Wall A, de Castro GV, Jiang L, White AJP, Barnard A. Aromatic oligoesters as novel helix mimetic scaffolds. Bioorg Med Chem 2023; 87:117311. [PMID: 37182518 DOI: 10.1016/j.bmc.2023.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
The design, synthesis, and conformational analysis of a novel aromatic oligoester helix mimetic scaffold is reported. A range of amino acid-type side-chain functionality can be readily incorporated into monomer building blocks over three facile synthetic steps. Analysis of representative dimers revealed a stable conformer capable of effective mimicry of a canonical α-helix and the scaffold was found to be surprisingly stable to degradation in aqueous solutions at acidic and neutral pH.
Collapse
Affiliation(s)
- Muhammed Haque
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Theo Flack
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Ravi Singh
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Archie Wall
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | | | - Lishen Jiang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Andrew J P White
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Anna Barnard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
| |
Collapse
|
33
|
Moxam J, Naylon S, Richaud AD, Zhao G, Padilla A, Roche SP. Passive Membrane Permeability of Sizable Acyclic β-Hairpin Peptides. ACS Med Chem Lett 2023; 14:278-284. [PMID: 36923919 PMCID: PMC10009788 DOI: 10.1021/acsmedchemlett.2c00486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The recent shift toward increasingly larger drug modalities has created a significant demand for novel classes of compounds with high membrane permeability that can inhibit intracellular protein-protein interactions (PPIs). While major advances have been made in the design of cell-permeable helices, stapled β-sheets, and cyclic peptides, the development of large acyclic β-hairpins lags far behind. Therefore, we investigated a series of 26 β-hairpins (MW > 1.6 kDa) belonging to a chemical space far beyond the Lipinski "rule of five" (fbRo5) and showed that, in addition to their innate plasticity, the lipophilicity of these peptides (log D 7.4 ≈ 0 ± 0.7) can be tuned to drastically improve the balance between aqueous solubility and passive membrane permeability.
Collapse
Affiliation(s)
- Jillene Moxam
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
| | - Sarah Naylon
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
| | - Alexis D. Richaud
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
| | - Guangkuan Zhao
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
| | - Alberto Padilla
- Department
of Natural Science, Keiser University, Fort Lauderdale, Florida 33309, United States
| | - Stéphane P. Roche
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
- Center
for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
34
|
Zhang P, Walko M, Wilson A. Maleimide constrained BAD BH3 domain peptides as BCL-xL Inhibitors: A Versatile Approach to Rapidly Identify Sites Compatible with Peptide Constraining. Bioorg Med Chem Lett 2023; 87:129260. [PMID: 36997005 DOI: 10.1016/j.bmcl.2023.129260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Development of protein-protein interaction (PPI) inhibitors remains a major challenge. A significant number of PPIs are mediated by helical recognition epitopes; although peptides derived from such epitopes are attractive templates for inhibitor design, they may not readily adopt a bioactive conformation, are susceptible to proteolysis and rarely elicit optimal cell uptake properties. Constraining peptides has therefore emerged as a useful method to mitigate against these liabilities in the development of PPI inhibitors. Building on our recently reported method for constraining peptides by reaction of dibromomaleimide derivatives with two cysteines positioned in an i and i + 4 relationship, in this study, we showcase the power of the method for rapid identification of ideal constraining positions using a maleimide-staple scan based on a 19-mer sequence derived from the BAD BH3 domain. We found that the maleimide constraint had little or a detrimental impact on helicity and potency in most sequences, but successfully identified i, i + 4 positions where the maleimide constraint was tolerated. Analyses using modelling and molecular dynamics (MD) simulations revealed that the inactive constrained peptides likely lose interactions with the protein as a result of introducing the constraint.
