1
|
Xie G, Zhu L, Liu S, Li C, Diao X, Zhang Y, Su X, Song Y, Cao G, Zhong L, Wang P, Liu X, Mok BWY, Zhang S, Jin DY, Zhou J, Chen H, Cai Z. Multi-omics analysis of attenuated variant reveals potential evaluation marker of host damaging for SARS-CoV-2 variants. SCIENCE CHINA. LIFE SCIENCES 2024; 67:83-95. [PMID: 37721637 DOI: 10.1007/s11427-022-2379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/30/2023] [Indexed: 09/19/2023]
Abstract
SARS-CoV-2 continues to threaten human society by generating novel variants via mutation and recombination. The high number of mutations that appeared in emerging variants not only enhanced their immune-escaping ability but also made it difficult to predict the pathogenicity and virulence based on viral nucleotide sequences. Molecular markers for evaluating the pathogenicity of new variants are therefore needed. By comparing host responses to wild-type and variants with attenuated pathogenicity at proteome and metabolome levels, six key molecules on the polyamine biosynthesis pathway including putrescine, SAM, dc-SAM, ODC1, SAMS, and SAMDC were found to be differentially upregulated and associated with pathogenicity of variants. To validate our discovery, human airway organoids were subsequently used which recapitulates SARS-CoV-2 replication in the airway epithelial cells of COVID-19 patients. Using ODC1 as a proof-of-concept, differential activation of polyamine biosynthesis was found to be modulated by the renin-angiotensin system (RAS) and positively associated with ACE2 activity. Further experiments demonstrated that ODC1 expression could be differentially activated upon a panel of SARS-CoV-2 variants of concern (VOCs) and was found to be correlated with each VOCs' pathogenic properties. Particularly, the presented study revealed the discriminative ability of key molecules on polyamine biosynthesis as a predictive marker for virulence evaluation and assessment of SARS-CoV-2 variants in cell or organoid models. Our work, therefore, presented a practical strategy that could be potentially applied as an evaluation tool for the pathogenicity of current and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Guangshan Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.
- HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, 518000, China.
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Cun Li
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xin Diao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiuli Su
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Li Zhong
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Pui Wang
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaojuan Liu
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Bobo Wing-Yee Mok
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Zhou
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.
- HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, 518000, China.
| |
Collapse
|
2
|
Espe M, Adam AC, Saito T, Skjærven KH. Methionine: An Indispensable Amino Acid in Cellular Metabolism and Health of Atlantic Salmon. AQUACULTURE NUTRITION 2023; 2023:5706177. [PMID: 37927379 PMCID: PMC10624553 DOI: 10.1155/2023/5706177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Methionine is an indispensable amino acid with an important role as the main methyl donor in cellular metabolism for both fish and mammals. Metabolization of methionine to the methyl donor S-adenosylmethionine (SAM) has consequence for polyamine, carnitine, phospholipid, and creatine synthesis as well as epigenetic modifications such as DNA- and histone tail methylation. Methionine can also be converted to cysteine and contributes as a precursor for taurine and glutathione synthesis. Moreover, methionine is the start codon for every protein being synthetized and thereby serves an important role in initiating translation. Modern salmon feed is dominated by plant ingredients containing less taurine, carnitine, and creatine than animal-based ingredients. This shift results in competition for SAM due to an increasing need to endogenously synthesize associated metabolites. The availability of methionine has profound implications for various metabolic pathways including allosteric regulation. This necessitates a higher nutritional need to meet the requirement as a methyl donor, surpassing the quantities for protein synthesis and growth. This comprehensive review provides an overview of the key metabolic pathways in which methionine plays a central role as methyl donor and unfolds the implications for methylation capacity, metabolism, and overall health particularly emphasizing the development of fatty liver, oxidation, and inflammation when methionine abundance is insufficient focusing on nutrition for Atlantic salmon (Salmo salar).
Collapse
Affiliation(s)
- M. Espe
- Institute of Marine Research, P.O. Box 5817 Nordnes, Bergen, Norway
| | - A. C. Adam
- Institute of Marine Research, P.O. Box 5817 Nordnes, Bergen, Norway
| | - T. Saito
- Institute of Marine Research, P.O. Box 5817 Nordnes, Bergen, Norway
| | - K. H. Skjærven
- Institute of Marine Research, P.O. Box 5817 Nordnes, Bergen, Norway
| |
Collapse
|
3
|
Plasma Biomarkers and Fractional Exhaled Nitric Oxide in the Diagnosis of Eosinophilic Esophagitis. J Pediatr Gastroenterol Nutr 2023; 76:59-65. [PMID: 36574003 DOI: 10.1097/mpg.0000000000003634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Eosinophilic esophagitis (EoE) is a chronic disease which requires endoscopy with biopsies for diagnosis and monitoring. We aimed to identify a panel of non-invasive markers that could help identify patients with active EoE. METHODS In this prospective cohort study, we enrolled 128 children aged 5-18 years old, scheduled for endoscopy for suspected esophageal or peptic disease. On the day of the endoscopy, fractionated exhaled nitric oxide (FeNO) was measured; and blood was collected for peripheral absolute eosinophil count (AEC), plasma amino acids, and plasma polyamine analysis. Patients were grouped into controls (n = 91), EoE in remission (n = 16), or active EoE (n = 21), based on esophageal eosinophilia and history of EoE. RESULTS AEC was not statistically significant different among the groups compared ( P = 0.056). Plasma amino acids: citrulline (CIT), β-alanine (β-ALA), and cysteine (CYS) were higher in active EoE compared to controls ( P < 0.05). The polyamine spermine was lower in active EoE versus controls ( P < 0.05). Receiver operator characteristic (ROC) curve to assess the predictive capability of a combined score made of FeNO, β-ALA, CYS, and spermine had an area under curve (AUC) of 0.90 (95% CI: 0.80-0.96) in differentiating active EoE from controls and 0.87 (95% CI: 0.74-1.00) when differentiating active EoE from EoE in remission. CONCLUSION A panel comprising FeNO, 2 plasma amino acids (β-ALA, CYS) and the polyamine spermine can be used as a non-invasive tool to differentiate active EoE patients from controls.
Collapse
|
4
|
Amin M, Abdullah BM, Wylie SR, Rowley-Neale SJ, Banks CE, Whitehead KA. The Voltammetric Detection of Cadaverine Using a Diamine Oxidase and Multi-Walled Carbon Nanotube Functionalised Electrochemical Biosensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:36. [PMID: 36615946 PMCID: PMC9824597 DOI: 10.3390/nano13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Cadaverine is a biomolecule of major healthcare importance in periodontal disease; however, current detection methods remain inefficient. The development of an enzyme biosensor for the detection of cadaverine may provide a cheap, rapid, point-of-care alternative to traditional measurement techniques. This work developed a screen-printed biosensor (SPE) with a diamine oxidase (DAO) and multi-walled carbon nanotube (MWCNT) functionalised electrode which enabled the detection of cadaverine via cyclic voltammetry and differential pulse voltammetry. The MWCNTs were functionalised with DAO using carbodiimide crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS), followed by direct covalent conjugation of the enzyme to amide bonds. Cyclic voltammetry results demonstrated a pair of distinct redox peaks for cadaverine with the C-MWCNT/DAO/EDC-NHS/GA SPE and no redox peaks using unmodified SPEs. Differential pulse voltammetry (DPV) was used to isolate the cadaverine oxidation peak and a linear concentration dependence was identified in the range of 3-150 µg/mL. The limit of detection of cadaverine using the C-MWCNT/DAO/EDC-NHS/GA SPE was 0.8 μg/mL, and the biosensor was also found to be effective when tested in artificial saliva which was used as a proof-of-concept model to increase the Technology Readiness Level (TRL) of this device. Thus, the development of a MWCNT based enzymatic biosensor for the voltammetric detection of cadaverine which was also active in the presence of artificial saliva was presented in this study.
Collapse
Affiliation(s)
- Mohsin Amin
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Badr M. Abdullah
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Stephen R. Wylie
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Samuel J. Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Kathryn A. Whitehead
- Microbiology at Interfaces Group, Manchester Metropolitan University, Manchester M15 6BH, UK
| |
Collapse
|
5
|
The Impact of Spermidine on C2C12 Myoblasts Proliferation, Redox Status and Polyamines Metabolism under H2O2 Exposure. Int J Mol Sci 2022; 23:ijms231910986. [PMID: 36232289 PMCID: PMC9569770 DOI: 10.3390/ijms231910986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
A central feature of the skeletal muscle is its ability to regenerate through the activation, by environmental signals, of satellite cells. Once activated, these cells proliferate as myoblasts, and defects in this process profoundly affect the subsequent process of regeneration. High levels of reactive oxygen species such as hydrogen peroxide (H2O2) with the consequent formation of oxidized macromolecules increase myoblasts’ cell death and strongly contribute to the loss of myoblast function. Recently, particular interest has turned towards the beneficial effects on muscle of the naturally occurring polyamine spermidine (Spd). In this work, we tested the hypothesis that Spd, upon oxidative challenge, would restore the compromised myoblasts’ viability and redox status. The effects of Spd in combination with aminoguanidine (Spd-AG), an inhibitor of bovine serum amine oxidase, on murine C2C12 myoblasts treated with a mild dose of H2O2 were evaluated by analyzing: (i) myoblast viability and recovery from wound scratch; (ii) redox status and (iii) polyamine (PAs) metabolism. The treatment of C2C12 myoblasts with Spd-AG increased cell number and accelerated scratch wound closure, while H2O2 exposure caused redox status imbalance and cell death. The combined treatment with Spd-AG showed an antioxidant effect on C2C12 myoblasts, partially restoring cellular total antioxidant capacity, reducing the oxidized glutathione (GSH/GSSG) ratio and increasing cell viability through a reduction in cell death. Moreover, Spd-AG administration counteracted the induction of polyamine catabolic genes and PA content decreased due to H2O2 challenges. In conclusion, our data suggest that Spd treatment has a protective role in skeletal muscle cells by restoring redox balance and promoting recovery from wound scratches, thus making myoblasts able to better cope with an oxidative insult.
Collapse
|
6
|
Jeong HD, Kim JH, Kwon GE, Lee ST. Expression of Polyamine Oxidase in Fibroblasts Induces MMP-1 and Decreases the Integrity of Extracellular Matrix. Int J Mol Sci 2022; 23:ijms231810487. [PMID: 36142401 PMCID: PMC9504367 DOI: 10.3390/ijms231810487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Polyamine oxidase (PAOX) (N1-acetylpolyamine oxidase) is a major enzyme in the polyamine catabolism pathway that generates hydrogen peroxide. Hydrogen peroxide plays a crucial role in skin aging via extracellular matrix (ECM) degradation by increasing the matrix metalloproteinase-1 (MMP-1) levels. We analyzed the integrity of the ECM in foreskin fibroblasts using PAOX expression. PAOX increased the MMP-1 secretion and type Ι collagen degradation in 2D and 3D cultures of fibroblasts, respectively. Similarly, PAOX overexpression increased the messenger ribonucleic acid (mRNA) level of MMP-1. PAOX expression induced polyamine catabolism, decreased the spermine levels, and increased the putrescine levels. However, the exogenous polyamine treatment did not change the MMP-1 and type I collagen levels as much as PAOX expression. PAOX expression increased the reactive oxygen species (ROS) production in fibroblasts, and exogenous hydrogen peroxide increased both the ROS production and MMP-1 secretion. Furthermore, N-acetylcysteine, an antioxidant, reversed the PAOX-induced ROS production and MMP-1 secretion. PAOX induced the signaling pathways that activate activator protein-1 (AP-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which are important transcription factors for MMP-1 transactivation. We concluded that PAOX increased the ROS levels in fibroblasts, leading to an increase in MMP-1 expression. Therefore, we propose that PAOX is a potential target molecule in protecting the ECM integrity.
