1
|
Karimi Jirandehi A, Asgari R, Keshavarz Shahbaz S, Rezaei N. Nanomedicine marvels: crafting the future of cancer therapy with innovative statin nano-formulation strategies. NANOSCALE ADVANCES 2024:d4na00808a. [PMID: 39478996 PMCID: PMC11515941 DOI: 10.1039/d4na00808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024]
Abstract
Statins, traditionally used for managing hyperlipidemia and cardiovascular diseases, have garnered significant interest for their potential anti-cancer properties. Research indicates that statins can inhibit critical processes in cancer development, such as apoptosis, angiogenesis, and metastasis. Despite their promising anti-cancer effects, the clinical application of statins in oncology has been hampered by their inherent low solubility and bioavailability. These pharmacokinetic challenges can be effectively addressed through the use of nano-based drug delivery systems. Nano-formulations enhance the delivery and therapeutic efficacy of statins by improving their solubility, stability, and targeting ability, thus maximizing their concentration within the tumor microenvironment and minimizing systemic side effects. This review delves into the potential of nanoparticles as carriers for statins in cancer therapy. It explores the mechanisms by which statins exert their anti-cancer effects, such as through the inhibition of the mevalonate pathway, modulation of immune responses, and induction of apoptosis. Furthermore, the review examines the development of various statin-loaded nano-formulations, highlighting their advantages over conventional formulations. The novelty of this review lies in its focus on recent advancements in nanoformulations that enhance statin delivery to the tumor microenvironment. By discussing the current advancements and prospects of statin nano-formulations, this review aims to provide a comprehensive understanding of how these innovative strategies can improve cancer treatment outcomes and enhance the quality of life for patients. The integration of nanotechnology with statin therapy offers a novel approach to overcoming existing therapeutic limitations and paving the way for more effective and safer cancer treatments.
Collapse
Affiliation(s)
- Ashkan Karimi Jirandehi
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Reza Asgari
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Noncommunicable Disease, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science Tehran Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN) Tehran Iran
| |
Collapse
|
2
|
Xu M, Li P, Wei J, Yan P, Zhang Y, Guo X, Liu C, Yang X. Progress of fluorescence imaging in lymph node dissection surgery for prostate and bladder cancer. Front Oncol 2024; 14:1395284. [PMID: 39429471 PMCID: PMC11486700 DOI: 10.3389/fonc.2024.1395284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Fluorescence imaging is a relatively new imaging method used to visualize different tissue structures to help guide intraoperative operations, which has potential advantages with high sensitivity and contrast compared to conventional imaging. In this work, we review fluorescent contrast agents and devices used for lymphatic system imaging. Indocyanine green is the most widely utilized due to its high sensitivity, specificity, low background fluorescence, and safety profile. In prostate and bladder cancer lymph node dissection, the complex lymphatic drainage can result in missed metastatic nodes and extensive dissection increases the risk of complications like lymphocele, presenting a significant challenge for urologists. Fluorescence-guided sentinel lymph node dissection facilitates precise tumor staging. The combination of fluorescence and radiographic imaging improves the accuracy of lymph node staging. Multimodal imaging presents new potential for precisely identifying metastatic pelvic lymph nodes.
Collapse
Affiliation(s)
- Mingquan Xu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, ;China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, ;China
| | - Panpan Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, ;China
| | - Jinzheng Wei
- Department of Orthopedics, First Hospital of Shanxi Medical University, Taiyuan, ;China
| | - Pengyu Yan
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, ;China
| | - Yunmeng Zhang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, ;China
| | - Xinyu Guo
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, ;China
| | - Chao Liu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, ;China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, ;China
| | - Xiaofeng Yang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, ;China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, ;China
| |
Collapse
|
3
|
Maatman IT, Schulz J, Ypma S, Block KT, Schmitter S, Hermans JJ, Smit EJ, Maas MC, Scheenen TWJ. Free-breathing high-resolution respiratory-gated radial stack-of-stars magnetic resonance imaging of the upper abdomen at 7 T. NMR IN BIOMEDICINE 2024; 37:e5180. [PMID: 38775032 DOI: 10.1002/nbm.5180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 10/12/2024]
Abstract
Ultrahigh field magnetic resonance imaging (MRI) (≥ 7 T) has the potential to provide superior spatial resolution and unique image contrast. Apart from radiofrequency transmit inhomogeneities in the body at this field strength, imaging of the upper abdomen faces additional challenges associated with motion-induced ghosting artifacts. To address these challenges, the goal of this work was to develop a technique for high-resolution free-breathing upper abdominal MRI at 7 T with a large field of view. Free-breathing 3D gradient-recalled echo (GRE) water-excited radial stack-of-stars data were acquired in seven healthy volunteers (five males/two females, body mass index: 19.6-24.8 kg/m2) at 7 T using an eight-channel transceive array coil. Two volunteers were also examined at 3 T. In each volunteer, the liver and kidney regions were scanned in two separate acquisitions. To homogenize signal excitation, the time-interleaved acquisition of modes (TIAMO) method was used with personalized pairs of B1 shims, based on a 23-s Cartesian fast low angle shot (FLASH) acquisition. Utilizing free-induction decay navigator signals, respiratory-gated images were reconstructed at a spatial resolution of 0.8 × 0.8 × 1.0 mm3. Two experienced radiologists rated the image quality and the impact of B1 inhomogeneity and motion-related artifacts on multipoint scales. The images of all volunteers showcased effective water excitation and were accurately corrected for respiratory motion. The impact of B1 inhomogeneity on image quality was minimal, underscoring the efficacy of the multitransmit TIAMO shim. The high spatial resolution allowed excellent depiction of small structures such as the adrenal glands, the proximal ureter, the diaphragm, and small blood vessels, although some streaking artifacts persisted in liver image data. In direct comparisons with 3 T performed for two volunteers, 7-T acquisitions demonstrated increases in signal-to-noise ratio of 77% and 58%. Overall, this work demonstrates the feasibility of free-breathing MRI in the upper abdomen at submillimeter spatial resolution at a magnetic field strength of 7 T.
Collapse
Affiliation(s)
- Ivo T Maatman
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jenni Schulz
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
- Erwin L Hahn Institute for MR Imaging, Essen, Germany
| | - Sjoerd Ypma
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kai Tobias Block
- Department of Radiology, NYU Langone Health, New York, New York, USA
| | | | - John J Hermans
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ewoud J Smit
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marnix C Maas
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
- Erwin L Hahn Institute for MR Imaging, Essen, Germany
| |
Collapse
|
4
|
Blasiak B, MacDonald D, Jasiński K, Cheng FY, Tomanek B. Application of H 2N-Fe 3O 4 Nanoparticles for Prostate Cancer Magnetic Resonance Imaging in an Animal Model. Int J Mol Sci 2024; 25:10334. [PMID: 39408664 PMCID: PMC11477031 DOI: 10.3390/ijms251910334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This paper presents the efficacy of a contrast agent based on H2N-Fe3O4 nanoparticles for the detection of prostate cancer in an animal model using a preclinical 9.4 T MRI system. The relaxivities r1 and r2 of the nanoparticles were 6.31 mM-1s-1 and 8.33 mM-1s-1, respectively. Nanoparticles injected in a concentration of 2 mg Fe/mL decreased the tumor-relative T1 relaxation across all animals from 100 to 76 ± 26, 85 ± 27, 89 ± 20, and 97 ± 16 12 min 1 h, 2 h, and 24 h post injection, respectively. The corresponding T1 decrease in muscle tissues was 90 ± 20, 94 ± 23, 99 ± 12, and 99 ± 14. The relative T2 changes in the tumor were 82 ± 17, 89 ± 19, 97 ± 14, and 99 ± 8 12 min, 1 h, 2 h, and 24 h post injection, respectively, while, for muscle tissues, these values were 95 ± 11, 95 ± 8, 97 ± 6, and 95 ± 10 at the corresponding time points. The differences in the relative T1 and T2 were only significant 12 min after injection (p < 0.05), although a decrease was visible at each time point, but it was statistically insignificant (p > 0.05). The results showed the potential application of H2N-Fe3O4 nanoparticles as contrast agents for enhanced prostate cancer MRI.
Collapse
Affiliation(s)
- Barbara Blasiak
- The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (D.M.); (K.J.); (B.T.)
| | - David MacDonald
- The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (D.M.); (K.J.); (B.T.)
| | - Krzysztof Jasiński
- The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (D.M.); (K.J.); (B.T.)
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Boguslaw Tomanek
- The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (D.M.); (K.J.); (B.T.)
- Division of Medical Physics, Department of Oncology, University of Alberta, 8303 112 St. NW, Edmonton, AB T6G 2T4, Canada
| |
Collapse
|
5
|
Xie M, Meng F, Wang P, Díaz-García AM, Parkhats M, Santos-Oliveira R, Asim MH, Bostan N, Gu H, Yang L, Li Q, Yang Z, Lai H, Cai Y. Surface Engineering of Magnetic Iron Oxide Nanoparticles for Breast Cancer Diagnostics and Drug Delivery. Int J Nanomedicine 2024; 19:8437-8461. [PMID: 39170101 PMCID: PMC11338174 DOI: 10.2147/ijn.s477652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Data published in 2020 by the International Agency for Research on Cancer (IARC) of the World Health Organization show that breast cancer (BC) has become the most common cancer globally, affecting more than 2 million women each year. The complex tumor microenvironment, drug resistance, metastasis, and poor prognosis constitute the primary challenges in the current diagnosis and treatment of BC. Magnetic iron oxide nanoparticles (MIONPs) have emerged as a promising nanoplatform for diagnostic tumor imaging as well as therapeutic drug-targeted delivery due to their unique physicochemical properties. The extensive surface engineering has given rise to multifunctionalized MIONPs. In this review, the latest advancements in surface modification strategies of MIONPs over the past five years are summarized and categorized as constrast agents and drug delivery platforms. Additionally, the remaining challenges and future prospects of MIONPs-based targeted delivery are discussed.
Collapse
Affiliation(s)
- Mengjie Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Laboratory of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528400, People’s Republic of China
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | | | - Marina Parkhats
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, RJ, 21941906, Brazil
| | | | - Nazish Bostan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Honghui Gu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Lina Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Qi Li
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528400, People’s Republic of China
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Laboratory of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| |
Collapse
|
6
|
Rodríguez-López KI, Salazar-Castillo M, Lino-Silva LS, Galán-Ramírez Á, Rivera-Moncada LF, López-Jiménez EA, Zepeda-Najar C. Does the Presence of Matted Nodes in Colon Adenocarcinoma Influence 5-Year Overall Survival? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1194. [PMID: 39202476 PMCID: PMC11356522 DOI: 10.3390/medicina60081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Colon cancer (CC) is prevalent globally, constituting 11.9% of cases in Mexico. Lymph node metastases are established prognostic indicators, with extracapsular lymph node extension (ENE) playing a crucial role in modifying prognosis. While ENE is associated with adverse factors, certain aspects, like matted nodes (lymph node conglomerates), are underexplored. Matted nodes, clusters of lymph nodes infiltrated by cancer cells, are recognized as an independent prognostic factor in other cancers. This study investigates the prognostic implications of matted nodes in CC. Materials and Methods: From a retrospective analysis of 502 CC consecutive cases treated with colectomy (2005-2018), we identified 255 (50.8%) cases with lymph node metastasis (our study group), which were categorized into two groups: (1) lymph node metastasis alone (n = 208), and (2) lymph node metastasis with matted nodes (n = 47). A comparative survival analysis was performed. Results: Of the 255 patients, 38% had lymph node metastasis. Patients with matted nodes (18.4%) showed an association with higher pN stage and lymphovascular invasion. The 5-year survival rate for patients with matted nodes was 47.7%, compared to 60% without (p = 0.096); however, this association demonstrated only a statistical tendency. Multivariate analysis identified clinical stage and adjuvant chemotherapy use as independent factors contributing to survival. Conclusions: This study underscores matted nodes as potential prognostic indicators in CC, emphasizing their association with higher pN stage and reduced survival. Although the patients with matted nodes showed lower survival, this figure did not search statistical significance, but a tendency was detected, which necessitates precise further research, which is essential for validating these findings and integrating matted nodes into the broader context of colorectal cancer management.
Collapse
Affiliation(s)
- Karla I. Rodríguez-López
- Surgical Pathology, National Cancer Institute (Mexico), Tlalpan 14080, Mexico City, Mexico; (K.I.R.-L.); (M.S.-C.); (Á.G.-R.); (L.F.R.-M.)
- AFINES Program, Medicine Faculty, National Autonomus Universiti of Mexico (UNAM), Coyoacán 04510, Mexico City, Mexico;
| | - Mariana Salazar-Castillo
- Surgical Pathology, National Cancer Institute (Mexico), Tlalpan 14080, Mexico City, Mexico; (K.I.R.-L.); (M.S.-C.); (Á.G.-R.); (L.F.R.-M.)
| | - Leonardo S. Lino-Silva
- Surgical Pathology, National Cancer Institute (Mexico), Tlalpan 14080, Mexico City, Mexico; (K.I.R.-L.); (M.S.-C.); (Á.G.-R.); (L.F.R.-M.)
| | - Ángeles Galán-Ramírez
- Surgical Pathology, National Cancer Institute (Mexico), Tlalpan 14080, Mexico City, Mexico; (K.I.R.-L.); (M.S.-C.); (Á.G.-R.); (L.F.R.-M.)
| | - Luisa F. Rivera-Moncada
- Surgical Pathology, National Cancer Institute (Mexico), Tlalpan 14080, Mexico City, Mexico; (K.I.R.-L.); (M.S.-C.); (Á.G.-R.); (L.F.R.-M.)
