1
|
Jabbour R, Raran-Kurussi S, Agarwal V, Equbal A. Tailoring solid-state DNP methods to the study of α-synuclein LLPS. Biophys Chem 2024; 313:107303. [PMID: 39126968 DOI: 10.1016/j.bpc.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Dynamic Nuclear Polarization (DNP) is a technique that leverages the quantum sensing capability of electron spins to enhance the sensitivity of nuclear magnetic resonance (NMR) signals, especially for insensitive samples. Glassing agents play a crucial role in the DNP process by facilitating the transfer of polarization from the unpaired electron spins to the nuclear spins along with cryoprotection of biomolecules. DNPjuice comprising of glycerol-d8/D2O/H2O has been extensively used for this purpose over the past two decades. Polyethylene glycol (PEG), also used as a cryoprotectant, is often used as a crowding agent in experimental setups to mimic cellular conditions, particularly the invitro preparation of liquid-liquid phase separated (LLPS) condensates. In this study, we investigate the efficacy of PEG as an alternative to glycerol in the DNP juice, critical for signal enhancement. The modified DNP matrix leads to high DNP enhancement which enables direct study of LLPS condensates by solid-state DNP methods without adding any external constituents. An indirect advantage of employing PEG is that the PEG signals appear at ∼72.5 ppm and are relatively well-separated from the aliphatic region of the protein spectra. Large cross-effect DNP enhancement is attained for 13C-glycine by employing the PEG-water mixture as a glassing agent and ASYMPOL-POK as the state-of-art polarizing agent, without any deuteration. The DNP enhancement and the buildup rates are similar to results obtained with DNP juice, conforming to that PEG serves as a good candidate for both inducing crowding and glassing agent in the study of LLPS.
Collapse
Affiliation(s)
- Ribal Jabbour
- Center for Quantum and Topological Systems, New York University Abu Dhabi, United Arab Emirates; Department of Chemistry, New York University Abu Dhabi, United Arab Emirates
| | | | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, Telangana, India.
| | - Asif Equbal
- Center for Quantum and Topological Systems, New York University Abu Dhabi, United Arab Emirates; Department of Chemistry, New York University Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Niccoli L, Casano G, Menzildjian G, Yulikov M, Robinson T, Akrial SE, Wang Z, Reiter C, Purea A, Siri D, Venkatesh A, Emsley L, Gajan D, Lelli M, Ouari O, Lesage A. Efficient DNP at high fields and fast MAS with antenna-sensitized dinitroxides. Chem Sci 2024:d4sc04473h. [PMID: 39309076 PMCID: PMC11411413 DOI: 10.1039/d4sc04473h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Dynamic Nuclear Polarization (DNP) can significantly enhance the sensitivity of solid-state NMR. In DNP, microwave irradiation induces polarization transfer from unpaired electron spins to 1H nuclear spins via hyperfine couplings and spin-diffusion. The structure of the polarizing agents that host the electron spins is key for DNP efficiency. Currently, only a handful of structures perform well at very high magnetic fields (≥18.8 T), and enhancements are significantly lower than those obtained at lower fields. Here, we introduce a new series of water-soluble nitroxide biradicals with a scaffold augmented by dihydroxypropyl antenna chains that perform significantly better than previous dinitroxides at 18.8 T. The new radical M-TinyPol(OH)4 yields enhancement factors of ∼220 at 18.8 T and 60 kHz MAS, which is a nearly factor 2 larger than for the previous best performing dinitroxides. The performance is understood through 2H ESEEM measurements to probe solvent accessibility, supported by Molecular Dynamics simulations, and by experiments on deuterated samples. We find that the deuterated glycerol molecules in the matrix are located mainly in the second solvation shell of the NO bond, limiting access for protonated water molecules, and restricting spin diffusion pathways. This provides a rational understanding of why the dihydroxypropyl chains present in the best-performing structures are essential to deliver the polarization to the bulk solution.
Collapse
Affiliation(s)
- Lorenzo Niccoli
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
- Center of Magnetic Resonance (CERM), University of Florence 50019 Sesto Fiorentino Italy
- Department of Chemistry 'Ugo Schiff', University of Florence Via della Lastruccia 13 50019 Sesto Fiorentino FI Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP) Via Luigi Sacconi 6 50019 Sesto Fiorentino FI Italy
| | | | - Georges Menzildjian
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich CH-8093 Zürich Switzerland
| | - Thomas Robinson
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
| | - Salah-Eddine Akrial
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
| | - Zhuoran Wang
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
| | | | | | - Didier Siri
- Aix Marseille Uni, CNRS, ICR 13013 Marseille France
| | - Amrit Venkatesh
- Laboratory of Magnetic Resonance, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
- National High Magnetic Field Laboratory, Florida State University Tallahassee FL 32310 USA
| | - Lyndon Emsley
- Laboratory of Magnetic Resonance, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - David Gajan
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
| | - Moreno Lelli
- Center of Magnetic Resonance (CERM), University of Florence 50019 Sesto Fiorentino Italy
- Department of Chemistry 'Ugo Schiff', University of Florence Via della Lastruccia 13 50019 Sesto Fiorentino FI Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP) Via Luigi Sacconi 6 50019 Sesto Fiorentino FI Italy
| | | | - Anne Lesage
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
| |
Collapse
|
3
|
Nir-Arad O, Fialkov AB, Shlomi DH, Manukovsky N, Mentink-Vigier F, Kaminker I. High-field pulsed EPR spectroscopy under magic angle spinning. SCIENCE ADVANCES 2024; 10:eadq6073. [PMID: 39213356 PMCID: PMC11364107 DOI: 10.1126/sciadv.adq6073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
In this work, we demonstrate the first pulsed electron paramagnetic resonance (EPR) experiments performed under magic angle spinning (MAS) at high magnetic field. Unlike nuclear magnetic resonance (NMR) and dynamic nuclear polarization (DNP), commonly performed at high magnetic fields and under MAS to maximize sensitivity and resolution, EPR is usually measured at low magnetic fields and, with the exception of the Spiess group work in the late 1990s, never under MAS, due to great instrumentational challenges. This hampers the investigation of DNP mechanisms, in which electron spin dynamics play a central role, because no experimental data about the latter under DNP-characteristic conditions are available. We hereby present our dedicated, homebuilt MAS-EPR probehead and show the pulsed MAS-EPR spectra of P1 center diamond defect recorded at 7 tesla. Our results reveal unique effects of MAS on EPR line shape, intensity, and signal dephasing. Time-domain simulations reproduce the observed changes in the line shapes and the trends in the signal intensity.
Collapse
Affiliation(s)
- Orit Nir-Arad
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | | | - David H. Shlomi
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Nurit Manukovsky
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Ilia Kaminker
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| |
Collapse
|
4
|
Scott FJ, Dubroca T, Schurko RW, Hill S, Long JR, Mentink-Vigier F. Characterization of dielectric properties and their impact on MAS-DNP NMR applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107742. [PMID: 39116460 DOI: 10.1016/j.jmr.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 07/13/2024] [Indexed: 08/10/2024]
Abstract
The dielectric properties of materials play a crucial role in the propagation and absorption of microwave beams employed in Magic Angle Spinning - Dynamic Nuclear Polarization (MAS-DNP) NMR experiments. Despite ongoing optimization efforts in sample preparation, routine MAS-DNP NMR applications often fall short of theoretical sensitivity limits. Offering a different perspective, we report the refractive indices and extinction coefficients of diverse materials used in MAS-DNP NMR experiments, spanning a frequency range from 70 to 960 GHz. Knowledge of their dielectric properties enables the accurate simulation of electron nutation frequencies, thereby guiding the design of more efficient hardware and sample preparation of biological or material samples. This is illustrated experimentally for four different rotor materials (sapphire, yttria-stabilized zirconia (YSZ), aluminum nitride (AlN), and SiAlON ceramics) used for DNP at 395 GHz/1H 600 MHz. Finally, electromagnetic simulations and state-of-the-art MAS-DNP numerical simulations provide a rational explanation for the observed magnetic field dependence of the enhancement when using nitroxide biradicals, offering insights that will improve MAS-DNP NMR at high magnetic fields.
Collapse
Affiliation(s)
- Faith J Scott
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA
| | - Robert W Schurko
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA; Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Joanna R Long
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA; Department of Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, USA.
| | - Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA.
| |
Collapse
|
5
|
Millen M, Alaniva N, Saliba EP, Overall SA, Däpp A, Pagonakis IG, Sigurdsson ST, Björgvinsdóttir S, Barnes AB. Frequency-Chirped Magic Angle Spinning Dynamic Nuclear Polarization Combined with Electron Decoupling. J Phys Chem Lett 2024; 15:7228-7235. [PMID: 38975905 PMCID: PMC11261599 DOI: 10.1021/acs.jpclett.4c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Magic angle spinning (MAS) dynamic nuclear polarization (DNP) increases the signal intensity of solid-state nuclear magnetic resonance. DNP typically uses continuous wave (CW) microwave irradiation close to the resonance frequency of unpaired electron spins. In this study, we demonstrate that frequency-chirped microwaves improve DNP performance under MAS. By modulating the gyrotron anode potential, we generate a train of microwave chirps with a maximum bandwidth of 310 MHz and a maximum incident power on the spinning sample of 18 W. We characterize the efficiency of chirped DNP using the following polarizing agents: TEMTriPol-1, AsymPolPOK, AMUPol, and Finland trityl. The effects of different chirp widths and periods are analyzed at different MAS frequencies and microwave powers. Furthermore, we show that chirped DNP can be combined with electron decoupling to improve signal intensity by 59%, compared to CW DNP without electron decoupling, using Finland trityl as a polarizing agent.
