1
|
Shi Y, Zhang C, Pan S, Chen Y, Miao X, He G, Wu Y, Ye H, Weng C, Zhang H, Zhou W, Yang X, Liang C, Chen D, Hong L, Su F. The diagnosis of tuberculous meningitis: advancements in new technologies and machine learning algorithms. Front Microbiol 2023; 14:1290746. [PMID: 37942080 PMCID: PMC10628659 DOI: 10.3389/fmicb.2023.1290746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Tuberculous meningitis (TBM) poses a diagnostic challenge, particularly impacting vulnerable populations such as infants and those with untreated HIV. Given the diagnostic intricacies of TBM, there's a pressing need for rapid and reliable diagnostic tools. This review scrutinizes the efficacy of up-and-coming technologies like machine learning in transforming TBM diagnostics and management. Advanced diagnostic technologies like targeted gene sequencing, real-time polymerase chain reaction (RT-PCR), miRNA assays, and metagenomic next-generation sequencing (mNGS) offer promising avenues for early TBM detection. The capabilities of these technologies are further augmented when paired with mass spectrometry, metabolomics, and proteomics, enriching the pool of disease-specific biomarkers. Machine learning algorithms, adept at sifting through voluminous datasets like medical imaging, genomic profiles, and patient histories, are increasingly revealing nuanced disease pathways, thereby elevating diagnostic accuracy and guiding treatment strategies. While these burgeoning technologies offer hope for more precise TBM diagnosis, hurdles remain in terms of their clinical implementation. Future endeavors should zero in on the validation of these tools through prospective studies, critically evaluating their limitations, and outlining protocols for seamless incorporation into established healthcare frameworks. Through this review, we aim to present an exhaustive snapshot of emerging diagnostic modalities in TBM, the current standing of machine learning in meningitis diagnostics, and the challenges and future prospects of converging these domains.
Collapse
Affiliation(s)
- Yi Shi
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chengxi Zhang
- School of Materials Science and Engineering, Shandong Jianzhu University, Jinan, China
| | - Shuo Pan
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yi Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xingguo Miao
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China
- Department of Infectious Diseases, Wenzhou Sixth People’s Hospital, Wenzhou, China
- Wenzhou Key Laboratory of Diagnosis and Treatment of Emerging and Recurrent Infectious Diseases, Wenzhou, China
| | - Guoqiang He
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yanchan Wu
- School of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Hui Ye
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China
- Department of Infectious Diseases, Wenzhou Sixth People’s Hospital, Wenzhou, China
- Wenzhou Key Laboratory of Diagnosis and Treatment of Emerging and Recurrent Infectious Diseases, Wenzhou, China
| | - Chujun Weng
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, China
| | - Huanhuan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Wenya Zhou
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Yang
- Wenzhou Medical University Renji College, Wenzhou, China
| | - Chenglong Liang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dong Chen
- Wenzhou Key Laboratory of Diagnosis and Treatment of Emerging and Recurrent Infectious Diseases, Wenzhou, China
- Wenzhou Central Blood Station, Wenzhou, China
| | - Liang Hong
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feifei Su
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China
- Department of Infectious Diseases, Wenzhou Sixth People’s Hospital, Wenzhou, China
- Wenzhou Key Laboratory of Diagnosis and Treatment of Emerging and Recurrent Infectious Diseases, Wenzhou, China
| |
Collapse
|
2
|
Pretzel P, Wilke M, Tournier JD, Goelz R, Lidzba K, Hauser TK, Groeschel S. Reduced structural connectivity in non-motor networks in children born preterm and the influence of early postnatal human cytomegalovirus infection. Front Neurol 2023; 14:1241387. [PMID: 37849834 PMCID: PMC10577195 DOI: 10.3389/fneur.2023.1241387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Preterm birth is increasingly recognized to cause lifelong functional deficits, which often show no correlate in conventional MRI. In addition, early postnatal infection with human cytomegalovirus (hCMV) is being discussed as a possible cause for further impairments. In the present work, we used fixel-based analysis of diffusion-weighted MRI to assess long-term white matter alterations associated with preterm birth and/or early postnatal hCMV infection. Materials and methods 36 former preterms (PT, median age 14.8 years, median gestational age 28 weeks) and 18 healthy term-born controls (HC, median age 11.1 years) underwent high angular resolution DWI scans (1.5 T, b = 2 000 s/mm2, 60 directions) as well as clinical assessment. All subjects showed normal conventional MRI and normal motor function. Early postnatal hCMV infection status (CMV+ and CMV-) had been determined from repeated screening, ruling out congenital infections. Whole-brain analysis was performed, yielding fixel-wise metrics for fiber density (FD), fiber cross-section (FC), and fiber density and cross-section (FDC). Group differences were identified in a whole-brain analysis, followed by an analysis of tract-averaged metrics within a priori selected tracts associated with cognitive function. Both analyses were repeated while differentiating for postnatal hCMV infection status. Results PT showed significant reductions of fixel metrics bilaterally in the cingulum, the genu corporis callosum and forceps minor, the capsula externa, and cerebellar and pontine structures. After including intracranial volume as a covariate, reductions remained significant in the cingulum. The tract-specific investigation revealed further reductions bilaterally in the superior longitudinal fasciculus and the uncinate fasciculus. When differentiating for hCMV infection status, no significant differences were found between CMV+ and CMV-. However, comparing CMV+ against HC, fixel metric reductions were of higher magnitude and of larger spatial extent than in CMV- against HC. Conclusion Preterm birth can lead to long-lasting alterations of WM micro- and macrostructure, not visible on conventional MRI. Alterations are located predominantly in WM structures associated with cognitive function, likely underlying the cognitive deficits observed in our cohort. These observed structural alterations were more pronounced in preterms who suffered from early postnatal hCMV infection, in line with previous studies suggesting an additive effect.
Collapse
Affiliation(s)
- Pablo Pretzel
- Department of Child Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
- Experimental Pediatric Neuroimaging, Department of Child Neurology and Department of Neuroradiology, University Hospital, Tübingen, Germany
| | - Marko Wilke
- Department of Child Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
- Experimental Pediatric Neuroimaging, Department of Child Neurology and Department of Neuroradiology, University Hospital, Tübingen, Germany
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Rangmar Goelz
- Department of Neonatology, University Children’s Hospital, Tübingen, Germany
| | - Karen Lidzba
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Samuel Groeschel
- Department of Child Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
- Experimental Pediatric Neuroimaging, Department of Child Neurology and Department of Neuroradiology, University Hospital, Tübingen, Germany
| |
Collapse
|
3
|
Nazeri A, Krsnik Ž, Kostović I, Ha SM, Kopić J, Alexopoulos D, Kaplan S, Meyer D, Luby JL, Warner BB, Rogers CE, Barch DM, Shimony JS, McKinstry RC, Neil JJ, Smyser CD, Sotiras A. Neurodevelopmental patterns of early postnatal white matter maturation represent distinct underlying microstructure and histology. Neuron 2022; 110:4015-4030.e4. [PMID: 36243003 PMCID: PMC9742299 DOI: 10.1016/j.neuron.2022.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/19/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
Cerebral white matter undergoes a rapid and complex maturation during the early postnatal period. Prior magnetic resonance imaging (MRI) studies of early postnatal development have often been limited by small sample size, single-modality imaging, and univariate analytics. Here, we applied nonnegative matrix factorization, an unsupervised multivariate pattern analysis technique, to T2w/T1w signal ratio maps from the Developing Human Connectome Project (n = 342 newborns) revealing patterns of coordinated white matter maturation. These patterns showed divergent age-related maturational trajectories, which were replicated in another independent cohort (n = 239). Furthermore, we showed that T2w/T1w signal variations in these maturational patterns are explained by differential contributions of white matter microstructural indices derived from diffusion-weighted MRI. Finally, we demonstrated how white matter maturation patterns relate to distinct histological features by comparing our findings with postmortem late fetal/early postnatal brain tissue staining. Together, these results delineate concise and effective representation of early postnatal white matter reorganization.
Collapse
Affiliation(s)
- Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Sung Min Ha
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sydney Kaplan
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Dominique Meyer
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Deanna M Barch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA; Psychological & Brain Sciences, Washington University School in St. Louis, Saint Louis, MO 63130, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jeffrey J Neil
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher D Smyser
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Aristeidis Sotiras
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Institute for Informatics, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| |
Collapse
|
4
|
Different Brain Phenotypes in Magnetic Resonance Imaging of Healthy Children after Prenatal Insults. Diagnostics (Basel) 2022; 12:diagnostics12112748. [PMID: 36359591 PMCID: PMC9689447 DOI: 10.3390/diagnostics12112748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
In this study, we used magnetic resonance imaging (MRI) to identify the different brain phenotypes within apparently healthy children and to evaluate whether these phenotypes had different prenatal characteristics. We included 65 healthy children (mean age, 10 years old) with normal neurological examinations and without structural abnormalities. We performed cluster analyses to identify the different brain phenotypes in the brain MRI images. We performed descriptive analyses, including demographic and perinatal characteristics, to assess the differences between the clusters. We identified two clusters: Cluster 1, or the “small brain phenotype” (n = 44), which was characterized by a global reduction in the brain volumes, with smaller total intracranial volumes (1044.53 ± 68.37 vs. 1200.87 ± 65.92 cm3 (p < 0.001)), total grey-matter volumes (644.65 ± 38.85 vs. 746.79 ± 39.37 cm3 (p < 0.001)), and total white-matter volumes (383.68 ± 40.17 vs. 443.55 ± 36.27 cm3 (p < 0.001)), compared with Cluster 2, or the “normal brain phenotype” (n = 21). Moreover, almost all the brain areas had decreased volumes, except for the ventricles, caudate nuclei, and pallidum areas. The risk of belonging to “the small phenotype” was 82% if the child was preterm, 76% if he/she was born small for his/her gestational age and up to 80% if the mother smoked during the pregnancy. However, preterm birth appears to be the only substantially significant risk factor associated with decreased brain volumes.
Collapse
|
5
|
Clément J, Tomi-Tricot R, Malik SJ, Webb A, Hajnal JV, Ipek Ö. Towards an integrated neonatal brain and cardiac examination capability at 7 T: electromagnetic field simulations and early phantom experiments using an 8-channel dipole array. MAGMA (NEW YORK, N.Y.) 2022; 35:765-778. [PMID: 34997396 PMCID: PMC9463228 DOI: 10.1007/s10334-021-00988-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Neonatal brain and cardiac imaging would benefit from the increased signal-to-noise ratio levels at 7 T compared to lower field. Optimal performance might be achieved using purpose designed RF coil arrays. In this study, we introduce an 8-channel dipole array and investigate, using simulations, its RF performances for neonatal applications at 7 T. METHODS The 8-channel dipole array was designed and evaluated for neonatal brain/cardiac configurations in terms of SAR efficiency (ratio between transmit-field and maximum specific-absorption-rate level) using adjusted dielectric properties for neonate. A birdcage coil operating in circularly polarized mode was simulated for comparison. Validation of the simulation model was performed on phantom for the coil array. RESULTS The 8-channel dipole array demonstrated up to 46% higher SAR efficiency levels compared to the birdcage coil in neonatal configurations, as the specific-absorption-rate levels were alleviated. An averaged normalized root-mean-square-error of 6.7% was found between measured and simulated transmit field maps on phantom. CONCLUSION The 8-channel dipole array design integrated for neonatal brain and cardiac MR was successfully demonstrated, in simulation with coverage of the baby and increased SAR efficiency levels compared to the birdcage. We conclude that the 8Tx-dipole array promises safe operating procedures for MR imaging of neonatal brain and heart at 7 T.