- AFINES Program, Medicine Faculty, National Autonomus Universiti of Mexico (UNAM), Coyoacán 04510, Mexico City, Mexico;
| | - Emiliano A. López-Jiménez
- AFINES Program, Medicine Faculty, National Autonomus Universiti of Mexico (UNAM), Coyoacán 04510, Mexico City, Mexico;
| | - César Zepeda-Najar
- Surgical Oncology, Ángeles Tijuana Hospital, Tijuana 22010, Baja California Norte, Mexico;
| |
Collapse
|
7
|
Bennett ZT, Huang G, Dellinger MT, Sumer BD, Gao J. Stepwise Ultra-pH-Sensitive Micelles Overcome a p Ka Barrier for Systemic Lymph Node Delivery. ACS NANO 2024; 18:16632-16647. [PMID: 38900677 DOI: 10.1021/acsnano.4c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
While local nanoparticle delivery to lymph nodes is well studied, there are few design criteria for intravenous delivery to the entire lymph node repertoire. In this study, we investigated the effect of NP pH transition on lymph node targeting by employing a series of ultra-pH-sensitive (UPS) polymeric micelles. The UPS library responds to pH thresholds (pKa 6.9, 6.2, and 5.3) over a range of physiological pH. We observed a dependence of intravenous lymph node targeting on micelle pH transition. UPS6.9 (subscript indicates pKa) shows poor lymph node delivery, while UPS5.3 delivers efficiently to lymph node sets. We investigated targeting mechanisms of UPS5.3, observing an accumulation among lymph node lymphatics and a dependence on lymph node-resident macrophages. To overcome the pH-threshold barrier, which limits UPS6.9, we rationally designed a nanoparticle coassembly of UPS6.9 with UPS5.3, called HyUPS. The HyUPS micelle retains the constitutive pH transitions of each polymer, showing stepwise responses to discrete pH thresholds. We demonstrate that HyUPS improves UPS6.9 delivery to lymph nodes, extending this platform for disease detection of lymph node metastasis.
Collapse
Affiliation(s)
- Zachary T Bennett
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Gang Huang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Michael T Dellinger
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Baran D Sumer
- Department of Otolaryngology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jinming Gao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Otolaryngology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
8
|
Tenbergen CJA, Fortuin AS, van Asten JJA, Veltien A, Philips BWJ, Hambrock T, Orzada S, Quick HH, Barentsz JO, Maas MC, Scheenen TWJ. The Potential of Iron Oxide Nanoparticle-Enhanced MRI at 7 T Compared With 3 T for Detecting Small Suspicious Lymph Nodes in Patients With Prostate Cancer. Invest Radiol 2024; 59:519-525. [PMID: 38157433 DOI: 10.1097/rli.0000000000001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Accurate detection of lymph node (LN) metastases in prostate cancer (PCa) is a challenging but crucial step for disease staging. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) enables distinction between healthy LNs and nodes suspicious for harboring metastases. When combined with MRI at an ultra-high magnetic field, an unprecedented spatial resolution can be exploited to visualize these LNs. PURPOSE The aim of this study was to explore USPIO-enhanced MRI at 7 T in comparison to 3 T for the detection of small suspicious LNs in the same cohort of patients with PCa. MATERIALS AND METHODS Twenty PCa patients with high-risk primary or recurrent disease were referred to our hospital for an investigational USPIO-enhanced 3 T MRI examination with ferumoxtran-10. With consent, they underwent a 7 T MRI on the same day. Three-dimensional anatomical and T2*-weighted images of both examinations were evaluated blinded, with an interval, by 2 readers who annotated LNs suspicious for metastases. Number, size, and level of suspicion (LoS) of LNs were paired within patients and compared between field strengths. RESULTS At 7 T, both readers annotated significantly more LNs compared with 3 T (474 and 284 vs 344 and 162), with 116 suspicious LNs on 7 T (range, 1-34 per patient) and 79 suspicious LNs on 3 T (range, 1-14 per patient) in 17 patients. For suspicious LNs, the median short axis diameter was 2.6 mm on 7 T (1.3-9.5 mm) and 2.8 mm for 3 T (1.7-10.4 mm, P = 0.05), with large overlap in short axis of annotated LNs between LoS groups. At 7 T, significantly more suspicious LNs had a short axis <2.5 mm compared with 3 T (44% vs 27%). Magnetic resonance imaging at 7 T provided better image quality and structure delineation and a higher LoS score for suspicious nodes. CONCLUSIONS In the same cohort of patients with PCa, more and more small LNs were detected on 7 T USPIO-enhanced MRI compared with 3 T MRI. Suspicious LNs are generally very small, and increased nodal size was not a good indication of suspicion for the presence of metastases. The high spatial resolution of USPIO-enhanced MRI at 7 T improves structure delineation and the visibility of very small suspicious LNs, potentially expanding the in vivo detection limits of pelvic LN metastases in PCa patients.
Collapse
Affiliation(s)
- Carlijn J A Tenbergen
- From the Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands (C.J.A.T., A.S.F., J.J.A.v.A., A.V., B.W.J.P., T.H., J.O.B., M.C.M., T.W.J.S.); Department of Radiology, Ziekenhuis Gelderse Vallei, Ede, the Netherlands (A.S.F.); Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany (S.O., H.H.Q., T.W.J.S.); High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany (S.O., H.H.Q.); and Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany (S.O.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Litjens G, Nakamoto A, Brosens LAA, Maas MC, Scheenen TWJ, Zámecnik P, van Geenen EJM, Prokop M, van Laarhoven KJHM, Hermans JJ. Ferumoxtran-10-enhanced MRI for pre-operative metastatic lymph node detection in pancreatic, duodenal, or periampullary adenocarcinoma. Eur Radiol 2024:10.1007/s00330-024-10838-w. [PMID: 38907886 DOI: 10.1007/s00330-024-10838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVES To assess 3-Tesla (3-T) ultra-small superparamagnetic iron oxide (USPIO)-enhanced MRI in detecting lymph node (LN) metastases for resectable adenocarcinomas of the pancreas, duodenum, or periampullary region in a node-to-node validation against histopathology. METHODS Twenty-seven consecutive patients with a resectable pancreatic, duodenal, or periampullary adenocarcinoma were enrolled in this prospective single expert centre study. Ferumoxtran-10-enhanced 3-T MRI was performed pre-surgery. LNs found on MRI were scored for suspicion of metastasis by two expert radiologists using a dedicated scoring system. Node-to-node matching from in vivo MRI to histopathology was performed using a post-operative ex vivo 7-T MRI of the resection specimen. Sensitivity and specificity were calculated using crosstabs. RESULTS Eighteen out of 27 patients (median age 65 years, 11 men) were included in the final analysis (pre-surgery withdrawal n = 4, not resected because of unexpected metastases peroperatively n = 2, and excluded because of inadequate contrast-agent uptake n = 3). On MRI 453 LNs with a median size of 4.0 mm were detected, of which 58 (13%) were classified as suspicious. At histopathology 385 LNs with a median size of 5.0 mm were found, of which 45 (12%) were metastatic. For 55 LNs node-to-node matching was possible. Analysis of these 55 matched LNs, resulted in a sensitivity and specificity of 83% (95% CI: 36-100%) and 92% (95% CI: 80-98%), respectively. CONCLUSION USPIO-enhanced MRI is a promising technique to preoperatively detect and localise LN metastases in patients with pancreatic, duodenal, or periampullary adenocarcinoma. CLINICAL RELEVANCE STATEMENT Detection of (distant) LN metastases with USPIO-enhanced MRI could be used to determine a personalised treatment strategy that could involve neoadjuvant or palliative chemotherapy, guided resection of distant LNs, or targeted radiotherapy. REGISTRATION The study was registered on clinicaltrials.gov NCT04311047. https://clinicaltrials.gov/ct2/show/NCT04311047?term=lymph+node&cond=Pancreatic+Cancer&cntry=NL&draw=2&rank=1 . KEY POINTS LN metastases of pancreatic, duodenal, or periampullary adenocarcinoma cannot be reliably detected with current imaging. This technique detected LN metastases with a sensitivity and specificity of 83% and 92%, respectively. MRI with ferumoxtran-10 is a promising technique to improve preoperative staging in these cancers.
Collapse
Affiliation(s)
- Geke Litjens
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Atsushi Nakamoto
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Lodewijk A A Brosens
- Department of Pathology, Radboud University Medical Center, Nijmegen, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marnix C Maas
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Patrik Zámecnik
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erwin J M van Geenen
- Department of Gastroenterology and Hepatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mathias Prokop
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kees J H M van Laarhoven
- Department of Surgery, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John J Hermans
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Schilham MGM, Somford DM, Veltien A, Zamecnik P, Barentsz JO, Sedelaar MJPM, Kusters-Vandevelde HVN, Gotthardt M, Rijpkema M, Scheenen TWJ. Subnodal Correspondence of PSMA Expression and USPIO-MRI in Metastatic Pelvic Lymph Nodes in Prostate Cancer. Invest Radiol 2024; 59:458-464. [PMID: 37975702 DOI: 10.1097/rli.0000000000001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
OBJECTIVES Two advanced imaging modalities used to detect lymph node (LN) metastases in prostate cancer patients are prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography and ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI). As these modalities use different targets, a subnodal comparison is needed to interpret both their correspondence and their differences. The aim of this explorative study was to compare ex vivo 111 In-PSMA μSPECT images with high-resolution 7 T USPIO μMR images and histopathology of resected LN specimens from prostate cancer patients to assess the degree of correspondence at subnodal level. MATERIALS AND METHODS Twenty primary prostate cancer patients who underwent pelvic LN dissection were included and received USPIO contrast and 111 In-PSMA. A total of 41 LNs of interest (LNOIs) were selected for ex vivo imaging based on γ-probe detection or palpation. μSPECT and μMRI acquisition were performed immediately after resection. Overlay of μSPECT images on MR images was performed, and the level of correspondence (LoC) between μSPECT and μMR findings was assessed according to a 4-point Likert classification scheme. RESULTS Forty-one LNOIs could be matched to an LN on ex vivo μMRI. Coregistration of μSPECT and USPIO-enhanced water-selective multigradient echo MR images was successful for all 41 LNOIs. Ninety percent of the lesions showed excellent correspondence regarding the presence of metastatic tissue and affected subnodal site (LoC 4; 37/41). In only 1 of 41 LNOIs, a small metastasis was misclassified by both techniques. Three LNOIs were classified as LoC 3 (7%) and 1 LNOI as LoC 2. All LoC 2 and LoC 3 lesions had PSMA-expressing metastases on final histopathology. CONCLUSIONS Coregistration of μSPECT and USPIO-μMRI showed excellent subnodal correspondence in the majority (90%) of LNs. Ex vivo imaging may thus help localize small cancer deposits within resected LNs and could contribute to improved interpretation of in vivo imaging of LNs.
Collapse
Affiliation(s)
- Melline Gabrielle Maria Schilham
- From the Department of Medical Imaging-Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (M.G.M.S., A.V., P.Z., J.O.B., M.G., M.R., T.W.J.S.); Prosper Prostate Cancer Clinics, Nijmegen/Eindhoven, the Netherlands (D.M.S., J.P.M.S.); Department of Urology, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands (D.M.S.); Andros Clinics, Medical Imaging, Arnhem, the Netherlands (J.O.B.); Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands (J.P.M.S.); and Department of Pathology, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands (H.V.N.K.-V.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Miao L, Kang Y, Zhang XF. Nanotechnology for the theranostic opportunity of breast cancer lung metastasis: recent advancements and future challenges. Front Bioeng Biotechnol 2024; 12:1410017. [PMID: 38882636 PMCID: PMC11176448 DOI: 10.3389/fbioe.2024.1410017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Lung metastasis of breast cancer is rapidly becoming a thorny problem in the treatment of patients with breast cancer and an obstacle to long-term survival. The main challenges of treatment are the absence of therapeutic targets and drug resistance, which promotes the development of nanotechnology in the diagnosis and treatment process. Taking advantage of the controllability and targeting of nanotechnology, drug-targeted delivery, controlled sustained release, multi-drug combination, improved drug efficacy, and reduced side effects can be realized in the process of the diagnosis and treatment of metastatic breast cancer (MBC). Several nanotechnology-based theranostic strategies have been investigated in breast cancer lung metastases (BCLM): targeted drug delivery, imaging analysis, immunotherapy, gene therapy, and multi-modality combined therapy, and some clinical applications are in the research phase. In this review, we present current nanotechnology-based diagnosis and treatment approaches for patients of incurable breast cancer with lung metastases, and we hope to be able to summarize more effective and promising nano-drug diagnosis and treatment systems that aim to improve the survival of patients with advanced MBC. We describe nanoplatform-based experimental studies and clinical trials targeting the tumor and the tumor microenvironment (TME) for BCLM to obtain more targeted treatment and in the future treatment steps for patients to provide a pioneering strategy.
