1
|
Wang X, Sato AY, Marino S, Akel N, Boysen G, Basnakian AG, Bellido TM, Li HY. Generation of BT-Amide, a Bone-Targeted Pyk2 Inhibitor, Effective via Oral Administration, for the Prevention of Glucocorticoid-Induced Bone Loss. J Med Chem 2024. [PMID: 39540576 DOI: 10.1021/acs.jmedchem.4c02539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the leading cause of iatrogenic osteoporosis due to the widespread clinical use of glucocorticoids (GC) as immunosuppressants. Previous research identified the proline-rich tyrosine kinase 2, Pyk2, as a critical mediator of GC-induced bone loss, and that blocking Pyk2 could protect the skeleton from adverse GC actions. However, systemic administration of current Pyk2 inhibitors causes harmful side effects, such as skin lesions. To address this, we developed bone-targeted (BT) Pyk2 inhibitors by conjugating them with bisphosphonates (BP), ensuring adherence to the bone matrix and reducing impact on noncalcified tissues. We synthesized BT-Amide by linking a derivative of TAE-226, a Pyk2 inhibitor, with alendronic acid. Oral administration (gavage) of BT-Amide prevented GC-induced bone loss in mice without causing skin lesions, or elevation of any organ toxicity markers. These findings introduce BT-Amide as the first orally effective bone-targeted Pyk2 inhibitor for preventing GC-induced bone loss while minimizing off-target effects.
Collapse
Affiliation(s)
- Xiuqi Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Amy Y Sato
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Nisreen Akel
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Gunnar Boysen
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alexei G Basnakian
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205, United States
| | - Teresita M Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205, United States
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Department of Pharmacology, School of Medicine, The University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| |
Collapse
|
2
|
Papaioannou G, Sato T, Houghton C, Kotsalidis PE, Strauss KE, Dean T, Nelson AJ, Stokes M, Gardella TJ, Wein MN. Regulation of intracellular cAMP levels in osteocytes by mechano-sensitive focal adhesion kinase via PDE8A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601153. [PMID: 38979143 PMCID: PMC11230356 DOI: 10.1101/2024.06.28.601153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Osteocytes are the primary mechano-sensitive cell type in bone. Mechanical loading is sensed across the dendritic projections of osteocytes leading to transient reductions in focal adhesion kinase (FAK) activity. Knowledge regarding the signaling pathways downstream of FAK in osteocytes is incomplete. We performed tyrosine-focused phospho-proteomic profiling in osteocyte-like Ocy454 cells to identify FAK substrates. Gsα, parathyroid hormone receptor (PTH1R), and phosphodiesterase 8A (PDE8A), all proteins associated with cAMP signaling, were found as potential FAK targets based on their reduced tyrosine phosphorylation in both FAK- deficient or FAK inhibitor treated cells. Real time monitoring of intracellular cAMP levels revealed that FAK pharmacologic inhibition or gene deletion increased basal and GPCR ligand-stimulated cAMP levels and downstream phosphorylation of protein kinase A substrates. Mutating FAK phospho-acceptor sites in Gsα and PTH1R had no effect on PTH- or FAK inhibitor-stimulated cAMP levels. Since FAK inhibitor treatment augmented cAMP levels even in the presence of forskolin, we focused on potential FAK substrates downstream of cAMP generation. Indeed, PDE8A inhibition mimicked FAK inhibition at the level of increased cAMP, PKA activity, and expression of cAMP-regulated target genes. In vitro kinase assay showed that PDE8A is directly phosphorylated by FAK while immunoprecipitation assays revealed intracellular association between FAK and PDE8A. Thus, FAK inhibition in osteocytes acts synergistically with signals that activate adenylate cyclase to increase intracellular cAMP. Mechanically-regulated FAK can modulate intracellular cAMP levels via effects on PDE8A. These data suggest a novel signal transduction mechanism that mediates crosstalk between mechanical and cAMP-linked hormonal signaling in osteocytes.
Collapse
|
3
|
Chen T, Ren M, Li Y, Jing Z, Xu X, Liu F, Mo D, Zhang W, Zeng J, Zhang H, Ji P, Yang S. Preliminary study of the homeostatic regulation of osseointegration by nanotube topology. Mater Today Bio 2024; 26:101038. [PMID: 38638704 PMCID: PMC11025008 DOI: 10.1016/j.mtbio.2024.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
The ideal implant surface plays a substantial role in maintaining bone homeostasis by simultaneously promoting osteoblast differentiation and limiting overactive osteoclast activity to a certain extent, which leads to satisfactory dynamic osseointegration. However, the rational search for implant materials with an ideal surface structure is challenging and a hot research topic in the field of tissue engineering. In this study, we constructed titanium dioxide titanium nanotubes (TNTs) by anodic oxidation and found that this structure significantly promoted osteoblast differentiation and inhibited osteoclast formation and function while simultaneously inhibiting the total protein levels of proline-rich tyrosine kinase 2 (PYK2) and focal adhesion kinase (FAK). Knockdown of the PYK2 gene by siRNA significantly suppressed the number and osteoclastic differentiation activity of mouse bone marrow mononuclear cells (BMMs), while overexpression of PYK2 inhibited osteogenesis and increased osteoclastic activity. Surprisingly, we found for the first time that neither knockdown nor overexpression of the FAK gene alone caused changes in osteogenesis or osteoclastic function. More importantly, compared with deletion or overexpression of PYK2/FAK alone, coexpression or cosilencing of the two kinases accelerated the effects of TNTs on osteoclastic and osteogenic differentiation on the surface of cells. Furthermore, in vivo experiments revealed a significant increase in positiveexpression-PYK2 cells on the surface of TNTs, but no significant change in positiveexpression -FAK cells was observed. In summary, PYK2 is a key effector molecule by which osteoblasts sense nanotopological mechanical signals and maintain bone homeostasis around implants. These results provide a referable molecular mechanism for the future development and design of homeostasis-based regulatory implant biomaterials.
Collapse
Affiliation(s)
- Tao Chen
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - MingXing Ren
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - YuZhou Li
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Zheng Jing
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - XinXin Xu
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - FengYi Liu
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - DingQiang Mo
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - WenXue Zhang
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Jie Zeng
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - He Zhang
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| |
Collapse
|
4
|
Wu K, Wang P, Deng L, Li Y, Zhang Q, Hou H, Zhu Y, Ye H, Mei S, Cui L. Analysis of bone metabolic alterations linked with osteoporosis progression in type 2 diabetic db/db mice. Exp Gerontol 2024; 185:112347. [PMID: 38097054 DOI: 10.1016/j.exger.2023.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Type 2 diabetes (T2D) is a common chronic disease, characterized by persistent hyperglycemia and insulin resistance. This disorder is associated with decreased bone quality and an elevated risk of bone fractures. However, evidence on the relationship between systemic metabolic change and the development of type 2 diabetic osteoporosis (T2DOP) remains elusive. Herein, we investigate the changes of bone metabolites with bone loss in db/db mice (an animal model of T2DOP exhibited bone loss with age progression), and explore the potential metabolic mechanism underlying type 2 diabetes and osteoporosis. C57BKS male mice were distributed in four groups, consisting six mice in each group: 8w m/m, 24w m/m, 8w db/db and 24w db/db. Bone morphometric and biomechanical parameters of db/db mice were analyzed by micro-CT and materials tester, it was found that 24w db/db mice showed severe bone loss and decreased bone tissue hardness compared with misty/misty littermates. The tibia of misty/misty mice (8 weeks, 24 weeks) and db/db mice (8 weeks, 24 weeks) were screened for differential metabolites by UPLC-Orbitrap MS. Ninety-eight metabolites were identified (35 and 63 metabolites are associated with early staged and late staged, respectively), consisting of amino acids, fatty acyls, and nucleotides. Notably, fatty acyls (such as 18-HEPE, 16(17)-EpDPE, arachidonic acid) and glycerophospholipids (such as phosphocholines (PC) (O-10:1(9E)/0:0), PC (O-16:1(9E)/0:0) [U] and phosphatidylethanolamines (PE) (P-16:0/0:0)) were significantly increased, and metabolites of amino acid pathway (such as l-glutamine, proline, phenylalanine) showed a downregulation trend. Dysregulation of lipid and glutathione pathways is the major contributor to progression of T2DOP in C57BKS mice.
Collapse
Affiliation(s)
- Kefeng Wu
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China; Guangdong (Zhanjiang) provincial laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, PR China.
| | - Pan Wang
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Luming Deng
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Yancai Li
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Qian Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Haiyan Hou
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, PR China; Guangdong (Zhanjiang) provincial laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, PR China
| | - Hua Ye
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Si Mei
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Liao Cui
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, PR China.
| |
Collapse
|
5
|
Hwang YJ, Hwang HJ, Go H, Park N, Hwang KA. Sword Bean ( Canavalia gladiata) Pods Induce Differentiation in MC3T3-E1 Osteoblast Cells by Activating the BMP2/SMAD/RUNX2 Pathway. Nutrients 2023; 15:4372. [PMID: 37892447 PMCID: PMC10610144 DOI: 10.3390/nu15204372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Sword bean (SB) contains various phytochemicals, such as flavonoids, tannins, saponins, and terpenoids. Although the evaluation of its potential functions, including antioxidant, anti-obesity, anti-inflammatory, liver protection, and antiangiogenic activities, has been widely reported, research on their use in osteoporosis prevention is insufficient. Furthermore, while various studies are conducted on SB, research on sword bean pods (SBP) is not yet active, and little is known about it. Therefore, this study investigated the effects of promoting osteoblast differentiation of MC3T3-E1 cells using SB and SBP extracts and their mechanisms. We show that SBP extracts increase osteoblast proliferation, mineralization-activated alkaline phosphatase (ALP), and collagen synthesis activities. Additionally, treatment with SBP extract increased the expression of markers related to osteoblast differentiation, such as ALP, SPARC, RUNX2, COL-I, BMP2, OCN, and OPN. It was confirmed that SBP induces differentiation by activating the BMP2/SMAD/RUNX2 pathway. We also show that SBP is more effective than SB, and SBP may be useful in assimilating bone minerals and preventing osteoporosis.
Collapse
Affiliation(s)
- Yu Jin Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea; (Y.J.H.); (H.-J.H.); (H.G.)
| | - Hye-Jeong Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea; (Y.J.H.); (H.-J.H.); (H.G.)
- Department of Food and Biotechnology, Korea University, Sejong City 30019, Republic of Korea
| | - Hyunseo Go
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea; (Y.J.H.); (H.-J.H.); (H.G.)
| | - NaYeong Park
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea; (Y.J.H.); (H.-J.H.); (H.G.)
| | - Kyung-A Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea; (Y.J.H.); (H.-J.H.); (H.G.)
| |
Collapse
|
6
|
Li X, Ormsby MJ, Fallata G, Meikle LM, Walker D, Xu D, Wall DM. PF-431396 hydrate inhibition of kinase phosphorylation during adherent-invasive Escherichia coli infection inhibits intra-macrophage replication and inflammatory cytokine release. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37311220 DOI: 10.1099/mic.0.001337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adherent-invasive Escherichia coli (AIEC) have been implicated in the aetiology of Crohn's disease (CD). They are characterized by an ability to adhere to and invade intestinal epithelial cells, and to replicate intracellularly in macrophages resulting in inflammation. Proline-rich tyrosine kinase 2 (PYK2) has previously been identified as a risk locus for inflammatory bowel disease and a regulator of intestinal inflammation. It is overexpressed in patients with colorectal cancer, a major long-term complication of CD. Here we show that Pyk2 levels are significantly increased during AIEC infection of murine macrophages while the inhibitor PF-431396 hydrate, which blocks Pyk2 activation, significantly decreased intramacrophage AIEC numbers. Imaging flow cytometry indicated that Pyk2 inhibition blocked intramacrophage replication of AIEC with no change in the overall number of infected cells, but a significant reduction in bacterial burden per cell. This reduction in intracellular bacteria resulted in a 20-fold decrease in tumour necrosis factor α secretion by cells post-AIEC infection. These data demonstrate a key role for Pyk2 in modulating AIEC intracellular replication and associated inflammation and may provide a new avenue for future therapeutic intervention in CD.