Collapse
Affiliation(s)
- Jérémie Clément
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | - Shaihan J Malik
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Centre for the Developing Brain, King's College London, London, UK
| | - Andrew Webb
- Department of Radiology, C. J Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Joseph V Hajnal
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Centre for the Developing Brain, King's College London, London, UK
| | - Özlem Ipek
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
6
|
Pierre WC, Zhang E, Londono I, De Leener B, Lesage F, Lodygensky GA. Non-invasive in vivo MRI detects long-term microstructural brain alterations related to learning and memory impairments in a model of inflammation-induced white matter injury. Behav Brain Res 2022; 428:113884. [DOI: 10.1016/j.bbr.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
|
7
|
van 't Westende C, Steggerda SJ, Jansen L, van den Berg-Huysmans AA, van de Pol LA, Wiggers-de Bruine FT, Stam CJ, Peeters-Scholte CMPCD. Combining advanced MRI and EEG techniques better explains long-term motor outcome after very preterm birth. Pediatr Res 2022; 91:1874-1881. [PMID: 34031571 DOI: 10.1038/s41390-021-01571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/20/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Preterm born children are at high risk for adverse motor neurodevelopment. The aim of this study was to establish the relationship between motor outcome and advanced magnetic resonance imaging (MRI) and electroencephalography (EEG) measures. METHODS In a prospective cohort study of 64 very preterm born children, the motor outcome was assessed at 9.83 (SD 0.70) years. Volumetric MRI, diffusion tensor imaging (DTI), and EEG were acquired at 10.85 (SD 0.49) years. We investigated associations between motor outcome and brain volumes (white matter, deep gray matter, cerebellum, and ventricles), white matter integrity (fractional anisotropy and mean, axial and radial diffusivity), and brain activity (upper alpha (A2) functional connectivity and relative A2 power). The independence of associations with motor outcome was investigated with a final model. For each technique, the measure with the strongest association was selected to avoid multicollinearity. RESULTS Ventricular volume, radial diffusivity, mean diffusivity, relative A2 power, and A2 functional connectivity were significantly correlated to motor outcome. The final model showed that ventricular volume and relative A2 power were independently associated with motor outcome (B = -9.42 × 10-5, p = 0.027 and B = 28.9, p = 0.007, respectively). CONCLUSIONS This study suggests that a lasting interplay exists between brain structure and function that might underlie motor outcome at school age. IMPACT This is the first study that investigates the relationships between motor outcome and brain volumes, DTI, and brain function in preterm born children at school age. Ventricular volume and relative upper alpha power on EEG have an independent relation with motor outcome in preterm born children at school age. This suggests that there is a lasting interplay between structure and function that underlies adverse motor outcome.
Collapse
Affiliation(s)
- Charlotte van 't Westende
- Department of Child Neurology, Amsterdam University Medical Centers, AMC Site, Amsterdam, The Netherlands. .,Department of Neonatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Sylke J Steggerda
- Department of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisette Jansen
- Department of Psychology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Laura A van de Pol
- Department of Child Neurology, Amsterdam University Medical Centers, AMC Site, Amsterdam, The Netherlands
| | | | - Cornelis J Stam
- Department of Clinical Neurophysiology, Amsterdam University Medical Centers, VUmc Site, Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Brignoni-Pérez E, Morales MC, Marchman VA, Scala M, Feldman HM, Yeom K, Travis KE. Listening to Mom in the NICU: effects of increased maternal speech exposure on language outcomes and white matter development in infants born very preterm. Trials 2021; 22:444. [PMID: 34256820 PMCID: PMC8276502 DOI: 10.1186/s13063-021-05385-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infants born very preterm (< 32 weeks gestational age (GA)) are at risk for developmental language delays. Poor language outcomes in children born preterm have been linked to neurobiological factors, including impaired development of the brain's structural connectivity (white matter), and environmental factors, including decreased exposure to maternal speech in the neonatal intensive care unit (NICU). Interventions that enhance preterm infants' exposure to maternal speech show promise as potential strategies for improving short-term health outcomes. Intervention studies have yet to establish whether increased exposure to maternal speech in the NICU offers benefits beyond the newborn period for brain and language outcomes. METHODS This randomized controlled trial assesses the long-term effects of increased maternal speech exposure on structural connectivity at 12 months of age (age adjusted for prematurity (AA)) and language outcomes between 12 and 18 months of age AA. Study participants (N = 42) will include infants born very preterm (24-31 weeks 6/7 days GA). Newborns are randomly assigned to the treatment (n = 21) or standard medical care (n = 21) group. Treatment consists of increased maternal speech exposure, accomplished by playing audio recordings of each baby's own mother reading a children's book via an iPod placed in their crib/incubator. Infants in the control group have the identical iPod setup but are not played recordings. The primary outcome will be measures of expressive and receptive language skills, obtained from a parent questionnaire collected at 12-18 months AA. The secondary outcome will be measures of white matter development, including the mean diffusivity and fractional anisotropy derived from diffusion magnetic resonance imaging scans performed at around 36 weeks postmenstrual age during the infants' routine brain imaging session before hospital discharge and 12 months AA. DISCUSSION The proposed study is expected to establish the potential impact of increased maternal speech exposure on long-term language outcomes and white matter development in infants born very preterm. If successful, the findings of this study may help to guide NICU clinical practice for promoting language and brain development. This clinical trial has the potential to advance theoretical understanding of how early language exposure directly changes brain structure for later language learning. TRIAL REGISTRATION NIH Clinical Trials (ClinicalTrials.gov) NCT04193579 . Retrospectively registered on 10 December 2019.
Collapse
Affiliation(s)
- Edith Brignoni-Pérez
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Maya Chan Morales
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Melissa Scala
- Division of Neonatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristen Yeom
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Olivieri B, Rampakakis E, Gilbert G, Fezoua A, Wintermark P. Myelination may be impaired in neonates following birth asphyxia. NEUROIMAGE-CLINICAL 2021; 31:102678. [PMID: 34082365 PMCID: PMC8182124 DOI: 10.1016/j.nicl.2021.102678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
Myelination is a developmental process that intensifies after birth during the first years of life. We used a T2* mapping sequence to assess myelination in healthy and critically ill neonates with neonatal encephalopathy. Birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Background Myelination is a developmental process that begins during the end of gestation, intensifies after birth over the first years of life, and continues well into adolescence. Any event leading to brain injury around the time of birth and during the perinatal period, such as birth asphyxia, may impair this critical process. Currently, the impact of such brain injury related to birth asphyxia on the myelination process is unknown. Objective To assess the myelination pattern over the first month of life in neonates with neonatal encephalopathy (NE) developing brain injury, compared to neonates without injury (i.e., healthy neonates and neonates with NE who do not develop brain injury). Methods Brain magnetic resonance imaging (MRI) was performed around day of life 2, 10, and 30 in healthy neonates and near-term/term neonates with NE who were treated with hypothermia. We evaluated myelination in various regions of interest using a T2* mapping sequence. In each region of interest, we compared the T2* values of the neonates with NE with brain injury to the values of the neonates without injury, according to the MRI timing, by using a repeated measures generalized linear mixed model. Results We obtained 74 MRI scans over the first month of life for 6 healthy neonates, 17 neonates with NE who were treated with hypothermia and did not develop brain injury, and 16 neonates with NE who were treated with hypothermia and developed brain injury. The T2* values significantly increased in the neonates with NE who developed injury in the posterior limbs of the internal capsule (day 2: p < 0.001; day 10: p < 0.001; and day 30: p < 0.001), the thalami (day 2: p = 0.001; day 10: p = 0.006; and day 30: p = 0.016), the lentiform nuclei (day 2: p = 0.005), the anterior white matter (day 2: p = 0.002; day 10: p = 0.006; and day 30: p = 0.002), the posterior white matter (day 2: p = 0.001; day 10: p = 0.008; and day 30: p = 0.03), the genu of the corpus callosum (day 2: p = 0.01; and day 10: p = 0.006), and the optic radiations (day 30: p < 0.001). Conclusion In the neonates with NE who were treated with hypothermia and developed brain injury, birth asphyxia impaired myelination in the regions that are myelinated at birth or soon after birth (the posterior limbs of internal capsule, the thalami, and the lentiform nuclei), in the regions where the myelination process begins only after the perinatal period (optic radiations), and in the regions where this process does not occur until months after birth (anterior/posterior white matter), which suggests that birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Collapse
Affiliation(s)
- Bianca Olivieri
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Emmanouil Rampakakis
- Medical Affairs, JSS Medical Research, Montreal, Québec, Canada; Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | | | - Aliona Fezoua
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Pia Wintermark
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada; Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Bisiacchi P, Cainelli E. Structural and functional brain asymmetries in the early phases of life: a scoping review. Brain Struct Funct 2021; 227:479-496. [PMID: 33738578 PMCID: PMC8843922 DOI: 10.1007/s00429-021-02256-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Asymmetry characterizes the brain in both structure and function. Anatomical asymmetries explain only a fraction of functional variability in lateralization, with structural and functional asymmetries developing at different periods of life and in different ways. In this work, we perform a scoping review of the cerebral asymmetries in the first brain development phases. We included all English-written studies providing direct evidence of hemispheric asymmetries in full-term neonates, foetuses, and premature infants, both at term post-conception and before. The final analysis included 57 studies. The reviewed literature shows large variability in the used techniques and methodological procedures. Most structural studies investigated the temporal lobe, showing a temporal planum more pronounced on the left than on the right (although not all data agree), a morphological asymmetry already present from the 29th week of gestation. Other brain structures have been poorly investigated, and the results are even more discordant. Unlike data on structural asymmetries, functional data agree with each other, identifying a leftward dominance for speech stimuli and an overall dominance of the right hemisphere in all other functional conditions. This generalized dominance of the right hemisphere for all conditions (except linguistic stimuli) is in line with theories stating that the right hemisphere develops earlier and that its development is less subject to external influences because it sustains functions necessary to survive.
Collapse
Affiliation(s)
- Patrizia Bisiacchi
- Department of General Psychology, University of Padova, Via Venezia, 8, 35121, Padova, Italy. .,Padova Neuroscience Centre, PNC, Padova, Italy.