Collapse
Affiliation(s)
- Lin Miao
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yue Kang
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xin Feng Zhang
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
12
|
Szczesniewski JJ, Tellez Fouz C, García Tello A, de la Rubia Marcos M, García Alonso MP, Llanes González L. Cost analysis of next-generation imaging in high-risk prostate cancer staging. Actas Urol Esp 2024; 48:328-334. [PMID: 38159802 DOI: 10.1016/j.acuroe.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION AND OBJECTIVE Next-generation imaging (NGI) tests, such as choline PET/CT and PSMA PET, have shown to increase sensitivity in the detection of nodal and metastatic disease in prostate cancer. However, their use implies an increase in diagnostic costs compared to conventional imaging (CI) tests such as CT and bone scan. The aim of our study was to determine which diagnostic pathway is more cost-effective in high-risk prostate cancer. MATERIAL AND METHOD Cost-effectiveness analysis of the available imaging tests (CI, Choline/PSMA PET) for the staging of high-risk prostate cancer. Sensitivity and specificity were estimated based on published evidence, and costs were collected from the Management Department. In order to carry out a cost-effectiveness analysis, five diagnostic pathways were proposed estimating the accurate diagnoses. RESULTS PSMA PET was the most accurate diagnostic option. The CI diagnostic workup was the most economical and CI+PSMA the most expensive. Analyzing the diagnostic cost-effectiveness ratio, CI+PSMA proved to be the most expensive (€5627.30 per correct diagnosis) followed by PET PSMA (€4987.11), choline (€4599.84) and CI (€4444.22). CONCLUSIONS PSMA PET is the most accurate strategy in staging distant disease in patients with high-risk prostate cancer. Radiotracer uptake tests such as CI have been shown to be the most cost-effective option, followed by choline and PSMA.
Collapse
Affiliation(s)
- J J Szczesniewski
- Servicio de Urología, Hospital Universitario de Getafe, Getafe, Madrid, Spain; Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - C Tellez Fouz
- Servicio de Urología, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - A García Tello
- Servicio de Urología, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - M de la Rubia Marcos
- Servicio de Medicina Nuclear, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - M P García Alonso
- Servicio de Medicina Nuclear, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - L Llanes González
- Servicio de Urología, Hospital Universitario de Getafe, Getafe, Madrid, Spain; Universidad Francisco de Vitoria, Madrid, Spain.
| |
Collapse
|
13
|
Hermosillo-Abundis C, Méndez-Rojas MA, Arias-Carrión O. Implications of environmental nanoparticles on neurodegeneration. J Neurosci Res 2024; 102:e25340. [PMID: 38745527 DOI: 10.1002/jnr.25340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
The ubiquity of nanoparticles, sourced from both natural environments and human activities, presents critical challenges for public health. While offering significant potential for innovative biomedical applications-especially in enhancing drug transport across the blood-brain barrier-these particles also introduce possible hazards due to inadvertent exposure. This concise review explores the paradoxical nature of nanoparticles, emphasizing their promising applications in healthcare juxtaposed with their potential neurotoxic consequences. Through a detailed examination, we delineate the pathways through which nanoparticles can reach the brain and the subsequent health implications. There is growing evidence of a disturbing association between nanoparticle exposure and the onset of neurodegenerative conditions, highlighting the imperative for comprehensive research and strategic interventions. Gaining a deep understanding of these mechanisms and enacting protective policies are crucial steps toward reducing the health threats of nanoparticles, thereby maximizing their therapeutic advantages.
Collapse
Affiliation(s)
| | - Miguel A Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla City, Mexico
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| |
Collapse
|
14
|
Chudobiński C, Świderski B, Antoniuk I, Kurek J. Enhancements in Radiological Detection of Metastatic Lymph Nodes Utilizing AI-Assisted Ultrasound Imaging Data and the Lymph Node Reporting and Data System Scale. Cancers (Basel) 2024; 16:1564. [PMID: 38672646 PMCID: PMC11048706 DOI: 10.3390/cancers16081564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The paper presents a novel approach for the automatic detection of neoplastic lesions in lymph nodes (LNs). It leverages the latest advances in machine learning (ML) with the LN Reporting and Data System (LN-RADS) scale. By integrating diverse datasets and network structures, the research investigates the effectiveness of ML algorithms in improving diagnostic accuracy and automation potential. Both Multinominal Logistic Regression (MLR)-integrated and fully connected neuron layers are included in the analysis. The methods were trained using three variants of combinations of histopathological data and LN-RADS scale labels to assess their utility. The findings demonstrate that the LN-RADS scale improves prediction accuracy. MLR integration is shown to achieve higher accuracy, while the fully connected neuron approach excels in AUC performance. All of the above suggests a possibility for significant improvement in the early detection and prognosis of cancer using AI techniques. The study underlines the importance of further exploration into combined datasets and network architectures, which could potentially lead to even greater improvements in the diagnostic process.
Collapse
Affiliation(s)
- Cezary Chudobiński
- Copernicus Regional Multi-Specialty Oncology and Trauma Centre, 93-513 Lódź, Poland;
| | - Bartosz Świderski
- Department of Artificial Intelligence, Institute of Information Technology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (B.Ś.); (I.A.)
| | - Izabella Antoniuk
- Department of Artificial Intelligence, Institute of Information Technology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (B.Ś.); (I.A.)
| | - Jarosław Kurek
- Department of Artificial Intelligence, Institute of Information Technology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (B.Ś.); (I.A.)
| |
Collapse
|
15
|
Schuring N, van Berge Henegouwen MI, Gisbertz SS. History and evidence for state of the art of lymphadenectomy in esophageal cancer surgery. Dis Esophagus 2024; 37:doad065. [PMID: 38048446 PMCID: PMC10987971 DOI: 10.1093/dote/doad065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023]
Abstract
The current curative multimodal treatment of advanced esophageal cancers consists of neoadjuvant or perioperative chemo(radio)therapy followed by a radical surgical resection of the primary tumor and a 2- or 3-field lymphadenectomy. One of the most important predictors of long-term survival of esophageal cancer patients is lymph node involvement. The distribution pattern of lymph node metastases in esophageal cancer is unpredictable and depends on the primary tumor location, histology, T-stage and application of neoadjuvant or perioperative treatment. The optimal extent of the lymphadenectomy remains controversial; there is no global consensus on this topic yet. Some surgeons advocate an aggressive and extended lymph node dissection to remove occult metastatic disease, to optimize oncological outcomes. Others promote a more restricted lymphadenectomy, since the benefit of an extended lymphadenectomy, especially after neoadjuvant chemoradiotherapy, has not been clearly demonstrated, and morbidity may be reduced. In this review, we describe the development of lymphadenectomy, followed by a summary of current evidence for lymphadenectomy in esophageal cancer treatment.
Collapse
Affiliation(s)
- Nannet Schuring
- Department of Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Gastroenterology and Hepatology, Amsterdam UMC Location University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Mark I van Berge Henegouwen
- Department of Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Suzanne S Gisbertz
- Department of Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Talebloo N, Bernal MAO, Kenyon E, Mallett CL, Mondal SK, Fazleabas A, Moore A. Imaging of Endometriotic Lesions Using cRGD-MN Probe in a Mouse Model of Endometriosis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:319. [PMID: 38334590 PMCID: PMC10856945 DOI: 10.3390/nano14030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Approximately 10% of women suffer from endometriosis during their reproductive years. This disease is a chronic debilitating condition whose etiology for lesion implantation and survival heavily relies on adhesion and angiogenic factors. Currently, there are no clinically approved agents for its detection. In this study, we evaluated cRGD-peptide-conjugated nanoparticles (RGD-Cy5.5-MN) to detect lesions using magnetic resonance imaging (MRI) in a mouse model of endometriosis. We utilized a luciferase-expressing murine suture model of endometriosis. Imaging was performed before and after 24 h following the intravenous injection of RGD-Cy5.5-MN or control nanoparticles (Cy5.5-MN). Next, we performed biodistribution of RGD-Cy5.5-MN and correlative fluorescence microscopy of lesions stained for CD34. Tissue iron content was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Our results demonstrated that targeting endometriotic lesions with RGD-Cy5.5-MN resulted in a significantly higher delta T2* upon its accumulation compared to Cy5.5-MN. ICP-OES showed significantly higher iron content in the lesions of the animals in the experimental group compared to the lesions of the animals in the control group. Histology showed colocalization of Cy5.5 signal from RGD-Cy5.5-MN with CD34 in the lesions pointing to the targeted nature of the probe. This work offers initial proof-of-concept for targeting angiogenesis in endometriosis which can be useful for potential clinical diagnostic and therapeutic approaches for treating this disease.
Collapse
Affiliation(s)
- Nazanin Talebloo
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - M. Ariadna Ochoa Bernal
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503, USA; (M.A.O.B.); (A.F.)
- Department of Animal Science, Michigan State University, 474 S Shaw Ln #1290, East Lansing, MI 48824, USA
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
| | - Christiane L. Mallett
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI 48824, USA
| | - Sujan Kumar Mondal
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503, USA; (M.A.O.B.); (A.F.)
| | - Anna Moore
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
| |
Collapse
|
17
|
Aron A, Zavaleta C. Current and Developing Lymphatic Imaging Approaches for Elucidation of Functional Mechanisms and Disease Progression. Mol Imaging Biol 2024; 26:1-16. [PMID: 37195396 PMCID: PMC10827820 DOI: 10.1007/s11307-023-01827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Study of the lymphatic system, compared to that of the other body systems, has been historically neglected. While scientists and clinicians have, in recent decades, gained a better appreciation of the functionality of the lymphatics as well as their role in associated diseases (and consequently investigated these topics further in their experimental work), there is still much left to be understood of the lymphatic system. In this review article, we discuss the role lymphatic imaging techniques have played in this recent series of advancements and how new imaging techniques can help bolster this wave of discovery. We specifically highlight the use of lymphatic imaging techniques in understanding the fundamental anatomy and physiology of the lymphatic system; investigating the development of lymphatic vasculature (using techniques such as intravital microscopy); diagnosing, staging, and treating lymphedema and cancer; and its role in other disease states.
Collapse
Affiliation(s)
- Arjun Aron
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA, 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
18
|
Yi Z, Yang X, Liang Y, Chapelin F, Tong S. Enhancing ROS-Inducing Nanozyme through Intraparticle Electron Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305974. [PMID: 37771197 PMCID: PMC10922328 DOI: 10.1002/smll.202305974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/01/2023] [Indexed: 09/30/2023]
Abstract
Iron oxide nanoparticles (IONPs) have garnered significant attention as a promising platform for reactive oxygen species (ROS)-dependent disease treatment, owing to their remarkable biocompatibility and Fenton catalytic activity. However, the low catalytic activity of IONPs is a major hurdle in their clinical translation. To overcome this challenge, IONPs of different compositions are examined for their Fenton reaction under pharmacologically relevant conditions. The results show that wüstite (FeO) nanoparticles exhibit higher catalytic activity than magnetite (Fe3 O4 ) or maghemite (γ-Fe2 O3 ) of matched size and coating, despite having a similar surface oxidation state. Further analyses suggest that the high catalytic activity of wüstite nanoparticles can be attributed to the presence of internal low-valence iron (Fe0 and Fe2+ ), which accelerates the recycling of surface Fe3+ to Fe2+ through intraparticle electron transport. Additionally, ultrasmall wüstite nanoparticles are generated by tuning the thermodecomposition-based nanocrystal synthesis, resulting in a Fenton reaction rate 5.3 times higher than that of ferumoxytol, an FDA-approved IONP. Compared with ferumoxytol, wüstite nanoparticles substantially increase the level of intracellular ROS in mouse mammary carcinoma cells. This study presents a novel mechanism and pivotal improvement for the development of highly efficient ROS-inducing nanozymes, thereby expanding the horizons for their therapeutic applications.
Collapse
Affiliation(s)
- Zhongchao Yi
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, 40536, USA
| | - Xiaoyue Yang
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, 40536, USA
| | - Ying Liang
- New York Blood Center, New York, NY, 10065, USA
| | - Fanny Chapelin
- Shu Chien - Gene Lay Department of Bioengineering & Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sheng Tong
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
19
|
Trac N, Chen Z, Oh HS, Jones L, Huang Y, Giblin J, Gross M, Sta Maria NS, Jacobs RE, Chung EJ. MRI Detection of Lymph Node Metastasis through Molecular Targeting of C-C Chemokine Receptor Type 2 and Monocyte Hitchhiking. ACS NANO 2024; 18:2091-2104. [PMID: 38212302 DOI: 10.1021/acsnano.3c09201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Biopsy is the clinical standard for diagnosing lymph node (LN) metastasis, but it is invasive and poses significant risk to patient health. Magnetic resonance imaging (MRI) has been utilized as a noninvasive alternative but is limited by low sensitivity, with only ∼35% of LN metastases detected, as clinical contrast agents cannot discriminate between healthy and metastatic LNs due to nonspecific accumulation. Nanoparticles targeted to the C-C chemokine receptor 2 (CCR2), a biomarker highly expressed in metastatic LNs, have the potential to guide the delivery of contrast agents, improving the sensitivity of MRI. Additionally, cancer cells in metastatic LNs produce monocyte chemotactic protein 1 (MCP1), which binds to CCR2+ inflammatory monocytes and stimulates their migration. Thus, the molecular targeting of CCR2 may enable nanoparticle hitchhiking onto monocytes, providing an additional mechanism for metastatic LN targeting and early detection. Hence, we developed micelles incorporating gadolinium (Gd) and peptides derived from the CCR2-binding motif of MCP1 (MCP1-Gd) and evaluated the potential of MCP1-Gd to detect LN metastasis. When incubated with migrating monocytes in vitro, MCP1-Gd transport across lymphatic endothelium increased 2-fold relative to nontargeting controls. After administration into mouse models with initial LN metastasis and recurrent LN metastasis, MCP1-Gd detected metastatic LNs by increasing MRI signal by 30-50% relative to healthy LNs. Furthermore, LN targeting was dependent on monocyte hitchhiking, as monocyte depletion decreased accumulation by >70%. Herein, we present a nanoparticle contrast agent for MRI detection of LN metastasis mediated by CCR2-targeting and demonstrate the potential of monocyte hitchhiking for enhanced nanoparticle delivery.