Collapse
|
35
|
Linker S, Schellhaas C, Kamenik AS, Veldhuizen MM, Waibl F, Roth HJ, Fouché M, Rodde S, Riniker S. Lessons for Oral Bioavailability: How Conformationally Flexible Cyclic Peptides Enter and Cross Lipid Membranes. J Med Chem 2023; 66:2773-2788. [PMID: 36762908 PMCID: PMC9969412 DOI: 10.1021/acs.jmedchem.2c01837] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 02/11/2023]
Abstract
Cyclic peptides extend the druggable target space due to their size, flexibility, and hydrogen-bonding capacity. However, these properties impact also their passive membrane permeability. As the "journey" through membranes cannot be monitored experimentally, little is known about the underlying process, which hinders rational design. Here, we use molecular simulations to uncover how cyclic peptides permeate a membrane. We show that side chains can act as "molecular anchors", establishing the first contact with the membrane and enabling insertion. Once inside, the peptides are positioned between headgroups and lipid tails─a unique polar/apolar interface. Only one of two distinct orientations at this interface allows for the formation of the permeable "closed" conformation. In the closed conformation, the peptide crosses to the lower leaflet via another "anchoring" and flipping mechanism. Our findings provide atomistic insights into the permeation process of flexible cyclic peptides and reveal design considerations for each step of the process.
Collapse
Affiliation(s)
- Stephanie
M. Linker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Christian Schellhaas
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Anna S. Kamenik
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Mac M. Veldhuizen
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Hans-Jörg Roth
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Marianne Fouché
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Stephane Rodde
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Sereina Riniker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
36
|
Kaguchi R, Katsuyama A, Sato T, Takahashi S, Horiuchi M, Yokota SI, Ichikawa S. Discovery of Biologically Optimized Polymyxin Derivatives Facilitated by Peptide Scanning and In Situ Screening Chemistry. J Am Chem Soc 2023; 145:3665-3681. [PMID: 36708325 DOI: 10.1021/jacs.2c12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Peptides can be converted to highly active compounds by introducing appropriate substituents on the suitable amino acid residue. Although modifiable residues in peptides can be systematically identified by peptide scanning methodologies, there is no practical method for optimization at the "scanned" position. With the purpose of using derivatives not only for scanning but also as a starting point for further chemical functionalization, we herein report the "scanning and direct derivatization" strategy through chemoselective acylation of embedded threonine residues by a serine/threonine ligation (STL) with the help of in situ screening chemistry. We have applied this strategy to the optimization of the polymyxin antibiotics, which were selected as a model system to highlight the power of the rapid derivatization of active scanning derivatives. Using this approach, we explored the structure-activity relationships of the polymyxins and successfully prepared derivatives with activity against polymyxin-resistant bacteria and those with Pseudomonas aeruginosa selective antibacterial activity. This strategy opens up efficient structural exploration and further optimization of peptide sequences.
Collapse
Affiliation(s)
- Rintaro Kaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan.,Graduate School of Infectious Diseases, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan.,One Health Research Center, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Minami-1, Nishi-16, Chuo-ku, Sapporo060-8543, Japan.,Division of Laboratory Medicine, Sapporo Medical University Hospital, Minami-1, Nishi-16, Chuo-ku, Sapporo060-8543, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan.,Graduate School of Infectious Diseases, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan.,One Health Research Center, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Minami-1, Nishi-17, Chuo-ku, Sapporo060-8556, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan
| |
Collapse
|
37
|
Zhang P, Walko M, Wilson AJ. Rational design of Harakiri (HRK)-derived constrained peptides as BCL-x L inhibitors. Chem Commun (Camb) 2023; 59:1697-1700. [PMID: 36692261 PMCID: PMC9904277 DOI: 10.1039/d2cc06029a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Using the HRK BH3 domain, sequence hybridization and in silico methods we show dibromomaleimide staple scanning can be used to inform the design of BCL-xL selective peptidomimetic ligands. These HRK-inspired reagents may serve as starting points for the discovery of therapeutics to target BCL-xL-overexpressed cancers.