Collapse
Affiliation(s)
- Hae Dong Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jin Hyung Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Go Eun Kwon
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-221232703
| |
Collapse
|
7
|
Wan J, Zhang Y, He W, Tian Z, Lin J, Liu Z, Li Y, Chen M, Han S, Liang J, Shi Y, Wang X, Zhou L, Cao Y, Liu J, Wu K. Gut Microbiota and Metabolite Changes in Patients With Ulcerative Colitis and Clostridioides difficile Infection. Front Microbiol 2022; 13:802823. [PMID: 35756051 PMCID: PMC9231613 DOI: 10.3389/fmicb.2022.802823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Background Patients with ulcerative colitis (UC) are at an increased risk of developing Clostridioides difficile infection (CDI), which in turn leads to poor outcomes. The gut microbial structure and metabolites in patients with UC and CDI have been scarcely studied. We hypothesized that CDI changes the gut microbiota and metabolites of patients with UC. Materials and Methods This study included 89 patients: 30 healthy controls (HC group), 29 with UC alone (UCN group), and 30 with UC and CDI (UCP group). None of the participants has been exposed to antibiotic treatments during the 3 months before stool collection. Stool samples were analyzed using 16S rRNA gene sequencing of the V3–V4 region and gas chromatography tandem time-of-flight mass spectrometry. Results The UCN group displayed lower diversity and richness in gut microbiota and a higher relative abundance of the phylum Proteobacteria than the HC group. There were no significant differences between the UCN and UCP groups in the α-diversity indices. The UCP group contained a higher relative abundance of the genera Clostridium sensu stricto, Clostridium XI, Aggregatibacter, and Haemophilus, and a lower relative abundance of genera Clostridium XIVb and Citrobacter than the UCN group. In the UCP group, the increased metabolites included putrescine, maltose, 4-hydroxybenzoic acid, 4-hydroxybutyrate, and aminomalonic acid. Spearman’s correlation analysis revealed that these increased metabolites negatively correlated with Clostridium XlVb and positively correlated with the four enriched genera. However, the correlations between hemoglobin and metabolites were contrary to the correlations between erythrocyte sedimentation rate and high-sensitivity C-reactive protein and metabolites. Conclusion Our study identified 11 differential genera and 16 perturbed metabolites in patients with UC and CDI compared to those with UC alone. These findings may guide the design of research on potential mechanisms and specific treatments for CDI in patients with UC.
Collapse
Affiliation(s)
- Jian Wan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Histology and Embryology, School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Wenfang He
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zuhong Tian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Junchao Lin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Zhenzhen Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yani Li
- Department of Gastroenterology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Min Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Shuang Han
- Department of Gastroenterology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Xuan Wang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lei Zhou
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ying Cao
- Department of Life Science, Northwest University, Xi’an, China
- *Correspondence: Ying Cao,
| | - Jiayun Liu
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Jiayun Liu,
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Kaichun Wu,
| |
Collapse
|
8
|
SARS- CoV-2 infection and oxidative stress in early-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166321. [PMID: 34920081 PMCID: PMC8668602 DOI: 10.1016/j.bbadis.2021.166321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 causes coronavirus disease 2019 (COVID-19) also in pregnant women. Infection in pregnancy leads to maternal and placental functional alterations. Pregnant women with vascular defects such as preeclampsia show high susceptibility to SARS-CoV-2 infection by undefined mechanisms. Pregnant women infected with SARS-CoV-2 show higher rates of preterm birth and caesarean delivery, and their placentas show signs of vasculopathy and inflammation. It is still unclear whether the foetus is affected by the maternal infection with this virus and whether maternal infection associates with postnatal affections. The SARS-CoV-2 infection causes oxidative stress and activation of the immune system leading to cytokine storm and next tissue damage as seen in the lung. The angiotensin-converting-enzyme 2 expression is determinant for these alterations in the lung. Since this enzyme is expressed in the human placenta, SARS-CoV-2 could infect the placenta tissue, although reported to be of low frequency compared with maternal lung tissue. Early-onset preeclampsia (eoPE) shows higher expression of ADAM17 (a disintegrin and metalloproteinase 17) causing an imbalanced renin-angiotensin system and endothelial dysfunction. A similar mechanism seems to potentially account for SARS-CoV-2 infection. This review highlights the potentially common characteristics of pregnant women with eoPE with those with COVID-19. A better understanding of the mechanisms of SARS-CoV-2 infection and its impact on the placenta function is determinant since eoPE/COVID-19 association may result in maternal metabolic alterations that might lead to a potential worsening of the foetal programming of diseases in the neonate, young, and adult.
Collapse
|
9
|
Kobayashi H, Amrein K, Lasky-Su JA, Christopher KB. Procalcitonin metabolomics in the critically ill reveal relationships between inflammation intensity and energy utilization pathways. Sci Rep 2021; 11:23194. [PMID: 34853395 PMCID: PMC8636627 DOI: 10.1038/s41598-021-02679-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Procalcitonin is a biomarker of systemic inflammation and may have importance in the immune response. The metabolic response to elevated procalcitonin in critical illness is not known. The response to inflammation is vitally important to understanding metabolism alterations during extreme stress. Our aim was to determine if patients with elevated procalcitonin have differences in the metabolomic response to early critical illness. We performed a metabolomics study of the VITdAL-ICU trial where subjects received high dose vitamin D3 or placebo. Mixed-effects modeling was used to study changes in metabolites over time relative to procalcitonin levels adjusted for age, Simplified Acute Physiology Score II, admission diagnosis, day 0 25-hydroxyvitamin D level, and the 25-hydroxyvitamin D response to intervention. With elevated procalcitonin, multiple members of the short and medium chain acylcarnitine, dicarboxylate fatty acid, branched-chain amino acid, and pentose phosphate pathway metabolite classes had significantly positive false discovery rate corrected associations. Further, multiple long chain acylcarnitines and lysophosphatidylcholines had significantly negative false discovery rate corrected associations with elevated procalcitonin. Gaussian graphical model analysis revealed functional modules specific to elevated procalcitonin. Our findings show that metabolite differences exist with increased procalcitonin indicating activation of branched chain amino acid dehydrogenase and a metabolic shift.
Collapse
Affiliation(s)
- Hirotada Kobayashi
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA
| | - Kenneth B Christopher
- Division of Renal Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Groves T, Corley C, Byrum SD, Allen AR. The Effects of 5-Fluorouracil/Leucovorin Chemotherapy on Cognitive Function in Male Mice. Front Mol Biosci 2021; 8:762116. [PMID: 34778377 PMCID: PMC8581634 DOI: 10.3389/fmolb.2021.762116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
5-Fluorouracil (5-Fu) and leucovorin (LV) are often given in combination to treat colorectal cancer. 5-Fu/LV prevents cell proliferation by inhibiting thymidylate synthase, which catalyzes the conversion of deoxyuridine monophosphate to deoxythymidine monophosphate. While 5-Fu has been shown to cause cognitive impairment, the synergistic effect of 5-Fu with LV has not been fully explored. The present investigation was designed to assess how the combination of 5-Fu and LV affect cognition in a murine model. Six-month-old male mice were used in this study; 15 mice received saline injections and 15 mice received 5-Fu/LV injections. One month after treatment, the elevated plus maze, Y-maze, and Morris water maze behavioral tasks were performed. Brains were then extracted, cryosectioned, and stained for CD68 to assay microglial activation and with tomato lectin to assay the vasculature. All animals were able to locate the visible and hidden platform locations in the water maze. However, a significant impairment in spatial memory retention was observed in the probe trial after the first day of hidden-platform training (first probe trial) in animals that received 5-Fu/LV, but these animals showed spatial memory retention by day 5. There were no significant increases in inflammation as measured by CD68, but 5-Fu/LV treatment did modulate blood vessel morphology. Tandem mass tag proteomics analysis identified 6,049 proteins, 7 of which were differentially expressed with a p-value of <0.05 and a fold change of >1.5. The present data demonstrate that 5-Fu/LV increases anxiety and significantly impairs spatial memory retention.
Collapse
Affiliation(s)
- Thomas Groves
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christa Corley
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
11
|
Amin M, Tang S, Shalamanova L, Taylor RL, Wylie S, Abdullah BM, Whitehead KA. Polyamine biomarkers as indicators of human disease. Biomarkers 2021; 26:77-94. [PMID: 33439737 DOI: 10.1080/1354750x.2021.1875506] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The significant increase of periodontitis, chronic kidney disease (CKD), Alzheimer's disease and cancer can be attributed to an ageing population. Each disease produces a range of biomarkers that can be indicative of disease onset and progression. Biomarkers are defined as cellular (intra/extracellular components and whole cells), biochemical (metabolites, ions and toxins) or molecular (nucleic acids, proteins and lipids) alterations which are measurable in biological media such as human tissues, cells or fluids. An interesting group of biomarkers that merit further investigation are the polyamines. Polyamines are a group of molecules consisting of cadaverine, putrescine, spermine and spermidine and have been implicated in the development of a range of systemic diseases, in part due to their production in periodontitis. Cadaverine and putrescine within the periodontal environment have demonstrated cell signalling interfering abilities, by way of leukocyte migration disruption. The polyamines spermine and spermidine in tumour cells have been shown to inhibit cellular apoptosis, effectively prolonging tumorigenesis and continuation of cancer within the host. Polyamine degradation products such as acrolein have been shown to exacerbate renal damage in CKD patients. Thus, the use of such molecules has merit to be utilized in the early indication of such diseases in patients.