Collapse
Affiliation(s)
- Xiang Li
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Michael J Ormsby
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
- Present address: Biological and Environmental Sciences, Faculty of Natural Science, University of Stirling, Stirling, FK49 4LA, UK
| | - Ghaith Fallata
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 22384, Saudi Arabia
| | - Lynsey M Meikle
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Daniel Walker
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Damo Xu
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Daniel M Wall
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
7
|
Guo Y, Sun CK, Tang L, Tan MS. Microglia PTK2B/Pyk2 in the Pathogenesis of Alzheimer's Disease. Curr Alzheimer Res 2023; 20:692-704. [PMID: 38321895 DOI: 10.2174/0115672050299004240129051655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Alzheimer's disease (AD) is a highly hereditary disease with complex genetic susceptibility factors. Extensive genome-wide association studies have established a distinct susceptibility link between the protein tyrosine kinase 2β (PTK2B) gene and late-onset Alzheimer's disease (LOAD), but the specific pathogenic mechanisms remain incompletely understood. PTK2B is known to be expressed in neurons, and recent research has revealed its more important significance in microglia. Elucidating the role of PTK2B high expression in microglia in AD's progression is crucial for uncovering novel pathogenic mechanisms of the disease. Our review of existing studies suggests a close relationship between PTK2B/proline-rich tyrosine kinase 2 (Pyk2) and tau pathology, and this process might be β-amyloid (Aβ) dependence. Pyk2 is hypothesized as a pivotal target linking Aβ and tau pathologies. Concurrently, Aβ-activated Pyk2 participates in the regulation of microglial activation and its proinflammatory functions. Consequently, it is reasonable to presume that Pyk2 in microglia contributes to amyloid-induced tau pathology in AD via a neuroinflammatory pathway. Furthermore, many things remain unclear, such as identifying the specific pathways that lead to the release of downstream inflammatory factors due to Pyk2 phosphorylation and whether all types of inflammatory factors can activate neuronal kinase pathways. Additionally, further in vivo experiments are essential to validate this hypothesized pathway. Considering PTK2B/Pyk2's potential role in AD pathogenesis, targeting this pathway may offer innovative and promising therapeutic approaches for AD.
Collapse
Affiliation(s)
- Yun Guo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Cheng-Kun Sun
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Lian Tang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
8
|
Matsubara T, Yasuda K, Mizuta K, Kawaue H, Kokabu S. Tyrosine Kinase Src Is a Regulatory Factor of Bone Homeostasis. Int J Mol Sci 2022; 23:ijms23105508. [PMID: 35628319 PMCID: PMC9146043 DOI: 10.3390/ijms23105508] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoclasts, which resorb the bone, and osteoblasts, which form the bone, are the key cells regulating bone homeostasis. Osteoporosis and other metabolic bone diseases occur when osteoclast-mediated bone resorption is increased and bone formation by osteoblasts is decreased. Analyses of tyrosine kinase Src-knockout mice revealed that Src is essential for bone resorption by osteoclasts and suppresses bone formation by osteoblasts. Src-knockout mice exhibit osteopetrosis. Therefore, Src is a potential target for osteoporosis therapy. However, Src is ubiquitously expressed in many tissues and is involved in various biological processes, such as cell proliferation, growth, and migration. Thus, it is challenging to develop effective osteoporosis therapies targeting Src. To solve this problem, it is necessary to understand the molecular mechanism of Src function in the bone. Src expression and catalytic activity are maintained at high levels in osteoclasts. The high activity of Src is essential for the attachment of osteoclasts to the bone matrix and to resorb the bone by regulating actin-related molecules. Src also inhibits the activity of Runx2, a master regulator of osteoblast differentiation, suppressing bone formation in osteoblasts. In this paper, we introduce the molecular mechanisms of Src in osteoclasts and osteoblasts to explore its potential for bone metabolic disease therapy.
Collapse
|
9
|
Gunn SA, Kreps LM, Zhao H, Landon K, Ilacqua JS, Addison CL. Focal Adhesion Kinase Inhibitors Prevent Osteoblast Mineralization in Part Due to Suppression of Akt-mediated stabilization of Osterix. J Bone Oncol 2022; 34:100432. [PMID: 35620245 PMCID: PMC9126966 DOI: 10.1016/j.jbo.2022.100432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Pharmacological blockade of FAK results in reduced ALP expression and mineralization by differentiated osteoblasts. Although FAK inhibition resulted in increased levels of BMP2, Wnt3a and Mdm2, and decreased p53, alteration of these pathways was unable to restore mineralization in the presence of FAK tyrosine kinase inhibitors. FAK tyrosine kinase inhibitors resulted in decreased levels of phospho-S473 Akt which led to increased levels of active GSK3β which in turn inhibited Runx2 activity that could contribute to the observed reduced ALP levels. FAK tyrosine kinase inhibitors blocked Akt-mediated stabilization of osterix leading to decreased overall levels of osterix and impaired mineralization in MC3T3-E1 cells differentiated into osteoblasts.
Focal Adhesion Kinase (FAK) is an important regulator of tumor cell proliferation, survival and metastasis. As such it has become a therapeutic target of interest in cancer. Previous studies suggested that use of FAK tyrosine kinase inhibitors (TKIs) blocks osteolysis in in vivo models of bone metastasis. However, from these studies it was not clear whether FAK TKIs blocked bone degradation by osteoclasts or also promoted bone formation by osteoblasts. In this study we evaluated whether use of the FAK TKI PF-562,271 affected the differentiation of pre-osteoblasts, or activity of mature differentiated osteoblasts. MC3T3-E1 pre-osteoblastic cells were treated with various doses of PF-562,271 following 3 or 10 days of differentiation which led to the inhibition of alkaline phosphatase (ALP) expression and reduced viable cell numbers in a dose-dependent manner. MC3T3-E1 cells which had been differentiated for 21 days prior to treatment with PF-562,271 showed a dose dependent decrease in mineralization as assessed by Alizarin Red staining, with concomitant decreased expression of ALP which is known to facilitate the bone mineralization activity of osteoblasts, however mRNA levels of the transcription factors RUNX2 and osterix which are important for osteoblast maturation and mineralization appeared unaffected at this time point. We speculated that this may be due to altered function of RUNX2 protein due to inhibitory phosphorylation by GSK3β. We found treatment with PF-562,271 resulted in increased GSK3β activity as measured by reduced levels of phospho-Ser9-GSK3β which would result in phosphorylation and inhibition of RUNX2. Treatment of 21 day differentiated MC3T3-E1 cells with PF-562,271 in combination with GSK3β inhibitors partially restored mineralization however this was not statistically significant. As we observed that FAK TKI also resulted in suppression of Akt, which is known to alter osterix protein stability downstream of RUNX2, we examined protein levels by western blot and found a dose-dependent decrease in osterix in FAK TKI treated differentiated MC3T3-E1 cells which is likely responsible for the reduced mineralization observed. Taken together our results suggest that use of FAK TKIs as therapeutics in the bone metastatic setting may block new bone formation as an off-target effect and thereby exacerbate the defective bone regulation that is characteristic of the bone metastatic environment.
Collapse
|
10
|
Kim HJ, Kim WJ, Shin HR, Yoon HI, Moon JI, Lee E, Lim JM, Cho YD, Lee MH, Kim HG, Ryoo HM. ROS-induced PADI2 downregulation accelerates cellular senescence via the stimulation of SASP production and NFκB activation. Cell Mol Life Sci 2022; 79:155. [PMID: 35218410 PMCID: PMC8882118 DOI: 10.1007/s00018-022-04186-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Cellular senescence is closely related to tissue aging including bone. Bone homeostasis is maintained by the tight balance between bone-forming osteoblasts and bone-resorbing osteoclasts, but it undergoes deregulation with age, causing age-associated osteoporosis, a main cause of which is osteoblast dysfunction. Oxidative stress caused by the accumulation of reactive oxygen species (ROS) in bone tissues with aging can accelerate osteoblast senescence and dysfunction. However, the regulatory mechanism that controls the ROS-induced senescence of osteoblasts is poorly understood. Here, we identified Peptidyl arginine deiminase 2 (PADI2), a post-translational modifying enzyme, as a regulator of ROS-accelerated senescence of osteoblasts via RNA-sequencing and further functional validations. PADI2 downregulation by treatment with H2O2 or its siRNA promoted cellular senescence and suppressed osteoblast differentiation. CCL2, 5, and 7 known as the elements of the senescence-associated secretory phenotype (SASP) which is a secretome including proinflammatory cytokines and chemokines emitted by senescent cells and a representative feature of senescence, were upregulated by H2O2 treatment or Padi2 knockdown. Furthermore, blocking these SASP factors with neutralizing antibodies or siRNAs alleviated the senescence and dysfunction of osteoblasts induced by H2O2 treatment or Padi2 knockdown. The elevated production of these SASP factors was mediated by the activation of NFκB signaling pathway. The inhibition of NFκB using the pharmacological inhibitor or siRNA effectively relieved H2O2 treatment- or Padi2 knockdown-induced senescence and osteoblast dysfunction. Together, our study for the first time uncover the role of PADI2 in ROS-accelerated cellular senescence of osteoblasts and provide new mechanistic and therapeutic insights into excessive ROS-promoted cellular senescence and aging-related bone diseases.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hee-In Yoon
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Jae-I Moon
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Eunji Lee
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Jin-Muk Lim
- Biomedical Knowledge Engineering Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea.,Alopax-Algo, Co. Ltd, Seoul, South Korea
| | - Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Mi-Hye Lee
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, USA
| | - Hong-Gee Kim
- Biomedical Knowledge Engineering Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
11
|
Chen JJ, Zhang LN, Wang HN, Xie CC, Li WY, Gao P, Hu WZ, Zhao ZF, Ji K. FAK inhibitor PF-431396 suppresses IgE-mediated mast cell activation and allergic inflammation in mice. Biochem Pharmacol 2021; 192:114722. [PMID: 34384759 DOI: 10.1016/j.bcp.2021.114722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
Mast cells (MCs) initiate and maintain allergic inflammation. Upon being stimulated with immunoglobulin (Ig)E and antigen (Ag), MCs exhibit FcεRI (high-affinity IgE) receptor-mediated degranulation, cytokine secretion, and increased focal adhesion kinase (FAK) activity. The aims of this study were to examine mechanisms of FAK regulation in IgE-mediated MC activation and the effects of FAK inhibition on MC-mediated allergic responses. FAK activity was manipulated with short hairpin RNA (shRNA) knockdown, FAK overexpression, and the FAK inhibitor PF-431396 (PF). Gene expression and kinase activation were analyzed with quantitative molecular biology assays. PF effects were tested in the passive cutaneous anaphylaxis (PCA), active systemic anaphylaxis (ASA), and allergic conjunctivitis (AC) mouse models. Our results showed that FAK overexpression increased IgE-mediated degranulation and reduced the dexamethasone inhibitory effect on MCs activation. The FAK inhibitor PF diminished MC release of β-hexosaminidase (β-hex), histamine, and inflammatory cytokines, via a mechanism that involves MAPK and NF-κB signaling pathways. CaMKII was identified as a robust FAK-associating protein. Inhibition of CaMKII activation by KN-93 suppressed FAK activity and its downstream pathway. PF attenuated inflammatory responses in our PCA and ASA models, and relieved signs of allergic disease in AC model mice. In conclusions, MC degranulation and production of inflammatory mediators in allergic disease may be consequent to FcεRI crosslinking inducing CaMKII-mediated activation of FAK activity. FAK inhibition may represent a new MC-suppressing treatment strategy for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Li-Na Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Hui-Na Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chu-Chu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wei-Yong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Pan Gao
- Shenzhen University General Hospital, Shenzhen 518060, China
| | - Wan-Zhen Hu
- Shenzhen University General Hospital, Shenzhen 518060, China
| | - Zhen-Fu Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
12
|
Berger BT, Amaral M, Kokh DB, Nunes-Alves A, Musil D, Heinrich T, Schröder M, Neil R, Wang J, Navratilova I, Bomke J, Elkins JM, Müller S, Frech M, Wade RC, Knapp S. Structure-kinetic relationship reveals the mechanism of selectivity of FAK inhibitors over PYK2. Cell Chem Biol 2021; 28:686-698.e7. [PMID: 33497606 DOI: 10.1016/j.chembiol.2021.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 01/13/2023]
Abstract
There is increasing evidence of a significant correlation between prolonged drug-target residence time and increased drug efficacy. Here, we report a structural rationale for kinetic selectivity between two closely related kinases: focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2). We found that slowly dissociating FAK inhibitors induce helical structure at the DFG motif of FAK but not PYK2. Binding kinetic data, high-resolution structures and mutagenesis data support the role of hydrophobic interactions of inhibitors with the DFG-helical region, providing a structural rationale for slow dissociation rates from FAK and kinetic selectivity over PYK2. Our experimental data correlate well with computed relative residence times from molecular simulations, supporting a feasible strategy for rationally optimizing ligand residence times. We suggest that the interplay between the protein structural mobility and ligand-induced effects is a key regulator of the kinetic selectivity of inhibitors of FAK versus PYK2.