Collapse
Affiliation(s)
- Noah Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Zixi Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Hyun-Seok Oh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Leila Jones
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Joshua Giblin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Mitchell Gross
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, California 90064, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute and Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Russell E Jacobs
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute and Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
20
|
Nedylakova M, Medinger J, Mirabello G, Lattuada M. Iron oxide magnetic aggregates: Aspects of synthesis, computational approaches and applications. Adv Colloid Interface Sci 2024; 323:103056. [PMID: 38056225 DOI: 10.1016/j.cis.2023.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Superparamagnetic magnetite nanoparticles have been central to numerous investigations in the past few decades for their use in many applications, such as drug delivery, medical diagnostics, magnetic separation, and material science. However, the properties of single magnetic nanoparticles are sometimes not sufficient to accomplish tasks where a strong magnetic response is required. In light of this, aggregated magnetite nanoparticles have been proposed as an alternative advanced material, which may expand and combine some of the advantages of single magnetic nanoparticles, including superparamagnetism, with an enhanced magnetic moment and increased colloidal stability. This review comprehensively discusses the current literature on aggregates made of magnetic iron oxide nanoparticles. This review is divided into three sections. First, the current synthetic strategies for magnetite nanoparticle aggregates are discussed, together with the influence of different stabilizers on the primary crystals and the final aggregate size and morphology. The second section is dedicated to computational approaches, such as density functional methods (which permit accurate predictions of electronic and magnetic properties and shed light on the behavior of surfactant molecules on iron oxide surfaces) and molecular dynamics simulations (which provide additional insight into the influence of ligands on the surface chemistry of iron oxide nanocrystals). The last section discusses current and possible future applications of iron oxide magnetic aggregates, including wastewater treatment, water purification, medical applications, and magnetic aggregates for materials displaying structural colors.
Collapse
Affiliation(s)
- Miroslava Nedylakova
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | - Joelle Medinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | - Giulia Mirabello
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland.
| |
Collapse
|
21
|
Xu L, Chen R, Yu X, Liu J, Wang Y. 18F-FDG PET Is Not Inferior to 68Ga-PSMA PET for Detecting Biochemical Recurrent Prostate Cancer with a High Gleason Score: A Head-to-Head Comparison Study. Diagnostics (Basel) 2023; 14:7. [PMID: 38201316 PMCID: PMC10871097 DOI: 10.3390/diagnostics14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Previous studies have indicated that 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in biochemical recurrence (BCR) patients with poorly differentiated prostate adenocarcinoma had higher diagnostic sensitivity than those with well differentiated adenocarcinoma, but whether the performance of FDG PET can achieve the effect of prostate-specific membrane antigen (PSMA) PET in BCR patients with a high Gleason score remains poorly understood. This study aimed to compare the efficacies of 18F-FDG PET/CT and 68Ga-PSMA PET/CT for BCR patients and evaluate whether 18F-FDG PET was not inferior to 68Ga-PSMA PET for detecting BCR with a high Gleason score. This was a retrospective, head-to-head comparative study completed at Ren Ji Hospital between May 2018 and June 2021. Patients underwent both 18F-FDG and 68Ga-PSMA PET/CT. The detection rate of BCR at the patient level and at the anatomical region level was evaluated. In total, 145 patients were enrolled in this study. 18F-FDG PET/CT (24.1%, 35/145) had lower detection rates than 68Ga-PSMA PET/CT (59.3%, 86/145; p < 0.001) at the patient level and at any anatomical region (p < 0.05). The PSA level (p < 0.001, OR = 11.026, 95% CI: 3.214-37.824) and the Gleason score (p < 0.001, OR = 20.227, 95% CI: 5.741-71.267) were independent predictive factors of the detection rate on 18F-FDG PET/CT, while the PSA level (p < 0.001, OR = 4.862, 95% CI: 2.338-10.110) was the only predictor of the detection rate on 68Ga-PSMA PET/CT. 18F-FDG PET/CT had a similar detection rate as 68Ga-PSMA PET/CT in patients with a Gleason score of 9 at the patient level (64.3% vs. 71.4%, p = 0.567) and any anatomical region (all p > 0.05), but 18F-FDG PET/CT had a lower detection rate than 68Ga-PSMA PET/CT in patients with a Gleason score of 6-8. 18F-FDG PET is not inferior to 68Ga-PSMA PET for detecting BCR with a Gleason score of 9; therefore, 18F-FDG PET/CT could be considered in BCR patients with a Gleason score of 9. However, 68Ga-PSMA is a better tracer than 18F-FDG in PET/CT for treatment decision making in BCR patients with a Gleason score of 6-8.
Collapse
Affiliation(s)
- Lian Xu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (R.C.); (X.Y.); (J.L.)
| | - Ruohua Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (R.C.); (X.Y.); (J.L.)
| | - Xiaofeng Yu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (R.C.); (X.Y.); (J.L.)
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (R.C.); (X.Y.); (J.L.)
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou 213003, China
| |
Collapse
|
22
|
Fernandes Q, Therachiyil L, Khan AQ, Bedhiafi T, Korashy HM, Bhat AA, Uddin S. Shrinking the battlefield in cancer therapy: Nanotechnology against cancer stem cells. Eur J Pharm Sci 2023; 191:106586. [PMID: 37729956 DOI: 10.1016/j.ejps.2023.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Cancer remains one of the leading causes of mortality worldwide, presenting a significant healthcare challenge owing to the limited efficacy of current treatments. The application of nanotechnology in cancer treatment leverages the unique optical, magnetic, and electrical attributes of nanomaterials to engineer innovative, targeted therapies. Specifically, manipulating nanomaterials allows for enhanced drug loading efficiency, improved bioavailability, and targeted delivery systems, reducing the non-specific cytotoxic effects characteristic of conventional chemotherapies. Furthermore, recent advances in nanotechnology have demonstrated encouraging results in specifically targeting CSCs, a key development considering the role of these cells in disease recurrence and resistance to treatment. Despite these breakthroughs, the clinical approval rates of nano-drugs have not kept pace with research advances, pointing to existing obstacles that must be addressed. In conclusion, nanotechnology presents a novel, powerful tool in the fight against cancer, particularly in targeting the elusive and treatment-resistant CSCs. This comprehensive review delves into the intricacies of nanotherapy, explicitly targeting cancer stem cells, their markers, and associated signaling pathways.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, Qatar University, Doha, Qatar; Translational Cancer Research Facility, Hamad Medical Corporation, National Center for Cancer Care and Research, PO. Box 3050, Doha, Qatar
| | - Lubna Therachiyil
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Abdul Q Khan
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar
| | - Takwa Bedhiafi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- College of Medicine, Qatar University, Doha, Qatar; Academic Health System, Hamad Medical Corporation, Dermatology Institute, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 22602, India.
| |
Collapse
|
23
|
Lou W, Xie L, Xu L, Xu M, Xu F, Zhao Q, Jiang T. Present and future of metal nanoparticles in tumor ablation therapy. NANOSCALE 2023; 15:17698-17726. [PMID: 37917010 DOI: 10.1039/d3nr04362b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer is an important factor affecting the quality of human life as well as causing death. Tumor ablation therapy is a minimally invasive local treatment modality with unique advantages in treating tumors that are difficult to remove surgically. However, due to its physical and chemical characteristics and the limitation of equipment technology, ablation therapy cannot completely kill all tumor tissues and cells at one time; moreover, it inevitably damages some normal tissues in the surrounding area during the ablation process. Therefore, this technology cannot be the first-line treatment for tumors at present. Metal nanoparticles themselves have good thermal and electrical conductivity and unique optical and magnetic properties. The combination of metal nanoparticles with tumor ablation technology, on the one hand, can enhance the killing and inhibiting effect of ablation technology on tumors by expanding the ablation range; on the other hand, the ablation technology changes the physicochemical microenvironment such as temperature, electric field, optics, oxygen content and pH in tumor tissues. It helps to stimulate the degree of local drug release of nanoparticles and increase the local content of anti-tumor drugs, thus forming a synergistic therapeutic effect with tumor ablation. Recent studies have found that some specific ablation methods will stimulate the body's immune response while physically killing tumor tissues, generating a large number of immune cells to cause secondary killing of tumor tissues and cells, and with the assistance of metal nanoparticles loaded with immune drugs, the effect of this anti-tumor immunotherapy can be further enhanced. Therefore, the combination of metal nanoparticles and ablative therapy has broad research potential. This review covers common metallic nanoparticles used for ablative therapy and discusses in detail their characteristics, mechanisms of action, potential challenges, and prospects in the field of ablation.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Lei Xu
- Department of Ultrasound Medicine, Affiliated Jinhua Hospital Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Min Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Fan Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Qiyu Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
- Zhejiang University Cancer Center, Zhejiang, Hangzhou, China
| |
Collapse
|
24
|
Schuring N, Stam WT, Plat VD, Kalff MC, Hulshof MCCM, van Laarhoven HWM, Derks S, van der Peet DL, van Berge Henegouwen MI, Daams F, Gisbertz SS. Patterns of recurrent disease after neoadjuvant chemoradiotherapy and esophageal cancer surgery with curative intent in a tertiary referral center. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:106947. [PMID: 37355392 DOI: 10.1016/j.ejso.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/29/2022] [Accepted: 05/31/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Recurrence is frequently observed after esophageal cancer surgery, with dismal post-recurrence survival. Neoadjuvant chemoradiotherapy followed by esophagectomy is the gold standard for resectable esophageal tumors in the Netherlands. This study investigated the recurrence patterns and survival after multimodal therapy. METHODS This retrospective cohort study included patients with recurrent disease after neoadjuvant chemoradiotherapy followed by esophagectomy for an esophageal adenocarcinoma in the Amsterdam UMC between 01 and 01-2010 and 31-12-2018. Post-recurrence treatment and survival of patients were investigated and grouped by recurrence site (loco-regional, distant, or combined loco-regional and distant). RESULTS In total, 278 of 618 patients (45.0%) developed recurrent disease after a median of 49 weeks. Thirty-one patients had loco-regional (11.2%), 145 distant (52.2%), and 101 combined loco-regional and distant recurrences (36.3%). Post-recurrence survival was superior for patients with loco-regional recurrences (33 weeks, 95%CI 7.3-58.7) compared to distant (12 weeks, 95%CI 6.9-17.1) or combined loco-regional and distant recurrent disease (18 weeks, 95%CI 9.3-26.7). Patients with loco-regional recurrences treated with curative intent had the longest survival (87 weeks, 95%CI 6.9-167.4). CONCLUSION Recurrent disease after potentially curative treatment for esophageal cancer was most frequently located distantly, with dismal prognosis. A subgroup of patients with loco-regional recurrence was treated with curative intent and had prolonged survival. These patients may benefit from intensive surveillance protocols, and more research is needed to identify these patients.
Collapse
Affiliation(s)
- N Schuring
- Amsterdam UMC Location University of Amsterdam, Surgery, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands; AGEM Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands.
| | - W T Stam
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands; AGEM Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - V D Plat
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
| | - M C Kalff
- Amsterdam UMC Location University of Amsterdam, Surgery, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
| | - M C C M Hulshof
- Amsterdam UMC Location University of Amsterdam, Radiotherapy, Amsterdam UMC, Meibergdreef 9, Amsterdam, the Netherlands
| | - H W M van Laarhoven
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands
| | - S Derks
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - D L van der Peet
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands; AGEM Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - M I van Berge Henegouwen
- Amsterdam UMC Location University of Amsterdam, Surgery, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands; AGEM Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - F Daams
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands; AGEM Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - S S Gisbertz
- Amsterdam UMC Location University of Amsterdam, Surgery, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands; AGEM Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Dullea A, O'Sullivan L, Carrigan M, Ahern S, McGarry M, O'Brien K, Harrington P, Walsh KA, Smith SM, Ryan M. Diagnostic accuracy of 18F Prostate Specific Membrane Antigen (PSMA) PET-CT radiotracers in staging and restaging of high-risk prostate cancer patients and patients with biochemical recurrence: protocol for an overview of reviews. HRB Open Res 2023; 6:57. [PMID: 38779425 PMCID: PMC11109553 DOI: 10.12688/hrbopenres.13801.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 05/25/2024] Open
Abstract
Background: Correct staging and risk stratification is essential in ensuring prostate cancer patients are offered the most appropriate treatment. Interest has been growing in the use of radiotracers targeting prostate specific membrane antigen (PSMA), including the use of 18F-PSMA PET-CT, as part of the primary staging or restaging of prostate cancer. Preliminary scoping identified a number of relevant systematic reviews and meta-analyses; however, individually, these each appear to look at only part of the picture. An overview of reviews aims to systematically identify, appraise and synthesise multiple systematic reviews, related to a relevant research question or questions. We present a protocol for an overview of reviews, which aims to collate existing evidence syntheses exploring the diagnostic accuracy of 18F-PSMA in staging and restaging of prostate cancer. It also aims to highlight evidence gaps in prostate cancer staging or restaging. Methods: This protocol is reported in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for systematic review protocols (PRISMA-P). The search strategy will be designed in consultation with a librarian. Searches will be performed in Medline (EBSCO), Embase (Ovid), Google Scholar and the Cochrane Database for Systematic Reviews, supplemented by a targeted grey literature search, forward citation searching and searching reference lists of included reviews. No language or date restrictions will be applied to the eligibility criteria or the search strategy. Title & abstract and full text screening will be performed independently by two reviewers. Data will be extracted by one reviewer and checked in full by a second reviewer. Quality appraisal will be performed using the Risk of Bias in Systematic Reviews (ROBIS) tool independently by two reviewers, and results will be narratively synthesised. Conclusions: This overview of reviews may be of interest to healthcare professionals, academics and health policy decision-makers. Registration: OSF (September 7, 2023).