| | - Elisa Cainelli
- Department of General Psychology, University of Padova, Via Venezia, 8, 35121, Padova, Italy
| |
Collapse
|
11
|
Dumbuya JS, Chen L, Wu JY, Wang B. The role of G-CSF neuroprotective effects in neonatal hypoxic-ischemic encephalopathy (HIE): current status. J Neuroinflammation 2021; 18:55. [PMID: 33612099 PMCID: PMC7897393 DOI: 10.1186/s12974-021-02084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to central nervous system (CNS) that may result in neonatal death or manifest later as mental retardation, epilepsy, cerebral palsy, or developmental delay. The primary cause of this condition is systemic hypoxemia and/or reduced cerebral blood flow with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. About 20 to 25% of infants with HIE die in the neonatal period, and 25-30% of survivors are left with permanent neurodevelopmental abnormalities. The mechanisms of hypoxia-ischemia (HI) include activation and/or stimulation of myriad of cascades such as increased excitotoxicity, oxidative stress, N-methyl-D-aspartic acid (NMDA) receptor hyperexcitability, mitochondrial collapse, inflammation, cell swelling, impaired maturation, and loss of trophic support. Different therapeutic modalities have been implicated in managing neonatal HIE, though translation of most of these regimens into clinical practices is still limited. Therapeutic hypothermia, for instance, is the most widely used standard treatment in neonates with HIE as studies have shown that it can inhibit many steps in the excito-oxidative cascade including secondary energy failure, increases in brain lactic acid, glutamate, and nitric oxide concentration. Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that has been implicated in stimulation of cell survival, proliferation, and function of neutrophil precursors and mature neutrophils. Extensive studies both in vivo and ex vivo have shown the neuroprotective effect of G-CSF in neurodegenerative diseases and neonatal brain damage via inhibition of apoptosis and inflammation. Yet, there are still few experimentation models of neonatal HIE and G-CSF's effectiveness, and extrapolation of adult stroke models is challenging because of the evolving brain. Here, we review current studies and/or researches of G-CSF's crucial role in regulating these cytokines and apoptotic mediators triggered following neonatal brain injury, as well as driving neurogenesis and angiogenesis post-HI insults.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lu Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Jang-Yen Wu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
12
|
Li H, Chen M, Wang J, Illapani VSP, Parikh NA, He L. Automatic Segmentation of Diffuse White Matter Abnormality on T2-weighted Brain MR Images Using Deep Learning in Very Preterm Infants. Radiol Artif Intell 2021; 3:e200166. [PMID: 34142089 PMCID: PMC8166113 DOI: 10.1148/ryai.2021200166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 11/11/2022]
Abstract
About 50%-80% of very preterm infants (VPIs) (≤ 32 weeks gestational age) exhibit diffuse white matter abnormality (DWMA) on their MR images at term-equivalent age. It remains unknown if DWMA is associated with developmental impairments, and further study is warranted. To aid in the assessment of DWMA, a deep learning model for DWMA quantification on T2-weighted MR images was developed. This secondary analysis of prospective data was performed with an internal cohort of 98 VPIs (data collected from December 2014 to April 2016) and an external cohort of 28 VPIs (data collected from January 2012 to August 2014) who had already undergone MRI at term-equivalent age. Ground truth DWMA regions were manually annotated by two human experts with the guidance of a prior published semiautomated algorithm. In a twofold cross-validation experiment using the internal cohort of 98 infants, the three-dimensional (3D) ResU-Net model accurately segmented DWMA with a Dice similarity coefficient of 0.907 ± 0.041 (standard deviation) and balanced accuracy of 96.0% ± 2.1, outperforming multiple peer deep learning models. The 3D ResU-Net model that was trained with the whole internal cohort (n = 98) was further tested on an independent external test cohort (n = 28) and achieved a Dice similarity coefficient of 0.877 ± 0.059 and balanced accuracy of 92.3% ± 3.9. The externally validated 3D ResU-Net deep learning model for accurately segmenting DWMA may facilitate the clinical diagnosis of DWMA in VPIs. Supplemental material is available for this article. Keywords: Brain/Brain Stem, Convolutional Neural Network (CNN), MR-Imaging, Pediatrics, Segmentation, Supervised learning © RSNA, 2021.
Collapse
|
13
|
Ferre CL, Carmel JB, Flamand VH, Gordon AM, Friel KM. Anatomical and Functional Characterization in Children With Unilateral Cerebral Palsy: An Atlas-Based Analysis. Neurorehabil Neural Repair 2020; 34:148-158. [PMID: 31983314 DOI: 10.1177/1545968319899916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background. Variability in hand function among children with unilateral cerebral palsy (UCP) might reflect the type of brain injury and resulting anatomical sequelae. Objective. We used atlas-based analysis of structural images to determine whether children with periventricular (PV) versus middle cerebral artery (MCA) injuries might exhibit unique anatomical characteristics that account for differences in hand function. Methods. Forty children with UCP underwent structural brain imaging using 3-T magnetic resonance imaging. Brain lesions were classified as PV or MCA. A group of 40 typically developing (TD) children served as comparison controls. Whole brains were parcellated into 198 structures (regions of interest) to obtain volume estimates. Dexterity and bimanual hand function were assessed. Unbiased, differential expression analysis was performed to determine volumetric differences between PV and MCA groups. Principal component analysis (PCA) was performed and the top 3 components were extracted to perform regression on hand function. Results. Children with PV had significantly better hand function than children with MCA. Multidimensional scaling analysis of volumetric data revealed separate clustering of children with MCA, PV, and TD children. PCA extracted anatomical components that comprised the 2 types of brain injury. In the MCA group, reductions of volume were concentrated in sensorimotor structures of the injured hemisphere. Models using PCA predicted hand function with greater accuracy than models based on qualitative brain injury type. Conclusions. Our results highlight unique quantitative differences in children with UCP that also predict differences in hand function. The systematic discrimination between groups found in our study reveals future questions about the potential prognostic utility of this approach.
Collapse
Affiliation(s)
| | - Jason B Carmel
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Véronique H Flamand
- Université Laval, Quebec City, Quebec, Canada.,Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Quebec, Canada
| | | | - Kathleen M Friel
- Burke Neurological Institute, White Plains, NY, USA.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
14
|
Li H, Parikh NA, Wang J, Merhar S, Chen M, Parikh M, Holland S, He L. Objective and Automated Detection of Diffuse White Matter Abnormality in Preterm Infants Using Deep Convolutional Neural Networks. Front Neurosci 2019; 13:610. [PMID: 31275101 PMCID: PMC6591530 DOI: 10.3389/fnins.2019.00610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/28/2019] [Indexed: 11/19/2022] Open
Abstract
Diffuse white matter abnormality (DWMA), or diffuse excessive high signal intensity is observed in 50-80% of very preterm infants at term-equivalent age. It is subjectively defined as higher than normal signal intensity in periventricular and subcortical white matter in comparison to normal unmyelinated white matter on T2-weighted MRI images. Despite the well-documented presence of DWMA, it remains debatable whether DWMA represents pathological tissue injury or a transient developmental phenomenon. Manual tracing of DWMA exhibits poor reliability and reproducibility and unduly increases image processing time. Thus, objective and ideally automatic assessment is critical to accurately elucidate the biologic nature of DWMA. We propose a deep learning approach to automatically identify DWMA regions on T2-weighted MRI images. Specifically, we formulated DWMA detection as an image voxel classification task; that is, the voxels on T2-weighted images are treated as samples and exclusively assigned as DWMA or normal white matter voxel classes. To utilize the spatial information of individual voxels, small image patches centered on the given voxels are retrieved. A deep convolutional neural networks (CNN) model was developed to differentiate DWMA and normal voxels. We tested our deep CNN in multiple validation experiments. First, we examined DWMA detection accuracy of our CNN model using computer simulations. This was followed by in vivo assessments in a cohort of very preterm infants (N = 95) using cross-validation and holdout validation. Finally, we tested our approach on an independent preterm cohort (N = 28) to externally validate our model. Our deep CNN model achieved Dice similarity index values ranging from 0.85 to 0.99 for DWMA detection in the aforementioned validation experiments. Our proposed deep CNN model exhibited significantly better performance than other popular machine learning models. We present an objective and automated approach for accurately identifying DWMA that may facilitate the clinical diagnosis of DWMA in very preterm infants.
Collapse
Affiliation(s)
- Hailong Li
- The Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Nehal A. Parikh
- The Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jinghua Wang
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Stephanie Merhar
- The Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ming Chen
- The Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Electronic Engineering and Computing Systems, University of Cincinnati, Cincinnati, OH, United States
| | - Milan Parikh
- The Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Scott Holland
- Medpace Inc., Cincinnati, OH, United States
- Department of Physics, University of Cincinnati, Cincinnati, OH, United States
| | - Lili He
- The Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
15
|
de Oliveira SR, Machado ACCP, de Paula JJ, Novi SL, Mesquita RC, Miranda DMD, Bouzada MCF. Changes of functional response in sensorimotor cortex of preterm and full-term infants during the first year: An fNIRS study. Early Hum Dev 2019; 133:23-28. [PMID: 31048133 DOI: 10.1016/j.earlhumdev.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Motor impairments are frequently associated with preterm birth and interfere in acquisition of essential skills to global development. Using Near Infrared Spectroscopy (NIRS), the study of neural correlates of motor development in early stages of life are feasible in an ecological assessment. AIMS To evaluate changes in cortical activity in response to a sensorimotor stimulation in preterm and full-term infants at 6 and 12 months of age. STUDY DESIGN A longitudinal study was conducted with 22 infants (12 preterm and 10 full-term). Hemodynamic activity during sensorimotor task (8 blocks of 8 s of vibration applied to infant's right hand) was measured by Functional Near Infrared Spectroscopy (fNIRS). The optical probe consisted of 84 channels positioned according to the international 10-20 system coordinates, covering the frontal (38 channels), parietal (16 channels), temporal (22 channels) and occipital (8 channels) lobes of both hemispheres. RESULTS Preterm and full-term infants exhibited differences of location of the activation as well on the hemodynamic response in both the evaluated age groups. CONCLUSIONS Group differences in activation of sensorimotor cortex observed in this study demonstrate the potential of fNIRS application for preterm evaluation of motor development in children. Overall, the present work contributes to our understanding of cortical activation of cerebral motor skills spanning early ages in preterm-born children.
Collapse
Affiliation(s)
- Suelen Rosa de Oliveira
- School of Medicine, Department of Pediatrics, Federal University of Minas Gerais, MG, Brazil.
| | | | - Jonas Jardim de Paula
- School of Medicine, Department of Pediatrics, Federal University of Minas Gerais, MG, Brazil
| | - Sérgio Luiz Novi
- Institute of Physics, University of Campinas, Campinas, São Paulo, Brazil
| | - Rickson C Mesquita
- Institute of Physics, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Maria Cândida F Bouzada
- School of Medicine, Department of Pediatrics, Federal University of Minas Gerais, MG, Brazil
| |
Collapse
|
16
|
Jurcoane A, Daamen M, Keil VC, Scheef L, Bäuml JG, Meng C, Wohlschläger AM, Sorg C, Busch B, Baumann N, Wolke D, Bartmann P, Boecker H, Lüchters G, Marinova M, Hattingen E. Automated quantitative evaluation of brain MRI may be more accurate for discriminating preterm born adults. Eur Radiol 2019; 29:3533-3542. [PMID: 30903339 DOI: 10.1007/s00330-019-06099-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the structural brain abnormalities and their diagnostic accuracy through qualitative and quantitative analysis in term born and very preterm birth or with very low birth weight (VP/VLBW) adults. METHODS We analyzed 3-T MRIs acquired in 2011-2013 from 67 adults (27 term born controls, mean age 26.4 years, 8 females; 40 VP/VLBWs, mean age 26.6 years, 16 females). We compared automatic segmentations of the white matter, deep gray matter and cortical gray matter, manual corpus callosum measurements and visual ratings of the ventricles and white matter with t tests, logistic regression, and receiver operator characteristic (ROC) curves. RESULTS Automatic segmentation correctly classified 84% of cases; visual ratings correctly classified 63%. Quantitative volumetry based on automatic segmentation revealed higher ventricular volume, lower posterior corpus callosum, and deep gray matter volumes in VP/VLBW subjects compared to controls (p < 0.01). Visual rating and manual measurement revealed a thinner corpus callosum in VP/VLBW adults (p = 0.04) and deformed lateral ventricles (p = 0.03) and tendency towards more "dirty" white matter (p = 0.06). Automatic/manual measures combined with visual ratings correctly classified 87% of cases. Stepwise logistic regression identified three independent features that correctly classify 81% of cases: ventricular volume, deep gray matter volume, and white matter aspect. CONCLUSION Enlarged and deformed lateral ventricles, thinner corpus callosum, and "dirty" white matter are prevalent in preterm born adults. Their visual evaluation has low diagnostic accuracy. Automatic volume quantification is more accurate but time consuming. It may be useful to ask for prematurity before initiating further diagnostics in subjects with these alterations. KEY POINTS • Our study confirms prior reports showing that structural brain abnormalities related to preterm birth persist into adulthood. • In the clinical practice, if large and deformed lateral ventricles, small and thin corpus callosum, and "dirty" white matter are visible on MRI, ask for prematurity before considering other diagnoses. • Although prevalent, visual findings have low accuracy; adding automatic segmentation of lateral ventricles and deep gray matter nuclei improves the diagnostic accuracy.