Collapse
Affiliation(s)
- Marthe Millen
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Nicholas Alaniva
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Edward P. Saliba
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Sarah A. Overall
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Alexander Däpp
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ioannis Gr. Pagonakis
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | | | - Snædís Björgvinsdóttir
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Alexander B. Barnes
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Chatterjee S, Venkatesh A, Sigurdsson ST, Mentink-Vigier F. Role of Protons in and around Strongly Coupled Nitroxide Biradicals for Cross-Effect Dynamic Nuclear Polarization. J Phys Chem Lett 2024; 15:2160-2168. [PMID: 38364262 DOI: 10.1021/acs.jpclett.3c03472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
In magic angle spinning dynamic nuclear polarization (DNP), biradicals such as bis-nitroxides are used to hyperpolarize protons under microwave irradiation through the cross-effect mechanism. This mechanism relies on electron-electron spin interactions (dipolar coupling and exchange interaction) and electron-nuclear spin interactions (hyperfine coupling) to hyperpolarize the protons surrounding the biradical. This hyperpolarization is then transferred to the bulk sample via nuclear spin diffusion. However, the involvement of the protons in the biradical in the cross-effect DNP process has been under debate. In this work, we address this question by exploring the hyperpolarization pathways in and around bis-nitroxides. We demonstrate that for biradicals with strong electron-electron interactions, as in the case of the AsymPols, the protons on the biradical may not be necessary to quickly generate hyperpolarization. Instead, such biradicals can efficiently, and directly, polarize the surrounding protons of the solvent. The findings should impact the design of the next generation of biradicals.
Collapse
Affiliation(s)
- Satyaki Chatterjee
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Amrit Venkatesh
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
7
|
Harrabi R, Halbritter T, Alarab S, Chatterjee S, Wolska-Pietkiewicz M, Damodaran KK, van Tol J, Lee D, Paul S, Hediger S, Sigurdsson ST, Mentink-Vigier F, De Paëpe G. AsymPol-TEKs as efficient polarizing agents for MAS-DNP in glass matrices of non-aqueous solvents. Phys Chem Chem Phys 2024; 26:5669-5682. [PMID: 38288878 PMCID: PMC10849081 DOI: 10.1039/d3cp04271e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Two polarizing agents from the AsymPol family, AsymPol-TEK and cAsymPol-TEK (methyl-free version) are introduced for MAS-DNP applications in non-aqueous solvents. The performance of these new biradicals is rationalized in detail using a combination of electron paramagnetic resonance spectroscopy, density functional theory, molecular dynamics and quantitative MAS-DNP spin dynamics simulations. By slightly modifying the experimental protocol to keep the sample temperature low at insertion, we are able to obtain reproducable DNP-NMR data with 1,1,2,2-tetrachloroethane (TCE) at 100 K, which facilitates optimization and comparison of different polarizing agents. At intermediate magnetic fields, AsymPol-TEK and cAsymPol-TEK provide 1.5 to 3-fold improvement in sensitivity compared to TEKPol, one of the most widely used polarizing agents for organic solvents, with significantly shorter DNP build-up times of ∼1 s and ∼2 s at 9.4 and 14.1 T respectively. In the course of the work, we also isolated and characterized two diastereoisomers that can form during the synthesis of AsymPol-TEK; their difference in performance is described and discussed. Finally, the advantages of the AsymPol-TEKs are demonstrated by recording 2D 13C-13C correlation experiments at natural 13C-abundance of proton-dense microcrystals and by polarizing the surface of ZnO nanocrystals (NCs) coated with diphenyl phosphate ligands. For those experiments, cAsymPol-TEK yielded a three-fold increase in sensitivity compared to TEKPol, corresponding to a nine-fold time saving.
Collapse
Affiliation(s)
- Rania Harrabi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Thomas Halbritter
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Shadi Alarab
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Satyaki Chatterjee
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | | | - Krishna K Damodaran
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA.
| | - Daniel Lee
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Subhradip Paul
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA.
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| |
Collapse
|
8
|
Ferrer F, Juramy M, Jabbour R, Cousin S, Ziarelli F, Mollica G, Thureau P, Viel S. Polarization Amplification in Dynamic Nuclear Polarization Magic-Angle Spinning Solid-State Nuclear Magnetic Resonance by Solubilizing Traditional Ionic Salts. J Phys Chem Lett 2023; 14:9619-9623. [PMID: 37870262 DOI: 10.1021/acs.jpclett.3c02455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Dynamic nuclear polarization can improve the sensitivity of magic-angle spinning solid-state NMR experiments by 1-2 orders of magnitude. In aqueous media, experiments are usually performed using the so-called DNP juice, a glycerol-d8/D2O/H2O mixture (60/30/10, v/v/v) that can form a homogeneous glass at cryogenic temperatures. This acts as a cryoprotectant and prevents phase separation of the paramagnetic polarizing agents (PAs) that are added to the mixture to provide the source of electron spin polarization required for DNP. Here, we show that relatively high 1H DNP enhancements (∼60) can also be obtained in water without glycerol (or other glass forming agents) simply by dissolving high concentrations of electrolytes (such as NaCl or LiCl), which perturb the otherwise unavoidable ice crystallization observed upon cooling, thereby reducing PA phase separation and restoring DNP efficiency.
Collapse
Affiliation(s)
| | - Marie Juramy
- Aix-Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Ribal Jabbour
- Aix-Marseille Univ, CNRS, Centrale Méditerranée, FSCM, 13013 Marseille, France
| | - Samuel Cousin
- Aix-Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Fabio Ziarelli
- Aix-Marseille Univ, CNRS, Centrale Méditerranée, FSCM, 13013 Marseille, France
| | | | | | - Stéphane Viel
- Aix-Marseille Univ, CNRS, ICR, 13013, Marseille, France
| |
Collapse
|
9
|
Paul S, Bouleau E, Reynard-Feytis Q, Arnaud JP, Bancel F, Rollet B, Dalban-Moreynas P, Reiter C, Purea A, Engelke F, Hediger S, De Paëpe G. Sustainable and cost-effective MAS DNP-NMR at 30 K with cryogenic sample exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 356:107561. [PMID: 37837749 DOI: 10.1016/j.jmr.2023.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
We report here instrumental developments to achieve sustainable, cost-effective cryogenic Helium sample spinning in order to conduct dynamic nuclear polarisation (DNP) and solid-state NMR (ssNMR) at ultra-low temperatures (<30 K). More specifically, we describe an efficient closed-loop helium system composed of a powerful heat exchanger (95% efficient), a single cryocooler, and a single helium compressor to power the sample spinning and cooling. The system is integrated with a newly designed triple-channel NMR probe that minimizes thermal losses without compromising the radio frequency (RF) performance and spinning stability (±0.05%). The probe is equipped with an innovative cryogenic sample exchange system that allows swapping samples in minutes without introducing impurities in the closeloop system. We report that significant gain in sensitivity can be obtained at 30-40 K on large micro-crystalline molecules with unfavorable relaxation timescales, making them difficult or impossible to polarize at 100 K. We also report rotor-synchronized 2D experiments to demonstrate the stability of the system.
Collapse
Affiliation(s)
- Subhradip Paul
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France
| | - Eric Bouleau
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | | | | | - Florian Bancel
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | - Bertrand Rollet
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | | | | | | | | | - Sabine Hediger
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| |
Collapse
|
10
|
Biedenbänder T, Bensons ER, Corzilius B. Serial Polarization Transfer by Combination of Cross-Relaxation and Rotational Resonance for Sensitivity-Enhanced Solid-State NMR. Chemphyschem 2023; 24:e202300206. [PMID: 37306393 DOI: 10.1002/cphc.202300206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
Methods which induce site-specificity and sensitivity enhancement in solid-state magic-angle spinning NMR spectroscopy become more important for structural biology due to the increasing size of molecules under investigation. Recently, several strategies have been developed to increase site specificity and thus reduce signal overlap. Under dynamic nuclear polarization (DNP) for NMR signal enhancement, it is possible to use cross-relaxation transfer induced by select dynamic groups within the molecules which is exploited by SCREAM-DNP (Specific Cross Relaxation Enhancement by Active Motions under DNP). Here, we present an approach where we additionally reintroduce the homonuclear dipolar coupling with rotational resonance (R2 ) during SCREAM-DNP to further boost the selectivity of the experiment. Detailed analysis of the polarization buildup dynamics of 13 C-methyl polarization source and 13 C-carbonyl target in 2-13 C-ethyl 1-13 C-acetate provides information about the sought-after and spurious transfer pathways. We show that dipolar-recoupled transfer rates greatly exceed the DNP buildup dynamics in our model system, indicating that significantly larger distances can be selectively and efficiently hyperpolarized.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany
| | - Edvards R Bensons
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29, 18059, Rostock, Germany
| |
Collapse
|
11
|
Menzildjian G, Schlagnitweit J, Casano G, Ouari O, Gajan D, Lesage A. Polarizing agents for efficient high field DNP solid-state NMR spectroscopy under magic-angle spinning: from design principles to formulation strategies. Chem Sci 2023; 14:6120-6148. [PMID: 37325158 PMCID: PMC10266460 DOI: 10.1039/d3sc01079a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Dynamic Nuclear Polarization (DNP) has recently emerged as a cornerstone approach to enhance the sensitivity of solid-state NMR spectroscopy under Magic Angle Spinning (MAS), opening unprecedented analytical opportunities in chemistry and biology. DNP relies on a polarization transfer from unpaired electrons (present in endogenous or exogenous polarizing agents) to nearby nuclei. Developing and designing new polarizing sources for DNP solid-state NMR spectroscopy is currently an extremely active research field per se, that has recently led to significant breakthroughs and key achievements, in particular at high magnetic fields. This review describes recent developments in this area, highlighting key design principles that have been established over time and led to the introduction of increasingly more efficient polarizing sources. After a short introduction, Section 2 presents a brief history of solid-state DNP, highlighting the main polarization transfer schemes. The third section is devoted to the development of dinitroxide radicals, discussing the guidelines that were progressively established to design the fine-tuned molecular structures in use today. In Section 4, we describe recent efforts in developing hybrid radicals composed of a narrow EPR line radical covalently linked to a nitroxide, highlighting the parameters that modulate the DNP efficiency of these mixed structures. Section 5 reviews recent advances in the design of metal complexes suitable for DNP MAS NMR as exogenous electron sources. In parallel, current strategies that exploit metal ions as endogenous polarization sources are discussed. Section 6 briefly describes the recent introduction of mixed-valence radicals. In the last part, experimental aspects regarding sample formulation are reviewed to make best use of these polarizing agents in a broad panel of application fields.