Collapse
Affiliation(s)
- Peiyu Zhang
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Martin Walko
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andrew J. Wilson
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsLS2 9JTUK,Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
38
|
Wu X, Xie Y, Zhao K, Lu J. Targeting the super elongation complex for oncogenic transcription driven tumor malignancies: Progress in structure, mechanisms and small molecular inhibitor discovery. Adv Cancer Res 2023; 158:387-421. [PMID: 36990537 DOI: 10.1016/bs.acr.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oncogenic transcription activation is associated with tumor development and resistance derived from chemotherapy or target therapy. The super elongation complex (SEC) is an important complex regulating gene transcription and expression in metazoans closely related to physiological activities. In normal transcriptional regulation, SEC can trigger promoter escape, limit proteolytic degradation of transcription elongation factors and increase the synthesis of RNA polymerase II (POL II), and regulate many normal human genes to stimulate RNA elongation. Dysregulation of SEC accompanied by multiple transcription factors in cancer promotes rapid transcription of oncogenes and induce cancer development. In this review, we summarized recent progress in understanding the mechanisms of SEC in regulating normal transcription, and importantly its roles in cancer development. We also highlighted the discovery of SEC complex target related inhibitors and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Xinyu Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanqiu Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| |
Collapse
|
39
|
Wei T, Li D, Zhang Y, Tang Y, Zhou H, Liu H, Li X. Thiophene-2,3-Dialdehyde Enables Chemoselective Cyclization on Unprotected Peptides, Proteins, and Phage Displayed Peptides. SMALL METHODS 2022; 6:e2201164. [PMID: 36156489 DOI: 10.1002/smtd.202201164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/1912] [Indexed: 06/16/2023]
Abstract
Ortho-phthalaldehyde has recently found wide potentials for protein bioconjugation and peptide cyclization. Herein, the second-generation dialdehyde-based peptide cyclization method is reported. The thiophene-2,3-dialdehyde (TDA) reacts specifically with the primary amine (from Lys side chain or peptide N-terminus) and thiol (from Cys side chain) within unprotected peptides to generate a highly stable thieno[2,3-c]pyrrole-bridged cyclic structure, while it does not react with primary amine alone. This reaction is carried out in the aqueous buffer and features tolerance of diverse functionalities, rapid and clean transformation, and operational simplicity. The features allow TDA to be used for protein stapling and phage displayed peptide cyclization.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Dongfang Li
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Yubo Tang
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| |
Collapse
|
40
|
Goncalves Monteiro D, Rishi G, Gorman DM, Burnet G, Aliyanto R, Rosengren KJ, Frazer DM, Subramaniam VN, Clark RJ. Engineering Peptide Inhibitors of the HFE-Transferrin Receptor 1 Complex. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196581. [PMID: 36235117 PMCID: PMC9570809 DOI: 10.3390/molecules27196581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
The protein HFE (homeostatic iron regulator) is a key regulator of iron metabolism, and mutations in HFE underlie the most frequent form of hereditary haemochromatosis (HH-type I). Studies have shown that HFE interacts with transferrin receptor 1 (TFR1), a homodimeric type II transmembrane glycoprotein that is responsible for the cellular uptake of iron via iron-loaded transferrin (holo-transferrin) binding. It has been hypothesised that the HFE/TFR1 interaction serves as a sensor to the level of iron-loaded transferrin in circulation by means of a competition mechanism between HFE and iron-loaded transferrin association with TFR1. To investigate this, a series of peptides based on the helical binding interface between HFE and TFR1 were generated and shown to significantly interfere with the HFE/TFR1 interaction in an in vitro proximity ligation assay. The helical conformation of one of these peptides, corresponding to the α1 and α2 helices of HFE, was stabilised by the introduction of sidechain lactam “staples”, but this did not result in an increase in the ability of the peptide to disrupt the HFE/TFR1 interaction. These peptides inhibitors of the protein–protein interaction between HFE and TFR1 are potentially useful tools for the analysis of the functional role of HFE in the regulation of hepcidin expression.