Collapse
Affiliation(s)
- Alina Jurcoane
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany.
- Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
- Department of Neonatology, University Hospital Bonn, Bonn, Germany.
- Institute for Neuroradiology, University Hospital Frankfurt, Frankfurt, Germany.
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Vera C Keil
- Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Lukas Scheef
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Josef G Bäuml
- Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Chun Meng
- Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Afra M Wohlschläger
- Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Psychiatry, Klinikum rechts der Isar, Munich, Germany
| | - Barbara Busch
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, UK
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Guido Lüchters
- Center for Development Research, University of Bonn, Bonn, Germany
| | - Milka Marinova
- Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Elke Hattingen
- Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
- Institute for Neuroradiology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
17
|
Sripada K, Bjuland KJ, Sølsnes AE, Håberg AK, Grunewaldt KH, Løhaugen GC, Rimol LM, Skranes J. Trajectories of brain development in school-age children born preterm with very low birth weight. Sci Rep 2018; 8:15553. [PMID: 30349084 PMCID: PMC6197262 DOI: 10.1038/s41598-018-33530-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
Preterm birth (gestational age < 37 weeks) with very low birth weight (VLBW, birth weight ≤ 1500 g) is associated with lifelong cognitive deficits, including in executive function, and persistent alterations in cortical and subcortical structures. However, it remains unclear whether “catch-up” growth is possible in the preterm/VLBW brain. Longitudinal structural MRI was conducted with children born preterm with VLBW (n = 41) and term-born peers participating in the Norwegian Mother and Child Cohort Study (MoBa) (n = 128) at two timepoints in early school age (mean ages 8.0 and 9.3 years). Images were analyzed with the FreeSurfer 5.3.0 longitudinal stream to assess differences in development of cortical thickness, surface area, and brain structure volumes, as well as associations with executive function development (NEPSY Statue and WMS-III Spatial Span scores) and perinatal health markers. No longitudinal group × time effects in cortical thickness, surface area, or subcortical volumes were seen, indicating similar brain growth trajectories in the groups over an approximately 16-month period in middle childhood. Higher IQ scores within the VLBW group were associated with greater surface area in left parieto-occipital and inferior temporal regions. Among VLBW preterm-born children, cortical surface area was smaller across the cortical mantle, and cortical thickness was thicker occipitally and frontally and thinner in lateral parietal and posterior temporal areas. Smaller volumes of corpus callosum, right globus pallidus, and right thalamus persisted in the VLBW group from timepoint 1 to 2. VLBW children had on average IQ 1 SD below term-born MoBa peers and significantly worse scores on WMS-III Spatial Span. Executive function scores did not show differential associations with morphometry between groups cross-sectionally or longitudinally. This study investigated divergent or “catch-up” growth in terms of cortical thickness, surface area, and volumes of subcortical gray matter structures and corpus callosum in children born preterm/VLBW and did not find group × time interactions. Greater surface area at mean age 9.3 in left parieto-occipital and inferior temporal cortex was associated with higher IQ in the VLBW group. These results suggest that preterm VLBW children may have altered cognitive networks, yet have structural growth trajectories that appear generally similar to their term-born peers in this early school age window.
Collapse
Affiliation(s)
- K Sripada
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, Trondheim, Norway.
| | - K J Bjuland
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - A E Sølsnes
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, Trondheim, Norway
| | - A K Håberg
- Department of Neuromedicine & Movement Science, Norwegian University of Science & Technology, Trondheim, Norway.,Department of Radiology & Nuclear Medicine, St. Olav's Hospital, Trondheim, Norway
| | - K H Grunewaldt
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, Trondheim, Norway.,Department of Pediatrics, St. Olav's Hospital, Trondheim, Norway
| | - G C Løhaugen
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - L M Rimol
- Department of Radiology & Nuclear Medicine, St. Olav's Hospital, Trondheim, Norway.,Department of Circulation & Medical Imaging, Norwegian University of Science & Technology, Trondheim, Norway
| | - J Skranes
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, Trondheim, Norway.,Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| |
Collapse
|
18
|
de Oliveira SR, de Paula Machado ACC, de Paula JJ, de Moraes PHP, Nahin MJS, Magalhães LDC, Novi SL, Mesquita RC, de Miranda DM, Bouzada MCF. Association between hemodynamic activity and motor performance in six-month-old full-term and preterm infants: a functional near-infrared spectroscopy study. NEUROPHOTONICS 2018; 5:011016. [PMID: 29057284 PMCID: PMC5637226 DOI: 10.1117/1.nph.5.1.011016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/18/2017] [Indexed: 05/15/2023]
Abstract
This study aimed to assess task-induced activation in motor cortex and its association with motor performance in full-term and preterm born infants at six months old. A cross-sectional study of 73 six-month-old infants was conducted (35 full-term and 38 preterm infants). Motor performance was assessed using the Bayley Scales of Infant Development third edition-Bayley-III. Brain hemodynamic activity during motor task was measured by functional near-infrared spectroscopy (fNIRS). Motor performance was similar in full-term and preterm infants. However, differences in hemodynamic response were identified. Full terms showed a more homogeneous unilateral and contralateral activated area, whereas in preterm-born the activation response was predominantly bilateral. The full-term group also exhibited a shorter latency for the hemodynamic response than the preterm group. Hemodynamic activity in the left sensorimotor region was positively associated with motor performance measured by Bayley-III. The results highlight the adequacy of fNIRS to assess differences in task-induced activation in sensorimotor cortex between groups. The association between motor performance and the hemodynamic activity require further investigation and suggest that fNIRS can become a suitable auxiliary tool to investigate aspects of neural basis on early development of motor abilities.
Collapse
Affiliation(s)
- Suelen Rosa de Oliveira
- Universidade Federal de Minas Gerais, School of Medicine, Belo Horizonte, Brazil
- Address all correspondence to: Suelen Rosa de Oliveira, E-mail:
| | | | | | | | | | - Lívia de Castro Magalhães
- Universidade Federal de Minas Gerais, School of Physical Education, Physiotherapy, and Occupational Therapy, Belo Horizonte, Brazil
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, Brazil
| | | | | | | |
Collapse
|
19
|
Dodson CK, Travis KE, Ben-Shachar M, Feldman HM. White matter microstructure of 6-year old children born preterm and full term. NEUROIMAGE-CLINICAL 2017; 16:268-275. [PMID: 28840098 PMCID: PMC5558468 DOI: 10.1016/j.nicl.2017.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023]
Abstract
AIM We previously observed a complex pattern of differences in white matter (WM) microstructure between preterm-born (PT) and full-term-born (FT) children and adolescents age 9-17 years. The aim of this study was to determine if the same differences exist as early as age 6 years. METHOD We obtained diffusion MRI (dMRI) scans in children born PT at age 6 years (n = 20; 11 males) and FT (n = 38; 14 males), using two scanning protocols: 30 diffusion directions (b = 1000 s/mm2) and 96 diffusion directions (b = 2500 s/mm2). We used deterministic tractography and analyzed fractional anisotropy (FA) along bilateral cerebral WM pathways that demonstrated differences in the older sample. RESULTS Compared to the FT group, the PT group showed (1) significantly decreased FA in the uncinate fasciculi and forceps major and (2) significantly increased FA in the right anterior thalamic radiation, inferior fronto-occipital fasciculi, and inferior longitudinal fasciculi. This pattern of group differences resembles findings in the previous study of older PT and FT participants. Group differences were similar across dMRI acquisition protocols. INTERPRETATION The underlying neurobiology driving the pattern of PT-FT differences in FA is present as early as age 6 years. Generalization across dMRI acquisition protocols demonstrates the robustness of group differences in FA. Future studies will use quantitative neuroimaging techniques to understand the tissue properties that give rise to this consistent pattern of WM differences after PT birth.
Collapse
Affiliation(s)
- Cory K Dodson
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road X119, Stanford, CA 94305, USA
| | - Katherine E Travis
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road X119, Stanford, CA 94305, USA
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel.,Department of English Literature and Linguistics, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road X119, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Rajagopalan V, Scott JA, Liu M, Poskitt K, Chau V, Miller S, Studholme C. Complementary cortical gray and white matter developmental patterns in healthy, preterm neonates. Hum Brain Mapp 2017; 38:4322-4336. [PMID: 28608653 DOI: 10.1002/hbm.23618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 01/12/2023] Open
Abstract
Preterm birth is associated with brain injury and altered cognitive development. However, the consequences of extrauterine development are not clearly distinguished from perinatal brain injury. Therefore, we characterized cortical growth patterns from 30 to 46 postmenstrual weeks (PMW) in 27 preterm neonates (25-32 PMW at birth) without detectable brain injury on magnetic resonance imaging. We introduce surface-based morphometric descriptors that quantify radial (thickness) and tangential (area) change rates. Within a tensor-based morphometry framework, we use a temporally weighted formulation of regression to simultaneously model local age-related changes in cortical gray matter (GM) and underlying white matter (WM) mapped onto the cortical surface. The spatiotemporal pattern of GM and WM development corresponded to the expected gyrification time course of primary sulcal deepening and branching. In primary gyri, surface area and thickness rates were below average along sulcal pits and above average on gyral banks and crests in both GM and WM. Above average surface area rates in GM corresponded to emergence of secondary and tertiary folds. These findings map the development of neonatal cortical morphometry in the context of extrauterine brain development using a novel approach. Future studies may compare this developmental trajectory to preterm populations with brain injury. Hum Brain Mapp 38:4322-4336, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vidya Rajagopalan
- Children's Hospital Los Angeles, and Rudi Schulte Research Institute, Santa Barbara, California
| | - Julia A Scott
- Department of Neurology, University of California Davis, Davis, California
| | - Mengyuan Liu
- Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering, and Radiology, University of Washington, Seattle, Washington
| | - Kenneth Poskitt
- Department of Pediatrics, University of British Columbia, British Columbia, Canada
| | - Vann Chau
- Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Steven Miller
- Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Colin Studholme
- Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering, and Radiology, University of Washington, Seattle, Washington
| |
Collapse
|
21
|
Abstract
Cortical (cerebral) visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment or blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher-order visual processing and attention. Together, these visual impairments can dramatically influence a child's development and well-being. Given the complex neurologic underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns, respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition.
Collapse
|
22
|
Morton PD, Ishibashi N, Jonas RA. Neurodevelopmental Abnormalities and Congenital Heart Disease: Insights Into Altered Brain Maturation. Circ Res 2017; 120:960-977. [PMID: 28302742 PMCID: PMC5409515 DOI: 10.1161/circresaha.116.309048] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023]
Abstract
In the past 2 decades, it has become evident that individuals born with congenital heart disease (CHD) are at risk of developing life-long neurological deficits. Multifactorial risk factors contributing to neurodevelopmental abnormalities associated with CHD have been identified; however, the underlying causes remain largely unknown, and efforts to address this issue have only recently begun. There has been a dramatic shift in focus from newly acquired brain injuries associated with corrective and palliative heart surgery to antenatal and preoperative factors governing altered brain maturation in CHD. In this review, we describe key time windows of development during which the immature brain is vulnerable to injury. Special emphasis is placed on the dynamic nature of cellular events and how CHD may adversely impact the cellular units and networks necessary for proper cognitive and motor function. In addition, we describe current gaps in knowledge and offer perspectives about what can be done to improve our understanding of neurological deficits in CHD. Ultimately, a multidisciplinary approach will be essential to prevent or improve adverse neurodevelopmental outcomes in individuals surviving CHD.