Collapse
Affiliation(s)
- Georges Menzildjian
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Judith Schlagnitweit
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Gilles Casano
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - David Gajan
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Anne Lesage
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| |
Collapse
|
12
|
Berruyer P, Cibaka-Ndaya C, Pinon A, Sanchez C, Drisko GL, Emsley L. Imaging Radial Distribution Functions of Complex Particles by Relayed Dynamic Nuclear Polarization. J Am Chem Soc 2023; 145:9700-9707. [PMID: 37075271 PMCID: PMC10760979 DOI: 10.1021/jacs.3c01279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 04/21/2023]
Abstract
The physical properties of many modern multi-component materials are determined by their internal microstructure. Tools capable of characterizing complex nanoscale architectures in composite materials are, therefore, essential to design materials with targeted properties. Depending on the morphology and the composition, structures may be measured by laser diffraction, scattering methods, or by electron microscopy. However, it can be difficult to obtain contrast in materials where all the components are organic, which is typically the case for formulated pharmaceuticals, or multi-domain polymers. In nuclear magnetic resonance (NMR) spectroscopy, chemical shifts allow a clear distinction between organic components and can in principle provide the required chemical contrast. Here, we introduce a method to obtain radial images of the internal structure of multi-component particles from NMR measurements of the relay of nuclear hyperpolarization obtained from dynamic nuclear polarization. The method is demonstrated on two samples of hybrid core-shell particles composed of a core of polystyrene with a shell of mesostructured silica filled with the templating agent CTAB and is shown to yield accurate images of the core-shell structures with a nanometer resolution.
Collapse
Affiliation(s)
- Pierrick Berruyer
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Cynthia Cibaka-Ndaya
- Université
de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France
| | - Arthur Pinon
- Swedish
NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 41390, Sweden
| | - Clément Sanchez
- Sorbonne
Université, CNRS, Collège de France, UMR 7574, Chimie
de la Matière Condensée de Paris, Paris F-75005, France
- Institute
for Advanced Study (USIAS), University of
Strasbourg, Strasbourg 67083, France
- University
of Bordeaux, Pessac F-33600, France
| | - Glenna L. Drisko
- Université
de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
13
|
Dervişoğlu R, Antonschmidt L, Nimerovsky E, Sant V, Kim M, Ryazanov S, Leonov A, Carlos Fuentes-Monteverde J, Wegstroth M, Giller K, Mathies G, Giese A, Becker S, Griesinger C, Andreas LB. Anle138b interaction in α-synuclein aggregates by dynamic nuclear polarization NMR. Methods 2023; 214:18-27. [PMID: 37037308 DOI: 10.1016/j.ymeth.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Small molecules that bind to oligomeric protein species such as membrane proteins and fibrils are of clinical interest for development of therapeutics and diagnostics. Definition of the binding site at atomic resolution via NMR is often challenging due to low binding stoichiometry of the small molecule. For fibrils and aggregation intermediates grown in the presence of lipids, we report atomic-resolution contacts to the small molecule at sub nm distance via solid-state NMR using dynamic nuclear polarization (DNP) and orthogonally labelled samples of the protein and the small molecule. We apply this approach to α-synuclein (αS) aggregates in complex with the small molecule anle138b, which is a clinical drug candidate for disease modifying therapy. The small central pyrazole moiety of anle138b is detected in close proximity to the protein backbone and differences in the contacts between fibrils and early intermediates are observed. For intermediate species, the 100 K condition for DNP helps to preserve the aggregation state, while for both fibrils and oligomers, the DNP enhancement is essential to obtain sufficient sensitivity.
Collapse
Affiliation(s)
- Rıza Dervişoğlu
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Leif Antonschmidt
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Evgeny Nimerovsky
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vrinda Sant
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Myeongkyu Kim
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sergey Ryazanov
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Andrei Leonov
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | | | - Melanie Wegstroth
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karin Giller
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Stefan Becker
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
14
|
Thomas B, Jardón-Álvarez D, Carmieli R, van Tol J, Leskes M. The Effect of Disorder on Endogenous MAS-DNP: Study of Silicate Glasses and Crystals. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:4759-4772. [PMID: 36925559 PMCID: PMC10009812 DOI: 10.1021/acs.jpcc.2c08849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/05/2023] [Indexed: 06/18/2023]
Abstract
In dynamic nuclear polarization nuclear magnetic resonance (DNP-NMR) experiments, the large Boltzmann polarization of unpaired electrons is transferred to surrounding nuclei, leading to a significant increase in the sensitivity of the NMR signal. In order to obtain large polarization gains in the bulk of inorganic samples, paramagnetic metal ions are introduced as minor dopants acting as polarizing agents. While this approach has been shown to be very efficient in crystalline inorganic oxides, significantly lower enhancements have been reported when applying this approach to oxide glasses. In order to rationalize the origin of the difference in the efficiency of DNP in amorphous and crystalline inorganic matrices, we performed a detailed comparison in terms of their magnetic resonance properties. To diminish differences in the DNP performance arising from distinct nuclear interactions, glass and crystal systems of similar compositions were chosen, Li2OCaO·2SiO2 and Li2CaSiO4, respectively. Using Gd(III) as polarizing agent, DNP provided signal enhancements in the range of 100 for the crystalline sample, while only up to around factor 5 in the glass, for both 6Li and 29Si nuclei. We find that the drop in enhancement in glasses can be attributed to three main factors: shorter nuclear and electron relaxation times as well as the dielectric properties of glass and crystal. The amorphous nature of the glass sample is responsible for a high dielectric loss, leading to efficient microwave absorption and consequently lower effective microwave power and an increase in sample temperature which leads to further reduction of the electron relaxation time. These results help rationalize the observed sensitivity enhancements and provide guidance in identifying materials that could benefit from the DNP approach.
Collapse
Affiliation(s)
- Brijith Thomas
- Department
of Molecular Chemistry & Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniel Jardón-Álvarez
- Department
of Molecular Chemistry & Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Johan van Tol
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Michal Leskes
- Department
of Molecular Chemistry & Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
15
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
16
|
Smith AN, Harrabi R, Halbritter T, Lee D, Aussenac F, van der Wel PCA, Hediger S, Sigurdsson ST, De Paëpe G. Fast magic angle spinning for the characterization of milligram quantities of organic and biological solids at natural isotopic abundance by 13C- 13C correlation DNP-enhanced NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 123:101850. [PMID: 36592488 DOI: 10.1016/j.ssnmr.2022.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
We show that multidimensional solid-state NMR 13C-13C correlation spectra of biomolecular assemblies and microcrystalline organic molecules can be acquired at natural isotopic abundance with only milligram quantities of sample. These experiments combine fast Magic Angle Spinning of the sample, low-power dipolar recoupling, and dynamic nuclear polarization performed with AsymPol biradicals, a recently introduced family of polarizing agents. Such experiments are essential for structural characterization as they provide short- and long-range distance information. This approach is demonstrated on diverse sample types, including polyglutamine fibrils implicated in Huntington's disease and microcrystalline ampicillin, a small antibiotic molecule.