Collapse
Affiliation(s)
| | - Gautam Rishi
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Declan M. Gorman
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Guillaume Burnet
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Randy Aliyanto
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - K. Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David M. Frazer
- The QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane, QLD 4006, Australia
| | - V. Nathan Subramaniam
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Correspondence: (V.N.S.); (R.J.C.)
| | - Richard J. Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence: (V.N.S.); (R.J.C.)
| |
Collapse
|
41
|
Luo Z, Xu L, Tang X, Zhao X, He T, Lubell WD, Zhang J. Synthesis and biological evaluation of novel all-hydrocarbon cross-linked aza-stapled peptides. Org Biomol Chem 2022; 20:7963-7971. [PMID: 36190455 DOI: 10.1039/d2ob01496c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel all-hydrocarbon cross-linked aza-stapled peptides were designed and synthesized for the first time by ring-closing metathesis between two aza-alkenylglycine residues. Three aza-stapled peptidic analogues based on the peptide dual inhibitor of p53-MDM2/MDMX interactions were synthesized and screened for biological activities. Among the three aza-stapled peptides, aSPDI-411 displayed increased anti-tumor activity, binding affinities to both MDM2 and MDMX, and cell membrane permeability compared to its linear peptide counterpart.
Collapse
Affiliation(s)
- Zhihong Luo
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Lei Xu
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Xiaomin Tang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Xuejun Zhao
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Tong He
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - William D Lubell
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada.
| | - Jinqiang Zhang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China. .,Chongqing University Industrial Technology Research Institute, Chongqing 401329, People's Republic of China
| |
Collapse
|
42
|
Skolnick J, Zhou H. Implications of the Essential Role of Small Molecule Ligand Binding Pockets in Protein-Protein Interactions. J Phys Chem B 2022; 126:6853-6867. [PMID: 36044742 PMCID: PMC9484464 DOI: 10.1021/acs.jpcb.2c04525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Indexed: 11/28/2022]
Abstract
Protein-protein interactions (PPIs) and protein-metabolite interactions play a key role in many biochemical processes, yet they are often viewed as being independent. However, the fact that small molecule drugs have been successful in inhibiting PPIs suggests a deeper relationship between protein pockets that bind small molecules and PPIs. We demonstrate that 2/3 of PPI interfaces, including antibody-epitope interfaces, contain at least one significant small molecule ligand binding pocket. In a representative library of 50 distinct protein-protein interactions involving hundreds of mutations, >75% of hot spot residues overlap with small molecule ligand binding pockets. Hence, ligand binding pockets play an essential role in PPIs. In representative cases, evolutionary unrelated monomers that are involved in different multimeric interactions yet share the same pocket are predicted to bind the same metabolites/drugs; these results are confirmed by examples in the PDB. Thus, the binding of a metabolite can shift the equilibrium between monomers and multimers. This implicit coupling of PPI equilibria, termed "metabolic entanglement", was successfully employed to suggest novel functional relationships among protein multimers that do not directly interact. Thus, the current work provides an approach to unify metabolomics and protein interactomics.
Collapse
Affiliation(s)
- Jeffrey Skolnick
- Center for the Study of Systems
Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, Georgia 30332, United States
| | - Hongyi Zhou
- Center for the Study of Systems
Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Chen H, Zhan M, Liu J, Liu Z, Shen M, Yang F, Kang Y, Yin F, Li Z. Structure-Based Design, Optimization, and Evaluation of Potent Stabilized Peptide Inhibitors Disrupting MTDH and SND1 Interaction. J Med Chem 2022; 65:12188-12199. [PMID: 36044768 DOI: 10.1021/acs.jmedchem.2c00862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blocking the interaction of MTDH/SND1 complex is an attractive strategy for cancer therapeutics. In this work, we designed and obtained a novel class of potent stabilized peptide inhibitors derived from MTDH sequence to disrupt MTDH/SND1 interaction. Through structure-based optimization and biological evaluation, stabilized peptides were obtained with tight binding affinity, improved cell penetration, and antitumor effects in the triple-negative breast cancer (TNBC) cells without nonspecific toxicity. To date, our study was the first report to demonstrate that stabilized peptides truncated from MTDH could serve as promising candidates to disrupt the MTDH/SND1 interaction for potential breast cancer treatment.