Collapse
Affiliation(s)
- Paul D Morton
- From the Center for Neuroscience Research and Children's National Heart Institute, Children's National Health System, Washington, DC
| | - Nobuyuki Ishibashi
- From the Center for Neuroscience Research and Children's National Heart Institute, Children's National Health System, Washington, DC.
| | - Richard A Jonas
- From the Center for Neuroscience Research and Children's National Heart Institute, Children's National Health System, Washington, DC.
| |
Collapse
|
23
|
Korpilahti P, Valkama M, Jansson-Verkasalo E. Event-Related Potentials Reflect Deficits in Lexical Access: The N200 in Prematurely Born School-Aged Children. Folia Phoniatr Logop 2017; 68:189-198. [PMID: 28253505 DOI: 10.1159/000450886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Children born preterm have a high prevalence of neurocognitive deficits early in life. We examined whether the neural correlates of lexical access are atypical in 9-year-old children born preterm, and whether the findings of acoustic mapping correlate with language- and attention-related skills. PATIENTS AND METHODS The subjects were fourteen 9-year-old children born preterm and 14 full-term, typically developing controls. Two auditory event-related potential (ERP) components, the N200 and the N400, were used to assess discrimination response and word recognition. A set of behavioral tests (naming ability, auditory attention, phonological processing, pseudoword repetition, and comprehension of instructions) was performed, and the results were compared with the amplitudes, latencies, and scalp distribution of the ERP results. RESULTS In prematurely born children, neurophysiological deficits were associated with difficulties in auditory discrimination. The N200 amplitude correlated significantly with auditory attention and pseudoword repetition. The scalp distribution of both the N200 and the N400 was broader in children born preterm than in the controls. Low scores in the neuropsychological tasks referred to difficulties in auditory processing and memory. CONCLUSIONS Children born preterm have difficulties in lexical access together with memory- and attention-related processes, which may have a longstanding impact on their school outcomes and academic skills.
Collapse
Affiliation(s)
- Pirjo Korpilahti
- Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | | | | |
Collapse
|
24
|
Koob M, Viola A, Le Fur Y, Viout P, Ratiney H, Confort-Gouny S, Cozzone PJ, Girard N. Creatine, Glutamine plus Glutamate, and Macromolecules Are Decreased in the Central White Matter of Premature Neonates around Term. PLoS One 2016; 11:e0160990. [PMID: 27547969 PMCID: PMC4993494 DOI: 10.1371/journal.pone.0160990] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/28/2016] [Indexed: 11/18/2022] Open
Abstract
Preterm birth represents a high risk of neurodevelopmental disabilities when associated with white-matter damage. Recent studies have reported cognitive deficits in children born preterm without brain injury on MRI at term-equivalent age. Understanding the microstructural and metabolic underpinnings of these deficits is essential for their early detection. Here, we used diffusion-weighted imaging and single-voxel 1H magnetic resonance spectroscopy (MRS) to compare brain maturation at term-equivalent age in premature neonates with no evidence of white matter injury on conventional MRI except diffuse excessive high-signal intensity, and normal term neonates. Thirty-two infants, 16 term neonates (mean post-conceptional age at scan: 39.8±1 weeks) and 16 premature neonates (mean gestational age at birth: 29.1±2 weeks, mean post-conceptional age at scan: 39.2±1 weeks) were investigated. The MRI/MRS protocol performed at 1.5T involved diffusion-weighted MRI and localized 1H-MRS with the Point RESolved Spectroscopy (PRESS) sequence. Preterm neonates showed significantly higher ADC values in the temporal white matter (P<0.05), the occipital white matter (P<0.005) and the thalamus (P<0.05). The proton spectrum of the centrum semiovale was characterized by significantly lower taurine/H2O and macromolecules/H2O ratios (P<0.05) at a TE of 30 ms, and reduced (creatine+phosphocreatine)/H2O and (glutamine+glutamate)/H2O ratios (P<0.05) at a TE of 135 ms in the preterm neonates than in full-term neonates. Our findings indicate that premature neonates with normal conventional MRI present a delay in brain maturation affecting the white matter and the thalamus. Their brain metabolic profile is characterized by lower levels of creatine, glutamine plus glutamate, and macromolecules in the centrum semiovale, a finding suggesting altered energy metabolism and protein synthesis.
Collapse
Affiliation(s)
- Meriam Koob
- Service de Neuroradiologie, AP-HM Timone, Aix-Marseille Université, Marseille, France
- Service de Radiopédiatrie-Imagerie 2, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
- Laboratoire ICube, UMR 7357, FMTS, Université de Strasbourg-CNRS, Strasbourg, France
| | - Angèle Viola
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
- * E-mail: (NG); (AV)
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
| | - Patrick Viout
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
| | - Hélène Ratiney
- Laboratoire CREATIS, CNRS UMR 5220, Inserm U1044, Université Claude Bernard Lyon I, INSA-Lyon, Lyon, France
| | - Sylviane Confort-Gouny
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
| | - Patrick J. Cozzone
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
| | - Nadine Girard
- Service de Neuroradiologie, AP-HM Timone, Aix-Marseille Université, Marseille, France
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
- * E-mail: (NG); (AV)
| |
Collapse
|
25
|
Ho ML, Patton AC, DeLone DR, Kim H, Gilbertson JR, Felmlee J, Watson RE. Brain Injury in the Preterm and Term Neonate. CURRENT RADIOLOGY REPORTS 2016. [DOI: 10.1007/s40134-016-0161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Spring In ''t Veld LG, de Vries LS, Alderliesten T, Benders MJNL, Groenendaal F. Serial 1- and 2-Dimensional Cerebral MRI Measurements in Full-Term Infants after Perinatal Asphyxia. Neonatology 2016; 110:27-32. [PMID: 26968012 DOI: 10.1159/000444121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/18/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Cranial magnetic resonance imaging (MRI) is associated with neurodevelopmental outcome in full-term infants with neonatal encephalopathy (NE) following presumed perinatal asphyxia. The aim of this study is to relate 2-dimensional measurements of the basal ganglia and thalami (BGT) and cerebellum in the first week after birth and after 3 months with neurodevelopmental outcome at 18 months. METHODS Retrospectively, 29 full-term infants with NE following presumed perinatal asphyxia who had a cranial MRI in the first week after birth were studied serially. One- and 2-dimensional measurements were obtained and related to different patterns of brain injury, and neurodevelopmental outcome at 18 months. A Griffiths developmental quotient <85 or cerebral palsy was considered adverse. RESULTS On the first MRI, the adverse outcome group showed increased basal ganglia width (42.1 ± 0.1 vs. 40.3 ± 0.3 mm, p < 0.001), thalamic width (40.3 ± 0.1 vs. 39.3 ± 1.0 mm, p < 0.001), and basal ganglia surface (1,230 ± 21 vs. 1,199 ± 36 mm2, p = 0.007) compared to the favorable outcome group. In the BGT lesions group, basal ganglia width and thalamic width were increased compared to the watershed infarction group (42.1 ± 0.1 vs. 40.9 ± 0.8 mm, p < 0.001, and 40.3 ± 0.1 vs. 39.9 ± 0.5 mm, p = 0.01, respectively). On the second MRI, cerebellar width was larger in the favorable outcome group (p = 0.025). There was a greater increase in dimensions between both MRI time points for basal ganglia width (p = 0.014), basal ganglia surface (p = 0.028) and thalamic width (p = 0.012) in the favorable outcome group. CONCLUSIONS One- and 2-dimensional measurements for basal ganglia surface, BGT width and cerebellar width are associated with neurodevelopmental outcome at 18 months.
Collapse
Affiliation(s)
- Laura G Spring In ''t Veld
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Tarnow-Mordi W, Cruz M, Morris J. Design and conduct of a large obstetric or neonatal randomized controlled trial. Semin Fetal Neonatal Med 2015; 20:389-402. [PMID: 26522427 DOI: 10.1016/j.siny.2015.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As event rates fall, if mortality and disability are to improve further there is increasing need for large, well-designed trials. These should enroll more patients, more rapidly and at lower cost, with better representation of infants at highest risk and greater integration with routine care. This may require simpler datasets, linkage with routinely collected data, and international collaboration. It may be helpful to draw attention to recent evidence that participation in Phase III randomized controlled trials (RCTs) is at least as safe as receiving established care. Nationally coordinated clinical research networks employing local research staff may be the single most effective strategy to integrate clinical trials into routine practice. Other goals are: international standardization of outcomes; consensus on composite endpoints, biomarkers, surrogates and measures of disability; greater efficiency through randomized factorial designs and cluster or cross-over cluster RCTs; and equipping parents as partners in all aspects of the conduct of RCTs and in implementing their results.
Collapse
Affiliation(s)
- William Tarnow-Mordi
- WINNER Centre for Newborn Research, NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia.
| | - Melinda Cruz
- Miracle Babies Foundation, Chipping Norton, Sydney, NSW 2170, Australia
| | - Jonathan Morris
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| |
Collapse
|
28
|
Thompson DK, Lee KJ, van Bijnen L, Leemans A, Pascoe L, Scratch SE, Cheong J, Egan GF, Inder TE, Doyle LW, Anderson PJ. Accelerated corpus callosum development in prematurity predicts improved outcome. Hum Brain Mapp 2015; 36:3733-48. [PMID: 26108187 DOI: 10.1002/hbm.22874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/01/2015] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES To determine: (1) whether corpus callosum (CC) size and microstructure at 7 years of age or their change from infancy to 7 years differed between very preterm (VP) and full-term (FT) children; (2) perinatal predictors of CC size and microstructure at 7 years; and (3) associations between CC measures at 7 years or trajectories from infancy to 7 years and neurodevelopmental outcomes. EXPERIMENTAL DESIGN One hundred and thirty-six VP (gestational age [GA] <30 weeks and/or birth weight <1,250 g) and 33 FT children had usable magnetic resonance images at 7 years of age, and of these, 76 VP and 16 FT infants had usable data at term equivalent age. The CC was traced and divided into six sub-regions. Fractional anisotropy, mean, axial, radial diffusivity and volume were measured from tractography. Perinatal data were collected, and neurodevelopmental tests administered at 7 years' corrected age. PRINCIPAL OBSERVATIONS VP children had smaller posterior CC regions, higher diffusivity and lower fractional anisotropy compared with FT 7-year-olds. Reduction in diffusivity over time occurred faster in VP than FT children (P ≤ 0.002). Perinatal brain abnormality and earlier GA were associated with CC abnormalities. Microstructural abnormalities at 7 years or slower development of the CC were associated with motor dysfunction, poorer mathematics and visual perception. CONCLUSIONS This study is the first to demonstrate an accelerated trajectory of CC white matter diffusion following VP birth, associated with improved neurodevelopmental functioning. Findings suggest there is a window of opportunity for neurorestorative intervention to improve outcomes. Hum Brain Mapp 36:3733-3748, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Deanne K Thompson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine J Lee
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Loeka van Bijnen
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Alexander Leemans
- Imaging Science Institute, University Medical Center, Utrecht, Netherlands
| | - Leona Pascoe
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Shannon E Scratch
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Jeanie Cheong
- Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gary F Egan
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Terrie E Inder
- Brigham and Women's Hospital, Boston, Massachusetts.,Department of Pediatrics, Washington University in St Louis Medical School, St Louis, Missouri
| | - Lex W Doyle
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter J Anderson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Pediatrics, Washington University in St Louis Medical School, St Louis, Missouri
| |
Collapse
|
29
|
Tocchio S, Kline-Fath B, Kanal E, Schmithorst VJ, Panigrahy A. MRI evaluation and safety in the developing brain. Semin Perinatol 2015; 39:73-104. [PMID: 25743582 PMCID: PMC4380813 DOI: 10.1053/j.semperi.2015.01.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners.