Collapse
Affiliation(s)
- Adam N Smith
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Rania Harrabi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Thomas Halbritter
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107, Reykjavik, Iceland
| | - Daniel Lee
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | | | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107, Reykjavik, Iceland
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France.
| |
Collapse
|
17
|
Gan Z. An analytical treatment of electron spectral saturation for dynamic nuclear polarization NMR of rotating solids. J Chem Phys 2023; 158:024114. [PMID: 36641384 DOI: 10.1063/5.0109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Saturation of electron magnetization by microwave irradiation under magic-angle spinning (MAS) is studied theoretically. The saturation is essential for dynamic nuclear polarization (DNP) enhancement of nuclear magnetic resonance signals. For a spin with a large g-anisotropy and a long T1 relative to the rotor period, the sample rotation distributes saturation to the whole powder sample spectrum. Analytical expressions for the saturation and frequency profiles are obtained. For a pair of coupled electrons such as those in bis-nitroxides, which are commonly used for MAS DNP, an el-er model (where el and er stand for electrons on the left and the right, respectively, in their spectral positions) is introduced to simplify the analysis of a coupled two-spin system under MAS. For such a system, strong electron couplings exchange magnetization during dipolar/J rotor events when the two electron frequencies cross each other. The exchange is equivalent to a swap of the el and er electrons. This allows for the treatment of a coupled spin pair as two independent spins such that an analytical solution can be obtained for the steady-state magnetization and the difference between the two electrons. The theoretical study with its analytical result provides a simple physical picture of electron saturation under MAS and of how radical properties and experimental parameters affect cross-effect DNP. The effects of depolarization and the extension to more coupled electron spins are also discussed using this approach.
Collapse
Affiliation(s)
- Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| |
Collapse
|
18
|
Yau WM, Blake Wilson C, Jeon J, Tycko R. Nitroxide-based triradical dopants for efficient low-temperature dynamic nuclear polarization in aqueous solutions over a broad pH range. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107284. [PMID: 35986970 PMCID: PMC9463097 DOI: 10.1016/j.jmr.2022.107284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 05/31/2023]
Abstract
Dynamic nuclear polarization (DNP) can provide substantial sensitivity enhancements in solid state nuclear magnetic resonance (ssNMR) measurements on frozen solutions, thereby enabling experiments that would otherwise be impractical. Previous work has shown that nitroxide-based triradical compounds are particularly effective as dopants in DNP-enhanced measurements at moderate magic-angle spinning frequencies and moderate magnetic field strengths, generally leading to a more rapid build-up of nuclear spin polarizations under microwave irradiation than the more common biradical dopants at the same electron spin concentrations. Here we report the synthesis and DNP performance at 25 K and 9.41 T for two new triradical compounds, sulfoacetyl-DOTOPA and PEG12-DOTOPA. Under our experimental conditions, these compounds exhibit ssNMR signal enhancements and DNP build-up times that are nearly identical to those of previously described triradical dopants. Moreover, these compounds have high solubility in aqueous buffers and water/glycerol mixtures at both acidic and basic pH values, making them useful in a wide variety of experiments on biomolecular systems.
Collapse
Affiliation(s)
- Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
19
|
Kundu K, Dubroca T, Rane V, Mentink-Vigier F. Spinning-Driven Dynamic Nuclear Polarization with Optical Pumping. J Phys Chem A 2022; 126:2600-2608. [PMID: 35417169 PMCID: PMC9121629 DOI: 10.1021/acs.jpca.2c01559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We propose a new, more efficient, and potentially cost effective, solid-state nuclear spin hyperpolarization method combining the cross-effect mechanism and electron spin optical hyperpolarization in rotating solids. We first demonstrate optical hyperpolarization in the solid state at low temperatures and low field and then investigate its field dependence to obtain the optimal condition for high-field electron spin hyperpolarization. The results are then incorporated into advanced magic-angle spinning dynamic nuclear polarization (MAS-DNP) numerical simulations that show that optically pumped MAS-DNP could yield breakthrough enhancements at very high magnetic fields. Based on these investigations, enhancements greater than the ratio of electron to nucleus magnetic moments (>658 for 1H) are possible without microwave irradiation. This could solve at once the MAS-DNP performance decrease with increasing field and the high cost of MAS-DNP instruments at very high fields.
Collapse
Affiliation(s)
- Krishnendu Kundu
- National High Magnetic Field Laboratory, Florida State University, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Florida State University, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Vinayak Rane
- Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
20
|
Chow WY, De Paëpe G, Hediger S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chem Rev 2022; 122:9795-9847. [PMID: 35446555 DOI: 10.1021/acs.chemrev.1c01043] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.
Collapse
Affiliation(s)
- Wing Ying Chow
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Inst. Biol. Struct. IBS, 38044 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| |
Collapse
|
21
|
Perras FA, Carnahan SL, Lo WS, Ward CJ, Yu J, Huang W, Rossini AJ. Hybrid quantum-classical simulations of magic angle spinning dynamic nuclear polarization in very large spin systems. J Chem Phys 2022; 156:124112. [DOI: 10.1063/5.0086530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Solid-state nuclear magnetic resonance can be enhanced using unpaired electron spins with a method known as dynamic nuclear polarization (DNP). Fundamentally, DNP involves ensembles of thousands of spins, a scale that is difficult to match computationally. This scale prevents us from gaining a complete understanding of the spin dynamics and applying simulations to design sample formulations. We recently developed an ab initio model capable of calculating DNP enhancements in systems of up to ∼1000 nuclei; however, this scale is insufficient to accurately simulate the dependence of DNP enhancements on radical concentration or magic angle spinning (MAS) frequency. We build on this work by using ab initio simulations to train a hybrid model that makes use of a rate matrix to treat nuclear spin diffusion. We show that this model can reproduce the MAS rate and concentration dependence of DNP enhancements and build-up time constants. We then apply it to predict the DNP enhancements in core–shell metal-organic-framework nanoparticles and reveal new insights into the composition of the particles’ shells.
Collapse
Affiliation(s)
| | - Scott L. Carnahan
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Wei-Shang Lo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Charles J. Ward
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Jiaqi Yu
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Wenyu Huang
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Aaron J. Rossini
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
22
|
Harrabi R, Halbritter T, Aussenac F, Dakhlaoui O, van Tol J, Damodaran KK, Lee D, Paul S, Hediger S, Mentink-Vigier F, Sigurdsson ST, De Paëpe G. Highly Efficient Polarizing Agents for MAS-DNP of Proton-Dense Molecular Solids. Angew Chem Int Ed Engl 2022; 61:e202114103. [PMID: 35019217 PMCID: PMC8901535 DOI: 10.1002/anie.202114103] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Efficiently hyperpolarizing proton-dense molecular solids through dynamic nuclear polarization (DNP) solid-state NMR is still an unmet challenge. Polarizing agents (PAs) developed so far do not perform well on proton-rich systems, such as organic microcrystals and biomolecular assemblies. Herein we introduce a new PA, cAsymPol-POK, and report outstanding hyperpolarization efficiency on 12.76 kDa U-13 C,15 N-labeled LecA protein and pharmaceutical drugs at high magnetic fields (up to 18.8 T) and fast magic angle spinning (MAS) frequencies (up to 40 kHz). The performance of cAsymPol-POK is rationalized by MAS-DNP simulations combined with electron paramagnetic resonance (EPR), density functional theory (DFT) and molecular dynamics (MD). This work shows that this new biradical is compatible with challenging biomolecular applications and unlocks the rapid acquisition of 13 C-13 C and 15 N-13 C correlations of pharmaceutical drugs at natural isotopic abundance, which are key experiments for structure determination.
Collapse
Affiliation(s)
- Rania Harrabi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Thomas Halbritter
- University of Iceland, Department of chemistry, Science Institute, Dunhaga 3, 107, Reykjavik, Iceland
| | | | - Ons Dakhlaoui
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France.,Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA
| | - Krishna K Damodaran
- University of Iceland, Department of chemistry, Science Institute, Dunhaga 3, 107, Reykjavik, Iceland
| | - Daniel Lee
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Subhradip Paul
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA
| | - Snorri Th Sigurdsson
- University of Iceland, Department of chemistry, Science Institute, Dunhaga 3, 107, Reykjavik, Iceland
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| |
Collapse
|
23
|
Matsuki Y, Nakamura S, Hobo F, Endo Y, Takahashi H, Suematsu H, Fujiwara T. Cryogenic signal amplification combined with helium-temperature MAS DNP toward ultimate NMR sensitivity at high field conditions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 335:107139. [PMID: 34974207 DOI: 10.1016/j.jmr.2021.107139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The low sensitivity of NMR spectroscopy is of historical concern in the field, and various approaches have been developed to mitigate this limitation. On the shoulder of giants, today one can routinely implement, for example, the pulse/Fourier transform NMR with the cross polarization together with the ultra-low temperature MAS DNP under high-field conditions. We show in this work this current opportunity should further be augmented by combining them with the cryogenic signal amplification. Our presented MAS DNP probe operates with the closed-cycle helium MAS system, and cools the internal preamplifier-duplexer module with the "return" helium gas on its way back to the compressor in the loop. The signal-to-noise (S/N) gain relative to the room-temperature measurements of a factor of 4.6 and 2.4 was found for the measurement using the cold- and room-temperature preamplifier, respectively, at the sample temperature of T = 20 K at B0 = 16.4 T. The ratio of these factors reveals ∼ two-fold sensitivity improvement that results purely from the introduction of the cold signal amplification, i.e., noise reduction. Together with the increase of the thermal Boltzmann polarization at low temperatures, the combined S/N gain of max. ∼70-fold is possible without DNP. The DNP enhancement factor of ∼40 as we found in this work for a microcrystalline MLF sample may be multiplied to this gain. We also demonstrated the sensitivity improvement with a 13C-detected 2D NCaCx spectrum, illustrating the generality of the S/N gain from combining DNP with the cold signal amplification.