Collapse
Affiliation(s)
- Mohsin Amin
- Microbiology at Interfaces, Manchester Metropolitan University, Manchester, UK.,Department of Engineering and Technology, Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Shiying Tang
- Microbiology at Interfaces, Manchester Metropolitan University, Manchester, UK.,Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Liliana Shalamanova
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Rebecca L Taylor
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Stephen Wylie
- Department of Engineering and Technology, Civil Engineering, Liverpool John Moores University, Liverpool, UK
| | - Badr M Abdullah
- Department of Engineering and Technology, Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Kathryn A Whitehead
- Microbiology at Interfaces, Manchester Metropolitan University, Manchester, UK.,Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
12
|
Implications of Oxidative Stress and Potential Role of Mitochondrial Dysfunction in COVID-19: Therapeutic Effects of Vitamin D. Antioxidants (Basel) 2020; 9:antiox9090897. [PMID: 32967329 PMCID: PMC7555731 DOI: 10.3390/antiox9090897] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Due to its high degree of contagiousness and like almost no other virus, SARS-CoV-2 has put the health of the world population on alert. COVID-19 can provoke an acute inflammatory process and uncontrolled oxidative stress, which predisposes one to respiratory syndrome, and in the worst case, death. Recent evidence suggests the mechanistic role of mitochondria and vitamin D in the development of COVID-19. Indeed, mitochondrial dynamics contribute to the maintenance of cellular homeostasis, and its uncoupling involves pathological situations. SARS-CoV-2 infection is associated with altered mitochondrial dynamics with consequent oxidative stress, pro-inflammatory state, cytokine production, and cell death. Furthermore, vitamin D deficiency seems to be associated with increased COVID-19 risk. In contrast, vitamin D can normalize mitochondrial dynamics, which would improve oxidative stress, pro-inflammatory state, and cytokine production. Furthermore, vitamin D reduces renin–angiotensin–aldosterone system activation and, consequently, decreases ROS generation and improves the prognosis of SARS-CoV-2 infection. Thus, the purpose of this review is to deepen the knowledge about the role of mitochondria and vitamin D directly involved in the regulation of oxidative stress and the inflammatory state in SARS-CoV-2 infection. As future prospects, evidence suggests enhancing the vitamin D levels of the world population, especially of those individuals with additional risk factors that predispose to the lethal consequences of SARS-CoV-2 infection.
Collapse
|
13
|
Sun L, Yang J, Qin Y, Wang Y, Wu H, Zhou Y, Cao C. Discovery and antitumor evaluation of novel inhibitors of spermine oxidase. J Enzyme Inhib Med Chem 2019; 34:1140-1151. [PMID: 31159606 PMCID: PMC6567099 DOI: 10.1080/14756366.2019.1621863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/26/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022] Open
Abstract
Increasing knowledge of the relationship between cancer and dysregulated polyamine catabolism suggests interfering with aberrant polyamine metabolism for anticancer therapy that will have considerable clinical promise. SMO (spermine oxidase) plays an essential role in regulating the polyamines homeostasis. Therefore, development of SMO inhibitors has increasingly attracted much attention. Previously, we successfully purified and characterised SMO. Here, we presented an in silico drug discovery pipeline by combining pharmacophore modelling and molecular docking for the virtual screening of SMO inhibitors. In vitro evaluation showed that N-(3-{[3-(dimethylamino)propyl]amino}propyl)-8-quinolinecarboxamide (SI-4650) inhibited SMO enzyme activity, increased substrate spermine content and reduced product spermidine content, indicating that SI-4650 can interfere with polyamine metabolism. Furthermore, SI-4650 treatment suppressed cell proliferation and migration. Mechanistically, SI-4650 caused cell cycle arrest, induced cell apoptosis, and promoted autophagy. These results demonstrated the properties of interfering with polyamine metabolism of SI-4650 as a SMO inhibitor and the potential for cancer treatment.
Collapse
Affiliation(s)
- Lidan Sun
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou, China
| | - Jianlin Yang
- Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University Medical College, Yichang, China
| | - Yu Qin
- Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University Medical College, Yichang, China
| | - Yanlin Wang
- Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University Medical College, Yichang, China
| | - Hongyan Wu
- Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University Medical College, Yichang, China
| | - You Zhou
- Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University Medical College, Yichang, China
| | - Chunyu Cao
- Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University Medical College, Yichang, China
| |
Collapse
|
14
|
Song J, Shan Z, Mao J, Teng W. Serum polyamine metabolic profile in autoimmune thyroid disease patients. Clin Endocrinol (Oxf) 2019; 90:727-736. [PMID: 30725486 DOI: 10.1111/cen.13946] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/21/2019] [Accepted: 02/03/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Polyamines are indispensable polycations and play important physiological roles in living cells. Some polyamine metabolites have been associated with autoimmune disorders. The aims of this study were to profile polyamine metabolites in autoimmune thyroid disease (AITD) and predict whether polyamine metabolites are associated with thyroid hormone, thyroid autoantibodies or disease progression. DESIGN, PATIENTS AND MEASUREMENTS A total of 136 participants were recruited, including Graves' disease (GD) (n = 36), Hashimoto's thyroiditis (HT) (n = 33) and thyroid autoantibody-positive (pTAb) (n = 29) patients and 38 age- and sex-matched healthy controls (HCs). Fourteen polyamine metabolites, including polyamine precursors, polyamines and polyamine catabolite, were measured by UFLC-MS/MS RESULTS: Both GD and HT patients had higher L-arginine, L-ornithine, lysine and agmatine levels and lower putrescine, 1,3-diaminopropane, spermine, N-acetylputrescine levels than HCs. Some polyamine metabolite levels were different only in GD or HT patients compared to HCs: GD patients had significantly higher spermidine, N-acetylspermidine and γ-aminobutyric acid and lower cadaverine, whereas HT patients had significantly decreased N-acetylspermine. Only spermine and N-acetylspermine were significantly lower in pTAb than HCs. The spermine:spermidine ratio was significantly reduced in all AITD patients. In addition, spermine was negatively correlated with thyroid-specific antibodies grade. N-acetylspermidine might be a risk factor for pTAb progression to overt hypothyroidism. CONCLUSIONS Compared with the HCs, most metabolites of GD and HT showed similar patterns, suggesting the possibility of a common pathophysiological basis or metabolic pathway. Moreover, pTAb progression to overt hypothyroidism may be related to high N-acetylspermidine. Thyroid autoimmunity was associated with low spermine.
Collapse
Affiliation(s)
- Jing Song
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Jinyuan Mao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Lee HS, Seo C, Kim YA, Park M, Choi B, Ji M, Lee S, Paik MJ. Metabolomic study of polyamines in rat urine following intraperitoneal injection of γ-hydroxybutyric acid. Metabolomics 2019; 15:58. [PMID: 30941522 DOI: 10.1007/s11306-019-1517-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Recently, illegal abuse of γ-hydroxybutyric acid (GHB) has increased in drug-facilitated crimes, but the determination of GHB exposure and intoxication is difficult due to rapid metabolism of GHB. Its biochemical mechanism has not been completely investigated. And a metabolomic study by polyamine profile and pattern analyses was not performed in rat urine following intraperitoneal injection with GHB. OBJECTIVES Urinary polyamine (PA) profiling by gas chromatography-tandem mass spectrometry was performed to monitor an altered PA according to GHB administration. METHODS Polyamine profiling analysis by gas chromatography-mass spectrometry combined with star pattern recognition analysis was performed in this study. The multivariate statistical analysis was used to evaluate discrimination among control and GHB administration groups. RESULTS Six polyamines were determined in control, single and multiple GHB administration groups. Star pattern showed distorted hexagonal shapes with characteristic and readily distinguishable patterns for each group. N1-Acetylspermine (p < 0.001), putrescine (p < 0.006), N1-acetylspermidine (p < 0.009), and spermine (p < 0.027) were significantly increased in single administration group but were significantly lower in the multiple administration group than in the control group. N1-Acetylspermine was the main polyamine for discrimination among control, single and multiple administration groups. Spermine showed similar levels in single and multiple administration groups. CONCLUSIONS The polyamine metabolic pattern was monitored in GHB administration groups. N1-Acetylspermine and spermine were evaluated as potential biomarkers of GHB exposure and addiction.
Collapse
Affiliation(s)
- Hyeon-Seong Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Chan Seo
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Young-A Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Meejung Park
- National Forensic Service, 10 Ipchoon-ro, Wonju, Kangwon-do, 220-170, Republic of Korea
| | - Boyeon Choi
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 704-701, Republic of Korea
| | - Moongi Ji
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 704-701, Republic of Korea.
| | - Man-Jeong Paik
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea.
| |
Collapse
|
16
|
Ramos-Molina B, Queipo-Ortuño MI, Lambertos A, Tinahones FJ, Peñafiel R. Dietary and Gut Microbiota Polyamines in Obesity- and Age-Related Diseases. Front Nutr 2019; 6:24. [PMID: 30923709 PMCID: PMC6426781 DOI: 10.3389/fnut.2019.00024] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The polyamines putrescine, spermidine, and spermine are widely distributed polycationic compounds essential for cellular functions. Intracellular polyamine pools are tightly regulated by a complex regulatory mechanism involving de novo biosynthesis, catabolism, and transport across the plasma membrane. In mammals, both the production of polyamines and their uptake from the extracellular space are controlled by a set of proteins named antizymes and antizyme inhibitors. Dysregulation of polyamine levels has been implicated in a variety of human pathologies, especially cancer. Additionally, decreases in the intracellular and circulating polyamine levels during aging have been reported. The differences in the polyamine content existing among tissues are mainly due to the endogenous polyamine metabolism. In addition, a part of the tissue polyamines has its origin in the diet or their production by the intestinal microbiome. Emerging evidence has suggested that exogenous polyamines (either orally administrated or synthetized by the gut microbiota) are able to induce longevity in mice, and that spermidine supplementation exerts cardioprotective effects in animal models. Furthermore, the administration of either spermidine or spermine has been shown to be effective for improving glucose homeostasis and insulin sensitivity and reducing adiposity and hepatic fat accumulation in diet-induced obesity mouse models. The exogenous addition of agmatine, a cationic molecule produced through arginine decarboxylation by bacteria and plants, also exerts significant effects on glucose metabolism in obese models, as well as cardioprotective effects. In this review, we will discuss some aspects of polyamine metabolism and transport, how diet can affect circulating and local polyamine levels, and how the modulation of either polyamine intake or polyamine production by gut microbiota can be used for potential therapeutic purposes.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria Isabel Queipo-Ortuño
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain.,Department of Medical Oncology, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
17
|
Martins GP, Espe M, Zhang Z, Guimarães IG, Holen E. Surplus arginine reduced lipopolysaccharide induced transcription of proinflammatory genes in Atlantic salmon head kidney cells. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1130-1138. [PMID: 30590162 DOI: 10.1016/j.fsi.2018.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
In aquaculture production, studies of salmon health and interaction between pathogens and nutrition are of high importance. This study aimed to compare genes and pathways involved in salmon head kidney cells and liver cells, isolated from the same fish, towards polyinosinic acid: polycytidylic acid (poly I:C) and lipopolysaccharide (LPS), with and without addition of surplus arginine. Selected transcriptional responses of genes involved in inflammation, polyamine synthesis, oxidation and apoptosis were elucidated. For the genes related to inflammation, viperin, Mx and Toll like receptor 3 (TLR3), transcription were significantly upregulated by poly I:C in head kidney cells, while viperin was upregulated in liver cells. Surplus arginine did not affect poly I:C induced responses with the exception of reducing poly I:C induced Mx transcription in head kidney cells. Gene transcription of Interleukin 1β (IL-1β), Interleukin-8 (IL-8) and cyclooxygenase 2 (Cox2) were elevated during LPS treatment in all liver and head kidney cell cultures. In addition, LPS induced significantly, CD83 transcription in liver cells and TNF-α transcription in head kidney cells. Surplus arginine significantly reduced IL-8, Cox2 and TNF-α transcription in head kidney cells. LPS upregulated arginase in head kidney cells while poly I:C upregulated S-adenosyl methionine decarboxylase (SAMdc) transcription in liver cells. This suggests that LPS and poly I:C modulates genes involved in polyamine synthesis. In addition, in head kidney cells, surplus arginine, when cultured together with LPS, increased the transcription of ornithine decarboxylase (ODC) the limiting enzyme of polyamine synthesis. The genes involved with oxidation and apoptosis were not affect by any of the treatments in liver cells, while LPS decreased caspase 3 transcription in head kidney cells. In liver cells, protein expression of catalase was reduced by surplus arginine alone and when challenged with poly I:C. Both liver cells and head kidney cells isolated from the same individual fish responded to LPS and poly I:C, depending on the gene analyzed. Additionally, arginine could modulate transcription of pro-inflammatory genes induced by LPS in salmon immune cells, thus affecting salmon immunity.
