1
|
Zhang L, Wang R, Liang Li G, Niu H, Bai Y, Jiao T, Zhang X, Liu R, Streb C, Yuan M, Zhang G. Boosting electrocatalytic ammonia synthesis from nitrate by asymmetric chemical potential activated interfacial electric fields. J Colloid Interface Sci 2024; 676:636-646. [PMID: 39053411 DOI: 10.1016/j.jcis.2024.07.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The electrocatalytic nitrate reduction reaction (NO3- RR) has immense potential to alleviate the problem of groundwater pollution and may also become a key route for the environmentally benign production of ammonia (NH3) products. Here, the unique effects of interfacial electric fields arising from asymmetric chemical potentials and local defects were integrated into the binary Bi2S3-Bi2O3 sublattices for enhancing electrocatalytic nitrate reduction reactions. The obtained binary system showed a superior Faraday efficiency (FE) for ammonia production of 94 % and an NH3 yield rate of 89.83 mg gcat-1h-1 at -0.4 V vs. RHE. Systematic experimental and computational results confirmed that the concerted interplay between interfacial electric fields and local defects not only promoted the accumulation and adsorption of NO3-, but also contributed to the destabilization of *NO and the subsequent deoxygenation hydrogenation reaction. This work will stimulate future designs of heterostructured catalysts for efficient electrocatalytic nitrate reduction reactions.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Runzhi Wang
- Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guo Liang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Hexu Niu
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University Xi'an, 710072, PR China
| | - Yiling Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; National Energy Center for Coal to Liquids, Synfuels China Technology C. Ltd, Beijing 101400, PR China
| | - Tianao Jiao
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University Xi'an, 710072, PR China
| | - Xuehua Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Rongji Liu
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Carsten Streb
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Menglei Yuan
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University Xi'an, 710072, PR China.
| | - Guangjin Zhang
- Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
2
|
Ge R, Huo J, Lu P, Dou Y, Bai Z, Li W, Liu H, Fei B, Dou S. Multifunctional Strategies of Advanced Electrocatalysts for Efficient Urea Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412031. [PMID: 39428837 DOI: 10.1002/adma.202412031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Indexed: 10/22/2024]
Abstract
The electrochemical reduction of nitrogenous species (such as N2, NO, NO2 -, and NO3 -) for urea synthesis under ambient conditions has been extensively studied due to their potential to realize carbon/nitrogen neutrality and mitigate environmental pollution, as well as provide a means to store renewable electricity generated from intermittent sources such as wind and solar power. However, the sluggish reaction kinetics and the scarcity of active sites on electrocatalysts have significantly hindered the advancement of their practical applications. Multifunctional engineering of electrocatalysts has been rationally designed and investigated to adjust their electronic structures, increase the density of active sites, and optimize the binding energies to enhance electrocatalytic performance. Here, surface engineering, defect engineering, doping engineering, and heterostructure engineering strategies for efficient nitrogen electro-reduction are comprehensively summarized. The role of each element in engineered electrocatalysts is elucidated at the atomic level, revealing the intrinsic active site, and understanding the relationship between atomic structure and catalytic performance. This review highlights the state-of-the-art progress of electrocatalytic reactions of waste nitrogenous species into urea. Moreover, this review outlines the challenges and opportunities for urea synthesis and aims to facilitate further research into the development of advanced electrocatalysts for a sustainable future.
Collapse
Affiliation(s)
- Riyue Ge
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
- Key Laboratory of Adv. Energy Mater. Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Juanjuan Huo
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Peng Lu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhongchao Bai
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Wenxian Li
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, The University of New South Wales, New South Wales, 2052, Australia
| | - Huakun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Bin Fei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| |
Collapse
|
3
|
Wu Y, Lin H, Mao Q, Yu H, Deng K, Wang J, Wang L, Wang Z, Wang H. Trace Cu-Induced Low C─N Coupling Barrier on Amorphous Co Metallene Boride for Boosting Electrochemical Urea Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407679. [PMID: 39394975 DOI: 10.1002/smll.202407679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Indexed: 10/14/2024]
Abstract
The electrochemical C─N coupling of carbon dioxide (CO2) and nitrate(NO3 -) is an alternative strategy to the traditional high-energy industrial pathway for urea synthesis, which urgently requires the design of efficient catalysts to achieve high yield and Faraday efficiency (FE). Here, amorphous low-content copper-doped cobalt metallene boride (a-Cu0.1CoBx metallene) is designed for urea synthesis via electrochemical C─N coupling. The a-Cu0.1CoBx metallene can drive electrocatalytic C─N coupling of CO2 and NO3 - for urea synthesis in CO2-saturated 0.1 m KNO3 electrolyte, with 27.7% of FE and 312 µg h-1 mg-1 cat. of yield at -0.5 V, as well as superior cycling stability. The in situ Fourier transform infrared and theoretical calculations reveal that electronic effect between Cu, Co, and B causes Cu and Co as dual active sites to promote the adsorption of reactants. Furthermore, the introduced trace Cu reduces the reaction energy barrier of the C─N coupling to facilitate urea synthesis. This work provides a promising route for the optimization of Co-based metallene for the electrosynthesis of urea through C─N coupling.
Collapse
Affiliation(s)
- Yueji Wu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Han Lin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jianguo Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
4
|
Ramadhany P, Luong Q, Zhang Z, Leverett J, Samorì P, Corrie S, Lovell E, Canbulat I, Daiyan R. State of Play of Critical Mineral-Based Catalysts for Electrochemical E-Refinery to Synthetic Fuels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405029. [PMID: 38838055 DOI: 10.1002/adma.202405029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Indexed: 06/07/2024]
Abstract
The pursuit of decarbonization involves leveraging waste CO2 for the production of valuable fuels and chemicals (e.g., ethanol, ethylene, and urea) through the electrochemical CO2 reduction reactions (CO2RR). The efficacy of this process heavily depends on electrocatalyst performance, which is generally reliant on high loading of critical minerals. However, the supply of these minerals is susceptible to shortage and disruption, prompting concerns regarding their usage, particularly in electrocatalysis, requiring swift innovations to mitigate the supply risks. The reliance on critical minerals in catalyst fabrication can be reduced by implementing design strategies that improve the available active sites, thereby increasing the mass activity. This review seeks to discuss and analyze potential strategies, challenges, and opportunities for improving catalyst activity in CO2RR with a special attention to addressing the risks associated with critical mineral scarcity. By shedding light onto these aspects of critical mineral-based catalyst systems, this review aims to inspire the development of high-performance catalysts and facilitates the practical application of CO2RR technology, whilst mitigating adverse economic, environmental, and community impacts.
Collapse
Affiliation(s)
- Putri Ramadhany
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Quang Luong
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Ziling Zhang
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Josh Leverett
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Simon Corrie
- Chemical and Biological Engineering Department, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Clayton, VIC 3800, Australia
| | - Emma Lovell
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ismet Canbulat
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Rahman Daiyan
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Mondal S, Peter SC. A Perspective on Electrochemical Point Source Utilization of CO 2 and Other Flue Gas Components to Value Added Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407124. [PMID: 39340298 DOI: 10.1002/adma.202407124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/10/2024] [Indexed: 09/30/2024]
Abstract
Electrochemical CO2 reduction reaction (eCO2RR) has been explored extensively for mitigation of noxious CO2 gas generating C1 and C2+ hydrocarbons and oxygenates as value-added fuels and chemicals with remarkable selectivity. The source of CO2 being a pure CO2 feed, it does not fully satisfy the real-time digestion of industrial exhausts. Besides the detrimental effect of noxious gas mixture leading to global warming, there is a huge capital investment in purifying the flue gas mixtures from industries. The presence of other impurity gases affects the eCO2RR mechanism and its activity and selectivity toward C2+ products dwindle drastically. Impurities like NOx, SOx, O2, N2, and halide ions present in flue gas mixture reduce the conversion and selectivity of eCO2RR significantly. Instead of wiping out these impurities via separation processes, new strategies from material chemistry and electrochemistry can open new avenues for turning foes to friends! In this perspective, the co-electroreduction will vividly discussed and supporting role of different heteroatom-containing impurity gases with CO2, generating highly stable C─N, C─S, C─X bonds, and highlight the existing limitations and providing probable solutions for attaining further success in this field and translating this to industrial exhaust streams.
Collapse
Affiliation(s)
- Soumi Mondal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| |
Collapse
|
6
|
Xu L, Yang Z, Zhang C, Chen C. Recent progress in electrochemical C-N coupling: metal catalyst strategies and applications. Chem Commun (Camb) 2024; 60:10822-10837. [PMID: 39233628 DOI: 10.1039/d4cc03256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Electrochemical C-N coupling reactions hold significant importance in the fields of organic chemistry and green chemistry. Conventional methods for constructing C-N bonds typically rely on high temperatures, high pressures, and other conditions that are energy-intensive and prone to generating environmental pollutants. In contrast, the electrochemical approaches employ electrical energy as the driving force to achieve C-N bond formation under ambient conditions, representing a more environment-friendly and sustainable alternative. The notable advantages of electrochemical C-N coupling include high efficiency, good selectivity, and mild reaction conditions. Through rational design of corresponding electrocatalysts, it is possible to achieve efficient C-N bond coupling at low potentials. Moreover, the electrochemical methods allow for precise control over reaction conditions, thereby avoiding side reactions and by-products that are common for conventional methods, improving both selectivity and product purity. Despite the extensive research efforts devoted to exploring the potential of electrochemical C-N coupling, the design of efficient and stable metal catalysts remains a significant challenge. In this review, we summarize and evaluate the latest strategies developed for designing metal catalysts, and their application prospects for different nitrogen sources such as N2 and NOx. We delineate how the control over nanoscale structures, morphologies, and electronic properties of metal catalysts can optimize their performance in C-N coupling reactions, and discuss the performances and advantages of single-metal catalysts, bimetallic catalysts, and single-atom catalysts under various reaction conditions. By summarizing the latest research achievements, particularly in the development of high-efficiency catalysts, the application of novel catalyst materials, and the in-depth study of reaction mechanisms, this review aims to provide insights for future research in the field of electrochemical C-N coupling, and demonstrates that rationally designed metal catalysts could not only enhance the efficiency and selectivity of electrochemical C-N coupling reactions, but also offer conceptual frameworks for other electrochemical reactions.
Collapse
Affiliation(s)
- Lekai Xu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhuojun Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xin Jiang, 830017, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Gao W, Wu Q, Fan X, Lu N, Liu Y, Quan X. Promoting Electrocatalytic Reduction of CO 2 and Nitrate to Urea on N-Doped Porous Hollow Carbon Spheres. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50726-50735. [PMID: 39265150 DOI: 10.1021/acsami.4c09949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The electrocatalytic coreduction of CO2 and nitrate is a green method for urea synthesis, mitigating CO2 emission and nitrate contamination. However, its slow kinetics and high energy barrier result in a poor urea production performance. Herein, we reported N-doped porous hollow carbon spheres (N-PHCS) for promoting CO2 and nitrate conversion to urea via nanoconfinement and N-doping from both reaction kinetics and thermodynamics. A high urea yield of 12.0 mmol h-1 gcat-1 with Faradaic efficiency of 19.1% was achieved on N-PHCS at -1.0 V (vs Ag/AgCl), which was comparable to or even higher than those of metal-based electrocatalysts reported. The experimental and theoretical calculation results revealed that carbon spheres with an appropriate interior void and pore size were favorable for confining reactants and intermediates to accelerate urea production, while N-doping can reduce the energy barrier for urea synthesis. By regulating the microstructure and N doping of N-PHCS, it showed a superior performance for urea electrosynthesis. The energy favorable pathway for urea synthesis was through the C-N coupling reaction of *NO and *CO, and pyridinic N can reduce the reaction energy barrier.