Collapse
Affiliation(s)
- Yoh Matsuki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | - Fumio Hobo
- JEOL RESONANCE Inc., Akishima, Tokyo 196-8558, Japan
| | - Yuki Endo
- JEOL RESONANCE Inc., Akishima, Tokyo 196-8558, Japan
| | | | | | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
24
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
25
|
Harrabi R, Halbritter T, Aussenac F, Dakhlaoui O, van Tol J, Damodaran K, Lee D, PAUL S, Hediger S, Mentink-Vigier F, Sigurdsson S, De Paepe G. Highly Efficient Polarizing Agents for MAS‐DNP of Proton‐dense Molecular Solids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rania Harrabi
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble IRIG FRANCE
| | | | | | - Ons Dakhlaoui
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble IRIG FRANCE
| | - Johan van Tol
- National High Magnetic Field Laboratory Florida State University UNITED STATES
| | | | - Daniel Lee
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble IRIG FRANCE
| | - Subhradip PAUL
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble IRIG FRANCE
| | - Sabine Hediger
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble IRIG FRANCE
| | | | | | - Gael De Paepe
- Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble IRIG 17 rue des martyrs 38054 Grenoble FRANCE
| |
Collapse
|
26
|
Yang C, Ooi Tan K, Griffin RG. DNPSOUP: A simulation software package for dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 334:107107. [PMID: 34894420 PMCID: PMC8819672 DOI: 10.1016/j.jmr.2021.107107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/01/2023]
Abstract
Dynamic Nuclear Polarization Simulation Optimized with a Unified Propagator (DNPSOUP) is an open-source numerical software program that models spin dynamics for dynamic nuclear polarization (DNP). The software package utilizes a direct numerical approach using the inhomogeneous master equation to treat the time evolution of the spin density operator under coherent Hamiltonians and stochastic relaxation effects. Here we present the details of the theory behind the software, starting from the master equation, and arriving at characteristic operators for any section of density operator time-evolution. We then provide an overview of the DNPSOUP software architecture. The efficacy of the program is demonstrated by simulating DNP field profiles on small spin systems exploiting both continuous wave and time-domain DNP mechanisms. Examples include Zeeman field profiles for the solid effect, Overhauser effect, and cross effect, and microwave field profiles for NOVEL, off-resonance NOVEL, the integrated solid effect, the stretched solid effect, and TOP-DNP. The software should facilitate a better understanding of the DNP process, aid in the design of optimized DNP polarizing agents, and allow us to examine new pulsed DNP methods at conditions that are not currently experimentally accessible, especially at high magnetic fields with high-power microwave pulses.
Collapse
Affiliation(s)
- Chen Yang
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Aspen Technology, Inc., 20 Crosby Drive, Bedford, MA 01730, United States
| | - Kong Ooi Tan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
27
|
Menzildjian G, Lund A, Yulikov M, Gajan D, Niccoli L, Karthikeyan G, Casano G, Jeschke G, Ouari O, Lelli M, Lesage A. Efficient Dynamic Nuclear Polarization up to 230 K with Hybrid BDPA-Nitroxide Radicals at a High Magnetic Field. J Phys Chem B 2021; 125:13329-13338. [PMID: 34818009 DOI: 10.1021/acs.jpcb.1c07307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pairing the spectral resolution provided by high magnetic fields at ambient temperature with the enhanced sensitivity offered by dynamic nuclear polarization (DNP) is a major goal of modern solid-state NMR spectroscopy, which will allow one to unlock ever-challenging applications. This study demonstrates that, by combining HyTEK2, a hybrid BDPA-nitroxide biradical polarizing agent, with ortho-terphenyl (OTP), a rigid DNP matrix, enhancement factors as high as 65 can be obtained at 230 K, 40 kHz magic angle spinning (MAS), and 18.8 T. The temperature dependence of the DNP enhancement and its behavior around the glass transition temperature (Tg) of the matrix is investigated by variable-temperature EPR measurements of the electron relaxation properties and numerical simulations. A correlation is suggested between the decrease in enhancement at the passage of the Tg and the concomitant drop of both transverse electron relaxation times in the biradical.
Collapse
Affiliation(s)
- Georges Menzildjian
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCBL), 69100 Villeurbanne, France
| | - Alicia Lund
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCBL), 69100 Villeurbanne, France
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - David Gajan
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCBL), 69100 Villeurbanne, France
| | - Lorenzo Niccoli
- Center of Magnetic Resonance (CERM), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Ganesan Karthikeyan
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Gilles Casano
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Moreno Lelli
- Center of Magnetic Resonance (CERM), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCBL), 69100 Villeurbanne, France
| |
Collapse
|
28
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
29
|
Li Y, Chaklashiya R, Takahashi H, Kawahara Y, Tagami K, Tobar C, Han S. Solid-state MAS NMR at ultra low temperature of hydrated alanine doped with DNP radicals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107090. [PMID: 34717278 DOI: 10.1016/j.jmr.2021.107090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) experiments at ultra low temperature (ULT) (≪ 100 K) have demonstrated clear benefits for obtaining large signal sensitivity gain and probing spin dynamics phenomena at ULT. ULT NMR is furthermore a highly promising platform for solid-state dynamic nuclear polarization (DNP). However, ULT NMR is not widely used, given limited availability of such instrumentation from commercial sources. In this paper, we present a comprehensive study of hydrated [U-13C]alanine, a standard bio-solid sample, from the first commercial 14.1 Tesla NMR spectrometer equipped with a closed-cycle helium ULT-MAS system. The closed-cycle helium MAS system provides precise temperature control from 25 K to 100 K and stable MAS from 1.5 kHz to 12 kHz. The 13C CP-MAS NMR of [U-13C]alanine showed 400% signal gain at 28 K compared with at 100 K. The large sensitivity gain results from the Boltzmann factor, radio frequency circuitry quality factor improvement, and the suppression of its methyl group rotation at ULT. We further observed that the addition of organic biradicals widely used for solid-state DNP significantly shortens the 1H T1 spin lattice relaxation time at ULT, without further broadening the 13C spectral linewidth compared to at 90 K. The mechanism of 1H T1 shortening is dominated by the two-electron-one-nucleus triple flip transition underlying the Cross Effect mechanism, widely relied upon to drive solid-state DNP. Our experimental observations suggest that the prospects of MAS NMR and DNP under ULT conditions established with a closed-cycle helium MAS system are bright.
Collapse
Affiliation(s)
- Yuanxin Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Raj Chaklashiya
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | | | | | - Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Celeste Tobar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
30
|
Mentink-Vigier F. Numerical recipes for faster MAS-DNP simulations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107106. [PMID: 34837803 PMCID: PMC8639796 DOI: 10.1016/j.jmr.2021.107106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 05/11/2023]
Abstract
Numerical simulations of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP) have transformed the way the DNP process is understood in rotating samples. In 2012, two methods were concomitantly developed to simulate small spin systems (< 4 spin-1/2). The development of new polarizing agents, including those containing metal centers with S > 1/2, makes it necessary to further expand the numerical tools with minimal approximations that will help rationalize the experimental observations and build approximate models. In this paper, three strategies developed in the past five years are presented: an adaptive integration scheme, a hybrid Hilbert/Liouville formalism, and a method to truncate the Liouville space basis for periodic Hamiltonian. Each of these methods enable time savings ranging from a factor of 3 to > 100. We illustrate the code performance by reporting for the first time the MAS-DNP field profiles for "AMUPol", in which the couplings to the nitrogen nuclei are explicitly considered, as well as Cross-Effect MAS-DNP field profiles with two electrons spin 5/2 interacting with a nuclear spin 1/2.
Collapse
Affiliation(s)
- Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, FL 32310, USA.
| |
Collapse
|
31
|
Equbal A, Jain SK, Li Y, Tagami K, Wang X, Han S. Role of electron spin dynamics and coupling network in designing dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:1-16. [PMID: 34852921 DOI: 10.1016/j.pnmrs.2021.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Dynamic nuclear polarization (DNP) has emerged as a powerful sensitivity booster of nuclear magnetic resonance (NMR) spectroscopy for the characterization of biological solids, catalysts and other functional materials, but is yet to reach its full potential. DNP transfers the high polarization of electron spins to nuclear spins using microwave irradiation as a perturbation. A major focus in DNP research is to improve its efficiency at conditions germane to solid-state NMR, at high magnetic fields and fast magic-angle spinning. In this review, we highlight three key strategies towards designing DNP experiments: time-domain "smart" microwave manipulation to optimize and/or modulate electron spin polarization, EPR detection under operational DNP conditions to decipher the underlying electron spin dynamics, and quantum mechanical simulations of coupled electron spins to gain microscopic insights into the DNP mechanism. These strategies are aimed at understanding and modeling the properties of the electron spin dynamics and coupling network. The outcome of these strategies is expected to be key to developing next-generation polarizing agents and DNP methods.