Collapse
Affiliation(s)
- Benedict-Tilman Berger
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Marta Amaral
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany; Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Daria B Kokh
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Ariane Nunes-Alves
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Djordje Musil
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Timo Heinrich
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Martin Schröder
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Rebecca Neil
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Jing Wang
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Iva Navratilova
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Joerg Bomke
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Jonathan M Elkins
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Susanne Müller
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Matthias Frech
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany; German Cancer network DKTK and Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
14
|
Barad M, Csukasi F, Bosakova M, Martin JH, Zhang W, Paige Taylor S, Lachman RS, Zieba J, Bamshad M, Nickerson D, Chong JX, Cohn DH, Krejci P, Krakow D, Duran I. Biallelic mutations in LAMA5 disrupts a skeletal noncanonical focal adhesion pathway and produces a distinct bent bone dysplasia. EBioMedicine 2020; 62:103075. [PMID: 33242826 PMCID: PMC7695969 DOI: 10.1016/j.ebiom.2020.103075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background Beyond its structural role in the skeleton, the extracellular matrix (ECM), particularly basement membrane proteins, facilitates communication with intracellular signaling pathways and cell to cell interactions to control differentiation, proliferation, migration and survival. Alterations in extracellular proteins cause a number of skeletal disorders, yet the consequences of an abnormal ECM on cellular communication remains less well understood Methods Clinical and radiographic examinations defined the phenotype in this unappreciated bent bone skeletal disorder. Exome analysis identified the genetic alteration, confirmed by Sanger sequencing. Quantitative PCR, western blot analyses, immunohistochemistry, luciferase assay for WNT signaling were employed to determine RNA, proteins levels and localization, and dissect out the underlying cell signaling abnormalities. Migration and wound healing assays examined cell migration properties. Findings This bent bone dysplasia resulted from biallelic mutations in LAMA5, the gene encoding the alpha-5 laminin basement membrane protein. This finding uncovered a mechanism of disease driven by ECM-cell interactions between alpha-5-containing laminins, and integrin-mediated focal adhesion signaling, particularly in cartilage. Loss of LAMA5 altered β1 integrin signaling through the non-canonical kinase PYK2 and the skeletal enriched SRC kinase, FYN. Loss of LAMA5 negatively impacted the actin cytoskeleton, vinculin localization, and WNT signaling. Interpretation This newly described mechanism revealed a LAMA5-β1 Integrin-PYK2-FYN focal adhesion complex that regulates skeletogenesis, impacted WNT signaling and, when dysregulated, produced a distinct skeletal disorder. Funding Supported by NIH awards R01 AR066124, R01 DE019567, R01 HD070394, and U54HG006493, and Czech Republic grants INTER-ACTION LTAUSA19030, V18-08-00567 and GA19-20123S.
Collapse
Affiliation(s)
- Maya Barad
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Fabiana Csukasi
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Laboratory of Bioengineering and Tissue Regeneration-LABRET, Department of Cell Biology, Genetics and Physiology, University of Málaga, IBIMA, Málaga 29071, Spain
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Jorge H Martin
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Wenjuan Zhang
- Department of Molecular, Cell and Developmental Biology, University of California- Los Angeles, Los Angeles, CA 90095, United States
| | - S Paige Taylor
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Ralph S Lachman
- International Skeletal Dysplasia Registry, University of California, Los Angeles, CA 90095 United States
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Michael Bamshad
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Deborah Nickerson
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Jessica X Chong
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Daniel H Cohn
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Department of Molecular, Cell and Developmental Biology, University of California- Los Angeles, Los Angeles, CA 90095, United States; Orthopaedic Institute for Children, University of California-Los Angeles, Los Angeles, CA 90095, United States
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; International Skeletal Dysplasia Registry, University of California, Los Angeles, CA 90095 United States; Orthopaedic Institute for Children, University of California-Los Angeles, Los Angeles, CA 90095, United States; Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA 90095, United States; Department of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, CA 90095, United States.
| | - Ivan Duran
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Laboratory of Bioengineering and Tissue Regeneration-LABRET, Department of Cell Biology, Genetics and Physiology, University of Málaga, IBIMA, Málaga 29071, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Severo Ochoa 35, Málaga 29590, Spain
| |
Collapse
|
15
|
Mäder P, Kattner L. Sulfoximines as Rising Stars in Modern Drug Discovery? Current Status and Perspective on an Emerging Functional Group in Medicinal Chemistry. J Med Chem 2020; 63:14243-14275. [DOI: 10.1021/acs.jmedchem.0c00960] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick Mäder
- Endotherm GmbH, Science Park 2, 66123 Saarbruecken, Germany
| | - Lars Kattner
- Endotherm GmbH, Science Park 2, 66123 Saarbruecken, Germany
| |
Collapse
|
16
|
Sato T, Verma S, Andrade CDC, Omeara M, Campbell N, Wang JS, Cetinbas M, Lang A, Ausk BJ, Brooks DJ, Sadreyev RI, Kronenberg HM, Lagares D, Uda Y, Pajevic PD, Bouxsein ML, Gross TS, Wein MN. A FAK/HDAC5 signaling axis controls osteocyte mechanotransduction. Nat Commun 2020; 11:3282. [PMID: 32612176 PMCID: PMC7329900 DOI: 10.1038/s41467-020-17099-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Osteocytes, cells ensconced within mineralized bone matrix, are the primary skeletal mechanosensors. Osteocytes sense mechanical cues by changes in fluid flow shear stress (FFSS) across their dendritic projections. Loading-induced reductions of osteocytic Sclerostin (encoded by Sost) expression stimulates new bone formation. However, the molecular steps linking mechanotransduction and Sost suppression remain unknown. Here, we report that class IIa histone deacetylases (HDAC4 and HDAC5) are required for loading-induced Sost suppression and bone formation. FFSS signaling drives class IIa HDAC nuclear translocation through a signaling pathway involving direct HDAC5 tyrosine 642 phosphorylation by focal adhesion kinase (FAK), a HDAC5 post-translational modification that controls its subcellular localization. Osteocyte cell adhesion supports FAK tyrosine phosphorylation, and FFSS triggers FAK dephosphorylation. Pharmacologic FAK catalytic inhibition reduces Sost mRNA expression in vitro and in vivo. These studies demonstrate a role for HDAC5 as a transducer of matrix-derived cues to regulate cell type-specific gene expression.
Collapse
Affiliation(s)
- Tadatoshi Sato
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Shiv Verma
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | | | - Maureen Omeara
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Nia Campbell
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Jialiang S. Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Murat Cetinbas
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Audrey Lang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Brandon J. Ausk
- 0000000122986657grid.34477.33Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA USA
| | - Daniel J. Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA ,Center for Advanced Orthopaedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Henry M. Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Yuhei Uda
- 0000 0004 1936 7558grid.189504.1Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA USA
| | - Paola Divieti Pajevic
- 0000 0004 1936 7558grid.189504.1Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA USA
| | - Mary L. Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA ,Center for Advanced Orthopaedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Ted S. Gross
- 0000000122986657grid.34477.33Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA USA
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA
| |
Collapse
|
17
|
Cong Y, Wu H, Bian X, Xie Q, Lyu Q, Cui J, Suo L, Kuang Y. Ptk2b deletion improves mice folliculogenesis and fecundity via inhibiting follicle loss mediated by Erk pathway. J Cell Physiol 2020; 236:1043-1053. [PMID: 32608523 DOI: 10.1002/jcp.29914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/20/2020] [Indexed: 11/09/2022]
Abstract
Ptk2b has been found playing critical roles in oocyte maturation and subsequent fertilization in vitro. But what is the exact in vivo function in reproduction still elusive. Here, by constructing Ptk2b mutant mice, we found Ptk2b was not essential for mice fertility, unexpectedly, contrary to previously reported in vitro findings, we found Ptk2b ablation significantly improved female fecundity. Follicle counting indicated that the number of primordial follicles and growing follicles in matured mice was significantly increased in the absence of Ptk2b, whereas the primordial follicle formation showed no defects. We also found this regulation was in an autophosphorylation independent pathway, as autophosphorylation site mutant mice (PTK2BY402F ) show no phenotype in female fertility. Further biochemistry studies revealed that Ptk2b ablation promotes folliculogenesis via Erk pathway mediate follicle survival. Together, we found a novel biological function of Ptk2b in folliculogenesis, which could be potentially used as a therapeutic target for corresponding infertility.
Collapse
Affiliation(s)
- Yanyan Cong
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejiao Bian
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Xie
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lun Suo
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Sun J, Eleniste PP, Utreja A, Turkkahraman H, Liu SSY, Bruzzaniti A. Pyk2 deficiency enhances bone mass during midpalatal suture expansion. Orthod Craniofac Res 2020; 23:501-508. [PMID: 32562339 DOI: 10.1111/ocr.12402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/13/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine if Pyk2 deficiency increases midpalatal suture bone mass and preserves sutural integrity after maxillary expansion. SETTING AND SAMPLE Thirty-six male Pyk2 knockout (KO) and control (WT) mice at 6 weeks of age. MATERIALS AND METHODS Mice received nickel-titanium spring expanders delivering 0 g (no intervention control), 10 or 20 g force for 14 days. High-resolution micro-CT was used to determine bone volume/tissue volume (BV/TV), sutural width and intermolar width. Effects on osteoclasts, chondrocytes and suture morphology were determined by histomorphometry. RESULTS Pyk2-KO controls (0 g) had 7% higher BV/TV compared with WT controls. Expanded Pyk2-KO maxillae also exhibited 12% (10 g) and 18% (20 g) higher BV/TV than WT mice. Although bone loss following expansion occurred in both genotypes, BV/TV was decreased to a greater extent in WT maxillae (-10% at 10g; -22% at 20 g) compared with Pyk2-KO maxillae (-11% only at 20 g). Expanded WT maxillae also showed a greater increase in sutural width, intermolar width and fibrous connective tissue width compared with expanded Pyk2-KO maxillae. Moreover, osteoclast number was increased 77% (10 g) and 132% (20 g) in expanded WT maxillae, but remained unchanged in expanded Pyk2-KO, compared to their respective controls. Cartilage area and chondrocyte number were increased to the same extent in expanded WT and Pyk2-KO sutures. CONCLUSIONS These findings suggest that midpalatal suture expansion increases osteoclast formation in WT but not Pyk2-KO mice, leading to higher BV/TV in expanded Pyk2-KO maxillae. These studies suggest Pyk2-targeted strategies may be beneficial to increase bone density and preserve sutural integrity during maxillary expansion.
Collapse
Affiliation(s)
- Jun Sun
- Department of Prosthodontics, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Pierre P Eleniste
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Achint Utreja
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Hakan Turkkahraman
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Sean Shih-Yao Liu
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| |
Collapse
|
19
|
Gunesch JT, Dixon AL, Ebrahim TAM, Berrien-Elliott MM, Tatineni S, Kumar T, Hegewisch-Solloa E, Fehniger TA, Mace EM. CD56 regulates human NK cell cytotoxicity through Pyk2. eLife 2020; 9:e57346. [PMID: 32510326 PMCID: PMC7358009 DOI: 10.7554/elife.57346] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022] Open
Abstract
Human natural killer (NK) cells are defined as CD56+CD3-. Despite its ubiquitous expression on human NK cells the role of CD56 (NCAM) in human NK cell cytotoxic function has not been defined. In non-immune cells, NCAM can induce signaling, mediate adhesion, and promote exocytosis through interactions with focal adhesion kinase (FAK). Here we demonstrate that deletion of CD56 on the NK92 cell line leads to impaired cytotoxic function. CD56-knockout (KO) cells fail to polarize during immunological synapse (IS) formation and have severely impaired exocytosis of lytic granules. Phosphorylation of the FAK family member Pyk2 at tyrosine 402 is decreased in NK92 CD56-KO cells, demonstrating a functional link between CD56 and signaling in human NK cells. Cytotoxicity, lytic granule exocytosis, and the phosphorylation of Pyk2 are rescued by the reintroduction of CD56. These data highlight a novel functional role for CD56 in stimulating exocytosis and promoting cytotoxicity in human NK cells.