Collapse
Affiliation(s)
- Graciela P Martins
- Aquaculture Research Laboratory, Goiás Federal University, Jataí, GO, 75801-615, Brazil; Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway
| | - Marit Espe
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway
| | - Zhihao Zhang
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway
| | - Igo G Guimarães
- Aquaculture Research Laboratory, Goiás Federal University, Jataí, GO, 75801-615, Brazil
| | - Elisabeth Holen
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway.
| |
Collapse
|
18
|
Lee HS, Seo C, Hwang YH, Shin TH, Park HJ, Kim Y, Ji M, Min J, Choi S, Kim H, Park AK, Yee ST, Lee G, Paik MJ. Metabolomic approaches to polyamines including acetylated derivatives in lung tissue of mice with asthma. Metabolomics 2019; 15:8. [PMID: 30830418 DOI: 10.1007/s11306-018-1470-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/24/2018] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Recently, the relationship between polyamine (PA) metabolism and asthma has been studied in severe asthmatic therapy, but systematic PA metabolism including their acetylated derivatives was not fully understood. OBJECTIVES Profiling analysis of polyamines (PAs) was performed to understand the biochemical events and monitor altered PA metabolism in lung tissue of mice with asthma. METHODS Polyamine profiling of lung tissue of mice with asthma was performed without derivatization by liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with star pattern recognition analysis. The PA levels between control and asthma groups were evaluated by multivariate analysis. RESULTS In mouse lung tissue, seven PAs were determined by LC-MS/MS in multiple reaction monitoring (MRM) mode. Their levels were normalized to the corresponding mean levels of the control group for star pattern analysis, which showed distorted heptagonal shapes with characteristic and readily distinguishable patterns for each group. Levels of putrescine (p < 0.0034), N1-acetylputrescine (p < 0.0652), and N8-acetylspermidine (p < 0.0827) were significantly increased in asthmatic lung tissue. The separation of the two groups was evaluated using multivariate analysis. In unsupervised learning, acetylated PAs including N1-acetylspermine were the main metabolites for discrimination. In supervised learning, putrescine and N1-acetylputrescine were evaluated as important metabolites. CONCLUSIONS The present results provide basic data for understanding polyamine metabolism in asthma and may help to improve the therapy for severe asthma patients.
Collapse
Affiliation(s)
- Hyeon-Seong Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Chan Seo
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Yun-Ho Hwang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Tae Hwan Shin
- Department of Physiology, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyung-Jin Park
- Department of Physiology, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Youngbae Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Moongi Ji
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Jeuk Min
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Subin Choi
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Ae Kyung Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Sung-Tae Yee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea.
- College of Pharmacy, Sunchon National University, 540-950, Suncheon, Republic of Korea.
| |
Collapse
|
19
|
Abstract
Advances in our understanding of the metabolism and molecular functions of polyamines and their alterations in cancer have led to resurgence in the interest of targeting polyamine metabolism as an anticancer strategy. Increasing knowledge of the interplay between polyamine metabolism and other cancer-driving pathways, including the PTEN-PI3K-mTOR complex 1 (mTORC1), WNT signalling and RAS pathways, suggests potential combination therapies that will have considerable clinical promise. Additionally, an expanding number of promising clinical trials with agents targeting polyamines for both therapy and prevention are ongoing. New insights into molecular mechanisms linking dysregulated polyamine catabolism and carcinogenesis suggest additional strategies that can be used for cancer prevention in at-risk individuals. In addition, polyamine blocking therapy, a strategy that combines the inhibition of polyamine biosynthesis with the simultaneous blockade of polyamine transport, can be more effective than therapies based on polyamine depletion alone and may involve an antitumour immune response. These findings open up new avenues of research into exploiting aberrant polyamine metabolism for anticancer therapy.
Collapse
Affiliation(s)
- Robert A Casero
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
| | - Tracy Murray Stewart
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Anthony E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
20
|
Gerner EW, Bruckheimer E, Cohen A. Cancer pharmacoprevention: Targeting polyamine metabolism to manage risk factors for colon cancer. J Biol Chem 2018; 293:18770-18778. [PMID: 30355737 DOI: 10.1074/jbc.tm118.003343] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer is a set of diseases characterized by uncontrolled cell growth. In certain cancers of the gastrointestinal tract, the adenomatous polyposis coli (APC) tumor suppressor gene is altered in either germline or somatic cells and causes formation of risk factors, such as benign colonic or intestinal neoplasia, which can progress to invasive cancer. APC is a key component of the WNT pathway, contributing to normal GI tract development, and APC alteration results in dysregulation of the pathway for production of polyamines, which are ubiquitous cations essential for cell growth. Studies with mice have identified nonsteroidal anti-inflammatory drugs (NSAIDs) and difluoromethylornithine (DFMO), an inhibitor of polyamine synthesis, as potent inhibitors of colon carcinogenesis. Moreover, gene expression profiling has uncovered that NSAIDs activate polyamine catabolism and export. Several DFMO-NSAID combination strategies are effective and safe methods for reducing risk factors in clinical trials with patients having genetic or sporadic risk of colon cancer. These strategies affect cancer stem cells, inflammation, immune surveillance, and the microbiome. Pharmacotherapies consisting of drug combinations targeting the polyamine pathway provide a complementary approach to surgery and cytotoxic cancer treatments for treating patients with cancer risk factors. In this Minireview, we discuss the role of polyamines in colon cancer and highlight the mechanisms of select pharmacoprevention agents to delay or prevent carcinogenesis in humans.
Collapse
Affiliation(s)
- Eugene W Gerner
- From Cancer Prevention Pharmaceuticals, Tucson, Arizona 85718 and .,the Department of Cell and Molecular Medicine, University of Arizona, Tucson, Arizona 85711
| | | | - Alfred Cohen
- From Cancer Prevention Pharmaceuticals, Tucson, Arizona 85718 and
| |
Collapse
|
21
|
Ramos-Molina B, Lambertos A, Peñafiel R. Antizyme Inhibitors in Polyamine Metabolism and Beyond: Physiopathological Implications. ACTA ACUST UNITED AC 2018; 6:medsci6040089. [PMID: 30304856 PMCID: PMC6313458 DOI: 10.3390/medsci6040089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022]
Abstract
The intracellular levels of polyamines, cationic molecules involved in a myriad of cellular functions ranging from cellular growth, differentiation and apoptosis, is precisely regulated by antizymes and antizyme inhibitors via the modulation of the polyamine biosynthetic and transport systems. Antizymes, which are mainly activated upon high polyamine levels, inhibit ornithine decarboxylase (ODC), the key enzyme of the polyamine biosynthetic route, and exert a negative control of polyamine intake. Antizyme inhibitors (AZINs), which are proteins highly homologous to ODC, selectively interact with antizymes, preventing their action on ODC and the polyamine transport system. In this review, we will update the recent advances on the structural, cellular and physiological functions of AZINs, with particular emphasis on the action of these proteins in the regulation of polyamine metabolism. In addition, we will describe emerging evidence that suggests that AZINs may also have polyamine-independent effects on cells. Finally, we will discuss how the dysregulation of AZIN activity has been implicated in certain human pathologies such as cancer, fibrosis or neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
- Laboratory of Cellular and Molecular Endocrinology, Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
- Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain.
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
- Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain.
| |
Collapse
|
22
|
Keinänen TA, Grigorenko N, Khomutov AR, Huang Q, Uimari A, Alhonen L, Hyvönen MT, Vepsäläinen J. Controlling the regioselectivity and stereospecificity of FAD-dependent polyamine oxidases with the use of amine-attached guide molecules as conformational modulators. Biosci Rep 2018; 38:BSR20180527. [PMID: 30006473 PMCID: PMC6131205 DOI: 10.1042/bsr20180527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 01/03/2023] Open
Abstract
Enzymes generally display strict stereospecificity and regioselectivity for their substrates. Here by using FAD-dependent human acetylpolyamine oxidase (APAO), human spermine (Spm) oxidase (SMOX) and yeast polyamine oxidase (Fms1), we demonstrate that these fundamental properties of the enzymes may be regulated using simple guide molecules, being either covalently attached to polyamines or used as a supplement to the substrate mixtures. APAO, which naturally metabolizes achiral N1-acetylated polyamines, displays aldehyde-controllable stereospecificity with chiral 1-methylated polyamines, like (R)- and (S)-1-methylspermidine (1,8-diamino-5-azanonane) (1-MeSpd). Among the novel N1-acyl derivatives of MeSpd, isonicotinic acid (P4) or benzoic acid (Bz) with (R)-MeSpd had Km of 3.6 ± 0.6/1.2 ± 0.7 µM and kcat of 5.2 ± 0.6/4.6 ± 0.7 s-1 respectively, while N1 -AcSpd had Km 8.2 ± 0.4 µM and kcat 2.7 ± 0.0 s-1 On the contrary, corresponding (S)-MeSpd amides were practically inactive (kcat < 0.03 s-1) but they retained micromole level Km for APAO. SMOX did not metabolize any of the tested compounds (kcat < 0.05 s-1) that acted as non-competitive inhibitors having Ki ≥ 155 µM for SMOX. In addition, we tested (R,R)-1,12-bis-methylspermine (2,13-diamino-5,10-diazatetradecane) (R,R)-(Me2Spm) and (S,S)-Me2Spm as substrates for Fms1. Fms1 preferred (S,S)- to (R,R)-diastereoisomer, but with notably lower kcat in comparison with spermine. Interestingly, Fms1 was prone to aldehyde supplementation in its regioselectivity, i.e. the cleavage site of spermidine. Thus, aldehyde supplementation to generate aldimines or N-terminal substituents in polyamines, i.e. attachment of guide molecule, generates novel ligands with altered charge distribution changing the binding and catalytic properties with polyamine oxidases. This provides means for exploiting hidden capabilities of polyamine oxidases for controlling their regioselectivity and stereospecificity.