Collapse
Affiliation(s)
- Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sheetal Kumar Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Yuanxin Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Xiaoling Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
32
|
Mentink-Vigier F, Dubroca T, Van Tol J, Sigurdsson ST. The distance between g-tensors of nitroxide biradicals governs MAS-DNP performance: The case of the bTurea family. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107026. [PMID: 34246883 PMCID: PMC8316413 DOI: 10.1016/j.jmr.2021.107026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 05/20/2023]
Abstract
Bis-nitroxide radicals are common polarizing agents (PA), used to enhance the sensitivity of solid-state NMR experiments via Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). These biradicals can increase the proton spin polarization through the Cross-Effect (CE) mechanism, which requires PAs with at least two unpaired electrons. The relative orientation of the bis-nitroxide moieties is critical to ensure efficient polarization transfer. Recently, we have defined a new quantity, the distance between g-tensors, that correlates the relative orientation of the nitroxides with the ability to polarize the surrounding nuclei. Here we analyse experimentally and theoretically a series of biradicals belonging to the bTurea family, namely bcTol, AMUPol and bcTol-M. They differ by the degree of substitution on the urea bridge that connects the two nitroxides. Using quantitative simulations developed for moderate MAS frequencies, we show that these modifications mostly affect the relative orientations of the nitroxide, i.e. the length and distribution of the distance between the g-tensors, that in turn impacts both the steady state nuclear polarization/depolarization as well as the build-up times. The doubly substituted urea bridge favours a large distance between the g-tensors, which enables bcTol-M to provide ∊on/off>200 at 14.1 T/600 MHz/395 GHz with build-up times of 3.8 s using a standard homogenous solution. The methodology described herein was used to show how the conformation of the spirocyclic rings flanking the nitroxide function in the recently described c- and o-HydrOPol affects the distance between the g-tensors and thereby polarization performance.
Collapse
Affiliation(s)
- Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States.
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States
| | - Johan Van Tol
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States
| | | |
Collapse
|
33
|
Pell AJ. A method to calculate the NMR spectra of paramagnetic species using thermalized electronic relaxation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 326:106939. [PMID: 33744830 DOI: 10.1016/j.jmr.2021.106939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
For paramagnetic species, it has been long understood that the hyperfine interaction between the unpaired electrons and the nucleus results in a nuclear magnetic resonance (NMR) peak that is shifted by a paramagnetic shift, rather than split by the coupling, due to an averaging of the electronic magnetic moment caused by electronic relaxation that is fast in comparison to the hyperfine coupling constant. However, although this feature of paramagnetic NMR has formed the basis of all theories of the paramagnetic shift, the precise theory and mechanism of the electronic relaxation required to predict this result has never been discussed, nor has the assertion been tested. In this paper, we show that the standard semi-classical Redfield theory of relaxation fails to predict a paramagnetic shift, as does any attempt to correct for the semi-classical theory using modifications such as the inhomogeneous master equation or Levitt-di Bari thermalization. In fact, only the recently-introduced Lindbladian theory of relaxation in magnetic resonance [J.Magn.Reson., 310, 106645 (2019)] is able to correctly predict the paramagnetic shift tensor and relaxation-induced linewidth in pNMR. Furthermore, this new formalism is able to predict the NMR spectra of paramagnetic species outside the high-temperature and weak-order limits, and is therefore also applicable to dynamic nuclear polarization. The formalism is tested by simulations of five case studies, which include Fermi-contact and spin-dipolar hyperfine couplings, g-anisotropy, zero-field splitting, high and low temperatures, and fast and slow electronic relaxation.
Collapse
Affiliation(s)
- Andrew J Pell
- Department of Materials and Environmental Chemistry, Stockholm University, Svänte Arrhenius väg 16 C, 106 91 Stockholm, Sweden; Centre de RMN Trés Hauts Champs de Lyon (UMR5082 CNRS/ENS-Lyon/Université Claude Bernard Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
34
|
Matsuki Y, Kobayashi T, Fukazawa J, Perras FA, Pruski M, Fujiwara T. Efficiency analysis of helium-cooled MAS DNP: case studies of surface-modified nanoparticles and homogeneous small-molecule solutions. Phys Chem Chem Phys 2021; 23:4919-4926. [PMID: 33620367 DOI: 10.1039/d0cp05658h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the growing number of successful applications of dynamic nuclear polarization (DNP)-enhanced magic-angle spinning (MAS) NMR in structural biology and materials science, the nuclear polarizations achieved by current MAS DNP instrumentation are still considerably lower than the theoretical maximum. The method could be significantly strengthened if experiments were performed at temperatures much lower than those currently widely used (∼100 K). Recently, the prospects of helium (He)-cooled MAS DNP have been increased with the instrumental developments in MAS technology that uses cold helium gas for sample cooling. Despite the additional gains in sensitivity that have been observed with He-cooled MAS DNP, the performance of the technique has not been evaluated in the case of surfaces and interfaces that benefit the most from DNP. Herein, we studied the efficiency of DNP at temperatures between ∼30 K and ∼100 K for organically functionalized silica material and a homogeneous solution of small organic molecules at a magnetic field B0 = 16.4 T. We recorded the changes in signal enhancement, paramagnet-induced quenching and depolarization effects, DNP build-up rate, and Boltzmann polarization. For these samples, the increases in MAS-induced depolarization and DNP build-up times at around 30 K were not as severe as anticipated. In the case of the surface species, we determined that MAS DNP at 30 K provided ∼10 times higher sensitivity than MAS DNP at 90 K, which corresponds to the acceleration of experiments by multiplicative factors of up to 100.
Collapse
Affiliation(s)
- Yoh Matsuki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan and Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takeshi Kobayashi
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020, USA
| | - Jun Fukazawa
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Frédéric A Perras
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020, USA
| | - Marek Pruski
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020, USA and Department of Chemistry, Iowa State University, Ames, Iowa 50011-3020, USA
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan and Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
35
|
Prisco NA, Pinon AC, Emsley L, Chmelka BF. Scaling analyses for hyperpolarization transfer across a spin-diffusion barrier and into bulk solid media. Phys Chem Chem Phys 2021; 23:1006-1020. [PMID: 33404028 DOI: 10.1039/d0cp03195j] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By analogy to heat and mass transfer film theory, a general approach is introduced for determining hyperpolarization transfer rates between dilute electron spins and a surrounding nuclear ensemble. These analyses provide new quantitative relationships for understanding, predicting, and optimizing the effectiveness of hyperpolarization protocols, such as Dynamic Nuclear Polarization (DNP) under magic-angle spinning conditions. An empirical DNP polarization-transfer coefficient is measured as a function of the bulk matrix 1H spin density and indicates the presence of two distinct kinetic regimes associated with different rate-limiting polarization transfer phenomena. Dimensional property relationships are derived and used to evaluate the competitive rates of spin polarization generation, propagation, and dissipation that govern hyperpolarization transfer between large coupled spin ensembles. The quantitative analyses agree closely with experimental measurements for the accumulation, propagation, and dissipation of hyperpolarization in solids and provide evidence for kinetically-limited transfer associated with a spin-diffusion barrier. The results and classical approach yield general design criteria for analyzing and optimizing polarization transfer processes involving complex interfaces and composite media for applications in materials science, physical chemistry and nuclear spintronics.
Collapse
Affiliation(s)
- Nathan A Prisco
- Department of Chemical Engineering, University of California Santa Barbara, USA.
| | - Arthur C Pinon
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California Santa Barbara, USA.
| |
Collapse
|
36
|
Stevanato G, Casano G, Kubicki DJ, Rao Y, Esteban Hofer L, Menzildjian G, Karoui H, Siri D, Cordova M, Yulikov M, Jeschke G, Lelli M, Lesage A, Ouari O, Emsley L. Open and Closed Radicals: Local Geometry around Unpaired Electrons Governs Magic-Angle Spinning Dynamic Nuclear Polarization Performance. J Am Chem Soc 2020; 142:16587-16599. [PMID: 32806886 DOI: 10.1021/jacs.0c04911] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of magic-angle spinning dynamic nuclear polarization (MAS DNP) has allowed atomic-level characterization of materials for which conventional solid-state NMR is impractical due to the lack of sensitivity. The rapid progress of MAS DNP has been largely enabled through the understanding of rational design concepts for more efficient polarizing agents (PAs). Here, we identify a new design principle which has so far been overlooked. We find that the local geometry around the unpaired electron can change the DNP enhancement by an order of magnitude for two otherwise identical conformers. We present a set of 13 new stable mono- and dinitroxide PAs for MAS DNP NMR where this principle is demonstrated. The radicals are divided into two groups of isomers, named open (O-) and closed (C-), based on the ring conformations in the vicinity of the N-O bond. In all cases, the open conformers exhibit dramatically improved DNP performance as compared to the closed counterparts. In particular, a new urea-based biradical named HydrOPol and a mononitroxide O-MbPyTol yield enhancements of 330 ± 60 and 119 ± 25, respectively, at 9.4 T and 100 K, which are the highest enhancements reported so far in the aqueous solvents used here. We find that while the conformational changes do not significantly affect electron spin-spin distances, they do affect the distribution of the exchange couplings in these biradicals. Electron spin echo envelope modulation (ESEEM) experiments suggest that the improved performance of the open conformers is correlated with higher solvent accessibility.