Collapse
Affiliation(s)
| | - Amera L Dixon
- Baylor College of MedicineHoustonUnited States
- Rice UniversityHoustonUnited States
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Tasneem AM Ebrahim
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
- Barnard CollegeNew YorkUnited States
| | | | | | | | - Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Todd A Fehniger
- Washington University School of MedicineSt. LouisUnited States
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
20
|
Hou R, Cole SA, Graff M, Haack K, Laston S, Comuzzie AG, Mehta NR, Ryan K, Cousminer DL, Zemel BS, Grant SFA, Mitchell BD, Shypailo RJ, Gourlay ML, North KE, Butte NF, Voruganti VS. Genetic variants affecting bone mineral density and bone mineral content at multiple skeletal sites in Hispanic children. Bone 2020; 132:115175. [PMID: 31790847 PMCID: PMC7120871 DOI: 10.1016/j.bone.2019.115175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022]
Abstract
CONTEXT Osteoporosis is a major public health burden with significant economic costs. However, the correlates of bone health in Hispanic children are understudied. OBJECTIVE We aimed to identify genetic variants associated with bone mineral density (BMD) and bone mineral content (BMC) at multiple skeletal sites in Hispanic children. METHODS We conducted a cross-sectional genome-wide linkage analysis, genome-wide and exome-wide association analysis of BMD and BMC. The Viva La Familia Study is a family-based cohort with a total of 1030 Hispanic children (4-19 years old at baseline) conducted in Houston, TX. BMD and BMC were measured by Dual-energy X-ray absorptiometry. RESULTS Significant heritability were observed for BMC and BMD at multiple skeletal sites ranging between 44 and 68% (P < 2.8 × 10-9). Significant evidence for linkage was found for BMD of pelvis and left leg on chromosome 7p14, lumbar spine on 20q13 and left rib on 6p21, and BMC of pelvis on chromosome 20q12 and total body on 14q22-23 (logarithm of odds score > 3). We found genome-wide significant association between BMC of right arm and rs762920 at PVALB (P = 4.6 × 10-8), and between pelvis BMD and rs7000615 at PTK2B (P = 7.4 × 10-8). Exome-wide association analysis revealed novel association of variants at MEGF10 and ABRAXAS2 with left arm and lumber spine BMC, respectively (P < 9 × 10-7). CONCLUSIONS We identified novel loci associated with BMC and BMD in Hispanic children, with strongest evidence for PTK2B. These findings provide better understanding of bone genetics and shed light on biological mechanisms underlying BMD and BMC variation.
Collapse
Affiliation(s)
- Ruixue Hou
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sandra Laston
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas the Rio Grande Valley, Brownsville, TX, USA
| | | | - Nitesh R Mehta
- Department of Pediatrics and USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Kathleen Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.; Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Diana L Cousminer
- Division of Human Genetics, Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, USA; Department of Genetics, University of Pennsylvania, USA
| | - Babette S Zemel
- Division of GI, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania, Philadelphia, USA
| | - Struan F A Grant
- Division of Human Genetics, Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, USA; Department of Pediatrics, University of Pennsylvania, Philadelphia, USA; Department of Genetics, University of Pennsylvania, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.; Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Roman J Shypailo
- Department of Pediatrics and USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Margaret L Gourlay
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nancy F Butte
- Department of Pediatrics and USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - V Saroja Voruganti
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA.
| |
Collapse
|
21
|
Gonzalez Guzman JL, Lázaro SF, do Nascimento AV, de Abreu Santos DJ, Cardoso DF, Becker Scalez DC, Galvão de Albuquerque L, Hurtado Lugo NA, Tonhati H. Genome-wide association study applied to type traits related to milk yield in water buffaloes (Bubalus bubalis). J Dairy Sci 2019; 103:1642-1650. [PMID: 31759604 DOI: 10.3168/jds.2019-16499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/07/2019] [Indexed: 01/13/2023]
Abstract
This research aimed to estimate genetic parameters for milk yield and type traits [withers height (WH), croup height (CH), body length (BL), croup length (CL), iliac width (ILW), ischial width (ISW), and thoracic circumference] in Murrah buffaloes and to identify genomic regions related to type traits by applying a single-step genome-wide association study. Data used to estimate the genetic parameters consisted of 601 records of milk yield in the first lactation and the aforementioned type traits. For the single-step genome-wide association study, 322 samples genotyped with a 90K Axiom Buffalo Genotyping array (Thermo Fisher Scientific, Santa Clara, CA) were used. Bivariate analysis revealed that heritability for milk yield (kg) at 305 d was 0.31 ± 0.11, whereas it ranged from 0.22 ± 0.07 to 0.34 ± 0.09 for the studied conformation traits. Based on the percentages of genetic variance explained by windows of 10 markers, there were 16 genomic regions explaining more than 0.5% of the variance for WH, CH, BL, CL, ILW, ISW, and thoracic circumference. Between those regions, 4 were associated with more than 1 trait, suggesting pleiotropic roles for some genes of Bos taurus autosome (BTA) 12 on CL and WH, BTA13 on ISW and ILW, BTA23 on CH and BL, and BTA28 on ISW and BL. Most of these regions coincide with known quantitative trait loci for milk traits. Thus, further studies based on sequence data will help to validate the association of this region with type traits and likely identify the causal mutations.
Collapse
Affiliation(s)
- Jessica Lorena Gonzalez Guzman
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - Sirlene Fernandes Lázaro
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - André Vieira do Nascimento
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | | | - Diercles Francisco Cardoso
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - Daiane Cristina Becker Scalez
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - Lúcia Galvão de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - Naudin Alejandro Hurtado Lugo
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - Humberto Tonhati
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil.
| |
Collapse
|
22
|
Raghavan S, Singh NK, Gali S, Mani AM, Rao GN. Protein Kinase Cθ Via Activating Transcription Factor 2-Mediated CD36 Expression and Foam Cell Formation of Ly6C hi Cells Contributes to Atherosclerosis. Circulation 2019; 138:2395-2412. [PMID: 29991487 DOI: 10.1161/circulationaha.118.034083] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although the role of thrombin in atherothrombosis is well studied, its role in the pathogenesis of diet-induced atherosclerosis is not known. METHODS Using a mouse model of diet-induced atherosclerosis and molecular biological approaches, here we have explored the role of thrombin and its G protein-coupled receptor signaling in diet-induced atherosclerosis. RESULTS In exploring the role of G protein-coupled receptor signaling in atherogenesis, we found that thrombin triggers foam cell formation via inducing CD36 expression, and these events require Par1-mediated Gα12-Pyk2-Gab1-protein kinase C (PKC)θ-dependent ATF2 activation. Genetic deletion of PKCθ in apolipoprotein E (ApoE)-/- mice reduced Western diet-induced plaque formation. Furthermore, thrombin induced Pyk2, Gab1, PKCθ, and ATF2 phosphorylation, CD36 expression, and foam cell formation in peritoneal macrophages of ApoE-/- mice. In contrast, thrombin only stimulated Pyk2 and Gab1 but not ATF2 phosphorylation or its target gene CD36 expression in the peritoneal macrophages of ApoE-/-:PKCθ-/- mice, and it had no effect on foam cell formation. In addition, the aortic root cross-sections of Western diet-fed ApoE-/- mice showed increased Pyk2, Gab1, PKCθ, and ATF2 phosphorylation and CD36 expression as compared with ApoE-/-:PKCθ-/- mice. Furthermore, although the monocytes from peripheral blood and the aorta of Western diet-fed ApoE-/- mice were found to contain more of Ly6Chi cells than Ly6Clo cells, the monocytes from Western diet-fed ApoE-/-:PKCθ-/- mice were found to contain more Ly6Clo cells than Ly6Chi cells. It is interesting to note that the Ly6Chi cells showed higher CD36 expression with enhanced capacity to form foam cells as compared with Ly6Clo cells. CONCLUSIONS These findings reveal for the first time that thrombin-mediated Par1-Gα12 signaling via targeting Pyk2-Gab1-PKCθ-ATF2-dependent CD36 expression might be playing a crucial role in diet-induced atherogenesis.
Collapse
Affiliation(s)
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Sivaiah Gali
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Arul M Mani
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
23
|
Brian BF, Jolicoeur AS, Guerrero CR, Nunez MG, Sychev ZE, Hegre SA, Sætrom P, Habib N, Drake JM, Schwertfeger KL, Freedman TS. Unique-region phosphorylation targets LynA for rapid degradation, tuning its expression and signaling in myeloid cells. eLife 2019; 8:e46043. [PMID: 31282857 PMCID: PMC6660195 DOI: 10.7554/elife.46043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/06/2019] [Indexed: 12/23/2022] Open
Abstract
The activity of Src-family kinases (SFKs), which phosphorylate immunoreceptor tyrosine-based activation motifs (ITAMs), is a critical factor regulating myeloid-cell activation. We reported previously that the SFK LynA is uniquely susceptible to rapid ubiquitin-mediated degradation in macrophages, functioning as a rheostat regulating signaling (Freedman et al., 2015). We now report the mechanism by which LynA is preferentially targeted for degradation and how cell specificity is built into the LynA rheostat. Using genetic, biochemical, and quantitative phosphopeptide analyses, we found that the E3 ubiquitin ligase c-Cbl preferentially targets LynA via a phosphorylated tyrosine (Y32) in its unique region. This distinct mode of c-Cbl recognition depresses steady-state expression of LynA in macrophages derived from mice. Mast cells, however, express little c-Cbl and have correspondingly high LynA. Upon activation, mast-cell LynA is not rapidly degraded, and SFK-mediated signaling is amplified relative to macrophages. Cell-specific c-Cbl expression thus builds cell specificity into the LynA checkpoint.
Collapse
Affiliation(s)
- Ben F Brian
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | | | - Candace R Guerrero
- College of Biological Sciences Center for Mass Spectrometry and ProteomicsUniversity of MinnesotaMinneapolisUnited States
| | - Myra G Nunez
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | - Zoi E Sychev
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | - Siv A Hegre
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Pål Sætrom
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Computer ScienceNorwegian University of Science and TechnologyTrondheimNorway
| | - Nagy Habib
- Department of Surgery and CancerHammersmith Hospital, Imperial College LondonLondonUnited Kingdom
| | - Justin M Drake
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Department of UrologyUniversity of MinnesotaMinneapolisUnited States
| | - Kathryn L Schwertfeger
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Center for ImmunologyUniversity of MinnesotaMinneapolisUnited States
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUnited States
| | - Tanya S Freedman
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Center for ImmunologyUniversity of MinnesotaMinneapolisUnited States
- Center for Autoimmune Diseases ResearchUniversity of MinnesotaMinneapolisUnited States
| |
Collapse
|
24
|
Sato AY, Cregor M, McAndrews K, Li T, Condon KW, Plotkin LI, Bellido T. Glucocorticoid-Induced Bone Fragility Is Prevented in Female Mice by Blocking Pyk2/Anoikis Signaling. Endocrinology 2019; 160:1659-1673. [PMID: 31081900 PMCID: PMC6591015 DOI: 10.1210/en.2019-00237] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022]
Abstract
Excess of glucocorticoids (GCs) is a leading cause of bone fragility, and therapeutic targets are sorely needed. We report that genetic deletion or pharmacological inhibition of proline-rich tyrosine kinase 2 (Pyk2) prevents GC-induced bone loss by overriding GC effects of detachment-induced bone cell apoptosis (anoikis). In wild-type or vehicle-treated mice, GCs either prevented osteoclast apoptosis or promoted osteoblast/osteocyte apoptosis. In contrast, mice lacking Pyk2 [knockout (KO)] or treated with Pyk2 kinase inhibitor PF-431396 (PF) were protected. KO or PF-treated mice were also protected from GC-induced bone resorption, microarchitecture deterioration, and weakening of biomechanical properties. In KO and PF-treated mice, GC increased osteoclasts in bone and circulating tartrate-resistant acid phosphatase form 5b, an index of osteoclast number. However, bone surfaces covered by osteoclasts and circulating C-terminal telopeptides of type I collagen, an index of osteoclast function, were not increased. The mismatch between osteoclast number vs function induced by Pyk2 deficiency/inhibition was due to osteoclast detachment and anoikis. Further, GC prolongation of osteoclast lifespan was absent in KO and PF-treated osteoclasts, demonstrating Pyk2 as an intrinsic osteoclast-survival regulator. Circumventing Pyk2 activation preserves skeletal integrity by preventing GC effects on bone cell survival (proapoptotic for osteoblasts/osteocytes, antiapoptotic for osteoclasts) and GC-induced bone resorption. Thus, Pyk2/anoikis signaling as a therapeutic target for GC-induced osteoporosis.