Collapse
Affiliation(s)
- Tuomo A Keinänen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Nikolay Grigorenko
- BASF Schweiz AG, Dispersions and Pigments Division, Klybeckstrasse 141, P.O. Box CH 4002, Basel, Switzerland
| | - Alex R Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St 32, Moscow 119991, Russia
| | - Qingqiu Huang
- MacCHESS at the Cornell High Energy Synchrotron Source, Cornell University Ithaca, NY 14853-8001, U.S.A
| | - Anne Uimari
- Natural Resources Institute Finland, Natural Resources Division, Neulaniementie 5, Kuopio FI-70210, Finland
| | - Leena Alhonen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Mervi T Hyvönen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
23
|
Zhou S, Gu J, Liu R, Wei S, Wang Q, Shen H, Dai Y, Zhou H, Zhang F, Lu L. Spermine Alleviates Acute Liver Injury by Inhibiting Liver-Resident Macrophage Pro-Inflammatory Response Through ATG5-Dependent Autophagy. Front Immunol 2018; 9:948. [PMID: 29770139 PMCID: PMC5940752 DOI: 10.3389/fimmu.2018.00948] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
Liver-resident macrophages (Kupffer cells, KCs) and autophagy play critical roles in the pathogenesis of toxin-induced liver injury. Recent evidence indicates that autophagy can regulate macrophage M1/M2 polarization under different inflammatory conditions. Polyamines, including putrescine, spermidine, and spermine (SPM), are polycations with anti-oxidative, anti-aging, and cell autophagy induction properties. This study aimed to determine the mechanisms by which SPM protects against thioacetamide (TAA)-induced acute liver injury in a mouse model. Pretreatment with SPM significantly alleviated liver injury and reduced intrahepatic inflammation in TAA-induced liver injury compared to controls. SPM markedly inhibited M1 polarization, but promoted M2 polarization of KCs obtained from TAA-exposed livers, as evidenced by decreased IL-1β and iNOS gene induction but increased Arg-1 and Mrc-1 gene induction accompanied by decreased STAT1 activation and increased STAT6 activation. Furthermore, pretreatment with SPM enhanced autophagy, as revealed by increased LC3B-II levels, decreased p62 protein expression, and increased ATG5 protein expression in TAA-treated KCs. Knockdown of ATG5 in SPM-pretreated KCs by siRNA resulted in a significant increase in pro-inflammatory TNF-α and IL-6 secretion and decreased anti-inflammatory IL-10 secretion after TAA treatment, while no significant changes were observed in cytokine production in the TAA treatment alone. Additionally, the effect of SPM on regulation of KC M1/M2 polarization was abolished by ATG5 knockdown in TAA-exposed KCs. Finally, in vivo ATG5 knockdown in KCs abrogated the protective effect of SPM against TAA-induced acute liver injury. Our results indicate that SPM-mediated autophagy inhibits M1 polarization, while promoting M2 polarization of KCs in TAA-treated livers via upregulation of ATG5 expression, leading to attenuated liver injury. This study provides a novel target for the prevention of acute liver injury.
Collapse
Affiliation(s)
- Shun Zhou
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Song Wei
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Wang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Haoming Zhou
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ling Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Ucal S, Häkkinen MR, Alanne AL, Alhonen L, Vepsäläinen J, Keinänen TA, Hyvönen MT. Controlling of N-alkylpolyamine analogue metabolism by selective deuteration. Biochem J 2018; 475:663-676. [PMID: 29301981 DOI: 10.1042/bcj20170887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 01/26/2023]
Abstract
Replacing protium with deuterium is an efficient method to modulate drug metabolism. N-alkylated polyamine analogues are polyamine antimetabolites with proven anticancer efficacy. We have characterized earlier the preferred metabolic routes of N1,N12-diethylspermine (DESpm), N1-benzyl-N12-ethylspermine (BnEtSpm) and N1,N12-dibenzylspermine (DBSpm) by human recombinant spermine oxidase (SMOX) and acetylpolyamine oxidase (APAO). Here, we studied the above analogues, their variably deuterated counterparts and their metabolites as substrates and inhibitors of APAO, SMOX, semicarbazide-sensitive amine oxidase (SSAO), diamine oxidase (DAO) and monoamine oxidases. We found that targeted deuteration efficiently redirected the preferable cleavage site and suppressed reaction rate by APAO and SMOX in vitro We found a three- to six-fold decline in Vmax with moderate variable effect on Km when deuterium was located at the preferred hydrogen abstraction site of the analogue. We also found some of the metabolites to be potent inhibitors of DAO and SSAO. Surprisingly, analogue deuteration did not markedly alter the anti-proliferative efficacy of the drugs in DU145 prostate cancer cells, while in mouse embryonic fibroblasts, which had higher basal APAO and SMOX activities, moderate effect was observed. Interestingly, the anti-proliferative efficacy of the analogues did not correlate with their ability to suppress polyamine biosynthetic enzymes, induce spermidine/spermine-N1-acetyltransferase or deplete intracellular polyamine levels, but correlated with their ability to induce SMOX. Our data show that selective deuteration of N-alkyl polyamine analogues enables metabolic switching, offering the means for selective generation of bioactive metabolites inhibiting, e.g. SSAO and DAO, thus setting a novel basis for in vivo studies of this class of analogues.
Collapse
Affiliation(s)
- Sebahat Ucal
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Merja R Häkkinen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Aino-Liisa Alanne
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Leena Alhonen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Tuomo A Keinänen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Mervi T Hyvönen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| |
Collapse
|
25
|
Abstract
Abstract
Clinical practice and experimental studies have shown the necessity of sufficient quantities of folic acid intake for normal embryogenesis and fetal development in the prevention of neural tube defects (NTDs) and neurological malformations. So, women of childbearing age must be sure to have an adequate folate intake periconceptionally, prior to and during pregnancy. Folic acid fortification of all enriched cereal grain product flour has been implemented in many countries. Thus, hundreds of thousands of people have been exposed to an increased intake of folic acid. Folate plays an essential role in the biosynthesis of methionine. Methionine is the principal aminopropyl donor required for polyamine biosynthesis, which is up-regulated in actively growing cells, including cancer cells. Folates are important in RNA and DNA synthesis, DNA stability and integrity. Clinical and epidemiological evidence links folate deficiency to DNA damage and cancer. On the other hand, long-term folate oversupplementation leads to adverse toxic effects, resulting in the appearance of malignancy. Considering the relationship of polyamines and rapidly proliferating tissues (especially cancers), there is a need for better investigation of the relationship between the ingestion of high amounts of folic acid in food supplementation and polyamine metabolism, related to malignant processes in the human body.
Collapse
|
26
|
Masalova OV, Lesnova EI, Samokhvalov EI, Permyakova KY, Ivanov AV, Kochetkov SN, Kushch AA. Low-molecular-weight regulators of biogenic polyamine metabolism affect cytokine production and expression of hepatitis С virus proteins in Huh7.5 human hepatocarcinoma cells. Mol Biol 2017. [DOI: 10.1134/s0026893317030128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Snezhkina AV, Krasnov GS, Lipatova AV, Sadritdinova AF, Kardymon OL, Fedorova MS, Melnikova NV, Stepanov OA, Zaretsky AR, Kaprin AD, Alekseev BY, Dmitriev AA, Kudryavtseva AV. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPβ rather than Enterotoxigenic Bacteroides fragilis Infection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2353560. [PMID: 27433286 PMCID: PMC4940579 DOI: 10.1155/2016/2353560] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/28/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Colorectal cancer is one of the most common cancers in the world. It is well known that the chronic inflammation can promote the progression of colorectal cancer (CRC). Recently, a number of studies revealed a potential association between colorectal inflammation, cancer progression, and infection caused by enterotoxigenic Bacteroides fragilis (ETBF). Bacterial enterotoxin activates spermine oxidase (SMO), which produces spermidine and H2O2 as byproducts of polyamine catabolism, which, in turn, enhances inflammation and tissue injury. Using qPCR analysis, we estimated the expression of SMOX gene and ETBF colonization in CRC patients. We found no statistically significant associations between them. Then we selected genes involved in polyamine metabolism, metabolic reprogramming, and inflammation regulation and estimated their expression in CRC. We observed overexpression of SMOX, ODC1, SRM, SMS, MTAP, c-Myc, C/EBPβ (CREBP), and other genes. We found that two mediators of metabolic reprogramming, inflammation, and cell proliferation c-Myc and C/EBPβ may serve as regulators of polyamine metabolism genes (SMOX, AZIN1, MTAP, SRM, ODC1, AMD1, and AGMAT) as they are overexpressed in tumors, have binding site according to ENCODE ChIP-Seq data, and demonstrate strong coexpression with their targets. Thus, increased polyamine metabolism in CRC could be driven by c-Myc and C/EBPβ rather than ETBF infection.
Collapse
Affiliation(s)
- Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow 119121, Russia
| | - Anastasiya V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Asiya F. Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - Olga L. Kardymon
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Oleg A. Stepanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrew R. Zaretsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Andrey D. Kaprin
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - Boris Y. Alekseev
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| |
Collapse
|
28
|
Huang W, Eickhoff JC, Ghomi FM, Church DR, Wilding G, Basu HS. Expression of spermidine/spermine N(1) -acetyl transferase (SSAT) in human prostate tissues is related to prostate cancer progression and metastasis. Prostate 2015; 75:1150-9. [PMID: 25893668 PMCID: PMC4475436 DOI: 10.1002/pros.22996] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/05/2015] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) in many patients remains indolent for the rest of their lives, but in some patients, it progresses to lethal metastatic disease. Gleason score is the current clinical method for PCa prognosis. It cannot reliably identify aggressive PCa, when GS is ≤ 7. It is shown that oxidative stress plays a key role in PCa progression. We have shown that in cultured human PCa cells, an activation of spermidine/spermine N(1) -acetyl transferase (SSAT; EC 2.3.1.57) enzyme initiates a polyamine oxidation pathway and generates copious amounts of reactive oxygen species in polyamine-rich PCa cells. METHOD We used RNA in situ hybridization and immunohistochemistry methods to detect SSAT mRNA and protein expression in two tissue microarrays (TMA) created from patient's prostate tissues. We analyzed 423 patient's prostate tissues in the two TMAs. RESULTS Our data show that there is a significant increase in both SSAT mRNA and the enzyme protein in the PCa cells as compared to their benign counterpart. This increase is even more pronounced in metastatic PCa tissues as compared to the PCa localized in the prostate. In the prostatectomy tissues from early-stage patients, the SSAT protein level is also high in the tissues obtained from the patients who ultimately progress to advanced metastatic disease. DISCUSSION Based on these results combined with published data from our and other laboratories, we propose an activation of an autocrine feed-forward loop of PCa cell proliferation in the absence of androgen as a possible mechanism of castrate-resistant prostate cancer growth.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison WI
| | - Jens C Eickhoff
- Department of Biostatistics, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison WI
| | - Farideh Mehraein Ghomi
- Department of Medicine, University of Wisconsin Carbone Cancer Center University of Wisconsin, Madison, WI
| | - Dawn R. Church
- Department of Medicine, University of Wisconsin Carbone Cancer Center University of Wisconsin, Madison, WI
| | - George Wilding
- Department of Medicine, University of Wisconsin Carbone Cancer Center University of Wisconsin, Madison, WI
| | - Hirak S. Basu
- Department of Medicine, University of Wisconsin Carbone Cancer Center University of Wisconsin, Madison, WI
- To whom all communications should be directed at: Room #7068, Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI, 53705,
| |
Collapse
|
29
|
Saulnier Sholler GL, Gerner EW, Bergendahl G, MacArthur RB, VanderWerff A, Ashikaga T, Bond JP, Ferguson W, Roberts W, Wada RK, Eslin D, Kraveka JM, Kaplan J, Mitchell D, Parikh NS, Neville K, Sender L, Higgins T, Kawakita M, Hiramatsu K, Moriya SS, Bachmann AS. A Phase I Trial of DFMO Targeting Polyamine Addiction in Patients with Relapsed/Refractory Neuroblastoma. PLoS One 2015; 10:e0127246. [PMID: 26018967 PMCID: PMC4446210 DOI: 10.1371/journal.pone.0127246] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/11/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common cancer in infancy and most frequent cause of death from extracranial solid tumors in children. Ornithine decarboxylase (ODC) expression is an independent indicator of poor prognosis in NB patients. This study investigated safety, response, pharmacokinetics, genetic and metabolic factors associated with ODC in a clinical trial of the ODC inhibitor difluoromethylornithine (DFMO) ± etoposide for patients with relapsed or refractory NB. METHODS AND FINDINGS Twenty-one patients participated in a phase I study of daily oral DFMO alone for three weeks, followed by additional three-week cycles of DFMO plus daily oral etoposide. No dose limiting toxicities (DLTs) were identified in patients taking doses of DFMO between 500-1500 mg/m2 orally twice a day. DFMO pharmacokinetics, single nucleotide polymorphisms (SNPs) in the ODC gene and urinary levels of substrates for the tissue polyamine exporter were measured. Urinary polyamine levels varied among patients at baseline. Patients with the minor T-allele at rs2302616 of the ODC gene had higher baseline levels (p=0.02) of, and larger decreases in, total urinary polyamines during the first cycle of DFMO therapy (p=0.003) and had median progression free survival (PFS) that was over three times longer, compared to patients with the major G allele at this locus although this last result was not statistically significant (p=0.07). Six of 18 evaluable patients were progression free during the trial period with three patients continuing progression free at 663, 1559 and 1573 days after initiating treatment. Median progression-free survival was less among patients having increased urinary polyamines, especially diacetylspermine, although this result was not statistically significant (p=0.056). CONCLUSIONS DFMO doses of 500-1500 mg/m2/day are safe and well tolerated in children with relapsed NB. Children with the minor T allele at rs2302616 of the ODC gene with relapsed or refractory NB had higher levels of urinary polyamine markers and responded better to therapy containing DFMO, compared to those with the major G allele at this locus. These findings suggest that this patient subset may display dependence on polyamines and be uniquely susceptible to therapies targeting this pathway. TRIAL REGISTRATION Clinicaltrials.gov NCT#01059071.