Collapse
Affiliation(s)
- Wantao Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qinyue Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Na Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Li C, Zhu Q, Song C, Zeng Y, Zheng Y. Electrocatalysts for Urea Synthesis from CO 2 and Nitrogenous Species: From CO 2 and N 2/NOx Reduction to urea synthesis. CHEMSUSCHEM 2024:e202401333. [PMID: 39121168 DOI: 10.1002/cssc.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/11/2024]
Abstract
The traditional industrial synthesis of urea relies on the energy-intensive and polluting process, namely the Haber-Bosch method for ammonia production, followed by the Bosch-Meiser process for urea synthesis. In contrast, electrocatalytic C-N coupling from carbon dioxide (CO2) and nitrogenous species presents a promising alternative for direct urea synthesis under ambient conditions, bypassing the need for ammonia production. This review provides an overview of recent progress in the electrocatalytic coupling of CO2 and nitrogen sources for urea synthesis. It focuses on the role of intermediate species and active site structures in promoting urea synthesis, drawing from insights into reactants' adsorption behavior and interactions with catalysts tailored for CO2 reduction, nitrogen reduction, and nitrate reduction. Advanced electrocatalyst design strategies for urea synthesis from CO2 and nitrogenous species under ambient conditions are explored, providing insights for efficient catalyst design. Key challenges and prospective directions are presented in the conclusion. Mechanistic studies elucidating the C-N coupling reaction and future development directions are discussed. The review aims to inspire further research and development in electrocatalysts for electrochemical urea synthesis.
Collapse
Affiliation(s)
- Chun Li
- Department of Chemical and Biochemical Engineering, Western University, 1150 Richmond Street, London, ON, N6A 3K7, Canada
| | - Qiuji Zhu
- Department of Chemical and Biochemical Engineering, Western University, 1150 Richmond Street, London, ON, N6A 3K7, Canada
| | - Chaojie Song
- Clean Energy Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, BC, V6T 1W5, Canada
| | - Yimin Zeng
- CanmetMaterial, 183 Longwood Rd S., Hamilton, Ontario, L8P 0A5, Canada
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Western University, 1150 Richmond Street, London, ON, N6A 3K7, Canada
| |
Collapse
|
9
|
Chen X, Kong Y, Yin H, Yang X, Zhao Q, Xiao D, Wang Z, Zhang Y, Xue Q. Unveiling the Enhancement of Electrocatalytic Oxygen Evolution Activity in Ru-Fe 2O 3/CoS Heterojunction Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403427. [PMID: 39076054 DOI: 10.1002/smll.202403427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/19/2024] [Indexed: 07/31/2024]
Abstract
The development of highly efficient electrocatalysts for the sluggish anodic oxygen evolution reaction (OER) is crucial to meet the practical demand for water splitting. In this study, an effective approach is proposed that simultaneously enhances interfacial interaction and catalytic activity by modifying Fe2O3/CoS heterojunction using Ru doping strategy to construct an efficient electrocatalytic oxygen evolution catalyst. The unique morphology of Ru doped Fe2O3 (Ru-Fe2O3) nanoring decorated by CoS nanoparticles ensures a large active surface area and a high number of active sites. The designed Ru-Fe2O3/CoS catalyst achieves a low OER overpotential (264 mV) at 10 mA cm-2 and demonstrates exceptional stability even at high current density of 100 mA cm-2, maintaining its performance for an impressive duration of 90 h. The catalytic performance of this Ru-Fe2O3/CoS catalyst surpasses that of other iron-based oxide catalysts and even outperforms the state-of-the-art RuO2. Density functional theory (DFT) calculation as well as experimental in situ characterization confirm that the introduction of Ru atoms can enhance the interfacial electron interaction, accelerating the electron transfer, and serve as highly active sites reducing the energy barrier for rate determination step. This work provides an efficient strategy to reveal the enhancement of electrocatalytic oxygen evolution activity of heterojunction catalysts by doping engineering.
Collapse
Affiliation(s)
- Xue Chen
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
- School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Yilin Kong
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Hongfei Yin
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xiaoyong Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, 75120, Sweden
| | - Qiuyu Zhao
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Dongdong Xiao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhili Wang
- School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Yongzheng Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
- Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Qikun Xue
- Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
- Department of physics, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
Zhou W, Feng C, Li X, Jiang X, Jing L, Qi S, Huo Q, Lv M, Chen X, Huang T, Zhao J, Meng N, Yang H, Hu Q, He C. Boosting Electrochemical Urea Synthesis via Constructing Ordered Pd-Zn Active Pair. NANO-MICRO LETTERS 2024; 16:247. [PMID: 39008133 PMCID: PMC11250753 DOI: 10.1007/s40820-024-01462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/16/2024] [Indexed: 07/16/2024]
Abstract
Electrochemical co-reduction of nitrate (NO3-) and carbon dioxide (CO2) has been widely regarded as a promising route to produce urea under ambient conditions, however the yield rate of urea has remained limited. Here, we report an atomically ordered intermetallic pallium-zinc (PdZn) electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis. It is found that Pd and Zn are responsible for the adsorption and activation of NO3- and CO2, respectively, and thus the co-adsorption and co-activation NO3- and CO2 are achieved in ordered PdZn pairs. More importantly, the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier, as demonstrated on both operando measurements and theoretical calculations. Consequently, the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78% and a urea yield rate of 1274.42 μg mg-1 h-1, and the latter is 1.5-fold larger than disordered pairs in PdZn alloys. This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.
Collapse
Affiliation(s)
- Weiliang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Chao Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Xuan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Xingxing Jiang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Lingyan Jing
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Shuai Qi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Qihua Huo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Miaoyuan Lv
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Xinbao Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Tianchi Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Jingwen Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Na Meng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China.
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Gao Y, Wang J, Sun M, Jing Y, Chen L, Liang Z, Yang Y, Zhang C, Yao J, Wang X. Tandem Catalysts Enabling Efficient C-N Coupling toward the Electrosynthesis of Urea. Angew Chem Int Ed Engl 2024; 63:e202402215. [PMID: 38581164 DOI: 10.1002/anie.202402215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
The development of a methodology for synthesizing value-added urea (CO(NH2)2) via a renewable electricity-driven C-N coupling reaction under mild conditions is highly anticipated. However, the complex catalytic active sites that act on the carbon and nitrogen species make the reaction mechanism unclear, resulting in a low efficiency of C-N coupling from the co-reduction of carbon dioxide (CO2) and nitrate (NO3 -). Herein, we propose a novel tandem catalyst of Mo-PCN-222(Co), in which the Mo sites serve to facilitate nitrate reduction to the *NH2 intermediate, while the Co sites enhance CO2 reduction to carbonic oxide (CO), thus synergistically promoting C-N coupling. The synthesized Mo-PCN-222(Co) catalyst exhibited a noteworthy urea yield rate of 844.11 mg h-1 g-1, alongside a corresponding Faradaic efficiency of 33.90 % at -0.4 V vs. reversible hydrogen electrode (RHE). By combining in situ spectroscopic techniques with density functional theory calculations, we demonstrate that efficient C-N coupling is attributed to a tandem system in which the *NH2 and *CO intermediates produced by the Mo and Co active sites of Mo-PCN-222(Co) stabilize the formation of the *CONH2 intermediate. This study provides an effective avenue for the design and synthesis of tandem catalysts for electrocatalytic urea synthesis.
Collapse
Affiliation(s)
- Yuhang Gao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jingnan Wang
- Molecular Plus and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, 300072, Tianjin, P. R. China
| | - Menglong Sun
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yuan Jing
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Lili Chen
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Zhiqin Liang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, 100044, Beijing, P. R. China
- Tangshan Research Institute of Beijing Jiaotong University, 063000, Tangshan, P. R. China
| | - Yijun Yang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, 100044, Beijing, P. R. China
- Tangshan Research Institute of Beijing Jiaotong University, 063000, Tangshan, P. R. China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, 100044, Beijing, P. R. China
- Tangshan Research Institute of Beijing Jiaotong University, 063000, Tangshan, P. R. China
| |
Collapse
|
12
|
Fan X, Liu C, He X, Li Z, Yue L, Zhao W, Li J, Wang Y, Li T, Luo Y, Zheng D, Sun S, Liu Q, Li L, Chu W, Gong F, Tang B, Yao Y, Sun X. Efficient Electrochemical Co-Reduction of Carbon Dioxide and Nitrate to Urea with High Faradaic Efficiency on Cobalt-Based Dual-Sites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401221. [PMID: 38563723 DOI: 10.1002/adma.202401221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Renewable electricity-powered nitrate/carbon dioxide co-reduction reaction toward urea production paves an attractive alternative to industrial urea processes and offers a clean on-site approach to closing the global nitrogen cycle. However, its large-scale implantation is severely impeded by challenging C-N coupling and requires electrocatalysts with high activity/selectivity. Here, cobalt-nanoparticles anchored on carbon nanosheet (Co NPs@C) are proposed as a catalyst electrode to boost yield and Faradaic efficiency (FE) toward urea electrosynthesis with enhanced C-N coupling. Such Co NPs@C renders superb urea-producing activity with a high FE reaching 54.3% and a urea yield of 2217.5 µg h-1 mgcat. -1, much superior to the Co NPs and C nanosheet counterparts, and meanwhile shows strong stability. The Co NPs@C affords rich catalytically active sites, fast reactant diffusion, and sufficient catalytic surfaces-electrolyte contacts with favored charge and ion transfer efficiencies. The theoretical calculations reveal that the high-rate formation of *CO and *NH2 intermediates is crucial for facilitating urea synthesis.
Collapse
Affiliation(s)
- Xiaoya Fan
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Chaozhen Liu
- MOE Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Luchao Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Wenxi Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Wei Chu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Feng Gong
- MOE Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
- Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Yongchao Yao
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
13
|
Yang C, Yang Z, Zhang W, Chen A, Li Y. Catalysts for C-N coupling in urea electrosynthesis under ambient conditions from carbon dioxide and nitrogenous species. Chem Commun (Camb) 2024; 60:5666-5682. [PMID: 38742398 DOI: 10.1039/d4cc00981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Urea is an indispensable nitrogen-containing organic compound in modern human life. However, the current industrial synthesis of urea involves ammonia, which is produced through the Haber-Bosch process under harsh reaction conditions, causing huge energy consumption and heavy environmental pollution. Electrochemical reduction of carbon dioxide (CO2) and nitrogenous species (N2, NOx- and NO) have achieved significant progress, offering a promising approach for the electrochemical C-N coupling to produce urea under ambient conditions. Urea synthesis driven by renewable electricity represents a suitable alternative to the traditional process, contributing to the goal of carbon neutrality and nitrogen cycles. However, challenges such as low yield rate, poor selectivity and unveiled reaction mechanisms still need to be addressed. This review provides a summary of the latest catalysts utilized in urea electrosynthesis, aiming to provide guidance and prospects for the development of high-performance catalysts.