Collapse
Affiliation(s)
- Amy Y Sato
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Meloney Cregor
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kevin McAndrews
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Troy Li
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Keith W Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
- Correspondence: Teresita Bellido, PhD, Department of Anatomy and Cell Biology and Department of Medicine, Endocrinology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045A, Indianapolis, Indiana 46202. E-mail:
| |
Collapse
|
25
|
Guidetti GF, Torti M, Canobbio I. Focal Adhesion Kinases in Platelet Function and Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:857-868. [DOI: 10.1161/atvbaha.118.311787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The focal adhesion kinase family includes 2 homolog members, FAK and Pyk2 (proline-rich tyrosine kinase 2), primarily known for their roles in nucleated cells as regulators of cytoskeletal dynamics and cell adhesion. FAK and Pyk2 are also expressed in megakaryocytes and platelets and are activated by soluble agonists and on adhesion to the subendothelial matrix. Despite high sequence homology and similar molecular organization, FAK and Pyk2 play different roles in platelet function. Whereas FAK serves mostly as a traditional focal adhesion kinase activated downstream of integrins, Pyk2 coordinates multiple signals from different receptors. FAK, but not Pyk2, is involved in megakaryocyte maturation and platelet production. In circulating platelets, FAK is recruited by integrin αIIbβ3 to regulate hemostasis, whereas it plays minimal roles in thrombosis. By contrast, Pyk2 is implicated in platelet activation and is an important regulator of thrombosis. The direct activation of Pyk2 by calcium ions provides a connection between GPCRs (G-protein coupled receptors) and Src family kinases. In this review, we provide the comprehensive overview of >20 years of investigations on the role and regulation of focal adhesion kinases in blood platelets, highlighting common and distinctive features of FAK and Pyk2 in hemostasis and thrombosis.
Collapse
Affiliation(s)
| | - Mauro Torti
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| | - Ilaria Canobbio
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| |
Collapse
|
26
|
Posritong S, Flores Chavez R, Chu TMG, Bruzzaniti A. A Pyk2 inhibitor incorporated into a PEGDA-gelatin hydrogel promotes osteoblast activity and mineral deposition. ACTA ACUST UNITED AC 2019; 14:025015. [PMID: 30658347 DOI: 10.1088/1748-605x/aafffa] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pyk2 is a non-receptor tyrosine kinase that belongs to the family of focal adhesion kinases. Studies from our laboratory and others demonstrated that mice lacking the Pyk2 gene (Ptk2B) have high bone mass, which was due to increased osteoblast activity, as well as decreased osteoclast activity. It was previously reported that a chemical inhibitor that targets both Pyk2 and its homolog FAK, led to increased bone formation in ovariectomized rats. In the current study, we developed a hydrogel containing poly(ethylene glycol) diacrylate (PEGDA) and gelatin which was curable by visible-light and was suitable for the delivery of small molecules, including a Pyk2-targeted chemical inhibitor. We characterized several critical properties of the hydrogel, including viscosity, gelation time, swelling, degradation, and drug release behavior. We found that a hydrogel composed of PEGDA1000 plus 10% gelatin (P1000:G10) exhibited Bingham fluid behavior that can resist free flowing before in situ polymerization, making it suitable for use as an injectable carrier in open wound applications. The P1000:G10 hydrogel was cytocompatible and displayed a more delayed drug release behavior than other hydrogels we tested. Importantly, the Pyk2-inhibitor-hydrogel retained its inhibitory activity against the Pyk2 tyrosine kinase, and promoted osteoblast activity and mineral deposition in vitro. Overall, our findings suggest that a Pyk2-inhibitor based hydrogel may be suitable for the treatment of craniofacial and appendicular skeletal defects and targeted bone regeneration.
Collapse
Affiliation(s)
- Sumana Posritong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN 46202, United States of America
| | | | | | | |
Collapse
|
27
|
Starossom SC, Campo Garcia J, Woelfle T, Romero-Suarez S, Olah M, Watanabe F, Cao L, Yeste A, Tukker JJ, Quintana FJ, Imitola J, Witzel F, Schmitz D, Morkel M, Paul F, Infante-Duarte C, Khoury SJ. Chi3l3 induces oligodendrogenesis in an experimental model of autoimmune neuroinflammation. Nat Commun 2019; 10:217. [PMID: 30644388 PMCID: PMC6333780 DOI: 10.1038/s41467-018-08140-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/18/2018] [Indexed: 01/19/2023] Open
Abstract
In demyelinating diseases including multiple sclerosis (MS), neural stem cells (NSCs) can replace damaged oligodendrocytes if the local microenvironment supports the required differentiation process. Although chitinase-like proteins (CLPs) form part of this microenvironment, their function in this differentiation process is unknown. Here, we demonstrate that murine Chitinase 3-like-3 (Chi3l3/Ym1), human Chi3L1 and Chit1 induce oligodendrogenesis. In mice, Chi3l3 is highly expressed in the subventricular zone, a stem cell niche of the adult brain, and in inflammatory brain lesions during experimental autoimmune encephalomyelitis (EAE). We find that silencing Chi3l3 increases severity of EAE. We present evidence that in NSCs Chi3l3 activates the epidermal growth factor receptor (EGFR), thereby inducing Pyk2-and Erk1/2- dependent expression of a pro-oligodendrogenic transcription factor signature. Our results implicate CLP-EGFR-Pyk2-MEK-ERK as a key intrinsic pathway controlling oligodendrogenesis.
Collapse
Affiliation(s)
- Sarah C Starossom
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany.
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany.
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Juliana Campo Garcia
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Tim Woelfle
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Silvina Romero-Suarez
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Marta Olah
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Fumihiro Watanabe
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Department of Neurology-The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Li Cao
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ada Yeste
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - John J Tukker
- Neuroscience Research Center (NWFZ), Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- DZNE-German Center for Neurodegenerative Diseases, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Francisco J Quintana
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jaime Imitola
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Department of Neurology-The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Franziska Witzel
- IRI Life Sciences, Institute of Pathology, Computational Modeling in Medicine, Charité- Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Dietmar Schmitz
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Neuroscience Research Center (NWFZ), Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- IRI Life Sciences, Institute of Pathology, Computational Modeling in Medicine, Charité- Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Markus Morkel
- Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Samia J Khoury
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Abu Haidar Neuroscience Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
28
|
Posritong S, Hong JM, Eleniste PP, McIntyre PW, Wu JL, Himes ER, Patel V, Kacena MA, Bruzzaniti A. Pyk2 deficiency potentiates osteoblast differentiation and mineralizing activity in response to estrogen or raloxifene. Mol Cell Endocrinol 2018; 474:35-47. [PMID: 29428397 PMCID: PMC6057828 DOI: 10.1016/j.mce.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
Bone remodeling is controlled by the actions of bone-degrading osteoclasts and bone-forming osteoblasts (OBs). Aging and loss of estrogen after menopause affects bone mass and quality. Estrogen therapy, including selective estrogen receptor modulators (SERMs), can prevent bone loss and increase bone mineral density in post-menopausal women. Although investigations of the effects of estrogen on osteoclast activity are well advanced, the mechanism of action of estrogen on OBs is still unclear. The proline-rich tyrosine kinase 2 (Pyk2) is important for bone formation and female mice lacking Pyk2 (Pyk2-KO) exhibit elevated bone mass, increased bone formation rate and reduced osteoclast activity. Therefore, in the current study, we examined the role of estrogen signaling on the mechanism of action of Pyk2 in OBs. As expected, Pyk2-KO OBs showed significantly higher proliferation, matrix formation, and mineralization than WT OBs. In addition we found that Pyk2-KO OBs cultured in the presence of either 17β-estradiol (E2) or raloxifene, a SERM used for the treatment of post-menopausal osteoporosis, showed a further robust increase in alkaline phosphatase (ALP) activity and mineralization. We examined the possible mechanism of action and found that Pyk2 deletion promotes the proteasome-mediated degradation of estrogen receptor α (ERα), but not estrogen receptor β (ERβ). As a consequence, E2 signaling via ERβ was enhanced in Pyk2-KO OBs. In addition, we found that Pyk2 deletion and E2 stimulation had an additive effect on ERK phosphorylation, which is known to stimulate cell differentiation and survival. Our findings suggest that in the absence of Pyk2, estrogen exerts an osteogenic effect on OBs through altered ERα and ERβ signaling. Thus, targeting Pyk2, in combination with estrogen or raloxifene, may be a novel strategy for the prevention and/or treatment of bone loss diseases.
Collapse
Affiliation(s)
- Sumana Posritong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Jung Min Hong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Pierre P Eleniste
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Patrick W McIntyre
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Jennifer L Wu
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Evan R Himes
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Vruti Patel
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Angela Bruzzaniti
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| |
Collapse
|
29
|
Proline-Rich Protein Tyrosine Kinase 2 in Inflammation and Cancer. Cancers (Basel) 2018; 10:cancers10050139. [PMID: 29738483 PMCID: PMC5977112 DOI: 10.3390/cancers10050139] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023] Open
Abstract
Focal adhesion kinase (FAK) and its homologous FAK-related proline-rich tyrosine kinase 2 (Pyk2) contain the same domain, exhibit high sequence homology and are defined as a distinct family of non-receptor tyrosine kinases. This group of kinases plays critical roles in cytoskeletal dynamics and cell adhesion by regulating survival and growth signaling. This review summarizes the physiological and pathological functions of Pyk2 in inflammation and cancers. In particular, overexpression of Pyk2 in cancerous tissues is correlated with poor outcomes. Pyk2 stimulates multiple oncogenic signaling pathways, such as Wnt/β-catenin, PI3K/Akt, MAPK/ERK, and TGF-β/EGFR/VEGF, and facilitates carcinogenesis, migration, invasion, epithelial⁻mesenchymal transition and metastasis. Therefore, Pyk2 is a high-value therapeutic target and has clinical significance.
Collapse
|
30
|
Curtis KJ, Coughlin TR, Mason DE, Boerckel JD, Niebur GL. Bone marrow mechanotransduction in porcine explants alters kinase activation and enhances trabecular bone formation in the absence of osteocyte signaling. Bone 2018; 107:78-87. [PMID: 29154967 DOI: 10.1016/j.bone.2017.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023]
Abstract
Bone is a dynamic tissue that can adapt its architecture in response to mechanical signals under the control of osteocytes, which sense mechanical deformation of the mineralized bone. However, cells in the marrow are also mechanosensitive and may contribute to load-induced bone adaptation, as marrow is subjected to mechanical stress during bone deformation. We investigated the contribution of mechanotransduction in marrow cells to trabecular bone formation by applying low magnitude mechanical stimulation (LMMS) to porcine vertebral trabecular bone explants in an in situ bioreactor. The bone formation rate was higher in stimulated explants compared to unloaded controls which represent a disuse condition (CNT). However, sclerostin protein expression in osteocytes was not different between groups, nor was expression of osteocytic mechanoregulatory genes SOST, IGF-1, CTGF, and Cyr61, suggesting the mechanoregulatory program of osteocytes was unaffected by the loading regime. In contrast, c-Fos, a gene indicative of mechanical stimulation, was upregulated in the marrow cells of mechanically stimulated explants, while the level of activated c-Jun decreased by 25%. The activator protein 1 (AP-1) transcription factor is a heterodimer of c-Fos and c-Jun, which led us to investigate the expression of the downstream target gene cyclin-D1, a gene associated with cell cycle progression and osteogenesis. Cyclin-D1 gene expression in the stimulated marrow was approximately double that of the controls. The level of phosphorylated PYK2, a purported inhibitor of osteoblast differentiation, also decreased in marrow cells from stimulated explants. Taken together, mechanotransduction in marrow cells induced trabecular bone formation independent of osteocyte signaling. Identifying the specific cells and signaling pathways involved, and verifying them with inhibition of specific signaling molecules, could lead to potential therapeutic targets for diseases characterized by bone loss.