Collapse
Affiliation(s)
- Giselle L. Saulnier Sholler
- Helen DeVos Children’s Hospital, Grand Rapids, Michigan, United States of America
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Eugene W. Gerner
- Cancer Prevention Pharmaceuticals, Tucson, Arizona, United States of America
| | - Genevieve Bergendahl
- Helen DeVos Children’s Hospital, Grand Rapids, Michigan, United States of America
| | - Robert B. MacArthur
- Cancer Prevention Pharmaceuticals, Tucson, Arizona, United States of America
| | - Alyssa VanderWerff
- Helen DeVos Children’s Hospital, Grand Rapids, Michigan, United States of America
| | - Takamaru Ashikaga
- Medical Biostatistics, University of Vermont, Burlington, Vermont, United States of America
| | - Jeffrey P. Bond
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - William Ferguson
- Cardinal Glennon Children's Hospital, St. Louis, Missouri, United States of America
| | - William Roberts
- University of California San Diego School of Medicine and Rady Children's Hospital, San Diego, California, United States of America
| | - Randal K. Wada
- Kapiolani Medical Center for Women and Children, Honolulu, Hawaii, United States of America
| | - Don Eslin
- Arnold Palmer Hospital for Children, Orlando, Florida, United States of America
| | - Jacqueline M. Kraveka
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Joel Kaplan
- Levine Children's Hospital, Charlotte, North Carolina, United States of America
| | - Deanna Mitchell
- Helen DeVos Children’s Hospital, Grand Rapids, Michigan, United States of America
| | - Nehal S. Parikh
- Connecticut Children's Medical Center, Hartford, Connecticut, United States of America
| | - Kathleen Neville
- Children's Mercy Hospitals and Clinics, Kansas City, Missouri, United States of America
| | - Leonard Sender
- Children’s Hospital of Orange County, Orange, California, United States of America
| | - Timothy Higgins
- Medical Biostatistics, University of Vermont, Burlington, Vermont, United States of America
| | - Masao Kawakita
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Hiramatsu
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - André S. Bachmann
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, Hilo, Hawaii, United States of America
| |
Collapse
|
30
|
Park MH, Igarashi K. Polyamines and their metabolites as diagnostic markers of human diseases. Biomol Ther (Seoul) 2014; 21:1-9. [PMID: 24009852 PMCID: PMC3762300 DOI: 10.4062/biomolther.2012.097] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/04/2013] [Indexed: 01/31/2023] Open
Abstract
Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.
Collapse
Affiliation(s)
- Myung Hee Park
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, MD, 20892, USA
| | | |
Collapse
|
31
|
Holen E, Espe M, Andersen SM, Taylor R, Aksnes A, Mengesha Z, Araujo P. A co culture approach show that polyamine turnover is affected during inflammation in Atlantic salmon immune and liver cells and that arginine and LPS exerts opposite effects on p38MAPK signaling. FISH & SHELLFISH IMMUNOLOGY 2014; 37:286-298. [PMID: 24565893 DOI: 10.1016/j.fsi.2014.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/03/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
This study assess which pathways and molecular processes are affected by exposing salmon head kidney cells or liver cells to arginine supplementation above the established requirements for growth support. In addition to the conventional mono cultures of liver and head kidney cells, co cultures of the two cell types were included in the experimental set up. Responses due to elevated levels of arginine were measured during inflammatory (lipopolysaccharide/LPS) and non -inflammatory conditions. LPS up regulated the genes involved in polyamine turnover; ODC (ornithine decarboxylase), SSAT (spermidine/spermine-N1-acetyltransferase) and SAMdc (S-adenosyl methionine decarboxylase) in head kidney cells when co cultured with liver cells. Regardless of treatment, liver cells in co culture up regulated ODC and down regulated SSAT when compared to liver mono cultures. This suggests that polyamines have anti-inflammatory properties and that both salmon liver cells and immune cells seem to be involved in this process. The transcription of C/EBP β/CCAAT, increased during inflammation in all cultures except for liver mono cultures. The observed up regulation of this gene may be linked to glucose transport due to the highly variable glucose concentrations found in the cell media. PPARα transcription was also increased in liver cells when receiving signals from head kidney cells. Gene transcription of Interleukin 1β (IL-1β), Interleukin-8 (IL-8), cyclooxygenase 2 (COX2) and CD83 were elevated during LPS treatment in all the head kidney cell cultures while arginine supplementation reduced IL-1β and IL-8 transcription in liver cells co cultured with head kidney cells. This is probably connected to p38MAPK signaling as arginine seem to affect p38MAPK signaling contrary to the LPS induced p38MAPK signaling, suggesting anti-inflammatory effects of arginine/arginine metabolites. This paper shows that co culturing these two cell types reveals the connection between metabolism and inflammation, suggesting different pathways and candidate biomarkers to be further explored.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway.
| | - Marit Espe
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway
| | - Synne M Andersen
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway
| | | | | | - Zebasil Mengesha
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway; Department of Industrial Chemistry, Bahir Dar University, P.B. 79, Bahir Dar, Ethiopia
| | - Pedro Araujo
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway
| |
Collapse
|
32
|
Moschou PN, Roubelakis-Angelakis KA. Polyamines and programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1285-96. [PMID: 24218329 DOI: 10.1093/jxb/ert373] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyamines (PAs) have been considered as important molecules for survival. However, evidence reinforces that PAs are also implicated, directly or indirectly, in pathways regulating programmed cell death (PCD). Direct correlation of PAs with cell death refers to their association with particular biological processes, and their physical contact with molecules or structures involved in cell death. Indirectly, PAs regulate PCD through their metabolic derivatives, such as catabolic and interconversion products. Cytotoxic products of PA metabolism are involved in PCD cascades, whereas it remains largely elusive how PAs directly control pathways leading to PCD. In this review, we present and compare advances in PA-dependent PCD in animals and plants.
Collapse
Affiliation(s)
- Panagiotis N Moschou
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | | |
Collapse
|
33
|
Obakan P, Arısan ED, Özfiliz P, Çoker-Gürkan A, Palavan-Ünsal N. Purvalanol A is a strong apoptotic inducer via activating polyamine catabolic pathway in MCF-7 estrogen receptor positive breast cancer cells. Mol Biol Rep 2014; 41:145-54. [PMID: 24190492 DOI: 10.1007/s11033-013-2847-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
Purvalanol A is a specific CDK inhibitor which triggers apoptosis by causing cell cycle arrest in cancer cells. Although it has strong apoptotic potential, the mechanistic action of Purvalanol A on significant cell signaling targets has not been clarified yet. Polyamines are crucial metabolic regulators affected by CDK inhibition because of their role in cell cycle progress as well. In addition, malignant cells possess impaired polyamine homeostasis with high level of intracellular polyamines. Especially induction of polyamine catabolic enzymes spermidine/spermine N1-acetyltransferase (SSAT), polyamine oxidase (PAO) and spermine oxidase (SMO) induced toxic by-products in correlation with the induction of apoptosis in cancer cells. In this study, we showed that Purvalanol A induced apoptosis in caspase- dependent manner in MCF-7 ER(+) cells, while MDA-MB-231 (ER-) cells were less sensitive against drug. In addition Bcl-2 is a critical target for Purvalanol A, since Bcl-2 overexpressed cells are more resistant to Purvalanol A-mediated apoptosis. Furthermore, exposure of MCF-7 cells to Purvalanol A triggered SSAT and PAO upregulation and the presence of PAO/SMO inhibitor, MDL 72,527 prevented Purvalanol A-induced apoptosis.
Collapse
Affiliation(s)
- Pınar Obakan
- Molecular Biology and Genetics Department, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
34
|
Andronis EA, Moschou PN, Toumi I, Roubelakis-Angelakis KA. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:132. [PMID: 24765099 PMCID: PMC3982065 DOI: 10.3389/fpls.2014.00132] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/20/2014] [Indexed: 05/18/2023]
Abstract
Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions ([Formula: see text] ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and [Formula: see text] . These results suggest that the ratio of [Formula: see text] /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of [Formula: see text] by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.