Collapse
Affiliation(s)
- Shannon Tocchio
- Pediatric Imaging Research Center, Department of Radiology Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Beth Kline-Fath
- Department of Radiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Emanuel Kanal
- Director, Magnetic Resonance Services; Professor of Neuroradiology; Department of Radiology, University of Pittsburgh Medical Center (UPMC)
| | - Vincent J. Schmithorst
- Pediatric Imaging Research Center, Department of Radiology Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ashok Panigrahy
- Pediatric Imaging Research Center, Department of Radiology Children׳s Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, PA.
| |
Collapse
|
30
|
Nevalainen P, Rahkonen P, Pihko E, Lano A, Vanhatalo S, Andersson S, Autti T, Valanne L, Metsäranta M, Lauronen L. Evaluation of somatosensory cortical processing in extremely preterm infants at term with MEG and EEG. Clin Neurophysiol 2015; 126:275-83. [DOI: 10.1016/j.clinph.2014.05.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 01/06/2023]
|
31
|
Krishnan P, Muthusami P, Heyn C, Shroff M. Advances in pediatric neuroimaging. Indian J Pediatr 2015; 82:154-65. [PMID: 25557178 DOI: 10.1007/s12098-014-1657-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
Conventional MRI protocols are an integral part of routine clinical imaging in pediatric patients. The advent of several newer MRI techniques provides crucial insight into the structural integrity and functional aspects of the developing brain, especially with the introduction of 3T MRI systems in clinical practice. The field of pediatric neuroimaging continues to evolve, with greater emphasis on high spatial resolution, faster scan time, as well as a quest for visualization of the functional aspects of the human brain. MR vendors are increasingly focusing on optimizing MR technology to make it suitable for children, in whom as compared to adults the head size is usually smaller and demonstrates inherent neuroanatomical differences relating to brain development. The eventual goal of these advances would be to evolve as potential biomarkers for predicting neurodevelopment outcomes and prognostication, in addition to their utility in routine diagnostic and therapeutic decision-making. Advanced MR techniques like diffusion tensor imaging, functional MRI, MR perfusion, spectroscopy, volumetric imaging and arterial spin labeling add to our understanding of normal brain development and pathophysiology of various neurological disease processes. This review is primarily focused on outlining advanced MR techniques and their current and potential pediatric neuroimaging applications as well as providing a brief overview of advances in hardware and machine design.
Collapse
Affiliation(s)
- Pradeep Krishnan
- Division of Pediatric Neuroradiology, Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada,
| | | | | | | |
Collapse
|
32
|
Hintz SR, Barnes PD, Bulas D, Slovis TL, Finer NN, Wrage LA, Das A, Tyson JE, Stevenson DK, Carlo WA, Walsh MC, Laptook AR, Yoder BA, Van Meurs KP, Faix RG, Rich W, Newman NS, Cheng H, Heyne RJ, Vohr BR, Acarregui MJ, Vaucher YE, Pappas A, Peralta-Carcelen M, Wilson-Costello DE, Evans PW, Goldstein RF, Myers GJ, Poindexter BB, McGowan EC, Adams-Chapman I, Fuller J, Higgins RD. Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics 2015; 135:e32-42. [PMID: 25554820 PMCID: PMC4279063 DOI: 10.1542/peds.2014-0898] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Extremely preterm infants are at risk for neurodevelopmental impairment (NDI). Early cranial ultrasound (CUS) is usual practice, but near-term brain MRI has been reported to better predict outcomes. We prospectively evaluated MRI white matter abnormality (WMA) and cerebellar lesions, and serial CUS adverse findings as predictors of outcomes at 18 to 22 months' corrected age. METHODS Early and late CUS, and brain MRI were read by masked central readers, in a large cohort (n = 480) of infants <28 weeks' gestation surviving to near term in the Neonatal Research Network. Outcomes included NDI or death after neuroimaging, and significant gross motor impairment or death, with NDI defined as cognitive composite score <70, significant gross motor impairment, and severe hearing or visual impairment. Multivariable models evaluated the relative predictive value of neuroimaging while controlling for other factors. RESULTS Of 480 infants, 15 died and 20 were lost. Increasing severity of WMA and significant cerebellar lesions on MRI were associated with adverse outcomes. Cerebellar lesions were rarely identified by CUS. In full multivariable models, both late CUS and MRI, but not early CUS, remained independently associated with NDI or death (MRI cerebellar lesions: odds ratio, 3.0 [95% confidence interval: 1.3-6.8]; late CUS: odds ratio, 9.8 [95% confidence interval: 2.8-35]), and significant gross motor impairment or death. In models that did not include late CUS, MRI moderate-severe WMA was independently associated with adverse outcomes. CONCLUSIONS Both late CUS and near-term MRI abnormalities were associated with outcomes, independent of early CUS and other factors, underscoring the relative prognostic value of near-term neuroimaging.
Collapse
Affiliation(s)
- Susan R. Hintz
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children’s Hospital, Palo Alto, California
| | - Patrick D. Barnes
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children’s Hospital, Palo Alto, California
| | - Dorothy Bulas
- Department of Diagnostic Imaging and Radiology, Children’s National Medical Center, Washington, District of Columbia
| | - Thomas L. Slovis
- Department of Pediatric Imaging, Children’s Hospital of Michigan, Wayne State School of Medicine, Detroit, Michigan
| | | | - Lisa A. Wrage
- Social, Statistical, and Environmental Sciences Unit, RTI International, Research Triangle Park, North Carolina
| | - Abhik Das
- Social, Statistical, and Environmental Sciences Unit, RTI International, Rockville, Maryland
| | - Jon E. Tyson
- Department of Pediatrics, University of Texas Medical School–Houston, Houston, Texas
| | - David K. Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children’s Hospital, Palo Alto, California
| | - Waldemar A. Carlo
- Division of Neonatology, University of Alabama–Birmingham, Birmingham, Alabama
| | - Michele C. Walsh
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| | - Abbot R. Laptook
- Department of Pediatrics, Women & Infants Hospital, Brown University, Providence, Rhode Island
| | - Bradley A. Yoder
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Krisa P. Van Meurs
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children’s Hospital, Palo Alto, California
| | - Roger G. Faix
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Wade Rich
- Departments of Neonatology, and,Pediatrics, University of California–San Diego, San Diego, California
| | - Nancy S. Newman
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| | - Helen Cheng
- Social, Statistical, and Environmental Sciences Unit, RTI International, Research Triangle Park, North Carolina
| | - Roy J. Heyne
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Betty R. Vohr
- Department of Pediatrics, Women & Infants Hospital, Brown University, Providence, Rhode Island
| | | | - Yvonne E. Vaucher
- Pediatrics, University of California–San Diego, San Diego, California
| | - Athina Pappas
- Department of Pediatrics, Wayne State University, Detroit, Michigan
| | | | - Deanne E. Wilson-Costello
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| | - Patricia W. Evans
- Department of Pediatrics, University of Texas Medical School–Houston, Houston, Texas
| | | | - Gary J. Myers
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Brenda B. Poindexter
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Elisabeth C. McGowan
- Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children, Tufts Medical Center, Boston, Massachusetts
| | - Ira Adams-Chapman
- Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Janell Fuller
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and
| | - Rosemary D. Higgins
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
33
|
Back SA, Riddle A, Hohimer AR. The Sheep as a Model of Brain Injury in the Premature Infant. ANIMAL MODELS OF NEURODEVELOPMENTAL DISORDERS 2015. [DOI: 10.1007/978-1-4939-2709-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
34
|
Affiliation(s)
- Eric C Eichenwald
- Department of Pediatrics, University of Texas Medical School, Houston, Texas
| |
Collapse
|
35
|
Eskandari R, Abdullah O, Mason C, Lloyd KE, Oeschle AN, McAllister JP. Differential vulnerability of white matter structures to experimental infantile hydrocephalus detected by diffusion tensor imaging. Childs Nerv Syst 2014; 30:1651-61. [PMID: 25070594 DOI: 10.1007/s00381-014-2500-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE The differential vulnerability of white matter (WM) to acute and chronic infantile hydrocephalus and the related effects of early and late reservoir treatment are unknown, but diffusion tensor imaging (DTI) could provide this information. Thus, we characterized WM integrity using DTI in a clinically relevant model. METHODS Obstructive hydrocephalus was induced in 2-week-old felines by intracisternal kaolin injection. Ventricular reservoirs were placed 1 (early) or 2 (late) weeks post-kaolin and tapped frequently based solely on neurological deficit. Hydrocephalic and age-matched control animals were sacrificed 12 weeks postreservoir. WM integrity was evaluated in the optic system, corpus callosum, and internal capsule prereservoir and every 3 weeks using DTI. Analyses were grouped as acute (<6 weeks) or chronic (≥6 weeks). RESULTS In the corpus callosum during acute stages, fractional anisotropy (FA) decreased significantly with early and late reservoir placement (p = 0.0008 and 0.0008, respectively), and diffusivity increased significantly in early (axial, radial, and mean diffusivity, p = 0.0026, 0.0012, and 0.0002, respectively) and late (radial and mean diffusivity, p = 0.01 and 0.0038, respectively) groups. Chronically, the corpus callosum was thinned and not detectable by DTI. FA was significantly lower in the optic chiasm and tracts (p = 0.0496 and 0.0052, respectively) with late but not early reservoir placement. In the internal capsule, FA in both reservoir groups increased significantly with age (p < 0.05) but diffusivity remained unchanged. CONCLUSIONS All hydrocephalic animals treated with intermittent ventricular reservoir tapping demonstrated progressive ventriculomegaly. Both reservoir groups demonstrated WM integrity loss, with the CC the most vulnerable and the optic system the most resilient.
Collapse
Affiliation(s)
- Ramin Eskandari
- Stanford Children's Health, Lucile Packard Children's Hospital, 725 Welch Road, Palo Alto, CA, USA,
| | | | | | | | | | | |
Collapse
|
36
|
Strunk T, Inder T, Wang X, Burgner D, Mallard C, Levy O. Infection-induced inflammation and cerebral injury in preterm infants. THE LANCET. INFECTIOUS DISEASES 2014; 14:751-762. [PMID: 24877996 DOI: 10.1016/s1473-3099(14)70710-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Preterm birth and infectious diseases are the most common causes of neonatal and early childhood deaths worldwide. The rates of preterm birth have increased over recent decades and account for 11% of all births worldwide. Preterm infants are at significant risk of severe infection in early life and throughout childhood. Bacteraemia, inflammation, or both during the neonatal period in preterm infants is associated with adverse outcomes, including death, chronic lung disease, and neurodevelopmental impairment. Recent studies suggest that bacteraemia could trigger cerebral injury even without penetration of viable bacteria into the CNS. Here we review available evidence that supports the concept of a strong association between bacteraemia, inflammation, and cerebral injury in preterm infants, with an emphasis on the underlying biological mechanisms, clinical correlates, and translational opportunities.