Collapse
Affiliation(s)
- Andrew Dullea
- Discipline of Public Health & Primary Care, School of Medicine, The University of Dublin Trinity College, Dublin, Leinster, Ireland
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
| | - Lydia O'Sullivan
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
- Trials Methodology Research Network, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, County Galway, Ireland
| | - Marie Carrigan
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
| | - Susan Ahern
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
| | - Maeve McGarry
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
| | - Kirsty O'Brien
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
| | - Patricia Harrington
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
| | - Kieran A. Walsh
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, County Cork, Ireland
| | - Susan M. Smith
- Discipline of Public Health & Primary Care, School of Medicine, The University of Dublin Trinity College, Dublin, Leinster, Ireland
| | - Máirín Ryan
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
- Department of Pharmacology and Therapeutics, The University of Dublin Trinity College, Dublin, Leinster, Ireland
| |
Collapse
|
26
|
Baboudjian M, Roubaud G, Fromont G, Gauthé M, Beauval JB, Barret E, Brureau L, Créhange G, Dariane C, Fiard G, Mathieu R, Ruffion A, Rouprêt M, Renard-Penna R, Sargos P, Ploussard G. What is the ideal combination therapy in de novo, oligometastatic, castration-sensitive prostate cancer? World J Urol 2023; 41:2033-2041. [PMID: 36484817 DOI: 10.1007/s00345-022-04239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To review current evidence regarding the management of de novo, oligometastatic, castration-sensitive prostate cancer (PCa). METHODS A literature search was conducted on PubMed/Medline and a narrative synthesis of the evidence was performed in August 2022. RESULTS Oligometastatic disease is an intermediate state between localized and aggressive metastatic PCa defined by ≤ 3-5 metastatic lesions, although this definition remains controversial. Conventional imaging has limited accuracy in detecting metastatic lesions, and the implementation of molecular imaging could pave the way for a more personalized treatment strategy. However, oncological data supporting this strategy are needed. Radiotherapy to the primary tumor should be considered standard treatment for oligometastatic PCa (omPCa). However, it remains to be seen whether local therapy still has an additional survival benefit in patients with de novo omPCa when treated with the most modern systemic therapy combinations. There is insufficient evidence to recommend cytoreductive radical prostatectomy as local therapy; or stereotactic body radiotherapy as metastasis-directed therapy in patients with omPCa. Current data support the use of intensified systemic therapy with androgen deprivation therapy (ADT) and next-generation hormone therapies (NHT) for patients with de novo omPCa. Docetaxel has not demonstrated benefit in low volume disease. There are insufficient data to support the use of triple therapy (i.e., ADT + NHT + Docetaxel) in low volume disease. CONCLUSION The present review discusses current data in de novo, omPCa regarding its definition, the increasing role of molecular imaging, the place of local and metastasis-directed therapies, and the intensification of systemic therapies.
Collapse
Affiliation(s)
- Michael Baboudjian
- Department of Urology, APHM, North Academic Hospital, Marseille, France.
- Department of Urology, APHM, La Conception Hospital, Marseille, France.
- Department of Urology, Fundació Puigvert, Autonoma University of Barcelona, Barcelona, Spain.
- Department of Urology, La Croix du Sud Hôpital, Quint Fonsegrives, France.
| | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, 33000, Bordeaux, France
| | | | - Mathieu Gauthé
- Department of Nuclear Medicine, Scintep-Institut Daniel Hollard, Grenoble, France
| | | | - Eric Barret
- Department of Urology, Institut Mutualiste Montsouris, Paris, France
| | - Laurent Brureau
- Department of Urology, CHU de Pointe-à-Pitre, University of Antilles, University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 97110, Pointe-à-Pitre, France
| | | | - Charles Dariane
- Department of Urology, Hôpital Européen Georges-Pompidou, APHP, Paris-Paris University-U1151 Inserm-INEM, Necker, Paris, France
| | - Gaëlle Fiard
- Department of Urology, Grenoble Alpes University Hospital, Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | | | - Alain Ruffion
- Service d'urologie Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
- Equipe 2-Centre d'Innovation en Cancérologie de Lyon (EA 3738 CICLY)-Faculté de Médecine Lyon Sud-Université Lyon 1, Lyon, France
| | - Morgan Rouprêt
- Sorbonne University, GRC 5 Predictive Onco-Uro, AP-HP, Urology, Pitie-Salpetriere Hospital, 75013, Paris, France
| | - Raphaële Renard-Penna
- Sorbonne University, AP-HP, Radiology, Pitie-Salpetriere Hospital, 75013, Paris, France
| | - Paul Sargos
- Department of Radiotherapy, Institut Bergonié, 33000, Bordeaux, France
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hôpital, Quint Fonsegrives, France
- Department of Urology, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| |
Collapse
|
27
|
Reina Y, Villaquirán C, García-Perdomo HA. Advances in high-risk localized prostate cancer: Staging and management. Curr Probl Cancer 2023; 47:100993. [PMID: 37418998 DOI: 10.1016/j.currproblcancer.2023.100993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/23/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Nearly 15% of individuals with localized prostate cancer are identified as high risk for recurrence and progression of the disease, which is why the correct staging is vital for the definition of correct treatment-also developing novel therapeutic strategies to find a balance between getting better outcomes without sacrificing the quality of life (QoL). In this narrative review, we introduced the current standards of staging and primary treatment of high-risk localized prostate cancer (PCa), based on international guidelines and arguments in the debate, under the light of the most recent literature. It brings essential tools such as PSMA PET/CT and different nomograms (Briganti. MSKCC, Gandaglia) for accurate staging and selecting wisely the definitive therapy. Even though there is a broad discussion over the best local treatment in curative-intent treatment, it looks more important to define which patient profile would adapt correctly to every different treatment, highlighting the benefits and superior outcomes with multimodal treatment.
Collapse
Affiliation(s)
- Yeison Reina
- Division of Urology, Hospital Universitario del Valle, Cali, Colombia; UROGIV Research Group, School of Medicine, Universidad del Valle, Cali, Colombia
| | - Catalina Villaquirán
- Division of Urologic Oncology, Hospital Universitario San Ignacio, Bogota, Colombia
| | - Herney Andrés García-Perdomo
- UROGIV Research Group, School of Medicine, Universidad del Valle, Cali, Colombia; Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
28
|
Nowak-Jary J, Machnicka B. In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications. Int J Nanomedicine 2023; 18:4067-4100. [PMID: 37525695 PMCID: PMC10387276 DOI: 10.2147/ijn.s415063] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Magnetic iron oxide nanoparticles (magnetite and maghemite) are intensively studied due to their broad potential applications in medical and biological sciences. Their unique properties, such as nanometric size, large specific surface area, and superparamagnetism, allow them to be used in targeted drug delivery and internal radiotherapy by targeting an external magnetic field. In addition, they are successfully used in magnetic resonance imaging (MRI), hyperthermia, and radiolabelling. The appropriate design of nanoparticles allows them to be delivered to the desired tissues and organs. The desired biodistribution of nanoparticles, eg, cancerous tumors, is increased using an external magnetic field. Thus, knowledge of the biodistribution of these nanoparticles is essential for medical applications. It allows for determining whether nanoparticles are captured by the desired organs or accumulated in other tissues, which may lead to potential toxicity. This review article presents the main organs where nanoparticles accumulate. The sites of their first uptake are usually the liver, spleen, and lymph nodes, but with the appropriate design of nanoparticles, they can also be accumulated in organs such as the lungs, heart, or brain. In addition, the review describes the factors affecting the biodistribution of nanoparticles, including their size, shape, surface charge, coating molecules, and route of administration. Modern techniques for determining nanoparticle accumulation sites and concentration in isolated tissues or the body in vivo are also presented.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| | - Beata Machnicka
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| |
Collapse
|
29
|
Domingues JM, Miranda CS, Homem NC, Felgueiras HP, Antunes JC. Nanoparticle Synthesis and Their Integration into Polymer-Based Fibers for Biomedical Applications. Biomedicines 2023; 11:1862. [PMID: 37509502 PMCID: PMC10377033 DOI: 10.3390/biomedicines11071862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of nanoparticles as effective drug delivery systems combined with the versatility of fibers has led to the development of new and improved strategies to help in the diagnosis and treatment of diseases. Nanoparticles have extraordinary characteristics that are helpful in several applications, including wound dressings, microbial balance approaches, tissue regeneration, and cancer treatment. Owing to their large surface area, tailor-ability, and persistent diameter, fibers are also used for wound dressings, tissue engineering, controlled drug delivery, and protective clothing. The combination of nanoparticles with fibers has the power to generate delivery systems that have enhanced performance over the individual architectures. This review aims at illustrating the main possibilities and trends of fibers functionalized with nanoparticles, focusing on inorganic and organic nanoparticles and polymer-based fibers. Emphasis on the recent progress in the fabrication procedures of several types of nanoparticles and in the description of the most used polymers to produce fibers has been undertaken, along with the bioactivity of such alliances in several biomedical applications. To finish, future perspectives of nanoparticles incorporated within polymer-based fibers for clinical use are presented and discussed, thus showcasing relevant paths to follow for enhanced success in the field.
Collapse
Affiliation(s)
- Joana M Domingues
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Catarina S Miranda
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Natália C Homem
- Simoldes Plastics S.A., Rua Comendador António da Silva Rodrigues 165, 3720-193 Oliveira de Azeméis, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
30
|
Maatman IT, Ypma S, Kachelrieß M, Berker Y, van der Bijl E, Block KT, Hermans JJ, Maas MC, Scheenen TWJ. Single-spoke binning: Reducing motion artifacts in abdominal radial stack-of-stars imaging. Magn Reson Med 2023; 89:1931-1944. [PMID: 36594436 DOI: 10.1002/mrm.29576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE To increase the effectiveness of respiratory gating in radial stack-of-stars MRI, particularly when imaging at high spatial resolutions or with multiple echoes. METHODS Free induction decay (FID) navigators were integrated into a three-dimensional gradient echo radial stack-of-stars pulse sequence. These navigators provided a motion signal with a high temporal resolution, which allowed single-spoke binning (SSB): each spoke at each phase encode step was sorted individually to the corresponding motion state of the respiratory signal. SSB was compared with spoke-angle binning (SAB), in which all phase encode steps of one projection angle were sorted without the use of additional navigator data. To illustrate the benefit of SSB over SAB, images of a motion phantom and of six free-breathing volunteers were reconstructed after motion-gating using either method. Image sharpness was quantitatively compared using image gradient entropies. RESULTS The proposed method resulted in sharper images of the motion phantom and free-breathing volunteers. Differences in gradient entropy were statistically significant (p = 0.03) in favor of SSB. The increased accuracy of motion-gating led to a decrease of streaking artifacts in motion-gated four-dimensional reconstructions. To consistently estimate respiratory signals from the FID-navigator data, specific types of gradient spoiler waveforms were required. CONCLUSION SSB allowed high-resolution motion-corrected MR imaging, even when acquiring multiple gradient echo signals or large acquisition matrices, without sacrificing accuracy of motion-gating. SSB thus relieves restrictions on the choice of pulse sequence parameters, enabling the use of motion-gated radial stack-of-stars MRI in a broader domain of clinical applications.
Collapse
Affiliation(s)
- Ivo T Maatman
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sjoerd Ypma
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc Kachelrieß
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yannick Berker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Erik van der Bijl
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kai Tobias Block
- Department of Radiology, NYU Langone Health, New York, New York, USA
| | - John J Hermans
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marnix C Maas
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Peng S, Liu X, Li Y, Yu H, Xie Y, Wang X, Zhou J, Zhu M, Luo Y, Huang M. Radiological lymph-node size improves the prognostic value of systemic inflammation index in rectal cancer with pathologically negative nodes. Cancer Med 2023; 12:10303-10314. [PMID: 36938675 PMCID: PMC10225194 DOI: 10.1002/cam4.5761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND The relationship between the radiological lymph node (rLN) size and survival outcome in node-negative rectal cancer is still uncertain. In this study, we aimed to explore the role of enlarged rLN in predicting the survival of node-negative rectal cancers. METHODS We retrospectively reviewed the records of 722 node-negative rectal cancer who underwent curative resection. Factors associated with DFS (disease-free survival) and CSS (cancer-specific survival) were assessed with univariate and multivariate analysis. Survival analysis was performed according to presence with or without enlarged rLN. Combining rLN with NLR as a new index-inflammation immune score (IIS) for predicting survival. Comparing different models to assess the predictive powers. RESULTS A total of 119 patients had tumor recurrence and 73 patients died due to cancer. Patients with enlarged rLN (≥5 mm) was significantly associated with better DFS (HR:0.517, 95%CI:0.339-0.787, p = 0.002) and CSS (HR:0.43, 95%CI:0.242-0.763, p = 0.004). The risk factors of recurrence were rLN, neutrophil-lymphocyte ratio (NLR), CEA level, and distance from the anal verge. The risk of recurrence increased by 1.88- and 2.83-fold for the high score in IIS compared with the low and intermediate score group (All p < 0.001). Similarly, the high score in IIS also increased the risk of cancer-specific death. In the model comparison, the AIC and LR were improved by including the rLN into the NLR model for DFS and CSS prediction (All p < 0.05). CONCLUSIONS Node-negative rectal cancer patients with enlarged rLN had a better survival outcome. IIS might be a more comprehensive and complete inflammation immune index for survival prediction.