Collapse
Affiliation(s)
- Efthimios A. Andronis
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
| | - Panagiotis N. Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala, Sweden
| | - Imene Toumi
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
| | - Kalliopi A. Roubelakis-Angelakis
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
- *Correspondence: Kalliopi A. Roubelakis-Angelakis, Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete 70013, Greece e-mail:
| |
Collapse
|
35
|
Abstract
Polyamines are ubiquitous and essential components of mammalian cells. They have multiple functions including critical roles in nucleic acid and protein synthesis, gene expression, protein function, protection from oxidative damage, the regulation of ion channels, and maintenance of the structure of cellular macromolecules. It is essential to maintain a correct level of polyamines, and this amount is tightly regulated at the levels of transport, synthesis, and degradation. Catabolic pathways generate reactive aldehydes including acrolein and hydrogen peroxide via a number of oxidases. These metabolites, particularly those from spermine, can cause significant toxicity with damage to proteins, DNA, and other cellular components. Their production can be increased as a result of infection or cell damage that releases free polyamines and activates the oxidative catabolic pathways. Since polyamines also have an important physiological role in protection from oxidative damage, the reduction in polyamine content may exacerbate the toxic potential of these agents. Increases in polyamine catabolism have been implicated in the development of diseases including stroke, other neurological diseases, renal failure, liver disease, and cancer. These results provide new opportunities for the early diagnosis, prevention, and treatment of disease.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| |
Collapse
|
36
|
North ML, Grasemann H, Khanna N, Inman MD, Gauvreau GM, Scott JA. Increased ornithine-derived polyamines cause airway hyperresponsiveness in a mouse model of asthma. Am J Respir Cell Mol Biol 2013; 48:694-702. [PMID: 23470627 DOI: 10.1165/rcmb.2012-0323oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Up-regulation of arginase contributes to airways hyperresponsiveness (AHR) in asthma by reducing L-arginine bioavailability for the nitric oxide (NO) synthase isozymes. The product of arginase activity, L-ornithine, can be metabolized into polyamines by ornithine decarboxylase. We tested the hypothesis that increases in L-ornithine-derived polyamines contribute to AHR in mouse models of allergic airways inflammation. After measuring significantly increased polyamine levels in sputum samples from human subjects with asthma after allergen challenge, we used acute and subacute ovalbumin sensitization and challenge mouse models of allergic airways inflammation and naive mice to investigate the relationship of AHR to methacholine and polyamines in the lung. We found that spermine levels were elevated significantly in lungs from the acute model, which exhibits robust AHR, but not in the subacute murine model of asthma, which does not develop AHR. Intratracheal administration of spermine significantly augmented airways responsiveness to methacholine in both naive mice and mice with subacute airways inflammation, and reduced nitrite/nitrate levels in lung homogenates, suggesting that the AHR developed as a consequence of inhibition of constitutive NO production in the airways. Chronic inhibition of polyamine synthesis using an ornithine decarboxylase inhibitor significantly reduced polyamine levels, restored nitrite/nitrate levels to normal, and abrogated the AHR to methacholine in the acute model of allergic airways inflammation. We demonstrate that spermine increases airways responsiveness to methacholine, likely through inhibition of constitutive NO synthesis. Thus, inhibition of polyamine production may represent a new therapeutic target to treat airway obstruction in allergic asthma.
Collapse
Affiliation(s)
- Michelle L North
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev Mol Med 2013; 15:e3. [PMID: 23432971 DOI: 10.1017/erm.2013.3] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyamines are small organic cations that are essential for normal cell growth and development in eukaryotes. Under normal physiological conditions, intracellular polyamine concentrations are tightly regulated through a dynamic network of biosynthetic and catabolic enzymes, and a poorly characterised transport system. This precise regulation ensures that the intracellular concentration of polyamines is maintained within strictly controlled limits. It has frequently been observed that the metabolism of, and the requirement for, polyamines in tumours is frequently dysregulated. Elevated levels of polyamines have been associated with breast, colon, lung, prostate and skin cancers, and altered levels of rate-limiting enzymes in both biosynthesis and catabolism have been observed. Based on these observations and the absolute requirement for polyamines in tumour growth, the polyamine pathway is a rational target for chemoprevention and chemotherapeutics. Here we describe the recent advances made in the polyamine field and focus on the roles of polyamines and polyamine metabolism in neoplasia through a discussion of the current animal models for the polyamine pathway, chemotherapeutic strategies that target the polyamine pathway, chemotherapeutic clinical trials for polyamine pathway-specific drugs and ongoing clinical trials targeting polyamine biosynthesis.
Collapse
|
38
|
Chun KS, Kim EH, Lee S, Hahm KB. Chemoprevention of gastrointestinal cancer: the reality and the dream. Gut Liver 2013; 7:137-49. [PMID: 23560148 PMCID: PMC3607766 DOI: 10.5009/gnl.2013.7.2.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/03/2012] [Accepted: 09/17/2012] [Indexed: 12/17/2022] Open
Abstract
Despite substantial progress in screening, early diagnosis, and the development of noninvasive technology, gastrointestinal (GI) cancer remains a major cause of cancer-associated mortality. Chemoprevention is thought to be a realistic approach for reducing the global burden of GI cancer, and efforts have been made to search for chemopreventive agents that suppress acid reflux, GI inflammation and the eradication of Helicobacter pylori. Thus, proton pump inhibitors, statins, monoclonal antibodies targeting tumor necrosis factor-alpha, and nonsteroidal anti-inflammatory agents have been investigated for their potential to prevent GI cancer. Besides the development of these synthetic agents, a wide variety of the natural products present in a plant-based diet, which are commonly called phytoceuticals, have also sparked hope for the chemoprevention of GI cancer. To perform successful searches of chemopreventive agents for GI cancer, it is of the utmost importance to understand the factors contributing to GI carcinogenesis. Emerging evidence has highlighted the role of chronic inflammation in inducing genomic instability and telomere shortening and affecting polyamine metabolism and DNA repair, which may help in the search for new chemopreventive agents for GI cancer.
Collapse
|
39
|
Suh JH, Kim RY, Lee DS. A new metabolomic assay to examine inflammation and redox pathways following LPS challenge. J Inflamm (Lond) 2012; 9:37. [PMID: 23036094 PMCID: PMC3507808 DOI: 10.1186/1476-9255-9-37] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 09/23/2012] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED BACKGROUND Shifts in intracellular arginine (Arg) and sulfur amino acid (SAA) redox metabolism modulate macrophage activation, polarization and phenotype. Despite their importance in inflammation and redox regulatory pathways, comprehensive analysis of these metabolic networks was not previously possible with existing analytical methods. METHODS The Arg/thiol redox LC-MS/MS metabolomics assay permits simultaneous assessment of amino acids and derivative products generated from Arg and SAA metabolism. Using this assay, LPS-induced changes in macrophage amino acid metabolism were monitored to identify pathway shifts during activation and their linkage to cellular redox regulation. RESULTS Metabolite concentrations most significantly changed after treatment of a macrophage-like cell line (RAW) with LPS for 24 hrs were citrulline (Cit) (48-fold increase), ornithine (Orn) (8.5-fold increase), arginine (Arg) (66% decrease), and aspartic acid (Asp) (73% decrease). The ratio Cit + Orn/Arg + Asp (CO/AA) was more sensitive to LPS stimulation than other amino acid ratios commonly used to measure LPS-dependent inflammation (e.g., SAM/SAH, GSH/GSSG) and total media NOx. The CO/AA ratio was also the first ratio to change significantly after LPS treatment (4 hrs). Changes in the overall metabolomic profile over time indicated that metabolic pathways shifted from Arg catabolism to thiol oxidation. CONCLUSIONS Simultaneous quantification of Arg and SAA metabolic pathway shifts following LPS challenge of macrophage indicate that, in this system, the Arg-Citrulline/NO cycle and arginase pathways are the amino acid metabolic pathways most sensitive to LPS-challenge. The cellular (Cit + Orn)/(Arg + Asp) ratio, which summarizes this pathway, was more responsive to lower concentrations of LPS and responded earlier than other metabolic biomarkers of macrophage activation including GSH redox. It is suggested that the CO/AA ratio is a redox- independent early biomarker of macrophage activation. The ability to measure both the CO/AA and GSH-redox ratios simultaneously permits quantification of the relative effects of LPS challenge on macrophage inflammation and oxidative stress pathways. The use of this assay in humans is discussed, as are clinical implications.
Collapse
Affiliation(s)
- Jung H Suh
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | - Robert Y Kim
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | - Daniel S Lee
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| |
Collapse
|
40
|
Smirnova OA, Isaguliants MG, Hyvonen MT, Keinanen TA, Tunitskaya VL, Vepsalainen J, Alhonen L, Kochetkov SN, Ivanov AV. Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells. Biochimie 2012; 94:1876-83. [PMID: 22579641 DOI: 10.1016/j.biochi.2012.04.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/26/2012] [Indexed: 01/23/2023]
Abstract
Biogenic polyamines spermine and spermidine participate in numerous cellular processes including transcription, RNA processing and translation. Specifically, they counteract oxidative stress, an alteration of cell redox balance involved in generation and progression of various pathological states including cancer. Here, we investigated how chemically induced oxidative stress affects polyamine metabolism, specifically the expression and activities of enzymes catalyzing polyamine synthesis (ornithine decarboxylase; ODC) and degradation (spermidine/spermine-N(1)-acetyltransferase; SSAT), in human hepatoma cells. Oxidative stress induced the up-regulation of ODC and SSAT gene transcription mediated by Nrf2, and in case of SSAT, also by NF-κB transcription factors. Activation of transcription led to the elevated intracellular activities of both enzymes. The balance in antagonistic activities of ODC and SSAT in the stressed hepatoma cells was shifted towards polyamine biosynthesis, which resulted in increased intracellular levels of putrescine, spermidine, and spermine. Accumulation of putrescine is indicating for accelerated degradation of polyamines by SSAT - acetylpolyamine oxidase (APAO) pathway generating toxic products that promote carcinogenesis, whereas accelerated polyamine synthesis via activation of ODC is favorable for proliferation of cells including those sub-lethally damaged by oxidative stress.
Collapse
Affiliation(s)
- Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Radic Biol Med 2012; 52:2013-37. [PMID: 22391222 DOI: 10.1016/j.freeradbiomed.2012.02.035] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 12/12/2022]
Abstract
The role of inflammation in carcinogenesis has been extensively investigated and well documented. Many biochemical processes that are altered during chronic inflammation have been implicated in tumorigenesis. These include shifting cellular redox balance toward oxidative stress; induction of genomic instability; increased DNA damage; stimulation of cell proliferation, metastasis, and angiogenesis; deregulation of cellular epigenetic control of gene expression; and inappropriate epithelial-to-mesenchymal transition. A wide array of proinflammatory cytokines, prostaglandins, nitric oxide, and matricellular proteins are closely involved in premalignant and malignant conversion of cells in a background of chronic inflammation. Inappropriate transcription of genes encoding inflammatory mediators, survival factors, and angiogenic and metastatic proteins is the key molecular event in linking inflammation and cancer. Aberrant cell signaling pathways comprising various kinases and their downstream transcription factors have been identified as the major contributors in abnormal gene expression associated with inflammation-driven carcinogenesis. The posttranscriptional regulation of gene expression by microRNAs also provides the molecular basis for linking inflammation to cancer. This review highlights the multifaceted role of inflammation in carcinogenesis in the context of altered cellular redox signaling.