Collapse
Affiliation(s)
- Tobias Strunk
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, The University of Western Australia, Perth, WA, Australia; Neonatal Clinical Care Unit, King Edward Memorial Hospital, Perth, WA, Australia.
| | - Terrie Inder
- Department of Pediatrics, Neurology and Radiology, Washington University, St Louis, USA
| | - Xiaoyang Wang
- Perinatal Center, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Shangjie, Henan, China
| | - David Burgner
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Carina Mallard
- Perinatal Center, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Leitner Y, Weinstein M, Myers V, Uliel S, Geva K, Berger I, Marom R, Bashat DB, Ben-Sira L, Geva R, Gross-Tsur V. Diffuse excessive high signal intensity in low-risk preterm infants at term-equivalent age does not predict outcome at 1 year: a prospective study. Neuroradiology 2014; 56:669-78. [PMID: 24823447 DOI: 10.1007/s00234-014-1373-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The outcome of premature infants with only diffuse excessive high signal intensity (DEHSI) is not clear. We explored the relationship between DEHSI, white matter (WM) diffusion characteristics, perinatal characteristics, and neurobehavioral outcome at 1 year in a homogenous group of preterm infants without major brain abnormalities. METHODS Fifty-eight preterm infants, gestational age 29 ± 2.6 weeks, underwent an MRI at term-equivalent age (TEA). Griffiths Mental Developmental Scales, neurological assessment, and Parental Stress Index (PSI) were performed at 1 year corrected age. These measures were compared between preterm infants according to DEHSI classification (none, mild, moderate). Diffusion tensor imaging was used in major WM volumes of interest to objectively measure the degree of WM maturation. RESULTS No significant differences were detected in the perinatal risk characteristics, neurobehavioral outcome, and PSI at 1 year between infants with different DEHSI classifications. In infants with DEHSI, increased axial and radial diffusivities were detected in the optic radiations, centrum semiovale, and posterior limb of the internal capsule, indicating less advanced maturation of the WM. Significant correlations were detected between the time interval from birth to MRI and the WM microstructure in infants without DEHSI. CONCLUSION DEHSI in premature infants is neither a predictive measure for short-term adverse neurobehavioral outcome nor related to perinatal risk characteristics. Extrauterine exposure time had a differential effect on WM maturational trajectories in infants with DEHSI compared to those without. We suggest DEHSI may represent an alteration in WM maturational characteristics. Further follow-up studies may verify later consequences of DEHSI in premature infants.
Collapse
Affiliation(s)
- Yael Leitner
- Child Development Centre, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Centre, Weizman 6, 64239, Tel Aviv, Israel,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fairchild KD, Sinkin RA, Davalian F, Blackman AE, Swanson JR, Matsumoto JA, Lake DE, Moorman JR, Blackman JA. Abnormal heart rate characteristics are associated with abnormal neuroimaging and outcomes in extremely low birth weight infants. J Perinatol 2014; 34:375-9. [PMID: 24556979 PMCID: PMC11019753 DOI: 10.1038/jp.2014.18] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/27/2013] [Accepted: 01/13/2014] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Brain injury in preterm infants may lead to an inflammatory response and central nervous system dysfunction reflected by abnormal heart rate characteristics (HRC). We hypothesized that a continuously monitored HRC index reflecting reduced HR variability and decelerations correlates with abnormal neuroimaging and outcomes in extremely low birth weight infants (ELBW). STUDY DESIGN We analyzed the average HRC index within 28 days after birth (aHRC28) and head ultrasound (HUS) in 384 ELBW infants. In 50 infants with brain magnetic resonance imaging (MRI) and 70 infants with Bayley neurodevelopmental testing at 1 year of age, we analyzed the relationship between aHRC28, MRI abnormalities and low Bayley scores. RESULT aHRC28 was higher in infants with severe HUS abnormalities (2.65±1.27 for Grade III-IV intraventricular hemorrhage (IVH) or cystic periventricular leukomalacia (cPVL) versus 1.72±0.95 for normal or Grade I-II IVH, P<0.001). Higher aHRC28 was also associated with white matter damage on MRI and death or Bayley motor or mental developmental index <70. Associations persisted after adjusting for gestational age, birth weight and septicemia. For every one point increase in aHRC28, the odds ratio of death or Bayley score <70 was 2.45 (95% CI 1.46, 4.05, P<0.001). CONCLUSION A continuously monitored HRC index provides an objective, noninvasive measure associated with abnormal brain imaging and adverse neurologic outcomes in ELBW infants.
Collapse
Affiliation(s)
- KD Fairchild
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - RA Sinkin
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - F Davalian
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - AE Blackman
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - JR Swanson
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - JA Matsumoto
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - DE Lake
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - JR Moorman
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - JA Blackman
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
39
|
Nevalainen P, Lauronen L, Pihko E. Development of Human Somatosensory Cortical Functions - What have We Learned from Magnetoencephalography: A Review. Front Hum Neurosci 2014; 8:158. [PMID: 24672468 PMCID: PMC3955943 DOI: 10.3389/fnhum.2014.00158] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/03/2014] [Indexed: 01/01/2023] Open
Abstract
The mysteries of early development of cortical processing in humans have started to unravel with the help of new non-invasive brain research tools like multichannel magnetoencephalography (MEG). In this review, we evaluate, within a wider neuroscientific and clinical context, the value of MEG in studying normal and disturbed functional development of the human somatosensory system. The combination of excellent temporal resolution and good localization accuracy provided by MEG has, in the case of somatosensory studies, enabled the differentiation of activation patterns from the newborn’s primary (SI) and secondary somatosensory (SII) areas. Furthermore, MEG has shown that the functioning of both SI and SII in newborns has particular immature features in comparison with adults. In extremely preterm infants, the neonatal MEG response from SII also seems to potentially predict developmental outcome: those lacking SII responses at term show worse motor performance at age 2 years than those with normal SII responses at term. In older children with unilateral early brain lesions, bilateral alterations in somatosensory cortical activation detected in MEG imply that the impact of a localized insult may have an unexpectedly wide effect on cortical somatosensory networks. The achievements over the last decade show that MEG provides a unique approach for studying the development of the somatosensory system and its disturbances in childhood. MEG well complements other neuroimaging methods in studies of cortical processes in the developing brain.
Collapse
Affiliation(s)
- Päivi Nevalainen
- BioMag Laboratory, Hospital District of Helsinki and Uusimaa, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland ; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Leena Lauronen
- BioMag Laboratory, Hospital District of Helsinki and Uusimaa, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland ; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Elina Pihko
- Brain Research Unit, O.V. Lounasmaa Laboratory, Aalto University School of Science , Espoo , Finland
| |
Collapse
|
40
|
Back SA. Cerebral white and gray matter injury in newborns: new insights into pathophysiology and management. Clin Perinatol 2014; 41:1-24. [PMID: 24524444 PMCID: PMC3947650 DOI: 10.1016/j.clp.2013.11.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Increasing numbers of preterm neonates survive with motor and cognitive disabilities related to less destructive forms of cerebral injury that still result in reduced cerebral growth. White matter injury results in myelination disturbances related to aberrant responses to death of pre-myelinating oligodendrocytes (preOLs). PreOLs are rapidly regenerated but fail to mature to myelinating cells. Although immature projection neurons are more resistant to hypoxia-ischemia than preOLs, they display widespread disturbances in dendritic arbor maturation, which provides an explanation for impaired cerebral growth. Thus, large numbers of cells fail to fully mature during a critical window in development of neural circuitry. These recently recognized forms of cerebral gray and white matter dysmaturation suggest new therapeutic directions centered on reversal of the processes that promote dysmaturation.
Collapse
Affiliation(s)
- Stephen A. Back
- Professor of Pediatrics and Neurology Oregon Health & Science University Clyde and Elda Munson Professor of Pediatric Research Director, Neuroscience Section, Pape' Family Pediatric Research Institute
| |
Collapse
|
41
|
Abstract
Magnetic resonance imaging (MRI) is a safe and high-resolution neuroimaging modality that is increasingly used in the neonatal population to assess brain injury and its consequences on brain development. It is superior to cranial ultrasound for the definition of patterns of both white and gray matter maturation and injury and therefore has the potential to provide prognostic information on the neurodevelopmental outcomes of the preterm population. Furthermore, the development of sophisticated MRI strategies, including diffusion tensor imaging, resting state functional connectivity, and magnetic resonance spectroscopy, may increase the prognostic value, helping to guide parental counseling and allocate early intervention services.
Collapse
|
42
|
Oishi K, Faria AV, Yoshida S, Chang L, Mori S. Reprint of "Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging". Int J Dev Neurosci 2014; 32:28-40. [PMID: 24295553 PMCID: PMC4696018 DOI: 10.1016/j.ijdevneu.2013.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 01/18/2023] Open
Abstract
The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a "growth percentile chart," which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future directions include multimodal image analysis and personalization for clinical application.
Collapse
Affiliation(s)
- Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andreia V Faria
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shoko Yoshida
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Chang
- Neuroscience and Magnetic Resonance Research Program, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
43
|
Pannek K, Scheck SM, Colditz PB, Boyd RN, Rose SE. Magnetic resonance diffusion tractography of the preterm infant brain: a systematic review. Dev Med Child Neurol 2014; 56:113-24. [PMID: 24102176 DOI: 10.1111/dmcn.12250] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2013] [Indexed: 12/13/2022]
Abstract
AIM Preterm birth is associated with an increased risk of adverse neurodevelopmental outcomes. Diffusion magnetic resonance imaging (dMRI) combined with tractography can be used to assess non-invasively white matter microstructure and brain development in preterm infants. Our aim was to conduct a systematic review of the current evidence obtained from tractography studies of preterm infants in whom MRI was performed up to term-equivalent age. METHOD Databases were searched for dMRI tractography studies of preterm infants. RESULTS Twenty-two studies were assessed. The most frequently assessed tracts included the corticospinal tract, the corpus callosum, and the optic radiations. The superior longitudinal fasciculus, and the anterior and superior thalamic radiations were investigated less frequently. A clear relationship exists between diffusion metrics and postmenstrual age at the time of scanning, although the evidence of an effect of gestational age at birth and white matter injury is conflicting. Sex and laterality may play an important role in the relationship between diffusion metrics, early clinical assessment, and outcomes. INTERPRETATION Studies involving infants of all gestational ages are required to elucidate the relationship between gestational age and diffusion metrics, and to establish the utility of tractography as a predictive tool. There is a need for more robust acquisition and analysis methods to improve the accuracy of assessing development of white matter pathways.
Collapse
Affiliation(s)
- Kerstin Pannek
- School of Medicine, The University of Queensland, Brisbane, Qld;, Australia
| | | | | | | | | |
Collapse
|
44
|
Miao X, Qi M, Cui S, Guan Y, Jia Z, Hong X, Jiang Y. Assessing sequence and relationship of regional maturation in corpus callosum and internal capsule in preterm and term newborns by diffusion-tensor imaging. Int J Dev Neurosci 2014; 34:42-7. [PMID: 24480665 DOI: 10.1016/j.ijdevneu.2014.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/23/2013] [Accepted: 01/18/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Diffusion-tensor imaging (DTI) can be used to investigate water diffusion in living tissue. OBJECTIVE To investigate sequence and relationship of regional maturation in corpus callosum (CC) and internal capsule (IC) in preterm and term. METHODS DTI was performed on 11 preterm infants at less than 37 weeks of corrected gestational age (group I), 21 preterm infants at equivalent-term (group II), 11 term infants during neonatal period (group III). Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in: anterior limb of IC (ALIC), posterior limb of IC (PLIC), genu and splenium of CC. RESULTS FA in splenium was more than that in other regions except genu of group I. Differences of FA between genu and PLIC were significant only in group III. ADC in genu was more than that in other regions but in splenium of groups I and II. Differences of ADC between splenium and ALIC were insignificant except group II. Higher FA and lower ADC in PLIC were gotten compared with those in ALIC. Correlations of FA and of ADC existed in CC and IC. CONCLUSION Maturation sequence was splenium followed by genu, then by PLIC and last by ALIC in term at neonatal period. Genu's maturation in preterm at equivalent-term was hindered. Regional maturation's correlations existed in CC and IC.