Collapse
Affiliation(s)
- Hailing Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Meimiao Zhan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianbo Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhihong Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Minhong Shen
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, United States
| | - Fenfang Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
44
|
Paulussen FM, Schouten GK, Moertl C, Verheul J, Hoekstra I, Koningstein GM, Hutchins GH, Alkir A, Luirink RA, Geerke DP, van Ulsen P, den Blaauwen T, Luirink J, Grossmann TN. Covalent Proteomimetic Inhibitor of the Bacterial FtsQB Divisome Complex. J Am Chem Soc 2022; 144:15303-15313. [PMID: 35945166 PMCID: PMC9413201 DOI: 10.1021/jacs.2c06304] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The use of antibiotics is threatened by the emergence
and spread
of multidrug-resistant strains of bacteria. Thus, there is a need
to develop antibiotics that address new targets. In this respect,
the bacterial divisome, a multi-protein complex central to cell division,
represents a potentially attractive target. Of particular interest
is the FtsQB subcomplex that plays a decisive role in divisome assembly
and peptidoglycan biogenesis in E. coli. Here, we report the structure-based design of
a macrocyclic covalent inhibitor derived from a periplasmic region
of FtsB that mediates its binding to FtsQ. The bioactive conformation
of this motif was stabilized by a customized cross-link resulting
in a tertiary structure mimetic with increased affinity for FtsQ.
To increase activity, a covalent handle was incorporated, providing
an inhibitor that impedes the interaction between FtsQ and FtsB irreversibly. The covalent inhibitor reduced the growth of an outer
membrane-permeable E. coli strain,
concurrent with the expected loss of FtsB localization, and also affected
the infection of zebrafish larvae by a clinical E.
coli strain. This first-in-class inhibitor of a divisome
protein–protein interaction highlights the potential of proteomimetic
molecules as inhibitors of challenging targets. In particular, the
covalent mode-of-action can serve as an inspiration for future antibiotics
that target protein–protein interactions.
Collapse
Affiliation(s)
- Felix M Paulussen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Gina K Schouten
- Medical Microbiology and Infection Control (MMI), Amsterdam UMC Location VUmc, De Boelelaan 1108, Amsterdam 1081 HZ, Netherlands
| | - Carolin Moertl
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Jolanda Verheul
- Department of Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, Netherlands
| | - Irma Hoekstra
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Gregory M Koningstein
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - George H Hutchins
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Aslihan Alkir
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Rosa A Luirink
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Daan P Geerke
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Peter van Ulsen
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Tanneke den Blaauwen
- Department of Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, Netherlands
| | - Joen Luirink
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| |
Collapse
|
45
|
Wakefield AE, Kozakov D, Vajda S. Mapping the binding sites of challenging drug targets. Curr Opin Struct Biol 2022; 75:102396. [PMID: 35636004 PMCID: PMC9790766 DOI: 10.1016/j.sbi.2022.102396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/03/2023]
Abstract
An increasing number of medically important proteins are challenging drug targets because their binding sites are too shallow or too polar, are cryptic and thus not detectable without a bound ligand or located in a protein-protein interface. While such proteins may not bind druglike small molecules with sufficiently high affinity, they are frequently druggable using novel therapeutic modalities. The need for such modalities can be determined by experimental or computational fragment based methods. Computational mapping by mixed solvent molecular dynamics simulations or the FTMap server can be used to determine binding hot spots. The strength and location of the hot spots provide very useful information for selecting potentially successful approaches to drug discovery.