Collapse
Affiliation(s)
- Kimberly J Curtis
- Tissue Mechanics Laboratory, University of Notre Dame, IN, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, IN, 46556, USA
| | - Thomas R Coughlin
- Tissue Mechanics Laboratory, University of Notre Dame, IN, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, IN, 46556, USA
| | - Devon E Mason
- Bioengineering Graduate Program, University of Notre Dame, IN, 46556, USA
| | - Joel D Boerckel
- Bioengineering Graduate Program, University of Notre Dame, IN, 46556, USA
| | - Glen L Niebur
- Tissue Mechanics Laboratory, University of Notre Dame, IN, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, IN, 46556, USA.
| |
Collapse
|
31
|
Wei J, Li M, Gao F, Zeng R, Liu G, Li K. Multiple analyses of large-scale genome-wide association study highlight new risk pathways in lumbar spine bone mineral density. Oncotarget 2017; 7:31429-39. [PMID: 27119226 PMCID: PMC5058768 DOI: 10.18632/oncotarget.8948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/29/2016] [Indexed: 11/25/2022] Open
Abstract
Osteoporosis is a common human complex disease. It is mainly characterized by low bone mineral density (BMD) and low-trauma osteoporotic fractures (OF). Until now, a large proportion of heritability has yet to be explained. The existing large-scale genome-wide association studies (GWAS) provide strong support for the investigation of osteoporosis mechanisms using pathway analysis. Recent findings showed that different risk pathways may be involved in BMD in different tissues. Here, we conducted multiple pathway analyses of a large-scale lumbar spine BMD GWAS dataset (2,468,080 SNPs and 31,800 samples) using two published gene-based analysis software including ProxyGeneLD and the PLINK. Using BMD genes from ProxyGeneLD, we identified 51 significant KEGG pathways with adjusted P<0.01. Using BMD genes from PLINK, we identified 38 significant KEGG pathways with adjusted P<0.01. Interestingly, 33 pathways are shared in both methods. In summary, we not only identified the known risk pathway such as Wnt signaling, in which the top GWAS variants are significantly enriched, but also highlight some new risk pathways. Interestingly, evidence from further supports the involvement of these pathways in MBD.
Collapse
Affiliation(s)
- Jinsong Wei
- Department of Orthopedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ming Li
- Departmentof Endocrinology and Metabolism, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng Gao
- Department of Trauma and Emergency Surgeon, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rong Zeng
- Department of Orthopedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guiyou Liu
- Genome Analysis Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Stroke Center, Neurology & Neurosurgery Division, The Clinical Medicine Research Institute & The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Lv PC, Jiang AQ, Zhang WM, Zhu HL. FAK inhibitors in Cancer, a patent review. Expert Opin Ther Pat 2017; 28:139-145. [DOI: 10.1080/13543776.2018.1414183] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Peng-Cheng Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing P. R. China
- Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing, P. R. China
| | - Ai-Qin Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing P. R. China
- Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing, P. R. China
| | - Wei-Ming Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing P. R. China
- Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing, P. R. China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing P. R. China
- Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing, P. R. China
| |
Collapse
|
33
|
Zarà M, Canobbio I, Visconte C, Di Nunzio G, Torti M, Guidetti G. Novel pharmacological inhibitors demonstrate the role of the tyrosine kinase Pyk2 in adhesion and aggregation of human platelets. Thromb Haemost 2017; 116:904-917. [DOI: 10.1160/th16-01-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/13/2016] [Indexed: 11/05/2022]
Abstract
SummaryPyk2 is a Ca2+-regulated kinase predominantly expressed in neuronal and in haematopoietic cells. Previous studies on Pyk2-null mice have demonstrated that Pyk2 plays a crucial role in platelet activation and thrombus formation, thus representing a possible target for antithrombotic therapy. Very limited information is available about the role of Pyk2 in human platelets, mainly because of the lack of specific pharmacological inhibitors. In this work, we have tested two novel Pyk2 inhibitors, PF-4594755 and PF-4520440, to validate their specificity and to investigate their ability to modulate platelet activation. Both molecules were able to efficiently block Pyk2 activity in human and mouse platelets stimulated with thrombin or with the Ca2+-ionophore. In wild-type murine platelets, PF-4594755 and PF-4520440 reduced thrombin-induced aggregation to the level observed in Pyk2 knockout platelets, but did not affect aggregation induced by GPVI stimulation. Importantly, neither compounds affected the residual thrombin-induced aggregation of Pyk2-null platelets, thus excluding possible off-target effects. In human platelets, PF-4594755 and PF-4520440 significantly reduced aggregation stimulated by thrombin, but not by the GPVI agonist convulxin. Both inhibitors reduced platelet adhesion on fibrinogen and prevented Akt phosphorylation in adherent cells, indicating that Pyk2 regulates PI3K and cell spreading downstream of integrins in human platelets. Finally, the Pyk2 inhibitors significantly inhibited thrombus formation upon blood perfusion on immobilized collagen under arterial flow rate. These results demonstrate that PF-4594755 and PF-4520440 are specific inhibitors of Pyk2 in intact platelets and allowed to reliably document that this kinase plays a relevant role in human platelet activation.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
34
|
Tsukahara R, Umazume K, McDonald K, Kaplan HJ, Tamiya S. Focal adhesion kinase family is involved in matrix contraction by transdifferentiated Müller cells. Exp Eye Res 2017; 164:90-94. [PMID: 28818394 DOI: 10.1016/j.exer.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/07/2017] [Accepted: 08/12/2017] [Indexed: 01/01/2023]
Abstract
Transdifferentiated Müller cells that adopt a fibroblastic/myofibroblastic phenotype have been identified in epiretinal membranes (ERMs) in several ocular disorders, and have been implicated to play a role in the formation and/or the contraction of ERMs. We have previously demonstrated that dasatinib, a dual inhibitor of Src-family kinases and Abl kinase, can prevent matrix contraction by transdifferentiated Müller cells. In this study, we examined molecules involved in matrix contraction downstream of primary dasatinib targets. Tyrosine phosphorylation of focal adhesion kinase (FAK) family members FAK and PYK2 was significantly reduced by dasatinib, and select inhibitors for these kinases PF431396, which inhibits both FAK and PYK2, and PF573228, which only inhibits FAK and not PYK2, significantly reduced matrix contraction by transdifferentiated Müller cells. Dasatinib and PF431396 significantly reduced phosphorylation of Hic-5, a protein implicated to play a role in focal adhesions and cell signaling. Our data shows that FAK family members are involved in matrix contraction by transdifferentiated Müller cells, and also implicates that Hic-5 is situated downstream of the FAK family within the signaling pathway.
Collapse
Affiliation(s)
- Rintaro Tsukahara
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E Muhammad Ali Blvd., Louisville, KY 40202, USA; Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki-gun, Ibaraki 300-0332, Japan
| | - Kazuhiko Umazume
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-Shijuku, Shinjuku, Tokyo 160-0023, Japan
| | - Kevin McDonald
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - Shigeo Tamiya
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E Muhammad Ali Blvd., Louisville, KY 40202, USA.
| |
Collapse
|
35
|
Llewellyn RA, Thomas KS, Gutknecht MF, Bouton AH. The nonreceptor protein tyrosine kinase Pyk2 promotes the turnover of monocytes at steady state. J Leukoc Biol 2017; 102:1069-1080. [PMID: 28754799 DOI: 10.1189/jlb.1a0217-063r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/20/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022] Open
Abstract
Monocytes are short-lived myeloid cells that perform functions essential for tissue homeostasis and disease resolution. However, the cellular mechanisms controlling the maintenance and turnover of monocyte populations are largely undefined. Proline-rich tyrosine kinase 2 (Pyk2) is a nonreceptor tyrosine kinase that regulates numerous immune cell functions, but its role in monocytes is currently unknown. In this study, we sought to characterize the expression and function of Pyk2 in lineage-committed monocyte populations. Here, we report that Pyk2 protein expression is increased in the Ly6C- monocyte population. Using a Pyk2 knockout mouse model (Pyk2-/-), we show that Pyk2 regulates the relative proportion of monocyte subsets normally represented in the bone marrow (BM) at steady state. In support of this conclusion, a similar phenotype was observed in the peripheral blood and spleen. Data from reciprocal BM chimera experiments indicate that the alterations in monocyte populations exhibited by Pyk2-/- mice are due to factors intrinsic to the monocytes. Lineage-tracing of monocyte populations suggests that Pyk2 promotes apoptosis in BM monocytes, thereby acting as an important homeostatic regulator of turnover in these short-lived, innate immune cells.
Collapse
Affiliation(s)
- Ryan A Llewellyn
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Keena S Thomas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Michael F Gutknecht
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Amy H Bouton
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
36
|
Meirson T, Samson AO, Gil-Henn H. An in silico high-throughput screen identifies potential selective inhibitors for the non-receptor tyrosine kinase Pyk2. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1535-1557. [PMID: 28572720 PMCID: PMC5441678 DOI: 10.2147/dddt.s136150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The non-receptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2) is a critical mediator of signaling from cell surface growth factor and adhesion receptors to cell migration, proliferation, and survival. Emerging evidence indicates that signaling by Pyk2 regulates hematopoietic cell response, bone density, neuronal degeneration, angiogenesis, and cancer. These physiological and pathological roles of Pyk2 warrant it as a valuable therapeutic target for invasive cancers, osteoporosis, Alzheimer’s disease, and inflammatory cellular response. Despite its potential as a therapeutic target, no potent and selective inhibitor of Pyk2 is available at present. As a first step toward discovering specific potential inhibitors of Pyk2, we used an in silico high-throughput screening approach. A virtual library of six million lead-like compounds was docked against four different high-resolution Pyk2 kinase domain crystal structures and further selected for predicted potency and ligand efficiency. Ligand selectivity for Pyk2 over focal adhesion kinase (FAK) was evaluated by comparative docking of ligands and measurement of binding free energy so as to obtain 40 potential candidates. Finally, the structural flexibility of a subset of the docking complexes was evaluated by molecular dynamics simulation, followed by intermolecular interaction analysis. These compounds may be considered as promising leads for further development of highly selective Pyk2 inhibitors.
Collapse
Affiliation(s)
- Tomer Meirson
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Abraham O Samson
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Hava Gil-Henn
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
37
|
Sun C, Yuan H, Wang L, Wei X, Williams L, Krebsbach PH, Guan JL, Liu F. FAK Promotes Osteoblast Progenitor Cell Proliferation and Differentiation by Enhancing Wnt Signaling. J Bone Miner Res 2016; 31:2227-2238. [PMID: 27391080 PMCID: PMC5642940 DOI: 10.1002/jbmr.2908] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/03/2023]
Abstract
Decreased bone formation is often associated with increased bone marrow adiposity. The molecular mechanisms that are accountable for the negative correlation between bone mass and bone marrow adiposity are incompletely understood. Focal adhesion kinase (FAK) has critical functions in proliferation and differentiation of many cell types; however, its roles in osteoblast lineage cells are largely unknown. We show herein that mice lacking FAK in Osterix-expressing cells exhibited decreased osteoblast number and low bone mass as well as increased bone marrow adiposity. The decreased bone mass in FAK-deficient mice was accounted for by decreased proliferation, compromised osteogenic differentiation, and increased adipogenic differentiation of bone marrow Osterix-expressing cells resulting from downregulation of Wnt/β-catenin signaling due to the reduced expression of canonical Wnt ligands. In contrast, FAK loss in calvarial preosteoblasts had no adverse effect on their proliferation and osteogenic differentiation and these cells had intact Wnt/β-catenin signaling. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chunhui Sun
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Hebao Yuan
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Li Wang
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Xiaoxi Wei
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Orthodontics, Jilin University School and Hospital of Stomatology, Changchun, Jilin, China
| | - Linford Williams
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Paul H Krebsbach
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fei Liu
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Rajshankar D, Wang Y, McCulloch CA. Osteogenesis requires FAK-dependent collagen synthesis by fibroblasts and osteoblasts. FASEB J 2016; 31:937-953. [PMID: 27881487 DOI: 10.1096/fj.201600645r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/14/2016] [Indexed: 11/11/2022]
Abstract
Focal adhesion kinase (FAK) is critical in adhesion-dependent signaling, but its role in osteogenesis in vivo is ill defined. We deleted Fak in fibroblasts and osteoblasts in Floxed-Fak mice bred with those expressing Cre-recombinase driven by 3.6-kb α1(I)-collagen promoter. Compared with wild-type (WT), conditional FAK-knockout (CFKO) mice were shorter (2-fold; P < 0.0001) and had crooked, shorter tails (50%; P < 0.0001). Microcomputed tomography analysis showed reduced bone volume (4-fold in tails; P < 0.0001; 2-fold in mandibles; P < 0.0001), whereas bone surface area/bone volume increased (3-fold in tails; P < 0.0001; 2.5-fold in mandibles; P < 0.001). Collagen density and fiber alignment in periodontal ligament were reduced by 4-fold (P < 0.0001) and 30% (P < 0.05), respectively, in CFKO mice. In cultured CFKO osteoblasts, mineralization at d 7 and mineralizing colony-forming units at d 21 were 30% (P < 0.0001) and >3-fold less than WT, respectively. Disruptions of FAK function in osteoblasts by conditional knockout, siRNA-knockdown, or FAK inhibitor reduced mRNA and protein expression of Runx2 (>30%), Osterix (>25%), and collagen-1 (2-fold). Collagen synthesis was abrogated in WT osteoblasts with Runx2 knockdown and in Fak-null fibroblasts transfected with an FAK kinase domain mutant or a kinase-impaired mutant (Y397F). These data indicate that FAK regulates osteogenesis through transcription factors that regulate collagen synthesis.-Rajshankar, D., Wang, Y., McCulloch, C. A. Osteogenesis requires FAK-dependent collagen synthesis by fibroblasts and osteoblasts.