Collapse
Affiliation(s)
- Chunqi Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Ziyan Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Wenxuan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Aiping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Yuhang Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| |
Collapse
|
14
|
Ma L, Yuan J, Liu Z, Luo Y, Su Y, Zhu K, Feng Z, Niu H, Xiao S, Wei J, Xiang X. Mesoporous Electrocatalysts with p-n Heterojunctions for Efficient Electroreduction of CO 2 and N 2 to Urea. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26015-26024. [PMID: 38721726 DOI: 10.1021/acsami.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The electrocatalytic synthesis of high-value-added urea by activating N2 and CO2 is a green synthesis technology that has achieved carbon neutrality. However, the chemical adsorption and C-N coupling ability of N2 and CO2 on the surface of the catalyst are generally poor, greatly limiting the improvement of electrocatalytic activity and selectivity in electrocatalytic urea synthesis. Herein, novel hierarchical mesoporous CeO2/Co3O4 heterostructures are fabricated, and at an ultralow applied voltage of -0.2 V, the urea yield rate reaches 5.81 mmol g-1 h-1, with a corresponding Faraday efficiency of 30.05%. The hierarchical mesoporous material effectively reduces the mass transfer resistance of reactants and intermediates, making it easier for them to access active centers. The emerging space-charge regions at the heterointerface generate local electrophilic and nucleophilic regions, facilitating CO2 targeted adsorption in the electrophilic region and activation to produce *CO intermediates and N2 targeted adsorption in the nucleophilic region and activation to generate *N ═ N* intermediates. Then, the electrons in the σ orbitals of *N ═ N* intermediates can be easily accepted by the empty eg orbitals of Co3+ in CeO2/Co3O4, which presents a low-spin state (LS: t2g6eg0). Subsequently, *CO couples with *N ═ N* to produce the key intermediate *NCON*. Interestingly, it was discovered through in situ Raman spectroscopy that the CeO2/Co3O4 catalyst has a reversible spinel structure before and after the electrocatalytic reaction, which is due to the surface reconstruction of the catalyst during the electrocatalytic reaction process, producing amorphous active cobalt oxides, which is beneficial for improving electrocatalytic activity.
Collapse
Affiliation(s)
- Lingjia Ma
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiongliang Yuan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhaotao Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yiqing Luo
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuning Su
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Kunye Zhu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zefeng Feng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huihua Niu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuaishuai Xiao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianjun Wei
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang 324000, P. R. China
| |
Collapse
|
15
|
Jiang M, Wang H, Zhu M, Luo X, He Y, Wang M, Wu C, Zhang L, Li X, Liao X, Jiang Z, Jin Z. Review on strategies for improving the added value and expanding the scope of CO 2 electroreduction products. Chem Soc Rev 2024; 53:5149-5189. [PMID: 38566609 DOI: 10.1039/d3cs00857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The electrochemical reduction of CO2 into value-added chemicals has been explored as a promising solution to realize carbon neutrality and inhibit global warming. This involves utilizing the electrochemical CO2 reduction reaction (CO2RR) to produce a variety of single-carbon (C1) and multi-carbon (C2+) products. Additionally, the electrolyte solution in the CO2RR system can be enriched with nitrogen sources (such as NO3-, NO2-, N2, or NO) to enable the synthesis of organonitrogen compounds via C-N coupling reactions. However, the electrochemical conversion of CO2 into valuable chemicals still faces challenges in terms of low product yield, poor faradaic efficiency (FE), and unclear understanding of the reaction mechanism. This review summarizes the promising strategies aimed at achieving selective production of diverse carbon-containing products, including CO, formate, hydrocarbons, alcohols, and organonitrogen compounds. These approaches involve the rational design of electrocatalysts and the construction of coupled electrocatalytic reaction systems. Moreover, this review presents the underlying reaction mechanisms, identifies the existing challenges, and highlights the prospects of the electrosynthesis processes. The aim is to offer valuable insights and guidance for future research on the electrocatalytic conversion of CO2 into carbon-containing products of enhanced value-added potential.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Xiao Li
- College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China.
| | - Xuemei Liao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhenju Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
16
|
Chen X, Lv S, Gu H, Cui H, Liu G, Liu Y, Li Z, Xu Z, Kang J, Teobaldi G, Liu LM, Guo L. Amorphous Bismuth-Tin Oxide Nanosheets with Optimized C-N Coupling for Efficient Urea Synthesis. J Am Chem Soc 2024; 146:13527-13535. [PMID: 38691638 DOI: 10.1021/jacs.4c03156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Closing the carbon and nitrogen cycles by electrochemical methods using renewable energy to convert abundant or harmful feedstocks into high-value C- or N-containing chemicals has the potential to transform the global energy landscape. However, efficient conversion avenues have to date been mostly realized for the independent reduction of CO2 or NO3-. The synthesis of more complex C-N compounds still suffers from low conversion efficiency due to the inability to find effective catalysts. To this end, here we present amorphous bismuth-tin oxide nanosheets, which effectively reduce the energy barrier of the catalytic reaction, facilitating efficient and highly selective urea production. With enhanced CO2 adsorption and activation on the catalyst, a C-N coupling pathway based on *CO2 rather than traditional *CO is realized. The optimized orbital symmetry of the C- (*CO2) and N-containing (*NO2) intermediates promotes a significant increase in the Faraday efficiency of urea production to an outstanding value of 78.36% at -0.4 V vs RHE. In parallel, the nitrogen and carbon selectivity for urea formation is also enhanced to 90.41% and 95.39%, respectively. The present results and insights provide a valuable reference for the further development of new catalysts for efficient synthesis of high-value C-N compounds from CO2.
Collapse
Affiliation(s)
- Xiangyu Chen
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Shuning Lv
- School of Physics, Beihang University, Beijing 100191, China
| | - Hongfei Gu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Hanke Cui
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Gui Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Yifei Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Zhaoyu Li
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Ziyan Xu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Jianxin Kang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Gilberto Teobaldi
- Scientific Computing Department, STFC UKRI, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| |
Collapse
|
17
|
Zhang M, Feng T, Che X, Wang Y, Wang P, Chai M, Yuan M. Advances in Catalysts for Urea Electrosynthesis Utilizing CO 2 and Nitrogenous Materials: A Mechanistic Perspective. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2142. [PMID: 38730948 PMCID: PMC11084697 DOI: 10.3390/ma17092142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Electrocatalytic urea synthesis from CO2 and nitrogenous substances represents an essential advance for the chemical industry, enabling the efficient utilization of resources and promoting sustainable development. However, the development of electrocatalytic urea synthesis has been severely limited by weak chemisorption, poor activation and difficulties in C-N coupling reactions. In this review, catalysts and corresponding reaction mechanisms in the emerging fields of bimetallic catalysts, MXenes, frustrated Lewis acid-base pairs and heterostructures are summarized in terms of the two central mechanisms of molecule-catalyst interactions as well as chemical bond cleavage and directional coupling, which provide new perspectives for improving the efficiency of electrocatalytic synthesis of urea. This review provides valuable insights to elucidate potential electrocatalytic mechanisms.
Collapse
Affiliation(s)
- Mengfei Zhang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Tianjian Feng
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Xuanming Che
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Yuhan Wang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Pengxian Wang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Mao Chai
- Guoneng Shanxi Hequ Power Generation Co., Ltd., Xinzhou 036500, China
| | - Menglei Yuan
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
18
|
Yu Y, Lv Z, Liu Z, Sun Y, Wei Y, Ji X, Li Y, Li H, Wang L, Lai J. Activation of Ga Liquid Catalyst with Continuously Exposed Active Sites for Electrocatalytic C-N Coupling. Angew Chem Int Ed Engl 2024; 63:e202402236. [PMID: 38357746 DOI: 10.1002/anie.202402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Environmentally friendly electrocatalytic coupling of CO2 and N2 for urea synthesis is a promising strategy. However, it is still facing problems such as low yield as well as low stability. Here, a new carbon-coated liquid alloy catalyst, Ga79Cu11Mo10@C is designed for efficient electrochemical urea synthesis by activating Ga active sites. During the N2 and CO2 co-reduction process, the yield of urea reaches 28.25 mmol h-1 g-1, which is the highest yield reported so far under the same conditions, the Faraday efficiency (FE) is also as high as 60.6 % at -0.4 V vs. RHE. In addition, the catalyst shows excellent stability under 100 h of testing. Comprehensive analyses showed that sequential exposure of a high density of active sites promoted the adsorption and activation of N2 and CO2 for efficient coupling reactions. This coupling reaction occurs through a thermodynamic spontaneous reaction between *N=N* and CO to form a C-N bond. The deformability of the liquid state facilitates catalyst recovery and enhances stability and resistance to poisoning. Moreover, the introduction of Cu and Mo stimulates the Ga active sites, which successfully synthesises the *NCON* intermediate. The reaction energy barrier of the third proton-coupled electron transfer process rate-determining step (RDS) *NHCONH→*NHCONH2 was lowered, ensuring the efficient synthesis of urea.
Collapse
Affiliation(s)
- Yaodong Yu
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zheng Lv
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Ziyi Liu
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yuyao Sun
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yingying Wei
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiang Ji
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yanyan Li
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hongdong Li
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
19
|
Wang Y, Xia S, Cai R, Zhang J, Yu C, Cui J, Zhang Y, Wu J, Wu Y. Dynamic Reconstruction of Two-Dimensional Defective Bi Nanosheets for Efficient Electrocatalytic Urea Synthesis. Angew Chem Int Ed Engl 2024; 63:e202318589. [PMID: 38385612 DOI: 10.1002/anie.202318589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Catalyst surface dynamics drive the generation of active species for electrocatalytic reactions. Yet, the understanding of dominant site formation and reaction mechanisms is limited. In this study, we thoroughly investigate the dynamic reconstruction of two-dimensional defective Bi nanosheets from exfoliated Bi2Se3 nanosheets under electrochemical CO2 and nitrate (NO3 -) reduction conditions. The ultrathin Bi2Se3 nanosheets obtained by NaBH4-assisted cryo-mediated liquid-phase exfoliation are more easily reduced and reconstructed to Bi nanosheets with high-density grain boundaries (GBs; GB-rich Bi). The reconstructed GB-rich Bi catalyst affords a remarkable yield rate of 4.6 mmol h-1 mgcat. -1 and Faradaic efficiency of 32 % for urea production at -0.40 V vs. RHE. Notably, this yield rate is 2 and 8.2 times higher than those of the low-GB Bi and bulk Bi catalysts, respectively. Theoretical analysis demonstrates that the GB sites significantly reduce the *CO and *NH2 intermediate formation energy and C-N coupling energy barrier, enabling selective urea electrosynthesis on the GB-rich Bi catalyst. This work will trigger further research into the structure-activity interplay in dynamic processes using in situ techniques.