Collapse
Affiliation(s)
- Amanda E. Wakefield
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215,Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA NY, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215,Department of Chemistry, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
46
|
Mayer G, Shpilt Z, Kowalski H, Tshuva EY, Friedler A. Targeting Protein Interaction Hotspots Using Structured and Disordered Chimeric Peptide Inhibitors. ACS Chem Biol 2022; 17:1811-1823. [PMID: 35758642 DOI: 10.1021/acschembio.2c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The main challenge in inhibiting protein-protein interactions (PPI) for therapeutic purposes is designing molecules that bind specifically to the interaction hotspots. Adding to the complexity, such hotspots can be within both structured and disordered interaction interfaces. To address this, we present a strategy for inhibiting the structured and disordered hotspots of interactions using chimeric peptides that contain both structured and disordered parts. The chimeric peptides we developed are comprised of a cyclic structured part and a disordered part, which target both disordered and structured hotspots. We demonstrate our approach by developing peptide inhibitors for the interactions of the antiapoptotic iASPP protein. First, we developed a structured, α-helical stapled peptide inhibitor, derived from the N-terminal domain of MDM2. The peptide bound two hotspots on iASPP at the low micromolar range and had a cytotoxic effect on A2780 cancer cells with a half-maximal inhibitory concentration (IC50) value of 10 ± 1 μM. We then developed chimeric peptides comprising the structured stapled helical peptide and the disordered p53-derived LinkTer peptide that we previously showed to inhibit iASPP by targeting its disordered RT loop. The chimeric peptide targeted both structured and disordered domains in iASPP with higher affinity compared to the individual structured and disordered peptides and caused cancer cell death. Our strategy overcomes the inherent difficulty in inhibiting the interactions of proteins that possess structured and disordered regions. It does so by using chimeric peptides derived from different interaction partners that together target a much wider interface covering both the structured and disordered domains. This paves the way for developing such inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Guy Mayer
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Zohar Shpilt
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Hadar Kowalski
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Edit Y Tshuva
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
47
|
Dai C, Lian C, Fang H, Luo Q, Huang J, Yang M, Yang H, Zhu L, Zhang J, Yin F, Li Z. Diversity-Oriented Synthesis of ERα Modulators via Mitsunobu Macrocyclization. Org Lett 2022; 24:3532-3537. [PMID: 35546524 DOI: 10.1021/acs.orglett.2c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diversity of cyclic peptides was expanded by elaborating Mitsunobu macrocyclization, tethering various hydroxy acid building blocks with different Nε-amine substituents. This new strategy was then applied in synthesizing peptidomimetic estrogen receptor modulator (PERM) analogs on the solid support. The PERM analogs exhibited increased serum peptidase stability, cell penetration, and estrogen receptor α binding affinity. Studying diversity-oriented methods for preparing azacyclopeptides provides a new tool for macrocycle construction and further structural information for optimizing ERα modulators for ER positive breast cancers.
Collapse
Affiliation(s)
- Chuan Dai
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China.,Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Chenshan Lian
- Pingshan translational medicine centre, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Huilong Fang
- Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China
| | - Qinhong Luo
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China
| | - Junrong Huang
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China
| | - Min Yang
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China
| | - Heng Yang
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China
| | - Lizhi Zhu
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China
| | - Jinqiang Zhang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Feng Yin
- Pingshan translational medicine centre, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Zigang Li
- Pingshan translational medicine centre, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
48
|
Abstract
Being able to effectively target RNA with potent ligands will open up a large number of potential therapeutic options. The knowledge on how to achieve this is ever expanding but an important question that remains open is what chemical matter is suitable to achieve this goal. The high flexibility of an RNA as well as its more limited chemical diversity and featureless binding sites can be difficult to target selectively but can be addressed by well-designed cyclic peptides. In this review we will provide an overview of reported cyclic peptide ligands for therapeutically relevant RNA targets and discuss the methods used to discover them. We will also provide critical insights into the properties required for potent and selective interaction and suggestions on how to assess these parameters. The use of cyclic peptides to target RNA is still in its infancy but the lessons learned from past examples can be adopted for the development of novel potent and selective ligands.