Collapse
Affiliation(s)
- Dhaarmini Rajshankar
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Farand J, Mai N, Chandrasekhar J, Newby ZE, Van Veldhuizen J, Loyer-Drew J, Venkataramani C, Guerrero J, Kwok A, Li N, Zherebina Y, Wilbert S, Zablocki J, Phillips G, Watkins WJ, Mourey R, Notte GT. Selectivity switch between FAK and Pyk2: Macrocyclization of FAK inhibitors improves Pyk2 potency. Bioorg Med Chem Lett 2016; 26:5926-5930. [PMID: 27876318 DOI: 10.1016/j.bmcl.2016.10.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 01/24/2023]
Abstract
Herein, we describe the synthesis of Pyk2 inhibitors via macrocyclization of FAK and dual Pyk2-FAK inhibitors. We identified macrocycle 25a as a highly potent Pyk2 inhibitor (IC50=0.7nM), with ∼175-fold improvement in Pyk2 potency as compared to its acyclic counterpart. In many cases, macrocyclization improved Pyk2 potency while weakening FAK potency, thereby improving the Pyk2/FAK selectivity ratio for this structural class of inhibitors. Various macrocyclic linkers were studied in an attempt to optimize Pyk2 selectivity. We observed macrocyclic atropisomerism during the synthesis of 19-membered macrocycles 10a-d, and successfully obtained crystallographic evidence of one atropisomer (10a-AtropB) preferentially bound to Pyk2.
Collapse
Affiliation(s)
- Julie Farand
- Department of Medicinal Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Nicholas Mai
- Department of Medicinal Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Jayaraman Chandrasekhar
- Department of Structural Chemistry, Gilead Sciences, Inc., 199 East Blaine Street, Seattle, WA 98102, USA
| | - Zachary E Newby
- Department of Structural Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Josh Van Veldhuizen
- Department of Medicinal Chemistry, Gilead Sciences, Inc., 199 East Blaine Street, Seattle, WA 98102, USA
| | - Jennifer Loyer-Drew
- Department of Medicinal Chemistry, Gilead Sciences, Inc., 199 East Blaine Street, Seattle, WA 98102, USA
| | - Chandrasekar Venkataramani
- Department of Medicinal Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Juan Guerrero
- Department of Medicinal Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Amy Kwok
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Ning Li
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Yelena Zherebina
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Sibylle Wilbert
- Department of Drug Metabolism, Gilead Sciences, Inc., 199 East Blaine Street, Seattle, WA 98102, USA
| | - Jeff Zablocki
- Department of Medicinal Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Gary Phillips
- Department of Medicinal Chemistry, Gilead Sciences, Inc., 199 East Blaine Street, Seattle, WA 98102, USA
| | - William J Watkins
- Department of Medicinal Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Robert Mourey
- Department of Biology, Gilead Sciences, Inc., 199 East Blaine Street, Seattle, WA 98102, USA
| | - Gregory T Notte
- Department of Medicinal Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| |
Collapse
|
40
|
Abstract
Osteocytes are differentiated osteoblasts that become surrounded by matrix during the process of bone formation. Acquisition of the osteocyte phenotype is achieved by profound changes in gene expression that facilitate adaptation to the changing cellular environment and constitute the molecular signature of osteocytes. During osteocytogenesis, the expression of genes that are characteristic of the osteoblast are altered and the expression of genes and/or proteins that impart dendritic cellular morphology, regulate matrix mineralization and control the function of cells at the bone surface are ordely modulated. The discovery of mutations in human osteocytic genes has contributed, in a large part, to our understanding of the role of osteocytes in bone homeostasis. Osteocytes are targets of the mechanical force imposed on the skeleton and have a critical role in integrating mechanosensory pathways with the action of hormones, which thereby leads to the orchestrated response of bone to environmental cues. Current, therapeutic approaches harness this accumulating knowledge by targeting osteocytic signalling pathways and messengers to improve skeletal health.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
41
|
Hsiao YH, Huang YT, Hung CY, Kuo TC, Luo FJ, Yuan TC. PYK2 via S6K1 regulates the function of androgen receptors and the growth of prostate cancer cells. Endocr Relat Cancer 2016; 23:651-63. [PMID: 27492635 DOI: 10.1530/erc-16-0122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/30/2022]
Abstract
Androgen receptor (AR) is a steroid hormone receptor that functions as a transcription factor for regulating cell growth and survival. Aberrant AR function becomes a risk factor for promoting the progression of prostate cancer (PCa). In this study, we examined the roles of proline-rich tyrosine kinase 2 (PYK2) and ribosomal S6 kinase 1 (S6K1) in regulating AR expression and activity and growth properties in PCa cells. Compared with normal prostate tissues, PCa tumors exhibited high levels of PYK2 and S6K1 expression. Furthermore, the expression levels of PYK2 and S6K1 were significantly correlated with nuclear AR expression in PCa tissues. We further found the association between PYK2, S6K1, and AR in their protein expression and phosphorylation levels among normal prostate PZ-HPV-7 cells and prostate cancer LNCaP and 22Rv1 cells. Overexpression of the wild-type PYK2 in PZ-HPV-7 and LNCaP cells promoted AR and S6K1 expression and phosphorylation as well as enhanced cell growth. In contrast, expression of the mutated PYK2 or knockdown of PYK2 expression in LNCaP or 22Rv1 cells caused reduced expression or phosphorylation of AR and S6K1 as well as retarded cell growth. Under an androgen-deprived condition, PYK2-promoted AR expression and phosphorylation and PSA production in LNCaP cells can be abolished by knocking down S6K1 expression. In summary, our data suggested that PYK2 via S6K1 activation modulated AR function and growth properties in PCa cells. Thus, PYK2 and S6K1 may potentially serve as therapeutic targets for PCa treatment.
Collapse
Affiliation(s)
- Yu-Hsuan Hsiao
- Department of Life ScienceNational Dong Hwa University, Hualien, Taiwan, Republic of China
| | - Yu-Ting Huang
- Department of Life ScienceNational Dong Hwa University, Hualien, Taiwan, Republic of China
| | - Chia-Yu Hung
- Department of Life ScienceNational Dong Hwa University, Hualien, Taiwan, Republic of China
| | - Tzu-Chien Kuo
- Department of Life ScienceNational Dong Hwa University, Hualien, Taiwan, Republic of China
| | - Fuh-Jinn Luo
- Department of PathologyMennonite Hospital, Hualien, Taiwan, Republic of China
| | - Ta-Chun Yuan
- Department of Life ScienceNational Dong Hwa University, Hualien, Taiwan, Republic of China
| |
Collapse
|
42
|
Cheung SMS, Ostergaard HL. Pyk2 Controls Integrin-Dependent CTL Migration through Regulation of De-Adhesion. THE JOURNAL OF IMMUNOLOGY 2016; 197:1945-56. [PMID: 27456486 DOI: 10.4049/jimmunol.1501505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 06/24/2016] [Indexed: 11/19/2022]
Abstract
Protein tyrosine kinase 2 (Pyk2) is required for T cell adhesion to ICAM-1; however, the mechanism by which it regulates adhesion remains unexplored. Pyk2 function in murine CTL clones and activated ex vivo CD8(+) T cells was disrupted by pharmacological inhibition, knockdown of expression with small interfering RNA, or expression of the dominant-negative C-terminal domain. We found that Pyk2 is not absolutely required for adhesion of CTL to ICAM-1, but rather delays the initial adhesion. Disruption of Pyk2 function caused cells to display an unusual elongated appearance after 1 h on ICAM-1, consistent with abnormally strong adhesion. Furthermore, the random mobility of CTL on ICAM-1 was severely compromised using all three methods of disrupting Pyk2 function. Live-cell imaging studies revealed that the decreased migration is the result of a defect in the detachment from ICAM-1 at the trailing edge when Pyk2 function is inhibited. Examination of Pyk2 tyrosine phosphorylation in normal polarized cells demonstrated that Pyk2 phosphorylated at Y579 and Y580 preferentially localizes to the leading edge, whereas Y881-phosphorylated Pyk2 is enriched at the trailing edge, suggesting that the tyrosine phosphorylation of Pyk2 is spatially regulated in migrating CTL. Additionally, inhibition of Pyk2 caused cells to form multiple LFA-1-rich tails at the trailing edge, most likely resulting from a defect in LFA-1 release required for forward movement. Our results show that Pyk2 contributes to CTL migration by regulating detachment of CTL at the trailing edge, which could explain why Pyk2 is important for chemotactic and migratory responses.
Collapse
Affiliation(s)
- Samuel M S Cheung
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Hanne L Ostergaard
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
43
|
Cortical Bone Morphological and Trabecular Bone Microarchitectural Changes in the Mandible and Femoral Neck of Ovariectomized Rats. PLoS One 2016; 11:e0154367. [PMID: 27127909 PMCID: PMC4851407 DOI: 10.1371/journal.pone.0154367] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/12/2016] [Indexed: 12/03/2022] Open
Abstract
Objective This study used microcomputed tomography (micro-CT) to evaluate the effects of ovariectomy on the trabecular bone microarchitecture and cortical bone morphology in the femoral neck and mandible of female rats. Materials and Methods Twelve female Wister rats were divided into two groups: the control and ovariectomized groups. The rats in the ovariectomized group received ovariectomy at 8 weeks of age; all the rats were sacrificed at 20 weeks of age, and their mandibles and femurs were removed and scanned using micro-CT. Four microstructural trabecular bone parameters were measured for the region below the first mandibular molar and the femoral neck region: bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular separation (TbSp), and trabecular number (TbN). In addition, four cortical bone parameters were measured for the femoral neck region: total cross-sectional area (TtAr), cortical area (CtAr), cortical bone area fraction (CtAr/TtAr), and cortical thickness (CtTh). The CtTh at the masseteric ridge was used to assess the cortical bone morphology in the mandible. The trabecular bone microarchitecture and cortical bone morphology in the femoral necks and mandibles of the control group were compared with those of the ovariectomized group. Furthermore, Spearman’s correlation (rs) was conducted to analyze the correlation between the osteoporosis conditions of the mandible and femoral neck. Results Regarding the trabecular bone microarchitectural parameters, the BV/TV of the trabecular bone microarchitecture in the femoral necks of the control group (61.199±11.288%, median ± interquartile range) was significantly greater than that of the ovariectomized group (40.329±5.153%). Similarly, the BV/TV of the trabecular bone microarchitecture in the mandibles of the control group (51.704±6.253%) was significantly greater than that of the ovariectomized group (38.486±9.111%). Furthermore, the TbSp of the femoral necks in the ovariectomized group (0.185±0.066 mm) was significantly greater than that in the control group (0.130±0.026mm). Similarly, the TbSp of the mandibles in the ovariectomized group (0.322±0.047mm) was significantly greater than that in the control group (0.285±0.041mm). However, the TbTh and TbN trends for the mandibles and femoral necks were inconsistent between the control and ovariectomized groups. Regarding the cortical bone morphology parameters, the TtAr of the femoral necks in the ovariectomized group was significantly smaller than that in the control group. There was no significant difference in the TtAr, CtAr, or CtTh of the femoral necks between the control and ovariectomized groups, and no significant difference in the CtTh of the mandibles between the control and ovariectomized groups. Moreover, the BV/TV and TbSp of the mandibles were highly correlated with those of the femurs (rs = 0.874 and rs = 0.755 for BV/TV and TbSp, respectively). Nevertheless, the TbTh, TbN, and CtTh of the mandibles were not correlated with those of the femoral necks. Conclusion After the rats were ovariectomized, osteoporosis of the trabecular bone microarchitecture occurred in their femurs and mandibles; however, ovariectomy did not influence the cortical bone morphology. In addition, the parametric values of the trabecular bone microarchitecture in the femoral necks were highly correlated with those of the trabecular bone microarchitecture in the mandibles.