Collapse
Affiliation(s)
- Yan Wang
- Department School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
- Institute of Energy, Hefei Comprehensive National Science Center, Anhui Energy Laboratory), Hefei, 230009, China
| | - Shuai Xia
- Department School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Rui Cai
- Department School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jianfang Zhang
- Department School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cuiping Yu
- Department School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jiewu Cui
- Department School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yong Zhang
- Department School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH-45221, United States
| | - Yucheng Wu
- Department School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
- China International S&T Cooperation Base for Advanced Energy and Environmental Materials & Anhui Provincial International S&T Cooperation Base for Advanced Energy Materials, Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
20
|
Zhao X, Feng Q, Liu M, Wang Y, Liu W, Deng D, Jiang J, Zheng X, Zhan L, Wang J, Zheng H, Bai Y, Chen Y, Xiong X, Lei Y. Built-in Electric Field Promotes Interfacial Adsorption and Activation of CO 2 for C 1 Products over a Wide Potential Window. ACS NANO 2024; 18:9678-9687. [PMID: 38522087 DOI: 10.1021/acsnano.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The unsatisfactory adsorption and activation of CO2 suppress electrochemical reduction over a wide potential window. Herein, the built-in electric field (BIEF) at the CeO2/In2O3 n-n heterostructure realizes the C1 (CO and HCOO-) selectivity over 90.0% in a broad range of potentials from -0.7 to -1.1 V with a maximum value of 98.7 ± 0.3% at -0.8 V. In addition, the C1 current density (-1.1 V) of the CeO2/In2O3 heterostructure with a BIEF is about 2.0- and 3.2-fold that of In2O3 and a physically mixed sample, respectively. The experimental and theoretical calculation results indicate that the introduction of CeO2 triggered the charge redistribution and formed the BIEF at the interfaces, which enhanced the interfacial adsorption and activation of CO2 at low overpotentials. Furthermore, the promoting effect was also extended to CeO2/In2S3. This work gives a deep understanding of BIEF engineering for highly efficient CO2 electroreduction over a wide potential window.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Qingguo Feng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610097, People's Republic of China
| | - Mengjie Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Danni Deng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Jiabi Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Xinran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Longsheng Zhan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Jinxian Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Huanran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Yu Bai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Yingbi Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Xiang Xiong
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
21
|
Zhang Y, Zhao Y, Sendeku MG, Li F, Fang J, Wang Y, Zhuang Z, Kuang Y, Liu B, Sun X. Tuning Intermediates Adsorption and C─N Coupling for Efficient Urea Electrosynthesis Via Doping Ni into Cu. SMALL METHODS 2024; 8:e2300811. [PMID: 37997184 DOI: 10.1002/smtd.202300811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/06/2023] [Indexed: 11/25/2023]
Abstract
Simultaneous electrochemical reduction of nitrite and carbon dioxide (CO2 ) under mild reaction conditions offers a new sustainable and low-cost approach for urea synthesis. However, the development of urea electrosynthesis thus far still suffers from low selectivity due to the high energy barrier of * CO formation and the subsequent C─N coupling. In this work, a highly active dendritic Cu99 Ni1 catalyst is developed to enable the highly selective electrosynthesis of urea from co-reduction of nitrite and CO2 , reaching a urea Faradaic efficiency (FE) and production rate of 39.8% and 655.4 µg h-1 cm-2 , respectively, at -0.7 V versus reversible hydrogen electrode (RHE). In situ Fourier-transform infrared spectroscopy (FT-IR) measurements together with density functional theory (DFT) calculations demonstrate that Ni doping into Cu can significantly enhance the adsorption energetics of the key reaction intermediates and facilitate the C─N coupling. This work not only provides a new strategy to design efficient electrocatalysts for urea synthesis but also offers deep insights into the mechanism of C─N coupling during the co-reduction of nitrite and CO2 .
Collapse
Affiliation(s)
- Yangyang Zhang
- State Key Lab of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 639798, Singapore
| | - Yajun Zhao
- State Key Lab of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Marshet Getaye Sendeku
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, P. R. China
| | - Fuhua Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 639798, Singapore
| | - Jinjie Fang
- State Key Lab of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuan Wang
- State Key Lab of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhongbin Zhuang
- State Key Lab of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yun Kuang
- State Key Lab of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, P. R. China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, China, Hong Kong SAR, 999077, P. R. China
| | - Xiaoming Sun
- State Key Lab of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
22
|
Li P, Zhu Q, Liu J, Wu T, Song X, Meng Q, Kang X, Sun X, Han B. Efficient C-N coupling for urea electrosynthesis on defective Co 3O 4 with dual-functional sites. Chem Sci 2024; 15:3233-3239. [PMID: 38425518 PMCID: PMC10901497 DOI: 10.1039/d3sc06579k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Urea electrosynthesis under ambient conditions is emerging as a promising alternative to conventional synthetic protocols. However, the weak binding of reactants/intermediates on the catalyst surface induces multiple competing pathways, hindering efficient urea production. Herein, we report the synthesis of defective Co3O4 catalysts that integrate dual-functional sites for urea production from CO2 and nitrite. Regulating the reactant adsorption capacity on defective Co3O4 catalysts can efficiently control the competing reaction pathways. The urea yield rate of 3361 mg h-1 gcat-1 was achieved with a corresponding faradaic efficiency (FE) of 26.3% and 100% carbon selectivity at a potential of -0.7 V vs. the reversible hydrogen electrode. Both experimental and theoretical investigations reveal that the introduction of oxygen vacancies efficiently triggers the formation of well-matched adsorption/activation sites, optimizing the adsorption of reactants/intermediates while decreasing the C-N coupling reaction energy. This work offers new insights into the development of dual-functional catalysts based on non-noble transition metal oxides with oxygen vacancies, enabling the efficient electrosynthesis of essential C-N fine chemicals.
Collapse
Affiliation(s)
- Pengsong Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiyuan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinglei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
23
|
Udayasurian SR, Li T. Recent research progress on building C-N bonds via electrochemical NO x reduction. NANOSCALE 2024; 16:2805-2819. [PMID: 38240609 DOI: 10.1039/d3nr06151e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The release of NOx species (such as nitrate, nitrite and nitric oxide) into water and the atmosphere due to human being's agricultural and industrial activities has caused a series of environmental problems, including accumulation of toxic pollutants that are dangerous to humans and animals, acid rain, the greenhouse effect and disturbance of the global nitrogen cycle balance. Electrosynthesis of organonitrogen compounds with NOx species as the nitrogen source offers a sustainable strategy to upgrade the waste NOx into value-added organic products under ambient conditions. The electrochemical reduction of NOx species can generate surface-adsorbed intermediates such as hydroxylamine, which are usually strong nucleophiles and can undergo nucleophilic attack to carbonyl groups to build C-N bonds and generate organonitrogen compounds such as amine, oxime, amide and amino acid. This mini-review summarizes the most recent progress in building C-N bonds via the in situ generation of nucleophilic intermediates from electrochemical NOx reduction, and highlights some important strategies in facilitating the reaction rates and selectivities towards the C-N coupling products. In particular, the preparation of high-performance electrocatalysts (e.g., nano-/atomic-scale catalysts, single-atom catalysts, alloy catalysts), selection of nucleophilic intermediates, novel design of reactors and understanding the surface adsorption process are highlighted. A few key challenges and knowledge gaps are discussed, and some promising research directions are also proposed for future advances in electrochemical C-N coupling.
Collapse
Affiliation(s)
- Shaktiswaran R Udayasurian
- School of Chemistry and Environment, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Tengfei Li
- School of Chemistry and Environment, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
24
|
Zhong W, Chen D, Wu Y, Yue J, Shen Z, Huang H, Wang Y, Li X, Lang JP, Xia Q, Cao Y. Screening of transition metal and boron atoms co-doped graphdiyne catalysts for electrocatalytic urea synthesis. J Colloid Interface Sci 2024; 655:80-89. [PMID: 37925971 DOI: 10.1016/j.jcis.2023.10.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Electrocatalytic CN coupling using nitrogen (N2) and carbon dioxide (CO2) as precursors offers a promising alternative for urea production under mild conditions, compared to traditional synthesis approaches. However, the design and screening of extremely efficient electrocatalysts remains a significant challenge in this field. Hence, we propose a systematic approach to screen efficient double-atom catalysts (DACs) with both metal and boron active sites, employing density functional theory (DFT). A comprehensive evaluation of 27 potential catalysts were performed, taking into account their stability, co-adsorption of N2 and CO2, as well as the potential-determining step (PDS) involved urea formation. The calculated results show that co-doped graphdiyne with CrB and MnB double atoms (CrB@GDY and MnB@GDY) emerge as potential electrocatalysts for urea production, displaying thermodynamic energy barriers of 0.41 eV and 0.66 eV, respectively. More importantly, these two DACs can significantly suppress the ammonia (NH3) and C1 products formation. Furthermore, a catalytic activity relationship between the d-band centers of the DACs and urea production performance were established. This study not only forecasts two promising DACs for subsequent experimental work but also establishes a theoretical framework for the evaluation of DACs in electrocatalytic urea synthesis.
Collapse
Affiliation(s)
- Weichan Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Dixing Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Yuting Wu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Jingxiu Yue
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China.
| | - Qineng Xia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| | - Yongyong Cao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| |
Collapse
|
25
|
Sun X, Li Y, Wang Y, Liu Z, Dong K, Zhang S. Effect of Interlayer Spaces and Interfacial Structures on High-Performance MXene/Ionic Liquid Supercapacitors: A Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2220-2229. [PMID: 38214961 DOI: 10.1021/acs.langmuir.3c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The combination of high-capacitance MXenes and wide-electrochemical-window ionic liquids (ILs) has exhibited bright prospects in supercapacitors. Several strategies, such as surficial functionalization and interlayer spacing tuning, have been used to enhance the electrochemical performance of supercapacitors. However, the lack of theoretical guidance on these strategies, including the effects of the microenvironment in the interlayer of confined ILs, hindered the further exploration of such devices. Herein, we performed molecular dynamics simulations to comprehensively investigate the effects of the interlayer space and surface terminations of MXene electrodes on capacity. The results show that the electrical double layer (EDL) structure was found to form on the interface between the MXene electrode and ILs electrolyte by analyzing the ion number density and charge density in the nanometer confined spaces. Under the same potential, the -OH terminations significantly impact the ion orientation in the EDL, particularly near the electrode surface, where cations tend to align vertically, allowing the retention of more cations at the electrode surfaces. Interestingly, such an orientation distribution was decisively from the hydrogen bonds expressed by O-H···O between the -OH termination of MXene and -OH groups of ILs. The differential capacitances of the supercapacitors were calculated by the surficial electron density, and it showed that the capacitance is a nearly one-quarter increase in the 14 Å interlayer spacing compared with that of 10 Å under an applied potential of 2 V. At the same time, the Ti3C2(OH)2 electrode had a higher differential capacitance than the Ti3C2O2 electrode, which possibly originates from the stronger hydrogen bonds to contribute to the vertical aggregation of the cations. Our results highlighted the roles of the interlayer spacing distance and surface terminations of the MXene on the performance of the type of supercapacitor.