Collapse
Affiliation(s)
- XiaoLin Miao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - Min Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - ShuDong Cui
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China.
| | - YaFei Guan
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - ZhenYu Jia
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - XunNing Hong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - YanNi Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| |
Collapse
|
45
|
Scheinost D, Lacadie C, Vohr BR, Schneider KC, Papademetris X, Constable RT, Ment LR. Cerebral Lateralization is Protective in the Very Prematurely Born. Cereb Cortex 2014; 25:1858-66. [PMID: 24451659 DOI: 10.1093/cercor/bht430] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Individuals born prematurely are at risk for developmental delay, and converging data suggest alterations in neural networks in the developing preterm brain. Nevertheless, those critical period processes such as cerebral lateralization that underlie these findings remain largely unexplored. To test the hypothesis that preterm birth alters the fundamental program of corticogenesis in the developing brain, we interrogated cerebral lateralization at rest in very prematurely born participants and term controls at young adulthood. Employing a novel, voxel-based measure of functional connectivity, these data demonstrate for the first time that cerebral lateralization of functional connectivity in right hemisphere language homologs is altered for very preterm participants. Very preterm participants with no evidence for severe brain injury exhibited a significant decrease in right hemisphere lateralization in the right parietal and temporal lobes in this data driven analysis. Further, for the very preterm participants, but not the term participants, these fundamental alterations in the cerebral lateralization for language significantly correlate with language scores. These findings provide evidence that cerebral asymmetry is both plastic and experiential, and suggest the need for further study of underlying environmental factors responsible for these changes.
Collapse
Affiliation(s)
| | | | - Betty R Vohr
- Department of Pediatrics, Warren Alpert Brown Medical School, Providence, RI, USA
| | | | | | - R Todd Constable
- Department of Diagnostic Radiology Department of Biomedical Engineering Department of Neurosurgery
| | - Laura R Ment
- Department of Pediatrics Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
46
|
Clark CAC, Fang H, Espy KA, Filipek PA, Juranek J, Bangert B, Hack M, Taylor HG. Relation of neural structure to persistently low academic achievement: a longitudinal study of children with differing birth weights. Neuropsychology 2013; 27:364-377. [PMID: 23688218 DOI: 10.1037/a0032273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE This study examined the relation of cerebral tissue reductions associated with VLBW to patterns of growth in core academic domains. METHOD Children born <750 g, 750 to 1,499 g, or >2,500 g completed measures of calculation, mathematical problem solving, and word decoding at time points spanning middle childhood and adolescence. K. A. Espy, H. Fang, D. Charak, N. M. Minich, and H. G. Taylor (2009, Growth mixture modeling of academic achievement in children of varying birth weight risk, Neuropsychology, Vol. 23, pp. 460-474) used growth mixture modeling to identify two growth trajectories (clusters) for each academic domain: an average achievement trajectory and a persistently low trajectory. In this study, 97 of the same participants underwent magnetic resonance imaging (MRI) in late adolescence, and cerebral tissue volumes were used to predict the probability of low growth cluster membership for each domain. RESULTS Adjusting for whole brain volume (wbv), each 1-cm(3) reduction in caudate volume was associated with a 1.7- to 2.1-fold increase in the odds of low cluster membership for each domain. Each 1-mm(2) decrease in corpus callosum surface area increased these odds approximately 1.02-fold. Reduced cerebellar white matter volume was associated specifically with low calculation and decoding growth, and reduced cerebral white matter volume was associated with low calculation growth. Findings were similar when analyses were confined to the VLBW groups. CONCLUSIONS Reduced volume of structures involved in connectivity, executive attention, and motor control may contribute to heterogeneous academic trajectories among children with VLBW.
Collapse
Affiliation(s)
| | - Hua Fang
- Department of Quantitative Health Sciences, University of Massachusetts Medical School
| | | | - Pauline A Filipek
- Department of Pediatrics, University of Texas Health Sciences Center at Houston
| | - Jenifer Juranek
- Department of Pediatrics, University of Texas Health Sciences Center at Houston
| | - Barbara Bangert
- Departments of Pediatrics and Radiology, Case Western Reserve University
| | - Maureen Hack
- Departments of Pediatrics and Radiology, Case Western Reserve University
| | - H Gerry Taylor
- Departments of Pediatrics and Radiology, Case Western Reserve University
| |
Collapse
|
47
|
Crapnell TL, Rogers CE, Neil JJ, Inder TE, Woodward LJ, Pineda RG. Factors associated with feeding difficulties in the very preterm infant. Acta Paediatr 2013; 102:e539-45. [PMID: 23952198 DOI: 10.1111/apa.12393] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 08/12/2013] [Indexed: 12/01/2022]
Abstract
AIM To investigate early medical and family factors associated with later feeding risk in preterm infants. METHODS For this longitudinal study, 136 infants born ≤30 weeks gestation were enrolled. Medical and social background factors were assessed at term equivalent age. Infants underwent magnetic resonance imaging, neurobehavioral evaluation and feeding assessment. Parent involvement in the neonatal intensive care unit was tracked, and maternal mental health was assessed at neonatal intensive care unit discharge. At age 2 years, feeding outcome was assessed using the Eating Subscale of the Infant-Toddler Social Emotional Assessment (n = 80). Associations between feeding problems at age 2 years and (i) early medical factors, (ii) neurobehavioral functioning and feeding at term equivalent age, (iii) cerebral structure and (iv) maternal mental health were investigated using regression. RESULTS Eighteen (23%) children had feeding problems at age 2 years. Feeding problems were associated with early hypotonia (p = 0.03; β = 0.29) and lower socio-economic status (p = 0.046; β = -0.22). No associations were observed between early medical factors, early feeding performance, cerebral structure alterations or maternal well-being and feeding outcome. CONCLUSION Early hypotonia may disrupt the development of oral-motor skills. Hypotonia and poor feeding also may share a common aetiology. Associations with lower socio-economic status highlight the potential influence of family background factors in feeding problems in the preterm infant.
Collapse
Affiliation(s)
- TL Crapnell
- Program in Occupational Therapy; Washington University School of Medicine; St. Louis MO USA
| | - CE Rogers
- Department of Psychiatry; Washington University School of Medicine; St. Louis MO USA
- Department of Pediatrics; Washington University School of Medicine; St. Louis MO USA
| | - JJ Neil
- Department of Pediatrics; Washington University School of Medicine; St. Louis MO USA
- Department of Neurology; Washington University School of Medicine; St. Louis MO USA
- Department of Radiology; Washington University School of Medicine; St. Louis MO USA
| | - TE Inder
- Department of Pediatrics; Washington University School of Medicine; St. Louis MO USA
- Department of Neurology; Washington University School of Medicine; St. Louis MO USA
- Department of Radiology; Washington University School of Medicine; St. Louis MO USA
| | - LJ Woodward
- Department of Pediatrics; Washington University School of Medicine; St. Louis MO USA
- Department of Psychology; Washington University School of Medicine; St. Louis MO USA
| | - RG Pineda
- Program in Occupational Therapy; Washington University School of Medicine; St. Louis MO USA
- Department of Pediatrics; Washington University School of Medicine; St. Louis MO USA
| |
Collapse
|
48
|
Preterm cerebellum at term age: ultrasound measurements are not different from infants born at term. Pediatr Res 2013; 74:698-704. [PMID: 24002327 DOI: 10.1038/pr.2013.154] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/18/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND Reduced supratentorial brain growth has been shown in preterm-born infants at term-equivalent age (TEA), but cerebellar growth may be preserved in the absence of supratentorial injury. Our study aims to compare cerebellar size assessed using cerebral ultrasound (cUS) at TEA between preterm infants and term-born controls. METHODS Cerebellar dimensions (including transverse cerebellar diameter (TCD), cerebellar vermis height, anteroposterior vermis diameter (APVD), and cerebellar vermis area (CVA)) were measured using Image Arena software (TomTec Imaging Systems, Unterschleissheim, Germany) in 71 infants <32-wk gestation without significant scan abnormality at TEA and in 58 term-born control infants. Intra- and interobserver agreement were evaluated. RESULTS In comparison with controls, preterms at TEA had smaller TCDs (4.9 vs. 5.2 cm; P < 0.001) but larger CVAs (4.7 vs. 4.3 cm(2); P < 0.005) and APVDs (2.4 vs. 2.2 cm; P < 0.001); however, these differences were no longer seen after accounting for head shape. In <28-wk gestational age infants, CVA was statistically similar to controls, as were for small-for-gestational-age infants. CONCLUSION Our data support neonatal sparing of preterm cerebellar growth that is measureable using cUS, and this includes the most immature and small-for-gestational-age infants. We suggest cUS can be used to assess cerebellar size at TEA, with measures of both width and height being taken into account, and thus may be a useful tool for detecting infants with poorer cerebellar growth who are at increased risk of disability.
Collapse
|
49
|
Zarem CS, Kidokoro H, Neil J, Wallendorf M, Inder T, Pineda R. Psychometrics of the neonatal oral motor assessment scale. Dev Med Child Neurol 2013; 55:1115-20. [PMID: 23869958 PMCID: PMC3830735 DOI: 10.1111/dmcn.12202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2013] [Indexed: 11/29/2022]
Abstract
AIM To establish the psychometrics of the Neonatal Oral Motor Assessment Scale (NOMAS). METHOD In this prospective cohort study of 75 preterm infants (39 females, 36 males) born at or before 30 weeks gestation (mean gestational age 26.56 wks, SD 1.90, range 23-30 wks; mean birthweight 967.33 g, SD 288.54, range 480-2240), oral feeding was videotaped before discharge from the neonatal intensive care unit (NICU). The NOMAS was used to classify feeding as normal, disorganized, or dysfunctional. Neurobehavior was assessed at term equivalent, and infants underwent magnetic resonance imaging. Children returned for developmental testing at 2 years corrected age. Associations between NOMAS scores and (1) neurobehavior; (2) cerebral injury and metrics; and (3) developmental outcome were investigated using χ(2) -analyses, t-tests, and linear regression. For reliability, six certified NOMAS evaluators rated five randomly selected NOMAS recordings and re-scored them 2 weeks later in a second randomized order. Reliability was calculated with Cohen's kappa statistics. RESULTS Dysfunctional NOMAS scores were associated with lower Dubowitz scores [t=-2.14; mean difference -2.32 (95% confidence interval [CI] -0.157 to -4.49); p=0.036], higher stress on the NICU Network Neurobehavioral Scale (t=2.61; mean difference 0.073 [95% CI 0.017-0.129]; p=0.0110), and decreased transcerebellar diameter (t=-2.22; mean difference -2.04 [CI=-3.89 to -0.203]; p=0.03). No significant associations were found between NOMAS scores and 2-year outcome. INTERPRETATION Some concurrent validity was established with associations between NOMAS scores and measures of infant behavior and cerebral structure. The NOMAS did not show predictive validity in this study of preterm infants at high risk of developmental delay. Reliability was variable and suboptimal.
Collapse
Affiliation(s)
- Cori S Zarem
- Program in Occupational Therapy, Washington University School of Medicine, St Louis, Missouri, USA
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jeffrey Neil
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA,Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA,Department of Radiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael Wallendorf
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Terrie Inder
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA,Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA,Department of Radiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Roberta Pineda
- Program in Occupational Therapy, Washington University School of Medicine, St Louis, Missouri, USA,Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
50
|
Oishi K, Faria AV, Yoshida S, Chang L, Mori S. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging. Int J Dev Neurosci 2013; 31:512-24. [PMID: 23796902 PMCID: PMC3830705 DOI: 10.1016/j.ijdevneu.2013.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 01/18/2023] Open
Abstract
The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a "growth percentile chart," which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future directions include multimodal image analysis and personalization for clinical application.
Collapse
Affiliation(s)
- Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|