Collapse
Affiliation(s)
- Shaoyong Peng
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Department of General Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Xiaoxia Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yingjie Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Huichuan Yu
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Department of General Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yumo Xie
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Department of General Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Xiaolin Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Jiaming Zhou
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Department of General Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Mingxuan Zhu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yanxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Department of General Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Meijin Huang
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Department of General Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
32
|
Małkiewicz B, Kiełb P, Kobylański M, Karwacki J, Poterek A, Krajewski W, Zdrojowy R, Szydełko T. Sentinel Lymph Node Techniques in Urologic Oncology: Current Knowledge and Application. Cancers (Basel) 2023; 15:cancers15092495. [PMID: 37173960 PMCID: PMC10177100 DOI: 10.3390/cancers15092495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Lymph node (LN) metastases have a significant negative impact on the prognosis of urological malignancies. Unfortunately, current imaging modalities are insufficient when it comes to detecting micrometastases; thus, surgical LN removal is commonly used. However, there is still no established ideal lymph node dissection (LND) template, leading to unnecessary invasive staging and the possibility of missing LN metastases located outside the standard template. To address this issue, the sentinel lymph node (SLN) concept has been proposed. This technique involves identifying and removing the first group of draining LNs, which can accurately stage cancer. While successful in breast cancer and melanoma, the SLN technique in urologic oncology is still considered experimental due to high false-negative rates and lack of data in prostate, bladder, and kidney cancer. Nevertheless, the development of new tracers, imaging modalities, and surgical techniques may improve the potential of the SLN procedures in urological oncology. In this review, we aim to discuss the current knowledge and future contributions of the SLN procedure in the management of urological malignancies.
Collapse
Affiliation(s)
- Bartosz Małkiewicz
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Paweł Kiełb
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Maximilian Kobylański
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jakub Karwacki
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Adrian Poterek
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Wojciech Krajewski
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Romuald Zdrojowy
- University Center of Excellence in Urology, Department of Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Tomasz Szydełko
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
33
|
Rashidi A, Baratto L, Theruvath AJ, Greene EB, Jayapal P, Hawk KE, Lu R, Seekins J, Spunt SL, Pribnow A, Daldrup-Link HE. Improved Detection of Bone Metastases in Children and Young Adults with Ferumoxytol-enhanced MRI. Radiol Imaging Cancer 2023; 5:e220080. [PMID: 36999999 PMCID: PMC10077085 DOI: 10.1148/rycan.220080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 04/12/2023]
Abstract
Purpose To evaluate if ferumoxytol can improve the detection of bone marrow metastases at diffusion-weighted (DW) MRI in pediatric and young adult patients with cancer. Materials and Methods In this secondary analysis of a prospective institutional review board-approved study (ClinicalTrials.gov identifier NCT01542879), 26 children and young adults (age range: 2-25 years; 18 males) underwent unenhanced or ferumoxytol-enhanced whole-body DW MRI between 2015 and 2020. Two reviewers determined the presence of bone marrow metastases using a Likert scale. One additional reviewer measured signal-to-noise ratios (SNRs) and tumor-to-bone marrow contrast. Fluorine 18 (18F) fluorodeoxyglucose (FDG) PET and follow-up chest CT, abdominal and pelvic CT, and standard (non-ferumoxytol enhanced) MRI served as the reference standard. Results of different experimental groups were compared using generalized estimation equations, Wilcoxon rank sum test, and Wilcoxon signed rank test. Results The SNR of normal bone marrow was significantly lower at ferumoxytol-enhanced MRI compared with unenhanced MRI at baseline (21.380 ± 19.878 vs 102.621 ± 94.346, respectively; P = .03) and after chemotherapy (20.026 ± 7.664 vs 54.110 ± 48.022, respectively; P = .006). This led to an increased tumor-to-marrow contrast on ferumoxytol-enhanced MRI scans compared with unenhanced MRI scans at baseline (1397.474 ± 938.576 vs 665.364 ± 440.576, respectively; P = .07) and after chemotherapy (1099.205 ± 864.604 vs 500.758 ± 439.975, respectively; P = .007). Accordingly, the sensitivity and diagnostic accuracy for detecting bone marrow metastases were 96% (94 of 98) and 99% (293 of 297), respectively, with the use of ferumoxytol-enhanced MRI compared with 83% (106 of 127) and 95% (369 of 390) with the use of unenhanced MRI. Conclusion Use of ferumoxytol helped improve the detection of bone marrow metastases in children and young adults with cancer. Keywords: Pediatrics, Molecular Imaging-Cancer, Molecular Imaging-Nanoparticles, MR-Diffusion Weighted Imaging, MR Imaging, Skeletal-Appendicular, Skeletal-Axial, Bone Marrow, Comparative Studies, Cancer Imaging, Ferumoxytol, USPIO © RSNA, 2023 ClinicalTrials.gov registration no. NCT01542879 See also the commentary by Holter-Chakrabarty and Glover in this issue.
Collapse
Affiliation(s)
- Ali Rashidi
- From the Department of Radiology, Molecular Imaging Program at
Stanford (A.R., L.B., A.J.T., K.E.H., J.S., H.E.D.L.), and Department of
Radiology, Division of Pediatric Radiology (E.B.G., P.J.), Lucile Packard
Children’s Hospital, Stanford University School of Medicine, 725 Welch
Rd, Stanford, CA 94305-5654; and Quantitative Sciences Unit (R.L.) and
Department of Pediatrics, Division of Hematology/Oncology (S.L.S., A.P.,
H.E.D.L.), Stanford University School of Medicine, Stanford, Calif
| | - Lucia Baratto
- From the Department of Radiology, Molecular Imaging Program at
Stanford (A.R., L.B., A.J.T., K.E.H., J.S., H.E.D.L.), and Department of
Radiology, Division of Pediatric Radiology (E.B.G., P.J.), Lucile Packard
Children’s Hospital, Stanford University School of Medicine, 725 Welch
Rd, Stanford, CA 94305-5654; and Quantitative Sciences Unit (R.L.) and
Department of Pediatrics, Division of Hematology/Oncology (S.L.S., A.P.,
H.E.D.L.), Stanford University School of Medicine, Stanford, Calif
| | - Ashok Joseph Theruvath
- From the Department of Radiology, Molecular Imaging Program at
Stanford (A.R., L.B., A.J.T., K.E.H., J.S., H.E.D.L.), and Department of
Radiology, Division of Pediatric Radiology (E.B.G., P.J.), Lucile Packard
Children’s Hospital, Stanford University School of Medicine, 725 Welch
Rd, Stanford, CA 94305-5654; and Quantitative Sciences Unit (R.L.) and
Department of Pediatrics, Division of Hematology/Oncology (S.L.S., A.P.,
H.E.D.L.), Stanford University School of Medicine, Stanford, Calif
| | - Elton Benjamin Greene
- From the Department of Radiology, Molecular Imaging Program at
Stanford (A.R., L.B., A.J.T., K.E.H., J.S., H.E.D.L.), and Department of
Radiology, Division of Pediatric Radiology (E.B.G., P.J.), Lucile Packard
Children’s Hospital, Stanford University School of Medicine, 725 Welch
Rd, Stanford, CA 94305-5654; and Quantitative Sciences Unit (R.L.) and
Department of Pediatrics, Division of Hematology/Oncology (S.L.S., A.P.,
H.E.D.L.), Stanford University School of Medicine, Stanford, Calif
| | - Praveen Jayapal
- From the Department of Radiology, Molecular Imaging Program at
Stanford (A.R., L.B., A.J.T., K.E.H., J.S., H.E.D.L.), and Department of
Radiology, Division of Pediatric Radiology (E.B.G., P.J.), Lucile Packard
Children’s Hospital, Stanford University School of Medicine, 725 Welch
Rd, Stanford, CA 94305-5654; and Quantitative Sciences Unit (R.L.) and
Department of Pediatrics, Division of Hematology/Oncology (S.L.S., A.P.,
H.E.D.L.), Stanford University School of Medicine, Stanford, Calif
| | - K. Elizabeth Hawk
- From the Department of Radiology, Molecular Imaging Program at
Stanford (A.R., L.B., A.J.T., K.E.H., J.S., H.E.D.L.), and Department of
Radiology, Division of Pediatric Radiology (E.B.G., P.J.), Lucile Packard
Children’s Hospital, Stanford University School of Medicine, 725 Welch
Rd, Stanford, CA 94305-5654; and Quantitative Sciences Unit (R.L.) and
Department of Pediatrics, Division of Hematology/Oncology (S.L.S., A.P.,
H.E.D.L.), Stanford University School of Medicine, Stanford, Calif
| | - Rong Lu
- From the Department of Radiology, Molecular Imaging Program at
Stanford (A.R., L.B., A.J.T., K.E.H., J.S., H.E.D.L.), and Department of
Radiology, Division of Pediatric Radiology (E.B.G., P.J.), Lucile Packard
Children’s Hospital, Stanford University School of Medicine, 725 Welch
Rd, Stanford, CA 94305-5654; and Quantitative Sciences Unit (R.L.) and
Department of Pediatrics, Division of Hematology/Oncology (S.L.S., A.P.,
H.E.D.L.), Stanford University School of Medicine, Stanford, Calif
| | - Jayne Seekins
- From the Department of Radiology, Molecular Imaging Program at
Stanford (A.R., L.B., A.J.T., K.E.H., J.S., H.E.D.L.), and Department of
Radiology, Division of Pediatric Radiology (E.B.G., P.J.), Lucile Packard
Children’s Hospital, Stanford University School of Medicine, 725 Welch
Rd, Stanford, CA 94305-5654; and Quantitative Sciences Unit (R.L.) and
Department of Pediatrics, Division of Hematology/Oncology (S.L.S., A.P.,
H.E.D.L.), Stanford University School of Medicine, Stanford, Calif
| | - Sheri L. Spunt
- From the Department of Radiology, Molecular Imaging Program at
Stanford (A.R., L.B., A.J.T., K.E.H., J.S., H.E.D.L.), and Department of
Radiology, Division of Pediatric Radiology (E.B.G., P.J.), Lucile Packard
Children’s Hospital, Stanford University School of Medicine, 725 Welch
Rd, Stanford, CA 94305-5654; and Quantitative Sciences Unit (R.L.) and
Department of Pediatrics, Division of Hematology/Oncology (S.L.S., A.P.,
H.E.D.L.), Stanford University School of Medicine, Stanford, Calif
| | - Allison Pribnow
- From the Department of Radiology, Molecular Imaging Program at
Stanford (A.R., L.B., A.J.T., K.E.H., J.S., H.E.D.L.), and Department of
Radiology, Division of Pediatric Radiology (E.B.G., P.J.), Lucile Packard
Children’s Hospital, Stanford University School of Medicine, 725 Welch
Rd, Stanford, CA 94305-5654; and Quantitative Sciences Unit (R.L.) and
Department of Pediatrics, Division of Hematology/Oncology (S.L.S., A.P.,
H.E.D.L.), Stanford University School of Medicine, Stanford, Calif
| | - Heike E. Daldrup-Link
- From the Department of Radiology, Molecular Imaging Program at
Stanford (A.R., L.B., A.J.T., K.E.H., J.S., H.E.D.L.), and Department of
Radiology, Division of Pediatric Radiology (E.B.G., P.J.), Lucile Packard
Children’s Hospital, Stanford University School of Medicine, 725 Welch
Rd, Stanford, CA 94305-5654; and Quantitative Sciences Unit (R.L.) and
Department of Pediatrics, Division of Hematology/Oncology (S.L.S., A.P.,
H.E.D.L.), Stanford University School of Medicine, Stanford, Calif
| |
Collapse
|
34
|
Benidir T, Lone Z, Nguyen JK, Ward R, Hofmann M, Klein EA, Mian OY, Weight CJ, Purysko AS. The combination of prostate MRI PI-RADS scoring system and a genomic classifier is associated with pelvic lymph node metastasis at the time of radical prostatectomy. Br J Radiol 2023; 96:20220663. [PMID: 36745009 PMCID: PMC10078867 DOI: 10.1259/bjr.20220663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Pelvic lymph node metastasis (PLNM) at the time of radical prostatectomy (RP) portends an unfavorable prognosis in prostate cancer patients. Conventional and advanced imaging remains limited in its ability to detect PLNM. We sought to evaluate the combination of a genomic classifier Decipher with Prostate Imaging Reporting and Data System (PI-RADS) scores in improving the detection of PLNM. METHODS A retrospective review was performed of patients whom underwent RP, Decipher analysis, and pre-operative prostate MRI. Categorical variables were compared using Pearson chi-squareχ2 tests. Quantitative variables were assessed with Wilcoxon rank-sum tests. Multivariable logistic regression was used to identify predictors of PLNM on final pathology. RESULTS In total, 202 patients were included in the analysis, 23 of whom (11%) had PLNM. Patients with PLNM had higher median Decipher scores (0.73) than those without PLNM (0.61; p = 0.003). Patients with PLNM were more likely to demonstrate PI-RADS scores ≥ 4 (96%) than those without PLNM (74%; p = 0.012). Logistic regression demonstrated an interaction between Decipher score with PI-RADS score ≥4 (OR = 20.41; 95% CI, 2.10-198.74; p = 0.009) The combination demonstrated an area under the curve (AUC) of 0.73 (95% CI, 0.63-0.82; p < 0.001) for predicting PLNM. CONCLUSION The combination of elevated Decipher genomic score (≥ 0.6) and clinically significant PI-RADS score (≥ 4) is associated with PLNM at the time of RP in a modern high-risk cohort of patients with PCaprostate cancer. ADVANCES IN KNOWLEDGE Prostate MRI and genomic testing may help identify patients with adverse pathology.