Collapse
Affiliation(s)
- Xinyue Sun
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yao Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, P.R. China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Zhimin Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Kun Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, P.R. China
| |
Collapse
|
26
|
Tu X, Zhu X, Bo S, Zhang X, Miao R, Wen G, Chen C, Li J, Zhou Y, Liu Q, Chen D, Shao H, Yan D, Li Y, Jia J, Wang S. A Universal Approach for Sustainable Urea Synthesis via Intermediate Assembly at the Electrode/Electrolyte Interface. Angew Chem Int Ed Engl 2024; 63:e202317087. [PMID: 38055225 DOI: 10.1002/anie.202317087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Electrocatalytic C-N coupling process is indeed a sustainable alternative for direct urea synthesis and co-upgrading of carbon dioxide and nitrate wastes. However, the main challenge lies in the unactivated C-N coupling process. Here, we proposed a strategy of intermediate assembly with alkali metal cations to activate C-N coupling at the electrode/electrolyte interface. Urea synthesis activity follows the trend of Li+
Collapse
Affiliation(s)
- Xiaojin Tu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, P. R. China
| | - Shuowen Bo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Xiaoran Zhang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Ruping Miao
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, P. R. China
| | - Guobin Wen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Chen Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Jing Li
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| | - Yangyang Zhou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Dawei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, P. R. China
| | - Huaiyu Shao
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| | - Dafeng Yan
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, P. R. China
| | - Yafei Li
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, P. R. China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| |
Collapse
|
27
|
Li Y, Zheng S, Liu H, Xiong Q, Yi H, Yang H, Mei Z, Zhao Q, Yin ZW, Huang M, Lin Y, Lai W, Dou SX, Pan F, Li S. Sequential co-reduction of nitrate and carbon dioxide enables selective urea electrosynthesis. Nat Commun 2024; 15:176. [PMID: 38167809 PMCID: PMC10761727 DOI: 10.1038/s41467-023-44131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the recent achievements in urea electrosynthesis from co-reduction of nitrogen wastes (such as NO3-) and CO2, the product selectivity remains fairly mediocre due to the competing nature of the two parallel reduction reactions. Here we report a catalyst design that affords high selectivity to urea by sequentially reducing NO3- and CO2 at a dynamic catalytic centre, which not only alleviates the competition issue but also facilitates C-N coupling. We exemplify this strategy on a nitrogen-doped carbon catalyst, where a spontaneous switch between NO3- and CO2 reduction paths is enabled by reversible hydrogenation on the nitrogen functional groups. A high urea yield rate of 596.1 µg mg-1 h-1 with a promising Faradaic efficiency of 62% is obtained. These findings, rationalized by in situ spectroscopic techniques and theoretical calculations, are rooted in the proton-involved dynamic catalyst evolution that mitigates overwhelming reduction of reactants and thereby minimizes the formation of side products.
Collapse
Affiliation(s)
- Yang Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Hao Liu
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Qi Xiong
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Haocong Yi
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Haibin Yang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Zongwei Mei
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Qinghe Zhao
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Zu-Wei Yin
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Yuan Lin
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weihong Lai
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shi-Xue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
28
|
Liu J, Lv X, Ma Y, Smith SC, Gu Y, Kou L. Electrocatalytic Urea Synthesis via N 2 Dimerization and Universal Descriptor. ACS NANO 2023; 17:25667-25678. [PMID: 38095313 DOI: 10.1021/acsnano.3c10451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Electrocatalytic urea synthesis through N2 + CO2 coreduction and C-N coupling is a promising and sustainable alternative to harsh industrial processes. Despite considerable efforts, limited progress has been made due to the challenges of breaking inert N≡N bonds for C-N coupling, competing side reactions, and the absence of theoretical principles guiding catalyst design. In this study, we propose a mechanism for highly electrocatalytic urea synthesis using two adsorbed N2 molecules and CO as nitrogen and carbon sources, respectively. This mechanism circumvents the challenging step of N≡N bond breaking and selective CO2 to CO reduction, as the free CO molecule inserts into dimerized *N2 and binds concurrently with two N atoms, forming a specific urea precursor *NNCONN* with both thermodynamic and kinetic feasibility. Through the proposed mechanism, Ti2@C4N3 and V2@C4N3 are identified as highly active catalysts for electrocatalytic urea formation, exhibiting low onset potentials of -0.741 and -0.738 V, respectively. Importantly, taking transition metal atoms anchored on porous graphite-like carbonitride (TM2@C4N3) as prototypes, we introduce a simple descriptor, namely, effective d electron number (Φ), to quantitatively describe the structure-activity relationships for urea formation. This descriptor incorporates inherent atomic properties of the catalyst, such as the number of d electrons, the electronegativity of the metal atoms, and the generalized electronegativity of the substrate atoms, making it potentially applicable to other urea catalysts. Our work advances the comprehension of mechanisms and provides a universal guiding principle for catalyst design in urea electrochemical synthesis.
Collapse
Affiliation(s)
- Junxian Liu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Xingshuai Lv
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, People's Republic of China
| | - Yandong Ma
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, People's Republic of China
| | - Sean C Smith
- Integrated Materials Design Laboratory, Department of Materials Physics, Research School of Physics, The Australian National University,Canberra, Australian Capital Territory 2601, Australia
| | - YuanTong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
29
|
Song X, Basheer C, Xia Y, Li J, Abdulazeez I, Al-Saadi AA, Mofidfar M, Suliman MA, Zare RN. One-step Formation of Urea from Carbon Dioxide and Nitrogen Using Water Microdroplets. J Am Chem Soc 2023; 145:25910-25916. [PMID: 37966066 DOI: 10.1021/jacs.3c10784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Water (H2O) microdroplets are sprayed onto a graphite mesh covered with a CuBi2O4 coating using a 1:1 mixture of N2 and CO2 as the nebulizing gas. The resulting microdroplets contain urea [CO(NH2)2] as detected by both mass spectrometry and 13C nuclear magnetic resonance. This gas-liquid-solid heterogeneous catalytic system synthesizes urea in one step on the 0.1 ms time scale. The conversion rate reaches 2.7 mmol g-1 h-1 at 25 °C and 12.3 mmol g-1 h-1 at 65 °C, with no external voltage applied. Water microdroplets serve as the hydrogen source and the electron transfer medium for N2 and CO2 in contact with CuBi2O4. Water-gas and water-solid contact electrification are speculated to drive the reaction process. This strategy couples N2 fixation and CO2 utilization in an ecofriendly process to produce urea, converting a greenhouse gas into a value-added product.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chanbasha Basheer
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Yu Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Juan Li
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ismail Abdulazeez
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Abdulaziz A Al-Saadi
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Mohammed Altahir Suliman
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
30
|
Wang X, Li J, Kou M, Dou W, Bai D, Tang X, Tang Y, Liu W. Dual-Function Precious-Metal-Free Metal-Organic Framework for Photocatalytic Conversion and Chemical Fixation of Carbon Dioxide. Inorg Chem 2023; 62:19015-19024. [PMID: 37919966 DOI: 10.1021/acs.inorgchem.3c02765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Highly efficient transformation of carbon dioxide (CO2) into value-added chemicals is considered a promising route for clean production and future energy sustainability, which is crucial for realizing a carbon-neutral economy. It remains a great challenge to develop highly stable and active catalysts with low-cost, environmentally friendly, and nontoxic materials for catalytic conversion of CO2. Herein, a precious-metal-free and heterogeneous MOF (LTG-FeZr) catalyst, composed of bis(terpyridine)iron(II) complexes and zirconium(IV) ions, was designed and prepared via a metalloligand approach. LTG-FeZr, with a robust framework and regular 1D channels not only can achieve the photocatalytic reduction of CO2 to HCOOH with a high conversion rate (up to 265 μmol·g-1·h-1) under visible-light irradiation but also exhibits exceptional catalytic activities toward the synthesis of cyclic carbonates via cycloaddition reactions of various epoxides and CO2 in the absence of light. Possible mechanisms for two different conversion processes of CO2 catalyzed by LTG-FeZr have been proposed. LTG-FeZr represents an ideal dual-function MOF platform for the catalytic conversion and utilization of CO2 in all weather conditions.
Collapse
Affiliation(s)
- Xiaoli Wang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Jingzhe Li
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Manchang Kou
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Dou
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dongjie Bai
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoliang Tang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810016, China
| | - Yu Tang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810016, China
| |
Collapse
|
31
|
Song H, Chipoco Haro DA, Huang PW, Barrera L, Hatzell MC. Progress in Photochemical and Electrochemical C-N Bond Formation for Urea Synthesis. Acc Chem Res 2023; 56:2944-2953. [PMID: 37856878 PMCID: PMC10634294 DOI: 10.1021/acs.accounts.3c00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 10/21/2023]
Abstract
ConspectusHere, we discuss recent advances and pressing challenges in achieving sustainable urea synthesis. Urea stands out as the most prevalent nitrogen-based fertilizer used across the globe, making up over 50% of all manufactured fertilizers. Historically, the Bosch-Meiser process has been the go-to chemical manufacturing method for urea production. This procedure, characterized by its high-temperature and high-pressure conditions, reacts ammonia with carbon dioxide to form ammonium carbamate. Subsequently, this ammonium carbamate undergoes dehydration, facilitated by heat, producing solid urea. A concerning aspect of this method is its dependency on fossil fuels, as nearly all the process heat comes from nonrenewable sources. Consequently, the Bosch-Meiser process leaves behind a considerable carbon footprint. Current estimates predict that unchecked, carbon emissions from urea production alone might skyrocket, reaching a staggering 286 MtCO2,eq/yr by 2050. Such projections paint a clear picture regarding the necessity for more eco-friendly, sustainable urea production methods. Recently, the scientific community has shown growing interest in forming C-N bonds using alternative methods. Shifting toward photochemical or electrochemical processes, as opposed to traditional thermal-based processes, promises the potential for complete electrification of urea synthesis. This shift toward process electrification is not just an incremental change; it represents a groundbreaking advancement, the first of many steps, toward achieving deep decarbonization in the chemical manufacturing sector. Since the turn of 2020, there has been a surge in research focusing on photochemical and electrochemical urea synthesis. These methods capitalize on co-reduction of carbon dioxide with nitrogenous reactants like NOx and N2. Despite the progress, there are significant challenges that hinder these processes from reaching their full potential. In this comprehensive review, we shed light on the advances made in electrified C-N bond formation. More importantly, we focus on the invaluable insights gathered over the years, especially concerning catalytic reaction mechanisms. We have dedicated a section to underline key focal areas for up-and-coming research, emphasizing catalyst, electrolyte, and reactor design. It is undeniable that catalyst design remains at the heart of the matter, as managing the co-reduction of two distinct reactants (CO2 and nitrogenous species) is complex. This process results in a myriad of intermediates, which must be adeptly managed to both maintain catalyst activity and avoid catalyst deactivation. Moreover, the electrolytes play a pivotal role, essentially dictating the creation of optimal microenvironments that drive reaction selectivity. Finally, reactor engineering stands out as crucial to ensure optimal mass transport for all involved reactants and subsequent products. We touch upon the broader environmental ramifications of urea production and bring to light potential obstacles for alternative synthesis routes. A notable mention is the urgency of accelerating the uptake and large-scale implementation of renewable energy sources.