Collapse
Affiliation(s)
- Gabriele Stevanato
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gilles Casano
- Aix Marseille Université, CNRS, ICR UMR 7273, 13013 Marseille, France
| | - Dominik J Kubicki
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yu Rao
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Laura Esteban Hofer
- Department of Chemistry, Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Georges Menzildjian
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS de Lyon/UCB-Lyon 1), 69100 Villeurbanne, France
| | - Hakim Karoui
- Aix Marseille Université, CNRS, ICR UMR 7273, 13013 Marseille, France
| | - Didier Siri
- Aix Marseille Université, CNRS, ICR UMR 7273, 13013 Marseille, France
| | - Manuel Cordova
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Maxim Yulikov
- Department of Chemistry, Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry, Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Moreno Lelli
- Magnetic Resonance Center (CERM/CIRMMP), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS de Lyon/UCB-Lyon 1), 69100 Villeurbanne, France
| | - Olivier Ouari
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Di Mauro GM, Hardin NZ, Ramamoorthy A. Lipid-nanodiscs formed by paramagnetic metal chelated polymer for fast NMR data acquisition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183332. [PMID: 32360741 PMCID: PMC7340147 DOI: 10.1016/j.bbamem.2020.183332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Lipid-nanodiscs have been shown to be an exciting innovation as a membrane-mimicking system for studies on membrane proteins by a variety of biophysical techniques, including NMR spectroscopy. Although NMR spectroscopy is unique in enabling the atomic-resolution investigation of dynamic structures of membrane-associated molecules, it, unfortunately, suffers from intrinsically low sensitivity. The long data acquisition often used to enhance the sensitivity is not desirable for sensitive membrane proteins. Instead, paramagnetic relaxation enhancement (PRE) has been used to reduce NMR data acquisition time or to reduce the amount of sample required to acquire an NMR spectra. However, the PRE approach involves the introduction of external paramagnetic probes in the system, which can induce undesired changes in the sample and on the observed NMR spectra. For example, the addition of paramagnetic ions, as frequently used, can denature the protein via direct interaction and also through sample heating. In this study, we show how the introduction of paramagnetic tags on the outer belt of polymer-nanodiscs can be used to speed-up data acquisition by significantly reducing the spin-lattice relaxation (T1) times with minimum-to-no alteration of the spectral quality. Our results also demonstrate the feasibility of using different types of paramagnetic ions (Eu3+, Gd3+, Dy3+, Er3+, Yb3+) for NMR studies on lipid-nanodiscs. Experimental results characterizing the formation of lipid-nanodiscs by the metal-chelated polymer, and their increased tolerance toward metal ions are also reported.
Collapse
Affiliation(s)
- Giacomo M Di Mauro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nathaniel Z Hardin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics and Chemistry Department, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
38
|
Abstract
The solid effect (SE) is a two spin dynamic nuclear polarization (DNP) mechanism that enhances the sensitivity in NMR experiments by irradiation of the electron-nuclear spin transitions with continuous wave (CW) microwaves at ω0S ± ω0I, where ω0S and ω0I are electron and nuclear Larmor frequencies, respectively. Using trityl (OX063), dispersed in a 60/40 glycerol/water mixture at 80 K, as a polarizing agent, we show here that application of a chirped microwave pulse, with a bandwidth comparable to the EPR line width applied at the SE matching condition, improves the enhancement by a factor of 2.4 over the CW method. Furthermore, the chirped pulse yields an enhancement that is ∼20% larger than obtained with the ramped-amplitude NOVEL (RA-NOVEL), which to date has achieved the largest enhancements in time domain DNP experiments. Numerical simulations suggest that the spins follow an adiabatic trajectory during the polarization transfer; hence, we denote this sequence as an adiabatic solid effect (ASE). We foresee that ASE will be a practical pulsed DNP experiment to be implemented at higher static magnetic fields due to the moderate power requirement. In particular, the ASE uses only 13% of the maximum microwave power required for RA-NOVEL.
Collapse
Affiliation(s)
- Kong Ooi Tan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ralph T Weber
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, United States
| | - Thach V Can
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Lim BJ, Ackermann BE, Debelouchina GT. Targetable Tetrazine-Based Dynamic Nuclear Polarization Agents for Biological Systems. Chembiochem 2020; 21:1315-1319. [PMID: 31746101 PMCID: PMC7445144 DOI: 10.1002/cbic.201900609] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Indexed: 12/13/2022]
Abstract
Dynamic nuclear polarization (DNP) has shown great promise as a tool to enhance the nuclear magnetic resonance signals of proteins in the cellular environment. As sensitivity increases, the ability to select and efficiently polarize a specific macromolecule over the cellular background has become desirable. Herein, we address this need and present a tetrazine-based DNP agent that can be targeted selectively to proteins containing the unnatural amino acid (UAA) norbornene-lysine. This UAA can be introduced efficiently into the cellular milieu by genetic means. Our approach is bio-orthogonal and easily adaptable to any protein of interest. We illustrate the scope of our methodology and investigate the DNP transfer mechanisms in several biological systems. Our results shed light on the complex polarization-transfer pathways in targeted DNP and ultimately pave the way to selective DNP-enhanced NMR spectroscopy in both bacterial and mammalian cells.
Collapse
Affiliation(s)
- Byung Joon Lim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bryce E. Ackermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
40
|
Judge PT, Sesti EL, Price LE, Albert BJ, Alaniva N, Saliba EP, Halbritter T, Sigurdsson ST, Kyei GB, Barnes AB. Dynamic Nuclear Polarization with Electron Decoupling in Intact Human Cells and Cell Lysates. J Phys Chem B 2020; 124:2323-2330. [DOI: 10.1021/acs.jpcb.9b10494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick T. Judge
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Biochemistry, Biophysics & Structural Biology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Erika L. Sesti
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Lauren E. Price
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brice J. Albert
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nicholas Alaniva
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Edward P. Saliba
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Thomas Halbritter
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | - Snorri Th. Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | - George B. Kyei
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63130, United States
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana,
Legon, Accra 02233, Ghana
| | - Alexander B. Barnes
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
41
|
Abstract
Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.
Collapse
Affiliation(s)
- Björn Corzilius
- Institute of Chemistry and Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany;
| |
Collapse
|
42
|
Lund A, Casano G, Menzildjian G, Kaushik M, Stevanato G, Yulikov M, Jabbour R, Wisser D, Renom-Carrasco M, Thieuleux C, Bernada F, Karoui H, Siri D, Rosay M, Sergeyev IV, Gajan D, Lelli M, Emsley L, Ouari O, Lesage A. TinyPols: a family of water-soluble binitroxides tailored for dynamic nuclear polarization enhanced NMR spectroscopy at 18.8 and 21.1 T. Chem Sci 2020; 11:2810-2818. [PMID: 34084341 PMCID: PMC8157490 DOI: 10.1039/c9sc05384k] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/31/2020] [Indexed: 11/21/2022] Open
Abstract
Dynamic Nuclear Polarization (DNP) has recently emerged as a key method to increase the sensitivity of solid-state NMR spectroscopy under Magic Angle Spinning (MAS). While efficient binitroxide polarizing agents such as AMUPol have been developed for MAS DNP NMR at magnetic fields up to 9.4 T, their performance drops rapidly at higher fields due to the unfavorable field dependence of the cross-effect (CE) mechanism and AMUPol-like radicals were so far disregarded in the context of the development of polarizing agents for very high-field DNP. Here, we introduce a new family of water-soluble binitroxides, dubbed TinyPols, which have a three-bond non-conjugated flexible amine linker allowing sizable couplings between the two unpaired electrons. We show that this adjustment of the linker is crucial and leads to unexpectedly high DNP enhancement factors at 18.8 T and 21.1 T: an improvement of about a factor 2 compared to AMUPol is reported for spinning frequencies ranging from 5 to 40 kHz, with ε H of up to 90 at 18.8 T and 38 at 21.1 T for the best radical in this series, which are the highest MAS DNP enhancements measured so far in aqueous solutions at these magnetic fields. This work not only breathes a new momentum into the design of binitroxides tailored towards high magnetic fields, but also is expected to push the application frontiers of high-resolution DNP MAS NMR, as demonstrated here on a hybrid mesostructured silica material.
Collapse
Affiliation(s)
- Alicia Lund
- Centre de RMN à; Très Hauts Champs, Université; de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 69100 Villeurbanne France
| | | | - Georges Menzildjian
- Centre de RMN à; Très Hauts Champs, Université; de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 69100 Villeurbanne France
| | - Monu Kaushik
- Centre de RMN à; Très Hauts Champs, Université; de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 69100 Villeurbanne France
| | - Gabriele Stevanato
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich CH-8093 Zürich Switzerland
| | - Ribal Jabbour
- Centre de RMN à; Très Hauts Champs, Université; de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 69100 Villeurbanne France
| | - Dorothea Wisser
- Centre de RMN à; Très Hauts Champs, Université; de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 69100 Villeurbanne France
| | - Marc Renom-Carrasco
- Institute of Chemistry of Lyon, Laboratory C2P2 UMR 5265-CNRS-University Lyon 1-CPE Lyon, University of Lyon 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Chloé Thieuleux
- Institute of Chemistry of Lyon, Laboratory C2P2 UMR 5265-CNRS-University Lyon 1-CPE Lyon, University of Lyon 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | | | | | - Didier Siri
- Aix Marseille Univ, CNRS, ICR Marseille France
| | - Melanie Rosay
- Bruker Biospin Corporation 15 Fortune Drive Billerica Massachusetts 01821 USA
| | - Ivan V Sergeyev
- Bruker Biospin Corporation 15 Fortune Drive Billerica Massachusetts 01821 USA
| | - David Gajan
- Centre de RMN à; Très Hauts Champs, Université; de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 69100 Villeurbanne France
| | - Moreno Lelli
- Center of Magnetic Resonance (CERM), University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | | | - Anne Lesage
- Centre de RMN à; Très Hauts Champs, Université; de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 69100 Villeurbanne France
| |
Collapse
|
43
|
Yau WM, Jeon J, Tycko R. Succinyl-DOTOPA: An effective triradical dopant for low-temperature dynamic nuclear polarization with high solubility in aqueous solvent mixtures at neutral pH. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 311:106672. [PMID: 31887554 PMCID: PMC6964257 DOI: 10.1016/j.jmr.2019.106672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 05/05/2023]
Abstract
We report the synthesis of the nitroxide-based triradical compound succinyl-DOTOPA and the characterization of its performance as a dopant for dynamic nuclear polarization (DNP) experiments in frozen solutions at low temperatures. Compared with previously described DOTOPA derivatives, succinyl-DOTOPA has substantially greater solubility in glycerol/water mixtures with pH > 4 and therefore has wider applicability. Solid state nuclear magnetic resonance (ssNMR) measurements at 9.39 T and 25 K, with magic-angle spinning at 7.00 kHz, show that build-up times of DNP-enhanced, cross-polarized 13C ssNMR signals are shorter and that signal amplitudes are larger for glycerol/water solutions of L-proline containing succinyl-DOTOPA than for solutions containing the biradical AMUPol, with electron spin concentrations of 15 mM or 30 mM, resulting in greater net sensitivity gains from DNP. In similar measurements at 90 K, AMUPol yields greater net sensitivity, apparently due to its longer electron spin-lattice and spin-spin relaxation times. One- and two-dimensional 13C ssNMR measurements at 25 K on the complex of the 27-residue peptide M13 with the calcium-sensing protein calmodulin, in glycerol/water with 10 mM succinyl-DOTOPA, demonstrate the utility of this compound in DNP-enhanced ssNMR studies of biomolecular systems.