Collapse
Affiliation(s)
- Sunit Pal
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
49
|
Kang Z, Liu Q, Zhang Z, Zheng Y, Wang C, Pan Z, Li Q, Liu Y, Shi L. Arginine-Rich Polymers with Pore-Forming Capability Enable Efficient Intracellular Delivery via Direct Translocation Across Cell Membrane. Adv Healthc Mater 2022; 11:e2200371. [PMID: 35460333 DOI: 10.1002/adhm.202200371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Indexed: 11/07/2022]
Abstract
Efficient delivery of biomacromolecules or drugs across the cell membrane via endocytosis usually encounters inevitable entrapment in endosomes and subsequent degradation in lyso-endosomes. To address this issue, a series of arginine-rich cell penetrating polymers is designed and synthesized, which internalize into cells by inducing the formation of pores on the cell membrane, thereby crossing the cell membrane via direct translocation that fundamentally avoids endo/lysosomal entrapment. The structure-activity relationship studies show that PTn-R2-C6, which is a type of polymer that has two arginine residues and a flexible hexanoic acid linker in each side chain, exhibits excellent pore-formation ability on the cell membrane. Further investigations indicate that PTn-R2-C6 rapidly transports plasmid DNAs into cytosol through a similar endocytosis-independent pathway, thereby achieving significantly higher transfection efficiency and lower cytotoxicity than the gold-standard transfection reagent PEI 25K. These results suggest the great potential of PTn-R2-C6 as a safe and efficient gene transfection reagent for wide applications including disease treatments, vaccine development, and biomedical research purposes.
Collapse
Affiliation(s)
- Ziyao Kang
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials of Ministry of Education College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 P. R. China
| | - Qi Liu
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials of Ministry of Education College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 P. R. China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials of Ministry of Education College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 P. R. China
| | - Yadan Zheng
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials of Ministry of Education College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 P. R. China
| | - Chun Wang
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials of Ministry of Education College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 P. R. China
| | - Zheng Pan
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials of Ministry of Education College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 P. R. China
| | - Qiushi Li
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials of Ministry of Education College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 P. R. China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials of Ministry of Education College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 P. R. China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials of Ministry of Education College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
50
|
Batchelor M, Dawber RS, Wilson AJ, Bayliss R. α-Helix stabilization by co-operative side chain charge-reinforced interactions to phosphoserine in a basic kinase-substrate motif. Biochem J 2022; 479:687-700. [PMID: 35212726 PMCID: PMC9022996 DOI: 10.1042/bcj20210812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
How cellular functions are regulated through protein phosphorylation events that promote or inhibit protein-protein interactions (PPIs) is key to understanding regulatory molecular mechanisms. Whilst phosphorylation can orthosterically or allosterically influence protein recognition, phospho-driven changes in the conformation of recognition motifs are less well explored. We recently discovered that clathrin heavy chain recognizes phosphorylated TACC3 through a helical motif that, in the unphosphorylated protein, is disordered. However, it was unclear whether and how phosphorylation could stabilize a helix in a broader context. In the current manuscript, we address this challenge using poly-Ala-based model peptides and a suite of circular dichroism and nuclear magnetic resonance spectroscopies. We show that phosphorylation of a Ser residue stabilizes the α-helix in the context of an Arg(i-3)pSeri Lys(i+4) triad through charge-reinforced side chain interactions with positive co-operativity, whilst phosphorylation of Thr induces an opposing response. This is significant as it may represent a general method for control of PPIs by phosphorylation; basic kinase-substrate motifs are common with 55 human protein kinases recognizing an Arg at a position -3 from the phosphorylated Ser, whilst the Arg(i-3)Seri Lys(i+4) is a motif found in over 2000 human proteins.
Collapse
Affiliation(s)
- Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Robert S. Dawber
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Andrew J. Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| |
Collapse
|