Collapse
Affiliation(s)
- Hakhyeon Song
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Danae A. Chipoco Haro
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Po-Wei Huang
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Luisa Barrera
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marta C. Hatzell
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
32
|
Huang CJ, Xu HM, Shuai TY, Zhan QN, Zhang ZJ, Li GR. Modulation Strategies for the Preparation of High-Performance Catalysts for Urea Oxidation Reaction and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301130. [PMID: 37434036 DOI: 10.1002/smll.202301130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/02/2023] [Indexed: 07/13/2023]
Abstract
Compared with the traditional electrolysis of water to produce hydrogen, urea-assisted electrolysis of water to produce hydrogen has significant advantages and has received extensive attention from researchers. Unfortunately, urea oxidation reaction (UOR) involves a complex six-electron transfer process leading to high overpotential, which forces researchers to develop high-performance UOR catalysts to drive the development of urea-assisted water splitting. Based on the UOR mechanism and extensive literature research, this review summarizes the strategies for preparing highly efficient UOR catalysts. First, the UOR mechanism is introduced and the characteristics of excellent UOR catalysts are pointed out. Aiming at this, the following modulation strategies are proposed to improve the catalytic performance based on summarizing various literature: 1) Accelerating the active phase formation to reduce initial potential; 2) Creating double active sites to trigger a new UOR mechanism; 3) Accelerating urea adsorption and promoting C─N bond cleavage to ensure the effective conduct of UOR; 4) Promoting the desorption of CO2 to improve stability and prevent catalyst poisoning; 5) Promoting electron transfer to overcome the inherent slow dynamics of UOR; 6) Increasing active sites or active surface area. Then, the application of UOR in electrochemical devices is summarized. Finally, the current deficiencies and future directions are discussed.
Collapse
Affiliation(s)
- Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
33
|
Xu M, Wu F, Zhang Y, Yao Y, Zhu G, Li X, Chen L, Jia G, Wu X, Huang Y, Gao P, Ye W. Kinetically matched C-N coupling toward efficient urea electrosynthesis enabled on copper single-atom alloy. Nat Commun 2023; 14:6994. [PMID: 37914723 PMCID: PMC10620222 DOI: 10.1038/s41467-023-42794-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023] Open
Abstract
Chemical C-N coupling from CO2 and NO3-, driven by renewable electricity, toward urea synthesis is an appealing alternative for Bosch-Meiser urea production. However, the unmatched kinetics in CO2 and NO3- reduction reactions and the complexity of C- and N-species involved in the co-reduction render the challenge of C-N coupling, leading to the low urea yield rate and Faradaic efficiency. Here, we report a single-atom copper-alloyed Pd catalyst (Pd4Cu1) that can achieve highly efficient C-N coupling toward urea electrosynthesis. The reduction kinetics of CO2 and NO3- is regulated and matched by steering Cu doping level and Pd4Cu1/FeNi(OH)2 interface. Charge-polarized Pdδ--Cuδ+ dual-sites stabilize the key *CO and *NH2 intermediates to promote C-N coupling. The synthesized Pd4Cu1-FeNi(OH)2 composite catalyst achieves a urea yield rate of 436.9 mmol gcat.-1 h-1 and Faradaic efficiency of 66.4%, as well as a long cycling stability of 1000 h. In-situ spectroscopic results and theoretical calculation reveal that atomically dispersed Cu in Pd lattice promotes the deep reduction of NO3- to *NH2, and the Pd-Cu dual-sites lower the energy barrier of the pivotal C-N coupling between *NH2 and *CO.
Collapse
Affiliation(s)
- Mengqiu Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Fangfang Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, China
| | - Ye Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Yuanhui Yao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Genping Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Xiaoyu Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Gan Jia
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Xiaohong Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, P. R. China.
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Peng Gao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Wei Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| |
Collapse
|
34
|
He R, Yang L, Zhang Y, Jiang D, Lee S, Horta S, Liang Z, Lu X, Ostovari Moghaddam A, Li J, Ibáñez M, Xu Y, Zhou Y, Cabot A. A 3d-4d-5d High Entropy Alloy as a Bifunctional Oxygen Catalyst for Robust Aqueous Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303719. [PMID: 37487245 DOI: 10.1002/adma.202303719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/17/2023] [Indexed: 07/26/2023]
Abstract
High entropy alloys (HEAs) are highly suitable candidate catalysts for oxygen evolution and reduction reactions (OER/ORR) as they offer numerous parameters for optimizing the electronic structure and catalytic sites. Herein, FeCoNiMoW HEA nanoparticles are synthesized using a solution-based low-temperature approach. Such FeCoNiMoW nanoparticles show high entropy properties, subtle lattice distortions, and modulated electronic structure, leading to superior OER performance with an overpotential of 233 mV at 10 mA cm-2 and 276 mV at 100 mA cm-2 . Density functional theory calculations reveal the electronic structures of the FeCoNiMoW active sites with an optimized d-band center position that enables suitable adsorption of OOH* intermediates and reduces the Gibbs free energy barrier in the OER process. Aqueous zinc-air batteries (ZABs) based on this HEA demonstrate a high open circuit potential of 1.59 V, a peak power density of 116.9 mW cm-2 , a specific capacity of 857 mAh gZn -1 , and excellent stability for over 660 h of continuous charge-discharge cycles. Flexible and solid ZABs are also assembled and tested, displaying excellent charge-discharge performance at different bending angles. This work shows the significance of 4d/5d metal-modulated electronic structure and optimized adsorption ability to improve the performance of OER/ORR, ZABs, and beyond.
Collapse
Affiliation(s)
- Ren He
- Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Linlin Yang
- Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Yu Zhang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Daochuan Jiang
- School of Materials Science and Engineering, Anhui University, 230601, Hefei, China
| | - Seungho Lee
- Institute of Science and Technology Austria (ISTA), 3400, Am Campus 1, Klosterneuburg, Austria
| | - Sharona Horta
- Institute of Science and Technology Austria (ISTA), 3400, Am Campus 1, Klosterneuburg, Austria
| | - Zhifu Liang
- Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
| | - Xuan Lu
- Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
| | | | - Junshan Li
- Institute of Advanced Study, Chengdu University, 610106, Chengdu, China
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400, Am Campus 1, Klosterneuburg, Austria
| | - Ying Xu
- Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, 071002, Baoding, China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control,National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316004, China
| | - Andreu Cabot
- Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Catalonia, 08010, Spain
| |
Collapse
|
35
|
Yang S, Zhang W, Pan G, Chen J, Deng J, Chen K, Xie X, Han D, Dai M, Niu L. Photocatalytic Co-Reduction of N 2 and CO 2 with CeO 2 Catalyst for Urea Synthesis. Angew Chem Int Ed Engl 2023; 62:e202312076. [PMID: 37667537 DOI: 10.1002/anie.202312076] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
The effective conversion of carbon dioxide (CO2 ) and nitrogen (N2 ) into urea by photocatalytic reaction under mild conditions is considered to be a more environmentally friendly and promising alternative strategies. However, the weak adsorption and activation ability of inert gas on photocatalysts has become the main challenge that hinder the advancement of this technique. Herein, we have successfully established mesoporous CeO2-x nanorods with adjustable oxygen vacancy concentration by heat treatment in Ar/H2 (90 % : 10 %) atmosphere, enhancing the targeted adsorption and activation of N2 and CO2 by introducing oxygen vacancies. Particularly, CeO2 -500 (CeO2 nanorods heated treatment at 500 °C) revealed high photocatalytic activity toward the C-N coupling reaction for urea synthesis with a remarkable urea yield rate of 15.5 μg/h. Besides, both aberration corrected transmission electron microscopy (AC-TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to research the atomic surface structure of CeO2 -500 at high resolution and to monitor the key intermediate precursors generated. The reaction mechanism of photocatalytic C-N coupling was studied in detail by combining Density Functional Theory (DFT) with specific experiments. We hope this work provides important inspiration and guiding significance towards highly efficient photocatalytic synthesis of urea.
Collapse
Affiliation(s)
- Shuyi Yang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Wensheng Zhang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Guoliang Pan
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Jiaying Chen
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Jiayi Deng
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Ke Chen
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xianglun Xie
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Dongxue Han
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, P. R. China
| | - Mengjiao Dai
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| |
Collapse
|
36
|
Wu G, Yang Y, Jiang J, Liu Y, Sun M, Zhang J, Zhang W, Qin Q. Emerging Electrocatalysts in Urea Production. Chemistry 2023; 29:e202301619. [PMID: 37403776 DOI: 10.1002/chem.202301619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
Urea synthesis from abundant CO2 and N-feedstocks via renewable electricity has attracted increasing interests, offering a promising alternative to the industrial-applied Haber-Meiser process. However, the studies toward electrochemical urea production remain scarce and appeal for more research. Herein, in this perspective, an up-to-date overview on the urea electrosynthesis is highlighted and summarized. Firstly, the reaction pathways of urea formation through various feedstocks are comprehensively discussed. Then, we focus on the strategies of materials design to improve C-N coupling efficiency by identifying the descriptor and understanding the reaction mechanism. Finally, the current challenges and disadvantages in this field are reviewed and some future development directions of electrocatalytic urea synthesis are also prospected. This Minireview aims to promote future investigations of the electrochemical urea synthesis.
Collapse
Affiliation(s)
- Guanzheng Wu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yidong Yang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Jiadi Jiang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yi Liu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Mengmiao Sun
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Jianrui Zhang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Wuyong Zhang
- Key Laboratory of Advanced Fuel Cells and, Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Qing Qin
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
37
|
He M, Wu Y, Li R, Wang Y, Liu C, Zhang B. Aqueous pulsed electrochemistry promotes C-N bond formation via a one-pot cascade approach. Nat Commun 2023; 14:5088. [PMID: 37607922 PMCID: PMC10444869 DOI: 10.1038/s41467-023-40892-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Electrocatalytic C - N bond formation from inorganic nitrogen wastes is an emerging sustainable method for synthesizing organic amines but is limited in reaction scope. Integrating heterogeneous and homogeneous catalysis for one-pot reactions to construct C - N bonds is highly desirable. Herein, we report an aqueous pulsed electrochemistry-mediated transformation of nitrite and arylboronic acids to arylamines with high yields. The overall process involves nitrite electroreduction to ammonia over a Cu nanocoral cathode and subsequent coupling of NH3 with arylboronic acids catalyzed by in situ dissolved Cu(II) under a switched anodic potential. This pulsed protocol also promotes the migration of nucleophilic ArB(OH)3- and causes the consumption of OH- near the cathode surface, accelerating C - N formation and suppressing phenol byproducts. Cu(II) can be recycled via facile electroplating. The wide substrate scope, ready synthesis of 15N-labelled arylamines, and methodological expansion to cycloaddition and Click reactions highlight the great promise.