Collapse
Affiliation(s)
- Tarik Benidir
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zaeem Lone
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jane K Nguyen
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Robert J. Tomisch Pathology and Laboratory Medicine Institute, Cleveland Clinic, Ohio, USA
| | - Ryan Ward
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Martin Hofmann
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Omar Y Mian
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher J Weight
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrei S Purysko
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Hegde M, Naliyadhara N, Unnikrishnan J, Alqahtani MS, Abbas M, Girisa S, Sethi G, Kunnumakkara AB. Nanoparticles in the diagnosis and treatment of cancer metastases: Current and future perspectives. Cancer Lett 2023; 556:216066. [PMID: 36649823 DOI: 10.1016/j.canlet.2023.216066] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Metastasis accounts for greater than 90% of cancer-related deaths. Despite recent advancements in conventional chemotherapy, immunotherapy, targeted therapy, and their rational combinations, metastatic cancers remain essentially untreatable. The distinct obstacles to treat metastases include their small size, high multiplicity, redundancy, therapeutic resistance, and dissemination to multiple organs. Recent advancements in nanotechnology provide the numerous applications in the diagnosis and prophylaxis of metastatic diseases, including the small particle size to penetrate cell membrane and blood vessels and their capacity to transport complex molecular 'cargo' particles to various metastatic regions such as bones, brain, liver, lungs, and lymph nodes. Indeed, nanoparticles (NPs) have demonstrated a significant ability to target specific cells within these organs. In this regard, the purpose of this review is to summarize the present state of nanotechnology in terms of its application in the diagnosis and treatment of metastatic cancer. We intensively reviewed applications of NPs in fluorescent imaging, PET scanning, MRI, and photoacoustic imaging to detect metastasis in various cancer models. The use of targeted NPs for cancer ablation in conjunction with chemotherapy, photothermal treatment, immuno therapy, and combination therapy is thoroughly discussed. The current review also highlights the research opportunities and challenges of leveraging engineering technologies with cancer cell biology and pharmacology to fabricate nanoscience-based tools for treating metastases.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia; Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, 35712, Egypt
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
36
|
Senders ML, Calcagno C, Tawakol A, Nahrendorf M, Mulder WJM, Fayad ZA. PET/MR imaging of inflammation in atherosclerosis. Nat Biomed Eng 2023; 7:202-220. [PMID: 36522465 DOI: 10.1038/s41551-022-00970-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
Myocardial infarction, stroke, mental disorders, neurodegenerative processes, autoimmune diseases, cancer and the human immunodeficiency virus impact the haematopoietic system, which through immunity and inflammation may aggravate pre-existing atherosclerosis. The interplay between the haematopoietic system and its modulation of atherosclerosis has been studied by imaging the cardiovascular system and the activation of haematopoietic organs via scanners integrating positron emission tomography and resonance imaging (PET/MRI). In this Perspective, we review the applicability of integrated whole-body PET/MRI for the study of immune-mediated phenomena associated with haematopoietic activity and cardiovascular disease, and discuss the translational opportunities and challenges of the technology.
Collapse
Affiliation(s)
- Max L Senders
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Tawakol
- Cardiology Division and Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Willem J M Mulder
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
37
|
[Radiologic evaluation of lymph nodes in cancer patients]. CHIRURGIE (HEIDELBERG, GERMANY) 2023; 94:105-113. [PMID: 36633653 DOI: 10.1007/s00104-022-01802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND In solid tumors, the detection of locoregional lymph node metastases is of decisive importance not only for the prognosis but also for selecting the correct treatment. Various noninvasive imaging methods or, classically, lymph node dissection are available for this purpose. OBJECTIVE This article presents the general principles of noninvasive lymph node diagnostics and discusses the value of the clinically available imaging modalities, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET). In addition, recent new technical developments of each modality are highlighted. MATERIAL AND METHODS Literature search and summary of the clinical and scientific experience of the authors. RESULTS The available imaging procedures are divided into (1) morphological (US, CT, MRI) and (2) functional modalities (PET, special MRI). The former capture structural lymph node parameters, such as size and shape, while the latter address properties that go beyond morphology (e.g. glucose metabolism). The high diagnostic accuracy required for future treatment algorithms will require a combination of both aspects. DISCUSSION/CONCLUSION Currently, none of the available modalities have sufficient accuracy to replace lymph node dissection in all oncological scenarios. One of the major challenges for interdisciplinary oncological research is to define the optimal interaction between imaging and lymph node dissection for different malignancies and tumor stages.
Collapse
|
38
|
Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: Taking a Unique Position in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:574. [PMID: 36770535 PMCID: PMC9920911 DOI: 10.3390/nano13030574] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease-a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), Arab League St, Doha P.O. Box 24449, Qatar
| | - Łukasz Piszczyk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt
| | - Mashhoor Kattali
- Department of Biotechnology, EMEA College of Arts and Science, Kondotty 673638, India
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
39
|
Magnetic Nanomaterials Mediate Electromagnetic Stimulations of Nerves for Applications in Stem Cell and Cancer Treatments. J Funct Biomater 2023; 14:jfb14020058. [PMID: 36826857 PMCID: PMC9960824 DOI: 10.3390/jfb14020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Although some progress has been made in the treatment of cancer, challenges remain. In recent years, advancements in nanotechnology and stem cell therapy have provided new approaches for use in regenerative medicine and cancer treatment. Among them, magnetic nanomaterials have attracted widespread attention in the field of regenerative medicine and cancer; this is because they have high levels of safety and low levels of invasibility, promote stem cell differentiation, and affect biological nerve signals. In contrast to pure magnetic stimulation, magnetic nanomaterials can act as amplifiers of an applied electromagnetic field in vivo, and by generating different effects (thermal, electrical, magnetic, mechanical, etc.), the corresponding ion channels are activated, thus enabling the modulation of neuronal activity with higher levels of precision and local modulation. In this review, first, we focused on the relationship between biological nerve signals and stem cell differentiation, and tumor development. In addition, the effects of magnetic nanomaterials on biological neural signals and the tumor environment were discussed. Finally, we introduced the application of magnetic-nanomaterial-mediated electromagnetic stimulation in regenerative medicine and its potential in the field of cancer therapy.
Collapse
|
40
|
Zschiesche L, Janko C, Friedrich B, Frey B, Band J, Lyer S, Alexiou C, Unterweger H. Biocompatibility of Dextran-Coated 30 nm and 80 nm Sized SPIONs towards Monocytes, Dendritic Cells and Lymphocytes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:14. [PMID: 36615924 PMCID: PMC9823599 DOI: 10.3390/nano13010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Dextran-coated superparamagnetic iron oxide nanoparticles (SPIONDex) of various sizes can be used as contrast agents in magnetic resonance imaging (MRI) of different tissues, e.g., liver or atherosclerotic plaques, after intravenous injection. In previous studies, the blood compatibility and the absence of immunogenicity of SPIONDex was demonstrated. The investigation of the interference of SPIONDex with stimulated immune cell activation is the aim of this study. For this purpose, sterile and endotoxin-free SPIONDex with different hydrodynamic sizes (30 and 80 nm) were investigated for their effect on monocytes, dendritic cells (DC) and lymphocytes in concentrations up to 200 µg/mL, which would be administered for use as an imaging agent. The cells were analyzed using flow cytometry and brightfield microscopy. We found that SPIONDex were hardly taken up by THP-1 monocytes and did not reduce cell viability. In the presence of SPIONDex, the phagocytosis of zymosan and E. coli by THP-1 was dose-dependently reduced. SPIONDex neither induced the maturation of DCs nor interfered with their stimulated maturation. The particles did not induce lymphocyte proliferation or interfere with lymphocyte proliferation after stimulation. Since SPIONDex rapidly distribute via the blood circulation in vivo, high concentrations were only reached locally at the injection site immediately after application and only for a very limited time. Thus, SPIONDex can be considered immune compatible in doses required for use as an MRI contrast agent.
Collapse
Affiliation(s)
- Lisa Zschiesche
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
41
|
High-Accuracy Nodal Staging of Head and Neck Cancer With USPIO-Enhanced MRI: A New Reading Algorithm Based on Node-to-Node Matched Histopathology. Invest Radiol 2022; 57:810-818. [PMID: 35776432 PMCID: PMC9653098 DOI: 10.1097/rli.0000000000000902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) is a potential diagnostic tool for lymph node assessment in patients with head and neck cancer. Validation by radiologic-pathologic correlation is essential before the method is evaluated in clinical studies. In this study, MRI signal intensity patterns of lymph nodes are correlated to their histopathology to develop a new USPIO-enhanced MRI reading algorithm that can be used for nodal assessment in head and neck cancer patients. MATERIALS AND METHODS Ten head and neck cancer patients underwent in vivo USPIO-enhanced MRI before neck dissection. An ex vivo MRI of the neck dissection specimen was performed for precise coregistration of in vivo MRI with histopathology. Normal clinical histopathological workup was extended with meticulous matching of all lymph nodes regarded as potentially metastatic based on their in vivo MRI signal intensity pattern. On the basis of histopathology of resected nodes, in vivo MRI signal characteristics were defined separating benign from malignant lymph nodes. RESULTS Fifteen of 34 node-to-node correlated lymph nodes with remaining signal intensity on T2*-weighted MRI were histopathologically metastatic and 19 were benign. Radiological analysis revealed that metastatic lymph nodes showed equal or higher MRI signal intensity when compared with lipid tissue on T2*-weighted MGRE sequence (15/16 lymph nodes; 94%), whereas healthy lymph nodes showed lower (17/19 lymph nodes; 89%) or complete attenuation of signal intensity (273/279; 98%) when compared with lipid tissue on T2*-weighted MGRE. Histopathology of all resected specimens identified 392 lymph nodes. Six lymph nodes with (micro)metastases were missed with in vivo MRI. Whether these 6 lymph nodes were correlated to a nonmalignant lymph node on in vivo MRI or could not be detected at all is unclear. CONCLUSIONS We developed a new reading algorithm to differentiate benign from malignant lymph nodes in head and neck cancer patients on the basis of their appearance on high-resolution T2*-weighted USPIO-enhanced MRI. Next steps involve validation of our reading algorithm to further improve the accuracy of neck lymph node staging with USPIO-enhanced MRI in prospective clinical studies with larger number of patients.
Collapse
|
42
|
Kim JH, Bak SH, Yang HJ, Doo SW, Kim DK, Yang WJ, Kim SU, Lee HJ, Song YS. Improvement of erectile dysfunction using endothelial progenitor cells from fetal cerebral vasculature in the cavernous nerve injury of rats. Basic Clin Androl 2022; 32:21. [PMID: 36451096 PMCID: PMC9714194 DOI: 10.1186/s12610-022-00171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Because of limited differentiation to endothelium from mesenchymal stem cells, it has been strongly recommended to use endothelial progenitor cells for the regeneration of the damaged endothelium of corpora cavernosa. This study was performed to investigate the immortalized human cerebral endothelial cells and their capability for repairing erectile dysfunction in a rat model of cavernous nerve injury. Circulating endothelial progenitor cells were isolated from human fetal brain vasculature at the periventricular region of telencephalic tissues. Over 95% of CD 31-positive cells were sorted and cultured for 10 days. Human cerebral endothelial progenitor cells were injected into the cavernosa of rats with cavernous nerve injury. Erectile response was then assessed. In in vivo assays, rats were divided into three groups: group 1, sham operation: group 2, bilateral cavernous nerve injury: and group 3, treatment with human cerebral endothelial cells after cavernous nerve injury. RESULTS Established immortalized circulating endothelial progenitor cells showed expression of human telomerase reverse transcriptase transcript by RT-PCR. They also showed the expression of vascular endothelial growth factor, von Willebrand factor, vascular endothelial growth factor receptor, and CD31, cell type-specific markers for endothelial cells by RT-PCR. In in vitro angiogenesis assays, they demonstrated tube formation that suggested morphological properties of endothelial progenitor cells. In in vivo assays, impaired erectile function of rat with cavernous nerve injury recovered at 2, 4, and 12 weeks after transplantation of human cerebral endothelial cells into the cavernosa. CONCLUSIONS Telomerase reverse transcriptase-circulating endothelial progenitor cells from fetal brain vasculature could repair erectile dysfunction of rats with cavernous nerve injury.