Collapse
Affiliation(s)
- Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
44
|
Mentink-Vigier F. Optimizing nitroxide biradicals for cross-effect MAS-DNP: the role of g-tensors' distance. Phys Chem Chem Phys 2020; 22:3643-3652. [PMID: 31998899 DOI: 10.1039/c9cp06201g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitroxide biradicals are common polarizing agents used to enhance the sensitivity of solid-state NMR experiments via Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). These biradicals are used to increase the polarization of protons through the cross-effect mechanism, which requires two unpaired electrons with a Larmor frequency difference greater than that of the protons. From their early conception, the relative orientation of the nitroxide rings has been identified as a critical factor determining their MAS-DNP performance. However, the MAS leads to a complex DNP mechanism with time dependent energy level anti-crossings making it difficult to pinpoint the role of relative g-tensor orientation. In this article, a single parameter called "g-tensors' distance" is introduced to characterize the relative orientation's impact on the MAS-DNP field profiles. It is demonstrated for the first time how the g-tensors' distance determines the nuclear hyperpolarization and depolarization properties of a given biradical. This provides a new critical parameter that paves the way for more efficient bis-nitroxides for MAS-DNP.
Collapse
Affiliation(s)
- Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, USA.
| |
Collapse
|
45
|
Equbal A, Tagami K, Han S. Balancing dipolar and exchange coupling in biradicals to maximize cross effect dynamic nuclear polarization. Phys Chem Chem Phys 2020; 22:13569-13579. [DOI: 10.1039/d0cp02051f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Balancing dipolar and exchange coupling is essential for efficient Cross Effect DNP. This explains the complex performance of standard radicals (AMUPOL and HyTek) at high magnetic field and fast spinning.
Collapse
Affiliation(s)
- Asif Equbal
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Kan Tagami
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Songi Han
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
- Department of Chemical Engineering
| |
Collapse
|
46
|
Mandal S, Sigurdsson ST. Water-soluble BDPA radicals with improved persistence. Chem Commun (Camb) 2020; 56:13121-13124. [DOI: 10.1039/d0cc04920d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1,3-Bis(diphenylene)-2-phenylallyl (BDPA) radicals are promising polarizing agents for dynamic nuclear polarization (DNP) NMR spectroscopy. BDPAs containing tetraalkyl/aryl-ammonium groups have increased persistence and solubility in polar solvents.
Collapse
Affiliation(s)
- Sucharita Mandal
- University of Iceland
- Department of Chemistry
- Science Institute
- Reykjavik 107
- Iceland
| | | |
Collapse
|
47
|
Equbal A, Tagami K, Han S. Pulse-Shaped Dynamic Nuclear Polarization under Magic-Angle Spinning. J Phys Chem Lett 2019; 10:7781-7788. [PMID: 31790265 DOI: 10.1021/acs.jpclett.9b03070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dynamic nuclear polarization (DNP) under magic-angle spinning (MAS) is transforming the scope of solid-state NMR by enormous signal amplification through transfer of polarization from electron spins to nuclear spins. Contemporary MAS-DNP exclusively relies on monochromatic continuous-wave (CW) irradiation of the electron spin resonance. This limits control on electron spin dynamics, which renders the DNP process inefficient, especially at higher magnetic fields and non cryogenic temperatures. Pulse-shaped microwave irradiation of the electron spins is predicted to overcome these challenges but hitherto has never been implemented under MAS. Here, we debut pulse-shaped microwave irradiation using arbitrary-waveform generation (AWG) which allows controlled recruitment of a greater number of electron spins per unit time, favorable for MAS-DNP. Experiments and quantum mechanical simulations demonstrate that pulse-shaped DNP is superior to CW-DNP for mixed radical system, especially when the electron spin resonance is heterogeneously broadened and/or when its spin-lattice relaxation is fast compared to the MAS rotor period, opening new prospects for MAS-DNP.
Collapse
Affiliation(s)
- Asif Equbal
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Kan Tagami
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Songi Han
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
- Department of Chemical Engineering , University of California , Santa Barbara , California 93106 , United States
| |
Collapse
|
48
|
Kaminker I. Recent Advances in Magic Angle Spinning‐Dynamic Nuclear Polarization Methodology. Isr J Chem 2019. [DOI: 10.1002/ijch.201900092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ilia Kaminker
- School of ChemistryTel Aviv University Ramat Aviv 6997801 Tel Aviv Israel
| |
Collapse
|
49
|
Kocman V, Di Mauro GM, Veglia G, Ramamoorthy A. Use of paramagnetic systems to speed-up NMR data acquisition and for structural and dynamic studies. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 102:36-46. [PMID: 31325686 PMCID: PMC6698407 DOI: 10.1016/j.ssnmr.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/05/2023]
Abstract
NMR spectroscopy is a powerful experimental technique to study biological systems at the atomic resolution. However, its intrinsic low sensitivity results in long acquisition times that in extreme cases lasts for days (or even weeks) often exceeding the lifetime of the sample under investigation. Different paramagnetic agents have been used in an effort to decrease the spin-lattice (T1) relaxation times of the studied nuclei, which are the main cause for long acquisition times necessary for signal averaging to enhance the signal-to-noise ratio of NMR spectra. Consequently, most of the experimental time is "wasted" in waiting for the magnetization to recover between successive scans. In this review, we discuss how to set up an optimal paramagnetic relaxation enhancement (PRE) system to effectively reduce the T1 relaxation times avoiding significant broadening of NMR signals. Additionally, we describe how PRE-agents can be used to provide structural and dynamic information and can even be used to follow the intermediates of chemical reactions and to speed-up data acquisition. We also describe the unique challenges and benefits associated with the application of PRE to solid-state NMR spectroscopy, explaining how the use of PREs is more complex for membrane mimetic systems as PREs can also be exploited to change the alignment of oriented membrane systems. Functionalization of membrane mimetics, such as bicelles, can provide a controlled region of paramagnetic effect that has the potential, together with the desired alignment, to provide crucial biologically relevant structural information. And finally, we discuss how paramagnetic metals can be utilized to further increase the dynamic nuclear polarization (DNP) effects and how to preserve the enhancements when dissolution DNP is implemented.
Collapse
Affiliation(s)
- Vojč Kocman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Saliba EP, Barnes AB. Fast electron paramagnetic resonance magic angle spinning simulations using analytical powder averaging techniques. J Chem Phys 2019; 151:114107. [PMID: 31542017 PMCID: PMC7043854 DOI: 10.1063/1.5113598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/27/2019] [Indexed: 11/14/2022] Open
Abstract
Simulations describing the spin physics underpinning nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy play an important role in the design of new experiments. When experiments are performed in the solid state, samples are commonly composed of powders or glasses, with molecules oriented at a large number of angles with respect to the laboratory frame. These powder angles must be represented in simulations to account for anisotropic interactions. Numerical techniques are typically used to accurately compute such powder averages. A large number of Euler angles are usually required, leading to lengthy simulation times. This is particularly true in broad spectra, such as those observed in EPR. The combination of the traditionally separate techniques of EPR and magic angle spinning (MAS) NMR could play an important role in future electron detected experiments, combined with dynamic nuclear polarization, which will allow for exceptional detection sensitivity of NMR spin coherences. Here, we present a method of reducing the required number of Euler angles in magnetic resonance simulations by analytically performing the powder average over one of the Euler angles in the static and MAS cases for the TEMPO nitroxide radical in a 7 T field. In the static case, this leads to a 97.5% reduction in simulation time over the fully numerical case and reproduces the expected spinning sideband manifold when simulated with a MAS frequency of 150 kHz. This technique is applicable to more traditional NMR experiments as well, such as those involving quadrupolar nuclei or multiple dimensions.
Collapse
Affiliation(s)
- Edward P Saliba
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Alexander B Barnes
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|