Collapse
Affiliation(s)
- Meng He
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Yongmeng Wu
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China.
| | - Rui Li
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Yuting Wang
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Cuibo Liu
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Bin Zhang
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
38
|
Dar MA. Implications of the Pore Size of Graphitic Carbon Nitride Monolayers on the Selectivity of Dual-Boron Atom Catalysts for the Reduction of N 2 to Urea and Ammonia: A Computational Investigation. Inorg Chem 2023; 62:13672-13679. [PMID: 37555942 DOI: 10.1021/acs.inorgchem.3c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The formation of urea by electrocatalytic means remains a great challenge due to the lack of a suitable catalyst that is capable of not only activating inert N2 and CO2 molecules but also circumventing the complexity associated with subsequent reaction steps leading to urea formation. Herein, by means of comprehensive density functional theory simulations, we investigate the catalytic activity of highly stable transition-metal-free dual-boron atom-doped graphitic carbon-nitride monolayers with different pore sizes toward urea production under ambient conditions. As per the results, dual boron atoms impregnated in g-C2N and g-C6N6 monolayers with large pore diameters can successfully activate the N2 molecule and lead to the spontaneous formation of the *NCO*N intermediate, which is the most crucial step for urea formation via direct coupling of N2 and CO2. Interestingly, the B2@g-C2N and B2@g-C6N6 favor urea production with low limiting potentials of -1.11 and -1.18 V compared to very high limiting potentials of -1.71 and -1.88 V, respectively, for ammonia synthesis, leading to an almost 100% Faradaic efficiency for urea formation over ammonia. The dual-boron doping in g-C3N4 with a smaller pore size depicts comparatively weaker N2 adsorption than g-C2N and g-C6N6 counterparts. Further, B2@g-C3N4 prefers ammonia formation at a very low limiting potential of -0.40 V compared to a very high limiting potential of -2.11 V for urea formation. Thus, our findings clearly highlight the critical role played by the pore size of carbon-nitride monolayers in tuning the reactivity and catalytic activity of dual-boron atom catalysts toward urea formation in a selective manner, thereby providing valuable guidance in exploring other highly efficient urea catalysts.
Collapse
Affiliation(s)
- Manzoor Ahmad Dar
- Department of Chemistry, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India
| |
Collapse
|
39
|
Cao Y, Meng Y, An R, Zou X, Huang H, Zhong W, Shen Z, Xia Q, Li X, Wang Y. Revealing electrocatalytic C N coupling for urea synthesis with metal–free electrocatalyst. J Colloid Interface Sci 2023; 641:990-999. [PMID: 36989825 DOI: 10.1016/j.jcis.2023.03.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Urea is ubiquitous in agriculture and industry, but its production consumes a lot of energy. The conversion of nitrogen (N2) and carbon dioxide (CO2) into urea via an electrocatalytic CN coupling reaction under ambient conditions would be a major boon to sustainable development. However, designing a metal - free catalyst with high activity and selectivity for urea remains a major challenge. Herein, by means of density functional theory (DFT) and ab - initio molecular dynamics (AIMD) computations, the B12 cluster doped on nitrogenated graphene (C2N) substrate catalyst (B12@C2N) with superior stability was designed for electrocatalytic urea synthesis starting from the CO2 and N2 through four reaction mechanisms. The nature of the co-adsorption activation of CO2 and N2 on the B12@C2N catalyst was investigated, the electrochemical proton - electron transfer steps and the CN thermochemical coupling led to the synthesis of urea. The study showed that the B12@C2N catalyst exhibited high catalytic activity for urea synthesis with the lowest limiting potential of - 1.01 V following the *HNNH mechanism compared with other mechanisms. The potential - determining step (PDS) is the formation of the *CO+*NH2NH2 species. However, the two - step CN coupling barriers of *NCON species are 0.13 eV and 0.60 eV using AIMD and a "slow - growth" sampling approach in an explicit water molecules model. Calculations also showed that the byproducts of carbon monoxide (CO), methane (CH4), methanol (CH3OH), ammonia (NH3), and hydrogen (H2) can be inhibited on the B12@C2N catalyst. Therefore, the metal - free catalyst not only has a good performance for the hydrogenation of CO2 and N2 promoting the electrochemical reaction, but also facilitates CN thermochemical coupling for urea synthesis. This work provides new insights into the synthesis of urea via the CN coupling reaction on a metal - free electrocatalyst, a process that could contribute to greenhouse gas mitigation to help meet carbon neutrality targets.
Collapse
|
40
|
Xing P, Wei S, Zhang Y, Chen X, Dai L, Wang Y. Electrochemical Co-reduction of N 2 and CO 2 to Urea Using Bi 2S 3 Nanorods Anchored to N-Doped Reduced Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22101-22111. [PMID: 37122051 DOI: 10.1021/acsami.3c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Producing "green urea" using renewable energy, N2, and CO2 is a long-considered challenge. Herein, an electrocatalyst, Bi2S3/N-reduced graphene oxide (RGO), was synthesized by loading the Bi2S3 nanorods onto the N-RGO via a hydrothermal method. The Bi2S3/N-RGO composites exhibit the highest yield of urea (4.4 mmol g-1 h-1), which is 12.6 and 3.1 times higher than that of Bi2S3 (0.35 mmol g-1 h-1) and that of N-RGO (1.4 mmol g-1 h-1), respectively. N-RGO, because of its porous and open-layer structure, improves the mass transfer efficiency and stability, while the basic groups (-OH and -NH2) promote the adsorption and activation of CO2. Bi2S3 promotes the absorption and activation of inert N2. Finally, the defect sites and the synergistic effect on the Bi2S3/N-RGO composites work simultaneously to form urea from N2 and CO2. This study provides new insights into urea synthesis under ambient conditions and a strategy for the design and development of a new material for green urea synthesis.
Collapse
Affiliation(s)
- Pingxing Xing
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Shenqi Wei
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Yulu Zhang
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Xinyi Chen
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Liyi Dai
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, No. 20 Cuiniao Road, Shanghai 202162, China
| | - Yuanyuan Wang
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, No. 20 Cuiniao Road, Shanghai 202162, China
| |
Collapse
|
41
|
Aihara T, Aoki W, Kiyohara S, Kumagai Y, Kamata K, Hara M. Nanosized Ti-Based Perovskite Oxides as Acid-Base Bifunctional Catalysts for Cyanosilylation of Carbonyl Compounds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17957-17968. [PMID: 37010448 PMCID: PMC10103063 DOI: 10.1021/acsami.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The development of effective solid acid-base bifunctional catalysts remains a challenge because of the difficulty associated with designing and controlling their active sites. In the present study, highly pure perovskite oxide nanoparticles with d0-transition-metal cations such as Ti4+, Zr4+, and Nb5+ as B-site elements were successfully synthesized by a sol-gel method using dicarboxylic acids. Moreover, the specific surface area of SrTiO3 was increased to 46 m2 g-1 by a simple procedure of changing the atmosphere from N2 to air during calcination of an amorphous precursor. The resultant SrTiO3 nanoparticles showed the highest catalytic activity for the cyanosilylation of acetophenone with trimethylsilyl cyanide (TMSCN) among the tested catalysts not subjected to a thermal pretreatment. Various aromatic and aliphatic carbonyl compounds were efficiently converted to the corresponding cyanohydrin silyl ethers in good-to-excellent yields. The present system was applicable to a larger-scale reaction of acetophenone with TMSCN (10 mmol scale), in which 2.06 g of the analytically pure corresponding product was isolated. In this case, the reaction rate was 8.4 mmol g-1 min-1, which is the highest rate among those reported for heterogeneous catalyst systems that do not involve a pretreatment. Mechanistic studies, including studies of the catalyst effect, Fourier transform infrared spectroscopy, and temperature-programmed desorption measurements using probe molecules such as pyridine, acetophenone, CO2, and CHCl3, and the poisoning effect of pyridine and acetic acid toward the cyanosilylation, revealed that moderate-strength acid and base sites present in moderate amounts on SrTiO3 most likely enable SrTiO3 to act as a bifunctional acid-base solid catalyst through cooperative activation of carbonyl compounds and TMSCN. This bifunctional catalysis through SrTiO3 resulted in high catalytic performance even without a heat pretreatment, in sharp contrast to the performance of basic MgO and acidic TiO2 catalysts.
Collapse
Affiliation(s)
- Takeshi Aihara
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Wataru Aoki
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Shin Kiyohara
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Yu Kumagai
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Keigo Kamata
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Michikazu Hara
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
42
|
Peng X, Zeng L, Wang D, Liu Z, Li Y, Li Z, Yang B, Lei L, Dai L, Hou Y. Electrochemical C-N coupling of CO 2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chem Soc Rev 2023; 52:2193-2237. [PMID: 36806286 DOI: 10.1039/d2cs00381c] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Electrochemical C-N coupling reactions based on abundant small molecules (such as CO2 and N2) have attracted increasing attention as a new "green synthetic strategy" for the synthesis of organonitrogen compounds, which have been widely used in organic synthesis, materials chemistry, and biochemistry. The traditional technology employed for the synthesis of organonitrogen compounds containing C-N bonds often requires the addition of metal reagents or oxidants under harsh conditions with high energy consumption and environmental concerns. By contrast, electrosynthesis avoids the use of other reducing agents or oxidants by utilizing "electrons", which are the cleanest "reagent" and can reduce the generation of by-products, consistent with the atomic economy and green chemistry. In this study, we present a comprehensive review on the electrosynthesis of high value-added organonitrogens from the abundant CO2 and nitrogenous small molecules (N2, NO, NO2-, NO3-, NH3, etc.) via the C-N coupling reaction. The associated fundamental concepts, theoretical models, emerging electrocatalysts, and value-added target products, together with the current challenges and future opportunities are discussed. This critical review will greatly increase the understanding of electrochemical C-N coupling reactions, and thus attract research interest in the fixation of carbon and nitrogen.
Collapse
Affiliation(s)
- Xianyun Peng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Libin Zeng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Dashuai Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Zhibin Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Yan Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Zhongjian Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Bin Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
- Donghai Laboratory, Zhoushan, China
| |
Collapse
|
43
|
Zhu C, Geng Y, Yao X, Zhu G, Su Z, Zhang M. Fascinating Electrocatalysts with Dispersed Di-Metals in MN 3 -M'N 4 Moiety as Two Active Sites Separately for N 2 and CO 2 Reduction Reactions and Jointly for CN Coupling and Urea Production. SMALL METHODS 2023; 7:e2201331. [PMID: 36720016 DOI: 10.1002/smtd.202201331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The idealized urea electrocatalyst is crucial to boost the CN coupling reaction and simultaneously suppress their isolated reduction process after adsorbing N2 and CO2 molecules. Therefore, the dispersed MN3 -M'N4 moiety is investigated systematically, including 26 homonuclear and 650 heteronuclear di-metal systems. After, 205 stable systems are selected using lowest-energy principle and ab initio molecular dynamics simulations. According to three possible pathways, NCON, CO, and OCOH to produce urea, a five-step high-throughput screening method for excellent catalytic activity and a five-aspect high-throughput screening strategy for outstanding catalytic selectivity are proposed, respectively. The potential determined steps and the limiting potential through three pathways are identified. The data indicates both CO pathway and OCOH pathway are more competitive at lower Gibbs free energy. Significantly, the most favorite RuN3 -CoN4 combination possesses an extremely low limiting potential of -0.80 V for urea production, meanwhile it exists a strong foundation for experimental preparation. This work not only broadens electrocatalytic potentiality of developing di-metals as two active sites, but also provides a feasible high-throughput screening recipe for urea production.