Collapse
Affiliation(s)
- Jae Heon Kim
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| | - Sang Hong Bak
- Research Institute, e-Biogen Inc., Seoul, Republic of Korea
| | - Hee Jo Yang
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, Cheonan, Republic of Korea
| | - Seung Whan Doo
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| | - Do Kyung Kim
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| | - Won Jae Yang
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| | - Seung U. Kim
- grid.416957.80000 0004 0633 8774Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, Canada
| | - Hong J. Lee
- Research Institute, e-Biogen Inc., Seoul, Republic of Korea ,grid.254229.a0000 0000 9611 0917Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| | - Yun Seob Song
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| |
Collapse
|
43
|
The Application of Artificial Intelligence in Magnetic Hyperthermia Based Research. FUTURE INTERNET 2022. [DOI: 10.3390/fi14120356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The development of nanomedicine involves complex nanomaterial research involving magnetic nanomaterials and their use in magnetic hyperthermia. The selection of the optimal treatment strategies is time-consuming, expensive, unpredictable, and not consistently effective. Delivering personalized therapy that obtains maximal efficiency and minimal side effects is highly important. Thus, Artificial Intelligence (AI) based algorithms provide the opportunity to overcome these crucial issues. In this paper, we briefly overview the significance of the combination of AI-based methods, particularly the Machine Learning (ML) technique, with magnetic hyperthermia. We considered recent publications, reports, protocols, and review papers from Scopus and Web of Science Core Collection databases, considering the PRISMA-S review methodology on applying magnetic nanocarriers in magnetic hyperthermia. An algorithmic performance comparison in terms of their types and accuracy, data availability taking into account their amount, types, and quality was also carried out. Literature shows AI support of these studies from the physicochemical evaluation of nanocarriers, drug development and release, resistance prediction, dosing optimization, the combination of drug selection, pharmacokinetic profile characterization, and outcome prediction to the heat generation estimation. The papers reviewed here clearly illustrate that AI-based solutions can be considered as an effective supporting tool in drug delivery, including optimization and behavior of nanocarriers, both in vitro and in vivo, as well as the delivery process. Moreover, the direction of future research, including the prediction of optimal experiments and data curation initiatives has been indicated.
Collapse
|
44
|
Zamecnik P, Israel B, Feuerstein J, Nagarajah J, Gotthardt M, Barentsz JO, Hambrock T. Ferumoxtran-10-enhanced 3-T Magnetic Resonance Angiography of Pelvic Arteries: Initial Experience. Eur Urol Focus 2022; 8:1802-1808. [PMID: 35337778 DOI: 10.1016/j.euf.2022.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Patients with renal impairment cannot undergo angiography because iodine and gadolinium contrast agents are contraindicated. Iron-containing ultrasmall superparamagnetic iron oxide particles, such as ferumoxtran-10, are not contraindicated in these patients. Thus, patients with renal failure can still undergo angiography with ferumoxtran-10. OBJECTIVE To evaluate the visibility of pelvic vessels with magnetic resonance angiography (MRA) using ferumoxtran-10 as contrast agent. DESIGN, SETTING, AND PARTICIPANTS Three hundred and eighty-one patients diagnosed with primary or recurrent prostate cancer underwent pelvic ferumoxtran-10 MRA. Eleven anatomical pelvic-vessel segments per patient were evaluated using qualitative and quantitative criteria for image quality (IQ), vessel visibility (VV), and the contrast-to-noise ratio (CNR). INTERVENTION Ferumoxtran-10-enhaced MRA. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS IQ, VV, and CNR were assessed on a 5-point scale for each data set/vessel segment (very poor, poor, moderate, good, and excellent). RESULTS AND LIMITATIONS IQ was good to excellent for 98.2% of the data sets and VV was good to excellent for 97.7% of all vessel segments. The mean CNR for all segments was 88.13 (standard deviation 4.22). Contrast bolus imaging cannot be performed with this technique, so it is impossible to visualize the arterial or venous phase separately. The timing of contrast administration is also a limitation, with MRA performed 1 d after contrast infusion. CONCLUSIONS Ferumoxtran-10 MRA showed excellent image quality and visibility for pelvic vessels. In addition, the homogeneity of the intraluminal contrast was superior. Patients with preterminal or terminal renal function can benefit from ferumoxtran-10 MRA if visualization of their pelvic vessels is required. PATIENT SUMMARY Magnetic resonance imaging of blood vessels using a contrast agent called ferumoxtran-10 is a promising technique for patients with impaired kidney function, as it provides high-quality visualization of blood vessels in the pelvis.
Collapse
Affiliation(s)
- Patrik Zamecnik
- Department of Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Bas Israel
- Department of Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - James Nagarajah
- Department of Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jelle O Barentsz
- Department of Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Hambrock
- Department of Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Wang J, Kim H, Seo H, Ota S, You CY, Takemura Y, Bae S. The role of Co 2+cation addition in enhancing the AC heat induction power of (Co xMn 1-x)Fe 2O 4superparamagnetic nanoparticles. NANOTECHNOLOGY 2022; 33:485701. [PMID: 36001950 DOI: 10.1088/1361-6528/ac8c4b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The physical role of magnetically semi-hard Co2+cation addition in enhancing the AC heat induction temperature (TAC) or specific loss power (SLP) of solid (CoxMn1-x)Fe2O4superparamagnetic iron oxide nanoparticles (SPIONPs) was systematically investigated at the biologically safe and physiologically tolerable range ofHAC(HAC,safe= 1.12 × 109A m-1s-1,fappl= 100 kHz,Happl= 140 Oe (11.2 A m-1)) to demonstrate which physical parameter would be the most critical and dominant in enhancing theTAC(SLP) of SPIONPs. According to the experimentally and theoretically analyzed results, it was clearly demonstrated that the enhancement of magnetic anisotropy (Ku)-dependent AC magnetic softness including the Néel relaxation time constantτN(≈τeff, effective relaxation time constant), and its dependent out-of-phase magnetic susceptibilityχ″primarily caused by the Co2+cation addition is the most dominant parameter to enhance theTAC(SLP). This clarified result strongly suggests that the development of new design and synthesis methods enabling to significantly enhance theKuby improving the crystalline anisotropy, shape anisotropy, stress (magnetoelastic) anisotropy, thermally-induced anisotropy, and exchange anisotropy is the most critical to enhance theTAC(SLP) of SPIONPs at theHAC,safe(particularly at the lowerfappl< 120 kHz) for clinically safe magnetic nanoparticle hyperthermia.
Collapse
Affiliation(s)
- Jie Wang
- Nanobiomagnetics and Bioelectronics Laboratory (NB2L), Department of Electrical Engineering, University of South Carolina, Columbia, SC, 29208, United States of America
| | - Hyungsub Kim
- Nanobiomagnetics and Bioelectronics Laboratory (NB2L), Department of Electrical Engineering, University of South Carolina, Columbia, SC, 29208, United States of America
| | - HyeongJoo Seo
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Satoshi Ota
- Department of Electrical and Electronic Engineering, Shizuoka University, Hamamatsu 432-8561, Japan
| | - Chun-Yeol You
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Yasushi Takemura
- Department of Electrical and Computer Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Seongtae Bae
- Nanobiomagnetics and Bioelectronics Laboratory (NB2L), Department of Electrical Engineering, University of South Carolina, Columbia, SC, 29208, United States of America
| |
Collapse
|
46
|
Magnetic nanoparticles-based systems for multifaceted biomedical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Zhang W, Zhang Z, Lou S, Chang Z, Wen B, Zhang T. Hyaluronic Acid–Stabilized Fe3O4 Nanoparticles for Promoting In Vivo Magnetic Resonance Imaging of Tumors. Front Pharmacol 2022; 13:918819. [PMID: 35910362 PMCID: PMC9337838 DOI: 10.3389/fphar.2022.918819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
The use of iron oxide (Fe3O4) nanoparticles as novel contrast agents for magnetic resonance imaging (MRI) has attracted great interest due to their high r2 relaxivity. However, both poor colloidal stability and lack of effective targeting ability have impeded their further expansion in the clinics. Here, we reported the creation of hyaluronic acid (HA)-stabilized Fe3O4 nanoparticles prepared by a hydrothermal co-precipitation method and followed by electrostatic adsorption of HA onto the nanoparticle surface. The water-soluble HA functions not only as a stabilizer but also as a targeting ligand with high affinity for the CD44 receptor overexpressed in many tumors. The resulting HA-stabilized Fe3O4 nanoparticles have an estimated size of sub-20 nm as observed by transmission electron microscopy (TEM) imaging and exhibited long-term colloidal stability in aqueous solution. We found that the nanoparticles are hemocompatible and cytocompatible under certain concentrations. As verified by quantifying the cellular uptake, the Fe3O4@HA nanoparticles were able to target a model cell line (HeLa cells) overexpressing the CD44 receptor through an active pathway. In addition, we showed that the nanoparticles can be used as effective contrast agents for MRI both in vitro in HeLa cells and in vivo in a xenografted HeLa tumor model in rodents. We believe that our findings shed important light on the use of active targeting ligands to improve the contrast of lesion for tumor-specific MRI in the nano-based diagnosis systems.
Collapse
Affiliation(s)
- Weijie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Weijie Zhang,
| | - Zhongyue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shitong Lou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
48
|
Faiz K, Lam FC, Chen J, Kasper EM, Salehi F. The Emerging Applications of Nanotechnology in Neuroimaging: A Comprehensive Review. Front Bioeng Biotechnol 2022; 10:855195. [PMID: 35875504 PMCID: PMC9297121 DOI: 10.3389/fbioe.2022.855195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022] Open
Abstract
Neuroimaging modalities such as computer tomography and magnetic resonance imaging have greatly improved in their ability to achieve higher spatial resolution of neurovascular and soft tissue neuroanatomy, allowing for increased accuracy in the diagnosis of neurological conditions. However, the use of conventional contrast agents that have short tissue retention time and associated renal toxicities, or expensive radioisotope tracers that are not widely available, continue to limit the sensitivity of these imaging modalities. Nanoparticles can potentially address these shortcomings by enhancing tissue retention and improving signal intensity in the brain and neural axis. In this review, we discuss the use of different types of nanotechnology to improve the detection, diagnosis, and treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Khunza Faiz
- Department of Radiology, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada
| | - Fred C. Lam
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, United States
- Division of Neurosurgery, Saint Elizabeth Medical Center, Brighton, MA, United States
- *Correspondence: Fred C. Lam, ; Ekkehard M. Kasper, ; Fateme Salehi,
| | - Jay Chen
- Department of Radiology, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada
| | - Ekkehard M. Kasper
- Division of Neurosurgery, Saint Elizabeth Medical Center, Brighton, MA, United States
- *Correspondence: Fred C. Lam, ; Ekkehard M. Kasper, ; Fateme Salehi,
| | - Fateme Salehi
- Department of Radiology, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada
- *Correspondence: Fred C. Lam, ; Ekkehard M. Kasper, ; Fateme Salehi,
| |
Collapse
|
49
|
Huang R, Zhou X, Chen G, Su L, Liu Z, Zhou P, Weng J, Min Y. Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1800. [PMID: 35445588 DOI: 10.1002/wnan.1800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/12/2022]
Abstract
Functional nanomaterials have been widely used in biomedical fields due to their good biocompatibility, excellent physicochemical properties, easy surface modification, and easy regulation of size and morphology. Functional nanomaterials for magnetic resonance imaging (MRI) can target specific sites in vivo and more easily detect disease-related specific biomarkers at the molecular and cellular levels than traditional contrast agents, achieving a broad application prospect in MRI. This review focuses on the basic principles of MRI, the classification, synthesis and surface modification methods of contrast agents, and their clinical applications to provide guidance for designing novel contrast agents and optimizing the contrast effect. Furthermore, the latest biomedical advances of functional nanomaterials in medical diagnosis and disease detection, disease treatment, the combination of diagnosis and treatment (theranostics), multi-model imaging and nanozyme are also summarized and discussed. Finally, the bright application prospects of functional nanomaterials in biomedicine are emphasized and the urgent need to achieve significant breakthroughs in the industrial transformation and the clinical translation is proposed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ruijie Huang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xingyu Zhou
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Guiyuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Lanhong Su
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Zhaoji Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Peijie Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanzeng Min
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
50
|
Nitschke T, Stenhammar J, Wittkowski R. Collective guiding of acoustically propelled nano- and microparticles. NANOSCALE ADVANCES 2022; 4:2844-2856. [PMID: 36132012 PMCID: PMC9417943 DOI: 10.1039/d2na00007e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/05/2022] [Indexed: 06/01/2023]
Abstract
One of the most important potential applications of motile nano- and microdevices is targeted drug delivery. To realize this, biocompatible particles that can be guided collectively towards a target inside a patient's body are required. Acoustically propelled nano- and microparticles constitute a promising candidate for such biocompatible, artificial motile particles. The main remaining obstacle to targeted drug delivery by motile nano- and microdevices is to also achieve a reliable and biocompatible method for guiding them collectively to their target. Here, we propose such a method. As we confirm by computer simulations, it allows for the remote guiding of large numbers of acoustically propelled particles to a prescribed target by combining a space- and time-dependent acoustic field and a time-dependent magnetic field. The method works without detailed knowledge about the particle positions and for arbitrary initial particle distributions. With these features, it paves the way for the future application of motile particles as vehicles for targeted drug delivery in nanomedicine.
Collapse
Affiliation(s)
- Tobias Nitschke
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster 48149 Münster Germany
| | - Joakim Stenhammar
- Division of Physical Chemistry, Lund University SE-221 00 Lund Sweden
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster 48149 Münster Germany
| |
Collapse
|