Collapse
|
42
|
Mafra DG, da Silva PI, Galhardo CS, Nassar R, Daffre S, Sato MN, Borges MM. The spider acylpolyamine Mygalin is a potent modulator of innate immune responses. Cell Immunol 2012; 275:5-11. [PMID: 22541370 DOI: 10.1016/j.cellimm.2012.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 02/21/2012] [Accepted: 04/01/2012] [Indexed: 01/18/2023]
Abstract
Mygalin is an antibacterial molecule isolated from the hemocytes of the spider Acanthoscurria gomesiana. It was identified as bis-acylpolyamine spermidine. We evaluated the modulator effects of synthetic Mygalin in the innate immune response. We demonstrate that Mygalin induces IFN-γ synthesis by splenocytes increasing the nitrite secretion by splenocytes and macrophages. A specific inhibitor of iNOS abrogated Mygalin-induced nitrite production in macrophages independent of IFN-γ activation. In addition, Mygalin-activated macrophages produced TNF-α but not IL-1β, demonstrating that Mygalin does not act directly on the inflammasome. Furthermore, this compound did not affect spontaneous or Concanavalin A-induced proliferative responses by murine splenocytes and did not induce IL-5 or apoptosis of splenocytes or bone marrow-derived macrophages. These data provide evidence that Mygalin modulates the innate immune response by inducing IFN-γ and NO synthesis. The combined immune regulatory and antibacterial qualities of Mygalin should be explored as a strategy to enhance immune responses in infection.
Collapse
|
43
|
Hughes A, Saunders FR, Wallace HM. Naproxen causes cytotoxicity and induces changes in polyamine metabolism independent of cyclo-oxygenase expression. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx20018j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
44
|
Barry EL, Mott LA, Sandler RS, Ahnen DJ, Baron JA. Variants downstream of the ornithine decarboxylase gene influence risk of colorectal adenoma and aspirin chemoprevention. Cancer Prev Res (Phila) 2011; 4:2072-82. [PMID: 21930798 DOI: 10.1158/1940-6207.capr-11-0300] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Increased mucosal polyamine levels and ornithine decarboxylase (ODC) activity are associated with an increased risk of colorectal neoplasia and aspirin treatment reduces risk. Previous studies suggest that a single-nucleotide polymorphism (SNP) in the promoter of the ODC gene (rs2302615) may be associated with adenoma risk and/or response to aspirin chemoprevention. However, a comprehensive investigation of common genetic variation in the region of ODC gene is lacking. Using a tag SNP approach, we investigated associations between genotype or haplotype and adenoma risk among a cohort of 792 non-Hispanic white participants in a randomized trial of aspirin. Generalized linear regression was used to compute relative risks (RR) and 95% confidence intervals (95% CI) adjusted for age and sex. The false discovery rate was used to account for multiple testing. Interactions terms were used to assess whether genotype modified the effect of aspirin treatment. Of 15 SNPs analyzed, seven were statistically significantly associated with adenoma risk. However, in multiple SNP regression models, only two of these, located downstream of the gene, were independently associated with risk: rs11694911 (RR = 1.29; 95% CI, 1.08-1.53; P = 0.005) and rs2430420 (RR = 1.20; 95% CI, 1.03-1.40; P = 0.022). In addition, there was evidence that rs2430420 and rs28362380 modified the effect of aspirin treatment, whereas the previously investigated SNP, rs2302615, had no statistically significant main effect or interaction with aspirin treatment. Our findings suggest that common genetic variants located downstream (3') of the ODC gene influence risk of colorectal adenoma and may also impact the efficacy of aspirin chemoprevention.
Collapse
Affiliation(s)
- Elizabeth L Barry
- Department of Community and Family Medicine, Dartmouth Medical School, 46 Centerra Parkway, Suite 300, Lebanon, NH 03766, USA.
| | | | | | | | | |
Collapse
|
45
|
Cerrada-Gimenez M, Weisell J, Hyvönen MT, Park MH, Alhonen L, Vepsäläinen J, Keinänen TA. Complex N-acetylation of triethylenetetramine. Drug Metab Dispos 2011; 39:2242-9. [PMID: 21878558 DOI: 10.1124/dmd.111.041798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Triethylenetetramine (TETA) is an efficient copper chelator that has versatile clinical potential. We have recently shown that spermidine/spermine-N(1)-acetyltransferase (SSAT1), the key polyamine catabolic enzyme, acetylates TETA in vitro. Here, we studied the metabolism of TETA in three different mouse lines: syngenic, SSAT1-overexpressing, and SSAT1-deficient (SSAT1-KO) mice. The mice were sacrificed at 1, 2, or 4 h after TETA injection (300 mg/kg i.p.). We found only N(1)-acetyltriethylenetetramine (N(1)AcTETA) and/or TETA in the liver, kidney, and plasma samples. As expected, SSAT1-overexpressing mice acetylated TETA at an accelerated rate compared with syngenic and SSAT1-KO mice. It is noteworthy that SSAT1-KO mice metabolized TETA as syngenic mice did, probably by thialysine acetyltransferase, which had a K(m) value of 2.5 ± 0.3 mM and a k(cat) value of 1.3 s(-1) for TETA when tested in vitro with the human recombinant enzyme. Thus, the present results suggest that there are at least two N-acetylases potentially metabolizing TETA. However, their physiological significance for TETA acetylation requires further studies. Furthermore, we detected chemical intramolecular N-acetyl migration from the N(1) to N(3) position of N(1)AcTETA and N(1),N(8)-diacetyltriethylenetetramine in an acidified high-performance liquid chromatography sample matrix. The complex metabolism of TETA together with the intramolecular N-acetyl migration may explain the huge individual variations in the acetylation rate of TETA reported earlier.
Collapse
Affiliation(s)
- Marc Cerrada-Gimenez
- Department of Medicine, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
46
|
Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 2011; 42:411-26. [DOI: 10.1007/s00726-011-1012-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/28/2011] [Indexed: 12/27/2022]
|
47
|
Correa-Fiz F, Reyes-Palomares A, Fajardo I, Melgarejo E, Gutiérrez A, García-Ranea JA, Medina MA, Sánchez-Jiménez F. Regulatory cross-talk of mouse liver polyamine and methionine metabolic pathways: a systemic approach to its physiopathological consequences. Amino Acids 2011; 42:577-95. [PMID: 21818563 DOI: 10.1007/s00726-011-1044-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
Abstract
Both polyamines and methionine derivatives are nitrogen compounds directly related to the regulation of gene expression. In silico predictions and experimental evidence suggest a cross-talk between polyamine and methionine metabolism in mammalian tissues. Since liver is the major organ that controls nitrogen metabolism of the whole organism, it is the best tissue to further test this hypothesis in vivo. In this work, we studied the effects of the chronic administration of a methionine-supplemented diet (0.5% Met in drinking water for 5 months) on the liver of mice (designated as MET-mice). Metabolic and proteomic approaches were performed and the data obtained were subjected to biocomputational analysis. Results showed that a supplemental methionine intake can indeed regulate biogenic amine metabolism in an in vivo model by multiple mechanisms including metabolic regulation and specific gene demethylation. Furthermore, putative systemic effects were investigated by molecular and cellular biology methods. Among other results, altered expression levels of multiple inflammation and cell proliferation/death balance markers were found and macrophage activation was observed. Overall, the results presented here will be of interest across a variety of biomedical disciplines, including nutrition, orphan diseases, immunology and oncology.
Collapse
Affiliation(s)
- F Correa-Fiz
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cerrada-Gimenez M, Häkkinen MR, Vepsäläinen J, Auriola S, Alhonen L, Keinänen TA. Polyamine flux analysis by determination of heavy isotope incorporation from 13C, 15N-enriched amino acids into polyamines by LC–MS/MS. Amino Acids 2011; 42:451-60. [DOI: 10.1007/s00726-011-1024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/24/2011] [Indexed: 11/29/2022]
|
49
|
Uimari A, Merentie M, Sironen R, Pirnes-Karhu S, Peräniemi S, Alhonen L. Overexpression of spermidine/spermine N1-acetyltransferase or treatment with N1-N11-diethylnorspermine attenuates the severity of zinc-induced pancreatitis in mouse. Amino Acids 2011; 42:461-71. [PMID: 21814793 DOI: 10.1007/s00726-011-1025-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
Abstract
Depletion of pancreatic intracellular polyamine pools has been observed in acute pancreatitis both in the animal models and in humans. In this study, the wild-type mice, polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase overexpressing (SSAT mice) and SSAT-deficient mice were used to characterize the new zinc-induced acute pancreatitis mouse model and study the role of polyamines and polyamine catabolism in this model. Intraperitoneal zinc injection induced acute necrotizing pancreatitis in wild-type mice as well as in SSAT-overexpressing and SSAT-deficient mice. Serum α-amylase activity was significantly increased in all zinc-treated mice compared with the untreated controls. However, the α-amylase activities in SSAT mice were constantly lower than those in the other groups. Histopathological examination of pancreatic tissue revealed edema, acinar cell necrosis and necrotizing inflammation, typical for acute pancreatitis. Compared with the other zinc-treated mice less damage according to the histopathological analysis was observed in the pancreatic tissue of SSAT mice. Levels of intracellular spermidine, and occasionally spermine, were significantly decreased in pancreases of all zinc-treated animals and SSAT enzyme activity was enhanced both in wild-type and SSAT mice. Interestingly, a spermine analog, N(1), N(11)-diethylnorspermine (DENSpm), enhanced the proliferation of pancreatic cells and reduced the severity of zinc-induced pancreatitis in wild-type mice. The results show that in mice a single intraperitoneal zinc injection causes acute necrotizing pancreatitis accompanied by decrease of intracellular polyamine pools. The study supports the important role of polyamines for the integrity and function of the pancreas. In addition, the study suggests that whole body overexpression of SSAT obtained in SSAT mice reduces inflammatory pancreatic cell injury.
Collapse
Affiliation(s)
- Anne Uimari
- Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
50
|
Pirnes-Karhu S, Sironen R, Alhonen L, Uimari A. Lipopolysaccharide-induced anti-inflammatory acute phase response is enhanced in spermidine/spermine N1-acetyltransferase (SSAT) overexpressing mice. Amino Acids 2011; 42:473-84. [PMID: 21814792 DOI: 10.1007/s00726-011-1026-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/10/2011] [Indexed: 12/29/2022]
Abstract
Bacterial lipopolysaccharide (LPS) is an effective activator of the components of innate immunity. It has been shown that polyamines and their metabolic enzymes affect the LPS-induced immune response by modulating both pro- and anti-inflammatory actions. On the other hand, LPS causes changes in cellular polyamine metabolism. In this study, the LPS-induced inflammatory response in spermidine/spermine N(1)-acetyltransferase overexpressing transgenic mice (SSAT mice) was analyzed. In liver and kidneys, LPS enhanced the activity of the polyamine biosynthetic enzyme ornithine decarboxylase and increased the intracellular putrescine content in both SSAT overexpressing and wild-type mice. In survival studies, the enhanced polyamine catabolism and concomitantly altered cellular polyamine pools in SSAT mice did not affect the LPS-induced mortality of these animals. However, in the acute phase of LPS-induced inflammatory response, the serum levels of proinflammatory cytokines interleukin-1β and interferon-γ were significantly reduced and, on the contrary, anti-inflammatory cytokine interleukin-10 was significantly increased in the sera of SSAT mice compared with the wild-type animals. In addition, hepatic acute-phase proteins C-reactive protein, haptoglobin and α(1)-acid glycoprotein were expressed in higher amounts in SSAT mice than in the wild-type animals. In summary, the study suggests that SSAT overexpression obtained in SSAT mice enhances the anti-inflammatory actions in the acute phase of LPS-induced immune response.
Collapse
Affiliation(s)
- Sini Pirnes-Karhu
- Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | | | | | | |
Collapse
|