Collapse
|
44
|
Tyrosine 397 phosphorylation is critical for FAK-promoted Rac1 activation and invasive properties in oral squamous cell carcinoma cells. J Transl Med 2016; 96:296-306. [PMID: 26752742 DOI: 10.1038/labinvest.2015.151] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/02/2015] [Accepted: 08/26/2015] [Indexed: 11/08/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer worldwide. Despite advances in diagnosis and therapy, treatment options for patients with metastatic OSCC are few, due in part to the limited understanding of the molecular events involved in the invasion and metastasis of OSCC. In this study, we investigated the expression of focal adhesion kinase (FAK) and its tyrosine 397 phosphorylation (pY397) in the tissue specimens of OSCC. The roles of pY397 in regulating the activities of Rac1 and cortactin and the invasive properties of OSCC cells were further determined. Results from immunohistochemical analyses in 9 benign, 19 premalignant, and 19 malignant oral tissues showed that the immunoreactivity of FAK was observed in 5 benign (56%), 19 premalignant (100%), and 18 malignant tissues (95%), whereas the immunoreactivity of pY397 was only found in 1 of 9 (11%) benign lesions but was observed in 9 premalignant (47%) and 12 malignant (63%) lesions. Compared with the low-invading SCC4 cells, the high-invading OECM-1 cells exhibited higher levels of FAK expression and pY397, correlating with higher levels of GTP-bound Rac1 and cortactin phosphorylation. Manipulation of FAK expression or Y397 phosphorylation in SCC4, FaDu, OECM-1, or HSC-3 cells regulated their Rac1 activities and invasive properties. Furthermore, treatment of NSC23766, a Rac1-specific inhibitor, in OECM-1 and HSC-3 cells led to reduced invasive properties. Nevertheless, knockdown of FAK expression or suppression of pY397 had no effect on the cortactin activity in OECM-1 cells. The data collectively suggest that pY397 plays critical roles in the FAK-promoted Rac1 activation and invasive properties in OSCC cells. Thus, the inhibition of FAK phosphorylation at Y397 or Rac1 activity can serve as a therapeutic strategy for treating patients with metastatic OSCC.
Collapse
|
45
|
Paone C, Rodrigues N, Ittner E, Santos C, Buntru A, Hauck CR. The Tyrosine Kinase Pyk2 Contributes to Complement-Mediated Phagocytosis in Murine Macrophages. J Innate Immun 2016; 8:437-51. [PMID: 26848986 PMCID: PMC6738876 DOI: 10.1159/000442944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 01/30/2023] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) family and is mainly expressed in neuronal and hematopoietic cells. As FAK family members are involved in signaling connections downstream of integrins, we studied the role of Pyk2 in complement-receptor 3 (CR3, also known as Mac-1, integrin αMβ2, CD11b/CD18)-mediated phagocytosis, a key process in innate immunity. Using 3 independent approaches, we observed that Pyk2 contributes to CR3-dependent phagocytosis by RAW 264.7 macrophages, but is dispensable for Fcγ receptor (FcγR)-mediated uptake. Reduction of Pyk2 expression levels via siRNA, the pharmacological inhibition of Pyk2 kinase activity as well as macrophage treatment with a cell permeable TAT fusion protein containing the C-terminus of Pyk2 (TAT-PRNK) significantly impaired CR3-mediated phagocytosis without affecting FcγR-mediated uptake. In addition, Pyk2 was strongly recruited to complement opsonized Escherichia coli and the pharmacological inhibition of Pyk2 significantly decreased uptake of the bacteria. Finally, CRISPR/Cas-mediated disruption of the pyk2 gene in RAW 264.7 macrophages confirmed the role of this protein tyrosine kinase in CR3-mediated phagocytosis. Together, our data demonstrate that Pyk2 selectively contributes to the coordination of phagocytosis-promoting signals downstream of CR3, but is dispensable for FcγR-mediated phagocytosis.
Collapse
Affiliation(s)
- Christoph Paone
- Lehrstuhl für Zellbiologie, Konstanz, Germany
- Konstanz Research School, Chemical Biology, Universität Konstanz, Konstanz, Germany
| | | | - Ella Ittner
- Lehrstuhl für Zellbiologie, Konstanz, Germany
| | | | - Alexander Buntru
- Lehrstuhl für Zellbiologie, Konstanz, Germany
- Konstanz Research School, Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Christof R. Hauck
- Lehrstuhl für Zellbiologie, Konstanz, Germany
- Konstanz Research School, Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
46
|
|
47
|
Zhao H, Liu X, Zou H, Dai N, Yao L, Zhang X, Gao Q, Liu W, Gu J, Yuan Y, Bian J, Liu Z. Osteoprotegerin disrupts peripheral adhesive structures of osteoclasts by modulating Pyk2 and Src activities. Cell Adh Migr 2016; 10:299-309. [PMID: 26743491 DOI: 10.1080/19336918.2015.1129480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoprotegerin has previously been shown to modulate bone mass by blocking osteoclast maturation and function. The detailed mechanisms of osteoprotegerin-induced disassembly of podosomes, disruption of adhesive structures and modulation of adhesion-related proteins in osteoclasts, however, are not well characterized. In this study, tartrate-resistant acidic phosphatase staining demonstrated that osteoprotegerin inhibited differentiation of osteoclasts. The use of scanning electron microscopy, real-time cell monitoring and confocal microscopy indicated that osteoclasts responded in a time and dose-dependent manner to osteoprotegerin treatments with retraction of peripheral adhesive structures and detachment from the extracellular substrate. Combined imaging and Western blot studies showed that osteoprotegerin induced dephosphorylation of Tyr 402 in Pyk2 and decreased its labeling in peripheral adhesion regions. osteoprotegerin induced increased intracellular labeling of Tyr 402 in Pyk2, Tyr 416 in Src, increased dephosphorylation of Tyr 527 in Src, and increased Pyk2/Src association in the central region of osteoclasts. This evidence suggests that Src may function as an adaptor protein that competes for Pyk2 and relocates it from the peripheral adhesive zone to the central region of osteoclasts in response to osteoprotegerin treatment. Osteoprotegerin may induce podosome reassembly and peripheral adhesive structure detachment by modulating phosphorylation of Pyk2 and Src and their intracellular distribution in osteoclasts.
Collapse
Affiliation(s)
- Hongyan Zhao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Xuezhong Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Hui Zou
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Nannan Dai
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Lulian Yao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Xiao Zhang
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Qian Gao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Wei Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Jianhong Gu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Yan Yuan
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Jianchun Bian
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Zongping Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| |
Collapse
|
48
|
Giralt A, Coura R, Girault JA. Pyk2 is essential for astrocytes mobility following brain lesion. Glia 2015; 64:620-34. [DOI: 10.1002/glia.22952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/23/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Albert Giralt
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| | - Renata Coura
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| | - Jean-Antoine Girault
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| |
Collapse
|
49
|
Eleniste PP, Patel V, Posritong S, Zero O, Largura H, Cheng YH, Himes ER, Hamilton M, Ekwealor JTB, Kacena MA, Bruzzaniti A. Pyk2 and Megakaryocytes Regulate Osteoblast Differentiation and Migration Via Distinct and Overlapping Mechanisms. J Cell Biochem 2015; 117:1396-406. [PMID: 26552846 DOI: 10.1002/jcb.25430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 01/08/2023]
Abstract
Osteoblast differentiation and migration are necessary for bone formation during bone remodeling. Mice lacking the proline-rich tyrosine kinase Pyk2 (Pyk2-KO) have increased bone mass, in part due to increased osteoblast proliferation. Megakaryocytes (MKs), the platelet-producing cells, also promote osteoblast proliferation in vitro and bone-formation in vivo via a pathway that involves Pyk2. In the current study, we examined the mechanism of action of Pyk2, and the role of MKs, on osteoblast differentiation and migration. We found that Pyk2-KO osteoblasts express elevated alkaline phosphatase (ALP), type I collagen and osteocalcin mRNA levels as well as increased ALP activity, and mineralization, confirming that Pyk2 negatively regulates osteoblast function. Since Pyk2 Y402 phosphorylation is important for its catalytic activity and for its protein-scaffolding functions, we expressed the phosphorylation-mutant (Pyk2(Y402F) ) and kinase-mutant (Pyk2(K457A) ) in Pyk2-KO osteoblasts. Both Pyk2(Y402F) and Pyk2(K457A) reduced ALP activity, whereas only kinase-inactive Pyk2(K457A) inhibited Pyk2-KO osteoblast migration. Consistent with a role for Pyk2 on ALP activity, co-culture of MKs with osteoblasts led to a decrease in the level of phosphorylated Pyk2 (pY402) as well as a decrease in ALP activity. Although, Pyk2-KO osteoblasts exhibited increased migration compared to wild-type osteoblasts, Pyk2 expression was not required necessary for the ability of MKs to stimulate osteoblast migration. Together, these data suggest that osteoblast differentiation and migration are inversely regulated by MKs via distinct Pyk2-dependent and independent signaling pathways. Novel drugs that distinguish between the kinase-dependent or protein-scaffolding functions of Pyk2 may provide therapeutic specificity for the control of bone-related diseases.
Collapse
Affiliation(s)
- Pierre P Eleniste
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Vruti Patel
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Sumana Posritong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Odette Zero
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Heather Largura
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Evan R Himes
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matthew Hamilton
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jenna T B Ekwealor
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Angela Bruzzaniti
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| |
Collapse
|
50
|
Kotla S, Rao GN. Reactive Oxygen Species (ROS) Mediate p300-dependent STAT1 Protein Interaction with Peroxisome Proliferator-activated Receptor (PPAR)-γ in CD36 Protein Expression and Foam Cell Formation. J Biol Chem 2015; 290:30306-20. [PMID: 26504087 DOI: 10.1074/jbc.m115.686865] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 01/24/2023] Open
Abstract
Previously, we have demonstrated that 15(S)-hydroxyeicosatetranoic acid (15(S)-HETE) induces CD36 expression involving STAT1. Many studies have shown that peroxisome proliferator-activated receptor (PPAR)-γ mediates CD36 expression. Therefore, we asked the question whether these transcriptional factors interact with each other in the regulation of CD36 expression by 15(S)-HETE. Here, we show that STAT1 interacts with PPARγ in the induction of CD36 expression and foam cell formation by 15(S)-HETE. In addition, using molecular biological approaches such as EMSA, supershift EMSA, ChIP, re-ChIP, and promoter-reporter gene assays, we demonstrate that the STAT1 and PPARγ complex binds to the STAT-binding site at -107 nucleotides in the CD36 promoter and enhances its activity. Furthermore, the interaction of STAT1 with PPARγ depends on STAT1 acetylation, which is mediated by p300. In addition, our findings show that reactive oxygen species-dependent Syk and Pyk2 stimulation is required for p300 tyrosine phosphorylation and activation. Together, these results demonstrate that an interaction between STAT1, p300, and peroxisome proliferator-activated receptor-γ is required for 15(S)-HETE-induced CD36 expression, oxidized low density lipoprotein uptake, and foam cell formation, critical events underlying the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Sivareddy Kotla
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Gadiparthi N Rao
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|