Collapse
Affiliation(s)
- Changyan Zhu
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024, China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024, China
| | - Xiaohui Yao
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024, China
| | - Guangshan Zhu
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024, China
| | - Zhongmin Su
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Min Zhang
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
44
|
Jiang M, Zhu M, Wang M, He Y, Luo X, Wu C, Zhang L, Jin Z. Review on Electrocatalytic Coreduction of Carbon Dioxide and Nitrogenous Species for Urea Synthesis. ACS NANO 2023; 17:3209-3224. [PMID: 36786415 DOI: 10.1021/acsnano.2c11046] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical coreduction of carbon dioxide (CO2) and nitrogenous species (such as NO3-, NO2-, N2, and NO) for urea synthesis under ambient conditions provides a promising solution to realize carbon/nitrogen neutrality and mitigate environmental pollution. Although an increasing number of studies have made some breakthroughs in electrochemical urea synthesis, the unsatisfactory Faradaic efficiency, low urea yield rate, and ambiguous C-N coupling reaction mechanisms remain the major obstacles to its large-scale applications. In this review, we present the recent progress on electrochemical urea synthesis based on CO2 and nitrogenous species in aqueous solutions under ambient conditions, providing useful guidance and discussion on the rational design of metal nanocatalyst, the understanding of the C-N coupling reaction mechanism, and existing challenges and prospects for electrochemical urea synthesis. We hope that this review can stimulate more insights and inspiration toward the development of electrocatalytic urea synthesis technology.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
45
|
Geng J, Ji S, Jin M, Zhang C, Xu M, Wang G, Liang C, Zhang H. Ambient Electrosynthesis of Urea with Nitrate and Carbon Dioxide over Iron-Based Dual-Sites. Angew Chem Int Ed Engl 2023; 62:e202210958. [PMID: 36263900 PMCID: PMC10369923 DOI: 10.1002/anie.202210958] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
The development of efficient electrocatalysts to generate key *NH2 and *CO intermediates is crucial for ambient urea electrosynthesis with nitrate (NO3 - ) and carbon dioxide (CO2 ). Here we report a liquid-phase laser irradiation method to fabricate symbiotic graphitic carbon encapsulated amorphous iron and iron oxide nanoparticles on carbon nanotubes (Fe(a)@C-Fe3 O4 /CNTs). Fe(a)@C-Fe3 O4 /CNTs exhibits superior electrocatalytic activity toward urea synthesis using NO3 - and CO2 , affording a urea yield of 1341.3±112.6 μg h-1 mgcat -1 and a faradic efficiency of 16.5±6.1 % at ambient conditions. Both experimental and theoretical results indicate that the formed Fe(a)@C and Fe3 O4 on CNTs provide dual active sites for the adsorption and activation of NO3 - and CO2 , thus generating key *NH2 and *CO intermediates with lower energy barriers for urea formation. This work would be helpful for design and development of high-efficiency dual-site electrocatalysts for ambient urea synthesis.
Collapse
Affiliation(s)
- Jing Geng
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Sihan Ji
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Meng Jin
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Chao Zhang
- University of Science and Technology of China, Hefei, 230026, China
| | - Min Xu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Changhao Liang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
46
|
Xu D, Zhang SN, Chen JS, Li XH. Design of the Synergistic Rectifying Interfaces in Mott-Schottky Catalysts. Chem Rev 2023; 123:1-30. [PMID: 36342422 DOI: 10.1021/acs.chemrev.2c00426] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functions of interfacial synergy in heterojunction catalysts are diverse and powerful, providing a route to solve many difficulties in energy conversion and organic synthesis. Among heterojunction-based catalysts, the Mott-Schottky catalysts composed of a metal-semiconductor heterojunction with predictable and designable interfacial synergy are rising stars of next-generation catalysts. We review the concept of Mott-Schottky catalysts and discuss their applications in various realms of catalysis. In particular, the design of a Mott-Schottky catalyst provides a feasible strategy to boost energy conversion and chemical synthesis processes, even allowing realization of novel catalytic functions such as enhanced redox activity, Lewis acid-base pairs, and electron donor-acceptor couples for dealing with the current problems in catalysis for energy conversion and storage. This review focuses on the synthesis, assembly, and characterization of Schottky heterojunctions for photocatalysis, electrocatalysis, and organic synthesis. The proposed design principles, including the importance of constructing stable and clean interfaces, tuning work function differences, and preparing exposable interfacial structures for designing electronic interfaces, will provide a reference for the development of all heterojunction-type catalysts, electrodes, energy conversion/storage devices, and even super absorbers, which are currently topics of interest in fields such as electrocatalysis, fuel cells, CO2 reduction, and wastewater treatment.
Collapse
Affiliation(s)
- Dong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Shi-Nan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| |
Collapse
|
47
|
Dutta S, Pati SK. Urea Production on Metal-Free Dual Silicon Doped C 9 N 4 Nanosheet Under Ambient Conditions by Electrocatalysis: A First Principles Study. Chemphyschem 2023; 24:e202200453. [PMID: 36094278 DOI: 10.1002/cphc.202200453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Indexed: 01/07/2023]
Abstract
The development of cheap, eco-friendly electrocatalysts for urea synthesis which avoids the traditional nitrogen reduction to form ammonia, is very important to meet our growing demand for urea. Herein, based on density functional theory, we propose a novel electrocatalyst (dual Si doped C9 N4 nanosheet) composed of totally environmentally benign non-metal earth abundant elements, which is able to adsorb N2 and CO2 together. Reduction of CO2 to CO happens, which is then inserted into activated N-N bond, and it produces *N(CO)N intermediate, which is the crucial step for urea formation. Eventually following several proton coupled electron transfer processes, urea is formed under ambient conditions. The limiting potential value for urea formation is found to be lower than that of NH3 formation and HER (hydrogen evolution reaction). Moreover, the faradaic efficiency of our proposed catalyst system is 100 % for urea formation, which suggests greater selectivity of urea formation over other competitive reactions.
Collapse
Affiliation(s)
- Supriti Dutta
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Bangalore, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Bangalore, India
| |
Collapse
|
48
|
Zhao X, Liu M, Wang Y, Xiong Y, Yang P, Qin J, Xiong X, Lei Y. Designing a Built-In Electric Field for Efficient Energy Electrocatalysis. ACS NANO 2022; 16:19959-19979. [PMID: 36519975 DOI: 10.1021/acsnano.2c09888] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To utilize intermittent renewable energy as well as achieve the goals of peak carbon dioxide emissions and carbon neutrality, various electrocatalytic devices have been developed. However, the electrocatalytic reactions, e.g., hydrogen evolution reaction/oxygen evolution reaction in overall water splitting, polysulfide conversion in lithium-sulfur batteries, formation/decomposition of lithium peroxide in lithium-oxygen batteries, and nitrate reduction reaction to degrade sewage, suffer from sluggish kinetics caused by multielectron transfer processes. Owing to the merits of accelerated charge transport, optimized adsorption/desorption of intermediates, raised conductivity, regulation of the reaction microenvironment, as well as ease to combine with geometric characteristics, the built-in electric field (BIEF) is expected to overcome the above problems. Here, we give a Review about the very recent progress of BIEF for efficient energy electrocatalysis. First, the construction strategies and the characterization methods (qualitative and quantitative analysis) of BIEF are summarized. Then, the up-to-date overviews of BIEF engineering in electrocatalysis, with attention on the electron structure optimization and reaction microenvironment modulation, are analyzed and discussed in detail. In the end, the challenges and perspectives of BIEF engineering are proposed. This Review gives a deep understanding on the design of electrocatalysts with BIEF for next-generation energy storage and electrocatalytic devices.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083, China
| | - Mengjie Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083, China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083, China
| | - Yu Xiong
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| | - Peiyao Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083, China
| | - Jiaqian Qin
- Research Unit of Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok10330, Thailand
| | - Xiang Xiong
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083, China
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083, China
| |
Collapse
|
49
|
Li D, Zhao Y, Miao Y, Zhou C, Zhang LP, Wu LZ, Zhang T. Accelerating Electron-Transfer Dynamics by TiO 2 -Immobilized Reversible Single-Atom Copper for Enhanced Artificial Photosynthesis of Urea. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207793. [PMID: 36271589 DOI: 10.1002/adma.202207793] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Photocatalysis as a sustainable technology is expected to provide a novel sight for the green synthesis of urea directly using N2 , CO2 , and H2 O under mild conditions. However, the fundamental issue of inefficient electron transfer in photocatalysis strongly hinders its feasibility, especially for the above multi-electron-demanding urea synthesis. Herein, an effective strategy of accelerating electron-transfer dynamics is reported by TiO2 -immobilized reversible single-atom copper (denoted as Cu SA-TiO2 ) to enhance the performance for photosynthesis of urea from N2 , CO2 , and H2 O. As revealed by a series of quasi-in-situ characterizations (e.g., electron paramagnetic resonance, and wavelength-resolved and femtosecond time-resolved spectroscopies), the expedited dynamics behaviors originating from reversible single-atom copper in as-designed Cu SA-TiO2 (electron extraction rate: over 30 times faster than the reference photocatalysts) allow the assurance of abundant and continual photogenerated electrons for multi-electron-demanding co-photoactivation of N2 and CO2 , resulting in considerable rates of urea production. The strategy above for improving the photoelectron-extraction ability of photocatalysts will offer a high-efficiency and promising route for artificial urea photosynthesis and other multi-electron-demanding photocatalytic reactions.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yingxuan Miao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
50
|
Witherspoon E, Ling P, Winchester W, Zhao Q, Ibrahim A, Riley KE, Wang Z. Highly Selective Electrochemical Synthesis of Urea Derivatives Initiated from Oxygen Reduction in Ionic Liquids. ACS OMEGA 2022; 7:42828-42834. [PMID: 36467946 PMCID: PMC9713781 DOI: 10.1021/acsomega.2c04748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
The development of more efficient and sustainable methods for synthesizing substituted urea compounds and directly utilizing CO2 has long been a major focus of synthetic organic chemistry as these compounds serve critical environmental and industrial roles. Herein, we report a green approach to forming the urea compounds directly from CO2 gas and primary amines, triggered by oxygen electroreduction in ionic liquids (ILs). These reactions were carried out under mild conditions, at very low potentials, and achieved high conversion rates. The fact that O2 gas was utilized as the sole catalyst in this electrochemical loop, without additional reagents, is a significant milestone for eco-friendly syntheses of C-N compounds and establishes an effective and green CO2 scavenging method.
Collapse
Affiliation(s)
- Erin Witherspoon
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Pinghua Ling
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - William Winchester
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Qi Zhao
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Ahmad Ibrahim
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Kevin E. Riley
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Zhe Wang
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| |
Collapse
|